WO2017002444A1 - リチウム二次電池 - Google Patents

リチウム二次電池 Download PDF

Info

Publication number
WO2017002444A1
WO2017002444A1 PCT/JP2016/063442 JP2016063442W WO2017002444A1 WO 2017002444 A1 WO2017002444 A1 WO 2017002444A1 JP 2016063442 W JP2016063442 W JP 2016063442W WO 2017002444 A1 WO2017002444 A1 WO 2017002444A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
active material
positive electrode
secondary battery
negative electrode
Prior art date
Application number
PCT/JP2016/063442
Other languages
English (en)
French (fr)
Inventor
昌明 久保田
阿部 英俊
美優 根本
聖志 金村
今澤 計博
Original Assignee
古河電池株式会社
公立大学法人首都大学東京
株式会社スリーダム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電池株式会社, 公立大学法人首都大学東京, 株式会社スリーダム filed Critical 古河電池株式会社
Priority to US15/740,284 priority Critical patent/US20180198120A1/en
Priority to JP2016556333A priority patent/JP6163613B2/ja
Priority to KR1020187002962A priority patent/KR20180036715A/ko
Priority to CN201680038358.0A priority patent/CN107851834A/zh
Publication of WO2017002444A1 publication Critical patent/WO2017002444A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a lithium secondary battery, and more particularly to a lithium secondary battery using metallic lithium as a negative electrode active material.
  • Lithium secondary batteries are widely used for reasons such as high energy density, and are mounted as power sources in portable electronic devices such as mobile phones, digital cameras, and notebook computers.
  • lithium secondary batteries are being developed as a power source for hybrid vehicles or electric vehicles, or as a power storage power source for natural energy generation such as sunlight and wind power from the viewpoints of energy resource depletion and global warming.
  • Lithium secondary batteries are required to have higher capacity and longer life in order to expand the use of these power sources.
  • lithium secondary batteries charge and discharge by moving lithium ions between the positive electrode and the negative electrode.
  • the positive electrode active materials of lithium secondary batteries are currently lithium metal oxides such as lithium cobalt oxide (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), lithium nickelate (LiNiO 2 ), and lithium iron phosphate (LiFePO 4 ). 4 ) Lithium-containing metal oxides or metal phosphorous oxides have been put into practical use or are being developed for commercialization.
  • a carbon material such as graphite or lithium titanium oxide (Li 4 Ti 5 O 12 ) is used.
  • a separator for preventing an internal short circuit is interposed between the positive electrode and the negative electrode each containing the active materials.
  • a microporous thin film made of polyolefin is generally used.
  • metallic lithium has a large amount of electricity per unit weight of 3.86 Ah / g. Therefore, in order to realize a high-capacity lithium secondary battery having the highest theoretical energy density, research using metallic lithium as a negative electrode active material has been advanced again.
  • lithium grows in a dendrite shape from the negative electrode surface of metallic lithium during repeated charging and discharging.
  • Lithium grown in a dendritic state has a problem of causing an internal short circuit through the separator interposed between the positive electrode and the negative electrode to reach the positive electrode.
  • Japanese Patent Laid-Open No. 4-206267 discloses a non-aqueous electrolyte secondary battery using LiCoO 2 as a main active material of a positive electrode and a material (for example, manganese dioxide) that can be discharged from the beginning as a secondary active material. It is disclosed.
  • the inert coating on the surface of the metallic lithium of the negative electrode is not removed, lithium will be deposited unevenly on the surface of the metallic lithium of the negative electrode.
  • the deposited lithium on the negative electrode surface grows in a dendrite shape, penetrates the separator, reaches the positive electrode, and causes an internal short circuit.
  • a material that can be discharged from the beginning as a secondary active material (eg, manganese dioxide) is used as the active material of the positive electrode.
  • a secondary active material eg, manganese dioxide
  • the active material of the positive electrode is used as the active material of the positive electrode.
  • lithium can be released from the metallic lithium of the negative electrode as lithium ions.
  • the release of lithium removes an inert film such as lithium carbonate or lithium hydroxide formed on the surface of the metallic lithium of the negative electrode immediately after battery assembly.
  • lithium ions are reduced and deposited on the metal lithium surface of the negative electrode in a good state. Therefore, lithium can be prevented from growing in a dendrite shape from the surface of the metallic lithium of the negative electrode.
  • the invention described in the above publication pays attention only to discharging at the first time in charging / discharging immediately after the battery assembly, and does not scrutinize the release behavior of lithium ions from the metallic lithium of the negative electrode at the first discharging. For this reason, the growth of lithium dendrite from the metallic lithium of the negative electrode cannot always be sufficiently suppressed or prevented.
  • An object of the present invention is to provide a lithium secondary battery that suppresses or prevents the growth of lithium dendrite and has a high capacity and excellent charge / discharge cycle characteristics.
  • a lithium secondary battery comprising a positive electrode, a negative electrode, a separator, and an electrolyte solution
  • the positive electrode includes a first active material and a second active material capable of inserting and extracting lithium, respectively, and the first active material is a battery with the negative electrode immediately after assembly of a lithium secondary battery.
  • the second active material is in a state where lithium can be occluded in a battery reaction with the negative electrode immediately after assembly of a lithium secondary battery
  • the negative electrode includes a lithium metal as an active material
  • the separator is provided with a lithium secondary battery having a structure in which pores are three-dimensionally regularly arranged.
  • a lithium secondary battery having high capacity and excellent charge / discharge cycle characteristics can be provided by suppressing or preventing the growth of lithium dendrite by the action described in detail later.
  • FIG. 1 is a cross-sectional view showing a lithium secondary battery according to an embodiment.
  • the lithium secondary battery according to the embodiment includes a positive electrode, a negative electrode, a separator, and an electrolytic solution.
  • the positive electrode includes a first active material and a second active material capable of inserting and extracting lithium, respectively.
  • the first active material is in a state in which lithium can only be desorbed in the battery reaction with the negative electrode immediately after the assembly of the lithium secondary battery, that is, in the first charge / discharge cycle.
  • the second active material is in a state where lithium can be occluded in the battery reaction with the negative electrode immediately after the assembly of the lithium secondary battery, that is, in the first charge / discharge cycle.
  • the negative electrode contains metallic lithium as an active material.
  • the separator has a structure in which holes are regularly arranged three-dimensionally.
  • lithium is suppressed or prevented from growing in a dendrite shape from the negative electrode, and the lithium is in a dendrite shape. It is possible to prevent the occurrence of an internal short circuit between the positive and negative electrodes, and to provide a lithium secondary battery that has high reliability and excellent charge / discharge cycle characteristics. At the same time, a high-capacity lithium secondary battery can be provided by using metallic lithium as the negative electrode active material.
  • lithium grows in a dendrite shape from the surface of the metallic lithium of the negative electrode by the following mechanism during a charge / discharge cycle.
  • the positive electrode is an active material in a state (complete discharge state) in which lithium can be released in the battery reaction with the negative electrode immediately after the lithium secondary battery is assembled, that is, in the first charge / discharge cycle.
  • LiCoO 2 LiCoO 2
  • the first time in the charge / discharge cycle starts from charging between the positive electrode and the negative electrode.
  • lithium in the positive electrode active material for example, LiCoO 2
  • the lithium ions move to the negative electrode side through the pores of the separator impregnated with the electrolytic solution.
  • the lithium ions further move from the electrolytic solution to the surface of the metallic lithium of the negative electrode, and are reduced and deposited on the surface.
  • an inactive film such as lithium carbonate or lithium oxide is formed on the surface of the metal lithium. Therefore, lithium is likely to be deposited unevenly on the surface of metallic lithium of the negative electrode. Specifically, lithium is locally and unevenly deposited without being dispersed and deposited on the metal lithium surface.
  • the local lithium deposition site becomes the growth base point of the lithium dendrite, and lithium grows in a dendrite shape. .
  • the growth of lithium dendrite is further facilitated by subsequent charge / discharge cycles. Therefore, since the growth of lithium dendrite proceeds, it breaks through the separator and reaches the positive electrode, causing an internal short circuit.
  • each positive electrode includes a first active material and a second active material capable of inserting and extracting lithium as a positive electrode active material.
  • the first active material is in a state in which lithium can be removed in the battery reaction with the negative electrode immediately after the lithium secondary battery is assembled, and the second active material is lithium in the battery reaction with the negative electrode immediately after the lithium secondary battery is assembled. It is a state that can be occluded. For this reason, the battery reaction proceeds at a rate limited to the second active material that is capable of occluding lithium in the battery reaction with the negative electrode. That is, the first charge / discharge cycle starts from discharge.
  • lithium is desorbed (released) as ions from the metal lithium surface of the negative electrode.
  • the separator disposed opposite to the negative electrode has a structure in which a large number of holes are arranged in a three-dimensional order. For this reason, lithium release occurs from a number of locations (a number of points) on the surface of the metallic lithium facing a number of regularly arranged vacancies in the separator. At this time, fine holes having a certain depth are regularly opened in many places after lithium is released from the surface of the metal lithium. A large number of micropores having a certain depth and having regularity are confirmed from SEM photographs of the surface of metallic lithium.
  • a large number of micro holes having a regular depth with regularity is a phenomenon that occurs for the first time by combining the execution of the first discharge and a separator having a structure in which a large number of holes are arranged three-dimensionally.
  • the release of lithium from the surface of the metal lithium destroys and removes the inactive film on the surface of the metal lithium, so that the surface modification is performed so that the surface of the metal lithium is uniformly activated.
  • the first active material lithium which is in a state capable of detaching lithium mainly in the battery reaction with the negative electrode, is ionized, and the lithium ion impregnates the electrolytic solution. It passes through the arrayed vacancies and moves to the negative electrode side, and lithium ions are reduced and deposited from the electrolytic solution onto the metal lithium surface of the negative electrode.
  • lithium does not precipitate over the entire surface of the metallic lithium of the negative electrode, but preferentially in a large number of micropores of a certain depth having the regularity opened on the surface of the metallic lithium. Precipitate.
  • lithium deposited in a large number of micropores on the surface of the metal lithium is preferentially released, and the micropores are opened again.
  • Lithium is preferentially deposited in the micropores.
  • a large number of fine holes having a certain depth are opened on the surface of the lithium metal of the negative electrode, and at the time of charging, lithium is preferentially reduced and deposited in the fine holes.
  • the opening portions of the numerous micropores function as a site for the lithium reduction deposition during charging.
  • the lithium ions dissolved in the electrolytic solution are not locally and unevenly reduced and deposited on the surface of the metallic lithium, but are dispersed and deposited on the openings of a large number of micropores. Therefore, even if lithium grows in a dendrite shape at the reduction precipitation site, a certain amount of lithium is reduced and deposited on the negative electrode surface at the time of charging, so that the dendrite growth base points can be dispersed in a number of locations. This can significantly reduce the degree of dendrite growth itself.
  • the lithium secondary battery according to the embodiment it is possible to effectively prevent the growth of lithium dendrite in a long-term charge / discharge cycle and the accompanying internal short circuit between the positive electrode and the negative electrode. Therefore, metallic lithium having a characteristic that the amount of electricity per unit weight is as large as 3.86 Ah / g can be safely used as the negative electrode active material. As a result, a highly reliable and high performance lithium secondary battery having a high capacity and excellent charge / discharge cycle characteristics can be provided.
  • the positive electrode includes a positive electrode current collector and a positive electrode layer including a positive electrode active material formed on one or both surfaces of the positive electrode current collector.
  • the positive electrode current collector can be a metal plate or a metal foil.
  • the metal plate or metal foil is preferably made of a material that does not evaporate or decompose under the influence of heat, for example, a metal such as aluminum, titanium, iron, nickel, copper, or an alloy thereof.
  • the positive electrode active material includes a first active material and a second active material capable of inserting and extracting lithium, respectively.
  • the positive electrode active material includes a first active material and a second active material.
  • the positive electrode active material including such a first active material and a second active material includes two forms described below.
  • the first active material and the second active material are lithium-containing compounds.
  • the first active material is a lithium-containing compound that can release lithium in the battery reaction with the negative electrode immediately after the assembly of the lithium secondary battery, that is, in the first charge / discharge cycle.
  • the second active material is a lithium-containing compound from which lithium is partially removed, which can occlude lithium in the battery reaction with the negative electrode immediately after assembly of the lithium secondary battery, that is, in the first charge / discharge cycle.
  • each lithium-containing compound include lithium-containing metal oxides such as lithium cobalt oxide, lithium manganese oxide, lithium nickel oxide, and lithium vanadium oxide, or lithium-containing metal phosphates such as lithium phosphate.
  • Each of the lithium-containing compounds of the first active material and the second active material has a) a form in which elements constituting the lithium-containing compound are the same as each other, and b) among elements constituting the lithium-containing compound. , And at least one metal element excluding lithium is different from each other.
  • the first active material and the second active material are both the above-described lithium-containing metal oxide or lithium-containing metal phosphate having the same constituent elements.
  • the first active material is a lithium-containing metal oxide or lithium-containing metal oxide having a stoichiometric composition
  • the second active material has a composition in which lithium is removed from the stoichiometric composition.
  • the amount of lithium (Li) released is variously defined by the type and amount of the second active material.
  • the first active material and the second active material are both lithium cobalt oxides having the same constituent elements, and the first active material is represented by the chemical formula: LiCoO 2 .
  • Two active materials are represented by the chemical formula: Li 1-x CoO 2 .
  • x is the amount of lithium (Li) released from the lithium cobalt oxide.
  • Preferred x is 0 ⁇ x ⁇ 0.6. More preferable x is 0.1 ⁇ x ⁇ 0.5.
  • the second active material represented by the chemical formula: Li 1-x CoO 2 used in the form a) can be obtained, for example, by the following method.
  • a positive electrode slurry is prepared by adding a solvent to an active material represented by LiCoO 2 , a conductive material, and a binder. This slurry is applied to a current collector and dried to form a positive electrode layer, thereby producing a desired positive electrode.
  • the positive electrode containing the working electrode LiCoO 2 as an active material is used as the working electrode, and the positive electrode layer of the positive electrode is arranged in the outer package so that the positive electrode layer of the positive electrode faces the counter electrode, and a separator is interposed between the working electrode and the counter electrode.
  • a reference electrode made of lithium metal is disposed in the exterior body in close proximity to the working electrode, the separator, and the counter electrode.
  • Each terminal of the working electrode, the counter electrode, and the reference electrode is extended to the outside.
  • a non-aqueous electrolyte is accommodated in the exterior body so as to fill the entire interior, and the cell is assembled.
  • the cell is charged with a predetermined constant current up to a predetermined capacity in terms of the mass of the positive electrode active material.
  • lithium (Li) of the positive electrode active material LiCoO 2
  • the cell is disassembled, and the positive electrode containing Li 1-x CoO 2 as the second active material is taken out.
  • a positive electrode mixture containing Li 1-x CoO 2 as a second active material is obtained by peeling and pulverizing the positive electrode layer of the positive electrode.
  • the first active material and the second active material are lithium-containing metal oxides or lithium-containing metal phosphates different from each other in at least one metal element excluding lithium.
  • the first active material and the second active material are preferably close to each other in plateau voltage.
  • plateau voltages are close to each other means that the voltage difference is 0.3 V or less.
  • the first active material is a lithium-containing metal oxide or lithium-containing metal oxide having a stoichiometric composition
  • the second active material is different from the first active material. It is a lithium-containing metal oxide or lithium-containing metal phosphate having a composition from which lithium is eliminated.
  • the first active material is lithium cobalt oxide (chemical formula: LiCoO 2 )
  • the second active material is lithium nickel oxide (chemical formula: Li 1-x NiO 2 ).
  • x is the amount of lithium (Li) released from the lithium nickel oxide.
  • Preferred x is 0 ⁇ x ⁇ 0.5. More preferable x is 0.1 ⁇ x ⁇ 0.4.
  • the second active material represented by the chemical formula: Li 1-x NiO 2 used in the form b) is obtained by the same method as the second active material represented by the chemical formula: Li 1-x CoO 2 described above. be able to.
  • the second active material is preferably contained in the positive electrode, that is, the positive electrode active material in a proportion of 2% by mass to 95% by mass with respect to the total amount of the first active material and the second active material.
  • the second active material is contained in the positive electrode active material in the above ratio, a sufficient amount of lithium can be released as lithium ions from the metal lithium of the negative electrode during the first discharge. For this reason, by the above-mentioned action, the growth of lithium dendrite can be effectively suppressed or prevented in a long charge / discharge cycle, and an internal short circuit accompanying the growth of lithium dendrite can be prevented.
  • the positive electrode in a high energy density lithium secondary battery including a metal lithium negative electrode, the positive electrode can be maintained at a reaction potential (discharge average potential) suitable for use of the secondary battery.
  • the ratio of the second active material to the total amount of the first active material and the second active material is more preferably 5% by mass to 50% by mass, and further preferably 5% by mass to 20% by mass.
  • the first active material is a lithium-containing compound capable of inserting and extracting lithium
  • the second active material is a lithium-free compound capable of inserting and extracting lithium.
  • lithium-free compounds include manganese dioxide or vanadium pentoxide.
  • the first active material is the above-described lithium-containing metal oxide or lithium-containing metal phosphorus oxide having a stoichiometric composition
  • the second active material is a lithium-free compound such as an oxide.
  • the first active material is lithium cobalt oxide (chemical formula: LiCoO 2 )
  • the second active material is manganese dioxide (chemical formula: MnO 2 ).
  • the second active material is preferably included in the positive electrode, that is, the positive electrode active material, in a proportion of 5% by mass to 50% by mass with respect to the total amount of the first active material and the second active material.
  • the positive electrode can be maintained at a reaction potential (discharge average potential) suitable for use of the secondary battery.
  • the ratio of the second active material to the total amount of the first active material and the second active material is more preferably 5% by mass to 20% by mass, and still more preferably 8% by mass to 15% by mass.
  • the second active material is involved in the charge / discharge reaction in the same manner as the first active material after the first discharge.
  • a lithium-containing metal oxide or a lithium-containing metal phosphide is used as the second active material.
  • Lithium-containing metal oxide or lithium-containing metal phosphide is more resistant to occlusion / desorption of lithium during charge / discharge than the non-lithium-containing compound such as manganese dioxide used in the form 2) Therefore, stable charge / discharge cycle characteristics can be exhibited over a long period of time.
  • the positive electrode layer may further contain a conductive material and a binder in addition to the positive electrode active material.
  • the conductive material is not particularly limited, and known or commercially available materials can be used.
  • Examples of the conductive material include carbon black such as acetylene black and ketjen black, activated carbon, and graphite.
  • the binder is not particularly limited, and a known or commercially available one can be used.
  • the binder include, for example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl pyrrolidone (PVP), polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), and ethylene-propylene copolymer.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PVP polyvinyl pyrrolidone
  • PVC polyvinyl chloride
  • PE polyethylene
  • PP polypropylene
  • ethylene-propylene copolymer ethylene-propylene copolymer.
  • SBR styrene butadiene rubber
  • PVA polyvinyl alcohol
  • CMC carboxymethyl cellulose
  • the mixing ratio of the positive electrode active material, the conductive material, and the binder contained in the positive electrode layer is 85% by mass to 98% by mass of the positive electrode active material and 1% by mass to 10% of the conductive material with respect to the total amount of these components. It is preferable that the content of the binder is 1% by mass or more and 5% by mass or less.
  • the negative electrode includes, for example, a negative electrode current collector and a lithium metal foil that is a negative electrode active material formed on one or both surfaces of the negative electrode current collector.
  • the negative electrode current collector is not particularly limited, and a known or commercially available one can be used.
  • a rolled foil or electrolytic foil made of copper or a copper alloy can be used.
  • the separator has a hole structure connected by a three-dimensionally arranged bottleneck structure. That is, the separator has a bottleneck structure in which large macro holes are connected by small communication holes.
  • the separator preferably has a porosity of 70% or more and 90% or less. When taking the most regular structure (close-packed structure), the porosity is 75% or more and 80% or less.
  • a separator having such a structure and holes is referred to as 3DOM.
  • the 3DOM separator is a porous film made of, for example, a fluororesin such as polytetrafluoroethylene or an engineering plastic such as polyimide.
  • the pore diameter of the 3DOM separator is preferably 0.05 ⁇ m or more and 3 ⁇ m or less.
  • the hole diameter in the range of 0.05 ⁇ m or more and 3 ⁇ m or less, in the first discharge, micropores with appropriate diameters following the same hole diameter range can be opened on the metal lithium surface of the negative electrode, and charge and discharge after the first discharge The lithium dendrite growth can be more effectively suppressed or prevented when the above is repeated.
  • the porosity is in the range of 70% or more and 90% or less, an appropriate amount of electrolytic solution can be held by the separator, and at the same time, the mechanical strength can be maintained.
  • a more preferable pore diameter is 0.1 ⁇ m or more and 2 ⁇ m or less, and a porosity is 75% or more and 80% or less.
  • 3DOM separator has the following action in addition to the action at the time of the first discharge described above. (1) Since a large amount of electrolytic solution can be impregnated in the 3DOM separator, high ionic conductivity is obtained as compared with a conventional separator. (2) The lithium ions can be sufficiently retained and diffused by the finely uniform vacancies. (3) The lithium ion current distribution can be made uniform. As a result, a lithium secondary battery having high rate characteristics and excellent cycle characteristics can be obtained.
  • 3DOM separator can be easily manufactured by a method using monodispersed spherical inorganic fine particles as a template.
  • the particle size of the monodispersed spherical inorganic fine particles used as a template during production the pore size of the porous film can be easily controlled from the micro order to the nano order.
  • the firing temperature and firing time of the monodispersed spherical inorganic fine particle aggregate the size of the communication hole can be easily controlled, and a 3DOM separator having desired characteristics can be easily produced. .
  • the film thickness of the 3DOM separator is not particularly limited, but is preferably 20 to 500 ⁇ m.
  • the electrolytic solution (for example, a nonaqueous electrolytic solution) includes a nonaqueous solvent and an electrolyte.
  • the nonaqueous solvent contains a cyclic carbonate and a chain carbonate as main components.
  • the cyclic carbonate is preferably at least one selected from ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC).
  • the chain carbonate is preferably at least one selected from dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and the like.
  • the electrolyte is not particularly limited, and lithium salt electrolytes generally used in lithium secondary batteries can be used.
  • LiPF 6 LiAsF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (C m F 2m + 1 SO 2 ) (C n F 2n + 1 SO 2 ) (m and n are integers of 1 or more), LiC ( C p F 2p + 1 SO 2 ) (C q F 2q + 1 SO 2) (C r F 2r + 1 SO 2) (p, q, r is an integer of 1 or more), lithium difluoro (oxalato) borate Can be used.
  • These electrolytes may be used alone or in combination of two or more.
  • this electrolyte is dissolved in a non-aqueous solvent at as high a concentration as possible.
  • concentration of the electrolyte with respect to the nonaqueous solvent should be 0.1 to 1.5 mol / L, preferably 0.5 to 1.5 mol / L, from the temperature characteristics of the viscosity and conductivity of the electrolyte. Is desirable.
  • the shape of the lithium secondary battery according to the embodiment is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a rectangular shape, and a flat type.
  • FIG. 1 is a cross-sectional view illustrating an example of a stacked lithium secondary battery.
  • the laminated lithium secondary battery 1 includes a bag-shaped exterior body 2 made of a laminate film.
  • An electrode group 3 having a laminated structure is accommodated in the exterior body 2.
  • the laminate film has a structure in which a plurality of (for example, two) plastic films are laminated with a metal foil such as an aluminum foil sandwiched between the films. Of the two plastic films, one of the plastic films is a heat-fusible resin film.
  • the exterior body 2 is formed by stacking two laminated films so that the heat-fusible resin films face each other, housing the electrode group 3 between these laminated films, and placing two laminated film portions around the electrode group 3 together.
  • the electrode group 3 is housed in an airtight manner by heat-sealing each other and sealing.
  • the electrode group 3 includes a positive electrode 4, a negative electrode 5, and a separator 6 interposed between the positive electrode 4 and the negative electrode 5, the negative electrode 5 being positioned in the outermost layer, and the separator 6 between the negative electrode 5 and the inner surface of the outer package 2.
  • the positive electrode 4 includes a positive electrode current collector 41 and positive electrode layers 42 and 42 formed on both surfaces of the current collector 41.
  • the negative electrode 5 includes a negative electrode current collector 51 and negative electrode layers 52 and 52 made of metallic lithium and formed on both surfaces of the current collector 51.
  • Each positive electrode current collector 41 has a positive electrode lead 7 extending from, for example, the left side surface of the positive electrode layer 42. Each positive electrode lead 7 is bundled on the tip side in the outer package 2 and joined to each other. One end of the positive electrode tab 8 is joined to the joint portion of the positive electrode lead 7, and the other end extends to the outside through the sealing portion of the exterior body 2.
  • Each negative electrode current collector 51 has a negative electrode lead 9 extending from, for example, the right side surface of the negative electrode layer 52. Each negative electrode lead 9 is bundled on the front end side in the exterior body 2 and joined to each other. One end of the negative electrode tab 10 is joined to the joint portion of the negative electrode lead 9, and the other end extends to the outside through the sealing portion of the exterior body 2. The electrolytic solution is injected into the exterior body 2. The injection
  • Example 1 Preparation of positive electrode 85% by mass of lithium iron phosphate as the first active material as the positive electrode active material, 4.5% by mass of manganese dioxide as the second active material, 6.1% by mass of acetylene black as the conductive material, and solid as the binder Appropriate amount to 2.7% by mass (solid content conversion) of acrylic copolymer solution having a concentration of 40% by mass and 1.8% by mass (converted to solid content) of a carboxymethyl cellulose aqueous solution having a solid content concentration of 2% by mass as a thickener.
  • a positive electrode slurry was prepared by stirring and kneading while adding ion-exchanged water.
  • the positive electrode slurry was applied to one surface of a current collector made of an aluminum foil having a thickness of about 0.02 mm, and then dried at 70 ° C. for 10 minutes. Thereafter, the dried coating film was pressed to a density of 1.8 g / cc to form a positive electrode layer on one side of the current collector to produce a positive electrode.
  • a tripolar evaluation cell was assembled using the positive electrode obtained as a working electrode.
  • the evaluation cell includes an exterior body made of, for example, polypropylene having a cylindrical shape sealed at both ends.
  • a circular plate-shaped working electrode cut out from the positive electrode and a circular plate-shaped counter electrode having a dimension larger than the working electrode are arranged so that the positive electrode layer of the positive electrode faces the counter electrode.
  • a separator is interposed between them. The working electrode, the separator, and the counter electrode are overlapped, and the overlapping direction is parallel to the cylindrical portion of the exterior body.
  • the reference electrode has a rectangular plate shape, and is disposed in the exterior body so as to be close to the working electrode, the separator, and the counter electrode so that the rectangular plate surface is parallel to the overlapping direction.
  • Each terminal of a working electrode and a counter electrode is each extended outside from the sealing part which the exterior body opposes.
  • the terminal of the reference electrode extends to the outside from the cylindrical portion of the exterior body.
  • the non-aqueous electrolyte is accommodated in the exterior body so as to fill the entire interior.
  • the counter electrode and the reference electrode are made of lithium metal.
  • the separator is made of a polyimide 3DOM separator (hole diameter of about 0.3 ⁇ m, porosity of about 80%, film thickness of 50 ⁇ m).
  • the evaluation cell was assembled in a glove box under an argon gas atmosphere.
  • Example 2 A positive electrode was produced by the same method as in Example 1 except that the positive electrode slurry prepared by the following method was used, and an evaluation cell similar to that in Example 1 was assembled using the positive electrode as a working electrode.
  • the positive electrode slurry is composed of 71.6% by mass of lithium iron phosphate as the first active material as the positive electrode active material, 17.9% by mass of manganese dioxide as the second active material, and 6.1% by mass of acetylene black as the conductive material. 2.7% by mass of an acrylic copolymer solution having a solid content concentration of 40% by mass as a binder (in terms of solid content), and 1.8% by mass of a carboxymethyl cellulose aqueous solution having a solid content concentration of 2% by mass (solid) It was prepared by stirring and kneading while adding an appropriate amount of ion-exchanged water.
  • Example 3 85.5% by mass of lithium cobalt oxide as the first active material as the positive electrode active material, 4.5% by mass of manganese dioxide as the second active material, 3% by mass of acetylene black and 3% by mass of graphite as the conductive material,
  • a positive electrode slurry was prepared by stirring and kneading while adding an appropriate amount of N-methyl-2-pyrrolidone to 4% by mass (in terms of solid content) of a polyvinylidene fluoride solution having a solid content concentration of 12% by mass as a binder.
  • the positive electrode slurry was applied to one surface of a current collector made of an aluminum foil having a thickness of about 0.02 mm, and then dried at 100 ° C. for 10 minutes. Thereafter, the dried coating film was pressed so as to have a density of 3.3 g / cc to form a positive electrode layer on one side of the current collector to produce a positive electrode. Further, an evaluation cell similar to that in Example 1 was assembled using the positive electrode as a working electrode.
  • Example 4 A positive electrode was produced in the same manner as in Example 3 except that the positive electrode slurry prepared by the following method was used, and an evaluation cell similar to that in Example 1 was assembled using the positive electrode as a working electrode.
  • the positive electrode slurry is composed of 72% by mass of lithium cobalt oxide as the first active material as the positive electrode active material, 18% by mass of manganese dioxide as the second active material, 3% by mass of acetylene black and 3% by mass of graphite as the conductive material, It was prepared by stirring and kneading while adding an appropriate amount of N-methyl-2-pyrrolidone to 4% by mass (in terms of solid content) of a polyvinylidene fluoride solution having a solid content concentration of 12% by mass as a binder.
  • Example 3 89.4% by mass of lithium iron phosphate as the positive electrode active material, 6.1% by mass of acetylene black as the conductive material, and 2.7% by mass of the acrylic copolymer solution having a solid concentration of 40% by mass as the binder (solid content) Conversion), as a thickener, except that the positive electrode slurry was prepared by stirring and kneading while adding an appropriate amount of ion-exchanged water to 1.8% by mass (in terms of solid content) of a carboxymethylcellulose aqueous solution having a solid content concentration of 2% by mass.
  • a positive electrode was produced in the same manner as in Example 1, and an evaluation cell similar to that in Example 1 was assembled using the positive electrode as a working electrode. That is, the separator of the evaluation cell is made of a 3 DOM separator made of polyimide (the pore diameter is about 0.3 ⁇ m, the porosity is about 80%, the film thickness is 50 ⁇ m) as in Example 1.
  • the battery was first discharged to 2.0 V with a current of 0.1 C, and then charged to 4.3 V with a current of 0.2 C.
  • the charge / discharge cycle test was repeated 100 times, discharging to 2.0 V with a current of 2 C.
  • charge / discharge performance evaluation using the evaluation cells of Examples 1 and 2 and Comparative Examples 1 and 3 is charge / discharge using the evaluation cell of Examples 3 and 4 and Comparative Example 2 at a voltage of 4.2 V during charging. Performance evaluations differ from each other in that the voltage during charging is 4.3V.
  • the initial discharge capacity, the discharge capacity at the second cycle, and the discharge capacity at the 100th cycle were measured by such charge / discharge performance evaluation.
  • the results are shown in Table 1 below.
  • the “ratio of the second active material” in the following Table 1 indicates the ratio of the second active material to the total amount of the first active material and the second active material.
  • the first active material LiFePO 4 or LiCoO 2
  • the first active material LiFePO 4 or LiCoO 2
  • the positive electrode active material composed of a second active material (MnO 2 ) in a state capable of occluding lithium in the reaction and a 3 DOM separator
  • the synergistic effect thereof can cause an unexpected effect, that is, the 100th cycle. But high discharge capacity can be developed.
  • Example 5 ⁇ Preparation of Positive Electrode Containing LiCoO 2 as First Active Material> 90% by mass of LiCoO 2 as a positive electrode active material, 3% by mass of acetylene black as a conductive material and 3% by mass of graphite, and 4% by mass of a polyvinylidene fluoride solution having a solid content concentration of 12% by mass as a binder (in terms of solid content) ) was stirred and kneaded while adding an appropriate amount of N-methyl-2-pyrrolidone to prepare a positive electrode slurry.
  • the positive electrode slurry was applied to one surface of a current collector made of an aluminum foil having a thickness of about 0.02 mm, and then dried at 100 ° C. for 10 minutes. Thereafter, the dried coating film was pressed so as to have a density of 3.3 g / cc to form a positive electrode layer on one side of the current collector, thereby producing a positive electrode containing LiCoO 2 as the first active material.
  • the positive electrode layer was peeled from the positive electrode containing LiCoO 2 as the first active material and pulverized to obtain a positive electrode layer mixture containing LiCoO 2 as the second active material. Further, the positive electrode layer was peeled from the positive electrode containing Li 0.6 CoO 2 as the second active material, and pulverized to obtain a positive electrode layer mixture containing Li 0.6 CoO 2 as the second active material.
  • the obtained two positive electrode layer mixtures contain the active material, the conductive material, and the binder in the same mass ratio as in the production of the positive electrode containing LiCoO 2 as the first active material.
  • the positive electrode layer mixture containing LiCoO 2 as the first active material and the positive electrode layer mixture containing Li 0.6 CoO 2 as the second active material were mixed at a mass ratio of 9: 1 to mix for the positive electrode layer A mixture was prepared.
  • a positive electrode slurry was prepared by stirring and kneading while adding an appropriate amount of N-methyl-2-pyrrolidone to the mixture.
  • the positive electrode slurry was applied to one surface of a current collector made of an aluminum foil having a thickness of about 0.02 mm, and then dried at 100 ° C. for 10 minutes.
  • Example 2 An evaluation cell similar to that of Example 1 was assembled using the obtained positive electrode as a working electrode.
  • Example 6 The positive electrode layer mixture containing LiCoO 2 obtained in Example 5 as the first active material and the positive electrode layer mixture containing Li 0.6 CoO 2 as the second active material were mixed at a mass ratio of 7: 3. A positive electrode was produced in the same manner as in Example 5 except that the positive electrode layer mixture was prepared, and an evaluation cell similar to that in Example 1 was assembled using the obtained positive electrode as a working electrode.
  • Example 7 ⁇ Preparation of Positive Electrode Containing LiMn 2 O 4 as First Active Material> 90% by mass of LiMn 2 O 4 as a positive electrode active material, 3% by mass of acetylene black as a conductive material and 3% by mass of graphite, and 4% by mass of a polyvinylidene fluoride solution having a solid content concentration of 12% by mass as a binder (solid A positive electrode slurry was prepared by stirring and kneading while adding an appropriate amount of N-methyl-2-pyrrolidone.
  • the positive electrode slurry was applied to one surface of a current collector made of an aluminum foil having a thickness of about 0.02 mm, and then dried at 100 ° C. for 10 minutes. Thereafter, the dried coating film was pressed to a density of 2.8 g / cc to form a positive electrode layer on one side of the current collector to produce a positive electrode containing LiMn 2 O 4 as the first active material. .
  • Example 1 ⁇ Preparation of Positive Electrode Containing Li 0.2 Mn 2 O 4 as Second Active Material> A cell similar to Example 1 described above was constructed except that the positive electrode containing LiMn 2 O 4 as the first active material was used as the working electrode and graphite was used as the counter electrode. The cell was charged at a constant current of 0.1 C to a capacity of 100 mAh / g in terms of the mass of the positive electrode active material. Thereafter, the cell was disassembled, and the positive electrode containing Li 0.2 Mn 2 O 4 as the second active material was taken out.
  • the positive electrode layer was peeled from the positive electrode containing LiMn 2 O 4 as the first active material and pulverized to obtain a positive electrode layer mixture containing LiMn 2 O 4 as the first active material. Further, the positive electrode layer was peeled off from the positive electrode containing Li 0.2 Mn 2 O 4 as the second active material, and pulverized to obtain a positive electrode layer mixture containing Li 0.2 Mn 2 O 4 as the second active material. .
  • the obtained two mixture for positive electrode layers contains the active material, the conductive material, and the binder in the same mass ratio as that for producing the positive electrode containing LiMn 2 O 4 as the first active material.
  • a positive electrode layer mixture containing LiMn 2 O 4 as a first active material and a positive electrode layer mixture containing Li 0.2 Mn 2 O 4 as a second active material were mixed at a mass ratio of 9: 1.
  • a mixed mixture for the positive electrode layer was prepared.
  • a positive electrode slurry was prepared by stirring and kneading while adding an appropriate amount of N-methyl-2-pyrrolidone to the mixture.
  • the positive electrode slurry was applied to one surface of a current collector made of an aluminum foil having a thickness of about 0.02 mm, and then dried at 100 ° C. for 10 minutes.
  • Example 2 An evaluation cell similar to that of Example 1 was assembled using the obtained positive electrode as a working electrode.
  • Example 8 A mass of 7: 3 for the positive electrode layer mixture containing LiMn 2 O 4 obtained in Example 7 as the first active material and the positive electrode layer mixture containing Li 0.2 Mn 2 O 4 as the second active material A positive electrode was produced in the same manner as in Example 7 except that a mixture for positive electrode layer was prepared by mixing at a ratio, and an evaluation cell similar to that in Example 1 was assembled using the obtained positive electrode as a working electrode. .
  • Example 9 The positive electrode layer mixture containing LiCoO 2 obtained in Example 5 as the first active material and the positive electrode layer mixture containing Li 0.2 Mn 2 O 4 obtained in Example 7 as the second active material were 9 A positive electrode was produced in the same manner as in Example 5 except that the mixture for positive electrode layer was prepared by mixing at a mass ratio of 1: 1. Note that the two positive electrode layer mixtures contain the active material, the conductive material, and the binder in the same mass ratio. Then, the evaluation cell similar to Example 1 was assembled using the obtained positive electrode as a working electrode.
  • Example 10 The positive electrode layer mixture containing LiCoO 2 obtained in Example 5 as the first active material and the positive electrode layer mixture containing Li 0.2 Mn 2 O 4 obtained in Example 7 as the second active material 7 :
  • a positive electrode was produced in the same manner as in Example 5 except that the mixture for positive electrode layer was prepared by mixing at a mass ratio of 3: and the same evaluation as in Example 1 was performed using the obtained positive electrode as a working electrode. The cell was assembled.
  • Example 11 92% by mass of LiNi 0.5 Co 0.2 Mn 0.3 O 2 as a positive electrode active material, 2.5% by mass of acetylene black as a conductive material and 2.5% by mass of graphite, and a solid content concentration of 12% by mass as a binder.
  • a positive electrode slurry was prepared by stirring and kneading while adding an appropriate amount of N-methyl-2-pyrrolidone to 3% by mass (in terms of solid content) of a vinylidene chloride solution. Subsequently, the positive electrode slurry was applied to one surface of a current collector made of an aluminum foil having a thickness of about 0.02 mm, and then dried at 100 ° C. for 10 minutes.
  • the dried coating film is pressed so as to have a density of 2.5 g / cc to form a positive electrode layer on one side of the current collector, and LiNi 0.5 Co 0.2 Mn 0.3 O 2 is contained as a first active material.
  • a positive electrode was produced.
  • a positive electrode layer mixture containing LiNi 0.5 Co 0.2 Mn 0.3 O 2 as a first active material is peeled off from the positive electrode containing LiNi 0.5 Co 0.2 Mn 0.3 O 2 as a first active material and pulverized. Obtained.
  • a positive electrode layer mixture containing LiNi 0.5 Co 0.2 Mn 0.3 O 2 as the first active material and a positive electrode layer mixture containing Li 0.6 CoO 2 obtained in Example 5 as the second active material were combined into 9
  • a positive electrode was prepared in the same manner as in Example 5 except that a mixture for positive electrode layer was prepared by mixing at a mass ratio of 1: 1, and the same evaluation as in Example 1 was performed using the obtained positive electrode as a working electrode. The cell was assembled.
  • Example 12 The positive electrode layer mixture containing LiNi 0.5 Co 0.2 Mn 0.3 O 2 obtained in Example 11 as the first active material and the Li 0.6 CoO 2 mixture obtained in Example 5 as the second active material.
  • a positive electrode was produced in the same manner as in Example 5 except that a positive electrode layer mixture was prepared by mixing the agent at a mass ratio of 7: 3.
  • Example 1 was conducted using the obtained positive electrode as a working electrode. A similar evaluation cell was assembled.
  • the initial discharge capacity, the discharge capacity at the second cycle, and the discharge capacity at the 100th cycle were measured by such charge / discharge performance evaluation.
  • the results are shown in Table 2 below.
  • the “ratio of the second active material” in Table 2 below indicates the ratio of the second active material to the total amount of the first active material and the second active material.
  • the first active material and the second active material have the same constituent elements, and the first active material is a lithium-containing metal oxide having a stoichiometric composition, the second active material, and the second active material.
  • the evaluation cells of Examples 5 to 8 using a positive electrode active material, which is a lithium-containing metal oxide having a composition in which lithium is removed from the stoichiometric composition, and using a 3 DOM separator have a high discharge capacity even at the 100th cycle. It can be seen that
  • the first active material and the second active material are different from each other in at least one metal element excluding lithium
  • the first active material is a lithium-containing metal oxide having a stoichiometric composition
  • the second active material is chemically
  • the evaluation cells of Examples 9 to 12 using a positive electrode active material that is a lithium-containing metal oxide having a composition in which lithium is removed from the stoichiometric composition and using a 3DOM separator have a high discharge capacity even at the 100th cycle. I understand.
  • Example 13 An evaluation cell similar to that in Example 1 was assembled except that the positive electrode obtained in Example 2 and a polyimide 3DOM separator having a pore diameter of about 0.1 ⁇ m, a porosity of about 80%, and a film thickness of 50 ⁇ m were used. .
  • Example 14 An evaluation cell similar to that of Example 1 was assembled except that the positive electrode obtained in Example 2 and a polyimide 3DOM separator having a pore diameter of about 0.5 ⁇ m, a porosity of about 80%, and a film thickness of 50 ⁇ m were used. .
  • Example 15 An evaluation cell similar to that of Example 1 was assembled except that the positive electrode obtained in Example 2 and a polyimide 3DOM separator having a pore diameter of about 1 ⁇ m, a porosity of about 80%, and a film thickness of 50 ⁇ m were used.
  • Example 16 An evaluation cell similar to that of Example 1 was assembled except that the positive electrode obtained in Example 2 and a polyimide 3DOM separator having a pore diameter of about 3 ⁇ m, a porosity of about 80%, and a film thickness of 50 ⁇ m were used.
  • Example 17 An evaluation cell similar to that of Example 1 was assembled except that the positive electrode obtained in Example 5 and a polyimide 3DOM separator having a pore diameter of about 0.1 ⁇ m, a porosity of about 80%, and a film thickness of 50 ⁇ m were used. .
  • Example 18 An evaluation cell similar to that of Example 1 was assembled except that the positive electrode obtained in Example 5 and a polyimide 3DOM separator having a pore diameter of about 0.5 ⁇ m, a porosity of about 80%, and a film thickness of 50 ⁇ m were used. .
  • Example 19 An evaluation cell similar to that of Example 1 was assembled except that the positive electrode obtained in Example 5 and a polyimide 3DOM separator having a pore diameter of about 1 ⁇ m, a porosity of about 80%, and a film thickness of 50 ⁇ m were used.
  • Example 20 An evaluation cell similar to that in Example 1 was assembled except that the positive electrode obtained in Example 5 and a polyimide 3DOM separator having a pore diameter of about 3 ⁇ m, a porosity of about 80%, and a film thickness of 50 ⁇ m were used.
  • the charge / discharge performance evaluation was performed using the obtained evaluation cells of Examples 13 to 20.
  • the charge / discharge cycle test is repeated 100 times, first discharging to 2.0V with a current of 0.1C, then charging to 4.3V with a current of 0.2C, and discharging to 2.0V with a current of 0.2C. It was.
  • the initial discharge capacity, the discharge capacity at the second cycle, and the discharge capacity at the 100th cycle were measured by such charge / discharge performance evaluation.
  • the results are shown in Table 3 below.
  • the “ratio of the second active material” in Table 3 below indicates the ratio of the second active material to the total amount of the first active material and the second active material.
  • Example 3 As apparent from Table 3, the same positive electrode active material as in Example 2 was used, the porosity and film thickness were made constant (80%, 50 ⁇ m), and the pore diameter was shaken in the range of 0.1 to 3.0 ⁇ m.
  • the evaluation cells of Examples 13 to 16 using a 3DOM separator and the positive electrode active material similar to that of Example 5 were used, the porosity and film thickness were made constant (80%, 50 ⁇ m), and the pore diameter was 0.1. It can be seen that the evaluation cells of Examples 17 to 20 using the 3DOM separator shaken in the range of ⁇ 3.0 ⁇ m also have a high discharge capacity even at the 100th cycle.
  • a power source for a hybrid vehicle or an electric vehicle, or a power storage power source for natural energy generation such as solar or wind power which suppresses or prevents the growth of lithium dendrite and has a high capacity and excellent charge / discharge cycle characteristics.
  • a highly reliable and high performance lithium secondary battery suitable for the above can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Abstract

正極と、負極と、セパレータと、電解液とを備えるリチウム二次電池であって、正極はそれぞれリチウムを吸蔵および脱離することが可能な第1の活物質および第2の活物質を含む。第1の活物質は、リチウム二次電池の組立直後の負極との電池反応においてリチウムを脱離のみし得る状態であり、第2の活物質はリチウム二次電池の組立直後の負極との電池反応においてリチウムを吸蔵し得る状態である。負極は、金属リチウムを活物質として含む。セパレータは、空孔が三次元規則配列した構造を有する。

Description

リチウム二次電池
 本発明は、リチウム二次電池に関し、特に負極活物質として金属リチウムを使用するリチウム二次電池に係る。
 リチウム二次電池は、高エネルギー密度を有する等の理由から広く普及し、携帯電話やデジタルカメラ、ノートパソコン等の携帯用小型電子機器に電源とし搭載されている。また、リチウム二次電池はエネルギー資源枯渇、地球温暖化等の観点からハイブリッド自動車または電気自動車の電源、または太陽光、風力等の自然エネルギー発電の電力貯蔵電源として開発が進められている。リチウム二次電池は、これら電源の利用拡大のために更なる高容量化、長寿命化が求められている。
 このようなリチウム二次電池は、正極と負極との間でリチウムイオンを移動させて充放電を行う。リチウム二次電池の正極活物質は、現在、リチウム金属酸化物であるコバルト酸リチウム(LiCoO2)、マンガン酸リチウム(LiMn24)、ニッケル酸リチウム(LiNiO2)、リン酸鉄リチウム(LiFePO4)等のリチウムを含む金属酸化物または金属リン酸化物が実用化され、または商品化を目指して開発が進められている。
 負極活物質は、グラファイトなどの炭素材料や、リチウムチタン酸化物(Li4Ti512)が用いられている。前記各活物質をそれぞれ含む正極と負極の間には、内部短絡を防止するためのセパレータが介在されている。セパレータは、一般的にポリオレフィンからなる微孔性薄膜が使用されている。
 負極活物質の中でも金属リチウムは、単位重量当たりの電気量が3.86Ah/gと大きい特徴を持つ。それ故、最も高い理論エネルギー密度を持つ、高容量のリチウム二次電池を実現するために、金属リチウムを負極活物質として用いる研究が再び進められている。
 しかしながら、負極活物質に金属リチウムを用いるリチウム二次電池は充放電の繰り返しにおいて、金属リチウムの負極表面からリチウムがデンドライト状に成長する。デンドライト状に成長したリチウムは、正極と負極の間に介在したセパレータを貫通して正極に達し、内部短絡を起こす課題があった。
 このようなことから、例えば特開平4-206267号公報には正極の主活物質としてLiCoO2を、副活物質として初期から放電可能な材料(例えば二酸化マンガン)を用いる非水電解質二次電池が開示されている。
 前記公報の第2頁左上欄には、リチウムのデンドライト状成長のメカニズムが記載されている。デンドライト状成長の主な要因は、2つある。1つは、電池組立直後の負極の金属リチウム表面には炭酸リチウムまたは水酸化リチウムのような不活性被膜が形成されていることである。2つ目は、正極の活物質としてリチウムコバルト酸化物(LiCoO2)を用いた場合、充放電サイクルが充電から始まることである。初回の充電時では、正極から放出されたリチウムイオン(Li+)が負極の金属リチウム表面にリチウムとして還元析出するため、負極の金属リチウム表面に形成された前記不活性被膜を除去できない。負極の金属リチウム表面の不活性被膜が除去されないと、リチウムが負極の金属リチウム表面に不均一に析出する。その結果、その後の充放電サイクル時の充電時に、負極表面の析出リチウムがデンドライト状に成長し、セパレータを貫通して正極に達し、内部短絡を起こす。
 前記公報では、正極の活物質として主活物質であるLiCoO2の他に、副活物質である初期から放電可能な材料(例えば二酸化マンガン)を用いている。このため、充放電時において、初回から放電を行うことができる。すなわち、負極の金属リチウムからリチウムをリチウムイオンとして放出できる。リチウムの放出は、電池組立直後の負極の金属リチウム表面に形成された炭酸リチウムまたは水酸化リチウムのような不活性被膜を除去する。その結果、初回放電後の充電時には良好な状態の負極の金属リチウム表面にリチウムイオンが還元析出する。それ故、負極の金属リチウム表面からリチウムがデンドライト状に成長するのを抑制することが可能になる。
 しかしながら、前記公報に記載の発明は電池組立直後の充放電において、初回時に放電を行なうことのみを着目し、初回放電時に負極の金属リチウムからのリチウムイオンの放出挙動まで精査していない。このため、負極の金属リチウムからリチウムのデンドライトの成長を必ずしも十分に抑制ないし防止することができない。
 本発明は、リチウムデンドライトの成長を抑制ないし防止し、高容量かつ優れた充放電サイクル特性を有するリチウム二次電池を提供することを目的とする。
 上記の課題を解決するために、実施形態によると、
 正極と、負極と、セパレータと、電解液とを備えるリチウム二次電池であって、
 前記正極は、それぞれリチウムを吸蔵および脱離することが可能な第1の活物質および第2の活物質を含み、前記第1の活物質はリチウム二次電池の組立直後の前記負極との電池反応においてリチウムを脱離のみし得る状態であり、前記第2の活物質はリチウム二次電池の組立直後の前記負極との電池反応においてリチウムを吸蔵し得る状態であり、
 前記負極は、金属リチウムを活物質として含み、かつ
 前記セパレータは、空孔が三次元規則配列した構造を有するリチウム二次電池が提供される。
 このような構成によれば、後に詳述する作用によりリチウムデンドライトの成長を抑制ないし防止し、高容量かつ優れた充放電サイクル特性を有するリチウム二次電池を提供できる。
図1は実施形態のリチウム二次電池を示す断面図である。
 以下、本発明の実施形態を詳細に説明する。
 実施形態に係るリチウム二次電池は、正極と、負極と、セパレータと、電解液とを備える。正極は、それぞれリチウムを吸蔵および脱離することが可能な第1の活物質および第2の活物質を含む。第1の活物質は、リチウム二次電池の組立直後の負極との電池反応、つまり充放電サイクルの初回、においてリチウムを脱離のみし得る状態である。第2の活物質はリチウム二次電池の組立直後の負極との電池反応、つまり充放電サイクルの初回、においてリチウムを吸蔵し得る状態である。負極は、金属リチウムを活物質として含む。セパレータは、空孔が三次元規則配列した構造を有する。
 このような実施形態によれば、負極の活物質として金属リチウムを用いるリチウム二次電池の充放電サイクル時において、負極からリチウムがデンドライト状に成長するのを抑制ないし防止し、リチウムがデンドライト状に成長して正負極間で内部短絡が起こるのを防止し、高信頼性で優れた充放電サイクル特性を有するリチウム二次電池を提供できる。同時に、負極の活物質として金属リチウムを用いることによって、高容量のリチウム二次電池を提供できる。
 正極、セパレータ、金属リチウムを活物質として含む負極、および電解液を備えたリチウム二次電池は、充放電サイクル時に次のようなメカニズムにより負極の金属リチウム表面からリチウムがデンドライト状に成長する。
 すなわち、前記構成のリチウム二次電池において、正極はリチウム二次電池の組立直後の負極との電池反応、つまり充放電サイクルの初回、においてリチウムを脱離し得る状態(完全放電状態)の活物質(例えばLiCoO2)を含む。このため、充放電サイクル時の初回は正極と負極間で充電から開始される。この充電時には、正極の活物質(例えばLiCoO2)中のリチウムが脱離してイオン化し、そのリチウムイオンは電解液を含侵したセパレータの空孔を通過して負極側に移動する。リチウムイオンは、さらに電解液から負極の金属リチウム表面に移動して、当該表面で還元析出する。この時、金属リチウム表面は炭酸リチウム、酸化リチウムのような不活性被膜が形成されている。それ故、リチウムは当該負極の金属リチウムの表面に不均一に析出され易い。具体的には、リチウムは金属リチウム表面に分散して析出せずに、局所的かつ偏って析出する。その結果、前記充電から放電を経た次回の充電時にリチウムが負極の金属リチウム表面に析出する際に、前記局所的なリチウム析出箇所がリチウムのデンドライトの成長基点になってリチウムがデンドライト状に成長する。リチウムデンドライトの成長は、以後の充放電サイクルでさらに助長される。従って、リチウムデンドライトの成長が進むため、セパレータを突き破って正極に達して内部短絡を起こす。
 実施形態に係るリチウム二次電池において、正極はそれぞれリチウムを吸蔵および脱離することが可能な第1の活物質および第2の活物質を正極活物質として含む。第1の活物質はリチウム二次電池の組立直後の負極との電池反応においてリチウムを脱離し得る状態であり、第2の活物質はリチウム二次電池の組立直後の負極との電池反応においてリチウムを吸蔵し得る状態である。このため、負極との電池反応においてリチウムを吸蔵し得る状態である第2の活物質に律速して電池反応が進行する。つまり、初回の充放電サイクルは放電から開始する。初回放電時には、負極の活物質である金属リチウムが脱離してイオン化し、そのリチウムイオンが電解液を含侵したセパレータを通過して正極側に移動する。移動したリチウムイオンは、正極の第2の活物質に取込まれて吸蔵される。
 このような初回放電において、負極の金属リチウム表面からリチウムがイオンとして脱離(放出)する。負極の金属リチウム表面からのリチウム放出において、負極に対向して配置されるセパレータは多数の空孔が三次元規則配列した構造を有する。このため、リチウム放出はセパレータの規則配列した多数の空孔に対向した金属リチウム表面の多数の箇所(多数の点)から起こる。このとき、金属リチウム表面からリチウムが放出した後の多数の箇所には、一定の深さを持つ微細孔が規則的に開口される。規則性を持つ一定深さの多数の微細孔は、金属リチウム表面のSEM写真から確認している。また、規則性を持つ一定深さの多数の微細孔は初回放電の実行と多数の空孔が三次元規則配列した構造を有するセパレータとを組み合せることによって、初めて生じた現象である。同時に、金属リチウム表面からのリチウムの放出は金属リチウム表面の不活性被膜を破壊して取り除くため、金属リチウム表面が均一に活性化される、表面改質がなされる。
 初回放電後の充電時では、主に負極との電池反応においてリチウムを脱離し得る状態である第1の活物質のリチウムがイオン化し、そのリチウムイオンが電解液を含侵したセパレータの三次元規則配列した多数の空孔を通過して負極側に移動し、さらにリチウムイオンは電解液から負極の金属リチウム表面に還元析出する。
 驚くべきことに、還元析出時にはリチウムは負極の金属リチウム表面全体に亘って析出するのではなく、金属リチウム表面に開口された前記規則性を持つ一定深さの多数の微細孔内に優先的に析出する。引き続く、充放電サイクルの放電時には金属リチウム表面の多数の微細孔内に析出したリチウムが優先的に放出され、再び、微細孔が開口され、次の充電時ではリチウムイオンの還元析出において、当該多数の微細孔内にリチウムが優先的に析出する。このように放電時には、負極の金属リチウム表面に一定深さの多数の微細孔が開口され、充電時には当該微細孔内でリチウムが優先的に還元析出する。そして、多数の微細孔が完全に塞がれた後の還元析出に対しても、多数の微細孔の開口部位が充電時のリチウムの還元析出の場として機能する。その結果、電解液に溶解したリチウムイオンは金属リチウム表面において局所的かつ偏って還元析出せずに、多数の微細孔の開口部位に分散して還元析出する。それ故、リチウムが仮に当該還元析出箇所でデンドライト状に成長したとしても、充電時の負極表面において一定量のリチウムが還元析出されるため、デンドライトの成長基点を多数の箇所に分散できる。これによって、デンドライト成長自体の度合を著しく低減できる。
 従って、実施形態の係るリチウム二次電池では長期間の充放電サイクルでのリチウムデンドライトの成長、それに伴う正極、負極間の内部短絡の発生を効果的に防止することができる。それ故、単位重量当たりの電気量が3.86Ah/gと大きい特徴を持つ金属リチウムを負極活物質として安全に使用できる。その結果、高容量かつ優れた充放電サイクル特性を有する高信頼性、高性能のリチウム二次電池を提供できる。
 次に、リチウム二次電池の各構成部材について説明する。
<正極>
 正極は、正極集電体と、この正極集電体の一方または両方の表面に形成された正極活物質を含む正極層とを備える。
 正極集電体は、金属板または金属箔を用いることができる。金属板または金属箔は、熱の影響下で蒸発または分解しない材料、例えばアルミニウム、チタン、鉄、ニッケル、銅等の金属またはその合金から作ることが好ましい。
 正極活物質は、それぞれリチウムを吸蔵および脱離することが可能な第1の活物質および第2の活物質を含む。実施形態において、正極活物質は第1の活物質および第2の活物質からなる。
 このような第1の活物質および第2の活物質を含む正極活物質は、以下に説明する2つの形態が挙げられる。
 1)第1の活物質および第2の活物質は、リチウム含有化合物である。第1の活物質は、リチウム二次電池の組立直後の負極との電池反応、つまり充放電サイクルの初回、においてリチウムを脱離し得るリチウム含有化合物である。第2の活物質は、リチウム二次電池の組立直後の負極との電池反応、つまり充放電サイクルの初回、においてリチウムを吸蔵し得る、リチウムが一部抜けたリチウム含有化合物である。各リチウム含有化合物の例は、リチウムコバルト酸化物、リチウムマンガン酸化物、リチウムニッケル酸化物、リチウムバナジウム酸化物等のリチウム含有金属酸化物、またはリン酸リチウム等のリチウム含有金属リン酸化物を含む。
 第1の活物質および第2の活物質の各リチウム含有化合物は、a)それらのリチウム含有化合物を構成する元素が互いに同じである形態と、b)それらのリチウム含有化合物を構成する元素のうち、リチウムを除く少なくとも1つの金属元素が互いに異なる形態と、が挙げられる。
 形態a)では、第1の活物質および第2の活物質がいずれも、構成元素が同一の前述したリチウム含有金属酸化物またはリチウム含有金属リン酸化物である。具体的に、第1の活物質が化学量論組成のリチウム含有金属酸化物またはリチウム含有金属リン酸化物で、第2の活物質が化学量論組成からリチウムが抜けた組成を持つリチウム含有金属酸化物またはリチウム含有金属リン酸化物である。リチウム(Li)の抜け量は、第2の活物質の種類や添加量によって種々規定される。
 例を挙げて説明すれば、第1の活物質および第2の活物質がいずれも例えば構成元素が同一のリチウムコバルト酸化物であり、第1の活物質は化学式:LiCoO2で表され、第2の活物質が化学式:Li1-xCoO2で表される。ここで、xはリチウムコバルト酸化物から抜けたリチウム(Li)量である。好ましいxは、0<x<0.6である。より好ましいxは、0.1≦x≦0.5である。
 前記形態a)に用いる化学式:Li1-xCoO2で表される第2の活物質は、例えば次のような方法により得ることができる。
 すなわち、LiCoO2で表される活物質、導電材および結着剤に溶媒を加えて正極スラリーを調製する。このスラリーを集電体に塗布、乾燥して正極層を形成し、所望の正極を作製する。作用極LiCoO2を活物質として含む正極を作用極とし、外装体内で例えばグラファイトからなる対極に正極の正極層が対極と対向するように配置し、それら作用極と対極の間にセパレータを介在する。リチウム金属からなる参照極を外装体内に作用極、セパレータおよび対極の上方に近接して配置する。作用極、対極および参照極の各端子をそれぞれ外部に延出する。非水電解液を外装体内にその内部全体を満たすように収容してセルを組立てる。当該セルを正極の活物質の質量換算で所定の容量まで所定の定電流充電を実施する。この充電において、正極の活物質(LiCoO2)のリチウム(Li)がイオンとしてセパレータを通して対極に移動する。つまり、LiCoO2のLiが抜ける。その後、セルを解体してLi1-xCoO2を第2の活物質として含む正極を取出す。当該正極の正極層を剥離、粉砕することによりLi1-xCoO2を第2の活物質として含む正極用合剤を得る。
 形態b)では、第1の活物質および第2の活物質がリチウムを除く少なくとも1つの金属元素が互いに異なるリチウム含有金属酸化物またはリチウム含有金属リン酸化物である。形態b)において、第1の活物質および第2の活物質は互いにプラトー電圧が近似していることが好ましい。ここで、「プラトー電圧が互いに近似する」とは、当該電圧差が0.3V以下であることを意味する。
 具体的には、第1の活物質が化学量論組成のリチウム含有金属酸化物またはリチウム含有金属リン酸化物で、第2の活物質が第1の活物質と異なると共に、化学量論組成からリチウムが抜けた組成を持つリチウム含有金属酸化物またはリチウム含有金属リン酸化物である。例を挙げて説明すれば、第1の活物質はリチウムコバルト酸化物(化学式:LiCoO2)であり、第2の活物質がリチウムニッケル酸化物(化学式:Li1-xNiO2)である。ここで、xはリチウムニッケル酸化物から抜けたリチウム(Li)量である。好ましいxは、0<x<0.5である。より好ましいxは、0.1≦x≦0.4である。
 前記形態b)に用いる化学式:Li1-xNiO2で表される第2の活物質は、前述した化学式:Li1-xCoO2で表される第2の活物質と同様な方法により得ることができる。
 第2の活物質は、第1の活物質および第2の活物質の合量に対して2質量%以上95質量%以下の割合で正極、すなわち正極活物質に含むことが好ましい。第2の活物質が正極活物質に前記割合で含まれることによって、初回の放電時に負極の金属リチウムから十分な量のリチウムをリチウムイオンとして放出できる。このため、前述した作用により長期間の充放電サイクルでリチウムデンドライトの成長を効果的な抑制ないし防止でき、リチウムデンドライトの成長に伴う内部短絡を防止できる。同時に、金属リチウムの負極を備える高エネルギー密度のリチウム二次電池において、正極を当該二次電池の使用に適した反応電位(放電平均電位)に維持することが可能になる。より好ましい第1の活物質および第2の活物質の合量に対する第2の活物質の割合は、5質量%以上50質量%以下、さらに好ましくは5質量%以上20質量%以下である。
 2)第1の活物質は、リチウムを吸蔵および脱離することが可能なリチウム含有化合物であり、第2の活物質はリチウムを吸蔵および脱離することが可能なリチウム未含有化合物である。リチウム未含有化合物の例は、二酸化マンガンまたは五酸化バナジウムを含む。
 具体的には、第1の活物質が化学量論組成を持つ前述したリチウム含有金属酸化物またはリチウム含有金属リン酸化物であり、第2の活物質が酸化物等のリチウム未含有化合物である。例を挙げて説明すれば、第1の活物質はリチウムコバルト酸化物(化学式:LiCoO2)であり、第2の活物質が二酸化マンガン(化学式:MnO2)である。
 第2の活物質は、第1の活物質および第2の活物質の合量に対して5質量%以上50質量%以下の割合で正極、すなわち正極活物質に含むことが好ましい。第2の活物質が正極活物質に前記割合で含むことによって、初回の放電時に負極の金属リチウムから十分な量のリチウムをイオンとして放出し、前述した作用により長期間の充放電サイクルでのリチウムのデンドライトの成長、それに伴う内部短絡を防止できる。同時に、金属リチウムの負極を備える高エネルギー密度のリチウム二次電池において、正極を当該二次電池の使用に適した反応電位(放電平均電位)に維持することが可能になる。より好ましい第1の活物質および第2の活物質の合量に対する第2の活物質の割合は、5質量%以上20質量%以下、さらに好ましくは8質量%以上15質量%以下である。
 実施形態に係るリチウム二次電池において、第2の活物質は、初回放電以降も第1の活物質と同様に充放電反応に関与する。このため、前記1)、2)の形態の正極活物質において、1)の形態では第2の活物質としてリチウム含有金属酸化物またはリチウム含有金属リン化物を用いている。リチウム含有金属酸化物またはリチウム含有金属リン化物は、2)の形態で用いる二酸化マンガンのようなリチウム未含有化合物に比べて充放電時のリチウムの吸蔵・脱離に対する耐性(結晶構造の耐崩壊性)に優れているため、長期間に亘って安定した充放電サイクル特性を発揮できる。
 正極層は、正極活物質の他に導電材および結着剤を更に含んでもよい。
 導電材は、特に限定されるものではなく、公知または市販のものを使用することができる。導電材の例は、アセチレンブラック、ケッチェンブラックのようなカーボンブラック、活性炭、黒鉛を含む。
 結着剤も特に限定されるものではなく、公知または市販のものを使用することができる。結着剤の例は、例えばポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリビニルピロリドン(PVP)、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン-プロピレン共重合体、スチレンブタジエンゴム(SBR)、ポリビニルアルコール(PVA)、カルボキシメチルセルロース(CMC)を含む。
 正極層に含まれる正極活物質、導電材および結着剤の配合割合は、それらの成分の合量に対して正極活物質が85質量%以上98質量%以下、導電材が1質量%以上10質量%以下および結着剤が1質量%以上5質量%以下にすることが好ましい。
<負極>
 負極は、例えば負極集電体と、当該負極集電体の一方または両方の表面に形成された負極活物質であるリチウム金属箔とを備える。
 負極集電体は、特に限定されるものではなく、公知または市販のものを使用することができる。例えば、銅または銅合金からなる圧延箔、電解箔等を用いることができる。
<セパレータ>
 セパレータは、三次元的に配列したボトルネック構造で連結された空孔構造を有する。すなわち、当該セパレータは大きなマクロ孔が小さな連通孔で連結されたボトルネック構造を有する。セパレータは、空孔率が70%以上90%以下であることが好ましい。最も規則的な構造(最密充填構造)をとる場合、空孔率は75%以上80%以下になる。このような構造と空孔を有するセパレータを3DOMという。3DOMセパレータは、例えばポリテトラフルオロエチレンのようなフッ素樹脂またはポリイミドのようなエンジニアリングプラスチックから作られる多孔質膜である。
 3DOMセパレータの空孔径は、0.05μm以上3μm以下であることが好ましい。空孔径を0.05μm以上3μm以下の範囲にすることにより初回放電において、負極の金属リチウム表面に同空孔径の範囲に倣った適切な径を持つ微細孔を開口でき、初回放電以降の充放電の繰り返し時にリチウムのデンドライトの成長をより効果的に抑制ないし防止できる。また、空孔率を70%以上90%以下の範囲にすることによりセパレータで適切な量の電解液を保持でき、同時に機械的強度を維持できる。
 このような空孔径および空孔率を有する3DOMセパレータを用いることによって、前述した初回放電において、負極の金属リチウム表面により多くの、より小さい一定深さの微細孔を三次元的に規則配列した空孔に倣って規則的に開口できる。その結果、リチウムデンドライトの成長、それに伴う正極と負極の間の内部短絡をより一層確実に防止できる。より好ましい空孔径は、0.1μm以上2μm以下で、空孔率は75%以上80%以下である。
 3DOMセパレータは、前述した初回放電時における作用の他に次の作用を有する。(1)3DOMセパレータ中に電解液を多く含浸できるため従来のセパレータと比較して、高いイオン導電性が得られる。(2)細かく均一化された空孔によりリチウムイオンの十分な保持と拡散が可能になる。(3)リチウムイオンの電流分布を均一化することが可能になる。その結果、高いレート特性と優れたサイクル特性を有するリチウム二次電池が得られる。
 3DOMセパレータは、単分散球状無機微粒子を鋳型として用いる方法により、簡単に製造することができる。製造時に鋳型となる単分散球状無機微粒子の粒径を選択することにより、多孔質膜の空孔寸法をマイクロオーダーからナノオーダーまで容易に制御することができる。単分散球状無機微粒子の集積体の焼成温度、焼成時間を制御することにより、連通孔の大きさの制御を簡単に行うことができ、所望の特性を有する3DOMセパレータを簡単に製造することができる。
 3DOMセパレータの膜厚は、特に限定されるものでないが、20~500μmにすることが好ましい。
<電解液>
 電解液(例えば非水電解液)は、非水溶媒および電解質を含む。
 非水溶媒は、主成分として環状カーボネートおよび鎖状カーボネートを含有する。環状カーボネートは、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、およびブチレンカーボネート(BC)から選ばれる少なくとも一つであることが好ましい。鎖状カーボネートは、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、およびエチルメチルカーボネート(EMC)等から選ばれる少なくとも一つであることが好ましい。
 電解質は、特に限定されるものではなく、リチウム二次電池で一般に用いられるリチウム塩の電解質を用いることができる。例えば、LiPF6、LiAsF6、LiBF4、LiCF3SO3、LiN(Cm2m+1SO2)(Cn2n+1SO2)(m、nは1以上の整数)、LiC(Cp2p+1SO2)(Cq2q+1SO2)(Cr2r+1SO2)(p、q、rは1以上の整数)、ジフルオロ(オキサラト)ホウ酸リチウム等を用いることができる。これらの電解質は、一種類で使用してもよく、また二種類以上組み合わせて使用してもよい。また、この電解質は非水溶媒に対してできるだけ高濃度で溶解することが好ましい。ししながら、電解液の粘性や導電率の温度特性から、電解質の非水溶媒に対する濃度は0.1~1.5モル/L、好ましくは0.5~1.5モル/Lにすることが望ましい。
 実施形態に係るリチウム二次電池の形状は特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、角形、扁平型等が挙げられる。
 以下、積層型のリチウム二次電池を例にして、実施形態に係るリチウム二次電池の構造を図面を参照して説明する。図1は、積層型のリチウム二次電池の一例を示す断面図である。
 積層型のリチウム二次電池1は、ラミネートフィルムからなる袋状の外装体2を備えている。外装体2内には、積層構造の電極群3が収納されている。ラミネートフィルムは、複数枚(例えば2枚)のプラスチックフィルムをそれらのフィルム間にアルミニウム箔のような金属箔を挟んで積層した構造を有する。2枚のプラスチックフィルムのうち、一方のプラスチックフィルムは熱融着性樹脂フィルムが用いられる。外装体2は、2枚のラミネートフィルムを熱融着性樹脂フィルムが互いに対向するように重ね、これらのラミネートフィルム間に電極群3を収納し、電極群3周辺の2枚のラミネートフィルム部分を互いに熱融着して封止することにより、前記電極群3を気密に収納している。
 電極群3は、正極4と負極5とそれら正極4、負極5の間に介在されたセパレータ6とを負極5が最外層に位置すると共に、負極5と外装体2の内面の間にセパレータ6が位置するように複数積層した構造を有する。正極4は、正極集電体41と当該集電体41の両面に形成された正極層42,42とから構成されている。負極5は、負極集電体51と、当該集電体51の両面に形成された金属リチウムからなる負極層52,52とから構成されている。
 各正極集電体41は、正極層42の例えば左側面から延出した正極リード7をそれぞれ有する。各正極リード7は、外装体2内において先端側で束ねられ、互いに接合されている。正極タブ8は、一端が正極リード7の接合部に接合され、かつ他端が外装体2の封止部を通して外部に延出している。各負極集電体51は、負極層52の例えば右側面から延出した負極リード9をそれぞれ有する。各負極リード9は、外装体2内において先端側で束ねられ、互いに接合されている。負極タブ10は、一端が負極リード9の接合部に接合され、かつ他端が外装体2の封止部を通して外部に延出している。電解液は、外装体2内に注入されている。外装体2の注入箇所は、電解液の注入後に封止される。
 次に、実施例および比較例を詳述に説明する。なお、本発明は以下の実施例に限定されるものではない。
(実施例1)
(正極の作製)
 正極活物質として第1の活物質であるリン酸鉄リチウム85質量%、第2の活物質である二酸化マンガン4.5質量%、導電材としてアセチレンブラック6.1質量%、結着剤として固形分濃度が40質量%のアクリル系共重合体溶液2.7質量%(固形分換算)および増粘剤として固形分濃度2質量%のカルボキシメチルセルロース水溶液1.8質量%(固形分換算)に適量のイオン交換水を加えながら撹拌、混練することにより正極スラリーを調製した。
 次いで、厚さ約0.02mmのアルミニウム箔からなる集電体の一方の面に前記正極スラリーを塗布した後、70℃で10分間乾燥した。その後、乾燥した塗布膜を密度が1.8g/ccになるようにプレス処理して集電体の片面に正極層を形成して正極を作製した。
(評価セルの組立)
 得られた正極を作用極として用いて3極式評価セルを組立てた。評価セルは、両端封止円筒形状を有する例えばポリプロピレンからなる外装体を備えている。外装体内には、正極から切出した円形板状の作用極と当該作用極より寸法の大きい円形板状の対極とが正極の正極層が対極と対向するように配置し、それら作用極と対極の間にセパレータを介在している。作用極、セパレータおよび対極が重ね合され、その重ね合せ方向が外装体の円筒部と平行している。参照極は、矩形板状をなし、外装体内に作用極、セパレータおよび対極の上方に近接して当該矩形板状表面が前記重ね合せ方向と平行するように配置されている。作用極および対極の各端子は、外装体の対向する封止部からそれぞれ外部に延出されている。参照極の端子は、外装体の円筒部から外部に延出されている。非水電解液は、前記外装体内にその内部全体を満たすように収容されている。
 前記対極および参照極は、リチウム金属から作られている。セパレータは、ポリイミド製3DOMセパレータ(空孔の孔径約0.3μm、空孔率約80%、膜厚50μm)からなる。電解液は、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)およびエチルメチルカーボネート(EMC)の混合非水溶媒(体積比でEC:DMC:EMC=5:3:2)にLiPF6を1.3モル/L溶解させて調製した。なお、評価セルの組立てはアルゴンガス雰囲気下のグローブボックス内で行なった。
(実施例2)
 以下の方法で調製した正極スラリーを用いた以外、実施例1と同様の方法により正極を作製し、さらに当該正極を作用極として用いて実施例1と同様な評価セルを組立てた。
 正極スラリーは、正極活物質として第1の活物質であるリン酸鉄リチウム71.6質量%、第2の活物質である二酸化マンガン17.9質量%、導電材としてアセチレンブラック6.1質量%、結着剤として固形分濃度40質量%のアクリル系共重合体溶液2.7質量%(固形分換算)、増粘剤として固形分濃度2質量%のカルボキシメチルセルロース水溶液1.8質量%(固形分換算)に適量のイオン交換水を加えながら撹拌、混練することにより調製した。
(実施例3)
 正極活物質として第1の活物質であるリチウムコバルト酸化物85.5質量%、第2の活物質である二酸化マンガン4.5質量%、導電材としてアセチレンブラック3質量%および黒鉛3質量%、結着剤として固形分濃度12質量%のポリフッ化ビニリデン溶液4質量%(固形分換算)に適量のN-メチル-2-ピロリドンを加えながら撹拌、混練することにより正極スラリーを調製した。
 次いで、厚さ約0.02mmのアルミニウム箔からなる集電体の一方の面に前記正極スラリーを塗布した後、100℃で10分間乾燥した。その後、乾燥した塗布膜を密度が3.3g/ccになるようにプレス処理して集電体の片面に正極層を形成して正極を作製した。さらに当該正極を作用極として用いて実施例1と同様な評価セルを組立てた。
(実施例4)
 以下の方法で調製した正極スラリーを用いた以外、実施例3と同様の方法により正極を作製し、さらに当該正極を作用極として用いて実施例1と同様な評価セルを組立てた。
 正極スラリーは、正極活物質として第1の活物質であるリチウムコバルト酸化物72質量%、第2の活物質である二酸化マンガン18質量%、導電材としてアセチレンブラック3質量%および黒鉛3質量%、結着剤として固形分濃度12質量%のポリフッ化ビニリデン溶液4質量%(固形分換算)に適量のN-メチル-2-ピロリドンを加えながら撹拌、混練することにより調製した。
(比較例1)
 実施例2と同様な正極を用い、かつ実施例1と同様な評価セルを組立てるにあたり、セパレータをポリイミド製3DOMセパレータに代えて延伸ポリエチレンフィルム(空孔率約40%)を用いた。
(比較例2)
 実施例4と同様な正極を用い、かつ実施例1と同様な評価セルを組立てるにあたり、セパレータをポリイミド製3DOMセパレータに代えて延伸ポリエチレンフィルム(空孔率約40%)を用いた。
(比較例3)
 正極活物質としてリン酸鉄リチウム89.4質量%、導電材としてアセチレンブラック6.1質量%、結着剤として固形分濃度40質量%のアクリル系共重合体溶液2.7質量%(固形分換算)、増粘剤として固形分濃度2質量%のカルボキシメチルセルロース水溶液1.8質量%(固形分換算)に適量のイオン交換水を加えながら撹拌、混練することにより正極スラリーを調製した以外、実施例1と同様の方法により正極を作製し、さらに当該正極を作用極として用いて実施例1と同様な評価セルを組立てた。すなわち、評価セルのセパレータは実施例1と同様にポリイミド製3DOMセパレータ(空孔の孔径約0.3μm、空孔率約80%、膜厚50μm)からなる。
(電気化学試験)
 得られた実施例1,2および比較例1,3の評価セルを用いて充放電性能評価を行なった。最初に0.1Cの電流で2.0Vまで放電し、その後0.2Cの電流で4.2Vまで充電し、0.2Cの電流で2.0Vまで放電する、充放電サイクル試験を100回繰り返した。
 実施例3、4および比較例2の評価セルを用いる充放電性能評価は、最初に0.1Cの電流で2.0Vまで放電し、その後0.2Cの電流で4.3Vまで充電し、0.2Cの電流で2.0Vまで放電する、充放電サイクル試験を100回繰り返した。
 なお、実施例1,2および比較例1,3の評価セルを用いる充放電性能評価は、充電時の電圧が4.2Vで、実施例3、4および比較例2の評価セルを用いる充放電性能評価は充電時の電圧が4.3Vである点で互いに相違する。
 このような充放電性能評価による初回放電容量、2サイクル目の放電容量および100サイクル目の放電容量を測定した。その結果を下記表1に示す。なお、下記表1の“第2の活物質の割合”は、第1の活物質と第2の活物質の合量に対する第2の活物質の割合を示す。
Figure JPOXMLDOC01-appb-T000001
 前記表1から明らかなように第1の活物質であるLiFePO4またはLiCoO2と第2の活物質であるMnO2からなる正極活物質を用い、3DOMセパレータを使用した実施例1~4の評価セルは、100サイクル目でも高い放電容量を有することがわかる。
 これに対し、比較例1,3の評価セルは実施例1~4の評価セルに比べて100サイクル目の容量の低下が大きくなることがわかる。比較例2の評価セルは、内部短絡が生じたために、容量が得られない結果となった。
 すなわち、延伸ポリエチレンフィルムからなるセパレータを使用した比較例1,2の評価セルは、3DOMセパレータを使用した実施例1~4の評価セルに比べて充電時における負極の金属リチウムでのリチウムの吸蔵(リチウム還元析出)が不均一であるため、リチウムデンドライト状の成長が促進され、比較例1では100回の充放電サイクルで放電容量の低下が生じ、比較例2では内部短絡の発生に至った。
 また、組立直後の前記負極との電池反応においてリチウムを吸蔵し得る状態の第2の活物質(例えばMnO2)を正極活物質として含まない比較例3の評価セルでは、初回の放電が行えないため、実質上、充電から開始される。その結果、3DOMセパレータを用いても、充電時に負極の金属リチウム表面で不均一なリチウム析出が生じるため、100回の充放電サイクルで放電容量の低下に至った。
 従って、実施例1~4の評価セルは、その組立直後の負極との電池反応においてリチウムを脱離し得る状態の第1の活物質(LiFePO4またはLiCoO2)およびその組立直後の負極との電池反応においてリチウムを吸蔵し得る状態の第2の活物質(MnO2)からなる正極活物質と、3DOMセパレータとを使用することによって、それらの相乗効果により、予期し得ない効果、すなわち100サイクル目でも高い放電容量を発現できる。
(実施例5)
<LiCoO2を第1の活物質として含む正極の作製>
 正極活物質であるLiCoO2を90質量%、導電材であるアセチレンブラック3質量%および黒鉛3質量%、結着剤である固形分濃度12質量%のポリフッ化ビニリデン溶液4質量%(固形分換算)に適量のN-メチル-2-ピロリドンを加えながら撹拌、混練することにより正極スラリーを調製した。つづいて、厚さ約0.02mmのアルミニウム箔からなる集電体の一方の面に前記正極スラリーを塗布した後、100℃で10分間乾燥した。その後、乾燥した塗布膜を密度が3.3g/ccになるようにプレス処理して集電体の片面に正極層を形成してLiCoO2を第1の活物質として含む正極を作製した。
<Li0.6CoO2を第2の活物質として含む正極の作製>
 前記LiCoO2を第1の活物質として含む正極を作用極、グラファイトを対極とした以外、前述した実施例1と同様なるセルを構築した。当該セルを正極の活物質の質量換算で110mAh/gの容量まで0.1Cの定電流充電を実施した。その後、セルを解体してLi0.6CoO2を第2の活物質として含む正極を取出した。
<評価セルの組立>
 前記LiCoO2を第1の活物質として含む正極から正極層を剥離し、粉砕してLiCoO2を第2の活物質として含む正極層用合剤を得た。また、前記Li0.6CoO2を第2の活物質として含む正極から正極層を剥離し、粉砕してLi0.6CoO2を第2の活物質として含む正極層用合剤を得た。なお、得られた2つの正極層用合剤は活物質、導電材および結着剤がLiCoO2を第1の活物質として含む正極の作製時と同様な質量割合で含まれている。
 次いで、LiCoO2を第1の活物質として含む正極層用合剤とLi0.6CoO2を第2の活物質として含む正極層用合剤を9:1の質量比率で混合して正極層用混合合剤を調製した。当該混合合剤に適量のN-メチル-2-ピロリドンを加えながら撹拌、混練することにより正極スラリーを調製した。次いで、厚さ約0.02mmのアルミニウム箔からなる集電体の一方の面に前記正極スラリーを塗布した後、100℃で10分間乾燥した。その後、乾燥した塗布膜を密度が3.3g/ccになるようにプレス処理して集電体の片面に正極層を形成してLiCoO2を第1の活物質、Li0.6CoO2を第2の活物質として含む正極を作製した。得られた正極を作用極として用いて実施例1と同様な評価セルを組立てた。
(実施例6)
 実施例5で得たLiCoO2を第1の活物質として含む正極層用合剤とLi0.6CoO2を第2の活物質として含む正極層用合剤とを7:3の質量比率で混合して正極層用混合合剤を調製した以外、実施例5と同様な方法で正極を作製し、得られた正極を作用極として用いて実施例1と同様な評価セルを組立てた。
(実施例7)
<LiMn24を第1の活物質として含む正極の作製>
 正極活物質であるLiMn24を90質量%、導電材であるアセチレンブラック3質量%および黒鉛3質量%、結着剤である固形分濃度12質量%のポリフッ化ビニリデン溶液4質量%(固形分換算)に適量のN-メチル-2-ピロリドンを加えながら撹拌、混練することにより正極スラリーを調製した。つづいて、厚さ約0.02mmのアルミニウム箔からなる集電体の一方の面に前記正極スラリーを塗布した後、100℃で10分間乾燥した。その後、乾燥した塗布膜を密度が2.8g/ccになるようにプレス処理して集電体の片面に正極層を形成してLiMn24を第1の活物質として含む正極を作製した。
<Li0.2Mn24を第2の活物質として含む正極の作製>
 前記LiMn24を第1の活物質として含む正極を作用極、グラファイトを対極とした以外、前述した実施例1と同様なるセルを構築した。当該セルを正極の活物質の質量換算で100mAh/gの容量まで0.1Cの定電流充電を実施した。その後、セルを解体してLi0.2Mn24を第2の活物質として含む正極を取出した。
<評価セルの組立>
 前記LiMn24を第1の活物質として含む正極から正極層を剥離し、粉砕してLiMn24を第1の活物質として含む正極層用合剤を得た。また、前記Li0.2Mn24を第2の活物質として含む正極から正極層を剥離し、粉砕してLi0.2Mn24を第2の活物質として含む正極層用合剤を得た。なお、得られた2つの正極層用合剤は活物質、導電材および結着剤はLiMn24を第1の活物質として含む正極の作製時と同様な質量割合で含まれている。
 次いで、LiMn24を第1の活物質として含む正極層用合剤とLi0.2Mn24を第2の活物質として含む正極層用合剤とを9:1の質量比率で混合して正極層用混合合剤を調製した。当該混合合剤に適量のN-メチル-2-ピロリドンを加えながら撹拌、混練することにより正極スラリーを調製した。次いで、厚さ約0.02mmのアルミニウム箔からなる集電体の一方の面に前記正極スラリーを塗布した後、100℃で10分間乾燥した。その後、乾燥した塗布膜を密度が3.3g/ccになるようにプレス処理して集電体の片面に正極層を形成し、LiMn24を第1の活物質、Li0.2Mn24を第2の活物質として含む正極を作製した。得られた正極を作用極として用いて実施例1と同様な評価セルを組立てた。
(実施例8)
 実施例7で得たLiMn24を第1の活物質として含む正極層用合剤とLi0.2Mn24を第2の活物質として含む正極層用合剤とを7:3の質量比率で混合して正極層用混合合剤を調製した以外、実施例7と同様な方法で正極を作製し、得られた正極を作用極として用いて実施例1と同様な評価セルを組立てた。
(実施例9)
 実施例5で得たLiCoO2を第1の活物質として含む正極層用合剤と実施例7で得たLi0.2Mn24を第2の活物質として含む正極層用合剤とを9:1の質量比率で混合して正極層用混合合剤を調製した以外、実施例5と同様な方法で正極を作製した。なお、2つの正極層用合剤は活物質、導電材および結着剤は同様な質量割合で含まれている。その後、得られた正極を作用極として用いて実施例1と同様な評価セルを組立てた。
(実施例10)
 実施例5で得たLiCoO2を第1の活物質として含む正極層用合剤と実施例7で得たLi0.2Mn24を第2の活物質として含む正極層用合剤とを7:3の質量比率で混合して正極層用混合合剤を調製した以外、実施例5と同様な方法で正極を作製し、得られた正極を作用極として用いて実施例1と同様な評価セルを組立てた。
(実施例11)
 正極活物質であるLiNi0.5Co0.2Mn0.32を92質量%、導電材であるアセチレンブラック2.5質量%および黒鉛2.5質量%、結着剤である固形分濃度12質量%のポリフッ化ビニリデン溶液3質量%(固形分換算)に適量のN-メチル-2-ピロリドンを加えながら撹拌、混練することにより正極スラリーを調製した。つづいて、厚さ約0.02mmのアルミニウム箔からなる集電体の一方の面に前記正極スラリーを塗布した後、100℃で10分間乾燥した。その後、乾燥した塗布膜を密度が2.5g/ccになるようにプレス処理して集電体の片面に正極層を形成してLiNi0.5Co0.2Mn0.32を第1の活物質として含む正極を作製した。
 前記LiNi0.5Co0.2Mn0.32を第1の活物質として含む正極から正極層を剥離し、粉砕してLiNi0.5Co0.2Mn0.32を第1の活物質として含む正極層用合剤を得た。
 次いで、LiNi0.5Co0.2Mn0.32を第1の活物質として含む正極層用合剤と実施例5で得たLi0.6CoO2を第2の活物質として含む正極層用合剤とを9:1の質量比率で混合して正極層用混合合剤を調製した以外、実施例5と同様な方法で正極を作製し、得られた正極を作用極として用いて実施例1と同様な評価セルを組立てた。
(実施例12)
 実施例11で得たLiNi0.5Co0.2Mn0.32を第1の活物質として含む正極層用合剤と実施例5で得たLi0.6CoO2を第2の活物質として含む正極層用合剤とを7:3の質量比率で混合して正極層用混合合剤を調製した以外、実施例5と同様な方法で正極を作製し、得られた正極を作用極として用いて実施例1と同様な評価セルを組立てた。
 得られた実施例5~12の評価セルを用いて充放電性能評価を行なった。最初に0.1Cの電流で2.0Vまで放電し、その後0.2Cの電流で4.3Vまで充電し、0.2Cの電流で2.0Vまで放電する、充放電サイクル試験を100回繰り返した。
 このような充放電性能評価による初回放電容量、2サイクル目の放電容量および100サイクル目の放電容量を測定した。その結果を下記表2に示す。なお、下記表2の“第2の活物質の割合”は、第1の活物質と第2の活物質の合量に対する第2の活物質の割合を示す。
Figure JPOXMLDOC01-appb-T000002
 前記表2から明らかなように第1の活物質および第2の活物質がいずれも、構成元素が同一で、第1の活物質が化学量論組成のリチウム含有金属酸化物、第2の活物質が化学量論組成からリチウムが抜けた組成を持つリチウム含有金属酸化物、である正極活物質を用い、3DOMセパレータを使用した実施例5~8の評価セルは、100サイクル目でも高い放電容量を有することがわかる。
 また、第1の活物質および第2の活物質がリチウムを除く少なくとも1つの金属元素が互いに異なり、第1の活物質が化学量論組成のリチウム含有金属酸化物、第2の活物質が化学量論組成からリチウムが抜けた組成を持つリチウム含有金属酸化物、である正極活物質を用い、3DOMセパレータを使用した実施例9~12の評価セルは、100サイクル目でも高い放電容量を有することがわかる。
(実施例13)
 実施例2で得た正極、および空孔径が約0.1μm、空孔率が約80%、膜厚が50μmのポリイミド製3DOMセパレータを使用した以外、実施例1と同様な評価セルを組立てた。
(実施例14)
 実施例2で得た正極、および空孔径が約0.5μm、空孔率が約80%、膜厚が50μmのポリイミド製3DOMセパレータを使用した以外、実施例1と同様な評価セルを組立てた。
(実施例15)
 実施例2で得た正極、および空孔径が約1μm、空孔率が約80%、膜厚が50μmのポリイミド製3DOMセパレータを使用した以外、実施例1と同様な評価セルを組立てた。
(実施例16)
 実施例2で得た正極、および空孔径が約3μm、空孔率が約80%、膜厚が50μmのポリイミド製3DOMセパレータを使用した以外、実施例1と同様な評価セルを組立てた。
(実施例17)
 実施例5で得た正極、および空孔径が約0.1μm、空孔率が約80%、膜厚が50μmのポリイミド製3DOMセパレータを使用した以外、実施例1と同様な評価セルを組立てた。
(実施例18)
 実施例5で得た正極、および空孔径が約0.5μm、空孔率が約80%、膜厚が50μmのポリイミド製3DOMセパレータを使用した以外、実施例1と同様な評価セルを組立てた。
(実施例19)
 実施例5で得た正極、および空孔径が約1μm、空孔率が約80%、膜厚が50μmのポリイミド製3DOMセパレータを使用した以外、実施例1と同様な評価セルを組立てた。
(実施例20)
 実施例5で得た正極、および空孔径が約3μm、空孔率が約80%、膜厚が50μmのポリイミド製3DOMセパレータを使用した以外、実施例1と同様な評価セルを組立てた。
 得られた実施例13~20の評価セルを用いて充放電性能評価を行なった。最初に0.1Cの電流で2.0Vまで放電し、その後0.2Cの電流で4.3Vまで充電し、0.2Cの電流で2.0Vまで放電する、充放電サイクル試験を100回繰り返した。
 このような充放電性能評価による初回放電容量、2サイクル目の放電容量および100サイクル目の放電容量を測定した。その結果を下記表3に示す。なお、下記表3の“第2の活物質の割合”は、第1の活物質と第2の活物質の合量に対する第2の活物質の割合を示す。
Figure JPOXMLDOC01-appb-T000003
 前記表3から明らかなように実施例2と同様な正極活物質を用い、空孔率および膜厚を一定(80%、50μm)にし、空孔径を0.1~3.0μmの範囲で振った3DOMセパレータを使用した実施例13~16の評価セル、並びに実施例5と同様な正極活物質を用い、空孔率および膜厚を一定(80%、50μm)にし、空孔径を0.1~3.0μmの範囲で振った3DOMセパレータを使用した実施例17~20の評価セルでも、100サイクル目でも高い放電容量を有することがわかる。
 本発明によれば、リチウムデンドライトの成長を抑制ないし防止し、高容量かつ優れた充放電サイクル特性を有する、ハイブリッド自動車または電気自動車の電源、または太陽光、風力等の自然エネルギー発電の電力貯蔵電源に好適な高信頼性、高性能のリチウム二次電池を提供できる。

Claims (10)

  1.  正極と、負極と、セパレータと、電解液とを備えるリチウム二次電池であって、
     前記正極は、それぞれリチウムを吸蔵および脱離することが可能な第1の活物質および第2の活物質を含み、前記第1の活物質は前記リチウム二次電池の組立直後の前記負極との電池反応においてリチウムを脱離のみし得る状態であり、前記第2の活物質は前記リチウム二次電池の組立直後の前記負極との電池反応においてリチウムを吸蔵し得る状態であり、
     前記負極は、金属リチウムを活物質として含み、かつ
     前記セパレータは、空孔が三次元規則配列した構造を有するリチウム二次電池。
  2.  前記第1の活物質および前記第2の活物質は、リチウム含有化合物であり、前記第1の活物質はリチウム二次電池の組立直後の前記負極との電池反応においてリチウムを脱離のみし得るリチウム含有化合物で、前記第2の活物質はリチウム二次電池の組立直後の前記負極との電池反応においてリチウムを吸蔵し得る、リチウムが一部抜けたリチウム含有化合物である請求項1記載のリチウム二次電池。
  3.  前記第1の活物質および前記第2の活物質の各リチウム含有化合物は、それらのリチウム含有化合物を構成する元素が互いに同じである請求項2記載のリチウム二次電池。
  4.  前記第1の活物質および前記第2の活物質の各リチウム含有化合物は、それらのリチウム含有化合物を構成する元素のうち、リチウムを除く少なくとも1つの金属元素が互いに異なる請求項2記載のリチウム二次電池。
  5.  前記リチウム含有化合物は、リチウム含有金属酸化物またはリチウム含有金属リン化物である請求項2ないし4いずれか1項記載のリチウム二次電池。
  6.  前記第2の活物質は、前記第1の活物質および前記第2の活物質の合量に対して2質量%以上95質量%以下の割合で前記正極に含まれる請求項2ないし5いずれか1項記載のリチウム二次電池。
  7.  前記第1の活物質は、リチウム含有化合物であり、前記第2の活物質はリチウム未含有化合物である請求項1記載のリチウム二次電池。
  8.  前記リチウム含有化合物は、リチウム含有金属酸化物またはリチウム含有金属リン化物であり、前記リチウム未含有化合物は二酸化マンガンまたは五酸化バナジウムである請求項7記載のリチウム二次電池。
  9.  前記第2の活物質は、前記第1の活物質および前記第2の活物質の合量に対して5質量%以上50質量%以下の割合で前記正極に含まれる請求項7または8記載のリチウム二次電池。
  10.  前記セパレータは、前記空孔が互いに連通され、前記空孔の径が0.05μm以上3μm以下であり、かつ空孔率が70%以上90%以下である請求項1ないし9いずれか1項記載のリチウム二次電池。
PCT/JP2016/063442 2015-07-01 2016-04-28 リチウム二次電池 WO2017002444A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/740,284 US20180198120A1 (en) 2015-07-01 2016-04-28 Lithium secondary battery
JP2016556333A JP6163613B2 (ja) 2015-07-01 2016-04-28 リチウム二次電池
KR1020187002962A KR20180036715A (ko) 2015-07-01 2016-04-28 리튬 이차 전지
CN201680038358.0A CN107851834A (zh) 2015-07-01 2016-04-28 锂二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-132929 2015-07-01
JP2015132929 2015-07-01

Publications (1)

Publication Number Publication Date
WO2017002444A1 true WO2017002444A1 (ja) 2017-01-05

Family

ID=57608521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063442 WO2017002444A1 (ja) 2015-07-01 2016-04-28 リチウム二次電池

Country Status (5)

Country Link
US (1) US20180198120A1 (ja)
JP (1) JP6163613B2 (ja)
KR (1) KR20180036715A (ja)
CN (1) CN107851834A (ja)
WO (1) WO2017002444A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019067710A (ja) * 2017-10-04 2019-04-25 株式会社Gsユアサ 非水電解質蓄電素子及びその製造方法
JP7376409B2 (ja) 2020-03-27 2023-11-08 古河電池株式会社 リチウムイオン電池、およびリチウムイオン電池の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3561915A4 (en) * 2016-12-23 2020-03-25 Posco LITHIUM METAL ANODE, MANUFACTURING METHOD THEREOF, AND LITHIUM SECONDARY BATTERY COMPRISING THE SAME
US11414166B2 (en) * 2019-05-31 2022-08-16 Ockerman Automation Consulting, Inc. Marine vessel with hull-integrated electrical energy storage for vessel propulsion
DE102019135049A1 (de) * 2019-12-19 2021-06-24 Bayerische Motoren Werke Aktiengesellschaft Lithiumionen-Batterie und Verfahren zur Herstellung einer Lithiumionen-Batterie

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04206267A (ja) * 1990-11-29 1992-07-28 Sanyo Electric Co Ltd 非水電解液二次電池
JPH11297362A (ja) * 1998-04-13 1999-10-29 Matsushita Electric Ind Co Ltd 非水電解質二次電池とその製造法および電池の状態検知方法
JP2011060539A (ja) * 2009-09-09 2011-03-24 Tokyo Metropolitan Univ 二次電池用セパレーターおよびこれを用いたリチウム二次電池
WO2013084368A1 (ja) * 2011-12-09 2013-06-13 公立大学法人首都大学東京 リチウム二次電池用セパレータ及びその製造方法
JP2014022150A (ja) * 2012-07-17 2014-02-03 Furukawa Battery Co Ltd:The 非水電解質二次電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042893A (ja) * 2000-07-31 2002-02-08 Nissan Motor Co Ltd 非水電解質リチウムイオン二次電池
US8911902B2 (en) * 2010-07-06 2014-12-16 Samsung Sdi Co., Ltd. Nickel-based positive electrode active material, method of preparing the same, and lithium battery using the nickel-based positive electrode active material
JP5708610B2 (ja) * 2012-10-04 2015-04-30 日産自動車株式会社 リチウムイオン電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04206267A (ja) * 1990-11-29 1992-07-28 Sanyo Electric Co Ltd 非水電解液二次電池
JPH11297362A (ja) * 1998-04-13 1999-10-29 Matsushita Electric Ind Co Ltd 非水電解質二次電池とその製造法および電池の状態検知方法
JP2011060539A (ja) * 2009-09-09 2011-03-24 Tokyo Metropolitan Univ 二次電池用セパレーターおよびこれを用いたリチウム二次電池
WO2013084368A1 (ja) * 2011-12-09 2013-06-13 公立大学法人首都大学東京 リチウム二次電池用セパレータ及びその製造方法
JP2014022150A (ja) * 2012-07-17 2014-02-03 Furukawa Battery Co Ltd:The 非水電解質二次電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019067710A (ja) * 2017-10-04 2019-04-25 株式会社Gsユアサ 非水電解質蓄電素子及びその製造方法
JP7003547B2 (ja) 2017-10-04 2022-02-04 株式会社Gsユアサ 非水電解質蓄電素子及びその製造方法
JP7376409B2 (ja) 2020-03-27 2023-11-08 古河電池株式会社 リチウムイオン電池、およびリチウムイオン電池の製造方法

Also Published As

Publication number Publication date
JPWO2017002444A1 (ja) 2017-07-06
JP6163613B2 (ja) 2017-07-12
US20180198120A1 (en) 2018-07-12
CN107851834A (zh) 2018-03-27
KR20180036715A (ko) 2018-04-09

Similar Documents

Publication Publication Date Title
US11183714B2 (en) Hybrid metal-organic framework separators for electrochemical cells
US11404716B2 (en) Lithium ion secondary cell and method for producing active material
CN107004827A (zh) 复合电极和包括复合电极的锂离子电池组以及复合电极的制备方法
JP6163613B2 (ja) リチウム二次電池
JP2008262768A (ja) リチウムイオン二次電池
JP7115296B2 (ja) 負極及びリチウムイオン二次電池
JP6656370B2 (ja) リチウムイオン二次電池および組電池
JP2012084426A (ja) 非水電解質二次電池
JP5793411B2 (ja) リチウム二次電池
JP6583993B2 (ja) リチウム二次電池の充放電方法
KR20210098314A (ko) 비수전해액 축전 디바이스 및 비수전해액 축전 디바이스의 제조 방법
JP2019091571A (ja) リチウム二次電池
JP6646370B2 (ja) リチウム二次電池の充放電方法
KR102273781B1 (ko) 음극활물질 및 이의 제조 방법
WO2019100233A1 (en) High voltage positive electrode material and cathode as well as lithium ion cell and battery including the same
JP6567442B2 (ja) リチウム二次電池の充放電方法
JP2018190679A (ja) リチウム二次電池の充放電方法
JP2024504525A (ja) 二次電池及びそれを含む電力消費装置
JP7135840B2 (ja) 正極及びリチウムイオン二次電池
JP2013073867A (ja) 非水電解液二次電池用正極活物質及びその製造方法、並びに非水電解液二次電池
US10297879B2 (en) Titanium diboride nanotubes for trapping gases in lithium ion batteries
CN112805849A (zh) 锂离子二次电池用负极及锂离子二次电池
WO2012090804A1 (ja) 正極活物質、正極および非水電解液二次電池
JP2014093272A (ja) 電極活物質混合物、それを用いて作成した電極及び非水電解質二次電池
WO2024077473A1 (zh) 集流体及其制备方法、电极极片、二次电池以及用电装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016556333

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187002962

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16817554

Country of ref document: EP

Kind code of ref document: A1