WO2017002460A1 - マルチコア偏波保持ファイバ - Google Patents

マルチコア偏波保持ファイバ Download PDF

Info

Publication number
WO2017002460A1
WO2017002460A1 PCT/JP2016/064194 JP2016064194W WO2017002460A1 WO 2017002460 A1 WO2017002460 A1 WO 2017002460A1 JP 2016064194 W JP2016064194 W JP 2016064194W WO 2017002460 A1 WO2017002460 A1 WO 2017002460A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
stress applying
maintaining fiber
cores
polarization maintaining
Prior art date
Application number
PCT/JP2016/064194
Other languages
English (en)
French (fr)
Inventor
和幸 林
克昭 井添
愛川 和彦
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to DK16817569.3T priority Critical patent/DK3163339T3/da
Priority to CN201680001609.8A priority patent/CN106489087B/zh
Priority to US15/329,741 priority patent/US9897751B2/en
Priority to EP16817569.3A priority patent/EP3163339B1/en
Publication of WO2017002460A1 publication Critical patent/WO2017002460A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/024Optical fibres with cladding with or without a coating with polarisation maintaining properties

Definitions

  • the present invention relates to a polarization maintaining fiber having a plurality of cores.
  • An optical fiber used in a currently popular optical fiber communication system has a structure in which the outer periphery of one core is surrounded by a clad, and information is transmitted by propagation of an optical signal through the core.
  • a plurality of signals can be transmitted by light propagating through each core using a multi-core fiber in which the outer periphery of the plurality of cores is surrounded by a single cladding.
  • a polarization maintaining fiber is known as a coherent optical communication line for realizing an increase in transmission capacity.
  • a polarization maintaining fiber is an optical fiber that can propagate while maintaining the polarization state of light by giving a difference to the propagation constant between polarizations orthogonal to each other.
  • a polarization maintaining fiber for example, an elliptical core type polarization maintaining fiber (see Patent Document 1 below) including a core having an elliptical cross section, or a core by sandwiching the core between a pair of stress applying portions.
  • PANDA type stress-maintaining type
  • Patent Document 2 polarization-maintaining fiber
  • an elliptical core type polarization maintaining fiber as described in Patent Document 1 generally has a lower polarization maintaining power than a PANDA type.
  • the outer shape of the polarization maintaining fiber tends to be easily distorted. This is thought to be because the stress applying portion applies stress not only to the core but also to the cladding. That is, in the polarization maintaining fiber in which the stress applying portion is arranged along only one direction, the stress applied to the clad from the stress applying portion tends to concentrate in one direction, and the outer shape of the polarization maintaining fiber is likely to be distorted. Conceivable. When three or more stress applying portions as described in FIG. 1 and FIG.
  • Patent Document 2 are arranged along only one direction, the outer shape of the polarization maintaining fiber is as described above.
  • the tendency to distort becomes more prominent.
  • the stress changes, and the polarization holding power of the core changes.
  • the present inventors have found that the distortion of the outer shape of the PANDA type polarization maintaining fiber can be suppressed by optimizing the arrangement of the stress applying portions in the multi-core polarization maintaining fiber.
  • the present invention intends to provide a multi-core polarization maintaining fiber in which distortion of the outer shape is suppressed.
  • the multi-core polarization maintaining fiber of the present invention sandwiches each of the plurality of cores in a region surrounded by a plurality of cores, a clad surrounding the plurality of cores, and an outer periphery of the clad.
  • a cross-sectional area of the stress applying part is larger than a cross-sectional area of the core, and the stress applying part extends along one direction in a cross section perpendicular to the longitudinal direction of the cladding. And a plurality of them are arranged along another direction different from the one direction.
  • the plurality of stress applying portions By arranging the plurality of stress applying portions not in one direction but in a plurality of directions, it is possible to suppress the stress applied from the stress applying portion to the clad from being concentrated in one direction. That is, since the direction of the stress applied to the cladding from the stress applying portion can be dispersed in multiple directions, it is possible to suppress the outer shape of the multi-core polarization maintaining fiber from being distorted.
  • the one direction and the other direction are orthogonal to each other.
  • the stress applied from the stress applying portions to the cladding also works in the orthogonal directions, and the distortion of the outer shape of the multi-core polarization maintaining fiber is suppressed. It becomes easy.
  • a plurality of the plurality of stress applying portions are arranged along each of a plurality of parallel rows.
  • the plurality of stress applying portions are arranged at positions that are 90 ° rotationally symmetric with respect to the center of the clad.
  • one of the plurality of stress applying portions is disposed at the center of the clad.
  • the stress applying portion arranged at the center of the clad is interposed between the adjacent cores. As a result, crosstalk between adjacent cores can be suppressed.
  • the core is disposed at all between the stress applying portions adjacent to each other.
  • the cores include the cores whose directions sandwiched by the stress applying portions are different from each other by 90 °.
  • the cores sandwiched by the stress applying portions are different from each other by 90 °, and the directions of the fast axis and the slow axis are different from each other by 90 °.
  • the cores having different cutoff wavelengths it is strong against bending and disturbance, and can be used as a single mode optical fiber in a wide range of wavelengths even when bending or external stress is applied. That is, since light of different wavelengths can be passed through each core, the bandwidth per multi-core polarization maintaining fiber can be substantially expanded. Further, crosstalk between cores can be reduced.
  • the cores having different cutoff wavelengths may have different birefringences. Changing the birefringence of the core by changing at least one of the distance between the pair of stress applying portions that gives stress to the core, the size of the stress applying portions, and the thermal expansion coefficient of the stress applying portions. Can do.
  • a multi-core polarization maintaining fiber in which distortion of the outer shape is suppressed is provided.
  • FIG. 1 is a diagram showing a cross-sectional state perpendicular to the longitudinal direction of a multi-core polarization maintaining fiber 10 according to the first embodiment of the present invention.
  • the multi-core polarization maintaining fiber 10 sandwiches the core 11 in a region surrounded by a plurality of cores 11, a clad 12 that surrounds the outer peripheral surface of the core 11 without a gap, and an outer periphery of the clad 12.
  • a plurality of stress applying portions 15 provided, an inner protective layer 13 covering the outer peripheral surface of the clad 12, and an outer protective layer 14 covering the outer peripheral surface of the inner protective layer 13 are provided.
  • the form with which the core 11 and the stress provision part 15 are each provided is illustrated.
  • the four cores 11 included in the multi-core polarization maintaining fiber 10 of the present embodiment are arranged at positions that are the vertices of a square centered on the center of the cladding 12. Further, the refractive indexes of all the cores 11 are set higher than the refractive indexes of the clads 12, respectively.
  • the core 11 is made of quartz to which a dopant such as germanium that increases the refractive index is added
  • the cladding 12 is made of pure quartz.
  • the cladding 12 is made of quartz to which a dopant such as fluorine that lowers the refractive index is added.
  • the four cores 11 include at least two cores 11 having different cutoff wavelengths.
  • the core 11 having a different cutoff wavelength in one multi-core polarization maintaining fiber 10 it becomes strong against bending and disturbance, and can be used as a single mode optical fiber in a wide range of wavelengths even when bending or external stress is applied. it can. That is, since the light of a different wavelength can be propagated to each core 11, the band per one of the multi-core polarization maintaining fiber 10 can be substantially expanded.
  • the cores 11 included in the multi-core polarization maintaining fiber 10 have different cutoff wavelengths as described above, for example, the core 11 that becomes a single mode at a wavelength of 1.55 ⁇ m with a cutoff wavelength of 1.44 ⁇ m, A core 11 that becomes single mode at a wavelength 1.31 ⁇ m with an off wavelength of 1.28 ⁇ m, a core 11 that becomes single mode at a wavelength 0.98 ⁇ m with a cutoff wavelength of 0.94 ⁇ m, and a cutoff wavelength of 0.8 ⁇ m And a core 11 that becomes a single mode at a wavelength of 0.85 ⁇ m.
  • the core 11 and the clad 12 may have a relative refractive index difference of 0.4%, and the cores 11 having different cutoff wavelengths as described above may be provided by changing the diameters of the cores 11.
  • the loss of the multi-core polarization maintaining fiber 10 hardly increases even when the bending diameter becomes small, and the loss increase when it is wound 10 times at ⁇ 30 mm is 0.1 dB or less.
  • the relative refraction with the clad 12 for each core 11 is performed. For example, changing the rate difference.
  • the amount of dopant such as germanium added to the core 11 may be changed for each core 11.
  • the four stress applying portions 15 included in the multi-core polarization maintaining fiber 10 of the present embodiment are arranged at positions that become the apexes of a square centering on the center of the clad 12 so as to sandwich each of the four cores 11. For this reason, each core 11 is disposed on each side of the square obtained by connecting the centers of the respective stress applying portions 15.
  • stress applying part 15 and the core 11 By arranging the stress applying part 15 and the core 11 in this way, stress is applied to the core 11 from the pair of stress applying parts 15 as described later.
  • the stress applying portion 15 is made of, for example, a material having a larger thermal expansion coefficient than the clad 12. That is, when the preform including the material constituting the core 11, the cladding 12, and the stress applying portion 15 is drawn, the stress applying portion 15 is configured with a material having a larger thermal expansion coefficient than the cladding 12 as described above. As a result, the stress applying portion 15 contracts more than the clad 12 in the process in which each material cools and hardens, so that stress is applied to the core 11 from the pair of stress applying portions 15 arranged so as to sandwich the core 11 therebetween.
  • the pair of stress applying portions 15 applies tensile stress to the core 11 disposed between the pair of stress applying portions 15 in the direction in which the pair of stress applying portions 15 are arranged, and in a direction perpendicular to this direction. Applies compressive stress.
  • each stress applying portion 15 includes two cores positioned in different directions with respect to the center of the stress applying portion 15. Stress.
  • the core 11 to which the tensile stress and the compressive stress are applied from the pair of stress applying portions 15 has a birefringence induced by the photoelastic effect, and has different propagation constants in the polarization modes in two directions perpendicular to each other. For this reason, the light propagating through the core 11 has the slow axis as the direction in which the stress applying portions 15 are arranged, and the fast axis as the direction perpendicular to the direction.
  • the mode birefringence indicating the polarization maintaining power of the multi-core polarization maintaining fiber 10 can be set to 4 ⁇ 10 ⁇ 4 or more for each core 11, for example.
  • quartz glass to which a dopant such as boron is added can be given.
  • the thermal expansion coefficient of the quartz glass can be adjusted by adjusting the amount of boron or the like added to the quartz glass. In this way, the difference in thermal expansion coefficient between the stress applying portion 15 and the clad 12 is appropriately adjusted, or the installation interval of the pair of stress applying portions 15 arranged with the core 11 interposed therebetween (one of the pair of stress applying portions 15).
  • the strength of the stress applied to the core 11 from the pair of stress applying portions 15 can be adjusted, and the core 11 having a desired polarization holding force can be formed.
  • the shape, size, and thermal expansion coefficient of the pair of stress applying portions 15 are preferably the same.
  • the core 11 is preferably disposed at the center between the pair of stress applying portions 15.
  • the inner protective layer 13 and the outer protective layer 14 are each made of a resin such as an ultraviolet curable resin, and the inner protective layer 13 and the outer protective layer 14 are made of different resins.
  • a plurality of stress applying portions 15 arranged as described above are arranged along one direction and are different from the one direction. A plurality of them are arranged along the direction.
  • the stress applied from the stress applying portion 15 to the clad 12 is suppressed from being concentrated in one direction.
  • the stress applying portion 15 is formed as described above, the stress applying portion 15 applies stress not only to the core 11 but also to the cladding 12.
  • the stress applying part 15 is arranged along a plurality of directions as in the multi-core polarization maintaining fiber 10 of the present embodiment, so that the direction of stress applied from the stress applying part 15 to the clad 12 is multi-directional. Since it becomes easy to disperse
  • the conditions considered preferable for the arrangement of the plurality of stress applying portions 15 are as follows. That is, it is preferable that a plurality of stress applying portions 15 are arranged along one direction and a direction orthogonal to the one direction. By arranging the plurality of stress applying portions 15 along the orthogonal directions, the stress applied from the stress applying portions 15 to the cladding 12 also works in the orthogonal directions, and the outer shape of the multi-core polarization maintaining fiber 10 is distorted. It becomes easy to suppress this.
  • a plurality of stress applying portions 15 are arranged along each of a plurality of parallel rows. By arranging the plurality of stress applying portions 15 in a plurality of rows, it becomes easy to disperse the direction of stress applied from the stress applying portions 15 to the clad 12, so that it is easy to suppress distortion of the outer shape of the multicore polarization maintaining fiber 10. Become.
  • the plurality of stress applying portions 15 be arranged at positions that are 90 ° rotationally symmetric with respect to the center of the clad 12.
  • the multi-core polarization-maintaining fiber 10 of the present embodiment satisfies all of the preferable arrangement conditions of the plurality of stress applying portions 15 described above.
  • this invention is not limited to the form which satisfy
  • Other embodiments of the present invention will be described later.
  • one stress applying portion 15 is arranged so that necessary stress can be applied to the two cores 11 respectively. That is, by arranging the four stress applying portions 15 to be regarded as four pairs, the four stress applying portions 15 can apply stress to the four cores 11. By arranging the stress applying portions 15 in this way, the number of stress applying portions 15 required when arranging the same number of cores 11 can be reduced, so that the diameter of the cladding 12 is increased. Can be suppressed. Since the increase in the diameter of the clad 12 can be suppressed, it is possible to suppress an increase in the fracture probability even if the bending radius is small when the multi-core polarization maintaining fiber 10 is wired in a narrow space.
  • the diameter of the clad 12 can also be adjusted by appropriately adjusting the size of the stress applying part 15 and the installation interval of the adjacent stress applying parts 15 from the difference between the thermal expansion coefficient of the clad 12 and the thermal expansion coefficient of the stress applying part 15. Can be adjusted.
  • the diameter of the clad 12 By adjusting the diameter of the clad 12 as described above, for example, even if the diameter of the clad 12 is 125 ⁇ m or less (for example, about 80 ⁇ m), which is the same as that of the conventional polarization maintaining fiber, a plurality of Since the stress applying portion 15 can be arranged so that an appropriate stress can be applied to the core 11, the multi-core polarization maintaining fiber 10 including a plurality of cores 11 having a desired polarization maintaining force can be obtained.
  • the size of the stress applying portion 15 can be appropriately changed according to the difference between the thermal expansion coefficient of the clad 12 and the thermal expansion coefficient of the stress applying portion 15.
  • the diameter of the part 15 can be 20 ⁇ m or more, and preferably 30 ⁇ m or more.
  • the cross-sectional area of the stress applying portion 15 is larger than the cross-sectional area of the core 11.
  • the installation interval between the pair of stress applying portions 15 sandwiching the core 11 can be set to 10 ⁇ m or less as long as the core 11 can be disposed, and is preferably 8 ⁇ m or less.
  • the core 11 is arrange
  • the “stress applying portions 15 adjacent to each other” means a pair of stress applying portions 15 arranged so as to be able to apply a necessary stress to the core 11.
  • the core 11 receives a compressive stress and a tensile stress from the pair of stress applying portions 15 as described above, has a birefringence, has a slow axis in a direction in which the compressive stress is applied, and fast in a direction in which the tensile stress can be applied. Has an axis.
  • the directions sandwiched between the pair of stress applying parts 15 are different from each other by 90 °. For this reason, the directions in which the compressive stress and the tensile stress are applied to the two cores 11 are different from each other by 90 °.
  • the multi-core polarization maintaining fiber 10 includes the cores 11 that are different from each other by 90 ° in the directions of the fast axis and the slow axis.
  • the propagation constant changes, so that crosstalk between the cores 11 can be reduced.
  • the plurality of cores 11 have different cut-off wavelengths. However, even if the cores 11 have different cut-off wavelengths, a pair of stresses that apply stress to the cores 11 are applied. If the installation interval of the portions 15, the size of the stress applying portion 15, and the thermal expansion coefficient of the stress applying portion 15 are the same, the birefringence is equivalent. On the other hand, when the birefringence is changed in each core 11, the strength of the stress applied to the core 11 from the stress applying portion 15 may be adjusted as described above.
  • FIG. 2 is a view showing a state of a cross section perpendicular to the longitudinal direction of the multi-core polarization maintaining fiber 30 according to the second embodiment of the present invention.
  • the multi-core polarization maintaining fiber 30 has the same configuration as the multi-core polarization maintaining fiber 10 except for the number and arrangement of the cores 11 and the stress applying portions 15.
  • the multi-core polarization maintaining fiber 30 includes four cores 11 and five stress applying portions 15.
  • one stress applying portion 15 is arranged at the center of the clad 12, and the other four stress applying portions 15 are arranged on each vertex of a square centered on the center of the clad 12. Therefore, the stress applying portion 15 is arranged along one direction (up and down direction in FIG. 2) and along a direction perpendicular to this direction (left and right direction in FIG. 2).
  • the plurality of stress applying portions 15 are disposed at positions that are 90 ° rotationally symmetric with respect to the center of the clad 12.
  • the stress applying portion 15 is disposed at the center of the clad 12.
  • the stress applying portion 15 disposed in the center of the clad 12 and the stress applying portion 15 disposed on the outer peripheral side of the clad 12 are disposed so as to sandwich the core 11. It becomes easy.
  • the stress applying portion 15 disposed at the center of the clad 12 is interposed between the adjacent cores 11. As a result, crosstalk between adjacent cores 11 can be suppressed.
  • the four cores 11 included in the multi-core polarization maintaining fiber 30 include one stress applying portion 15 disposed at the center of the clad 12 and the other four stresses disposed so as to surround the stress applying portion 15. It arrange
  • the respective cores 11 are arranged so as to be sandwiched between the pair of stress applying portions 15, and a desired polarization maintaining force can be obtained similarly to the multi-core polarization maintaining fiber 10.
  • the core 11 which has is obtained.
  • the core 11 is arrange
  • the multi-core polarization maintaining fiber 30 can change the cutoff wavelength of each core 11.
  • the mode birefringence of such a multi-core polarization maintaining fiber 30 can be, for example, 4 ⁇ 10 ⁇ 4 or more for each core 11.
  • the loss is 0.1 dB or less even when it is wound 10 times at ⁇ 30 mm.
  • FIG. 3 is a diagram showing a cross-sectional state perpendicular to the longitudinal direction of the multi-core polarization maintaining fiber 40 according to the third embodiment of the present invention.
  • the multicore polarization maintaining fiber 40 has the same configuration as the multicore polarization maintaining fiber 10 except for the number and arrangement of the cores 11 and the stress applying portions 15.
  • the multi-core polarization maintaining fiber 40 includes twelve cores 11 and nine stress applying portions 15.
  • the nine stress applying portions 15 are arranged at equal intervals in a lattice shape of 3 ⁇ 3. Accordingly, the stress applying portion 15 is disposed along one direction (up and down direction in FIG. 3) and along a direction perpendicular to this direction (left and right direction in FIG. 3). Further, the stress applying part 15 arranged at the center among the nine stress applying parts 15 is arranged at the center of the clad 12.
  • the plurality of stress applying portions 15 arranged in this way are considered to be arranged along each of a plurality of parallel rows (vertical direction in the plane of FIG. 3 or horizontal direction in FIG. 3).
  • the twelve cores 11 provided in the multi-core polarization maintaining fiber 40 are disposed between adjacent stress applying portions 15. As described above, by arranging the cores 11 so as to be sandwiched between the pair of stress applying portions 15, the core 11 having a desired polarization holding force can be obtained in the same manner as the multi-core polarization holding fiber 10. Further, according to the multi-core polarization maintaining fiber 40, the cores 11 are disposed between all the stress applying portions 15 adjacent to each other. Therefore, many cores 11 are efficiently disposed in one multi-core polarization maintaining fiber 40, The information transmission capacity is increased. In addition, by arranging the stress applying portions 15 in this way, the number of stress applying portions 15 required when arranging the same number of cores 11 can be reduced, so that the diameter of the clad 12 is increased. Can be suppressed.
  • the multi-core polarization maintaining fiber 40 can change the cutoff wavelength of each core 11.
  • the mode birefringence of such a multi-core polarization maintaining fiber 40 can be, for example, 3 ⁇ 10 ⁇ 4 or more for each core 11.
  • the loss is 0.1 dB or less even when it is wound 10 times at ⁇ 30 mm.
  • FIG. 4 is a view showing a state of a cross section perpendicular to the longitudinal direction of a multi-core polarization maintaining fiber 50 according to the fourth embodiment of the present invention.
  • the multi-core polarization maintaining fiber 50 has the same configuration as the multi-core polarization maintaining fiber 10 except for the number and arrangement of the cores 11 and the stress applying portions 15.
  • the multi-core polarization maintaining fiber 50 includes 17 cores 11 and 12 stress applying portions 15.
  • the twelve stress applying portions 15 are arranged at equal intervals in a lattice shape of 3 ⁇ 4. Therefore, the stress applying portion 15 is arranged along one direction (up and down direction on the paper surface in FIG. 4) and along a direction perpendicular to this direction (left and right direction on the paper surface in FIG. 4). Further, it is considered that the plurality of stress applying portions 15 arranged in this way are arranged along each of a plurality of parallel rows (the vertical direction or the horizontal direction in FIG. 4). By arranging the plurality of stress applying portions 15 in this way, the distortion of the outer shape of the multicore polarization maintaining fiber 50 is suppressed as described above.
  • the 17 cores 11 provided in the multi-core polarization maintaining fiber 50 are disposed between the stress applying portions 15 adjacent to each other. As described above, by arranging the cores 11 so as to be sandwiched between the pair of stress applying portions 15, the core 11 having a desired polarization holding force can be obtained in the same manner as the multi-core polarization holding fiber 10. Further, according to the multi-core polarization maintaining fiber 50, the cores 11 are disposed between all the stress applying portions 15 adjacent to each other. Therefore, many cores 11 are efficiently disposed in one multi-core polarization maintaining fiber 50. The transmission capacity of information is increased. In addition, by arranging the stress applying portions 15 in this way, the number of stress applying portions 15 required when arranging the same number of cores 11 can be reduced, so that the diameter of the clad 12 is increased. Can be suppressed.
  • the diameter of the clad 12 is the multi-core polarization maintaining described above. It is preferable to make it larger than the fiber. By increasing the diameter of the clad 12, it becomes easy to arrange many cores 11 having a desired polarization holding power. Further, by increasing the diameter of the clad 12, it becomes easy to dispose a large stress applying portion 15, so that the core 11 having a higher mode birefringence can be easily formed.
  • the diameter of the clad 12 provided in the multi-core polarization maintaining fiber 50 can be set to 150 ⁇ m, for example.
  • the diameter of the stress application part 15 can be 20 micrometers or more, for example, and the installation space
  • the multi-core polarization maintaining fiber 50 can change the cutoff wavelength of each core 11.
  • the mode birefringence of such a multi-core polarization maintaining fiber 50 can be, for example, 3 ⁇ 10 ⁇ 4 or more for each core 11.
  • the loss is 0.1 dB or less even when it is wound 10 times at ⁇ 30 mm.
  • FIG. 5 is a view showing a state of a cross section perpendicular to the longitudinal direction of a multi-core polarization maintaining fiber 60 according to a fifth embodiment of the present invention.
  • the multi-core polarization maintaining fiber 60 has the same configuration as the multi-core polarization maintaining fiber 10 except for the number and arrangement of the cores 11 and the stress applying portions 15.
  • the multi-core polarization maintaining fiber 60 includes three cores 11 and three stress applying portions 15.
  • the three stress applying portions 15 are arranged at the positions of the vertices of the triangle, and the three cores 11 are arranged on the sides of the triangle.
  • the stress applying portion 15 is disposed along one direction (the left-right direction in FIG. 5) and also along the other direction, so that the multi-core polarization maintaining fiber 60 is disposed as described above. The distortion of the outer shape of the is suppressed.
  • the three cores 11 provided in the multi-core polarization maintaining fiber 60 are disposed between the stress applying portions 15 adjacent to each other. As described above, by arranging the cores 11 so as to be sandwiched between the pair of stress applying portions 15, the core 11 having a desired polarization holding force can be obtained in the same manner as the multi-core polarization holding fiber 10. Further, according to the multi-core polarization maintaining fiber 60, the cores 11 are disposed between all the stress applying portions 15 adjacent to each other. Therefore, many cores 11 are efficiently disposed in one multi-core polarization maintaining fiber 60. The transmission capacity of information is increased. In addition, by arranging the stress applying portions 15 in this way, the number of stress applying portions 15 required when arranging the same number of cores 11 can be reduced, so that the diameter of the clad 12 is increased. Can be suppressed.
  • the present invention has been described above by taking the first to fifth embodiments as examples, the present invention is not limited to these embodiments.
  • the number and installation positions of the cores 11 and the stress applying portions 15 are not limited to the embodiments described so far, and each of the plurality of cores 11 included in one multicore polarization maintaining fiber is a pair. It is arranged at a position sandwiched between the stress applying portions 15, and a plurality of stress applying portions are arranged along one direction and a plurality are arranged along another direction different from the one direction. It ’s fine.
  • the stress applying part is arranged at the position corresponding to each vertex of the square.
  • the stress applying part is a rectangle, a parallelogram, or another polygon.
  • by disposing the stress applying portions at positions corresponding to the apexes of the square or rectangle it becomes easy to place many cores 11 and to apply appropriate stress to the core 11.
  • this invention is not limited to this form, and the stress application parts 15 adjacent to each other. There may be a portion where the core 11 is not disposed. However, from the viewpoint of increasing the information transmission capacity and suppressing the increase in the diameter of the clad 12, it is preferable that the cores 11 are arranged between the stress applying portions 15 adjacent to each other.
  • the multi-core polarization maintaining fiber described so far can be manufactured, for example, as described below.
  • the material illustrated below is prepared and a preform is produced.
  • a material constituting the clad 12 for example, a pure quartz rod or a quartz rod to which fluorine is added is prepared.
  • a quartz rod added with germanium is prepared when the clad 12 is pure quartz, and a pure quartz rod is prepared when the clad 12 is made of quartz added with fluorine.
  • a quartz rod which is a material constituting the core 11
  • the quartz rod which is a material of the cladding 12
  • the core 11 is disposed at a desired position when the wire is drawn, and these are heated. And unite them.
  • a hole for inserting the material constituting the stress applying portion 15 is opened in the rod containing the material constituting the clad 12 and the core 11 produced as described above.
  • a material having a larger thermal expansion coefficient than that of the clad 12 is used for the stress applying portion 15.
  • a quartz rod to which boron is added is used as a material constituting the stress applying portion 15.
  • a multi-core polarization fiber according to the present invention is produced by producing a preform including the material constituting the core 11, the clad 12, and the stress applying portion 15 as described above, and forming the preform into a fiber while being integrated in a drawing furnace. Can be obtained.
  • the method for forming the inner protective layer 13 and the outer protective layer 14 is not particularly limited.
  • the cores 11 having different cutoff wavelengths are disposed, the cores 11 are formed using quartz rods having the same diameter and different refractive indexes, or the diameters of the core 11 and the clad 12 are previously set for each core 11.
  • the core 11 may be formed of quartz rods having different diameters so that
  • a multi-core polarization-maintaining fiber in which external distortion is suppressed is provided, and is expected to be used in technical fields such as a fiber laser device for processing.

Abstract

マルチコア偏波保持ファイバ10は、複数のコア11と、複数のコア11を囲むクラッド12と、クラッド12の外周で囲まれる領域内において複数のコア11のそれぞれを挟むように設けられた複数の応力付与部15と、を備え、応力付与部15の断面積はコア11の断面積より大きく、複数の応力付与部15は、一の方向に沿って複数配置されるとともに当該一の方向とは異なる他の方向に沿って複数配置される。

Description

マルチコア偏波保持ファイバ
 本発明は、複数のコアを有する偏波保持ファイバに関する。
 現在、一般に普及している光ファイバ通信システムに用いられる光ファイバは、1本のコアの外周がクラッドにより囲まれた構造をしており、このコアを光信号が伝搬することで情報が伝送される。そして、近年、光ファイバ通信システムの普及に伴い、伝送される情報量が飛躍的に増大している。こうした光ファイバ通信システムの伝送容量増大を実現するために、複数のコアの外周が1つのクラッドにより囲まれたマルチコアファイバを用いて、それぞれのコアを伝搬する光により複数の信号を伝送させることが知られている。
 また、伝送容量増大を実現するためのコヒーレント光通信用線路として、偏波保持ファイバが知られている。偏波保持ファイバとは、互いに直交する偏波間の伝搬定数に差を与えることで、光の偏波状態を保持したまま伝搬させることができる光ファイバである。このような偏波保持ファイバとしては、例えば、断面形状が楕円形のコアを備える楕円コア型の偏波保持ファイバ(下記特許文献1参照)や、一対の応力付与部でコアを挟むことでコアに応力を付与し、実効屈折率が互いに異なる直交軸を有するコアを形成する応力付与型(以下、「PANDA型」という。)の偏波保持ファイバ(下記特許文献2参照)等がある。
特開2013-80126号公報 特開昭62-178909号公報
 しかし、上記特許文献1に記載されているような楕円コア型の偏波保持ファイバは、一般的にPANDA型に比べて偏波保持力が小さい。また、一般にシングルコアのPANDA型偏波保持ファイバでは偏波保持ファイバの外形が歪みやすくなる傾向がある。これは、応力付与部がコアだけでなくクラッドにも応力を与えるためだと考えられる。すなわち、応力付与部が一つの方向にのみ沿って配置された偏波保持ファイバでは、応力付与部からクラッドに加えられる応力が一方向に集中しやすくなり、偏波保持ファイバの外形が歪みやすくなると考えられる。上記特許文献2の第1図及び第2図に記載されているような3つ以上の応力付与部が一つの方向にのみ沿って配置された場合、上記のようにして偏波保持ファイバの外形が歪む傾向はより顕著になる。このように外形が歪んだ光ファイバでは、コネクタ加工するときにフェルールの穴に入れ難くなる場合や、フェルールに入れて隙間に接着剤を充填した際に固まった接着剤のヒケによってコアに加えられる応力が変化し、コアの偏波保持力が変化する場合があった。
 本発明者らは、マルチコア偏波保持ファイバにおいて応力付与部の配置を最適化することによって、PANDA型の偏波保持ファイバの外形の歪みを抑制できることを見出した。
 そこで、本発明は、外形の歪みが抑制されたマルチコア偏波保持ファイバを提供しようとするものである。
 上記課題を解決するため、本発明のマルチコア偏波保持ファイバは、複数のコアと、前記複数のコアを囲むクラッドと、前記クラッドの外周で囲まれる領域内において前記複数のコアのそれぞれを挟むように設けられる複数の応力付与部と、を備え、前記応力付与部の断面積は前記コアの断面積より大きく、前記応力付与部は、前記クラッドの長手方向に垂直な断面において一の方向に沿って複数配置されるとともに前記一の方向とは異なる他の方向に沿って複数配置されることを特徴とするものである。
 複数の応力付与部を一方向ではなく複数の方向に沿って配置することによって、応力付与部からクラッドに加えられる応力が一方向に集中することを抑制できる。すなわち、応力付与部からクラッドに加えられる応力の方向を多方向に分散することができるため、マルチコア偏波保持ファイバの外形が歪むことを抑制できる。
 また、前記一の方向と前記他の方向とが直交していることが好ましい。複数の応力付与部を直交した方向のそれぞれに沿って配置することによって、応力付与部からクラッドにかかる応力も直交した方向にそれぞれ働くこととなり、マルチコア偏波保持ファイバの外形が歪むことを抑制し易くなる。
 また、前記複数の応力付与部が、平行な複数の列のそれぞれに沿って複数配置されることが好ましい。複数の応力付与部を複数列に配置することによっても、応力付与部からクラッドにかかる応力の方向を分散させ易くなるので、マルチコア偏波保持ファイバの外形が歪むことを抑制し易くなる。
 また、前記複数の応力付与部が前記クラッドの中心を基準とした90°回転対称となる位置に配置されることが好ましい。このように複数の応力付与部を配置することによっても、応力付与部からクラッドにかかる応力の方向を分散させ易くなるので、マルチコア偏波保持ファイバの外形が歪むことを抑制し易くなる。
 また、前記複数の応力付与部のうち一つの前記応力付与部が、前記クラッドの中心に配置されることが好ましい。このような形態とすることによって、クラッドの中心に配置される応力付与部と、クラッドの外周側に配置される応力付与部とが対になってコアを挟むように配置することが容易になる。そして、このようにコア及び応力付与部が配置されることによって、隣り合うコアの間に、クラッドの中心に配置される応力付与部が介在することになる。その結果、隣り合うコア間でのクロストークを抑制することができる。
 また、互いに隣り合う前記応力付与部間の全てに前記コアが配置されていることが好ましい。このようにコアを配置することによって、一つのマルチコア偏波保持ファイバ内において効率良く多くのコアを配置することができるので、情報の伝送容量を増大させやすくなる。
 また、前記応力付与部によって挟まれる方向が互いに90°異なる前記コアを含むことが好ましい。応力付与部によって挟まれる方向が互いに90°異なるコアは、ファスト軸及びスロー軸の方向がそれぞれ互いに90°異なる。このようにファスト軸及びスロー軸の方向が異なるコアのそれぞれのファスト軸及びスロー軸に信号を伝送させると伝搬定数が変わるので、コア間のクロストークを少なくすることができる。
 また、互いに異なるカットオフ波長をもつ前記コアを含むことが好ましい。カットオフ波長が異なるコアを含むことによって、曲げや外乱に強くなり、曲げや外部応力が加わった状態でも幅広い波長でシングルモード光ファイバとして使用することができる。すなわち、各コアに異なる波長の光を通すことができるので、実質的にマルチコア偏波保持ファイバ1本当たりの帯域を広げることができる。また、コア間のクロストークを少なくすることができる。
 また、互いに異なるカットオフ波長をもつ前記コアが互いに異なる複屈折率をもつ形態としても良い。コアへ応力を与える一対の応力付与部の間隔、その応力付与部の大きさ、及び、その応力付与部の熱膨張係数のうち少なくともいずれか一つを変えれば、コアの複屈折率を変えることができる。
 以上のように、本発明によれば、外形の歪みが抑制されたマルチコア偏波保持ファイバが提供される。
本発明の第1実施形態に係るマルチコア偏波保持ファイバの長手方向に垂直な断面の様子を示す図である。 本発明の第2実施形態に係るマルチコア偏波保持ファイバの長手方向に垂直な断面の様子を示す図である。 本発明の第3実施形態に係るマルチコア偏波保持ファイバの長手方向に垂直な断面の様子を示す図である。 本発明の第4実施形態に係るマルチコア偏波保持ファイバの長手方向に垂直な断面の様子を示す図である。 本発明の第5実施形態に係るマルチコア偏波保持ファイバの長手方向に垂直な断面の様子を示す図である。
 以下、本発明に係るマルチコア偏波保持ファイバの好適な実施形態について図面を参照しながら詳細に説明する。なお、理解の容易のため、それぞれの図のスケールと、以下の説明に記載のスケールとが異なる場合がある。
 (第1実施形態)
 図1は、本発明の第1実施形態に係るマルチコア偏波保持ファイバ10の長手方向に垂直な断面の様子を示す図である。
 図1に示すように、マルチコア偏波保持ファイバ10は、複数のコア11と、コア11の外周面を隙間なく囲むクラッド12と、クラッド12の外周で囲まれる領域内においてコア11を挟むように設けられる複数の応力付与部15と、クラッド12の外周面を被覆する内側保護層13と、内側保護層13の外周面を被覆する外側保護層14とを備える。なお、図1ではコア11及び応力付与部15がそれぞれ4つ備えられる形態を例示している。
 本実施形態のマルチコア偏波保持ファイバ10が備える4つのコア11は、クラッド12の中心を中心とする正方形の各頂点となる位置に配置される。また、全てのコア11の屈折率はそれぞれクラッド12の屈折率よりも高くされる。例えば、コア11が屈折率を高くするゲルマニウム等のドーパントが添加された石英から成る場合、クラッド12は純粋な石英で構成される。また、例えば、コア11が純粋な石英から成る場合、クラッド12は屈折率を低くするフッ素等のドーパントが添加された石英で構成される。
 4つのコア11には、互いに異なるカットオフ波長をもつ少なくとも2つのコア11が含まれることが好ましい。1つのマルチコア偏波保持ファイバ10にカットオフ波長が異なるコア11が含まれることによって、曲げや外乱に強くなり、曲げや外部応力が加わった状態でも幅広い波長でシングルモード光ファイバとして使用することができる。すなわち、各コア11に異なる波長の光を伝搬させることができるので、マルチコア偏波保持ファイバ10の1本当たりの帯域を実質的に広げることができる。
 上記のようにマルチコア偏波保持ファイバ10に備えられるコア11が互いに異なるカットオフ波長をもつ場合、例えば、カットオフ波長が1.44μmである波長1.55μmでシングルモードになるコア11と、カットオフ波長が1.28μmである波長1.31μmでシングルモードになるコア11と、カットオフ波長が0.94μmである波長0.98μmでシングルモードになるコア11と、カットオフ波長が0.8μmである波長0.85μmでシングルモードになるコア11と、を備える形態とすることができる。例えば、コア11とクラッド12との比屈折率差を0.4%とし、コア11の直径を互いに変えて上記のような互いに異なるカットオフ波長をもつコア11を備える形態とすることができる。この場合、マルチコア偏波保持ファイバ10は、曲げ径が小さくなっても損失が増加し難く、φ30mmで10回巻いたときの損失増加は0.1dB以下となる。
 一つのマルチコア偏波保持ファイバ10にカットオフ波長が異なるコア11を備えさせるためには、上記のようにコア11の直径をコア11毎に変える他に、コア11毎にクラッド12との比屈折率差を変えることが挙げられる。コア11とクラッド12との比屈折率差をコア11毎に変えるためには、例えば、コア11に添加するゲルマニウム等のドーパントの量をコア11毎に変えればよい。
 次に、応力付与部15について説明する。本実施形態のマルチコア偏波保持ファイバ10が備える4つの応力付与部15は、4つのコア11のそれぞれを挟むように、クラッド12の中心を中心とする正方形の頂点となる位置に配置される。このため、それぞれのコア11はそれぞれの応力付与部15の中心を結ぶことで得られる当該正方形の各辺上に配置される。このように応力付与部15及びコア11が配置されることによって、後述するように一対の応力付与部15からコア11に応力が付与される。
 応力付与部15は、例えば、クラッド12より熱膨張係数が大きい材料で構成される。すなわち、コア11、クラッド12、及び、応力付与部15を構成する材料を含むプリフォームを線引きする際に、上記のように応力付与部15をクラッド12よりも熱膨張係数が大きい材料で構成することによって、各材料が冷えて固まる過程において応力付与部15がクラッド12よりも大きく縮むので、コア11を挟むように配置する一対の応力付与部15からコア11に応力が付与される。より具体的には、一対の応力付与部15は、間に配置されたコア11に対して、その一対の応力付与部15が並ぶ方向には引っ張り応力を加えるとともに、この方向に垂直な方向には圧縮応力を加える。また、上記のように各コア11及び各応力付与部15が配置されることにより、それぞれの応力付与部15は、当該応力付与部15の中心を基準として、互いに異なる方向に位置する2つのコアに対して応力を加える。
 一対の応力付与部15から引張応力及び圧縮応力を加えられたコア11は、光弾性効果により複屈折率が誘起され、これらの互いに垂直な2つの方向の偏波モードで異なる伝搬定数を有する。このため、コア11を伝搬する光は、応力付与部15が並ぶ方向がスロー軸とされ、当該方向に垂直な方向がファスト軸とされる。このようなマルチコア偏波保持ファイバ10の偏波保持力を示すモード複屈折率は、例えば、それぞれのコア11で4×10-4以上とすることができる。
 このような応力付与部15を構成する材料の例としては、ホウ素等のドーパントが添加された石英ガラスを挙げることができる。石英ガラスに添加されるホウ素等の量を調整することによって、石英ガラスの熱膨張係数を調整することができる。このようにして応力付与部15とクラッド12との熱膨張係数差を適宜調整したり、コア11を挟んで配置される一対の応力付与部15の設置間隔(一対の応力付与部15のうち一方の応力付与部15とクラッド12との界面から他方の応力付与部15とクラッド12との界面までの最短距離。以下、同じ。)やその応力付与部15の大きさ等を適宜調整したりすることによって、一対の応力付与部15からコア11に付与される応力の強さを調整でき、所望の偏波保持力を持ったコア11を形成することができる。
 上記のようにして一対の応力付与部15によって所定の応力をコア11に加えやすくする観点からは、一対の応力付与部15の形状、大きさ、及び熱膨張係数は互いに同じであることが好ましく、コア11は一対の応力付与部15間の中心に配置されることが好ましい。一方、応力付与部15の形状、大きさ、及び熱膨張係数やコア11と応力付与部15との間隔の少なくともいずれか1つを変えることによって、互いに異なる複屈折率をもつコア11が1つのマルチコア偏波保持ファイバ10に備えられる形態としても良い。
 なお、内側保護層13及び外側保護層14はそれぞれ紫外線硬化樹脂等の樹脂から成り、内側保護層13及び外側保護層14は互いに異なる樹脂から成る。
 以上説明したように、本実施形態のマルチコア偏波保持ファイバ10では、上記のように配置される応力付与部15が一の方向に沿って複数配置されるとともに当該一の方向とは異なる他の方向に沿っても複数配置されることとなる。複数の応力付与部15が一方向だけではなく複数の方向に沿って配置されることによって、応力付与部15からクラッド12に加えられる応力が一方向に集中することが抑制される。応力付与部15が上述したようにして形成される際、応力付与部15はコア11だけでなくクラッド12にも応力を加える。このとき、本実施形態のマルチコア偏波保持ファイバ10のように複数の方向に沿って応力付与部15が配置されることにより、応力付与部15からクラッド12に加えられる応力の方向は多方向に分散されやすくなるので、マルチコア偏波保持ファイバ10の外形が歪むことが抑制される。
 上記のように応力付与部15からクラッド12に加えられる応力の方向を多方向に分散させやすくするという観点から、複数の応力付与部15の配置として好ましいと考えられる条件は以下の通りである。すなわち、複数の応力付与部15は一の方向と当該一の方向に直交している方向に沿って複数配置されることが好ましい。複数の応力付与部15を直交した方向のそれぞれに沿って配置することによって、応力付与部15からクラッド12にかかる応力も直交した方向にそれぞれ働くこととなり、マルチコア偏波保持ファイバ10の外形が歪むことを抑制し易くなる。
 また、複数の応力付与部15が、平行な複数の列のそれぞれに沿って複数配置されることも好ましい。複数の応力付与部15を複数列に配置することによっても、応力付与部15からクラッド12にかかる応力の方向を分散させ易くなるので、マルチコア偏波保持ファイバ10の外形が歪むことを抑制し易くなる。
 さらに、複数の応力付与部15がクラッド12の中心を基準とした90°回転対称となる位置に配置されることも好ましい。このように複数の応力付与部15を配置することによっても、応力付与部15からクラッド12にかかる応力の方向を分散させ易くなるので、マルチコア偏波保持ファイバ10の外形が歪むことを抑制し易くなる。
 本実施形態のマルチコア偏波保持ファイバ10は、上述した複数の応力付与部15の好ましい配置の条件を全て満たしている。ただし、本発明は上記条件の全てを満たした形態に限定されない。他の本発明の実施形態については後述する。
 また、本実施形態のマルチコア偏波保持ファイバ10では、1つの応力付与部15はそれぞれ2つのコア11に必要な応力を加えられるように配置されている。すなわち、4つの応力付与部15が4対とみなされるように配置されることによって、これら4つの応力付与部15が4つのコア11に応力を付与できる。このように応力付与部15が配置されることによって、同数のコア11を配置する場合に必要とされる応力付与部15の数を少なくすることができるので、クラッド12の直径が太くなることを抑制できる。クラッド12の直径が太くなることを抑制できることによって、マルチコア偏波保持ファイバ10を狭い空間で配線する際に小さな曲げ径とされても破断確率が高くなることを抑えることができる。
 なお、クラッド12の熱膨張係数と応力付与部15の熱膨張係数との差から応力付与部15の大きさや隣り合う応力付与部15の設置間隔を適宜調整することによっても、クラッド12の直径を調整することができる。
 上記のようにクラッド12の直径が調整されることによって、例えば、クラッド12の直径が従来の偏波保持ファイバと同じ125μm又はそれ未満の大きさ(例えば、80μm程度)にされるとしても、複数のコア11に適切な応力を付与できるように応力付与部15を配置できるので、所望の偏波保持力を持ったコア11を複数含むマルチコア偏波保持ファイバ10を得られる。
 応力付与部15の大きさはクラッド12の熱膨張係数と応力付与部15の熱膨張係数との差等に応じて適宜変更可能であるが、例えばクラッド12の直径を125μmとした場合、応力付与部15の直径は20μm以上とすることができ、好ましくは30μm以上である。応力付与部15を大きくすることによって、コア11に必要な応力を加え易くなる。かかる観点から、応力付与部15の断面積はコア11の断面積よりも大きい。また、コア11を挟む一対の応力付与部15の設置間隔は、コア11を配置可能な限り、10μm以下とすることができ、好ましくは8μm以下である。応力付与部15の設置間隔を狭くすることによって、クラッド12の直径を小さくし易くなるという利点や、コア11に必要な応力を加え易くなる等の利点がある。
 なお、本明細書では、互いに隣り合う応力付与部15間の全てにコア11が配置されている。「互いに隣り合う応力付与部15」とは、コア11に必要な応力を付与できるように配置された一対の応力付与部15を意味する。このようにコア11が配置されることによって、一つのマルチコア偏波保持ファイバ10に効率良く多くのコア11が配置されるので、情報の伝送容量が増大される。
 コア11は上述したように対になった応力付与部15から圧縮応力及び引張応力を受けて複屈折率をもち、圧縮応力が加えられる方向にスロー軸をもち、引張応力を加えられる方向にファスト軸をもつ。また、1つの応力付与部15を基準として当該応力付与部15に対して90°異なる方向に配置される2つのコア11では、一対の応力付与部15によって挟まれる方向が互いに90°異なる。このため、当該2つのコア11は圧縮応力及び引張応力が加えられる方向が互いに90°異なる。つまり、マルチコア偏波保持ファイバ10は、ファスト軸及びスロー軸の方向がそれぞれ互いに90°異なるコア11を備えている。このようにファスト軸及びスロー軸の方向が異なるコア11のそれぞれのファスト軸及びスロー軸に信号を伝送させると伝搬定数が変わるので、コア11間のクロストークを少なくすることができる。
 また、上述したように複数のコア11はそれぞれ互いに異なるカットオフ波長をもつことが好ましいが、互いに異なるカットオフ波長をもつコア11であっても、それぞれのコア11へ応力を与える一対の応力付与部15の設置間隔、その応力付与部15の大きさ、及び、その応力付与部15の熱膨張係数が同等であれば、同等の複屈折率を持つ。一方、それぞれのコア11で複屈折率を変える場合には、応力付与部15からコア11に加えられる応力の強さを上記のように調整すればよい。
 (第2実施形態)
 次に、本発明の第2実施形態について図2を参照して詳細に説明する。なお、これまでに説明した実施形態と同一または同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
 図2は、本発明の第2実施形態に係るマルチコア偏波保持ファイバ30の長手方向に垂直な断面の様子を示す図である。マルチコア偏波保持ファイバ30は、コア11及び応力付与部15の数及び配置以外はマルチコア偏波保持ファイバ10と同様の構成を有している。
 マルチコア偏波保持ファイバ30は、4つのコア11と5つの応力付与部15とを備える。5つの応力付与部15において、1つの応力付与部15がクラッド12の中心に配置され、他の4つの応力付与部15がクラッド12の中心を中心とする正方形の各頂点上に配置される。したがって、応力付与部15は一つの方向(図2の紙面上下方向)に沿って配置されるとともに、この方向に垂直な方向(図2の紙面左右方向)に沿って配置される。また、複数の応力付与部15はクラッド12の中心を基準とした90°回転対称となる位置に配置される。このように複数の応力付与部15が配置されることによって、上述したようにマルチコア偏波保持ファイバ30の外形の歪みが抑制される。
 また、マルチコア偏波保持ファイバ30では応力付与部15がクラッド12の中心に配置されている。このような形態とすることによって、クラッド12の中心に配置される応力付与部15と、クラッド12の外周側に配置される応力付与部15とが対になってコア11を挟むように配置することが容易になる。そして、このようにコア11及び応力付与部15が配置されることによって、隣り合うコア11の間に、クラッド12の中心に配置される応力付与部15が介在することになる。その結果、隣り合うコア11間でのクロストークを抑制することができる。
 マルチコア偏波保持ファイバ30に備えられる4つのコア11は、クラッド12の中心に配置される1つの応力付与部15と、その応力付与部15を囲むように配置されるそれぞれの他の4つの応力付与部15との間に配置される。すなわち、5つの応力付与部15が4対とみなされるように配置されることによって、これら5つの応力付与部15から4つのコア11に適切な応力が付与される。
 このようなマルチコア偏波保持ファイバ30によれば、それぞれのコア11が一対の応力付与部15に挟まれるように配置されており、マルチコア偏波保持ファイバ10と同様に所望の偏波保持力を有するコア11が得られる。また、本実施形態では、互いに隣り合う応力付与部15間の全てにコア11が配置されている。このようにコア11が配置されることによって、一つのマルチコア偏波保持ファイバ30に効率良く多くのコア11が配置されるので、情報の伝送容量が増大される。
 また、マルチコア偏波保持ファイバ30もマルチコア偏波保持ファイバ10と同様に、各コア11のカットオフ波長をそれぞれ変更することができる。このようなマルチコア偏波保持ファイバ30のモード複屈折率は、例えばそれぞれのコア11で4×10-4以上とすることができる。また、各コア11のカットオフ波長より長い波長でシングルモードとなる波長では、φ30mmで10回巻いた状態でも損失が0.1dB以下である。
 (第3実施形態)
 次に、本発明の第3実施形態について図3を参照して詳細に説明する。なお、これまでに説明した実施形態と同一または同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
 図3は、本発明の第3実施形態に係るマルチコア偏波保持ファイバ40の長手方向に垂直な断面の様子を示す図である。マルチコア偏波保持ファイバ40は、コア11及び応力付与部15の数及び配置以外はマルチコア偏波保持ファイバ10と同様の構成を有している。
 マルチコア偏波保持ファイバ40は、12個のコア11と9つの応力付与部15とを備える。9つの応力付与部15は、縦3つ×横3つの格子状に等間隔に配置される。したがって、応力付与部15は一つの方向(図3の紙面上下方向)に沿って配置されるとともに、この方向に垂直な方向(図3の紙面左右方向)に沿って配置される。また、9つの応力付与部15のうち中心に配置される応力付与部15は、クラッド12の中心に配置される。このように配置された複数の応力付与部15は、互いに平行な複数列(図3の紙面上下方向、又は、左右方向)のそれぞれに沿って複数配置されるとも考えられ、クラッド12の中心を基準とした90°回転対称となる位置に配置されるとも考えられる。このように複数の応力付与部15が配置されることによって、上述したようにマルチコア偏波保持ファイバ40の外形の歪みが抑制される。
 マルチコア偏波保持ファイバ40に備えられる12個のコア11は、隣り合う応力付与部15の間に配置される。このようにそれぞれのコア11が一対の応力付与部15に挟まれるように配置されることによって、マルチコア偏波保持ファイバ10と同様に所望の偏波保持力を有するコア11を得られる。また、マルチコア偏波保持ファイバ40によれば、互いに隣り合う応力付与部15間の全てにコア11が配置されるので、一つのマルチコア偏波保持ファイバ40に効率良く多くのコア11が配置され、情報の伝送容量が増大される。また、このように応力付与部15を配置することによって、同数のコア11を配置する場合に必要とされる応力付与部15の数を少なくすることができるので、クラッド12の直径が太くなることを抑制できる。
 また、マルチコア偏波保持ファイバ40もマルチコア偏波保持ファイバ10と同様に、各コア11のカットオフ波長をそれぞれ変更することができる。このようなマルチコア偏波保持ファイバ40のモード複屈折率は、例えばそれぞれのコア11で3×10-4以上とすることができる。また、各コア11のカットオフ波長に近い波長でシングルモードとなる波長では、φ30mmで10回巻いた状態でも損失が0.1dB以下である。
 (第4実施形態)
 次に、本発明の第4実施形態について図4を参照して詳細に説明する。なお、これまでに説明した実施形態と同一または同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
 図4は、本発明の第4実施形態に係るマルチコア偏波保持ファイバ50の長手方向に垂直な断面の様子を示す図である。マルチコア偏波保持ファイバ50は、コア11及び応力付与部15の数及び配置以外はマルチコア偏波保持ファイバ10と同様の構成を有している。
 マルチコア偏波保持ファイバ50は、17個のコア11と12個の応力付与部15とを備える。12個の応力付与部15は、縦3つ×横4つの格子状に等間隔に配置される。したがって、応力付与部15は一つの方向(図4の紙面上下方向)に沿って配置されるとともに、この方向に垂直な方向(図4の紙面左右方向)に沿って配置される。また、このように配置される複数の応力付与部15は、平行な複数列(図4の紙面上下方向、又は、左右方向)のそれぞれに沿って複数配置されるとも考えられる。このように複数の応力付与部15が配置されることによって、上述したようにマルチコア偏波保持ファイバ50の外形の歪みが抑制される。
 マルチコア偏波保持ファイバ50に備えられる17個のコア11は、隣り合う応力付与部15の間に配置される。このようにそれぞれのコア11が一対の応力付与部15に挟まれるように配置されることによって、マルチコア偏波保持ファイバ10と同様に所望の偏波保持力を有するコア11を得られる。また、マルチコア偏波保持ファイバ50によれば、互いに隣り合う応力付与部15間の全てにコア11が配置されているので、一つのマルチコア偏波保持ファイバ50に効率良く多くのコア11が配置され、情報の伝送容量が増大される。また、このように応力付与部15を配置することによって、同数のコア11を配置する場合に必要とされる応力付与部15の数を少なくすることができるので、クラッド12の直径が太くなることを抑制できる。
 マルチコア偏波保持ファイバ50はこれまでに説明した形態のマルチコア偏波保持ファイバよりも多くの応力付与部15及びコア11を備えているので、クラッド12の直径をこれまでに説明したマルチコア偏波保持ファイバよりも大きくすることが好ましい。クラッド12の直径を大きくすることによって、所望の偏波保持力を持ったコア11を多く配置することが容易になる。また、クラッド12の直径を大きくすることによって、大きな応力付与部15を配置しやすくなるので、より高いモード複屈折率を有するコア11を形成しやすくなる。
 マルチコア偏波保持ファイバ50に備えられるクラッド12の直径は、例えば150μmとすることができる。また、応力付与部15の直径は、例えば20μm以上にすることができ、隣り合う応力付与部15の設置間隔は、例えば10μm以下にすることができる。
 また、マルチコア偏波保持ファイバ50もマルチコア偏波保持ファイバ10と同様に、各コア11のカットオフ波長をそれぞれ変更することができる。このようなマルチコア偏波保持ファイバ50のモード複屈折率は、例えばそれぞれのコア11で3×10-4以上とすることができる。また、各コア11のカットオフ波長より長い波長でシングルモードとなる波長では、φ30mmで10回巻いた状態でも損失が0.1dB以下である。
 (第5実施形態)
 次に、本発明の第5実施形態について図5を参照して詳細に説明する。なお、これまでに説明した実施形態と同一または同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
 図5は、本発明の第5実施形態に係るマルチコア偏波保持ファイバ60の長手方向に垂直な断面の様子を示す図である。マルチコア偏波保持ファイバ60は、コア11及び応力付与部15の数及び配置以外はマルチコア偏波保持ファイバ10と同様の構成を有している。
 マルチコア偏波保持ファイバ60は、3つのコア11と3つの応力付与部15とを備える。3つの応力付与部15は三角形の各頂点の位置に配置され、3つのコア11は当該三角形の各辺上に配置される。このように応力付与部15が一つの方向(図5の紙面左右方向)に沿って配置されるとともに、他の方向に沿っても配置されることによって、上述したようにマルチコア偏波保持ファイバ60の外形の歪みが抑制される。
 マルチコア偏波保持ファイバ60に備えられる3つのコア11は、隣り合う応力付与部15の間に配置される。このようにそれぞれのコア11が一対の応力付与部15に挟まれるように配置されることによって、マルチコア偏波保持ファイバ10と同様に所望の偏波保持力を有するコア11を得られる。また、マルチコア偏波保持ファイバ60によれば、互いに隣り合う応力付与部15間の全てにコア11が配置されているので、一つのマルチコア偏波保持ファイバ60に効率良く多くのコア11が配置され、情報の伝送容量が増大される。また、このように応力付与部15を配置することによって、同数のコア11を配置する場合に必要とされる応力付与部15の数を少なくすることができるので、クラッド12の直径が太くなることを抑制できる。
 以上本発明について第1実施形態から第5実施形態を例に説明したが、本発明はこれらの実施形態に限定されない。例えば、本発明においてコア11及び応力付与部15の数及び設置位置は、これまでに説明した実施形態に限定されず、1つのマルチコア偏波保持ファイバに備えられる複数のコア11のそれぞれが一対の応力付与部15に挟まれる位置に配置され、且つ、複数の応力付与部が一の方向に沿って複数配置されるとともに当該一の方向とは異なる他の方向に沿っても複数配置されていれば良い。
 また、例えば、第1実施形態等では正方形の各頂点に対応する位置に応力付与部が配置される例を挙げたが、本発明は、応力付与部が長方形や平行四辺形や他の多角形等の各頂点に対応する位置に配置される形態であってもよい。ただし、応力付与部を正方形や長方形の各頂点に対応する位置に応力付与部を配置することによって、コア11を多く配置しやすくなるとともに、コア11に適切な応力を加えやすくなる。
 また、これまでに説明した実施形態では互いに隣り合う応力付与部15間の全てにコア11が配置されている形態を例示したが、本発明はかかる形態に限定されず、隣り合う応力付与部15間のうちコア11が配置されていない部分があっても良い。ただし、情報の伝送容量の増大やクラッド12の直径の増大抑制等の観点からは、互いに隣り合う応力付与部15間の全てにコア11が配置されることが好ましい。
 (製造方法)
  これまでに説明したマルチコア偏波保持ファイバは、例えば、以下に説明するようにして製造することができる。
  まず、以下に例示する材料を準備してプリフォームを作製する。
  クラッド12を構成する材料として、例えば、純粋石英ロッドやフッ素が添加された石英ロッドを準備する。また、コア11を構成する材料として、例えば、クラッド12が純粋石英の場合はゲルマニウムを添加した石英ロッド、クラッド12がフッ素を添加した石英から成る場合は純粋石英ロッド、を準備する。
  次に、線引きしたときにコア11が所望の位置に配置されるように、クラッド12の材料である石英ロッドに孔を開けてコア11を構成する材料である石英ロッドを挿入し、これらを加熱して一体化させる。
  次に、上記のようにして作製したクラッド12及びコア11を構成する材料を含んだロッドに、応力付与部15を構成する材料を挿入するための孔を開ける。応力付与部15にはクラッド12より熱膨張係数が大きな材料を用いる。応力付与部15を構成する材料としては、例えば、ホウ素が添加された石英ロッドを用いる。
  上記のようにしてコア11、クラッド12、及び応力付与部15を構成する材料を備えたプリフォームを作製し、これを線引き炉で一体化しながらファイバ化することにより、本発明のマルチコア偏波ファイバを得ることができる。内側保護層13および外側保護層14を形成する方法は特に限定されない。
  なお、異なるカットオフ波長をもつコア11を配置する場合は、直径が同じで屈折率が異なる石英ロッドを用いてコア11を形成するか、予めコア11の直径とクラッド12の直径がコア11毎に変わるように直径が異なる石英ロッドでコア11を形成すればよい。
 以上説明したように、本発明によれば、外形の歪みが抑制されたマルチコア偏波保持ファイバが提供され、加工用のファイバレーザ装置等の技術分野においての利用が期待される。
10、30、40、50、60・・・マルチコア偏波保持ファイバ
11・・・コア
12・・・クラッド
13・・・内側保護層
14・・・外側保護層
15・・・応力付与部

Claims (9)

  1.  複数のコアと、
     前記複数のコアを囲むクラッドと、
     前記クラッドの外周で囲まれる領域内において前記複数のコアのそれぞれを挟むように設けられる複数の応力付与部と、
    を備え、
     前記応力付与部の断面積は前記コアの断面積より大きく、
     前記応力付与部は、前記クラッドの長手方向に垂直な断面において一の方向に沿って複数配置されるとともに前記一の方向とは異なる他の方向に沿って複数配置される
    ことを特徴とするマルチコア偏波保持ファイバ。
  2.  前記一の方向と前記他の方向とが直交している
    ことを特徴とする請求項1に記載のマルチコア偏波保持ファイバ。
  3.  前記複数の応力付与部が、互いに平行な複数の列に沿って複数配置される
    ことを特徴とする請求項1または2に記載のマルチコア偏波保持ファイバ。
  4.  前記複数の応力付与部が前記クラッドの中心を基準とした90°回転対称となる位置に配置される
    ことを特徴とする請求項1から3のいずれか1項に記載のマルチコア偏波保持ファイバ。
  5.  前記複数の応力付与部のうち一つの前記応力付与部が、前記クラッドの中心に配置される
    ことを特徴とする請求項1から4のいずれか1項に記載のマルチコア偏波保持ファイバ。
  6.  互いに隣り合う前記応力付与部間の全てに前記コアが配置されている
    ことを特徴とする請求項1から5のいずれか1項に記載のマルチコア偏波保持ファイバ。
  7.  前記応力付与部によって挟まれる方向が互いに90°異なる前記コアを含む
    ことを特徴とする請求項1から6のいずれか1項に記載のマルチコア偏波保持ファイバ。
  8.  互いに異なるカットオフ波長をもつ前記コアを含む
    ことを特徴とする請求項1から7のいずれか1項に記載のマルチコア偏波保持ファイバ。
  9.  互いに異なるカットオフ波長をもつ前記コアが互いに異なる複屈折率をもつ
    ことを特徴とする請求項8に記載のマルチコア偏波保持ファイバ。
PCT/JP2016/064194 2015-07-02 2016-05-12 マルチコア偏波保持ファイバ WO2017002460A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DK16817569.3T DK3163339T3 (da) 2015-07-02 2016-05-12 Polariseringsbevarende multikernefiber
CN201680001609.8A CN106489087B (zh) 2015-07-02 2016-05-12 多芯偏振保持光纤
US15/329,741 US9897751B2 (en) 2015-07-02 2016-05-12 Multicore polarization-maintaining fiber
EP16817569.3A EP3163339B1 (en) 2015-07-02 2016-05-12 Multi-core polarization maintaining fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015133964A JP6692128B2 (ja) 2015-07-02 2015-07-02 マルチコア偏波保持ファイバ
JP2015-133964 2015-07-02

Publications (1)

Publication Number Publication Date
WO2017002460A1 true WO2017002460A1 (ja) 2017-01-05

Family

ID=57608205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064194 WO2017002460A1 (ja) 2015-07-02 2016-05-12 マルチコア偏波保持ファイバ

Country Status (6)

Country Link
US (1) US9897751B2 (ja)
EP (1) EP3163339B1 (ja)
JP (1) JP6692128B2 (ja)
CN (1) CN106489087B (ja)
DK (1) DK3163339T3 (ja)
WO (1) WO2017002460A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110261955A (zh) * 2019-06-20 2019-09-20 长飞光纤光缆股份有限公司 一种保偏多芯光纤
CN110261956A (zh) * 2019-06-20 2019-09-20 长飞光纤光缆股份有限公司 一种阵列型保偏多芯光纤
WO2023067562A1 (en) 2021-10-22 2023-04-27 Inphotech Spolka Z Ograniczona Odpowiedzialnoscia Method of measuring a parameter and optical measurement system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2995932B1 (en) * 2014-09-09 2019-02-27 Heraeus Quarzglas GmbH & Co. KG Optical fiber with a hollow channel along the center of the fiber core for receiving a sample
JP6340342B2 (ja) * 2015-05-27 2018-06-06 株式会社フジクラ マルチコアファイバ
CO2018014315A1 (es) * 2018-12-28 2019-12-31 Univ Nat Colombia Conversor modal sintonizable
JP7389644B2 (ja) * 2019-12-26 2023-11-30 株式会社フジクラ マルチコアファイバ、光ファイバケーブル、及び光コネクタ
JPWO2022172910A1 (ja) * 2021-02-12 2022-08-18
CN113075763B (zh) * 2021-03-11 2022-07-15 武汉长盈通光电技术股份有限公司 多芯熊猫结构保偏光纤及其耦合连接装置
CN113568091A (zh) * 2021-08-06 2021-10-29 华中科技大学 一种轴向保偏多芯光纤
US11675123B2 (en) * 2021-09-09 2023-06-13 Cisco Technology, Inc. Radiation-induced birefringence in polarization-maintaining fiber
CN115712167B (zh) * 2022-10-21 2023-06-20 武汉长盈通光电技术股份有限公司 纤芯复合型保偏光纤及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599304U (ja) * 1982-07-09 1984-01-21 日立電線株式会社 偏波面保存光フアイバ
JPS62249114A (ja) * 1986-04-22 1987-10-30 Sumitomo Electric Ind Ltd 定偏波フアイバカプラ及びその製造方法
JPH0545527A (ja) * 1991-08-15 1993-02-23 Fujikura Ltd イメージフアイバ
JP2013080126A (ja) * 2011-10-04 2013-05-02 Sumitomo Electric Ind Ltd 偏波保持マルチコア光ファイバ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62178909A (ja) 1986-02-03 1987-08-06 Sumitomo Electric Ind Ltd マルチコア定偏波光フアイバ
CA1302759C (en) * 1986-11-28 1992-06-09 Kuniharu Himeno Optical fiber coupler and process for manufacturing same
JPH0426816A (ja) * 1990-05-23 1992-01-30 Sumitomo Electric Ind Ltd 光アイソレータ
JPH0659154A (ja) * 1992-08-11 1994-03-04 Fujitsu Ltd 偏波カプラの製造方法及び偏波カプラ
EP0637762B1 (en) * 1993-02-25 2000-05-24 Fujikura Ltd. Polarized wave holding optical fiber, production method therefor, connection method therefor, optical amplifier, laser oscillator and polarized wave holding optical fiber coupler
US6463195B1 (en) * 1999-05-31 2002-10-08 Fujikura Ltd. Method of manufacturing polarization-maintaining optical fiber coupler
US6813414B1 (en) * 2000-07-17 2004-11-02 Finisar Corporation Fiber optical pigtail geometry for improved extinction ratio of polarization maintaining fibers
US20060171426A1 (en) * 2005-02-02 2006-08-03 Andrei Starodoumov Fiber-laser with intracavity polarization maintaining coupler providing plane polarized output
EP2248233B1 (en) * 2008-02-07 2018-04-04 Imra America, Inc. High power parallel fiber arrays
EP2626730B1 (en) * 2010-10-05 2021-08-18 Fujikura Ltd. Polarization-maintaining optical fiber
JP5921518B2 (ja) * 2013-11-18 2016-05-24 株式会社フジクラ マルチコアファイバ及びそのマルチコアファイバの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599304U (ja) * 1982-07-09 1984-01-21 日立電線株式会社 偏波面保存光フアイバ
JPS62249114A (ja) * 1986-04-22 1987-10-30 Sumitomo Electric Ind Ltd 定偏波フアイバカプラ及びその製造方法
JPH0545527A (ja) * 1991-08-15 1993-02-23 Fujikura Ltd イメージフアイバ
JP2013080126A (ja) * 2011-10-04 2013-05-02 Sumitomo Electric Ind Ltd 偏波保持マルチコア光ファイバ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3163339A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110261955A (zh) * 2019-06-20 2019-09-20 长飞光纤光缆股份有限公司 一种保偏多芯光纤
CN110261956A (zh) * 2019-06-20 2019-09-20 长飞光纤光缆股份有限公司 一种阵列型保偏多芯光纤
CN110261956B (zh) * 2019-06-20 2021-02-26 长飞光纤光缆股份有限公司 一种阵列型保偏多芯光纤
WO2023067562A1 (en) 2021-10-22 2023-04-27 Inphotech Spolka Z Ograniczona Odpowiedzialnoscia Method of measuring a parameter and optical measurement system
EP4180775A1 (en) 2021-10-22 2023-05-17 Inphotech Spolka Z ograniczona Odpowiedzialnoscia Method of measuring a parameter and optical measurement system

Also Published As

Publication number Publication date
JP6692128B2 (ja) 2020-05-13
JP2017016002A (ja) 2017-01-19
CN106489087A (zh) 2017-03-08
EP3163339A4 (en) 2018-04-25
EP3163339A1 (en) 2017-05-03
EP3163339B1 (en) 2021-08-25
US20170219768A1 (en) 2017-08-03
US9897751B2 (en) 2018-02-20
DK3163339T3 (da) 2021-10-04
CN106489087B (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
WO2017002460A1 (ja) マルチコア偏波保持ファイバ
JP5819682B2 (ja) 通信用マルチコアファイバ
WO2013051485A1 (ja) 偏波保持マルチコア光ファイバ
JP5307558B2 (ja) コア間カップリングを備えたマルチコアフォトニックバンドギャップファイバ
JP5876612B2 (ja) 非円形状の光ビームに信号ビームを結合するための光ファイバーカプラー
JP5409928B2 (ja) 偏波保持光ファイバ
US9529144B2 (en) Multicore fiber
WO2012118132A1 (ja) マルチコアファイバ
JPS59148005A (ja) 単モ−ド単偏波を伝搬する光フアイバ
JP5982992B2 (ja) マルチコア光ファイバ
JP5771025B2 (ja) マルチコアファイバ
US9529146B2 (en) Multicore fiber and method of manufacture of the same
JP5471776B2 (ja) マルチコア光ファイバ
US20150316715A1 (en) Multi-core fiber
JP2011033899A (ja) ホーリーファイバ
JP5351938B2 (ja) 結合型マルチコアファイバ
US9470840B2 (en) Multicore fiber
EP3301489A1 (en) Polarization maintaining optical fiber with non-symmetric stress applying parts
JP6342613B2 (ja) マルチコア光ファイバの製造方法
JP2005003932A (ja) 偏波保持フォトニッククリスタルファイバ及びそのファイバ端部加工方法
JP5990616B2 (ja) 通信用マルチコアファイバ
US20240085618A1 (en) Polarization maintaining optical fiber and polarization maintaining optical fiber manufacturing method
JPWO2022172910A5 (ja)
JPH0223306A (ja) 偏波保持光ファイバ
JPS6233562B2 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15329741

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016817569

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016817569

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE