WO2017002513A1 - 弾性波装置 - Google Patents

弾性波装置 Download PDF

Info

Publication number
WO2017002513A1
WO2017002513A1 PCT/JP2016/066247 JP2016066247W WO2017002513A1 WO 2017002513 A1 WO2017002513 A1 WO 2017002513A1 JP 2016066247 W JP2016066247 W JP 2016066247W WO 2017002513 A1 WO2017002513 A1 WO 2017002513A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
wave device
main surface
outermost
electrode
Prior art date
Application number
PCT/JP2016/066247
Other languages
English (en)
French (fr)
Inventor
智裕 木間
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2017526230A priority Critical patent/JP6589983B2/ja
Priority to CN201680032649.9A priority patent/CN107615656B/zh
Priority to KR1020177033191A priority patent/KR101987716B1/ko
Publication of WO2017002513A1 publication Critical patent/WO2017002513A1/ja
Priority to US15/832,880 priority patent/US10958238B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02984Protection measures against damaging
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14538Formation
    • H03H9/14541Multilayer finger or busbar electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters

Definitions

  • the present invention relates to an elastic wave device used for a resonator, a band filter, and the like.
  • Patent Documents 1 and 2 disclose an acoustic wave device in which an IDT electrode is provided on a piezoelectric substrate.
  • Patent Document 1 describes a laminated metal film in which NiCr, Pt, Ti, AlCu, and Ti are laminated in this order as the IDT electrode.
  • Patent Document 2 describes a laminated metal film in which Al is laminated on Ti as the IDT electrode.
  • the laminated metal film is covered with a coated electrode film.
  • the IDT electrode constituting the acoustic wave device is often exposed to a plasma atmosphere when a dielectric film is formed or when organic residues on the surface are removed.
  • An object of the present invention is to provide an elastic wave device that hardly deteriorates in characteristics even when an IDT electrode is exposed to a plasma atmosphere.
  • An acoustic wave device includes a piezoelectric substrate and an IDT electrode provided on the piezoelectric substrate, wherein the IDT electrode includes at least one electrode layer having an outermost electrode layer, and the outermost layer.
  • a ridge line formed by the first main surface and the side surface is covered with the protective electrode layer in the outermost electrode layer.
  • the outermost electrode layer can be effectively protected, and the deterioration of the characteristics is further less likely to occur.
  • the side surface of the outermost electrode layer is covered with the protective electrode layer.
  • the outermost electrode layer can be more reliably protected.
  • the outermost electrode layer has a second main surface facing the first main surface, and the outermost electrode layer The second main surface is covered with the protective electrode layer. In this case, the outermost electrode layer can be more reliably protected.
  • the outermost electrode layer is made of at least one of Al and Cu. In this case, the resistance of the electrode can be lowered and the loss can be reduced.
  • the protective electrode layer is made of at least one of Ti and Mo. In this case, the outermost electrode layer can be more reliably protected.
  • the IDT electrode includes a plurality of electrode layers having the outermost electrode layer, and the protective electrode layer protecting the outermost electrode layer, Have
  • the plurality of electrode layers include a second electrode layer formed under the outermost electrode layer, and the second layer
  • the electrode layer is made of a metal having a density higher than that of the metal constituting the outermost electrode layer.
  • the second electrode layer is made of at least one of Pt and Au.
  • the elastic wave device has a pair of side surface portions that face each other, and faces the first main surface from the second main surface.
  • Each side surface portion is inclined so that the distance between the pair of matching side surface portions becomes narrow.
  • the IDT electrode includes a NiCr layer, the second electrode layer, a Ti layer, the outermost electrode layer, and the protective electrode layer stacked in this order. It is the laminated metal film made.
  • the IDT electrode even when the IDT electrode is exposed to a plasma atmosphere, it is possible to provide an elastic wave device that is unlikely to deteriorate in characteristics.
  • FIG. 1A is a schematic front sectional view of an acoustic wave device according to an embodiment of the present invention
  • FIG. 1B is a schematic plan view showing an electrode structure thereof.
  • FIG. 2 is an enlarged schematic front sectional view of the IDT electrode portion of the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 3 is an enlarged schematic cross-sectional view of the IDT electrode portion of the acoustic wave device according to the second embodiment of the present invention.
  • FIG. 1A is a schematic front sectional view of an acoustic wave device according to the first embodiment of the present invention
  • FIG. 1B is a schematic plan view showing an electrode structure thereof
  • FIG. 2 is an enlarged schematic front sectional view of the IDT electrode portion of the acoustic wave device according to the first embodiment of the present invention.
  • the acoustic wave device 1 has a piezoelectric substrate 2.
  • An IDT electrode 3 is provided on the main surface of the piezoelectric substrate 2.
  • the piezoelectric substrate 2 is a substrate made of LiNbO 3 .
  • a substrate made of another piezoelectric single crystal such as LiTaO 3 or a substrate made of piezoelectric ceramics may be used.
  • the electrode structure shown in FIG. 1B is formed on the piezoelectric substrate 2. That is, the IDT electrode 3 and the reflectors 4 and 5 disposed on both sides of the IDT electrode 3 in the elastic wave propagation direction are formed. Thereby, a 1-port elastic wave resonator is configured.
  • the electrode structure including the IDT electrode in the present invention is not particularly limited.
  • a filter may be configured by combining a plurality of resonators. Examples of such a filter include a ladder type filter, a longitudinally coupled resonator type filter, and a lattice type filter.
  • the IDT electrode 3 has first and second bus bars and a plurality of first and second electrode fingers.
  • the plurality of first and second electrode fingers extend in a direction orthogonal to the elastic wave propagation direction.
  • the plurality of first electrode fingers and the plurality of second electrode fingers are interleaved with each other.
  • the plurality of first electrode fingers are connected to the first bus bar, and the plurality of second electrode fingers are connected to the second bus bar.
  • the IDT electrode 3 is formed by stacking a NiCr layer 3E, a third electrode layer 3C, a Ti layer 3D, a first electrode layer 3A, and a second electrode layer 3B in this order. It is a metal film.
  • the second electrode layer 3B is a protective electrode layer.
  • the first electrode layer 3A is the outermost electrode layer in the laminated metal film excluding the second electrode layer 3B and the Ti layer 3D, which are protective electrode layers.
  • the third electrode layer 3C is the second electrode layer in the laminated metal film excluding the second electrode layer 3B and the Ti layer 3D, which are protective electrode layers.
  • the third electrode layer 3C is formed under the first electrode layer 3A.
  • the first electrode layer 3A has first and second main surfaces 3a and 3b facing each other.
  • the first electrode layer 3A has a side surface 3c that connects the first and second main surfaces 3a and 3b.
  • the side surface 3c has first and second side surface portions 3c1 and 3c2 facing each other.
  • the first and second side surface portions 3c1 and 3c2 are respectively narrowed so that the distance between the first and second side surface portions 3c1 and 3c2 becomes narrower from the second main surface 3b toward the first main surface 3a. It is inclined. As shown in FIG. 2, the NiCr layer 3E, the third electrode layer 3C, and the Ti layer 3D have the same shape as the first electrode layer 3A.
  • the first electrode layer 3A is made of Al.
  • the first electrode layer 3A may be made of another metal such as Cu or an alloy thereof.
  • 3 A of 1st electrode layers are comprised with the metal with a small electrical resistivity.
  • the electrical resistivity of the IDT electrode 3 can be further reduced and the loss can be further reduced.
  • Al, Cu, or these alloys are mentioned.
  • the second electrode layer 3B is laminated on the first main surface 3a of the first electrode layer 3A.
  • the second electrode layer 3B covers the first main surface 3a of the first electrode layer 3A and a region extending from the first main surface 3a to a part of the side surface 3c.
  • the ridgelines R1 and R2 shown in FIG. 2 are also covered with the second electrode layer 3B.
  • the ridge line R1 is a ridge line formed by the first main surface 3a and the first side surface portion 3c1.
  • the ridge line R2 is a ridge line formed by the first main surface 3a and the second side surface portion 3c2.
  • the second electrode layer 3B has a third main surface 3d.
  • the third main surface 3d is a main surface on the opposite side to the main surface on the side in contact with the first main surface 3a in the second electrode layer 3B.
  • the distance between the third main surface 3d and the portion of the second electrode layer 3B closest to the piezoelectric substrate 2 is defined as d1.
  • the distance between the third main surface 3d and the first main surface 3a is d2.
  • the ratio d1 / d2 between d1 and d2 is preferably greater than 1.0 and 7.0 or less.
  • the ratio d1 / d2 is within the above range, damage to the first electrode layer 3A due to plasma can be more effectively suppressed.
  • the IDT electrode 3 does not become so heavy as will be described later, the deterioration of the characteristics is more difficult to occur.
  • d2 is 10 nm
  • d1 can be 10 nm to 70 nm.
  • the second electrode layer 3B is made of Ti.
  • the second electrode layer 3B may be made of another metal such as Mo or an alloy thereof.
  • the 2nd electrode layer 3B is comprised with the metal whose electrical resistivity is larger than 3 A of 1st electrode layers.
  • the metal having a higher electrical resistivity than the first electrode layer 3A include Ti, Mo, and alloys thereof.
  • the third electrode layer 3C is made of Pt. But the 3rd electrode layer 3C may be constituted by other metals, such as Au, or these alloys.
  • the third electrode layer 3C is preferably made of a metal having a higher density than the first electrode layer 3A. Examples of the metal having a density higher than that of the first electrode layer 3A include noble metals such as Pt and Au, or alloys thereof. Note that the third electrode layer 3C is not necessarily provided.
  • a main component shall mean the component contained 50weight% or more.
  • a SiO 2 film as a temperature adjusting film may be formed by sputtering or an organic residue on the surface may be removed.
  • the IDT electrode constituting the acoustic wave device may be exposed to a plasma atmosphere. Therefore, in the conventional acoustic wave device, the electrode layer located above the IDT electrode may be damaged by the plasma and the characteristics may be deteriorated.
  • the first main surface 3a of the first electrode layer 3A and the region extending from the first main surface 3a to a part of the side surface 3c are the second.
  • the electrode layer 3B is covered. Therefore, in the acoustic wave device 1, even when exposed to a plasma atmosphere, the first electrode layer 3A located at the top is hardly damaged. For this reason, the acoustic wave device 1 is unlikely to deteriorate in characteristics even when exposed to a plasma atmosphere.
  • the second electrode layer 3B does not exceed the lower end P of the side surface 3c of the first electrode layer 3A. That is, the second electrode layer 3B is not provided so as to cover the NiCr layer 3E, the third electrode layer 3C, and the Ti layer 3D. Therefore, even if the second electrode layer 3B is provided, the IDT electrode 3 does not become so heavy, and the state and frequency of energy distribution hardly change. Therefore, also from this point, the acoustic wave device 1 is unlikely to deteriorate in characteristics.
  • the ridgelines R1 and R2 that are easily damaged by plasma are covered with the second electrode layer 3B.
  • the ridgeline R1, R2 is covered by the 2nd electrode layer 3B.
  • the third electrode layer 3C may not be provided.
  • the IDT electrode 3 may be, for example, a laminated metal film in which a Ti layer 3D, a first electrode layer 3A, and a second electrode layer 3B are laminated in this order.
  • a Ti layer 3D a first electrode layer 3A
  • a second electrode layer 3B a second electrode layer 3B are laminated in this order.
  • Al, Cu, AlCu, or the like can be used as the first electrode layer 3A.
  • Ti, Mo, or the like can be used as the second electrode layer 3B.
  • the IDT electrode 3 may be a laminated metal film including a first electrode layer 3A and a second electrode layer 3B laminated on the first electrode layer 3A.
  • a first electrode layer 3A and a second electrode layer 3B laminated on the first electrode layer 3A for example, Al, Cu, or AlCu can be used as the first electrode layer 3A.
  • Ti, Mo, or the like can be used as the second electrode layer 3B.
  • the IDT electrode 3 includes the first and second electrode layers 3A and 3B, various stacked structures can be adopted.
  • the manufacturing method of the elastic wave apparatus 1 is not specifically limited, For example, it can manufacture by the method shown below.
  • a LiNbO 3 substrate as the piezoelectric substrate 2 is prepared.
  • a resist pattern is formed on the piezoelectric substrate 2 by photolithography.
  • a laminated metal film in which NiCr, Pt, Ti, Al, and Ti are laminated in this order is formed by a vacuum deposition method. Thereafter, unnecessary portions of the laminated metal film are removed together with the resist by a lift-off method. Thereby, the IDT electrode 3 and a wiring electrode (not shown) are formed on the piezoelectric substrate 2.
  • Ti / Al / Ti / Pt / NiCr 10 nm / 150 nm / 10 nm / 80 nm / 10 nm was produced as the laminated metal film constituting the IDT electrode 3.
  • the laminated metal film by vacuum deposition when the uppermost Ti layer (second electrode layer 3B) is formed, a gas is introduced into the chamber to deteriorate the degree of vacuum. Thereby, the vertical incident property of the vapor deposition particles is deteriorated, and the vapor deposition particles are wrapped around and attached to the side surface 3c of the Al layer (first electrode layer 3A). Thereby, the second electrode layer 3B is formed so as to cover the first main surface 3a of the first electrode layer 3A and the region extending from the first main surface 3a to a part of the side surface 3c. Can do.
  • Ar gas can be used as the gas introduced into the chamber.
  • the piezoelectric substrate 2 and the IDT electrode 3 are subjected to ashing treatment that irradiates oxygen plasma. Thereby, the resist remaining on the piezoelectric substrate 2 and the IDT electrode 3 and the residue of the resist stripping solution are removed.
  • a protective film made of a SiO 2 film may be provided on the piezoelectric substrate 2 and the IDT electrode 3 by using an RF sputtering method.
  • the IDT electrode 3 may be exposed to a plasma atmosphere during ashing or sputtering.
  • the first main surface 3a of the first electrode layer 3A and the region extending from the first main surface 3a to a part of the side surface 3c are the second electrode layer. It is covered with 3B. For this reason, the acoustic wave device 1 is unlikely to deteriorate in characteristics even when exposed to a plasma atmosphere.
  • the IDT electrode 3 is manufactured with the same vapor deposition equipment as described above, so that the manufacturing process can be simplified.
  • FIG. 3 is an enlarged schematic cross-sectional view of the IDT electrode portion of the acoustic wave device according to the second embodiment of the present invention.
  • the first electrode layer 3A in the elastic wave device according to the second embodiment, the first main surface 3a and the region extending from the first main surface 3a to the second main surface 3b. Are covered with the second electrode layer 3B. That is, in the acoustic wave device according to the second embodiment, the entire side surface 3c of the first electrode layer 3A is covered with the second electrode layer 3B.
  • Other points are the same as in the first embodiment.
  • the first main surface 3a and the side surface 3c of the first electrode layer 3A are covered with the second electrode layer 3B. Therefore, even when exposed to a plasma atmosphere, the first electrode layer 3A located above the IDT electrode 3 is not easily damaged. Therefore, even in the acoustic wave device according to the second embodiment, the characteristics hardly deteriorate when exposed to a plasma atmosphere.
  • the second electrode layer 3B does not exceed the lower end P of the side surface 3c of the first electrode layer 3A. That is, the second electrode layer 3B is not provided so as to cover the NiCr layer 3E, the third electrode layer 3C, and the Ti layer 3D. Therefore, even if the second electrode layer 3B is provided, the IDT electrode 3 does not become so heavy, and the state and frequency of energy distribution hardly change. Therefore, also from this point, the elastic wave device according to the second embodiment is unlikely to deteriorate in characteristics.
  • the ridgelines R1 and R2 that are easily damaged by the plasma are covered with the second electrode layer 3B. Therefore, the deterioration of characteristics when exposed to a plasma atmosphere is less likely to occur.
  • the first electrode layer 3A Corrosion can be suppressed.
  • the second main surface 3b of the first electrode layer 3A is also covered with the same Ti layer as the second electrode layer 3B. That is, in the second embodiment, the first electrode layer 3A is completely covered with the Ti layer. As described above, when the first electrode layer 3A is completely covered with the Ti layer, the corrosion of the first electrode layer 3A can be more reliably suppressed.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

IDT電極がプラズマ雰囲気下に曝された場合においても、特性の劣化が生じ難い、弾性波装置を提供する。 圧電基板2と、圧電基板2上に設けられたIDT電極3と、を備え、IDT電極3が、最表層の電極層3Aを有する少なくとも1以上の電極層と、最表層の電極層3Aを保護する保護電極層3Bと、を有しており、保護電極層3Bは、最表層の電極層3Aより電気抵抗率が大きく、最表層の電極層3Aが、圧電基板2側とは反対側に位置している第1の主面3aと、第1の主面3aに連なる側面3cとを有し、最表層の電極層3Aにおける第1の主面3aと、第1の主面3aから側面3cの少なくとも一部に至る領域とが、保護電極層3Bにより覆われており、保護電極層3Bが、最表層の電極層3Aの側面3cの下端Pを越えていない、弾性波装置1。

Description

弾性波装置
 本発明は、共振子や帯域フィルタなどに用いられる弾性波装置に関する。
 従来、共振子や帯域フィルタとして弾性波装置が広く用いられている。
 下記の特許文献1,2には、圧電基板上に、IDT電極が設けられた弾性波装置が開示されている。特許文献1には、上記IDT電極として、NiCr、Pt、Ti、AlCu及びTiがこの順に積層された積層金属膜が記載されている。他方、特許文献2には、上記IDT電極として、Ti上にAlが積層された積層金属膜が記載されている。特許文献2では、上記積層金属膜が、被覆電極膜により覆われている。
特許第5131117号公報 特開2001-217672号公報
 弾性波装置を構成しているIDT電極は、誘電体膜を形成する場合や、表面の有機残渣を除去する場合などに、しばしばプラズマ雰囲気中に曝されることがある。
 ここで、特許文献1のような積層構造を有するIDT電極が、プラズマ雰囲気下に曝されると、IDT電極の最表層に存在しているAl膜やCu膜等の電極膜がダメージを受けることがあった。その結果、電気特性が劣化することがあった。
 他方、特許文献2のように積層金属膜が被覆金属膜によって完全に覆われている場合、電極の特性が劣化することがあった。
 本発明の目的は、IDT電極がプラズマ雰囲気下に曝された場合においても、特性の劣化が生じ難い、弾性波装置を提供することにある。
 本発明に係る弾性波装置は、圧電基板と、前記圧電基板上に設けられたIDT電極と、を備え、前記IDT電極が、最表層の電極層を有する少なくとも1以上の電極層と、前記最表層の電極層を保護する保護電極層と、を有しており、前記保護電極層は、前記最表層の電極層より電気抵抗率が大きく、前記最表層の電極層が、前記圧電基板側とは反対側に位置している第1の主面と、該第1の主面に連なる側面とを有し、前記最表層の電極層における前記第1の主面と、前記第1の主面から前記側面の少なくとも一部に至る領域とが、前記保護電極層により覆われており、前記保護電極層が、前記最表層の電極層の前記側面の下端を越えていない。
 本発明に係る弾性波装置のある特定の局面では、前記最表層の電極層において、前記第1の主面と前記側面とのなす稜線が、前記保護電極層により覆われている。この場合、最表層の電極層を効果的に保護することができ、特性の劣化がより一層生じ難い。
 本発明に係る弾性波装置の他の特定の局面では、前記最表層の電極層における前記側面が、前記保護電極層により覆われている。この場合、最表層の電極層をより一層確実に保護することができる。
 本発明に係る弾性波装置の別の特定の局面では、前記最表層の電極層が、前記第1の主面と対向している第2の主面を有し、前記最表層の電極層における前記第2の主面が、前記保護電極層により覆われている。この場合、最表層の電極層をより一層確実に保護することができる。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記最表層の電極層が、Al及びCuのうち少なくとも一方により構成されている。この場合、電極の抵抗を低くすることができ、低損失とすることができる。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記保護電極層が、Ti及びMoのうち少なくとも一方により構成されている。この場合、最表層の電極層をより一層確実に保護することができる。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記IDT電極が、前記最表層の電極層を有する複数の電極層と、前記最表層の電極層を保護する前記保護電極層と、を有する。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記複数の電極層が、前記最表層の電極層の下に形成されている2層目の電極層を有し、前記2層目の電極層が、前記最表層の電極層を構成している金属よりも密度の大きい金属により構成されている。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記2層目の電極層が、Pt及びAuのうち少なくとも一方により構成されている。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記側面が対向し合う一対の側面部分を有し、前記第2の主面から前記第1の主面に向かうにつれて、前記対向し合う一対の側面部分間が狭くなるように、各側面部分が傾斜されている。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記IDT電極が、NiCr層、前記2層目の電極層、Ti層、前記最表層の電極層及び前記保護電極層がこの順に積層された積層金属膜である。
 本発明によれば、IDT電極がプラズマ雰囲気下に曝された場合においても、特性の劣化が生じ難い、弾性波装置を提供することができる。
図1(a)は、本発明の一実施形態に係る弾性波装置の模式的正面断面図であり、図1(b)は、その電極構造を示す模式的平面図である。 図2は、本発明の第1の実施形態に係る弾性波装置のIDT電極部を拡大した模式的正面断面図である。 図3は、本発明の第2の実施形態に係る弾性波装置のIDT電極部を拡大した模式的断面図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。
 (第1の実施形態)
 図1(a)は、本発明の第1の実施形態に係る弾性波装置の模式的正面断面図であり、図1(b)は、その電極構造を示す模式的平面図である。図2は、本発明の第1の実施形態に係る弾性波装置のIDT電極部を拡大した模式的正面断面図である。
 弾性波装置1は、圧電基板2を有する。圧電基板2の主面上に、IDT電極3が設けられている。
 圧電基板2は、LiNbOからなる基板である。もっとも、圧電基板2としては、LiTaOなどの他の圧電単結晶からなる基板を用いてもよいし、圧電セラミックスからなる基板を用いてもよい。
 図1(a)では略図的に示しているが、圧電基板2上には、図1(b)に示す電極構造が形成されている。すなわち、IDT電極3と、IDT電極3の弾性波伝搬方向両側に配置された反射器4,5が形成されている。それによって、1ポート型弾性波共振子が構成されている。もっとも、本発明におけるIDT電極を含む電極構造は特に限定されない。複数の共振子を組み合わせて、フィルタが構成されていてもよい。このようなフィルタとしては、ラダー型フィルタ、縦結合共振子型フィルタ、ラチス型フィルタ等が挙げられる。
 IDT電極3は、第1,第2のバスバーと、複数本の第1,第2の電極指とを有する。上記複数本の第1,第2の電極指は、弾性波伝搬方向と直交する方向に延びている。上記複数本の第1の電極指と、上記複数本の第2の電極指とは、互いに間挿し合っている。また、複数本の第1の電極指は、第1のバスバーに接続されており、複数本の第2の電極指は、第2のバスバーに接続されている。
 図2に拡大して示すように、IDT電極3は、NiCr層3E、第3の電極層3C、Ti層3D、第1の電極層3A及び第2の電極層3Bがこの順に積層された積層金属膜である。
 第2の電極層3Bは、保護電極層である。第1の電極層3Aは、保護電極層である第2の電極層3B及びTi層3Dを除く積層金属膜において、最表層の電極層である。また、第3の電極層3Cは、保護電極層である第2の電極層3B及びTi層3Dを除く積層金属膜において、2層目の電極層である。なお、第3の電極層3Cは、第1の電極層3Aの下に形成されている。
 第1の電極層3Aは、互いに対向している第1及び第2の主面3a,3bを有する。また、第1の電極層3Aは、第1及び第2の主面3a,3bを結ぶ側面3cを有する。側面3cは、互いに対向している第1及び第2の側面部分3c1,3c2を有する。
 第1及び第2の側面部分3c1,3c2は、それぞれ、第2の主面3bから第1の主面3aに向かうにつれて、第1及び第2の側面部分3c1,3c2間が狭くなるように、傾斜されている。なお、図2に示すように、NiCr層3E、第3の電極層3C及びTi層3Dも、第1の電極層3Aと同様の形状とされている。
 第1の電極層3Aは、Alにより構成されている。第1の電極層3Aは、Cuなどの他の金属若しくはこれらの合金により構成されていてもよい。なかでも、第1の電極層3Aは、電気抵抗率の小さい金属により構成されていることが好ましい。この場合、IDT電極3の電気抵抗率をより一層低めることができ、より一層低損失とすることができる。なお、上記電気抵抗率の小さい金属としては、Al、Cu又はこれらの合金などが挙げられる。
 第1の電極層3Aの第1の主面3a上に、第2の電極層3Bが積層されている。第2の電極層3Bは、第1の電極層3Aの第1の主面3aと、第1の主面3aから側面3cの一部に至る領域とを覆っている。特に、弾性波装置1では、図2に示す稜線R1,R2についても、第2の電極層3Bにより覆われている。なお、上記稜線R1とは、第1の主面3aと、第1の側面部分3c1とのなす稜線である。また、上記稜線R2とは、第1の主面3aと、第2の側面部分3c2とのなす稜線である。
 第2の電極層3Bは、第3の主面3dを有する。第3の主面3dは、第2の電極層3Bにおいて、第1の主面3aと接する側の主面とは、反対側の主面である。ここで、第3の主面3dと、第2の電極層3Bの最も圧電基板2側の部分との間の距離をd1とする。また、第3の主面3dと、第1の主面3aとの間の距離をd2とする。本発明においては、上記d1とd2との比d1/d2が、1.0より大きく、7.0以下であることが好ましい。上記比d1/d2が、上記範囲内にある場合、第1の電極層3Aのプラズマによるダメージをより一層効果的に抑制することができる。しかも、後述するようにIDT電極3がさほど重たくならないので、特性の劣化がより一層生じ難い。d1及びd2は、例えば、d2が10nmのとき、d1は10nm~70nmとすることができる。
 第2の電極層3Bは、Tiにより構成されている。第2の電極層3Bは、Moなどの他の金属若しくはこれらの合金により構成されていてもよい。なかでも、第2の電極層3Bは、第1の電極層3Aより電気抵抗率の大きい金属により構成されていることが好ましい。上記第1の電極層3Aより電気抵抗率の大きい金属としては、例えば、Ti、Mo又はこれらの合金などが挙げられる。
 第1の電極層3Aの第2の主面3bと圧電基板2との間には、第3の電極層3Cが配置されている。第3の電極層3Cは、Ptにより構成されている。もっとも、第3の電極層3Cは、Auなどの他の金属若しくはこれらの合金により構成されていてもよい。また、第3の電極層3Cは、第1の電極層3Aより密度の大きい金属により構成されていることが好ましい。上記第1の電極層3Aより密度の大きい金属としては、PtやAuなどの貴金属若しくはこれらの合金などが挙げられる。なお、第3の電極層3Cは設けなくともよい。
 弾性波装置1のように、第1の電極層3Aの下に、第1の電極層3Aよりも密度の大きい金属を主成分とする第3の電極層3Cが設けられている場合、第3の電極層3Cの密度が高くなるため、弾性波の反射係数を高めることができ、弾性波装置の電気的特性を高めることができる。なお、本明細書において、主成分とは、50重量%以上含まれている成分のことをいうものとする。
 ところで、弾性波装置を製造する際には、スパッタリング法により温度調整膜としてのSiO膜を形成したり、表面の有機残渣を除去したりすることがある。このような場合、弾性波装置を構成するIDT電極がプラズマ雰囲気下に曝されることがある。そのため、従来の弾性波装置においては、IDT電極の上部に位置している電極層がプラズマによりダメージを受け、特性が劣化することがあった。
 これに対して、本実施形態の弾性波装置1では、第1の電極層3Aの第1の主面3aと、第1の主面3aから側面3cの一部に至る領域とが、第2の電極層3Bにより覆われている。そのため、弾性波装置1では、プラズマ雰囲気下に曝された場合においても、上部に位置している第1の電極層3Aがダメージを受け難い。そのため、弾性波装置1では、プラズマ雰囲気下に曝されても、特性の劣化が生じ難い。
 また、第2の電極層3Bは、第1の電極層3Aの側面3cの下端Pを越えていない。すなわち、第2の電極層3Bは、NiCr層3E、第3の電極層3C及びTi層3Dを覆うようには設けられていない。そのため、第2の電極層3Bを設けてもIDT電極3はさほど重たくならず、エネルギー分布の状態や周波数が変化し難い。よって、この点からも、弾性波装置1は、特性の劣化が生じ難い。
 加えて、本実施形態においては、プラズマにより損傷を受けやすい稜線R1,R2が、第2の電極層3Bにより覆われている。そのため、弾性波装置1では、プラズマ雰囲気下に曝された場合における特性の劣化がより一層生じ難い。このように、本発明においては、稜線R1,R2が、第2の電極層3Bにより覆われていることが好ましい。
 なお、本発明において、第3の電極層3Cは設けなくともよい。IDT電極3は、例えば、Ti層3D、第1の電極層3A、第2の電極層3Bがこの順に積層された積層金属膜であってもよい。この場合、第1の電極層3Aとしては、例えば、Al、Cu又はAlCuなどを用いることができる。第2の電極層3Bとしては、TiやMoなどを用いることができる。
 また、IDT電極3は、第1の電極層3Aと、第1の電極層3A上に積層された第2の電極層3Bとからなる積層金属膜であってもよい。この場合においても、第1の電極層3Aとしては、例えば、Al、Cu又はAlCuなどを用いることができる。第2の電極層3Bとしては、TiやMoなどを用いることができる。
 このように、IDT電極3は、上記の第1及び第2の電極層3A及び3Bを有している限り、さまざまな積層構造を採ることができる。
 (製造方法)
 弾性波装置1の製造方法は、特に限定されないが、例えば以下に示す方法により製造することができる。
 まず、圧電基板2としてのLiNbO基板を用意する。次に、フォトリソグラフィー法により、レジストのパターンを圧電基板2上に形成する。続いて、真空蒸着法によりNiCr、Pt、Ti、Al及びTiがこの順に積層された積層金属膜を形成する。しかる後、リフトオフ法により不要な部分の積層金属膜をレジストごと除去する。それによって、圧電基板2上にIDT電極3及び図示しない配線電極を形成する。なお、本製造方法では、IDT電極3を構成する積層金属膜として、Ti/Al/Ti/Pt/NiCr=10nm/150nm/10nm/80nm/10nmを作製した。
 また、真空蒸着で積層金属膜を形成するに際しては、最上層のTi層(第2の電極層3B)を成膜するときに、チャンバー内にガスを導入して真空度を悪化させる。それによって、蒸着粒子の垂直入射性を悪化させ、Al層(第1の電極層3A)の側面3cに蒸着粒子を回り込んで付着させる。これにより、第1の電極層3Aの第1の主面3aと、第1の主面3aから側面3cの一部に至る領域とを被覆するように、第2の電極層3Bを形成することができる。なお、チャンバー内に導入するガスとしては、例えば、Arガスを用いることができる。
 次に、圧電基板2及びIDT電極3に酸素プラズマを照射するアッシング処理を施す。それによって、圧電基板2及びIDT電極3上に残ったレジストやレジスト剥離液の残渣を除去する。
 また、IDT電極3を異物などから保護することを目的として、圧電基板2及びIDT電極3上にRFスパッタリング法を用いて、SiO膜からなる保護膜を設けてもよい。
 このように、本製造方法においては、アッシング処理や、スパッタリングに際して、IDT電極3がプラズマ雰囲気下に曝されることがある。しかしながら、弾性波装置1では、上記のように第1の電極層3Aの第1の主面3aと、第1の主面3aから側面3cの一部に至る領域とが、第2の電極層3Bにより覆われている。そのため、弾性波装置1では、プラズマ雰囲気下に曝された場合においても、特性の劣化が生じ難い。
 また、本製造方法においてIDT電極3は、上記のように、同一の蒸着設備で製造されるため、製造工程を簡略化することができる。
 (第2の実施形態)
 図3は、本発明の第2の実施形態に係る弾性波装置のIDT電極部を拡大した模式的断面図である。図3に示すように、第2の実施形態に係る弾性波装置では、第1の電極層3Aにおいて、第1の主面3aと第1の主面3aから第2の主面3bに至る領域とが、第2の電極層3Bにより覆われている。すなわち、第2の実施形態に係る弾性波装置においては、第1の電極層3Aの側面3c全体が、第2の電極層3Bに覆われている。その他の点は、第1の実施形態と同様である。
 第2の実施形態に係る弾性波装置では、第1の電極層3Aの第1の主面3aと、側面3cとが、第2の電極層3Bにより覆われている。そのため、プラズマ雰囲気下に曝されても、IDT電極3の上部に位置している第1の電極層3Aがダメージを受け難い。従って、第2の実施形態に係る弾性波装置においても、プラズマ雰囲気下に曝された場合に、特性の劣化が生じ難い。
 また、第2の電極層3Bは、第1の電極層3Aの側面3cの下端Pを越えていない。すなわち、第2の電極層3Bは、NiCr層3E、第3の電極層3C及びTi層3Dを覆うようには設けられていない。そのため、第2の電極層3Bを設けてもIDT電極3はさほど重たくならず、エネルギー分布の状態や周波数が変化し難い。よって、この点からも、第2の実施形態に係る弾性波装置は、特性の劣化が生じ難い。
 加えて、第2の実施形態においても、プラズマにより損傷を受けやすい稜線R1,R2が、第2の電極層3Bにより覆われている。そのため、プラズマ雰囲気下に曝された場合における特性の劣化がより一層生じ難い。
 また、第2の実施形態では、第1の電極層3Aの第1の主面3aと、側面3c全体とが、第2の電極層3Bにより覆われているため、第1の電極層3Aの腐食を抑制することができる。
 なお、第2の実施形態では、第1の電極層3Aの第2の主面3bについても、第2の電極層3Bと同じTi層により覆われている。すなわち、第2の実施形態では、第1の電極層3AがTi層により完全に覆われている。このように、第1の電極層3AがTi層により完全に覆われている場合、第1の電極層3Aの腐食をより一層確実に抑制することができる。
1…弾性波装置
2…圧電基板
3…IDT電極
3a,3b…第1,第2の主面
3c…側面
3d…第3の主面
3c1,3c2…第1,第2の側面部分
3A~3C…第1~第3の電極層
3D…Ti層
3E…NiCr層
4,5…反射器

Claims (11)

  1.  圧電基板と、
     前記圧電基板上に設けられたIDT電極と、
     を備え、
     前記IDT電極が、最表層の電極層を有する少なくとも1以上の電極層と、前記最表層の電極層を保護する保護電極層と、を有しており、
     前記保護電極層は、前記最表層の電極層より電気抵抗率が大きく、
     前記最表層の電極層が、前記圧電基板側とは反対側に位置している第1の主面と、該第1の主面に連なる側面とを有し、
     前記最表層の電極層における前記第1の主面と、前記第1の主面から前記側面の少なくとも一部に至る領域とが、前記保護電極層により覆われており、
     前記保護電極層が、前記最表層の電極層の前記側面の下端を越えていない、弾性波装置。
  2.  前記最表層の電極層において、前記第1の主面と前記側面とのなす稜線が、前記保護電極層により覆われている、請求項1に記載の弾性波装置。
  3.  前記最表層の電極層における前記側面が、前記保護電極層により覆われている、請求項1又は2に記載の弾性波装置。
  4.  前記最表層の電極層が、前記第1の主面と対向している第2の主面を有し、
     前記最表層の電極層における前記第2の主面が、前記保護電極層により覆われている、請求項1~3のいずれか1項に記載の弾性波装置。
  5.  前記最表層の電極層が、Al及びCuのうち少なくとも一方により構成されている、請求項1~4のいずれか1項に記載の弾性波装置。
  6.  前記保護電極層が、Ti及びMoのうち少なくとも一方により構成されている、請求項1~5のいずれか1項に記載の弾性波装置。
  7.  前記IDT電極が、前記最表層の電極層を有する複数の電極層と、前記最表層の電極層を保護する前記保護電極層と、を有する、請求項1~6のいずれか1項に記載の弾性波装置。
  8.  前記複数の電極層が、前記最表層の電極層の下に形成されている2層目の電極層を有し、
     前記2層目の電極層が、前記最表層の電極層を構成している金属よりも密度の大きい金属により構成されている、請求項7に記載の弾性波装置。
  9.  前記2層目の電極層が、Pt及びAuのうち少なくとも一方により構成されている、請求項8に記載の弾性波装置。
  10.  前記側面が対向し合う一対の側面部分を有し、
     前記第2の主面から前記第1の主面に向かうにつれて、前記対向し合う一対の側面部分間が狭くなるように、各側面部分が傾斜されている、請求項1~9のいずれか1項に記載の弾性波装置。
  11.  前記IDT電極が、NiCr層、前記2層目の電極層、Ti層、前記最表層の電極層及び前記保護電極層がこの順に積層された積層金属膜である、請求項8又は9に記載の弾性波装置。
PCT/JP2016/066247 2015-07-02 2016-06-01 弾性波装置 WO2017002513A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017526230A JP6589983B2 (ja) 2015-07-02 2016-06-01 弾性波装置
CN201680032649.9A CN107615656B (zh) 2015-07-02 2016-06-01 弹性波装置
KR1020177033191A KR101987716B1 (ko) 2015-07-02 2016-06-01 탄성파 장치
US15/832,880 US10958238B2 (en) 2015-07-02 2017-12-06 Elastic wave device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-133439 2015-07-02
JP2015133439 2015-07-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/832,880 Continuation US10958238B2 (en) 2015-07-02 2017-12-06 Elastic wave device

Publications (1)

Publication Number Publication Date
WO2017002513A1 true WO2017002513A1 (ja) 2017-01-05

Family

ID=57608512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066247 WO2017002513A1 (ja) 2015-07-02 2016-06-01 弾性波装置

Country Status (5)

Country Link
US (1) US10958238B2 (ja)
JP (1) JP6589983B2 (ja)
KR (1) KR101987716B1 (ja)
CN (1) CN107615656B (ja)
WO (1) WO2017002513A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10333494B2 (en) 2014-12-24 2019-06-25 Qorvo Us, Inc. Simplified acoustic RF resonator parallel capacitance compensation
US10581156B2 (en) 2016-05-04 2020-03-03 Qorvo Us, Inc. Compensation circuit to mitigate antenna-to-antenna coupling
US10581403B2 (en) * 2016-07-11 2020-03-03 Qorvo Us, Inc. Device having a titanium-alloyed surface
US11050412B2 (en) 2016-09-09 2021-06-29 Qorvo Us, Inc. Acoustic filter using acoustic coupling
US11165412B2 (en) 2017-01-30 2021-11-02 Qorvo Us, Inc. Zero-output coupled resonator filter and related radio frequency filter circuit
US11165413B2 (en) 2017-01-30 2021-11-02 Qorvo Us, Inc. Coupled resonator structure
US10873318B2 (en) 2017-06-08 2020-12-22 Qorvo Us, Inc. Filter circuits having acoustic wave resonators in a transversal configuration
US11152913B2 (en) 2018-03-28 2021-10-19 Qorvo Us, Inc. Bulk acoustic wave (BAW) resonator
DE102018132695A1 (de) * 2018-12-18 2020-06-18 RF360 Europe GmbH Elektronisches Bauelement
US11146247B2 (en) 2019-07-25 2021-10-12 Qorvo Us, Inc. Stacked crystal filter structures
US11757430B2 (en) 2020-01-07 2023-09-12 Qorvo Us, Inc. Acoustic filter circuit for noise suppression outside resonance frequency
US11146245B2 (en) 2020-01-13 2021-10-12 Qorvo Us, Inc. Mode suppression in acoustic resonators
US11146246B2 (en) 2020-01-13 2021-10-12 Qorvo Us, Inc. Phase shift structures for acoustic resonators
US11632097B2 (en) 2020-11-04 2023-04-18 Qorvo Us, Inc. Coupled resonator filter device
US11575363B2 (en) 2021-01-19 2023-02-07 Qorvo Us, Inc. Hybrid bulk acoustic wave filter
CN113114159B (zh) * 2021-05-27 2021-12-10 北京超材信息科技有限公司 声表面波装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04294625A (ja) * 1991-03-25 1992-10-19 Seiko Epson Corp 弾性表面波素子
JPH0522067A (ja) * 1991-07-15 1993-01-29 Oki Electric Ind Co Ltd 弾性表面波フイルタ
JPH10145171A (ja) * 1996-11-11 1998-05-29 Matsushita Electric Ind Co Ltd 表面弾性波素子およびその製造方法
JP2006101082A (ja) * 2004-09-29 2006-04-13 Kyocera Corp 弾性表面波装置および通信装置
JP2015111845A (ja) * 2011-01-18 2015-06-18 株式会社村田製作所 弾性表面波フィルタ装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5722268B2 (ja) 1974-09-11 1982-05-12
JP2001217672A (ja) 1999-11-26 2001-08-10 Murata Mfg Co Ltd 弾性表面波素子およびその製造方法
JP3926633B2 (ja) * 2001-06-22 2007-06-06 沖電気工業株式会社 Sawデバイス及びその製造方法
JP2003115742A (ja) * 2001-10-04 2003-04-18 Toyo Commun Equip Co Ltd 弾性表面波変換器
DE10206369B4 (de) 2002-02-15 2012-12-27 Epcos Ag Elektrodenstruktur mit verbesserter Leistungsverträglichkeit und Verfahren zur Herstellung
JP2006020134A (ja) * 2004-07-02 2006-01-19 Sanyo Electric Co Ltd 弾性表面波素子
EP1947764B1 (en) * 2005-09-20 2011-04-06 Kyocera Corporation Acoustic surface wave element and acoustic surface wave device
JP5131117B2 (ja) 2008-09-24 2013-01-30 株式会社村田製作所 弾性波装置及びその製造方法
WO2010116783A1 (ja) * 2009-03-30 2010-10-14 株式会社村田製作所 弾性波装置
JP2011135469A (ja) 2009-12-25 2011-07-07 Murata Mfg Co Ltd 弾性波装置
JP2012186696A (ja) * 2011-03-07 2012-09-27 Murata Mfg Co Ltd 弾性波装置およびその製造方法
US9496846B2 (en) * 2013-02-15 2016-11-15 Skyworks Filter Solutions Japan Co., Ltd. Acoustic wave device and electronic apparatus including same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04294625A (ja) * 1991-03-25 1992-10-19 Seiko Epson Corp 弾性表面波素子
JPH0522067A (ja) * 1991-07-15 1993-01-29 Oki Electric Ind Co Ltd 弾性表面波フイルタ
JPH10145171A (ja) * 1996-11-11 1998-05-29 Matsushita Electric Ind Co Ltd 表面弾性波素子およびその製造方法
JP2006101082A (ja) * 2004-09-29 2006-04-13 Kyocera Corp 弾性表面波装置および通信装置
JP2015111845A (ja) * 2011-01-18 2015-06-18 株式会社村田製作所 弾性表面波フィルタ装置

Also Published As

Publication number Publication date
US10958238B2 (en) 2021-03-23
CN107615656A (zh) 2018-01-19
JPWO2017002513A1 (ja) 2018-02-15
KR20170137900A (ko) 2017-12-13
US20180109236A1 (en) 2018-04-19
KR101987716B1 (ko) 2019-06-11
CN107615656B (zh) 2021-01-26
JP6589983B2 (ja) 2019-10-16

Similar Documents

Publication Publication Date Title
JP6589983B2 (ja) 弾性波装置
US10826461B2 (en) Acoustic wave device
JP6107947B2 (ja) 弾性波フィルタ装置
JP5392353B2 (ja) 弾性表面波装置
WO2011145449A1 (ja) 弾性表面波装置
US11456716B2 (en) Elastic wave device and manufacturing method thereof
WO2018131360A1 (ja) 弾性波装置
JP2018050135A (ja) 弾性波デバイス及び弾性波デバイスの製造方法
US9184367B2 (en) Elastic wave device
JP5195443B2 (ja) 弾性波装置
US10090823B2 (en) Elastic wave resonator and ladder filter
JP6385690B2 (ja) 弾性波デバイス及びその製造方法
JP5176863B2 (ja) 弾性波装置
JP6813084B2 (ja) 弾性波装置の製造方法
JP4862451B2 (ja) 弾性表面波装置及びその製造方法
JP2009194895A (ja) 弾性表面波装置
JP5585389B2 (ja) 弾性波素子及びその製造方法
JP2005080202A (ja) 弾性表面波素子
JP5413160B2 (ja) 弾性波装置
WO2012014791A1 (ja) 弾性波装置の製造方法
WO2023048256A1 (ja) 弾性波装置
WO2016039026A1 (ja) 弾性表面波装置
JP6620813B2 (ja) 弾性波装置
JP2017228882A (ja) 弾性表面波フィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817622

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017526230

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177033191

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817622

Country of ref document: EP

Kind code of ref document: A1