WO2016208578A1 - 光電変換素子および太陽電池 - Google Patents

光電変換素子および太陽電池 Download PDF

Info

Publication number
WO2016208578A1
WO2016208578A1 PCT/JP2016/068385 JP2016068385W WO2016208578A1 WO 2016208578 A1 WO2016208578 A1 WO 2016208578A1 JP 2016068385 W JP2016068385 W JP 2016068385W WO 2016208578 A1 WO2016208578 A1 WO 2016208578A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
layer
conversion element
group
electrode
Prior art date
Application number
PCT/JP2016/068385
Other languages
English (en)
French (fr)
Inventor
寛敬 佐藤
花木 直幸
伊勢 俊大
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201680034472.6A priority Critical patent/CN107710436A/zh
Priority to JP2017524920A priority patent/JP6383876B2/ja
Priority to EP16814348.5A priority patent/EP3316326A4/en
Publication of WO2016208578A1 publication Critical patent/WO2016208578A1/ja
Priority to US15/831,719 priority patent/US20180096797A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2018Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte characterised by the ionic charge transport species, e.g. redox shuttles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/102Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising tin oxides, e.g. fluorine-doped SnO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a photoelectric conversion element and a solar cell.
  • Photoelectric conversion elements are used in various optical sensors, copiers, solar cells and the like. Solar cells are expected to be put into full-scale practical use as non-depleting solar energy. In particular, research and development of dye-sensitized solar cells using organic dyes or Ru bipyridyl complexes as sensitizers has been actively promoted, and the photoelectric conversion efficiency has reached about 11%.
  • Non-Patent Document 1 describes a solar cell using a metal halide represented by CH 3 NH 3 PbI 2 Cl as a light absorber.
  • Non-Patent Document 2 discloses a solar cell in which a layer in which a single-walled carbon nanotube coated with poly (3-hexylthiophene) is embedded in an insulating polymer is provided on a layer of CH 3 NH 3 PbI (3-x) Cl x. A battery is described.
  • a photoelectric conversion element using a compound having a perovskite crystal structure (hereinafter also referred to as “perovskite compound”) as a light absorber has achieved certain results in improving photoelectric conversion efficiency.
  • photoelectric conversion elements using a perovskite compound as a light absorber tend to vary in initial (manufacturing) photoelectric conversion efficiency, and in practical use as a solar cell, it is possible to reduce variations in initial performance between elements. Desired.
  • the photoelectric conversion element using a perovskite compound tends to fall in photoelectric conversion efficiency (battery performance) with time.
  • the amount of decrease in photoelectric conversion efficiency after the lapse of the predetermined period largely fluctuates between the elements, and in addition to the variation in the initial photoelectric conversion efficiency, the stability of the photoelectric conversion efficiency is not sufficient.
  • the present invention provides a photoelectric conversion element and a solar cell that are small in variation in initial photoelectric conversion efficiency between elements and excellent in stability of photoelectric conversion efficiency even in a photoelectric conversion element using a perovskite compound as a light absorber. The issue is to provide.
  • the present inventors provide a particle-containing layer containing conductive fine particles and a polymer above a photosensitive layer containing a perovskite-type light absorber, By providing a charge transport layer that does not contain conductive fine particles between the particle-containing layer and the photosensitive layer, in addition to the initial variation in photoelectric conversion efficiency, variation in the amount of decrease in photoelectric conversion efficiency after a predetermined period of time ( It has been found that a photoelectric conversion element or a solar cell with reduced durability variation can be obtained. Based on this knowledge, the present invention has been further studied and completed.
  • a first electrode having a photosensitive layer containing a perovskite light absorber on a conductive support; On the first electrode, a particle-containing layer containing conductive fine particles and a polymer, A photoelectric conversion element having a charge transport layer not containing conductive fine particles between a photosensitive layer and a particle-containing layer.
  • the charge transport layer is a hole transport layer.
  • the polymer is an insulating material.
  • ⁇ 4> The photoelectric conversion element according to any one of ⁇ 1> to ⁇ 3>, wherein the conductive fine particles are fine particles of a carbon material.
  • ⁇ 5> The photoelectric conversion element according to any one of ⁇ 1> to ⁇ 4>, having a second electrode facing the first electrode on the particle-containing layer.
  • ⁇ 6> The photoelectric conversion element according to any one of ⁇ 1> to ⁇ 4>, wherein the particle-containing layer also serves as a second electrode facing the first electrode.
  • a perovskite type light absorber comprising a cation of a group 1 element of the periodic table or a cationic organic group A, a cation of a metal atom other than the group 1 element of the periodic table, and an anion of an anionic atom or atomic group X
  • the photoelectric conversion device according to any one of ⁇ 1> to ⁇ 6> comprising a compound having a perovskite crystal structure.
  • each formula may be expressed as a sexual formula in order to understand the chemical structure of the compound. Accordingly, in each formula, the partial structure is referred to as a (substituted) group, ion, atom, or the like. In this specification, these are represented by the above formula in addition to the (substituted) group, ion, atom, or the like. It may mean an element group or an element constituting a (substituted) group or ion.
  • the display of a compound is used to mean not only the compound itself but also its salt and its ion.
  • a compound that does not specify substitution or non-substitution is meant to include a compound having an arbitrary substituent as long as the intended effect is not impaired.
  • substituents and linking groups hereinafter referred to as substituents and the like).
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the photoelectric conversion element and the solar cell of the present invention use a perovskite compound as a light absorber, the variation in the initial photoelectric conversion efficiency between the elements and the variation in the amount of decrease in the photoelectric conversion efficiency after a predetermined period elapses. Both are reduced.
  • FIG. 1 is a cross-sectional view schematically showing a preferred embodiment of the photoelectric conversion element of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing another preferred embodiment of the photoelectric conversion element of the present invention.
  • FIG. 3 is a sectional view schematically showing still another preferred embodiment of the photoelectric conversion element of the present invention.
  • FIG. 4 is a cross-sectional view schematically showing still another preferred embodiment of the photoelectric conversion element of the present invention.
  • FIG. 5 is a cross-sectional view schematically showing still another preferred embodiment of the photoelectric conversion element of the present invention.
  • FIG. 6 is a cross-sectional view schematically showing still another preferred embodiment of the photoelectric conversion element of the present invention.
  • the photoelectric conversion element of the present invention comprises a first electrode having a photosensitive layer containing a perovskite compound (also referred to as a perovskite type light absorber) used as a light absorber on a conductive support, and a charge on the first electrode. It has a transport layer and a particle-containing layer in this order.
  • a perovskite compound also referred to as a perovskite type light absorber
  • having a photosensitive layer on a conductive support means an embodiment in which the photosensitive layer is (directly) in contact with the surface of the conductive support, and another layer is provided above the surface of the conductive support. And includes a mode having a photosensitive layer.
  • the other layer provided between the conductive support and the photosensitive layer does not deteriorate the battery performance of the solar cell.
  • a porous layer, a blocking layer, an electron transport layer, etc. are mentioned.
  • a mode in which the surface of the blocking layer is provided in a thin film shape or a thick film shape FGS.
  • the photosensitive layer may be provided in a linear or dispersed form, but is preferably provided in a film form.
  • the particle-containing layer is provided on the first electrode via another layer, and is preferably provided adjacent to the charge transport layer described later.
  • This particle-containing layer is a layer containing conductive fine particles and a polymer, and is formed so as to be able to transport charges at least in the thickness direction of the layer.
  • the particle-containing layer may be a single layer or a multilayer.
  • the particle-containing layer is a layer containing conductive fine particles and a polymer.
  • the particle-containing layer includes a mixed layer in which a region in which conductive fine particles and a polymer are preferably intimately mixed spreads in a layer shape.
  • the conductive fine particles and the polymer may be contained (mixed) in any state.
  • the polymer may cover a part of the layer surface made of conductive fine particles.
  • the particle-containing layer and the mixed layer may include a region where the polymer and the conductive fine particles are not mixed. This region may be dispersed in the particle-containing layer as long as it does not impair the function of the mixed layer, or may form a fine particle layer composed of fine particles concentrated in the thickness direction of the particle-containing layer.
  • Examples of the particle-containing layer having a single layer structure include a mixed layer in which conductive fine particles and a polymer are mixed as shown in FIGS. In this mixed layer, the polymer fills the gaps between the conductive fine particles.
  • a mixed layer 4a adjacent to the charge transport layer 3 at least on the photosensitive layer 13 side is preferable.
  • the mixed layer 4a includes a fine particle layer 4b made of conductive fine particles on the opposite side of the photosensitive layer 13 and the like.
  • the charge transport layer is provided on the first electrode directly or via another layer, and is preferably provided adjacent to the first electrode.
  • the charge transport layer is formed so as to be able to transport charges at least in the thickness direction of the layer.
  • the charge transport layer is a layer that does not contain conductive fine particles.
  • the phrase “not containing conductive fine particles” includes that the conductive fine particles may be contained within a range in which the charge (hole) transport function of the charge transport layer is not impaired.
  • the content of conductive fine particles in the charge transport layer is 0 to 0.01% by mass.
  • the charge transport layer preferably contains a hole transport material.
  • the photoelectric conversion element has the charge transport layer and the particle-containing layer in this order on the first electrode, the variation in the initial photoelectric conversion efficiency is small, and the photoelectric conversion efficiency after a predetermined period has elapsed. Variations in the amount of decrease can also be reduced.
  • the CNT-containing layer containing carbon nanotubes or the like is provided on the second electrode side with respect to the photosensitive layer, deterioration factors such as water from the outside of the photoelectric conversion element are blocked, and the durability of the photoelectric conversion element is improved.
  • this CNT-containing layer is simply formed on the photosensitive layer, variations in photoelectric conversion efficiency occur.
  • This is considered to be caused by reverse electron transfer caused by carbon nanotubes or the like penetrating through the CNT-containing layer (projecting from the CNT-containing layer) and contacting with the perovskite compound as the photosensitive layer.
  • the state, frequency, and the like of carbon nanotubes protruding from the CNT-containing layer are not constant.
  • conductive fine particles are contained instead of carbon nanotubes, and a charge transport layer is provided on the photosensitive layer side of the particle-containing layer containing these particles.
  • the photoelectric conversion element of the present invention is not particularly limited in structure other than the structure defined in the present invention, and known structures relating to the photoelectric conversion element and the solar cell can be adopted.
  • Each layer constituting the photoelectric conversion element of the present invention is designed according to the purpose, and may be formed in a single layer or multiple layers, for example.
  • photoelectric conversion element 10 means the photoelectric conversion elements 10A to 10F unless otherwise specified.
  • the first electrode 1 means the first electrodes 1A and 1B unless otherwise specified.
  • a system 100A shown in FIG. 1 is a system applied to a battery for causing an operation circuit M (for example, an electric motor) to perform work by the external circuit 6 using the photoelectric conversion element 10A.
  • the external circuit 6 is connected to the transparent electrode 11 b and the second electrode 2 of the conductive substrate 11.
  • This photoelectric conversion element 10A includes a charge transport layer 3 in order from the first electrode 1A side between the first electrode 1A, the second electrode 2 facing the first electrode 1A, and the first electrode 1A and the second electrode 2. And a particle-containing layer 4.
  • the first electrode 1A includes a conductive support 11 composed of a support 11a and a transparent electrode 11b, a blocking layer 14 on the transparent electrode 11b, a porous layer 12 on the blocking layer 14, and a surface of the porous layer 12. And a photosensitive layer 13 containing a perovskite light absorber.
  • the photoelectric conversion element 10 ⁇ / b> A having the porous layer 12 is estimated to improve charge separation and charge transfer efficiency because the surface area of the photosensitive layer 13 increases.
  • the charge transport layer 3 is formed as a single layer on the first electrode 1A.
  • the particle-containing layer 4 is formed on the charge transport layer 3 in a two-layer structure.
  • the two-layer structure of the particle-containing layer 4 has a mixed layer 4a on the charge transport layer 3 and a fine particle layer 4b on the mixed layer 4a.
  • the photoelectric conversion element 10B shown in FIG. 2 schematically shows a preferred embodiment in which the particle-containing layer 4 of the photoelectric conversion element 10A shown in FIG.
  • the photoelectric conversion element 10B differs from the photoelectric conversion element 10A shown in FIG. 1 in that the particle-containing layer 4 is composed of the mixed layer 4a, but is configured in the same manner as the photoelectric conversion element 10A except for these points.
  • the photoelectric conversion element 10C shown in FIG. 3 schematically shows another preferred embodiment of the photoelectric conversion element of the present invention.
  • the photoelectric conversion element 10C is different from the photoelectric conversion element 10A shown in FIG. 1 in that the second electrode 2 is not provided, but is otherwise configured in the same manner as the photoelectric conversion element 10A. That is, in the photoelectric conversion element 10 ⁇ / b> C, the particle-containing layer 4, especially the fine particle layer 4 b also serves as the second electrode 2.
  • a photoelectric conversion element 10D shown in FIG. 4 schematically shows still another preferred embodiment of the photoelectric conversion element of the present invention.
  • This photoelectric conversion element 10D is different from the photoelectric conversion element 10A shown in FIG. 1 in that the porous layer 12 is not provided, but is otherwise configured in the same manner as the photoelectric conversion element 10A.
  • the first electrode 1 ⁇ / b> B includes a conductive support 11 and a blocking layer 14 and a photosensitive layer 13 that are sequentially formed on the conductive support 11.
  • a photoelectric conversion element 10E shown in FIG. 5 schematically shows still another preferred embodiment of the photoelectric conversion element of the present invention.
  • This photoelectric conversion element 10E is different from the photoelectric conversion element 10B shown in FIG. 2 in that the porous layer 12 is not provided, but is otherwise configured in the same manner as the photoelectric conversion element 10B.
  • the first electrode 1B is the same as the first electrode 1B of the photoelectric conversion element 1D.
  • the photoelectric conversion element 10F shown in FIG. 6 schematically shows another preferred embodiment of the photoelectric conversion element of the present invention.
  • This photoelectric conversion element 10F is different from the photoelectric conversion element 10C shown in FIG. 3 in that the porous layer 12 is not provided, but is otherwise configured in the same manner as the photoelectric conversion element 10C.
  • the first electrode 1B is the same as the first electrode 1B of the photoelectric conversion element 1D.
  • the system 100 to which the photoelectric conversion element 10 is applied functions as a solar cell as follows. That is, in the photoelectric conversion element 10, light that has passed through the conductive support 11 or passed through the second electrode 2 (or mixed layer 4 a) and entered the photosensitive layer 13 excites the light absorber. The excited light absorber has electrons with high energy and can emit these electrons. The light absorber that has released electrons with high energy becomes an oxidant (cation).
  • the photoelectric conversion element 10 In the photoelectric conversion element 10, electrons emitted from the light absorber move between the light absorbers and reach the conductive support 11. After the electrons that have reached the conductive support 11 work in the external circuit 6, (when having the second electrode 2), pass through the second electrode 2, then the particle-containing layer 4 and the charge transporting layer 3, to the photosensitive layer 13. Return. The light absorber is reduced by the electrons returning to the photosensitive layer 13.
  • the system 100 functions as a solar cell by repeating such a cycle of excitation and electron transfer of the light absorber.
  • the way in which electrons flow from the photosensitive layer 13 to the conductive support 11 differs depending on the presence and type of the porous layer 12 and the like.
  • the porous layer 12 can be formed with an insulator other than the conventional semiconductor.
  • the porous layer 12 is formed of a semiconductor, electron conduction in which electrons move inside or between the semiconductor particles of the porous layer 12 also occurs.
  • the porous layer 12 is formed of an insulator, electron conduction in the porous layer 12 does not occur.
  • a relatively high electromotive force can be obtained by using aluminum oxide (Al 2 O 3 ) particles as the insulator particles.
  • Al 2 O 3 aluminum oxide
  • the blocking layer 14 as the other layer is formed of a conductor or a semiconductor, electron conduction in the blocking layer 14 occurs.
  • the photoelectric conversion element and the solar cell of the present invention are not limited to the above-described preferred embodiments, and the configuration of each embodiment can be appropriately combined between the respective embodiments without departing from the spirit of the present invention.
  • the material and each member which are used for a photoelectric conversion element or a solar cell can be prepared by a conventional method except a light absorber.
  • photoelectric conversion elements or solar cells using a perovskite compound see, for example, Non-Patent Documents 1 and 2 and J. Org. Am. Chem. Soc. 2009, 131 (17), p. Reference may be made to 6050-6051.
  • it can refer also about the material and each member which are used for a dye-sensitized solar cell.
  • the dye-sensitized solar cell for example, Japanese Patent Application Laid-Open No. 2001-291534, US Pat. No. 4,927,721, US Pat. No. 4,684,537, US Pat.
  • the first electrode 1 has a conductive support 11 and a photosensitive layer 13 and functions as a working electrode in the photoelectric conversion element 10.
  • the first electrode 1 preferably has at least one of a porous layer 12 and a blocking layer 14 as shown in FIGS.
  • the first electrode 1 preferably has at least the blocking layer 14 in terms of prevention of short circuit, and more preferably has the porous layer 12 and the blocking layer 14 in terms of light absorption efficiency and prevention of short circuit.
  • the 1st electrode 1 has an electron carrying layer formed with the organic material from the point of the improvement of productivity of a photoelectric conversion element, thickness reduction, or flexibility.
  • the conductive support 11 is not particularly limited as long as it has conductivity and can support the photosensitive layer 13 and the like.
  • the conductive support 11 is composed of a conductive material, for example, a metal, or a glass or plastic support 11a, and a transparent electrode 11b as a conductive film formed on the surface of the support 11a.
  • the structure having is preferable. When the strength of the conductive support 11 is sufficiently maintained, the support 11a is not necessarily required.
  • a conductive support 11 in which a transparent metal electrode 11b is formed by coating a conductive metal oxide on the surface of a glass or plastic support 11a is more preferable.
  • the support 11a formed of plastic include a transparent polymer film described in paragraph No. 0153 of JP-A-2001-291534.
  • ceramic Japanese Patent Laid-Open No. 2005-135902
  • conductive resin Japanese Patent Laid-Open No. 2001-160425
  • tin oxide As the metal oxide, tin oxide (TO) is preferable, and fluorine-doped tin oxide such as indium-tin oxide (tin-doped indium oxide; ITO) and fluorine-doped tin oxide (FTO) is particularly preferable.
  • the coating amount of the metal oxide at this time is preferably 0.1 to 100 g per 1 m 2 of the surface area of the support 11a. When the conductive support 11 is used, light is preferably incident from the support 11a side.
  • the conductive support 11 is substantially transparent.
  • substantially transparent means that the transmittance of light (wavelength 300 to 1200 nm) is 10% or more, preferably 50% or more, and particularly preferably 80% or more.
  • the thicknesses of the support 11a and the conductive support 11 are not particularly limited, and are set to appropriate thicknesses.
  • the thickness is preferably 0.01 ⁇ m to 10 mm, more preferably 0.1 ⁇ m to 5 mm, and particularly preferably 0.3 ⁇ m to 4 mm.
  • the film thickness of the transparent electrode 11b is not particularly limited, and is preferably 0.01 to 30 ⁇ m, more preferably 0.03 to 25 ⁇ m, and more preferably 0.05 to 20 ⁇ m. It is particularly preferred that
  • the conductive support 11 or the support 11a may have a light management function on the surface.
  • the surface of the conductive support 11 or the support 11a may have an antireflection film in which high refractive films and low refractive index oxide films are alternately stacked as described in JP-A-2003-123859.
  • the light guide function described in JP-A-2002-260746 may be provided.
  • the blocking layer 14 is preferably formed on the surface of the transparent electrode 11b, that is, between the conductive support 11 and the porous layer 12 or the photosensitive layer 13 or the like. Have.
  • a reverse current is generated in a photoelectric conversion element and a solar cell, for example, when the photosensitive layer 13 and the transparent electrode 11b are electrically connected, a reverse current is generated.
  • the blocking layer 14 functions to prevent this reverse current.
  • the blocking layer 14 is also referred to as a short circuit prevention layer.
  • the blocking layer 14 can also function as a scaffold carrying the light absorber. This blocking layer 14 may also be provided when the photoelectric conversion element has an electron transport layer. In this case, it is provided between the conductive support and the electron transport layer.
  • the material for forming the blocking layer 14 is not particularly limited as long as it is a material that can perform the above function, but is a substance that transmits visible light, and is an insulating substance for the conductive support 11 (transparent electrode 11b) and the like. It is preferable that Specifically, the “insulating substance with respect to the conductive support 11 (transparent electrode 11b)” specifically refers to a material whose conduction band energy level forms the conductive support 11 (metal oxide forming the transparent electrode 11b). A compound (n-type semiconductor compound) that is higher than the energy level of the conduction band of the material and lower than the energy level of the conduction band of the material constituting the porous layer 12 and the ground state of the light absorber.
  • Examples of the material for forming the blocking layer 14 include silicon oxide, magnesium oxide, aluminum oxide, calcium carbonate, cesium carbonate, polyvinyl alcohol, and polyurethane.
  • the material generally used for the photoelectric conversion material may be used, and examples thereof include titanium oxide, tin oxide, zinc oxide, niobium oxide, and tungsten oxide. Of these, titanium oxide, tin oxide, magnesium oxide, aluminum oxide and the like are preferable.
  • the thickness of the blocking layer 14 is preferably 0.001 to 10 ⁇ m, more preferably 0.005 to 1 ⁇ m, and particularly preferably 0.01 to 0.1 ⁇ m.
  • the thickness of each layer can be measured by observing the cross section of the photoelectric conversion element 10 using a scanning electron microscope (SEM) or the like.
  • the porous layer 12 is provided on the transparent electrode 11b.
  • the porous layer 12 is preferably formed on the blocking layer 14.
  • the porous layer 12 is a layer that functions as a scaffold for carrying the photosensitive layer 13 on the surface.
  • the porous layer 12 is preferably a fine particle layer having pores, in which fine particles of the material forming the porous layer 12 are deposited or adhered.
  • the porous layer 12 may be a fine particle layer in which two or more kinds of fine particles are deposited.
  • the amount of light absorbent supported (adsorption amount) can be increased.
  • the surface area of the porous layer 12 it is preferable to increase the surface area of the individual fine particles constituting the porous layer 12.
  • the surface area of the fine particles is preferably 10 times or more, more than 100 times the projected area. It is more preferable.
  • the particle diameter of the fine particles forming the porous layer 12 is preferably 0.001 to 1 ⁇ m as the primary particle in the average particle diameter using the diameter when the projected area is converted into a circle.
  • the average particle diameter of the fine particles is preferably 0.01 to 100 ⁇ m as the average particle diameter of the dispersion.
  • the material for forming the porous layer 12 is not particularly limited with respect to conductivity, and may be an insulator (insulating material), a conductive material, or a semiconductor (semiconductive material).
  • Examples of the material for forming the porous layer 12 include metal chalcogenides (eg, oxides, sulfides, selenides, etc.), compounds having a perovskite crystal structure (excluding perovskite compounds used as light absorbers), silicon. These oxides (for example, silicon dioxide, zeolite) or carbon nanotubes (including carbon nanowires and carbon nanorods) can be used.
  • the metal chalcogenide is not particularly limited, but is preferably titanium, tin, zinc, tungsten, zirconium, hafnium, strontium, indium, cerium, yttrium, lanthanum, vanadium, niobium, aluminum or tantalum oxide, cadmium sulfide. , Cadmium selenide and the like.
  • Examples of the crystal structure of the metal chalcogenide include an anatase type, brookite type and rutile type, and anatase type and brookite type are preferable.
  • the compound having a perovskite crystal structure is not particularly limited, and examples thereof include transition metal oxides.
  • transition metal oxides For example, strontium titanate, calcium titanate, barium titanate, lead titanate, barium zirconate, barium stannate, lead zirconate, strontium zirconate, strontium tantalate, potassium niobate, bismuth ferrate, strontium barium titanate , Barium lanthanum titanate, calcium titanate, sodium titanate, bismuth titanate.
  • strontium titanate, calcium titanate and the like are preferable.
  • the carbon nanotube has a shape obtained by rounding a carbon film (graphene sheet) into a cylindrical shape.
  • Carbon nanotubes are single-walled carbon nanotubes (SWCNT) in which one graphene sheet is wound in a cylindrical shape, double-walled carbon nanotubes (DWCNT) in which two graphene sheets are wound in a concentric shape, and multiple graphene sheets are concentric
  • SWCNT single-walled carbon nanotubes
  • DWCNT double-walled carbon nanotubes
  • MWCNT multi-walled carbon nanotubes
  • any carbon nanotube is not particularly limited and can be used.
  • the material for forming the porous layer 12 is preferably titanium, tin, zinc, zirconium, aluminum or silicon oxide, or carbon nanotube, more preferably titanium oxide or aluminum oxide.
  • the porous layer 12 may be formed of at least one of the above-described metal chalcogenide, compound having a perovskite crystal structure, silicon oxide, and carbon nanotube, and may be formed of a plurality of types. .
  • the thickness of the porous layer 12 is not particularly limited, but is usually in the range of 0.05 to 100 ⁇ m, preferably in the range of 0.1 to 100 ⁇ m. When used as a solar cell, the thickness is preferably 0.1 to 50 ⁇ m, more preferably 0.2 to 30 ⁇ m.
  • an electron transport layer can be provided on the surface of the transparent electrode 11b.
  • the electron transport layer has a function of transporting electrons generated in the photosensitive layer 13 to the conductive support 11.
  • the electron transport layer is formed of an electron transport material that can exhibit this function.
  • the electron transport material is not particularly limited, but an organic material (organic electron transport material) is preferable.
  • Organic electron transport materials include fullerene compounds such as [6,6] -Phenyl-C61-Butylic Acid Methyl Ester (PC 61 BM), perylene compounds such as perylenetetracarboxydiimide (PTCDI), and other tetracyanoquinodimethanes Examples thereof include a low molecular compound such as (TCNQ) or a high molecular compound.
  • the thickness of the electron transport layer provided on the first electrode 1 is not particularly limited, but is preferably 0.001 to 10 ⁇ m, and more preferably 0.01 to 1 ⁇ m.
  • the photosensitive layer 13 is preferably a surface of each layer of the porous layer 12 (photoelectric conversion elements 10A to 10C), blocking layer 14 (photoelectric conversion elements 10D to 10F), or electron transport layer (surface on which the photosensitive layer 13 is provided). Including the inner surface of the recess in the case where the surface is uneven.
  • the perovskite-type light absorber only needs to contain at least one specific perovskite compound described later, and may contain two or more perovskite compounds.
  • the photosensitive layer 13 may contain a light absorber other than the perovskite compound in combination with the perovskite light absorber. Examples of the light absorber other than the perovskite compound include metal complex dyes and organic dyes. At this time, the ratio between the perovskite light absorber and the other light absorber is not particularly limited.
  • the photosensitive layer 13 may be a single layer or a laminate of two or more layers.
  • a laminated structure in which layers made of different light absorbers are laminated may be used, and a hole transport material is included between the photosensitive layer and the photosensitive layer.
  • a laminated structure having an intermediate layer may also be used.
  • the aspect having the photosensitive layer 13 on the conductive support 11 is as described above.
  • the photosensitive layer 13 is preferably provided on the surface of each of the layers so that excited electrons flow through the conductive support 11. At this time, the photosensitive layer 13 may be provided on the entire surface of each of the above layers, or may be provided on a part of the surface.
  • the film thickness of the photosensitive layer 13 is appropriately set according to the mode having the photosensitive layer 13 on the conductive support 11 and is not particularly limited. Usually, the film thickness is, for example, preferably 0.001 to 100 ⁇ m, more preferably 0.01 to 10 ⁇ m, and particularly preferably 0.01 to 5 ⁇ m.
  • the total film thickness with the porous layer 12 is preferably 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more, further preferably 0.1 ⁇ m or more, and 0.3 ⁇ m or more. Particularly preferred. Further, the total film thickness is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and even more preferably 30 ⁇ m or less.
  • the total film thickness can be in a range where the above values are appropriately combined.
  • the total film thickness of the porous layer 12, the photosensitive layer 13, and the hole transport layer is not particularly limited. 01 ⁇ m or more is preferable, 0.05 ⁇ m or more is more preferable, 0.1 ⁇ m or more is further preferable, and 0.3 ⁇ m or more is particularly preferable.
  • the total film thickness is preferably 200 ⁇ m or less, more preferably 50 ⁇ m or less, further preferably 30 ⁇ m or less, and particularly preferably 5 ⁇ m or less.
  • the total film thickness can be in a range where the above values are appropriately combined.
  • the light absorber contained in the photosensitive layer may function as a hole transport material.
  • the amount of the perovskite compound used is preferably an amount that covers at least part of the surface of the first electrode 1, and more preferably an amount that covers the entire surface.
  • the photosensitive layer 13 includes, as a perovskite type light absorber, “a group 1 element or a cationic organic group A in the periodic table”, “a metal atom M other than a group 1 element in the periodic table”, “an anionic atom or atomic group” Perovskite compounds having "X”.
  • a periodic table group I element or a cationic organic group A, a metal atom M, and an anionic atom or atomic group X are each a cation (for convenience, sometimes referred to as cation A), metal, It exists as constituent ions of a cation (for convenience, sometimes referred to as cation M) and an anion (for convenience, sometimes referred to as anion X).
  • the cationic organic group means an organic group having a property of becoming a cation in the perovskite type crystal structure
  • the anionic atom or atomic group is an atom or atomic group having a property of becoming an anion in the perovskite type crystal structure.
  • the cation A is a cation of a group 1 element of the periodic table or an organic cation composed of a cationic organic group A.
  • the cation A is preferably an organic cation.
  • the cation of the Group 1 element of the periodic table is not particularly limited, and for example, the cation (Li + , Na + , K + of each element of lithium (Li), sodium (Na), potassium (K), or cesium (Cs). Cs + ), and a cesium cation (Cs + ) is particularly preferable.
  • the organic cation is not particularly limited as long as it is a cation of an organic group having the above properties, but is more preferably an organic cation of a cationic organic group represented by the following formula (1).
  • R 1a represents a substituent.
  • R 1a is not particularly limited as long as it is an organic group, but an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, or a group that can be represented by the following formula (2) is preferable. Among these, an alkyl group and a group that can be represented by the following formula (2) are more preferable.
  • Xa represents NR ⁇ 1c> , an oxygen atom, or a sulfur atom.
  • R 1b and R 1c each independently represent a hydrogen atom or a substituent.
  • *** represents a bond with the nitrogen atom of formula (1).
  • the organic cation of the cationic organic group A is an organic ammonium cation (R 1a —NH 3 + consisting of an ammonium cationic organic group A formed by bonding R 1a and NH 3 in the above formula (1). ) Is preferred.
  • the organic ammonium cation can take a resonance structure
  • the organic cation includes a cation having a resonance structure in addition to the organic ammonium cation.
  • X a is NH
  • R 1c is a hydrogen atom
  • an organic amidinium cation which is one of the resonance structures of the organic ammonium cation is also included.
  • Examples of the organic amidinium cation comprising an amidinium cationic organic group include a cation represented by the following formula (A am ).
  • a cation represented by the following formula (A am ) may be referred to as “R 1b C ( ⁇ NH) —NH 3 + ” for convenience.
  • the alkyl group is preferably an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, and still more preferably an alkyl group having 1 to 3 carbon atoms.
  • methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, pentyl, hexyl and the like can be mentioned.
  • the cycloalkyl group is preferably a cycloalkyl group having 3 to 8 carbon atoms, and examples thereof include cyclopropyl, cyclopentyl, and cyclohexyl.
  • the alkenyl group is preferably an alkenyl group having 2 to 18 carbon atoms, more preferably an alkenyl group having 2 to 6 carbon atoms.
  • the alkynyl group is preferably an alkynyl group having 2 to 18 carbon atoms, and more preferably an alkynyl group having 2 to 4 carbon atoms.
  • ethynyl, butynyl, hexynyl and the like can be mentioned.
  • the aryl group is preferably an aryl group having 6 to 14 carbon atoms, more preferably an aryl group having 6 to 12 carbon atoms, and examples thereof include phenyl.
  • the heteroaryl group includes a group consisting only of an aromatic heterocycle and a group consisting of a condensed heterocycle obtained by condensing an aromatic heterocycle with another ring such as an aromatic ring, an aliphatic ring or a heterocycle.
  • a ring-constituting hetero atom constituting the aromatic hetero ring a nitrogen atom, an oxygen atom and a sulfur atom are preferable.
  • the number of ring members of the aromatic heterocycle is preferably a 3- to 8-membered ring, more preferably a 5-membered ring or a 6-membered ring.
  • the condensed heterocycle including a 5-membered aromatic heterocycle and a 5-membered aromatic heterocycle include a pyrrole ring, an imidazole ring, a pyrazole ring, an oxazole ring, a thiazole ring, a triazole ring, a furan ring, and a thiophene ring. , Benzimidazole ring, benzoxazole ring, benzothiazole ring, indoline ring, and indazole ring.
  • Examples of the condensed heterocycle including a 6-membered aromatic heterocycle and a 6-membered aromatic heterocycle include, for example, pyridine ring, pyrimidine ring, pyrazine ring, triazine ring, quinoline ring, and quinazoline ring. Is mentioned.
  • X a represents NR 1c , an oxygen atom or a sulfur atom, and NR 1c is preferable.
  • R 1c represents a hydrogen atom or a substituent, and is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group, and more preferably a hydrogen atom.
  • R 1b represents a hydrogen atom or a substituent, and preferably a hydrogen atom.
  • R 1b examples include an amino group, an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, and a heteroaryl group.
  • Examples of the group that can be represented by the formula (2) include a (thio) acyl group, a (thio) carbamoyl group, an imidoyl group, and an amidino group.
  • the (thio) acyl group includes an acyl group and a thioacyl group.
  • the acyl group is preferably an acyl group having 1 to 7 carbon atoms, and examples thereof include formyl, acetyl (CH 3 C ( ⁇ O) —), propionyl, hexanoyl and the like.
  • the thioacyl group is preferably a thioacyl group having 1 to 7 carbon atoms in total, and examples thereof include thioformyl, thioacetyl (CH 3 C ( ⁇ S) —), thiopropionyl and the like.
  • the (thio) carbamoyl group includes a carbamoyl group (H 2 NC ( ⁇ O) —) and a thiocarbamoyl group (H 2 NC ( ⁇ S) —).
  • the amidino group as a group that can be represented by the formula (2) has a structure (—C ( ⁇ NH) NH 2 ) in which R 1b of the imidoyl group is an amino group and R 1c is a hydrogen atom.
  • the alkyl group, the cycloalkyl group, the alkenyl group, the alkynyl group, the aryl group, the heteroaryl group and the group that can be represented by the above formula (2), which can be adopted as R 1a , may have a substituent. Good.
  • the substituent that R 1a may have is not particularly limited, and examples thereof include an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic group, an alkoxy group, an alkylthio group, an amino group, Alkylamino group, arylamino group, acyl group, alkylcarbonyloxy group, aryloxy group, alkoxycarbonyl group, aryloxycarbonyl group, acylamino group, sulfonamide group, carbamoyl group, sulfamoyl group, halogen atom, cyano group, hydroxy group Or a carboxy group is mentioned.
  • Each substituent that R 1a may have may be further substituted with a substituent.
  • the metal cation M is not particularly limited as long as it is a cation of a metal atom other than the Group 1 element of the periodic table and a cation of a metal atom capable of adopting a perovskite crystal structure.
  • metal atoms examples include calcium (Ca), strontium (Sr), cadmium (Cd), copper (Cu), nickel (Ni), manganese (Mn), iron (Fe), cobalt (Co), Metal atoms such as palladium (Pd), germanium (Ge), tin (Sn), lead (Pb), ytterbium (Yb), europium (Eu), indium (In), titanium (Ti), bismuth (Bi) It is done.
  • M may be one metal cation or two or more metal cations.
  • the metal cation M is preferably a divalent cation, a divalent lead cation (Pb 2+ ), a divalent copper cation (Cu 2+ ), a divalent germanium cation (Ge 2+ ), and a divalent cation. Is more preferably at least one selected from the group consisting of tin cations (Sn 2+ ), more preferably Pb 2+ or Sn 2+ , and particularly preferably Pb 2+ . In the case of two or more kinds of metal cations, the ratio of the metal cations is not particularly limited.
  • the anion X represents an anionic atom or an anion of the atomic group X.
  • This anion is preferably an anion of a halogen atom, or an anion of each atomic group of NC ⁇ , NCS ⁇ , NCO ⁇ , HO ⁇ , NO 3 ⁇ , CH 3 COO ⁇ or HCOO ⁇ .
  • an anion of a halogen atom is more preferable.
  • a halogen atom a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc. are mentioned, for example.
  • the anion X may be an anion of one type of anionic atom or atomic group, or may be an anion of two or more types of anionic atom or atomic group.
  • an anion of iodine atom is preferable.
  • two types of anions of halogen atoms, particularly anions of chlorine atoms and iodine atoms are preferred.
  • the ratio of two or more types of anions is not particularly limited.
  • the perovskite compound used in the present invention is preferably a perovskite compound having a perovskite crystal structure having the above-described constituent ions and represented by the following formula (I).
  • A represents a group 1 element of the periodic table or a cationic organic group.
  • M represents a metal atom other than Group 1 elements of the periodic table.
  • X represents an anionic atom or atomic group.
  • a represents 1 or 2
  • the Group 1 element of the periodic table or the cationic organic group A forms the cation A having a perovskite crystal structure. Accordingly, the Group 1 element of the periodic table and the cationic organic group A are not particularly limited as long as they are elements or groups that can form the perovskite crystal structure by becoming the cation A.
  • the Periodic Table Group 1 element or the cationic organic group A has the same meaning as the Periodic Table Group 1 element or the cationic organic group described above for the cation A, and the preferred ones are also the same.
  • the metal atom M is a metal atom that forms the metal cation M having a perovskite crystal structure. Therefore, the metal atom M is not particularly limited as long as it is an atom other than the Group 1 element of the periodic table and can form the perovskite crystal structure by becoming the metal cation M.
  • the metal atom M is synonymous with the metal atom described in the metal cation M, and the preferred ones are also the same.
  • the anionic atom or atomic group X forms the anion X having a perovskite crystal structure. Therefore, the anionic atom or atomic group X is not particularly limited as long as it is an atom or atomic group that can form the perovskite crystal structure by becoming the anion X.
  • the anionic atom or atomic group X is synonymous with the anionic atom or atomic group described in the above anion X, and preferred ones are also the same.
  • the perovskite compound represented by formula (I) is a perovskite compound represented by the following formula (I-1) when a is 1, and when a is 2, the perovskite compound represented by formula (I-2) It is a perovskite compound represented.
  • A represents a group 1 element of the periodic table or a cationic organic group, and is synonymous with A in the formula (I), and preferred ones are also the same.
  • M represents a metal atom other than the Group 1 element of the periodic table, and is synonymous with M in the above formula (I), and preferred ones are also the same.
  • X represents an anionic atom or an atomic group, and is synonymous with X in the formula (I), and preferred ones are also the same.
  • the perovskite compound used in the present invention may be either a compound represented by formula (I-1) or a compound represented by formula (I-2), or a mixture thereof. Therefore, in the present invention, at least one perovskite compound only needs to be present as a light absorber, and it is not necessary to clearly distinguish which compound is strictly based on the composition formula, molecular formula, crystal structure, and the like. .
  • perovskite compounds that can be used in the present invention are illustrated below, but the present invention is not limited thereby.
  • the compound represented by the formula (I-1) and the compound represented by the formula (I-2) are described separately.
  • the compounds exemplified as the compound represented by the formula (I-1) may be a compound represented by the formula (I-2) depending on the synthesis conditions and the like.
  • the mixture is a mixture of the compound represented by -1) and the compound represented by formula (I-2).
  • the compounds exemplified as the compound represented by the formula (I-2) may be a compound represented by the formula (I-1), and may be represented by the formula (I-1).
  • the mixture is a mixture of the compound represented by formula (I-2).
  • Specific examples of the compound represented by the formula (I-2) include, for example, (C 2 H 5 NH 3 ) 2 PbI 4 , (C 10 H 21 NH 3 ) 2 PbI 4 , (CH 2 ⁇ CHNH 3 ) 2 PbI 4 , (CH ⁇ CNH 3 ) 2 PbI 4 , (n-C 3 H 7 NH 3 ) 2 PbI 4 , (n-C 4 H 9 NH 3 ) 2 PbI 4 , (C 6 H 5 NH 3 ) 2 PbI 4 , (C 6 H 5 CH 2 CH 2 NH 3 ) 2 PbI 4 , (C 6 H 3 F 2 NH 3 ) 2 PbI 4 , (C 6 F 5 NH 3 ) 2 PbI 4 , (C 4 H 3 SNH 3) 2 PbI 4, ( CH 3 NH 3) 2 CuCl 4, (C 4 H 9 NH 3) 2 GeI 4, include (C 3 H 7 NH 3) 2 FeBr 4.
  • the perovskite compound can be synthesized from a compound represented by the following formula (II) and a compound represented by the following formula (III).
  • A represents a group 1 element of the periodic table or a cationic organic group, and has the same meaning as A in the formula (I), and preferred ones are also the same.
  • X represents an anionic atom or atomic group, and is synonymous with X in formula (I), and preferred ones are also the same.
  • M represents a metal atom other than Group 1 elements of the periodic table, and has the same meaning as M in formula (I), and preferred ones are also the same.
  • X represents an anionic atom or atomic group, and is synonymous with X in formula (I), and preferred ones are also the same.
  • Examples of methods for synthesizing perovskite compounds include the methods described in Non-Patent Documents 1 and 2.
  • Akihiro Kojima, Kenjiro Teshima, Yasushio Shirai, and Tsutomu Miyasaka “Organal Halide Perovskitsu asVisibleSports-PrivateSport.” Am. Chem. Soc. 2009, 131 (17), p.
  • the method described in 6050-6051 is also included.
  • the amount of the perovskite light absorber used may be an amount that covers at least a part of the surface of the first electrode 1, and is preferably an amount that covers the entire surface.
  • the content of the perovskite compound is usually 1 to 100% by mass.
  • the photoelectric conversion element of the present invention has a charge transport layer 3 between the photosensitive layer 13 of the first electrode 1 and a particle-containing layer 4 described later.
  • the charge transport layer 3 is preferably provided on the surface of the photosensitive layer 13.
  • the charge transport layer 3 has a function of replenishing electrons to the oxidant of the light absorber, and is preferably a solid layer (solid charge transport layer).
  • the material for forming the charge transport layer 3 is not particularly limited as long as it exhibits the above function, and a hole transport material is preferable.
  • the hole transport material is not particularly limited as long as it has a function of transporting holes, and may be a liquid material or a solid material, and may be an inorganic material or an organic material. Examples thereof include inorganic materials such as CuI and CuNCS, and organic hole transport materials described in paragraph numbers 0209 to 0212 of JP-A No. 2001-291534, for example.
  • the organic hole transport material is preferably a conductive polymer such as polythiophene, polyaniline, polypyrrole and polysilane, a spiro compound in which two rings share a tetrahedral structure such as C and Si, and triarylamine. And aromatic amine compounds such as triphenylene compounds, nitrogen-containing heterocyclic compounds, and liquid crystalline cyano compounds.
  • the hole transporting material is preferably an organic hole transporting material that can be applied by solution and becomes solid.
  • the charge transport layer 3 does not contain the conductive fine particles contained in the particle-containing layer 4 as described above. Thereby, reverse electron transfer can be prevented between the particle-containing layer 4 and the photosensitive layer 13, and variations in photoelectric conversion efficiency and variations in durability can be prevented.
  • the film thickness of the charge transport layer 3 is not particularly limited, but is preferably 50 ⁇ m or less, more preferably 1 nm to 10 ⁇ m, further preferably 5 nm to 5 ⁇ m, and particularly preferably 10 nm to 1 ⁇ m.
  • the photoelectric conversion element of the present invention has a particle-containing layer 4 containing conductive fine particles and a polymer on the first electrode 1, preferably on the charge transport layer 3.
  • the particle-containing layer 4 has a function of transporting electrons flowing from the second electrode 2 and the like to the charge transport layer 3.
  • the layer configuration of the particle-containing layer 4 is as described above.
  • the conductive fine particles contained in the particle-containing layer 4 may be fine particles made of a conductive material.
  • the conductive material is not particularly limited, and examples thereof include metals, carbon materials, conductive polymers, and conductive metal oxides.
  • the carbon material may be a conductive material formed by bonding carbon atoms to each other, and examples thereof include fullerene, graphite, graphene, and carbon black.
  • Examples of the metal include various metals as materials for forming the second electrode 2 described later.
  • Examples of the conductive metal oxide include a metal oxide for forming the transparent electrode 11b. Among these, a carbon material is preferable, and carbon black is more preferable.
  • the conductive fine particles are particles having an aspect ratio of preferably 100 or less, more preferably 1 to 10 and having conductivity.
  • electroconductivity is not specifically limited, it means that the electrical resistivity (volume resistivity) as a measured value by a four-probe method is 10 7 ⁇ ⁇ cm or less.
  • the shape and dimensions (particle size and length) of the conductive fine particles are not particularly limited as long as they preferably satisfy the above aspect ratio.
  • the shape may be spherical, granular, irregular or bowl-shaped (bar-shaped), or a mixture thereof.
  • the particle size and length are not particularly limited, but the average particle size is usually 0.1 nm to 500 ⁇ m, preferably 1 nm to 100 ⁇ m, more preferably 1 nm to 1 ⁇ m, and still more preferably 1 nm to 500 nm.
  • the measuring method of an average particle diameter is performed using SEM.
  • the polymer contained in the particle-containing layer 4 may be an insulating material or a conductive material, but an insulating material is preferable.
  • the insulating material is not particularly limited, but refers to a material having a volume resistivity ( ⁇ ⁇ cm) larger than 10 7 .
  • the volume resistivity is a value measured by the four probe method.
  • the polymer of the insulating material is not particularly limited.
  • polyethylene polyethylene
  • PP polypropylene
  • PVC polyvinyl chloride
  • PS polystyrene
  • PVAc polyurethane
  • PTEF polytetra Fluoroethylene
  • ABS acrylonitrile-butadiene-styrene copolymer resin
  • AS acrylonitrile-styrene copolymer resin
  • PA polyamide
  • Acetal resin polyoxymethylene, POM
  • PC polycarbonate
  • PC polyphenylene oxide resin
  • PPO polyethylene terephthalate
  • PBT polybutylene terephthalate
  • COP cycloolefin polymer
  • COP polyphenol Sulfide
  • PSF polysulfone
  • PES polyether sulfone
  • PI polyimide
  • polyamideimide polyamideimide
  • the weight average molecular weight of the polymer of the insulating material is not particularly limited, but is preferably 1,000 to 1,000,000, more preferably 3,000 to 500,000, and further preferably 5,000 to 300,000. preferable.
  • the weight average molecular weight is a value measured by gel permeation chromatography (GPC) as a standard polystyrene equivalent value.
  • the content of the conductive fine particles is not limited as long as the particle-containing layer 4 can exhibit the above function, and cannot be uniquely determined by the specific gravity of the conductive fine particles and the polymer, the size of the conductive fine particles, and the like.
  • the content of the conductive fine particles in the particle-containing layer 4 is preferably 0.1 to 99.9% by mass, more preferably 1 to 99% by mass, and more preferably 20 to 95%.
  • the content of the polymer cannot be uniquely determined.
  • 0.1 to 99.9% by mass is preferable, 1 to 99% by mass is more preferable, and 5 to 80% is preferable. More preferred.
  • the ratio of the content of the conductive fine particles to the polymer cannot be uniquely determined.
  • the ratio of the content [content of conductive fine particles: content of polymer] is 999: 1. Is preferably ⁇ 1: 999, more preferably 99: 1 to 1:99, and more preferably 19: 1 to 1: 4.
  • the particle-containing layer 4 having a two-layer structure can be formed by setting the content of the conductive fine particles and the content ratio to a large value within the above range.
  • the thickness of the particle content 4 is not particularly limited, but is preferably 0.001 to 10 ⁇ m, more preferably 0.01 to 1 ⁇ m, and particularly preferably 0.05 to 0.5 ⁇ m.
  • the film thickness of the fine particle layer 4b is not particularly limited, but is preferably 0.001 to 1 ⁇ m, more preferably 0.005 to 0.5 ⁇ m, and 0.01 to 0.00. 1 ⁇ m is particularly preferable.
  • the second electrode 2 functions as a positive electrode or a negative electrode in the solar cell.
  • the 2nd electrode 2 will not be specifically limited if it has electroconductivity, Usually, it can be set as the same structure as the electroconductive support body 11. FIG. If the strength is sufficiently maintained, the support 11a is not necessarily required.
  • the particle-containing layer 4, particularly the fine particle layer 4 b can be used as the second electrode 2 (the particle-containing layer 4 also serves as the second electrode 2).
  • the structure of the second electrode 2 is preferably a structure having a high current collecting effect.
  • the electroconductive support body 11 is transparent and sunlight is entered from the support body 11a side. In this case, it is more preferable that the second electrode 2 has a property of reflecting light.
  • Examples of the material for forming the second electrode 2 include platinum (Pt), gold (Au), nickel (Ni), copper (Cu), silver (Ag), indium (In), ruthenium (Ru), palladium ( Examples thereof include metals such as Pd), rhodium (Rh), iridium (Ir), osnium (Os), and aluminum (Al), the above-described conductive metal oxides, carbon materials, and conductive polymers. Examples of the carbon material include those described for the conductive fine particles and carbon nanotubes.
  • the second electrode 2 may be a metal or conductive metal oxide thin film (including a thin film formed by vapor deposition) or the thin film.
  • a glass substrate or a plastic substrate having the above is preferable.
  • glass substrate or plastic substrate glass having a thin film of gold or platinum or glass on which platinum is deposited is preferable.
  • the material forming the second electrode 2 is preferably carbon black or graphene among carbon materials.
  • the film thickness of the second electrode 2 is not particularly limited, but is preferably 0.01 to 100 ⁇ m, more preferably 0.01 to 10 ⁇ m, and particularly preferably 0.01 to 1 ⁇ m.
  • a spacer or a separator can be used instead of the blocking layer 14 or the like, or together with the blocking layer 14 or the like.
  • a hole blocking layer may be provided between the second electrode 2 and the charge transport layer 3.
  • the solar cell of this invention is comprised using the photoelectric conversion element of this invention.
  • a photoelectric conversion element 10 provided with an external circuit 6 can be used as a solar cell.
  • the external circuit 6 connected to the first electrode 1 (transparent electrode 11b) and the second electrode 2 a known one can be used without particular limitation.
  • the present invention is disclosed in, for example, Non-Patent Documents 1 and 2, and Am. Chem. Soc. 2009, 131 (17), p. It can be applied to each solar cell described in 6050-6051.
  • the photoelectric conversion element and the solar cell of the present invention are provided with the charge transport layer and the particle-containing layer on the first electrode, and the variation in the initial photoelectric conversion efficiency between the elements and after a predetermined period has elapsed.
  • the variation in the amount of decrease in photoelectric conversion efficiency (with time) is reduced.
  • the photoelectric conversion element and the solar cell of the present invention can be produced by known production methods such as Non-Patent Documents 1 and 2, and J. Org. Am. Chem. Soc. 2009, 131 (17), p. It can be produced by the method described in 6050-6051. Below, the manufacturing method of the photoelectric conversion element and solar cell of this invention is demonstrated easily.
  • At least one of the blocking layer 14, the porous layer 12, and the electron transport layer is formed on the surface of the conductive support 11 as desired.
  • the blocking layer 14 can be formed by, for example, a method of applying a dispersion containing the insulating material or a precursor compound thereof on the surface of the conductive support 11 and baking it, or a spray pyrolysis method.
  • the material forming the porous layer 12 is preferably used as fine particles, and more preferably used as a dispersion containing fine particles.
  • the method for forming the porous layer 12 is not particularly limited, and examples thereof include a wet method, a dry method, and other methods (for example, a method described in Chemical Review, Vol. 110, page 6595 (2010)). It is done. In these methods, the dispersion (paste) is applied to the surface of the conductive support 11 or the surface of the blocking layer 14, and then fired at a temperature of 100 to 800 ° C. for 10 minutes to 10 hours, for example, in air. preferable. Thereby, microparticles
  • the firing temperature other than the last firing is preferably performed at a temperature lower than the last firing temperature (the last firing temperature).
  • the firing temperature other than the last can be set within a range of 50 to 300 ° C.
  • the final firing temperature can be set to be higher than the firing temperature other than the last within the range of 100 to 600 ° C.
  • the firing temperature is preferably 60 to 500 ° C.
  • the amount of the porous material applied when forming the porous layer 12 is appropriately set according to the thickness of the porous layer 12 and the number of times of application, and is not particularly limited.
  • the coating amount of the porous material per 1 m 2 of the surface area of the conductive support 11 is preferably 0.5 to 500 g, and more preferably 5 to 100 g.
  • an electron transport material solution containing an electron transport material can be applied and dried.
  • the method for providing the photosensitive layer 13 includes a wet method and a dry method, and is not particularly limited.
  • a wet method is preferred, and for example, a method of contacting with a light absorbent solution containing a perovskite type light absorbent is preferred.
  • a light absorbent solution for forming a photosensitive layer is prepared.
  • the light absorber solution contains MX 2 and AX, which are raw materials for the perovskite compound.
  • A, M and X have the same meanings as A, M and X in the above formula (I).
  • the molar ratio of MX 2 to AX is appropriately adjusted according to the purpose.
  • the molar ratio of AX to MX 2 is preferably 1: 1 to 10: 1.
  • This light absorbent solution can be prepared by mixing MX 2 and AX in a predetermined molar ratio, preferably by heating.
  • This forming liquid is usually a solution, but may be a suspension.
  • the heating conditions are not particularly limited, but the heating temperature is preferably 30 to 200 ° C, more preferably 60 to 150 ° C, and even more preferably 70 to 150 ° C.
  • the heating time is preferably 0.5 to 100 hours, more preferably 1 to 3 hours.
  • the solvent or dispersion medium those described later can be used.
  • the prepared light absorbent solution is brought into contact with the surface of the layer that forms the photosensitive layer 13 on the surface thereof (in the photoelectric conversion element 10, one of the porous layer 12, the blocking layer 14, and the electron transport layer).
  • the contact temperature is preferably 5 to 100 ° C.
  • the immersion time is preferably 5 seconds to 24 hours, more preferably 20 seconds to 1 hour.
  • drying by heat is preferable, and drying is usually performed by heating to 20 to 300 ° C., preferably 50 to 170 ° C.
  • the photosensitive layer can also be formed according to the method for synthesizing the perovskite compound.
  • any solution may be applied first, but preferably the MX 2 solution is applied first.
  • the molar ratio of AX to MX 2 in this method, coating conditions, and drying conditions are the same as in the above method.
  • AX or MX 2 can be vapor-deposited instead of applying the AX solution and the MX 2 solution.
  • Still other methods include dry methods such as vacuum deposition using a compound or mixture from which the solvent of the light absorber solution has been removed.
  • the AX and the MX 2 simultaneously or sequentially, and a method of depositing.
  • a perovskite compound is formed as a photosensitive layer on the surface of the porous layer 12, the blocking layer 14, or the electron transport layer.
  • the charge transport layer 3 is formed on the photosensitive layer 13 thus provided.
  • the charge transport layer 3 can be formed by applying a charge transport material solution containing a charge transport material and drying it.
  • concentration of the charge transport material is 0.1 to 50% by mass because the charge transport material solution has excellent coating properties and, when the porous layer 12 is provided, the charge transport material solution easily penetrates into the pores of the porous layer 12. Is preferred.
  • the particle-containing layer 4 is formed on the charge transport layer 3.
  • a forming liquid containing conductive fine particles and a polymer is prepared.
  • This forming liquid is usually prepared as a dispersion of conductive fine particles.
  • the conductive fine particles and the polymer are as described above.
  • the content of the conductive fine particles in the forming liquid is not particularly limited as long as the charge transport function can be imparted to the particle-containing layer 4. For example, 0.0001 to 99.99% by mass is preferable, 0.0002 to 90% by mass is more preferable, and 0.001 to 50% by mass is further preferable.
  • the content of the polymer in the forming liquid is not particularly limited, but is preferably 0.0001 to 99.99% by mass, and more preferably 0.001 to 50% by mass.
  • the ratio of the content of the conductive fine particles and the polymer is not particularly limited as long as the charge transport function can be imparted to the particle-containing layer 4.
  • the content ratio [conductive fine particle content: polymer content] is preferably 999: 1 to 1: 999, and more preferably 99: 1 to 1:99.
  • the prepared forming solution is brought into contact with the surface of the charge transport layer 3. Specifically, it is preferable to apply or immerse the forming liquid.
  • the contact temperature is preferably 10 to 150 ° C, more preferably 20 to 100 ° C.
  • the immersion time is preferably 1 second to 5 hours, and more preferably 10 seconds to 1 hour.
  • the drying is preferably performed by heating, and is usually performed by heating to 10 to 200 ° C., preferably 20 to 100 ° C.
  • a method for forming a layer (fine particle layer 4b) containing no polymer on the coating surface by adjusting the ratio of the conductive fine particles in the coating solution to a polymer content, preferably within the above range, and coating examples thereof include a method of washing the coating surface so that only the polymer component is removed with an organic solvent after drying and forming the fine particle layer 4b, a method of physically exposing the conductive fine particle layer by polishing, and the like.
  • the second electrode 2 is formed as necessary.
  • the second electrode 2 can be formed in the same manner as the first electrode 1, or can be formed by vapor deposition or the like.
  • the electrode formation liquid containing a carbon material can be made to contact the particle content layer 4, and it can dry and form as needed. In this way, the photoelectric conversion element 10 is manufactured.
  • the film thickness of each layer can be adjusted by appropriately changing the concentration of each dispersion or solution and the number of coatings. For example, when the thick photosensitive layer 13 is provided, the light absorbent solution may be applied and dried a plurality of times.
  • Each of the above-mentioned dispersions, solutions and forming liquids may contain additives such as a dispersion aid and a surfactant, if necessary.
  • Examples of the solvent or dispersion medium used in the method for producing a photoelectric conversion element include the solvents described in JP-A-2001-291534, but are not particularly limited thereto.
  • an organic solvent is preferable, and an alcohol solvent, an amide solvent, a nitrile solvent, a hydrocarbon solvent, a lactone solvent, a halogen solvent, a sulfide solvent, and a mixed solvent of two or more of these are preferable.
  • As the mixed solvent a mixed solvent of an alcohol solvent and a solvent selected from an amide solvent, a nitrile solvent, or a hydrocarbon solvent is preferable.
  • methanol, ethanol, isopropanol, ⁇ -butyrolactone, n-propyl sulfide, chlorobenzene, acetonitrile, N, N-dimethylformamide (DMF), dimethylacetamide, or a mixed solvent thereof is preferable.
  • the application method of the solution, dispersant, and forming solution for forming each layer is not particularly limited, and spin coating, extrusion die coating, blade coating, bar coating, screen printing, stencil printing, roll coating, curtain coating, spray coating, dip.
  • Known coating methods such as coating, ink jet printing, and dipping can be used. Of these, spin coating, screen printing and the like are preferable.
  • the photoelectric conversion element of the present invention may be subjected to an efficiency stabilization treatment such as annealing, light soaking, and leaving in an oxygen atmosphere as necessary.
  • the photoelectric conversion element produced as described above can be used as a solar cell by connecting the external circuit 6 to the first electrode 1 (transparent electrode 11b) and the second electrode 2.
  • Example 1 Manufacture of photoelectric conversion element (sample number 101)
  • the photoelectric conversion element 10A shown in FIG. 1 was manufactured by the following procedure.
  • conductive support 11 A fluorine-doped SnO 2 conductive film (transparent electrode 11b, film thickness 300 nm) was formed on a glass substrate (support 11a, thickness 2 mm), and the conductive support 11 was produced.
  • blocking layer 14 A 15 mass% isopropanol solution of titanium diisopropoxide bis (acetylacetonate) (manufactured by Aldrich) was diluted with 1-butanol to prepare a 0.02 M (mol / L) blocking layer solution. A blocking layer 14 (thickness 50 nm) made of titanium oxide is formed on the SnO 2 conductive film of the conductive support 11 at 450 ° C. by spray pyrolysis using the prepared 0.02M blocking layer solution. did.
  • the prepared titanium oxide paste was applied onto the blocking layer 14 by screen printing and baked.
  • the titanium oxide paste was applied and fired twice. As the firing temperature, the first firing was performed at 130 ° C., and the second firing was performed at 500 ° C. for 1 hour.
  • the obtained titanium oxide fired body was immersed in a 40 mM TiCl 4 aqueous solution, heated at 60 ° C. for 1 hour, and then heated at 500 ° C. for 30 minutes to form a porous layer 12 (thickness of TiO 2). 250 nm).
  • the obtained purified CH 3 NH 3 I and PbI 2 were mixed at a molar ratio of 3: 1 and mixed with stirring in DMF at 60 ° C. for 12 hours, and then filtered through a polytetrafluoroethylene (PTFE) syringe filter.
  • a 40 mass% light absorber solution was prepared.
  • the prepared light absorbent solution was applied on the porous layer 12 by a spin coating method (60 seconds at 2000 rpm).
  • the applied light absorbent solution is dried on a hot plate at 100 ° C. for 60 minutes, and the photosensitive layer 13 containing a perovskite compound of CH 3 NH 3 PbI 3 (thickness 300 nm (including the thickness 250 nm of the porous layer 12)) Formed. In this way, the first electrode 1A was produced.
  • the prepared solution for the charge transport layer was applied onto the photosensitive layer 13 of the first electrode 1A by spin coating (3,000 rpm for 30 seconds).
  • the applied charge transport material solution was dried on a hot plate at 30 ° C. for 3 hours to form a solid charge transport layer 3 (film thickness 100 nm).
  • ⁇ Formation of particle-containing layer 4 Poly (3-hexylthiophene-2,5-diyl, weight average molecular weight 40,000) and fine silver particles (average particle size 20 to 100 nm, aspect ratio 1 to 20) in a mass ratio of 1: 3, A forming solution was prepared by pouring into toluene. The total solid concentration of this preparation was 10% by mass. Next, the prepared forming solution was applied on the charge transport layer 3 by spin coating (at 3000 rpm for 30 seconds). The applied forming solution was dried at 50 ° C. for 2 hours by a hot plate to form a particle-containing layer 4 (film thickness 120 nm). The particle-containing layer 4 had a two-layer structure having a mixed layer 4a and a fine particle layer 4b. The thicknesses of the mixed layer 4a and the fine particle layer 4b were 100 nm and 20 nm, respectively.
  • Photoelectric conversion elements (sample numbers 102 to 105, 107 and 108)
  • the photoelectric conversion element (sample number 101) was changed except that the hole transport material of the charge transport material solution or the polymer or conductive fine particles of the forming liquid was changed to the compounds shown in Table 1. ), Photoelectric conversion elements (sample numbers 102 to 105, 107, and 108) were manufactured.
  • the carbon black (CB) used in Sample No. 102 and the like was (average particle size 5 to 50 nm, aspect ratio 1 to 10).
  • the weight average molecular weights of PMMA, ABS and PC were 15,000, 8,000 and 150,000, respectively.
  • the second electrode 2 was replaced with silver and carbon black was used as described below, except that it was formed as follows.
  • a photoelectric conversion element (sample number 106) was produced.
  • the second electrode 2 (thickness 150 nm) was prepared by applying an electrode forming liquid containing 9% by mass of carbon black (average particle size 5 to 50 nm, aspect ratio 1 to 10) by spin coating (3,000 rpm for 30 seconds). And coated on the particle-containing layer 4.
  • the applied electrode forming liquid was dried by a hot plate at 70 ° C. for 60 minutes to form a film.
  • the photoelectric conversion element (sample number 109) is the photoelectric conversion element 10 ⁇ / b> C shown in FIG. 3, and the particle-containing layer 4 also serves as the second electrode 2.
  • the photoelectric conversion element (sample number 109) was prepared in the same manner as the manufacture of the photoelectric conversion element (sample number 101) except that the second electrode 2 was not produced. Manufactured.
  • a photoelectric conversion element (sample number c11) was produced in the same manner as the production of the photoelectric conversion element (sample number 104) except that the particle-containing layer 4 was not formed. .
  • sample number c12 Manufacture of photoelectric conversion element (sample number c12)
  • a photoelectric conversion element (sample number c12) was produced in the same manner as in the method described in the experimental example (Methods column) of Non-Patent Document 2.
  • sample number c12 each layer, component, and the like are described in Table 1 for convenience so as to be easily compared with the photoelectric conversion element of the present invention. Therefore, the photoelectric conversion element of sample number c12 has the structure described in Non-Patent Document 2, and does not have the structure shown in Table 1.
  • the photoelectric conversion element (sample number c13) is manufactured in the same manner as the manufacture of the photoelectric conversion element (sample number 101) except that the charge transport layer 3 was not formed. did.
  • an average value ( ⁇ I av ) of initial photoelectric conversion efficiency was determined.
  • Conversion efficiency ( ⁇ I ) ⁇ average value ( ⁇ I av )) was calculated.
  • the initial photoelectric conversion efficiency difference ( ⁇ D ) thus obtained is classified based on the following criteria in the range including the maximum value (the value at which the absolute value of the difference is the maximum), and the initial photoelectric conversion efficiency variation Evaluated.
  • the evaluation “C” or higher is a passing level of this test, and preferably the evaluations “B” and “A”.
  • the results are shown in Table 1 below.
  • the initial photoelectric conversion efficiency of the photoelectric conversion element (sample No. 101) measured in the evaluation of the variation in the initial photoelectric conversion efficiency was 6% or more and functioned sufficiently as a solar cell.
  • the average value of the retention rate of the photoelectric conversion efficiency (eta M) (eta M av) the mean value (eta M av) as 1 (reference), for each photoelectric conversion element, the average value (eta M av ) ( ⁇ M2 maintenance rate of photoelectric conversion element ( ⁇ M ) ⁇ average value ( ⁇ M av )).
  • the range including the maximum value (the value at which the absolute value of the difference is maximum) among the difference ( ⁇ M2 ) in the photoelectric conversion efficiency maintenance rate thus obtained is classified according to the following criteria, and variations in durability are determined. evaluated. In the evaluation criteria for the durability variation, the evaluation “C” or higher is a passing level of this test, and preferably the evaluations “B” and “A”.
  • the charge transport layer 3 and the particle-containing layer 4 are provided on the first electrode 1A (sample numbers 101 to 109). It was found that the variation in the initial photoelectric conversion efficiency was small, and the variation in the amount of decrease in the photoelectric conversion efficiency after a predetermined period of time (durability variation) was small. In particular, when the polymer contained in the particle-containing layer 4 is an insulating material, and when the conductive fine particles are fine particles of a carbon material, the variation in initial photoelectric conversion efficiency and the photoelectric conversion efficiency after a predetermined period have elapsed. It has been found that the variation in the amount of decrease can be further reduced. The above two effects of reducing variation were similarly excellent even when the particle-containing layer 4 also served as the second electrode 2.
  • photoelectric conversion elements that do not include at least one of the charge transport layer and the particle-containing layer all have variations in initial photoelectric conversion efficiency and photoelectric conversion after a predetermined period has elapsed. It was found that the variation in the amount of decrease in efficiency could not be reduced sufficiently. In particular, even when a charge transport layer and a PMMA layer containing carbon nanotubes are included (photoelectric conversion element (sample number c12)), the variation is not sufficiently reduced.
  • Example 2 Manufacture of photoelectric conversion elements (sample numbers 201 to 208)
  • the photoelectric conversion element 10D shown in FIG. 4 was manufactured by the following procedure. In the manufacture of the photoelectric conversion elements (sample numbers 101 to 108), the photoelectric conversion elements (sample numbers 101 to 108) were manufactured except that the photosensitive layer 13 was provided on the blocking layer 14 without providing the porous layer 12. In the same manner as described above, photoelectric conversion elements 10D (sample numbers 201 to 208) were produced. (Manufacture of photoelectric conversion element (sample number 209))
  • the photoelectric conversion element 10F shown in FIG. 6 was manufactured according to the procedure shown below.
  • the production was performed in the same manner as the production of the photoelectric conversion element (sample number 109), except that the photosensitive layer 13 was provided on the blocking layer 14 without providing the porous layer 12.
  • a photoelectric conversion element 10F (sample number 209) was manufactured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

ペロブスカイト型光吸収剤を含む感光層を導電性支持体上に有する第一電極と、第一電極上に導電性微粒子とポリマーとを含有する粒子含有層と、感光層と粒子含有層の間に導電性微粒子を含有しない電荷輸送層とを有する光電変換素子、および、この光電変換素子を用いた太陽電池。

Description

光電変換素子および太陽電池
 本発明は、光電変換素子および太陽電池に関する。
 光電変換素子は、各種の光センサー、複写機、太陽電池等に用いられている。太陽電池は、非枯渇性の太陽エネルギーを利用するものとして、その本格的な実用化が期待されている。なかでも、増感剤として有機色素またはRuビピリジル錯体等を用いた色素増感太陽電池は、研究開発が盛んに進められ、光電変換効率が11%程度に到達している。
 その一方で、近年、ペロブスカイト型結晶構造を有する金属ハロゲン化物を光吸収剤として用いた太陽電池が、比較的高い光電変換効率を達成できるとの研究成果が報告され、注目を集めている。
 例えば、非特許文献1には、CHNHPbIClで表される金属ハロゲン化物を光吸収剤として用いた太陽電池が記載されている。非特許文献2には、CHNHPbI(3-x)Clの層上に、ポリ(3-ヘキシルチオフェン)で被覆した単層カーボンナノチューブを絶縁性ポリマーに埋め込んだ層を設けた太陽電池が記載されている。
Science,2012年,vol.338,p.643-647 Nano lett,2014,14,p.5561-5568
 ペロブスカイト型結晶構造を持つ化合物(以下、「ペロブスカイト化合物」ともいう)を光吸収剤として用いた光電変換素子は、光電変換効率の向上に一定の成果が得られている。しかし、ペロブスカイト化合物を光吸収剤として用いた光電変換素子は、初期(製造時の)光電変換効率がばらつきやすく、太陽電池としての実用化に際しては、素子間の初期性能のばらつきを低減することが求められる。また、ペロブスカイト化合物を用いた光電変換素子は、一般に、経時により光電変換効率(電池性能)が低下しやすい。しかも、この所定期間経過後の光電変換効率の低下量は素子間で大きく変動し、初期の光電変換効率のばらつきに加えて、光電変換効率の安定性も十分ではないことが分かった。
 本発明は、ペロブスカイト化合物を光吸収剤として用いた光電変換素子であっても、素子間の初期光電変換効率のばらつきが小さく、しかも光電変換効率の安定性にも優れる光電変換素子および太陽電池を提供することを課題とする。
 本発明者らは、ペロブスカイト化合物を光吸収剤として用いた光電変換素子ないし太陽電池において、ペロブスカイト型光吸収剤を含む感光層の上方に導電性微粒子およびポリマーを含有する粒子含有層を設け、さらにこの粒子含有層と感光層との間に導電性微粒子を含有しない電荷輸送層を設けることにより、初期の光電変換効率のばらつきに加えて、所定期間経過後の光電変換効率の低下量のばらつき(耐久性ばらつき)をも抑えられた光電変換素子ないし太陽電池が得られることを見出した。本発明はこの知見に基づき、さらに検討を重ね、完成されるに至ったものである。
 すなわち、上記の課題は以下の手段により解決された。
<1>ペロブスカイト型光吸収剤を含む感光層を導電性支持体上に有する第一電極と、
 第一電極上に、導電性微粒子とポリマーとを含有する粒子含有層と、
 感光層と粒子含有層の間に、導電性微粒子を含有しない電荷輸送層とを有する光電変換素子。
<2>電荷輸送層が、正孔輸送層である<1>に記載の光電変換素子。
<3>ポリマーが、絶縁材料である<1>または<2>に記載の光電変換素子。
<4>導電性微粒子が、炭素材料の微粒子である<1>~<3>のいずれか1つに記載の光電変換素子。
<5>粒子含有層上に、第一電極に対向する第二電極を有する<1>~<4>のいずれか1つに記載の光電変換素子。
<6>粒子含有層が、第一電極に対向する第二電極を兼ねる<1>~<4>のいずれか1つに記載の光電変換素子。
<7>ペロブスカイト型光吸収剤が、周期表第一族元素もしくはカチオン性有機基Aのカチオン、周期表第一族元素以外の金属原子のカチオン、および、アニオン性原子もしくは原子団Xのアニオンを有するペロブスカイト型結晶構造を持つ化合物を含む<1>~<6>のいずれか1つに記載の光電変換素子。
<8>導電性支持体と感光層との間に多孔質層を有する<1>~<7>のいずれか1つに記載の光電変換素子。
<9>上記<1>~<8>のいずれか1つに記載の光電変換素子を用いた太陽電池。
 本明細書において、各式の表記は、化合物の化学構造の理解のために、一部を示性式として表記することもある。これに伴い、各式において、部分構造を、(置換)基、イオンまたは原子等と称するが、本明細書において、これらは、(置換)基、イオンまたは原子等のほかに、上記式で表される(置換)基もしくはイオンを構成する元素団、または、元素を意味することがある。
 本明細書において、化合物(錯体、色素を含む)の表示については、化合物そのもののほか、その塩、そのイオンを含む意味に用いる。さらに、置換または無置換を明記していない化合物については、目的とする効果を損なわない範囲で、任意の置換基を有する化合物を含む意味である。このことは、置換基および連結基等(以下、置換基等という)についても同様である。
 本明細書において、特定の符号で表示された置換基等が複数あるとき、または複数の置換基等を同時に規定するときには、特段の断りがない限り、それぞれの置換基等は互いに同一でも異なっていてもよい。このことは、置換基等の数の規定についても同様である。また、複数の置換基等が近接するとき(特に、隣接するとき)には、特段の断りがない限り、それらが互いに連結して環を形成してもよい。また、環、例えば脂環、芳香族環、ヘテロ環はさらに縮環して縮合環を形成していてもよい。
 本明細書において、「~」を用いて表される数値範囲は、「~」前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本発明の光電変換素子および太陽電池は、ペロブスカイト化合物を光吸収剤として用いていながらも、素子間の初期光電変換効率のばらつきと、所定期間経過後の光電変換効率の低下量のばらつきとが、いずれも、低減されている。
 本発明の上記および他の特徴および利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
図1は本発明の光電変換素子の好ましい態様について模式的に示した断面図である。 図2は本発明の光電変換素子の別の好ましい態様について模式的に示した断面図である。 図3は本発明の光電変換素子のまた別の好ましい態様について模式的に示した断面図である。 図4は本発明の光電変換素子のさらに別の好ましい態様について模式的に示した断面図である。 図5は本発明の光電変換素子のさらにまた別の好ましい態様について模式的に示した断面図である。 図6は本発明の光電変換素子のまた別の好ましい態様について模式的に示した断面図である。
<<光電変換素子>>
 本発明の光電変換素子は、光吸収剤として用いられるペロブスカイト化合物(ペロブスカイト型光吸収剤ともいう。)を含む感光層を導電性支持体上に有する第一電極と、第一電極上に、電荷輸送層および粒子含有層とを、この順で有する。
 本発明において、導電性支持体上に感光層を有するとは、導電性支持体の表面に接して感光層を(直接)設ける態様、および、導電性支持体の表面上方に他の層を介して感光層を有する態様を含む意味である。
 導電性支持体の表面上方に他の層を介して感光層を有する態様において、導電性支持体と感光層との間に設けられる他の層としては、太陽電池の電池性能を低下させないものであれば特に限定されない。例えば、多孔質層、ブロッキング層または電子輸送層等が挙げられる。
 本発明において、導電性支持体の表面上方に他の層を介して感光層を有する態様としては、例えば、感光層が、多孔質層の表面に薄い膜状または厚い膜状に設けられる態様(図1~図3)、ブロッキング層の表面に薄い膜状または厚い膜状に設けられる態様(図4~図6)、電子輸送層の表面に薄い膜状または厚い膜状に設けられる態様等が挙げられる。感光層は、線状または分散状に設けられてもよいが、好ましくは膜状に設けられる。
 粒子含有層は、第一電極上に他の層を介して設けられ、好ましくは後述する電荷輸送層に隣接して設けられる。この粒子含有層は、導電性微粒子とポリマーとを含有する層であり、少なくとも層の厚さ方向に電荷を輸送可能に形成される。粒子含有層は、単層でも複層でもよい。
 本発明において、粒子含有層は、導電性微粒子とポリマーとを含有する層である。この粒子含有層は、導電性微粒子とポリマーとが、好ましくは密に混合されている領域が層状に広がった混合層を含んでいる。粒子含有層は、混合層を含んでいれば、導電性微粒子とポリマーとはどのような状態で含有(混合)されていてもよい。例えば、導電性微粒子からなる層表面の一部をポリマーが被覆していてもよい。
 粒子含有層および混合層は、ポリマーと導電性微粒子とが混合されていない領域を含んでいてもよい。この領域は、混合層の機能を損なわない程度において、粒子含有層中に分散していてもよく、粒子含有層の厚さ方向に集中して微粒子からなる微粒子層を形成していてもよい。
 単層構造の粒子含有層として、例えば、図2および図5に示されるように、導電性微粒子とポリマーとが混合された混合層が挙げられる。この混合層は、導電性微粒子の間隙をポリマーが充填している。
 また、複層構造の粒子含有層として、例えば、図1、図3、図4および図6に示されるように、少なくとも感光層13側に、好ましくは電荷輸送層3に隣接した混合層4aと、この混合層4aの、感光層13とは反対側に、導電性微粒子からなる微粒子層4bとを含むもの等が挙げられる。
 電荷輸送層は、第一電極上に直接または他の層を介して設けられ、好ましくは第一電極に隣接して設けられる。この電荷輸送層は、少なくとも層の厚さ方向に電荷を輸送可能に形成される。
 電荷輸送層は、導電性微粒子を含有しない層である。本発明の電荷輸送層において、導電性微粒子を含有しないとは、電荷輸送層の電荷(正孔)輸送機能が損なわれない範囲で導電性微粒子を含有していてもよいことを包含する。例えば、電荷輸送層中の導電性微粒子の含有率は、0~0.01質量%とすることをいう。
 電荷輸送層は、後述するように、好ましくは正孔輸送材料を含有する。
 このように、光電変換素子が、第一電極上に電荷輸送層および粒子含有層をこの順で有していると、初期光電変換効率のばらつきが小さく、しかも所定期間経過後の光電変換効率の低下量のばらつきも低減できる。
 カーボンナノチューブ等を含有するCNT含有層を感光層に対して第二電極側に設けると、光電変換素子の外部からの水等の劣化因子をブロックして、光電変換素子の耐久性が向上する。一方、このCNT含有層を感光層上に単純に形成しただけでは光電変換効率のばらつきが生じる。これは、カーボンナノチューブ等がCNT含有層を貫いて(このCNT含有層から突出して)感光層であるペロブスカイト化合物と接触することによる逆電子移動等が原因と考えられる。特に、カーボンナノチューブ等が上記CNT含有層から突出する状態、頻度等は一定しないと考えられる。
 しかし、本発明においては、カーボンナノチューブ等ではなく導電性微粒子を含有させ、さらに、この粒子を含有する粒子含有層の感光層側に電荷輸送層を設ける。これにより、粒子含有層に含有される導電性粒子と感光層との接触を防止できる。しかも、この接触は、導電性微粒子が粒子含有層から突出せずに粒子含有層中に留まっており、効果的に防止されると考えられる。
 本発明の光電変換素子は、本発明で規定する構成以外の構成は特に限定されず、光電変換素子および太陽電池に関する公知の構成を採用できる。本発明の光電変換素子を構成する各層は、目的に応じて設計され、例えば、単層に形成されても、複層に形成されてもよい。
 以下、本発明の光電変換素子の好ましい態様について説明する。
 図1~図6において、同じ符号は同じ構成要素(部材)を意味する。
 本明細書において、単に光電変換素子10という場合は、特に断らない限り、光電変換素子10A~10Fを意味する。このことは、システム100についても同様である。また、第一電極1という場合は、特に断らない限り第一電極1Aおよび1Bを意味する。
 本発明の光電変換素子の好ましい態様として、例えば、図1に示す光電変換素子10Aが挙げられる。図1に示されるシステム100Aは、光電変換素子10Aを外部回路6で動作手段M(例えば電動モーター)に仕事をさせる電池用途に応用したシステムである。外部回路6は導電性基板11の透明電極11bと第二電極2に接続されている。
 この光電変換素子10Aは、第一電極1Aと、第一電極1Aに対向する第二電極2と、第一電極1Aと第二電極2の間に、第一電極1A側から順に電荷輸送層3および粒子含有層4とを有している。
 第一電極1Aは、支持体11aおよび透明電極11bからなる導電性支持体11と、透明電極11b上にブロッキング層14と、ブロッキング層14上に多孔質層12と、多孔質層12の表面にペロブスカイト型光吸収剤を含む感光層13とを有している。多孔質層12を有する光電変換素子10Aは、感光層13の表面積が大きくなるため、電荷分離および電荷移動効率が向上すると推定される。
 電荷輸送層3は、第一電極1A上に単層に形成されている。
 粒子含有層4は、電荷輸送層3上に2層構造に形成されている。粒子含有層4の2層構造は、電荷輸送層3上に混合層4aと、この混合層4a上に微粒子層4bとを有する。
 図2に示す光電変換素子10Bは、図1に示す光電変換素子10Aの粒子含有層4を単層構造とした好ましい態様を模式的に示したものである。光電変換素子10Bは、図1で示した光電変換素子10Aに対して粒子含有層4が混合層4aからなる点で異なるが、これらの点以外は光電変換素子10Aと同様に構成されている。
 図3に示す光電変換素子10Cは、本発明の光電変換素子のまた別の好ましい態様を模式的に示したものである。光電変換素子10Cは、図1に示す光電変換素子10Aに対して第二電極2を設けていない点で異なるが、この点以外は光電変換素子10Aと同様に構成されている。すなわち、光電変換素子10Cにおいて、粒子含有層4、なかでも微粒子層4bが第二電極2を兼ねている。
 図4に示す光電変換素子10Dは、本発明の光電変換素子のさらに別の好ましい態様を模式的に示したものである。この光電変換素子10Dは、図1に示す光電変換素子10Aに対して多孔質層12を設けていない点で異なるが、この点以外は光電変換素子10Aと同様に構成されている。第一電極1Bは、導電性支持体11と、導電性支持体11上に順に形成された、ブロッキング層14および感光層13とを有している。
 図5に示す光電変換素子10Eは、本発明の光電変換素子のさらにまた別の好ましい態様を模式的に示したものである。この光電変換素子10Eは、図2に示す光電変換素子10Bに対して多孔質層12を設けていない点で異なるが、この点以外は光電変換素子10Bと同様に構成されている。この第一電極1Bは光電変換素子1Dの第一電極1Bと同じである。
 図6に示す光電変換素子10Fは、本発明の光電変換素子のまた別の好ましい態様を模式的に示したものである。この光電変換素子10Fは、図3に示す光電変換素子10Cに対して多孔質層12を設けていない点で異なるが、この点以外は光電変換素子10Cと同様に構成されている。第一電極1Bは光電変換素子1Dの第一電極1Bと同じである。
 本発明において、光電変換素子10を応用したシステム100は、以下のようにして、太陽電池として、機能する。
 すなわち、光電変換素子10において、導電性支持体11を透過して、または第二電極2(または混合層4a)を透過して感光層13に入射した光は光吸収剤を励起する。励起された光吸収剤はエネルギーの高い電子を有しており、この電子を放出できる。エネルギーの高い電子を放出した光吸収剤は酸化体(カチオン)となる。
 光電変換素子10においては、光吸収剤から放出された電子は、光吸収剤間を移動して導電性支持体11に到達する。導電性支持体11に到達した電子が外部回路6で仕事をした後、(第二電極2を有する場合)第二電極2、次いで粒子含有層4および電荷輸送層3を経て、感光層13に戻る。感光層13に戻った電子により光吸収剤が還元される。
 光電変換素子10においては、このような、上記光吸収剤の励起および電子移動のサイクルを繰り返すことにより、システム100が太陽電池として機能する。
 光電変換素子10において、感光層13から導電性支持体11への電子の流れ方は、多孔質層12の有無およびその種類等により、異なる。本発明の光電変換素子10においては、光吸収剤間を電子が移動する電子伝導が起こる。したがって、多孔質層12を設ける場合、多孔質層12は従来の半導体以外に絶縁体で形成することができる。多孔質層12が半導体で形成される場合、多孔質層12の半導体微粒子内部や半導体微粒子間を電子が移動する電子伝導も起こる。一方、多孔質層12が絶縁体で形成される場合、多孔質層12での電子伝導は起こらない。多孔質層12が絶縁体で形成される場合、絶縁体微粒子に酸化アルミニウム(Al)の微粒子を用いると、比較的高い起電力(Voc)が得られる。
 上記他の層としてのブロッキング層14が導体または半導体により形成された場合もブロッキング層14での電子伝導が起こる。
 本発明の光電変換素子および太陽電池は、上記の好ましい態様に限定されず、各態様の構成等は、本発明の趣旨を逸脱しない範囲で、各態様間で適宜組み合わせることができる。
 本発明において、光電変換素子または太陽電池に用いられる材料および各部材は、光吸収剤を除いて、常法により調製することができる。ペロブスカイト化合物を用いた光電変換素子または太陽電池については、例えば、非特許文献1、2およびJ.Am.Chem.Soc.,2009,131(17),p.6050-6051を参照することができる。
 また、色素増感太陽電池に用いられる材料および各部材についても参考にすることができる。色素増感太陽電池について、例えば、特開2001-291534号公報、米国特許第4,927,721号明細書、米国特許第4,684,537号明細書、米国特許第5,084,365号明細書、米国特許第5,350,644号明細書、米国特許第5,463,057号明細書、米国特許第5,525,440号明細書、特開平7-249790号公報、特開2004-220974号公報、特開2008-135197号公報を参照することができる。
 以下、本発明の光電変換素子および太陽電池に用いるのに好適な部材および化合物について、説明する。
<第一電極1>
 第一電極1は、導電性支持体11と感光層13とを有し、光電変換素子10において作用電極として機能する。
 第一電極1は、図1~図6に示されるように、多孔質層12およびブロッキング層14の少なくとも1つの層を有することが好ましい。
 第一電極1は、短絡防止の点で少なくともブロッキング層14を有することが好ましく、光吸収効率の点および短絡防止の点で多孔質層12およびブロッキング層14を有していることがさらに好ましい。
 また、第一電極1は、光電変換素子の生産性の向上、薄型化またはフレキシブル化の点で、有機材料で形成された、電子輸送層を有することも好ましい。
 - 導電性支持体11 -
 導電性支持体11は、導電性を有し、感光層13等を支持できるものであれば特に限定されない。導電性支持体11は、導電性を有する材料、例えば金属で形成された構成、または、ガラスもしくはプラスチックの支持体11aと、この支持体11aの表面に形成された導電膜としての透明電極11bとを有する構成が好ましい。導電性支持体11の強度が十分に保たれる場合は、支持体11aは必ずしも必要ではない。
 なかでも、図1~図6に示されるように、ガラスまたはプラスチックの支持体11aの表面に導電性の金属酸化物を塗設して透明電極11bを成膜した導電性支持体11がさらに好ましい。プラスチックで形成された支持体11aとしては、例えば、特開2001-291534号公報の段落番号0153に記載の透明ポリマーフィルムが挙げられる。支持体11aを形成する材料としては、ガラスおよびプラスチックの他にも、セラミック(特開2005-135902号公報)、導電性樹脂(特開2001-160425号公報)を用いることができる。金属酸化物としては、スズ酸化物(TO)が好ましく、インジウム-スズ酸化物(スズドープ酸化インジウム;ITO)、フッ素をドープした酸化スズ(FTO)等のフッ素ドープスズ酸化物が特に好ましい。このときの金属酸化物の塗布量は、支持体11aの表面積1m当たり0.1~100gが好ましい。導電性支持体11を用いる場合、光は支持体11a側から入射させることが好ましい。
 導電性支持体11は、実質的に透明であることが好ましい。本発明において、「実質的に透明である」とは、光(波長300~1200nm)の透過率が10%以上であることを意味し、50%以上が好ましく、80%以上が特に好ましい。
 支持体11aおよび導電性支持体11の厚みは、特に限定されず、適宜の厚みに設定される。例えば、0.01μm~10mmであることが好ましく、0.1μm~5mmであることがさらに好ましく、0.3μm~4mmであることが特に好ましい。
 透明電極11bを設ける場合、透明電極11bの膜厚は、特に限定されず、例えば、0.01~30μmであることが好ましく、0.03~25μmであることがさらに好ましく、0.05~20μmであることが特に好ましい。
 導電性支持体11または支持体11aは、表面に光マネージメント機能を有してもよい。例えば、導電性支持体11または支持体11aの表面に、特開2003-123859号公報に記載の、高屈折膜および低屈折率の酸化物膜を交互に積層した反射防止膜を有してもよく、特開2002-260746号公報に記載のライトガイド機能を有してもよい。
 - ブロッキング層14 -
 本発明においては、光電変換素子10のように、好ましくは、透明電極11bの表面に、すなわち、導電性支持体11と、多孔質層12または感光層13等との間に、ブロッキング層14を有している。
 光電変換素子および太陽電池において、例えば感光層13と、透明電極11b等とが電気的に接続すると逆電流を生じる。ブロッキング層14は、この逆電流を防止する機能を果たす。ブロッキング層14は短絡防止層ともいう。
 ブロッキング層14を、光吸収剤を担持する足場として機能させることもできる。
 このブロッキング層14は、光電変換素子が電子輸送層を有する場合にも設けられてもよい。この場合、導電性支持体と電子輸送層との間に設けられる。
 ブロッキング層14を形成する材料は、上記機能を果たすことのできる材料であれば特に限定されないが、可視光を透過する物質であって、導電性支持体11(透明電極11b)等に対する絶縁性物質であることが好ましい。「導電性支持体11(透明電極11b)に対する絶縁性物質」とは、具体的には、伝導帯のエネルギー準位が、導電性支持体11を形成する材料(透明電極11bを形成する金属酸化物)の伝導帯のエネルギー準位以上であり、かつ、多孔質層12を構成する材料の伝導帯や光吸収剤の基底状態のエネルギー準位より低い化合物(n型半導体化合物)をいう。
 ブロッキング層14を形成する材料は、例えば、酸化ケイ素、酸化マグネシウム、酸化アルミニウム、炭酸カルシウム、炭酸セシウム、ポリビニルアルコール、ポリウレタン等が挙げられる。また、一般的に光電変換材料に用いられる材料でもよく、例えば、酸化チタン、酸化スズ、酸化亜鉛、酸化ニオブ、酸化タングステン等も挙げられる。なかでも、酸化チタン、酸化スズ、酸化マグネシウム、酸化アルミニウム等が好ましい。
 ブロッキング層14の膜厚は、0.001~10μmが好ましく、0.005~1μmがさらに好ましく、0.01~0.1μmが特に好ましい。
 本発明において、各層の膜厚は、走査型電子顕微鏡(SEM)等を用いて光電変換素子10の断面を観察することにより、測定できる。
 - 多孔質層12 -
 本発明においては、光電変換素子10A~10Cのように、好ましくは、透明電極11b上に多孔質層12を有している。ブロッキング層14を有している場合、多孔質層12はブロッキング層14上に形成されることが好ましい。
 多孔質層12は、表面に感光層13を担持する足場として機能する層である。太陽電池において、光吸収効率を高めるためには、少なくとも太陽光等の光を受ける部分の表面積を大きくすることが好ましく、多孔質層12の全体としての表面積を大きくすることが好ましい。
 多孔質層12は、多孔質層12を形成する材料の微粒子が堆積または密着してなる、細孔を有する微粒子層であることが好ましい。多孔質層12は、2種以上の微粒子が堆積してなる微粒子層であってもよい。多孔質層12が細孔を有する微粒子層であると、光吸収剤の担持量(吸着量)を増量できる。
 多孔質層12の表面積を大きくするには、多孔質層12を構成する個々の微粒子の表面積を大きくすることが好ましい。本発明では、多孔質層12を形成する微粒子を導電性支持体11等に塗設した状態で、この微粒子の表面積が投影面積に対して10倍以上であることが好ましく、100倍以上であることがより好ましい。この上限には特に制限はないが、通常5000倍程度である。多孔質層12を形成する微粒子の粒径は、投影面積を円に換算したときの直径を用いた平均粒径において、1次粒子として0.001~1μmが好ましい。微粒子の分散物を用いて多孔質層12を形成する場合、微粒子の上記平均粒径は、分散物の平均粒径として0.01~100μmが好ましい。
 多孔質層12を形成する材料は、導電性に関しては特に限定されず、絶縁体(絶縁性の材料)であっても、導電性の材料または半導体(半導電性の材料)であってもよい。
 多孔質層12を形成する材料としては、例えば、金属のカルコゲニド(例えば酸化物、硫化物、セレン化物等)、ペロブスカイト型結晶構造を有する化合物(光吸収剤として用いるペロブスカイト化合物を除く。)、ケイ素の酸化物(例えば、二酸化ケイ素、ゼオライト)、またはカーボンナノチューブ(カーボンナノワイヤおよびカーボンナノロッド等を含む)を用いることができる。
 金属のカルコゲニドとしては、特に限定されないが、好ましくは、チタン、スズ、亜鉛、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ、アルミニウムまたはタンタルの各酸化物、硫化カドミウム、セレン化カドミウム等が挙げられる。金属のカルコゲニドの結晶構造として、アナターゼ型、ブルッカイト型またはルチル型が挙げられ、アナターゼ型、ブルッカイト型が好ましい。
 ペロブスカイト型結晶構造を有する化合物としては、特に限定されないが、遷移金属酸化物等が挙げられる。例えば、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸バリウム、チタン酸鉛、ジルコン酸バリウム、スズ酸バリウム、ジルコン酸鉛、ジルコン酸ストロンチウム、タンタル酸ストロンチウム、ニオブ酸カリウム、鉄酸ビスマス、チタン酸ストロンチウムバリウム、チタン酸バリウムランタン、チタン酸カルシウム、チタン酸ナトリウム、チタン酸ビスマスが挙げられる。なかでも、チタン酸ストロンチウム、チタン酸カルシウム等が好ましい。
 カーボンナノチューブは、炭素膜(グラフェンシート)を筒状に丸めた形状を有する。カーボンナノチューブは、1枚のグラフェンシートが円筒状に巻かれた単層カーボンナノチューブ(SWCNT)、2枚のグラフェンシートが同心円状に巻かれた2層カーボンナノチューブ(DWCNT)、複数のグラフェンシートが同心円状に巻かれた多層カーボンナノチューブ(MWCNT)に分類される。多孔質層12としては、いずれのカーボンナノチューブも特に限定されず、用いることができる。
 多孔質層12を形成する材料は、なかでも、チタン、スズ、亜鉛、ジルコニウム、アルミニウムもしくはケイ素の酸化物、またはカーボンナノチューブが好ましく、酸化チタンまたは酸化アルミニウムがさらに好ましい。
 多孔質層12は、上述の、金属のカルコゲニド、ペロブスカイト型結晶構造を有する化合物、ケイ素の酸化物およびカーボンナノチューブのうち少なくとも1種で形成されていればよく、複数種で形成されていてもよい。
 多孔質層12の膜厚は、特に限定されないが、通常0.05~100μmの範囲であり、好ましくは0.1~100μmの範囲である。太陽電池として用いる場合は、0.1~50μmが好ましく、0.2~30μmがより好ましい。
 - 電子輸送層- 
 本発明においては、上記のように、透明電極11bの表面に電子輸送層を設けることもできる。この電子輸送層は、感光層13で発生した電子を導電性支持体11へと輸送する機能を有する。電子輸送層は、この機能を発揮することができる電子輸送材料で形成される。電子輸送材料としては、特に限定されないが、有機材料(有機電子輸送材料)が好ましい。有機電子輸送材料としては、[6,6]-Phenyl-C61-Butyric Acid Methyl Ester(PC61BM)等のフラーレン化合物、ペリレンテトラカルボキシジイミド(PTCDI)等のペリレン化合物、その他、テトラシアノキノジメタン(TCNQ)等の低分子化合物、または、高分子化合物等が挙げられる。第一電極1に設けられる電子輸送層の膜厚は、特に限定されないが、0.001~10μmが好ましく、0.01~1μmがより好ましい。
 - 感光層(光吸収層)13 -
 感光層13は、好ましくは、多孔質層12(光電変換素子10A~10C)、ブロッキング層14(光電変換素子10D~10F)、または、電子輸送層の各層の表面(感光層13が設けられる表面が凹凸の場合の凹部内表面を含む。)に設けられる。
 本発明において、ペロブスカイト型光吸収剤は、後述する特定のペロブスカイト化合物を少なくとも1種含有していればよく、2種以上のペロブスカイト化合物を含有してもよい。
 また、感光層13は、ペロブスカイト型光吸収剤と併せて、ペロブスカイト化合物以外の光吸収剤を含んでいてもよい。ペロブスカイト化合物以外の光吸収剤としては、例えば金属錯体色素および有機色素が挙げられる。このとき、ペロブスカイト型光吸収剤と、それ以外の光吸収剤との割合は特に限定されない。
 感光層13は、単層であっても2層以上の積層であってもよい。感光層13が2層以上の積層構造である場合、互いに異なった光吸収剤からなる層を積層してなる積層構造でもよく、また、感光層と感光層の間に、正孔輸送材料を含む中間層を有する積層構造でもよい。
 感光層13を導電性支持体11上に有する態様は、上述した通りである。感光層13は、好ましくは、励起した電子が導電性支持体11に流れるように、上記各層の表面に設けられる。このとき、感光層13は、上記各層の表面全体に設けられていてもよく、その表面の一部に設けられていてもよい。
 感光層13の膜厚は、導電性支持体11上に感光層13を有する態様に応じて適宜に設定され、特に限定されない。通常、膜厚は、例えば、0.001~100μmが好ましく、0.01~10μmがさらに好ましく、0.01~5μmが特に好ましい。
 多孔質層12を有する場合、多孔質層12の膜厚との合計膜厚は、0.01μm以上が好ましく、0.05μm以上がより好ましく、0.1μm以上がさらに好ましく、0.3μm以上が特に好ましい。また、合計膜厚は、100μm以下が好ましく、50μm以下がより好ましく、30μm以下がさらに好ましい。合計膜厚は、上記値を適宜に組み合わせた範囲とすることができる。
 本発明において、第一電極が多孔質層12および正孔輸送層を有する場合、多孔質層12と感光層13と正孔輸送層との合計膜厚は、特に限定されないが、例えば、0.01μm以上が好ましく、0.05μm以上がより好ましく、0.1μm以上がさらに好ましく、0.3μm以上が特に好ましい。また、この合計膜厚は、200μm以下が好ましく、50μm以下がより好ましく、30μm以下がさらに好ましく、5μm以下が特に好ましい。合計膜厚は、上記値を適宜に組み合わせた範囲とすることができる。
 本発明において、感光層を厚い膜状に設ける場合、この感光層に含まれる光吸収剤は正孔輸送材料として機能することもある。
 ペロブスカイト化合物の使用量は、第一電極1の表面の少なくとも一部を覆う量が好ましく、表面全体を覆う量がより好ましい。
〔ペロブスカイト型光吸収剤〕
 感光層13は、ペロブスカイト型光吸収剤として、「周期表第一族元素またはカチオン性有機基A」と、「周期表第一族元素以外の金属原子M」と、「アニオン性原子または原子団X」とを有するペロブスカイト化合物を含有する。
 ペロブスカイト化合物の周期表第一族元素またはカチオン性有機基A、金属原子Mおよびアニオン性原子または原子団Xは、それぞれ、ペロブスカイト型結晶構造において、カチオン(便宜上、カチオンAということがある)、金属カチオン(便宜上、カチオンMということがある)およびアニオン(便宜上、アニオンXということがある)の各構成イオンとして存在する。
 本発明において、カチオン性有機基とは、ペロブスカイト型結晶構造においてカチオンになる性質を有する有機基をいい、アニオン性原子または原子団とはペロブスカイト型結晶構造においてアニオンになる性質を有する原子または原子団をいう。
 本発明に用いるペロブスカイト化合物において、カチオンAは、周期表第一族元素のカチオンまたはカチオン性有機基Aからなる有機カチオンである。カチオンAは有機カチオンが好ましい。
 周期表第一族元素のカチオンは、特に限定されず、例えば、リチウム(Li)、ナトリウム(Na)、カリウム(K)またはセシウム(Cs)の各元素のカチオン(Li、Na、K、Cs)が挙げられ、特にセシウムのカチオン(Cs)が好ましい。
 有機カチオンは、上記性質を有する有機基のカチオンであれば特に限定されないが、下記式(1)で表されるカチオン性有機基の有機カチオンであることがさらに好ましい。
式(1):R1a-NH
 式中、R1aは置換基を表す。R1aは、有機基であれば特に限定されないが、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基または下記式(2)で表すことができる基が好ましい。なかでも、アルキル基、下記式(2)で表すことができる基がより好ましい。
Figure JPOXMLDOC01-appb-C000001
 式中、XはNR1c、酸素原子または硫黄原子を表す。R1bおよびR1cは各々独立に水素原子または置換基を表す。***は式(1)の窒素原子との結合を表す。
 本発明において、カチオン性有機基Aの有機カチオンは、上記式(1)中のR1aとNHとが結合してなるアンモニウムカチオン性有機基Aからなる有機アンモニウムカチオン(R1a-NH )が好ましい。この有機アンモニウムカチオンが共鳴構造を採り得る場合、有機カチオンは有機アンモニウムカチオンに加えて共鳴構造のカチオンを含む。例えば、上記式(2)で表すことができる基においてXがNH(R1cが水素原子)である場合、有機カチオンは、上記式(2)で表すことができる基とNHとが結合してなるアンモニウムカチオン性有機基の有機アンモニウムカチオンに加えて、この有機アンモニウムカチオンの共鳴構造の1つである有機アミジニウムカチオンをも包含する。アミジニウムカチオン性有機基からなる有機アミジニウムカチオンとしては、下記式(Aam)で表されるカチオンが挙げられる。本明細書において、下記式(Aam)で表されるカチオンを便宜上、「R1bC(=NH)-NH 」と表記することがある。
Figure JPOXMLDOC01-appb-C000002
 アルキル基は、炭素数が1~18のアルキル基が好ましく、1~6のアルキル基がより好ましく、1~3のアルキル基がさらに好ましい。例えば、メチル、エチル、プロピル、イソプロピル、ブチル、tert-ブチル、ペンチルまたはヘキシル等が挙げられる。
 シクロアルキル基は、炭素数が3~8のシクロアルキル基が好ましく、例えば、シクロプロピル、シクロペンチルまたはシクロヘキシル等が挙げられる。
 アルケニル基は、炭素数が2~18のアルケニル基が好ましく、2~6のアルケニル基がより好ましい。例えば、ビニル、アリル、ブテニルまたはヘキセニル等が挙げられる。
 アルキニル基は、炭素数が2~18のアルキニル基が好ましく、2~4のアルキニル基がより好ましい。例えば、エチニル、ブチニルまたはヘキシニル等が挙げられる。
 アリール基は、炭素数6~14のアリール基が好ましく、炭素数6~12のアリール基がより好ましく、例えば、フェニルが挙げられる。
 ヘテロアリール基は、芳香族ヘテロ環のみからなる基と、芳香族ヘテロ環に他の環、例えば、芳香環、脂肪族環やヘテロ環が縮合した縮合ヘテロ環からなる基とを包含する。
 芳香族ヘテロ環を構成する環構成ヘテロ原子としては、窒素原子、酸素原子、硫黄原子が好ましい。また、芳香族ヘテロ環の環員数としては、3~8員環が好ましく、5員環または6員環がより好ましい。
 5員環の芳香族ヘテロ環および5員環の芳香族ヘテロ環を含む縮合ヘテロ環としては、例えば、ピロール環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、トリアゾール環、フラン環、チオフェン環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、インドリン環、インダゾール環の各環基が挙げられる。また、6員環の芳香族ヘテロ環および6員環の芳香族ヘテロ環を含む縮合ヘテロ環としては、例えば、ピリジン環、ピリミジン環、ピラジン環、トリアジン環、キノリン環、キナゾリン環の各環基が挙げられる。
 式(2)で表すことができる基において、XはNR1c、酸素原子または硫黄原子を表し、NR1cが好ましい。ここで、R1cは、水素原子または置換基を表し、水素原子、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基が好ましく、水素原子がさらに好ましい。
 R1bは、水素原子または置換基を表し、水素原子が好ましい。R1bとして採り得る置換基は、アミノ基、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基が挙げられる。
 R1bおよびR1cがそれぞれ採り得る、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基およびヘテロアリール基は、上記R1aの各基と同義であり、好ましいものも同じである。
 式(2)で表すことができる基としては、例えば、(チオ)アシル基、(チオ)カルバモイル基、イミドイル基またはアミジノ基が挙げられる。
 (チオ)アシル基は、アシル基およびチオアシル基を包含する。アシル基は、総炭素数が1~7のアシル基が好ましく、例えば、ホルミル、アセチル(CHC(=O)-)、プロピオニル、ヘキサノイル等が挙げられる。チオアシル基は、総炭素数が1~7のチオアシル基が好ましく、例えば、チオホルミル、チオアセチル(CHC(=S)-)、チオプロピオニル等が挙げられる。
 (チオ)カルバモイル基は、カルバモイル基(HNC(=O)-)およびチオカルバモイル基(HNC(=S)-)を包含する。
 イミドイル基は、R1b-C(=NR1c)-で表される基であり、R1bおよびR1cはそれぞれ水素原子またはアルキル基が好ましく、アルキル基は上記R1aのアルキル基と同義であるのがより好ましい。例えば、ホルムイミドイル(HC(=NH)-)、アセトイミドイル(CHC(=NH)-)、プロピオンイミドイル(CHCHC(=NH)-)等が挙げられる。なかでも、ホルムイミドイルが好ましい。
 式(2)で表すことができる基としてのアミジノ基は、上記イミドイル基のR1bがアミノ基でR1cが水素原子である構造(-C(=NH)NH)を有する。
 R1aとして採り得る、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基および上記式(2)で表すことができる基は、いずれも、置換基を有していてもよい。R1aが有していてもよい置換基としては、特に限定されないが、例えば、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロ環基、アルコキシ基、アルキルチオ基、アミノ基、アルキルアミノ基、アリールアミノ基、アシル基、アルキルカルボニルオキシ基、アリールオキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルアミノ基、スルホンアミド基、カルバモイル基、スルファモイル基、ハロゲン原子、シアノ基、ヒドロキシ基またはカルボキシ基が挙げられる。R1aが有していてもよい各置換基は、さらに置換基で置換されていてもよい。
 本発明に用いるペロブスカイト化合物において、金属カチオンMは、周期表第一族元素以外の金属原子のカチオンであって、ペロブスカイト型結晶構造を採り得る金属原子のカチオンであれば、特に限定されない。このような金属原子としては、例えば、カルシウム(Ca)、ストロンチウム(Sr)、カドミウム(Cd)、銅(Cu)、ニッケル(Ni)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、パラジウム(Pd)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)、イッテルビウム(Yb)、ユウロピウム(Eu)、インジウム(In)、チタン(Ti)、ビスマス(Bi)等の金属原子が挙げられる。Mは1種の金属カチオンであってもよく、2種以上の金属カチオンであってもよい。なかでも、金属カチオンMは、2価のカチオンであることが好ましく、2価の鉛カチオン(Pb2+)、2価の銅カチオン(Cu2+)、2価のゲルマニウムカチオン(Ge2+)および2価のスズカチオン(Sn2+)からなる群より選択される少なくとも1種であることがより好ましく、Pb2+またはSn2+であることがさらに好ましく、Pb2+であることが特に好ましい。2種以上の金属カチオンである場合、金属カチオンの割合は特に限定されない。
 本発明に用いるペロブスカイト化合物において、アニオンXは、アニオン性原子または原子団Xのアニオンを表す。このアニオンは、好ましくはハロゲン原子のアニオン、または、NC、NCS、NCO、HO、NO 、CHCOOもしくはHCOOの、各原子団のアニオンが挙げられる。なかでも、ハロゲン原子のアニオンであることがさらに好ましい。ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子およびヨウ素原子等が挙げられる。
 アニオンXは、1種のアニオン性原子または原子団のアニオンであってもよく、2種以上のアニオン性原子または原子団のアニオンであってもよい。1種のアニオン性原子または原子団のアニオンである場合には、ヨウ素原子のアニオンが好ましい。一方、2種以上のアニオン性原子または原子団のアニオンである場合には、2種のハロゲン原子のアニオン、特に塩素原子のアニオンおよびヨウ素原子のアニオンが好ましい。2種以上のアニオンの割合は特に限定されない。
 本発明に用いるペロブスカイト化合物は、上記の各構成イオンを有するペロブスカイト型結晶構造を有し、下記式(I)で表されるペロブスカイト化合物が好ましい。
式(I):A
 式中、Aは周期表第一族元素またはカチオン性有機基を表す。Mは周期表第一族元素以外の金属原子を表す。Xはアニオン性原子または原子団を表す。
 aは1または2を表し、mは1を表し、a、mおよびxはa+2m=xを満たす。
 式(I)において、周期表第一族元素またはカチオン性有機基Aは、ペロブスカイト型結晶構造の上記カチオンAを形成する。したがって、周期表第一族元素およびカチオン性有機基Aは、上記カチオンAとなってペロブスカイト型結晶構造を構成できる元素または基であれば、特に限定されない。周期表第一族元素またはカチオン性有機基Aは、上記カチオンAで説明した上記周期表第一族元素またはカチオン性有機基と同義であり、好ましいものも同じである。
 金属原子Mは、ペロブスカイト型結晶構造の上記金属カチオンMを形成する金属原子である。したがって、金属原子Mは、周期表第一族元素以外の原子であって、上記金属カチオンMとなってペロブスカイト型結晶構造を構成できる原子であれば、特に限定されない。金属原子Mは、上記金属カチオンMで説明した上記金属原子と同義であり、好ましいものも同じである。
 アニオン性原子または原子団Xは、ペロブスカイト型結晶構造の上記アニオンXを形成する。したがって、アニオン性原子または原子団Xは、上記アニオンXとなってペロブスカイト型結晶構造を構成できる原子または原子団であれば、特に限定されない。アニオン性原子または原子団Xは、上記アニオンXで説明したアニオン性原子または原子団と同義であり、好ましいものも同じである。
 式(I)で表されるペロブスカイト化合物は、aが1である場合、下記式(I-1)で表されるペロブスカイト化合物であり、aが2である場合、下記式(I-2)で表されるペロブスカイト化合物である。
式(I-1):AMX
式(I-2):AMX
 式(I-1)および式(I-2)において、Aは周期表第一族元素またはカチオン性有機基を表し、上記式(I)のAと同義であり、好ましいものも同じである。
 Mは、周期表第一族元素以外の金属原子を表し、上記式(I)のMと同義であり、好ましいものも同じである。
 Xは、アニオン性原子または原子団を表し、上記式(I)のXと同義であり、好ましいものも同じである。
 本発明に用いるペロブスカイト化合物は、式(I-1)で表される化合物および式(I-2)で表される化合物のいずれでもよく、これらの混合物でもよい。したがって、本発明において、ペロブスカイト化合物は、光吸収剤として少なくとも1種が存在していればよく、組成式、分子式および結晶構造等により、厳密にいかなる化合物であるかを明確に区別する必要はない。
 以下に、本発明に用いうるペロブスカイト化合物の具体例を例示するが、これによって本発明が制限されるものではない。下記においては、式(I-1)で表される化合物と、式(I-2)で表される化合物とを分けて記載する。ただし、式(I-1)で表される化合物として例示した化合物であっても、合成条件等によっては、式(I-2)で表される化合物となる場合もあり、また、式(I-1)で表される化合物と式(I-2)で表される化合物との混合物となる場合もある。同様に、式(I-2)で表される化合物として例示した化合物であっても、式(I-1)で表される化合物となる場合もあり、また、式(I-1)で表される化合物と式(I-2)で表される化合物との混合物となる場合もある。
 式(I-1)で表される化合物の具体例として、例えば、CHNHPbCl、CHNHPbBr、CHNHPbI、CHNHPbBrI、CHNHPbBrI、CHNHSnBr、CHNHSnI、CHNHGeCl、CH(=NH)NHPbI、CsSnI、CsGeIが挙げられる。
 式(I-2)で表される化合物の具体例として、例えば、(CNHPbI、(C1021NHPbI、(CH=CHNHPbI、(CH≡CNHPbI、(n-CNHPbI、(n-CNHPbI、(CNHPbI、(CCHCHNHPbI、(CNHPbI、(CNHPbI、(CSNHPbI、(CHNHCuCl、(CNHGeI、(CNHFeBrが挙げられる。ここで、(CSNHPbIにおけるCSNHはアミノチオフェンである。
 ペロブスカイト化合物は、下記式(II)で表される化合物と下記式(III)で表される化合物とから合成することができる。
式(II):AX
式(III):MX
 式(II)中、Aは周期表第一族元素またはカチオン性有機基を表し、式(I)のAと同義であり、好ましいものも同じである。式(II)中、Xはアニオン性原子または原子団を表し、式(I)のXと同義であり、好ましいものも同じである。
 式(III)中、Mは周期表第一族元素以外の金属原子を表し、式(I)のMと同義であり、好ましいものも同じである。式(III)中、Xはアニオン性原子または原子団を表し、式(I)のXと同義であり、好ましいものも同じである。
 ペロブスカイト化合物の合成方法については、例えば、非特許文献1および2に記載の方法が挙げられる。また、Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai, and Tsutomu Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells”, J.Am.Chem.Soc.,2009,131(17),p.6050-6051に記載の方法も挙げられる。
 ペロブスカイト光吸収剤の使用量は、第一電極1の表面の少なくとも一部を覆う量であればよく、表面全体を覆う量が好ましい。
 感光層13中、ペロブスカイト化合物の含有量は、通常1~100質量%である。
<電荷輸送層3>
 本発明の光電変換素子は、第一電極1の感光層13と後述する粒子含有層4との間に電荷輸送層3を有する。電荷輸送層3は、好ましくは感光層13の表面に設けられる。この電荷輸送層3は、光吸収剤の酸化体に電子を補充する機能を有し、好ましくは固体状の層(固体電荷輸送層)である。
 電荷輸送層3を形成する材料は、上記機能を奏する限り特に限定されず、好ましくは正孔輸送材料が挙げられる。正孔輸送材料は、正孔を輸送する機能を持つ材料であれば、液体材料でも固体材料でもよく、また無機材料でも有機材料でもよく、特に限定されない。例えば、CuI、CuNCS等の無機材料、および、例えば特開2001-291534号公報の段落番号0209~0212に記載の有機正孔輸送材料等が挙げられる。有機正孔輸送材料としては、好ましくは、ポリチオフェン、ポリアニリン、ポリピロールおよびポリシラン等の導電性高分子、2個の環がC、Siなど四面体構造をとる中心原子を共有するスピロ化合物、トリアリールアミン等の芳香族アミン化合物、トリフェニレン化合物、含窒素複素環化合物または液晶性シアノ化合物が挙げられる。
 正孔輸送材料は、溶液塗布可能で固体状になる有機正孔輸送材料が好ましく、具体的には、2,2’,7,7’-テトラキス-(N,N-ジ-p-メトキシフェニルアミノ)-9,9’-スピロビフルオレン(spiro-MeOTAD)、ポリ(3-ヘキシルチオフェン-2,5-ジイル、P3HT)、4-(ジエチルアミノ)ベンズアルデヒド ジフェニルヒドラゾン、ポリエチレンジオキシチオフェン(PEDOT)等が挙げられる。
 本発明において、電荷輸送層が正孔輸送材料で形成される場合、電荷輸送層は正孔輸送層ともいう。
 この電荷輸送層3は、上記の通り、粒子含有層4が含有する導電性微粒子を含有していない。これにより、粒子含有層4と感光層13との間で逆電子移動を防止して、光電変換効率のばらつきおよび耐久性ばらつきを防止できる。
 電荷輸送層3の膜厚は、特に限定されないが、50μm以下が好ましく、1nm~10μmがより好ましく、5nm~5μmがさらに好ましく、10nm~1μmが特に好ましい。
<粒子含有層4>
 本発明の光電変換素子は、第一電極1上、好ましくは電荷輸送層3上に、導電性微粒子とポリマーとを含有する粒子含有層4を有する。粒子含有層4は、第二電極2等から流入する電子を電荷輸送層3に輸送する機能を有する。粒子含有層4の層構成等については上記の通りである。
 粒子含有層4に含有される導電性微粒子は、導電性を有する材料の微粒子であればよい。導電性材料としては、特に限定されず、金属、炭素材料、伝導性高分子、および、導電性の金属酸化物等が挙げられる。
 炭素材料としては、炭素原子同士が結合してなる、導電性を有する材料であればよく、例えば、フラーレン、グラファイト、グラフェン、カーボンブラック等が挙げられる。金属としては、後述する第二電極2を形成する材料としての各種金属が挙げられる。導電性の金属酸化物としては、上記透明電極11bを形成するための金属酸化物が挙げられる。
 なかでも、炭素材料が好ましく、カーボンブラックがさらに好ましい。
 本発明において、導電性微粒子は、アスペクト比が好ましくは100以下、より好ましくは1~10の粒子であって導電性を有するものをいう。導電性は、特に限定されないが、四探針法による測定値としての電気抵抗率(体積抵抗率)が10Ω・cm以下であることをいう。
 導電性微粒子は、好ましくは上記アスペクト比を満たすものであれば、その形状および寸法(粒径、長さ)は特に限定されない。例えば、形状は、球状、顆粒状、不定形または杆状(棒状)でもよく、これらの混合でもよい。
 また、粒径および長さも、特に限定されないが、平均粒径は、通常、0.1nm~500μm、好ましくは1nm~100μm、より好ましくは1nm~1μm、さらに好ましくは1nm~500nmである。ここで、平均粒径の測定方法は、SEMを用いて行う。
 粒子含有層4に含有されるポリマーは、絶縁材料でも導電材料でもよいが、絶縁材料が好ましい。本発明において、絶縁材料とは、特に限定されないが、体積抵抗率(Ω・cm)が10より大きい材料をいう。体積抵抗率は四探針法による測定値とする。
 絶縁材料のポリマーとしては、特に限定されず、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、ポリスチレン(PS)、ポリ酢酸ビニル(PVAc)、ポリウレタン(PUR)、ポリテトラフルオロエチレン(PTEF)、アクリロニトリル-ブタジエン-スチレン共重合樹脂(ABS)、アクリロニトリル-スチレン共重合樹脂(AS)、(メタ)アクリル酸エステル(特に、ポリメタクリル酸メチル(PMMA))、ポリアミド(PA)、アセタール樹脂(ポリオキシメチレン、POM)、ポリカーボネート(PC)、ポリフェニレンオキシド樹脂(PPO)、ポリエチレンテレフタラート(PET)、ポリブチレンテレフタラート(PBT)、シクロオレフィンポリマー(COP)、ポリフェニレンサルファイド(PPS)、ポリサルホン(PSF)、ポリエーテルサルホン(PES)、ポリイミド(PI)、ポリアミドイミド(PAI)等が挙げられる。
 なかでも、(メタ)アクリル酸エステル(特にPMMA)、ABS、PCが好ましい。
 絶縁材料のポリマーの重量平均分子量としては、特に限定されるものではないが、1,000~1000,000が好ましく、3,000~500,000がより好ましく、5,000~300,000がさらに好ましい。
 重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により、標準ポリスチレン換算値として、測定した値である。
 粒子含有層4において、導電性微粒子の含有量は、粒子含有層4が上記機能を奏することができればよく、導電性微粒子およびポリマーの比重、導電性微粒子の寸法等により一義的に決定できない。一例としては、例えば、導電性微粒子の含有量は、粒子含有層4中、0.1~99.9質量%が好ましく、1~99質量%がより好ましく、20~95%がより好ましい。
 ポリマーの含有量も、同様に、一義的に決定できないが、例えば、粒子含有層4中、0.1~99.9質量%が好ましく、1~99質量%がより好ましく、5~80%がより好ましい。
 粒子含有層4において、導電性微粒子とポリマーとの含有量の比は、一義的に決定できないが、例えば、含有量の比[導電性微粒子の含有量:ポリマーの含有量]が、999:1~1:999であることが好ましく、99:1~1:99であることがより好ましく、19:1~1:4がより好ましい。
 本発明において、上記各含有量および含有量の比により、図1等に示される2層構造の粒子含有層4を形成できる。例えば、導電性微粒子の含有量および含有量の比を、上記範囲内において大きな値に設定することで、2層構造の粒子含有層4を形成することができる。
 粒子含有量4の膜厚は、特に限定されず、0.001~10μmが好ましく、0.01~1μmがさらに好ましく、0.05~0.5μmが特に好ましい。
 粒子含有量4が微粒子層4bを有する場合、微粒子層4bの膜厚は、特に限定されず、0.001~1μmが好ましく、0.005~0.5μmがさらに好ましく、0.01~0.1μmが特に好ましい。
<第二電極2>
 第二電極2は、太陽電池において正極または負極として機能する。第二電極2は、導電性を有していれば特に限定されず、通常、導電性支持体11と同じ構成とすることができる。強度が十分に保たれる場合は、支持体11aは必ずしも必要ではない。また、粒子含有層4、特に微粒子層4bを第二電極2として用いる(粒子含有層4が第二電極2を兼ねる構成とする)こともできる。
 第二電極2の構造としては、集電効果が高い構造が好ましい。感光層13に光が到達するためには、導電性支持体11と第二電極2との少なくとも一方は実質的に透明でなければならない。本発明の太陽電池においては、導電性支持体11が透明であって太陽光を支持体11a側から入射させるのが好ましい。この場合、第二電極2は光を反射する性質を有することがさらに好ましい。
 第二電極2を形成する材料としては、例えば、白金(Pt)、金(Au)、ニッケル(Ni)、銅(Cu)、銀(Ag)、インジウム(In)、ルテニウム(Ru)、パラジウム(Pd)、ロジウム(Rh)、イリジウム(Ir)、オスニウム(Os)、アルミニウム(Al)等の金属、上述の導電性の金属酸化物、炭素材料および伝導性高分子等が挙げられる。炭素材料としては、上記導電性微粒子で説明したもの、および、カーボンナノチューブが挙げられる。
 光電変換素子10が粒子含有層4と第二電極2とを備える場合、第二電極2としては、金属もしくは導電性の金属酸化物の薄膜(蒸着してなる薄膜を含む)、または、この薄膜を有するガラス基板もしくはプラスチック基板が好ましい。ガラス基板もしくはプラスチック基板としては、金もしくは白金の薄膜を有するガラス、または、白金を蒸着したガラスが好ましい。
 一方、粒子含有層4bが第二電極2を兼ねる場合、第二電極2を形成する材料としては、炭素材料のなかでも、カーボンブラックまたはグラフェンが好ましい。
 第二電極2の膜厚は、特に限定されず、0.01~100μmが好ましく、0.01~10μmがさらに好ましく、0.01~1μmが特に好ましい。
<その他の構成>
 本発明においては、第一電極1と第二電極2との接触を防ぐために、ブロッキング層14等に代えて、または、ブロッキング層14等とともに、スペーサーやセパレータを用いることもできる。
 また、第二電極2と電荷輸送層3の間に正孔ブロッキング層を設けてもよい。
<<太陽電池>>
 本発明の太陽電池は、本発明の光電変換素子を用いて構成される。例えば図1~図6に示されるように、外部回路6を設けて構成した光電変換素子10を太陽電池として用いることができる。第一電極1(透明電極11b)および第二電極2に接続される外部回路6は、公知のものを特に制限されることなく、用いることができる。
 本発明は、例えば、非特許文献1、2、およびJ.Am.Chem.Soc.,2009,131(17),p.6050-6051に記載の各太陽電池に適用することができる。
 本発明の太陽電池は、構成物の劣化および蒸散等を防止するために、側面をポリマーや接着剤等で密封することが好ましい。
 上述したように、本発明の光電変換素子および太陽電池は、第一電極上に、電荷輸送層および粒子含有層を備えており、素子間の初期光電変換効率のばらつき、および、所定期間経過後の(経時による)光電変換効率の低下量のばらつきが低減されている。
<<光電変換素子および太陽電池の製造方法>>
 本発明の光電変換素子および太陽電池は、公知の製造方法、例えば、非特許文献1、2、およびJ.Am.Chem.Soc.,2009,131(17),p.6050-6051等に記載の方法によって、製造できる。
 以下に、本発明の光電変換素子および太陽電池の製造方法を簡単に説明する。
 本発明の製造方法においては、まず、導電性支持体11の表面に、所望によりブロッキング層14、多孔質層12および電子輸送層の少なくとも一つを形成する。
 ブロッキング層14は、例えば、上記絶縁性物質またはその前駆体化合物等を含有する分散物を導電性支持体11の表面に塗布し、焼成する方法またはスプレー熱分解法等によって、形成できる。
 多孔質層12を形成する材料は、好ましくは微粒子として用いられ、さらに好ましくは微粒子を含有する分散物として用いられる。
 多孔質層12を形成する方法としては、特に限定されず、例えば、湿式法、乾式法、その他の方法(例えば、Chemical Review,第110巻,6595頁(2010年刊)に記載の方法)が挙げられる。これらの方法において、導電性支持体11の表面またはブロッキング層14の表面に分散物(ペースト)を塗布した後に、100~800℃の温度で10分~10時間、例えば空気中で焼成することが好ましい。これにより、微粒子同士を密着させることができる。
 焼成を複数回行う場合、最後の焼成以外の焼成の温度(最後以外の焼成温度)を、最後の焼成の温度(最後の焼成温度)よりも低い温度で行うのがよい。例えば、酸化チタンペーストを用いる場合、最後以外の焼成温度を50~300℃の範囲内に設定することができる。また、最後の焼成温度を、100~600℃の範囲内において、最後以外の焼成温度よりも高くなるように、設定することができる。支持体11aとしてガラス支持体を用いる場合、焼成温度は60~500℃が好ましい。
 多孔質層12を形成するときの、多孔質材料の塗布量は、多孔質層12の膜厚および塗布回数等に応じて適宜に設定され、特に限定されない。導電性支持体11の表面積1m当たりの、多孔質材料の塗布量は、例えば、0.5~500gが好ましく、さらには5~100gが好ましい。
 電子輸送層を設ける場合、電子輸送材料を含有する電子輸送材料溶液を塗布し、乾燥して、形成することができる。
 次いで、感光層13を設ける。
 感光層13を設ける方法は、湿式法および乾式法が挙げられ、特に限定されない。本発明においては、湿式法が好ましく、例えば、ペロブスカイト型光吸収剤を含有する光吸収剤溶液に接触させる方法が好ましい。この方法においては、まず、感光層を形成するための光吸収剤溶液を調製する。光吸収剤溶液は、上記ペロブスカイト化合物の原料であるMXとAXとを含有する。ここで、A、MおよびXは上記式(I)のA、MおよびXと同義である。この光吸収剤溶液において、MXとAXとのモル比は目的に応じて適宜に調整される。光吸収剤としてペロブスカイト化合物を形成する場合、AXとMXとのモル比は、1:1~10:1であることが好ましい。この光吸収剤溶液は、MXとAXとを所定のモル比で混合した後に好ましくは加熱することにより、調製できる。この形成液は通常溶液であるが、懸濁液でもよい。加熱する条件は、特に限定されないが、加熱温度は30~200℃が好ましく、60~150℃がより好ましく、70~150℃がさらに好ましい。加熱時間は0.5~100時間が好ましく、1~3時間がさらに好ましい。溶媒または分散媒は後述するものを用いることができる。
 次いで、調製した光吸収剤溶液を、その表面に感光層13を形成する層(光電変換素子10においては、多孔質層12、ブロッキング層14または電子輸送層のいずれかの層)の表面に接触させる。具体的には、光吸収剤溶液を塗布または浸漬することが好ましい。接触させる温度は5~100℃であることが好ましく、浸漬時間は5秒~24時間であるのが好ましく、20秒~1時間がより好ましい。塗布した光吸収剤溶液を乾燥させる場合、乾燥は熱による乾燥が好ましく、通常は、20~300℃、好ましくは50~170℃に加熱することで乾燥させる。
 また、上記ペロブスカイト化合物の合成方法に準じて感光層を形成することもできる。
 さらに、上記AXを含有するAX溶液と、上記MXを含有するMX溶液とを、別々に塗布(浸漬法を含む)し、必要により乾燥する方法も挙げられる。この方法では、いずれの溶液を先に塗布してもよいが、好ましくはMX溶液を先に塗布する。この方法におけるAXとMXとのモル比、塗布条件および乾燥条件は、上記方法と同じである。この方法では、上記AX溶液および上記MX溶液の塗布に代えて、AXまたはMXを、蒸着させることもできる。
 さらに他の方法として、上記光吸収剤溶液の溶剤を除去した化合物または混合物を用いた、真空蒸着等の乾式法が挙げられる。例えば、上記AXおよび上記MXを、同時または順次、蒸着させる方法も挙げられる。
 これらの方法等により、ペロブスカイト化合物が多孔質層12、ブロッキング層14または電子輸送層の表面に感光層として形成される。
 このようにして設けられた感光層13上に電荷輸送層3を形成する。
 電荷輸送層3は、電荷輸送材料を含有する電荷輸送材料溶液を塗布し、乾燥して、形成することができる。電荷輸送材料溶液は、塗布性に優れる点、および多孔質層12を有する場合は多孔質層12の孔内部まで侵入しやすい点で、電荷輸送材料の濃度が0.1~50質量%であるのが好ましい。
 次いで、電荷輸送層3上に粒子含有層4を形成する。
 粒子含有層4を形成するには、導電性微粒子とポリマーとを含有する形成液を調製する。この形成液は、通常、導電性微粒子の分散液として、調製される。導電性微粒子およびポリマーは上記の通りである。形成液中の、導電性微粒子の含有量は、粒子含有層4に電荷輸送機能を付与できる限り、特に限定されない。例えば、0.0001~99.99質量%が好ましく、0.0002~90質量%がより好ましく、0.001~50質量%がさらに好ましい。形成液中の、ポリマーの含有量は、同様に特に限定されないが、例えば、0.0001~99.99質量%が好ましく、0.001~50質量%がさらに好ましい。形成液において、導電性微粒子とポリマーとの含有量の割合は、粒子含有層4に電荷輸送機能を付与できる限り、特に限定されない。例えば、含有量の割合[導電性微粒子の含有量:ポリマーの含有量]が、999:1~1:999であることが好ましく、99:1~1:99であることがより好ましい。
 次いで、調製した形成液を、電荷輸送層3の表面に接触させる。具体的には、形成液を塗布または浸漬することが好ましい。接触させる温度は10~150℃であることが好ましく、20~100℃であることがより好ましい。浸漬時間は1秒~5時間であるのが好ましく、10秒~1時間がより好ましい。形成液を乾燥させる場合、乾燥は熱による乾燥が好ましく、通常は、10~200℃、好ましくは20~100℃に加熱することで乾燥させる。
 粒子含有層4として、混合層4aと微粒子層4bとを含む粒子含有層4を形成する場合、例えば、次の方法が挙げられる。塗布液中の導電性微粒子の割合をポリマー含有量に対して、好ましくは上記範囲内で、多めに調整することで、塗布表面にポリマーを含まない層(微粒子層4b)を形成する方法、塗布、乾燥後に有機溶剤でポリマー成分のみが除去されるように塗布表面を洗い、微粒子層4bを形成する方法、研磨する等で物理的に導電性微粒子層をむき出しにする方法等が挙げられる。
 次いで、粒子含有層4を形成した後に、必要により、第二電極2を形成する。第二電極2は、第一電極1と同様にして形成することができ、また蒸着等により形成することもできる。
 また、炭素材料等で第二電極2を形成する場合、炭素材料を含有する電極形成液を粒子含有層4に接触させ、必要により乾燥して、形成できる。
 このようにして、光電変換素子10が製造される。
 各層の膜厚は、各分散液または溶液の濃度、塗布回数を適宜に変更して、調整できる。例えば、膜厚が厚い感光層13を設ける場合には、光吸収剤溶液を複数回塗布、乾燥すればよい。
 上述の各分散液、溶液および形成液は、それぞれ、必要に応じて、分散助剤、界面活性剤等の添加剤を含有していてもよい。
 光電変換素子の製造方法に使用する溶媒または分散媒としては、特開2001-291534号公報に記載の溶媒が挙げられるが、特にこれに限定されない。本発明においては、有機溶媒が好ましく、さらに、アルコール溶媒、アミド溶媒、ニトリル溶媒、炭化水素溶媒、ラクトン溶媒、ハロゲン溶媒、スルフィド溶媒、および、これらの2種以上の混合溶媒が好ましい。混合溶媒としては、アルコール溶媒と、アミド溶媒、ニトリル溶媒または炭化水素溶媒から選ばれる溶媒との混合溶媒が好ましい。具体的には、メタノール、エタノール、イソプロパノール、γ-ブチロラクトン、n-プロピルスルフィド、クロロベンゼン、アセトニトリル、N,N-ジメチルホルムアミド(DMF)、ジメチルアセトアミド、または、これらの混合溶媒が好ましい。
 各層を形成する溶液、分散剤および形成液の塗布方法は、特に限定されず、スピンコート、エクストルージョンダイコート、ブレードコート、バーコート、スクリーン印刷、ステンシル印刷、ロールコート、カーテンコート、スプレーコート、ディップコート、インクジェット印刷法、浸漬法等、公知の塗布方法を用いることができる。なかでも、スピンコート、スクリーン印刷等が好ましい。
 本発明の光電変換素子は、必要に応じて、アニール、ライトソーキング、酸素雰囲気下での放置等の効率安定化処理を行ってもよい。
 上記のようにして作製した光電変換素子は、第一電極1(透明電極11b)および第二電極2に外部回路6を接続して、太陽電池として用いることができる。
 以下に実施例に基づき本発明についてさらに詳細に説明するが、本発明は下記実施例に限定されない。
実施例1
(光電変換素子(試料番号101)の製造)
 以下に示す手順により、図1に示される光電変換素子10Aを製造した。
<導電性支持体11の作製>
 ガラス基板(支持体11a、厚さ2mm)上にフッ素ドープされたSnO導電膜(透明電極11b、膜厚300nm)を形成し、導電性支持体11を作製した。
<ブロッキング層14の形成>
 チタニウム ジイソプロポキシド ビス(アセチルアセトナート)の15質量%イソプロパノール溶液(アルドリッチ社製)を1-ブタノールで希釈して、0.02M(モル/L)のブロッキング層用溶液を調製した。
 調製した0.02Mのブロッキング層用溶液を用いてスプレー熱分解法により、450℃にて、導電性支持体11のSnO導電膜上に酸化チタンからなるブロッキング層14(膜厚50nm)を形成した。
<多孔質層12の形成>
 酸化チタン(アナターゼ、平均粒径20nm)のエタノール分散液に、エチルセルロース、ラウリン酸およびテルピネオールを加えて、酸化チタンペーストを調製した。
 調製した酸化チタンペーストをブロッキング層14上にスクリーン印刷法で塗布し、焼成した。この酸化チタンペーストの塗布および焼成をそれぞれ2回行った。焼成温度は、1回目の焼成を130℃で行い、2回目の焼成を500℃で1時間行った。得られた酸化チタンの焼成体を、40mMのTiCl水溶液に浸した後、60℃で1時間加熱し、続けて500℃で30分間加熱して、TiOからなる多孔質層12(膜厚250nm)を形成した。
<感光層13の形成>
 メチルアミンの40%メタノール溶液(27.86mL)と57質量%のヨウ化水素の水溶液(ヨウ化水素酸、30mL)をフラスコ中、0℃で2時間攪拌した後、濃縮して、CHNHIの粗体を得た。得られたCHNHIの粗体をエタノールに溶解し、ジエチルエーテルで再結晶し、得られた結晶をろ取し、60℃で5時間減圧乾燥して、精製CHNHIを得た。得られた精製CHNHIとPbIを、モル比で3:1とし、DMF中、60℃で12時間攪拌して混合した後、ポリテトラフルオロエチレン(PTFE)シリンジフィルターでろ過して、40質量%の光吸収剤溶液を調製した。
 調製した光吸収剤溶液を、多孔質層12の上に、スピンコート法(2000rpmで60秒)により塗布した。塗布した光吸収剤溶液をホットプレートにより100℃で60分間乾燥して、CHNHPbIのペロブスカイト化合物を含む感光層13(膜厚300nm(多孔質層12の膜厚250nmを含む))を形成した。
 このようにして、第一電極1Aを作製した。
<電荷輸送層3の形成>
 正孔輸送材料としてのポリ(3-ヘキシルチオフェン-2,5-ジイル)(数平均分子量30,000、180mg)をクロロベンゼン(1mL)に溶解させた。このクロロベンゼン溶液に、リチウム-ビス(トリフルオロメタンスルホニル)イミド(170mg)をアセトニトリル(1mL)に溶解させたアセトニトリル溶液37.5μLと、t-ブチルピリジン(TBP、17.5μL)とを加えて混合し、電荷輸送層用溶液を調製した。
 次いで、調製した電荷輸送層用溶液を、スピンコート法(3,000rpmで30秒)により、第一電極1Aの感光層13上に塗布した。塗布した電荷輸送材料溶液をホットプレートにより30℃で3時間乾燥して、固体状の電荷輸送層3(膜厚100nm)を成膜した。
<粒子含有層4の形成>
 ポリ(3-ヘキシルチオフェン-2,5-ジイル、重量平均分子量40,000)と銀微粒子(平均粒径20~100nm、アスペクト比1~20)とを、質量比で1:3の割合で、トルエンに投入して、形成液を調製した。この調製液の全固形分濃度は、10質量%であった。
 次いで、調製した形成液を、スピンコート法(3000rpmで30秒)により、電荷輸送層3上に塗布した。塗布した形成液をホットプレートにより50℃で2時間乾燥して、粒子含有層4(膜厚120nm)を成膜した。
 この粒子含有層4は、混合層4aと微粒子層4bとを有する2層構造であった。混合層4aおよび微粒子層4bの厚さは、それぞれ、100nmおよび20nmであった。
<第二電極2の作製>
 粒子含有層4上に蒸着法により銀を蒸着して、第二電極2(膜厚100nm)を作製した。
 こうして、光電変換素子10A(試料番号101)を製造した。
 各膜厚は、上記方法に従って、SEMにより観察して、測定した。
(光電変換素子(試料番号102~105、107および108)の製造)
 光電変換素子(試料番号101)の製造において、電荷輸送材料溶液の正孔輸送材料または形成液のポリマーもしくは導電性微粒子を表1に示す化合物に変更したこと以外は、光電変換素子(試料番号101)の製造と同様にして、光電変換素子(試料番号102~105、107および108)をそれぞれ製造した。
 試料番号102等で用いたカーボンブラック(CB)は、(平均粒径5~50nm、アスペクト比1~10)であった。
 また、PMMA、ABSおよびPCそれぞれの重量平均分子量は、15,000、8,000および150,000であった。
(光電変換素子(試料番号106)の製造)
 光電変換素子(試料番号104)の製造において、第二電極2を銀に代えてカーボンブラックを用いて以下のようにして形成したこと以外は、光電変換素子(試料番号104)の製造と同様にして、光電変換素子(試料番号106)を製造した。
 第二電極2(膜厚150nm)は、9質量%のカーボンブラック(平均粒径5~50nm、アスペクト比1~10)を含有する電極形成液をスピンコート法(3,000rpmで30秒)により、粒子含有層4上に塗布した。塗布した電極形成液をホットプレートにより70℃で60分間乾燥して、成膜した。
(光電変換素子(試料番号109)の製造)
 光電変換素子(試料番号109)は、図3に示す光電変換素子10Cであり、粒子含有層4が第二電極2を兼ねるものである。
 光電変換素子(試料番号101)の製造において、第二電極2の作製を行わなかったこと以外は、光電変換素子(試料番号101)の製造と同様にして、光電変換素子(試料番号109)を製造した。
(光電変換素子(試料番号c11)の製造)
 光電変換素子(試料番号104)の製造において、粒子含有層4を形成しなかった以外は、光電変換素子(試料番号104)の製造と同様にして、光電変換素子(試料番号c11)を製造した。
(光電変換素子(試料番号c12)の製造)
 非特許文献2の実験例(Methods欄)に記載の方法と同様にして、光電変換素子(試料番号c12)を製造した。
 試料番号c12については、本発明の光電変換素子と対比しやすいように、各層および成分等を表1中に便宜的に記載した。したがって、試料番号c12の光電変換素子は、非特許文献2に記載された構造等を有するものであって、表1に示した構造等を有するものではない。
(光電変換素子(試料番号c13)の製造)
 光電変換素子(試料番号101)の製造において、電荷輸送層3を形成しなかったこと以外は、光電変換素子(試料番号101)の製造と同様にして、光電変換素子(試料番号c13)を製造した。
<初期光電変換効率のばらつきの評価>
 上記各光電変換素子の製造方法と同様にして、各試料番号の光電変換素子を、それぞれ、7検体製造した。各試料番号の光電変換素子それぞれについて、電池特性試験を行って、その初期光電変換効率(η/%)を測定した。電池特性試験は、ソーラーシミュレーター「WXS-85H」(WACOM社製)を用いて、AM1.5フィルタを通したキセノンランプから1000W/mの擬似太陽光を照射することにより行った。初期光電変換効率(η)は、I-Vテスターを用いて電流-電圧特性を測定することにより、求めた。
 各試料番号の光電変換素子において、初期光電変換効率の平均値(η av)を求めた。この初期光電変換効率の平均値(η av)を1(基準)として、各光電変換素子について、この平均値(η av)とのズレ(差分)(η=光電変換素子の初期光電変換効率(η)-平均値(η av))を算出した。このようにして得られた初期光電変換効率の差分(η)のうち最大値(差分の絶対値が最大となる値)が含まれる範囲を下記基準により分級して、初期光電変換効率のばらつきを評価した。
 初期光電変換効率のばらつきの評価基準において、評価「C」以上が本試験の合格レベルであり、好ましくは評価「B」および「A」である。結果を下記表1に示す。
- 初期光電変換効率のばらつきの評価基準 -
 初期光電変換効率の差分(η)のうち最大値が、
 A: ±0.11以内の範囲にあったもの
 B: ±0.11を超え、±0.15以内の範囲にあったもの
 C: ±0.15を超え、±0.20以内の範囲にあったもの
 D: ±0.20を超え、±0.27以内の範囲にあったもの
 E: ±0.27を超える範囲にあったもの
 上記初期光電変換効率のばらつきの評価において測定された、光電変換素子(試料番号101)の初期光電変換効率は、6%以上で、太陽電池として十分に機能するものであった。
<耐久性ばらつきの評価>
 上記各光電変換素子の製造方法と同様にして、各試料番号の光電変換素子を、それぞれ、7検体製造した。試料番号ごとに、各光電変換素子を50℃、60RH%の環境下に50時間静置した後に、各光電変換素子について耐久試験後の光電変換効率(η/%)を上記電池特性試験により求めた。
 各光電変換素子において、光電変換効率の維持率(η)を下記式から算出した。
式: η=η/η
 式中、ηは上記初期光電変換効率(%)を表し、ηは耐久試験後の光電変換効率(%)を表す。
 この光電変換効率の維持率(η)の平均値(η av)を求め、この平均値(η av)を1(基準)として、各光電変換素子について、この平均値(η av)とのズレ(差分)(ηM2=光電変換素子の維持率(η)-平均値(η av))を算出した。このようにして得られた光電変換効率の維持率の差分(ηM2)のうち最大値(差分の絶対値が最大となる値)が含まれる範囲を下記基準により分級して、耐久性ばらつきを評価した。
 耐久性ばらつきの評価基準において、評価「C」以上が本試験の合格レベルであり、好ましくは評価「B」および「A」である。結果を下記表1に示す。
- 耐久性ばらつきの評価基準 -
 初期光電変換効率の差分(ηM2)のうち最大値が、
 A: ±0.11以内の範囲にあったもの
 B: ±0.11を超え、±0.14以内の範囲にあったもの
 C: ±0.14を超え、±0.19以内の範囲にあったもの
 D: ±0.19を超え、±0.25以内の範囲にあったもの
 E: ±0.25を超える範囲にあったもの
Figure JPOXMLDOC01-appb-T000003
 表1の結果から、ペロブスカイト化合物を光吸収剤として用いた光電変換素子であっても、第一電極1A上に、電荷輸送層3と粒子含有層4とを設けると(試料番号101~109)、初期光電変換効率のばらつきが小さく、しかも、所定期間経過後の光電変換効率の低下量のばらつき(耐久性ばらつき)が小さいことが分かった。
 特に、粒子含有層4に含有されるポリマーが絶縁材料であると、また導電性微粒子が炭素材料の微粒子であると、いずれも、初期光電変換効率のばらつきと、所定期間経過後の光電変換効率の低下量のばらつきとをさらに低減できることが分かった。
 上記2つのばらつき低減効果は、粒子含有層4が第二電極2を兼ねる形態であっても、同様に優れていた。
 これに対して、電荷輸送層および粒子含有層の少なくとも一方を備えていない光電変換素子(試料番号c11~c13)は、いずれも、初期光電変換効率のばらつき、および、所定期間経過後の光電変換効率の低下量のばらつきを十分に低減できないことが分かった。特に、電荷輸送層と、カーボンナノチューブを含有するPMMA層とを有していても(光電変換素子(試料番号c12))、上記ばらつきの低減は十分ではなかった。
実施例2
(光電変換素子(試料番号201~208)の製造)
 以下に示す手順により、図4に示される光電変換素子10Dを製造した。
 光電変換素子(試料番号101~108)の製造において、多孔質層12を設けることなく、ブロッキング層14上に感光層13を設けたこと以外は、光電変換素子(試料番号101~108)の製造と同様にして、光電変換素子10D(試料番号201~208)をそれぞれ製造した。
(光電変換素子(試料番号209)の製造)
 以下に示す手順により、図6に示される光電変換素子10Fを製造した。
 光電変換素子(試料番号109)の製造において、多孔質層12を設けることなく、ブロッキング層14上に感光層13を設けたこと以外は、光電変換素子(試料番号109)の製造と同様にして、光電変換素子10F(試料番号209)を製造した。
 製造した各光電変換素子について、実施例1と同様にして、初期光電変換効率のばらつき、および、耐久性ばらつきを評価した。その結果、得られた光電変換素子は、いずれも、実施例1の光電変換素子と同様の優れた効果を示した。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2015年6月26日に日本国で特許出願された特願2015-128512に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
1A、1B 第一電極
 11 導電性支持体
  11a 支持体
  11b 透明電極
 12 多孔質層
 13 感光層
 14 ブロッキング層
2 第二電極
3 電荷輸送層(正孔輸送層)
4 粒子含有層
 4a 混合層
 4b 微粒子層
6 外部回路(リード)
10A~10F 光電変換素子
100A~100F 太陽電池を利用したシステム
M 電動モーター

Claims (9)

  1.  ペロブスカイト型光吸収剤を含む感光層を導電性支持体上に有する第一電極と、
     第一電極上に、導電性微粒子とポリマーとを含有する粒子含有層と、
     前記感光層と前記粒子含有層の間に、前記導電性微粒子を含有しない電荷輸送層とを有する光電変換素子。
  2.  前記電荷輸送層が、正孔輸送層である請求項1に記載の光電変換素子。
  3.  前記ポリマーが、絶縁材料である請求項1または2に記載の光電変換素子。
  4.  前記導電性微粒子が、炭素材料の微粒子である請求項1~3のいずれか1項に記載の光電変換素子。
  5.  前記粒子含有層上に、前記第一電極に対向する第二電極を有する請求項1~4のいずれか1項に記載の光電変換素子。
  6.  前記粒子含有層が、前記第一電極に対向する第二電極を兼ねる請求項1~4のいずれか1項に記載の光電変換素子。
  7.  前記ペロブスカイト型光吸収剤が、周期表第一族元素もしくはカチオン性有機基Aのカチオン、周期表第一族元素以外の金属原子のカチオン、および、アニオン性原子もしくは原子団Xのアニオンを有するペロブスカイト型結晶構造を持つ化合物を含む請求項1~6のいずれか1項に記載の光電変換素子。
  8.  前記導電性支持体と前記感光層との間に多孔質層を有する請求項1~7のいずれか1項に記載の光電変換素子。
  9.  請求項1~8のいずれか1項に記載の光電変換素子を用いた太陽電池。
PCT/JP2016/068385 2015-06-26 2016-06-21 光電変換素子および太陽電池 WO2016208578A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680034472.6A CN107710436A (zh) 2015-06-26 2016-06-21 光电转换元件及太阳能电池
JP2017524920A JP6383876B2 (ja) 2015-06-26 2016-06-21 光電変換素子および太陽電池
EP16814348.5A EP3316326A4 (en) 2015-06-26 2016-06-21 Photoelectric conversion element and solar battery
US15/831,719 US20180096797A1 (en) 2015-06-26 2017-12-05 Photoelectric conversion element and solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015128512 2015-06-26
JP2015-128512 2015-06-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/831,719 Continuation US20180096797A1 (en) 2015-06-26 2017-12-05 Photoelectric conversion element and solar cell

Publications (1)

Publication Number Publication Date
WO2016208578A1 true WO2016208578A1 (ja) 2016-12-29

Family

ID=57585622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068385 WO2016208578A1 (ja) 2015-06-26 2016-06-21 光電変換素子および太陽電池

Country Status (5)

Country Link
US (1) US20180096797A1 (ja)
EP (1) EP3316326A4 (ja)
JP (1) JP6383876B2 (ja)
CN (1) CN107710436A (ja)
WO (1) WO2016208578A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018129506A (ja) * 2017-02-10 2018-08-16 パナソニックIpマネジメント株式会社 光吸収材料、光吸収材料の製造方法、および光吸収材料を用いた太陽電池
JP2019067817A (ja) * 2017-09-28 2019-04-25 積水化学工業株式会社 太陽電池
KR20230061632A (ko) * 2021-10-28 2023-05-09 한국전자기술연구원 태양전지 배터리 일체형 디바이스 및 태양전지 배터리 일체형 디바이스용 정공전자수송층

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6530360B2 (ja) * 2016-09-23 2019-06-12 株式会社東芝 光電変換素子
CN108389968B (zh) * 2018-02-28 2021-04-06 京东方科技集团股份有限公司 薄膜晶体管、其制备方法及显示器件

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015046585A (ja) * 2013-07-31 2015-03-12 富士フイルム株式会社 光電変換素子、光電変換素子の製造方法および太陽電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104022222B (zh) * 2014-05-14 2017-12-29 中国科学院物理研究所 钙钛矿基薄膜太阳电池及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015046585A (ja) * 2013-07-31 2015-03-12 富士フイルム株式会社 光電変換素子、光電変換素子の製造方法および太陽電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SEVERIN N. HABISREUTINGER: "Carbon Nanotube/ Polymer Compositesas a Highly Stable Hole Collection Layer in Perovskite Solar Cells", NANO LETTERS, vol. 14, no. 10, 16 September 2014 (2014-09-16), pages 5561 - 5568, XP055340561 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018129506A (ja) * 2017-02-10 2018-08-16 パナソニックIpマネジメント株式会社 光吸収材料、光吸収材料の製造方法、および光吸収材料を用いた太陽電池
CN108417648A (zh) * 2017-02-10 2018-08-17 松下知识产权经营株式会社 光吸收材料、光吸收材料的制造方法以及使用光吸收材料的太阳能电池
US11292728B2 (en) 2017-02-10 2022-04-05 Panasonic Intellectual Property Management Co., Ltd. Light-absorbing material, method for producing the same, and solar cell including the same
JP2019067817A (ja) * 2017-09-28 2019-04-25 積水化学工業株式会社 太陽電池
KR20230061632A (ko) * 2021-10-28 2023-05-09 한국전자기술연구원 태양전지 배터리 일체형 디바이스 및 태양전지 배터리 일체형 디바이스용 정공전자수송층
KR102556551B1 (ko) 2021-10-28 2023-07-18 한국전자기술연구원 태양전지 배터리 일체형 디바이스 및 태양전지 배터리 일체형 디바이스용 정공전자수송층

Also Published As

Publication number Publication date
JP6383876B2 (ja) 2018-08-29
US20180096797A1 (en) 2018-04-05
EP3316326A1 (en) 2018-05-02
EP3316326A4 (en) 2018-07-11
JPWO2016208578A1 (ja) 2017-12-28
CN107710436A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
JP6286619B2 (ja) 光電変換素子、およびこれを用いた太陽電池
WO2015016107A1 (ja) 光電変換素子および太陽電池
JP6194103B2 (ja) 光電変換素子、これを用いた太陽電池ならびに光電変換素子の製造方法
WO2015016114A1 (ja) 光電変換素子および太陽電池
WO2015016110A1 (ja) 光電変換素子および太陽電池
JP6383876B2 (ja) 光電変換素子および太陽電池
JP6412774B2 (ja) 光電変換素子、太陽電池、および光電変換素子の製造方法
JP6413009B2 (ja) 光電変換素子、太陽電池および光電変換素子の製造方法
WO2017014273A1 (ja) 光電変換素子、太陽電池及び化合物
WO2016080489A1 (ja) 光電変換素子、太陽電池および光電変換素子の製造方法
WO2016208579A1 (ja) 光電変換素子、太陽電池、金属塩組成物および光電変換素子の製造方法
WO2017002645A1 (ja) 光電変換素子、およびこれを用いた太陽電池
JP6523455B2 (ja) 光電変換素子、およびこれを用いた太陽電池
JP6106131B2 (ja) 光電変換素子および太陽電池
JP6229991B2 (ja) 光電変換素子、太陽電池および組成物
JP2016092296A (ja) ペロブスカイト膜形成液、ペロブスカイト膜、光電変換素子、および太陽電池
JP6323826B2 (ja) 光電変換素子および太陽電池
WO2017002802A1 (ja) 光電変換素子、太陽電池および組成物
JP6650510B2 (ja) 光電変換素子、太陽電池及び化合物
JP6222641B2 (ja) 光電変換素子および太陽電池
JP6385001B2 (ja) 光電変換素子用電極の製造方法、光電変換素子の製造方法、太陽電池の製造方法及び光吸収剤塗布膜の製造方法
JP6509342B2 (ja) 光電変換素子、光電変換素子の製造方法、および太陽電池
WO2017169191A1 (ja) 光電変換素子、太陽電池、光電変換素子の製造方法、表面処理剤、表面処理用組成物および表面処理液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814348

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524920

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016814348

Country of ref document: EP