WO2017002513A1 - 弾性波装置 - Google Patents
弾性波装置 Download PDFInfo
- Publication number
- WO2017002513A1 WO2017002513A1 PCT/JP2016/066247 JP2016066247W WO2017002513A1 WO 2017002513 A1 WO2017002513 A1 WO 2017002513A1 JP 2016066247 W JP2016066247 W JP 2016066247W WO 2017002513 A1 WO2017002513 A1 WO 2017002513A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode layer
- wave device
- main surface
- outermost
- electrode
- Prior art date
Links
- 230000001681 protective effect Effects 0.000 claims abstract description 28
- 239000000758 substrate Substances 0.000 claims abstract description 28
- 229910052751 metal Inorganic materials 0.000 claims description 30
- 239000002184 metal Substances 0.000 claims description 30
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 claims description 10
- 229910001120 nichrome Inorganic materials 0.000 claims description 10
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 230000006866 deterioration Effects 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 4
- 229910016570 AlCu Inorganic materials 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 238000004380 ashing Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/46—Filters
- H03H9/64—Filters using surface acoustic waves
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02535—Details of surface acoustic wave devices
- H03H9/02984—Protection measures against damaging
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02535—Details of surface acoustic wave devices
- H03H9/02543—Characteristics of substrate, e.g. cutting angles
- H03H9/02559—Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/125—Driving means, e.g. electrodes, coils
- H03H9/145—Driving means, e.g. electrodes, coils for networks using surface acoustic waves
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/125—Driving means, e.g. electrodes, coils
- H03H9/145—Driving means, e.g. electrodes, coils for networks using surface acoustic waves
- H03H9/14538—Formation
- H03H9/14541—Multilayer finger or busbar electrode
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/25—Constructional features of resonators using surface acoustic waves
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/87—Electrodes or interconnections, e.g. leads or terminals
- H10N30/877—Conductive materials
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/46—Filters
- H03H9/64—Filters using surface acoustic waves
- H03H9/6423—Means for obtaining a particular transfer characteristic
- H03H9/6433—Coupled resonator filters
- H03H9/6483—Ladder SAW filters
Definitions
- the present invention relates to an elastic wave device used for a resonator, a band filter, and the like.
- Patent Documents 1 and 2 disclose an acoustic wave device in which an IDT electrode is provided on a piezoelectric substrate.
- Patent Document 1 describes a laminated metal film in which NiCr, Pt, Ti, AlCu, and Ti are laminated in this order as the IDT electrode.
- Patent Document 2 describes a laminated metal film in which Al is laminated on Ti as the IDT electrode.
- the laminated metal film is covered with a coated electrode film.
- the IDT electrode constituting the acoustic wave device is often exposed to a plasma atmosphere when a dielectric film is formed or when organic residues on the surface are removed.
- An object of the present invention is to provide an elastic wave device that hardly deteriorates in characteristics even when an IDT electrode is exposed to a plasma atmosphere.
- An acoustic wave device includes a piezoelectric substrate and an IDT electrode provided on the piezoelectric substrate, wherein the IDT electrode includes at least one electrode layer having an outermost electrode layer, and the outermost layer.
- a ridge line formed by the first main surface and the side surface is covered with the protective electrode layer in the outermost electrode layer.
- the outermost electrode layer can be effectively protected, and the deterioration of the characteristics is further less likely to occur.
- the side surface of the outermost electrode layer is covered with the protective electrode layer.
- the outermost electrode layer can be more reliably protected.
- the outermost electrode layer has a second main surface facing the first main surface, and the outermost electrode layer The second main surface is covered with the protective electrode layer. In this case, the outermost electrode layer can be more reliably protected.
- the outermost electrode layer is made of at least one of Al and Cu. In this case, the resistance of the electrode can be lowered and the loss can be reduced.
- the protective electrode layer is made of at least one of Ti and Mo. In this case, the outermost electrode layer can be more reliably protected.
- the IDT electrode includes a plurality of electrode layers having the outermost electrode layer, and the protective electrode layer protecting the outermost electrode layer, Have
- the plurality of electrode layers include a second electrode layer formed under the outermost electrode layer, and the second layer
- the electrode layer is made of a metal having a density higher than that of the metal constituting the outermost electrode layer.
- the second electrode layer is made of at least one of Pt and Au.
- the elastic wave device has a pair of side surface portions that face each other, and faces the first main surface from the second main surface.
- Each side surface portion is inclined so that the distance between the pair of matching side surface portions becomes narrow.
- the IDT electrode includes a NiCr layer, the second electrode layer, a Ti layer, the outermost electrode layer, and the protective electrode layer stacked in this order. It is the laminated metal film made.
- the IDT electrode even when the IDT electrode is exposed to a plasma atmosphere, it is possible to provide an elastic wave device that is unlikely to deteriorate in characteristics.
- FIG. 1A is a schematic front sectional view of an acoustic wave device according to an embodiment of the present invention
- FIG. 1B is a schematic plan view showing an electrode structure thereof.
- FIG. 2 is an enlarged schematic front sectional view of the IDT electrode portion of the acoustic wave device according to the first embodiment of the present invention.
- FIG. 3 is an enlarged schematic cross-sectional view of the IDT electrode portion of the acoustic wave device according to the second embodiment of the present invention.
- FIG. 1A is a schematic front sectional view of an acoustic wave device according to the first embodiment of the present invention
- FIG. 1B is a schematic plan view showing an electrode structure thereof
- FIG. 2 is an enlarged schematic front sectional view of the IDT electrode portion of the acoustic wave device according to the first embodiment of the present invention.
- the acoustic wave device 1 has a piezoelectric substrate 2.
- An IDT electrode 3 is provided on the main surface of the piezoelectric substrate 2.
- the piezoelectric substrate 2 is a substrate made of LiNbO 3 .
- a substrate made of another piezoelectric single crystal such as LiTaO 3 or a substrate made of piezoelectric ceramics may be used.
- the electrode structure shown in FIG. 1B is formed on the piezoelectric substrate 2. That is, the IDT electrode 3 and the reflectors 4 and 5 disposed on both sides of the IDT electrode 3 in the elastic wave propagation direction are formed. Thereby, a 1-port elastic wave resonator is configured.
- the electrode structure including the IDT electrode in the present invention is not particularly limited.
- a filter may be configured by combining a plurality of resonators. Examples of such a filter include a ladder type filter, a longitudinally coupled resonator type filter, and a lattice type filter.
- the IDT electrode 3 has first and second bus bars and a plurality of first and second electrode fingers.
- the plurality of first and second electrode fingers extend in a direction orthogonal to the elastic wave propagation direction.
- the plurality of first electrode fingers and the plurality of second electrode fingers are interleaved with each other.
- the plurality of first electrode fingers are connected to the first bus bar, and the plurality of second electrode fingers are connected to the second bus bar.
- the IDT electrode 3 is formed by stacking a NiCr layer 3E, a third electrode layer 3C, a Ti layer 3D, a first electrode layer 3A, and a second electrode layer 3B in this order. It is a metal film.
- the second electrode layer 3B is a protective electrode layer.
- the first electrode layer 3A is the outermost electrode layer in the laminated metal film excluding the second electrode layer 3B and the Ti layer 3D, which are protective electrode layers.
- the third electrode layer 3C is the second electrode layer in the laminated metal film excluding the second electrode layer 3B and the Ti layer 3D, which are protective electrode layers.
- the third electrode layer 3C is formed under the first electrode layer 3A.
- the first electrode layer 3A has first and second main surfaces 3a and 3b facing each other.
- the first electrode layer 3A has a side surface 3c that connects the first and second main surfaces 3a and 3b.
- the side surface 3c has first and second side surface portions 3c1 and 3c2 facing each other.
- the first and second side surface portions 3c1 and 3c2 are respectively narrowed so that the distance between the first and second side surface portions 3c1 and 3c2 becomes narrower from the second main surface 3b toward the first main surface 3a. It is inclined. As shown in FIG. 2, the NiCr layer 3E, the third electrode layer 3C, and the Ti layer 3D have the same shape as the first electrode layer 3A.
- the first electrode layer 3A is made of Al.
- the first electrode layer 3A may be made of another metal such as Cu or an alloy thereof.
- 3 A of 1st electrode layers are comprised with the metal with a small electrical resistivity.
- the electrical resistivity of the IDT electrode 3 can be further reduced and the loss can be further reduced.
- Al, Cu, or these alloys are mentioned.
- the second electrode layer 3B is laminated on the first main surface 3a of the first electrode layer 3A.
- the second electrode layer 3B covers the first main surface 3a of the first electrode layer 3A and a region extending from the first main surface 3a to a part of the side surface 3c.
- the ridgelines R1 and R2 shown in FIG. 2 are also covered with the second electrode layer 3B.
- the ridge line R1 is a ridge line formed by the first main surface 3a and the first side surface portion 3c1.
- the ridge line R2 is a ridge line formed by the first main surface 3a and the second side surface portion 3c2.
- the second electrode layer 3B has a third main surface 3d.
- the third main surface 3d is a main surface on the opposite side to the main surface on the side in contact with the first main surface 3a in the second electrode layer 3B.
- the distance between the third main surface 3d and the portion of the second electrode layer 3B closest to the piezoelectric substrate 2 is defined as d1.
- the distance between the third main surface 3d and the first main surface 3a is d2.
- the ratio d1 / d2 between d1 and d2 is preferably greater than 1.0 and 7.0 or less.
- the ratio d1 / d2 is within the above range, damage to the first electrode layer 3A due to plasma can be more effectively suppressed.
- the IDT electrode 3 does not become so heavy as will be described later, the deterioration of the characteristics is more difficult to occur.
- d2 is 10 nm
- d1 can be 10 nm to 70 nm.
- the second electrode layer 3B is made of Ti.
- the second electrode layer 3B may be made of another metal such as Mo or an alloy thereof.
- the 2nd electrode layer 3B is comprised with the metal whose electrical resistivity is larger than 3 A of 1st electrode layers.
- the metal having a higher electrical resistivity than the first electrode layer 3A include Ti, Mo, and alloys thereof.
- the third electrode layer 3C is made of Pt. But the 3rd electrode layer 3C may be constituted by other metals, such as Au, or these alloys.
- the third electrode layer 3C is preferably made of a metal having a higher density than the first electrode layer 3A. Examples of the metal having a density higher than that of the first electrode layer 3A include noble metals such as Pt and Au, or alloys thereof. Note that the third electrode layer 3C is not necessarily provided.
- a main component shall mean the component contained 50weight% or more.
- a SiO 2 film as a temperature adjusting film may be formed by sputtering or an organic residue on the surface may be removed.
- the IDT electrode constituting the acoustic wave device may be exposed to a plasma atmosphere. Therefore, in the conventional acoustic wave device, the electrode layer located above the IDT electrode may be damaged by the plasma and the characteristics may be deteriorated.
- the first main surface 3a of the first electrode layer 3A and the region extending from the first main surface 3a to a part of the side surface 3c are the second.
- the electrode layer 3B is covered. Therefore, in the acoustic wave device 1, even when exposed to a plasma atmosphere, the first electrode layer 3A located at the top is hardly damaged. For this reason, the acoustic wave device 1 is unlikely to deteriorate in characteristics even when exposed to a plasma atmosphere.
- the second electrode layer 3B does not exceed the lower end P of the side surface 3c of the first electrode layer 3A. That is, the second electrode layer 3B is not provided so as to cover the NiCr layer 3E, the third electrode layer 3C, and the Ti layer 3D. Therefore, even if the second electrode layer 3B is provided, the IDT electrode 3 does not become so heavy, and the state and frequency of energy distribution hardly change. Therefore, also from this point, the acoustic wave device 1 is unlikely to deteriorate in characteristics.
- the ridgelines R1 and R2 that are easily damaged by plasma are covered with the second electrode layer 3B.
- the ridgeline R1, R2 is covered by the 2nd electrode layer 3B.
- the third electrode layer 3C may not be provided.
- the IDT electrode 3 may be, for example, a laminated metal film in which a Ti layer 3D, a first electrode layer 3A, and a second electrode layer 3B are laminated in this order.
- a Ti layer 3D a first electrode layer 3A
- a second electrode layer 3B a second electrode layer 3B are laminated in this order.
- Al, Cu, AlCu, or the like can be used as the first electrode layer 3A.
- Ti, Mo, or the like can be used as the second electrode layer 3B.
- the IDT electrode 3 may be a laminated metal film including a first electrode layer 3A and a second electrode layer 3B laminated on the first electrode layer 3A.
- a first electrode layer 3A and a second electrode layer 3B laminated on the first electrode layer 3A for example, Al, Cu, or AlCu can be used as the first electrode layer 3A.
- Ti, Mo, or the like can be used as the second electrode layer 3B.
- the IDT electrode 3 includes the first and second electrode layers 3A and 3B, various stacked structures can be adopted.
- the manufacturing method of the elastic wave apparatus 1 is not specifically limited, For example, it can manufacture by the method shown below.
- a LiNbO 3 substrate as the piezoelectric substrate 2 is prepared.
- a resist pattern is formed on the piezoelectric substrate 2 by photolithography.
- a laminated metal film in which NiCr, Pt, Ti, Al, and Ti are laminated in this order is formed by a vacuum deposition method. Thereafter, unnecessary portions of the laminated metal film are removed together with the resist by a lift-off method. Thereby, the IDT electrode 3 and a wiring electrode (not shown) are formed on the piezoelectric substrate 2.
- Ti / Al / Ti / Pt / NiCr 10 nm / 150 nm / 10 nm / 80 nm / 10 nm was produced as the laminated metal film constituting the IDT electrode 3.
- the laminated metal film by vacuum deposition when the uppermost Ti layer (second electrode layer 3B) is formed, a gas is introduced into the chamber to deteriorate the degree of vacuum. Thereby, the vertical incident property of the vapor deposition particles is deteriorated, and the vapor deposition particles are wrapped around and attached to the side surface 3c of the Al layer (first electrode layer 3A). Thereby, the second electrode layer 3B is formed so as to cover the first main surface 3a of the first electrode layer 3A and the region extending from the first main surface 3a to a part of the side surface 3c. Can do.
- Ar gas can be used as the gas introduced into the chamber.
- the piezoelectric substrate 2 and the IDT electrode 3 are subjected to ashing treatment that irradiates oxygen plasma. Thereby, the resist remaining on the piezoelectric substrate 2 and the IDT electrode 3 and the residue of the resist stripping solution are removed.
- a protective film made of a SiO 2 film may be provided on the piezoelectric substrate 2 and the IDT electrode 3 by using an RF sputtering method.
- the IDT electrode 3 may be exposed to a plasma atmosphere during ashing or sputtering.
- the first main surface 3a of the first electrode layer 3A and the region extending from the first main surface 3a to a part of the side surface 3c are the second electrode layer. It is covered with 3B. For this reason, the acoustic wave device 1 is unlikely to deteriorate in characteristics even when exposed to a plasma atmosphere.
- the IDT electrode 3 is manufactured with the same vapor deposition equipment as described above, so that the manufacturing process can be simplified.
- FIG. 3 is an enlarged schematic cross-sectional view of the IDT electrode portion of the acoustic wave device according to the second embodiment of the present invention.
- the first electrode layer 3A in the elastic wave device according to the second embodiment, the first main surface 3a and the region extending from the first main surface 3a to the second main surface 3b. Are covered with the second electrode layer 3B. That is, in the acoustic wave device according to the second embodiment, the entire side surface 3c of the first electrode layer 3A is covered with the second electrode layer 3B.
- Other points are the same as in the first embodiment.
- the first main surface 3a and the side surface 3c of the first electrode layer 3A are covered with the second electrode layer 3B. Therefore, even when exposed to a plasma atmosphere, the first electrode layer 3A located above the IDT electrode 3 is not easily damaged. Therefore, even in the acoustic wave device according to the second embodiment, the characteristics hardly deteriorate when exposed to a plasma atmosphere.
- the second electrode layer 3B does not exceed the lower end P of the side surface 3c of the first electrode layer 3A. That is, the second electrode layer 3B is not provided so as to cover the NiCr layer 3E, the third electrode layer 3C, and the Ti layer 3D. Therefore, even if the second electrode layer 3B is provided, the IDT electrode 3 does not become so heavy, and the state and frequency of energy distribution hardly change. Therefore, also from this point, the elastic wave device according to the second embodiment is unlikely to deteriorate in characteristics.
- the ridgelines R1 and R2 that are easily damaged by the plasma are covered with the second electrode layer 3B. Therefore, the deterioration of characteristics when exposed to a plasma atmosphere is less likely to occur.
- the first electrode layer 3A Corrosion can be suppressed.
- the second main surface 3b of the first electrode layer 3A is also covered with the same Ti layer as the second electrode layer 3B. That is, in the second embodiment, the first electrode layer 3A is completely covered with the Ti layer. As described above, when the first electrode layer 3A is completely covered with the Ti layer, the corrosion of the first electrode layer 3A can be more reliably suppressed.
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
Description
図1(a)は、本発明の第1の実施形態に係る弾性波装置の模式的正面断面図であり、図1(b)は、その電極構造を示す模式的平面図である。図2は、本発明の第1の実施形態に係る弾性波装置のIDT電極部を拡大した模式的正面断面図である。
弾性波装置1の製造方法は、特に限定されないが、例えば以下に示す方法により製造することができる。
図3は、本発明の第2の実施形態に係る弾性波装置のIDT電極部を拡大した模式的断面図である。図3に示すように、第2の実施形態に係る弾性波装置では、第1の電極層3Aにおいて、第1の主面3aと第1の主面3aから第2の主面3bに至る領域とが、第2の電極層3Bにより覆われている。すなわち、第2の実施形態に係る弾性波装置においては、第1の電極層3Aの側面3c全体が、第2の電極層3Bに覆われている。その他の点は、第1の実施形態と同様である。
2…圧電基板
3…IDT電極
3a,3b…第1,第2の主面
3c…側面
3d…第3の主面
3c1,3c2…第1,第2の側面部分
3A~3C…第1~第3の電極層
3D…Ti層
3E…NiCr層
4,5…反射器
Claims (11)
- 圧電基板と、
前記圧電基板上に設けられたIDT電極と、
を備え、
前記IDT電極が、最表層の電極層を有する少なくとも1以上の電極層と、前記最表層の電極層を保護する保護電極層と、を有しており、
前記保護電極層は、前記最表層の電極層より電気抵抗率が大きく、
前記最表層の電極層が、前記圧電基板側とは反対側に位置している第1の主面と、該第1の主面に連なる側面とを有し、
前記最表層の電極層における前記第1の主面と、前記第1の主面から前記側面の少なくとも一部に至る領域とが、前記保護電極層により覆われており、
前記保護電極層が、前記最表層の電極層の前記側面の下端を越えていない、弾性波装置。 - 前記最表層の電極層において、前記第1の主面と前記側面とのなす稜線が、前記保護電極層により覆われている、請求項1に記載の弾性波装置。
- 前記最表層の電極層における前記側面が、前記保護電極層により覆われている、請求項1又は2に記載の弾性波装置。
- 前記最表層の電極層が、前記第1の主面と対向している第2の主面を有し、
前記最表層の電極層における前記第2の主面が、前記保護電極層により覆われている、請求項1~3のいずれか1項に記載の弾性波装置。 - 前記最表層の電極層が、Al及びCuのうち少なくとも一方により構成されている、請求項1~4のいずれか1項に記載の弾性波装置。
- 前記保護電極層が、Ti及びMoのうち少なくとも一方により構成されている、請求項1~5のいずれか1項に記載の弾性波装置。
- 前記IDT電極が、前記最表層の電極層を有する複数の電極層と、前記最表層の電極層を保護する前記保護電極層と、を有する、請求項1~6のいずれか1項に記載の弾性波装置。
- 前記複数の電極層が、前記最表層の電極層の下に形成されている2層目の電極層を有し、
前記2層目の電極層が、前記最表層の電極層を構成している金属よりも密度の大きい金属により構成されている、請求項7に記載の弾性波装置。 - 前記2層目の電極層が、Pt及びAuのうち少なくとも一方により構成されている、請求項8に記載の弾性波装置。
- 前記側面が対向し合う一対の側面部分を有し、
前記第2の主面から前記第1の主面に向かうにつれて、前記対向し合う一対の側面部分間が狭くなるように、各側面部分が傾斜されている、請求項1~9のいずれか1項に記載の弾性波装置。 - 前記IDT電極が、NiCr層、前記2層目の電極層、Ti層、前記最表層の電極層及び前記保護電極層がこの順に積層された積層金属膜である、請求項8又は9に記載の弾性波装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017526230A JP6589983B2 (ja) | 2015-07-02 | 2016-06-01 | 弾性波装置 |
CN201680032649.9A CN107615656B (zh) | 2015-07-02 | 2016-06-01 | 弹性波装置 |
KR1020177033191A KR101987716B1 (ko) | 2015-07-02 | 2016-06-01 | 탄성파 장치 |
US15/832,880 US10958238B2 (en) | 2015-07-02 | 2017-12-06 | Elastic wave device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-133439 | 2015-07-02 | ||
JP2015133439 | 2015-07-02 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/832,880 Continuation US10958238B2 (en) | 2015-07-02 | 2017-12-06 | Elastic wave device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017002513A1 true WO2017002513A1 (ja) | 2017-01-05 |
Family
ID=57608512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/066247 WO2017002513A1 (ja) | 2015-07-02 | 2016-06-01 | 弾性波装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10958238B2 (ja) |
JP (1) | JP6589983B2 (ja) |
KR (1) | KR101987716B1 (ja) |
CN (1) | CN107615656B (ja) |
WO (1) | WO2017002513A1 (ja) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10333494B2 (en) | 2014-12-24 | 2019-06-25 | Qorvo Us, Inc. | Simplified acoustic RF resonator parallel capacitance compensation |
US10581156B2 (en) | 2016-05-04 | 2020-03-03 | Qorvo Us, Inc. | Compensation circuit to mitigate antenna-to-antenna coupling |
US10581403B2 (en) * | 2016-07-11 | 2020-03-03 | Qorvo Us, Inc. | Device having a titanium-alloyed surface |
US11050412B2 (en) | 2016-09-09 | 2021-06-29 | Qorvo Us, Inc. | Acoustic filter using acoustic coupling |
US11165412B2 (en) | 2017-01-30 | 2021-11-02 | Qorvo Us, Inc. | Zero-output coupled resonator filter and related radio frequency filter circuit |
US11165413B2 (en) | 2017-01-30 | 2021-11-02 | Qorvo Us, Inc. | Coupled resonator structure |
US10873318B2 (en) | 2017-06-08 | 2020-12-22 | Qorvo Us, Inc. | Filter circuits having acoustic wave resonators in a transversal configuration |
US11152913B2 (en) | 2018-03-28 | 2021-10-19 | Qorvo Us, Inc. | Bulk acoustic wave (BAW) resonator |
DE102018132695A1 (de) * | 2018-12-18 | 2020-06-18 | RF360 Europe GmbH | Elektronisches Bauelement |
US11146247B2 (en) | 2019-07-25 | 2021-10-12 | Qorvo Us, Inc. | Stacked crystal filter structures |
US11757430B2 (en) | 2020-01-07 | 2023-09-12 | Qorvo Us, Inc. | Acoustic filter circuit for noise suppression outside resonance frequency |
US11146245B2 (en) | 2020-01-13 | 2021-10-12 | Qorvo Us, Inc. | Mode suppression in acoustic resonators |
US11146246B2 (en) | 2020-01-13 | 2021-10-12 | Qorvo Us, Inc. | Phase shift structures for acoustic resonators |
US11632097B2 (en) | 2020-11-04 | 2023-04-18 | Qorvo Us, Inc. | Coupled resonator filter device |
US11575363B2 (en) | 2021-01-19 | 2023-02-07 | Qorvo Us, Inc. | Hybrid bulk acoustic wave filter |
CN113114159B (zh) * | 2021-05-27 | 2021-12-10 | 北京超材信息科技有限公司 | 声表面波装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04294625A (ja) * | 1991-03-25 | 1992-10-19 | Seiko Epson Corp | 弾性表面波素子 |
JPH0522067A (ja) * | 1991-07-15 | 1993-01-29 | Oki Electric Ind Co Ltd | 弾性表面波フイルタ |
JPH10145171A (ja) * | 1996-11-11 | 1998-05-29 | Matsushita Electric Ind Co Ltd | 表面弾性波素子およびその製造方法 |
JP2006101082A (ja) * | 2004-09-29 | 2006-04-13 | Kyocera Corp | 弾性表面波装置および通信装置 |
JP2015111845A (ja) * | 2011-01-18 | 2015-06-18 | 株式会社村田製作所 | 弾性表面波フィルタ装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5722268B2 (ja) | 1974-09-11 | 1982-05-12 | ||
JP2001217672A (ja) | 1999-11-26 | 2001-08-10 | Murata Mfg Co Ltd | 弾性表面波素子およびその製造方法 |
JP3926633B2 (ja) * | 2001-06-22 | 2007-06-06 | 沖電気工業株式会社 | Sawデバイス及びその製造方法 |
JP2003115742A (ja) * | 2001-10-04 | 2003-04-18 | Toyo Commun Equip Co Ltd | 弾性表面波変換器 |
DE10206369B4 (de) | 2002-02-15 | 2012-12-27 | Epcos Ag | Elektrodenstruktur mit verbesserter Leistungsverträglichkeit und Verfahren zur Herstellung |
JP2006020134A (ja) * | 2004-07-02 | 2006-01-19 | Sanyo Electric Co Ltd | 弾性表面波素子 |
EP1947764B1 (en) * | 2005-09-20 | 2011-04-06 | Kyocera Corporation | Acoustic surface wave element and acoustic surface wave device |
JP5131117B2 (ja) | 2008-09-24 | 2013-01-30 | 株式会社村田製作所 | 弾性波装置及びその製造方法 |
WO2010116783A1 (ja) * | 2009-03-30 | 2010-10-14 | 株式会社村田製作所 | 弾性波装置 |
JP2011135469A (ja) | 2009-12-25 | 2011-07-07 | Murata Mfg Co Ltd | 弾性波装置 |
JP2012186696A (ja) * | 2011-03-07 | 2012-09-27 | Murata Mfg Co Ltd | 弾性波装置およびその製造方法 |
US9496846B2 (en) * | 2013-02-15 | 2016-11-15 | Skyworks Filter Solutions Japan Co., Ltd. | Acoustic wave device and electronic apparatus including same |
-
2016
- 2016-06-01 WO PCT/JP2016/066247 patent/WO2017002513A1/ja active Application Filing
- 2016-06-01 KR KR1020177033191A patent/KR101987716B1/ko active IP Right Grant
- 2016-06-01 CN CN201680032649.9A patent/CN107615656B/zh active Active
- 2016-06-01 JP JP2017526230A patent/JP6589983B2/ja active Active
-
2017
- 2017-12-06 US US15/832,880 patent/US10958238B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04294625A (ja) * | 1991-03-25 | 1992-10-19 | Seiko Epson Corp | 弾性表面波素子 |
JPH0522067A (ja) * | 1991-07-15 | 1993-01-29 | Oki Electric Ind Co Ltd | 弾性表面波フイルタ |
JPH10145171A (ja) * | 1996-11-11 | 1998-05-29 | Matsushita Electric Ind Co Ltd | 表面弾性波素子およびその製造方法 |
JP2006101082A (ja) * | 2004-09-29 | 2006-04-13 | Kyocera Corp | 弾性表面波装置および通信装置 |
JP2015111845A (ja) * | 2011-01-18 | 2015-06-18 | 株式会社村田製作所 | 弾性表面波フィルタ装置 |
Also Published As
Publication number | Publication date |
---|---|
US10958238B2 (en) | 2021-03-23 |
CN107615656A (zh) | 2018-01-19 |
JPWO2017002513A1 (ja) | 2018-02-15 |
KR20170137900A (ko) | 2017-12-13 |
US20180109236A1 (en) | 2018-04-19 |
KR101987716B1 (ko) | 2019-06-11 |
CN107615656B (zh) | 2021-01-26 |
JP6589983B2 (ja) | 2019-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6589983B2 (ja) | 弾性波装置 | |
US10826461B2 (en) | Acoustic wave device | |
JP6107947B2 (ja) | 弾性波フィルタ装置 | |
JP5392353B2 (ja) | 弾性表面波装置 | |
WO2011145449A1 (ja) | 弾性表面波装置 | |
US11456716B2 (en) | Elastic wave device and manufacturing method thereof | |
WO2018131360A1 (ja) | 弾性波装置 | |
JP2018050135A (ja) | 弾性波デバイス及び弾性波デバイスの製造方法 | |
US9184367B2 (en) | Elastic wave device | |
JP5195443B2 (ja) | 弾性波装置 | |
US10090823B2 (en) | Elastic wave resonator and ladder filter | |
JP6385690B2 (ja) | 弾性波デバイス及びその製造方法 | |
JP5176863B2 (ja) | 弾性波装置 | |
JP6813084B2 (ja) | 弾性波装置の製造方法 | |
JP4862451B2 (ja) | 弾性表面波装置及びその製造方法 | |
JP2009194895A (ja) | 弾性表面波装置 | |
JP5585389B2 (ja) | 弾性波素子及びその製造方法 | |
JP2005080202A (ja) | 弾性表面波素子 | |
JP5413160B2 (ja) | 弾性波装置 | |
WO2012014791A1 (ja) | 弾性波装置の製造方法 | |
WO2023048256A1 (ja) | 弾性波装置 | |
WO2016039026A1 (ja) | 弾性表面波装置 | |
JP6620813B2 (ja) | 弾性波装置 | |
JP2017228882A (ja) | 弾性表面波フィルタ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16817622 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017526230 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20177033191 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16817622 Country of ref document: EP Kind code of ref document: A1 |