WO2016208431A1 - ロボット装置 - Google Patents

ロボット装置 Download PDF

Info

Publication number
WO2016208431A1
WO2016208431A1 PCT/JP2016/067460 JP2016067460W WO2016208431A1 WO 2016208431 A1 WO2016208431 A1 WO 2016208431A1 JP 2016067460 W JP2016067460 W JP 2016067460W WO 2016208431 A1 WO2016208431 A1 WO 2016208431A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint
joints
robot apparatus
unit
joint portion
Prior art date
Application number
PCT/JP2016/067460
Other languages
English (en)
French (fr)
Inventor
尹 祐根
眞二 栗原
順央 川口
光 佐野
宗祐 ▲高▼▲瀬▼
Original Assignee
ライフロボティクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ライフロボティクス株式会社 filed Critical ライフロボティクス株式会社
Publication of WO2016208431A1 publication Critical patent/WO2016208431A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/06Safety devices

Definitions

  • the embodiment of the present invention relates to a robot apparatus.
  • a robotic device In a robotic device, the operator needs to teach the robotic device operations such as work points and via points where the hand mounted at the tip of the robot arm should move, and details of hand work at the work point.
  • Operating a control unit called a pendant to move an arm and teaching its operation to a robot apparatus is called direct teaching.
  • the robot arm may not actually move even if the operation unit is operated, and there are various possible causes.
  • the work to identify and recover the cause reduces the work efficiency of direct teaching.
  • the purpose is to reduce the work burden on the operator including the pursuit of the cause when the robot arm does not move.
  • the robot apparatus includes an articulated arm mechanism including a plurality of joint portions, and displays a state of each of the plurality of joint portions on a cover that covers at least one joint portion of the plurality of joint portions. It is equipped with a display device.
  • FIG. 1 is an external perspective view of a robot arm mechanism of the robot apparatus according to the present embodiment.
  • FIG. 2 is a side view showing the internal structure of the robot arm mechanism of FIG.
  • FIG. 3 is a diagram showing the configuration of the robot arm mechanism of FIG.
  • FIG. 4 is a block diagram showing the configuration of the robot apparatus according to this embodiment.
  • FIG. 5 is a diagram illustrating an example of a display screen of the display unit in FIG.
  • FIG. 6 is a perspective view showing the position of the display unit of the robot arm mechanism according to the first modification of the present embodiment.
  • FIG. 7 is a perspective view showing the position of the display unit of the robot arm mechanism according to the second modification of the present embodiment.
  • FIG. 1 is an external perspective view of a robot arm mechanism of the robot apparatus according to the present embodiment.
  • FIG. 2 is a side view showing the internal structure of the robot arm mechanism of FIG.
  • FIG. 3 is a diagram showing the configuration of the robot arm mechanism of FIG.
  • FIG. 4 is a block
  • FIG. 8 is a perspective view showing the position of the display unit of the robot arm mechanism according to the third modification of the present embodiment.
  • FIG. 9 is a perspective view showing the position of the display unit of the robot arm mechanism according to the fourth modification example of the present embodiment.
  • FIG. 10 is a perspective view showing the position of the display unit of the robot arm mechanism according to the fifth modification example of the present embodiment.
  • FIG. 11 is a perspective view showing the position of the display unit of the robot arm mechanism according to the sixth modification of the present embodiment.
  • FIG. 12 is a perspective view showing the position of the indicator lamp of the robot arm mechanism according to the seventh modification of the present embodiment.
  • FIG. 13 is a perspective view showing the position of the indicator lamp of the robot arm mechanism according to the eighth modification of the present embodiment.
  • the robot apparatus includes an articulated arm mechanism having a plurality of joint portions.
  • the robot apparatus according to the present embodiment is equipped with a display unit that displays the state of each of the plurality of joint units.
  • the display section shows the operating state of each joint part (operating or stopped), whether the joint part has reached the movable limit, whether the joint actuator is overheated, whether the joint actuator has stepped out, etc. Is displayed.
  • the cause is an abnormal operation on the robot device side represented by overheating of the actuator, or the robot whose joint has reached the limit of movement.
  • the operator can confirm the distinction immediately by visually recognizing the display part as to why the operation is not abnormal on the apparatus side.
  • This effect can be achieved by using any of an AC servo motor, a DC servo motor, and a stepping motor as the joint actuator.
  • a case where a stepping motor is used as an actuator will be described as an example.
  • a multi-joint arm mechanism in which one of a plurality of joint portions includes a linear motion extension joint will be described as an example.
  • components having substantially the same function and configuration are denoted by the same reference numerals, and redundant description will be given only when necessary.
  • FIG. 1 is an external perspective view of the robot apparatus according to the present embodiment.
  • the robot arm mechanism constituting the robot apparatus has a substantially cylindrical base 1, an arm 2 connected to the base 1, and a wrist 4 attached to the tip of the arm 2.
  • the wrist part 4 is provided with an adapter (not shown).
  • the adapter is provided in a rotating portion of a sixth rotating shaft RA6 described later.
  • a robot hand corresponding to the application is attached to the adapter provided on the wrist portion 4.
  • the robot arm mechanism has a plurality of, here, six joint portions J1, J2, J3, J4, J5, and J6.
  • the plurality of joint portions J1, J2, J3, J4, J5, and J6 are sequentially arranged from the base portion 1.
  • the first, second, and third joints J1, J2, and J3 are called the root three axes
  • the fourth, fifth, and sixth joints J4, J5, and J6 change the posture of the robot hand.
  • the wrist 4 has fourth, fifth, and sixth joints J4, J5, and J6.
  • At least one of the joint portions J1, J2, and J3 constituting the base three axes is a linear motion expansion / contraction joint.
  • the third joint portion J3 is configured as a linear motion telescopic joint portion, particularly a joint portion having a relatively long extension distance.
  • the arm part 2 represents the expansion / contraction part of the linear motion expansion / contraction joint part J3 (third joint part J3).
  • a display unit (display device) 41 for notifying the state of each joint portion J1-J6 over a range of 30 to 90 degrees on the front side surface of the cylindrical cover covering the sixth joint portion J6 of the wrist portion 4 Are attached along the cylindrical shape.
  • the display unit 41 include a CRT display, a liquid crystal display, an organic EL display, and a plasma display.
  • the display unit 41 is not directly attached to the cover, but may be attached to a pedestal or an attachment hook provided on the cover.
  • a pedestal for providing the display unit 41 on the front side surface of the cylindrical cover that covers the sixth joint J6 is provided so that the display surface faces the front, and the display unit 41 is attached to the pedestal. Good.
  • the first joint portion J1 is a torsion joint centered on the first rotation axis RA1 supported, for example, perpendicularly to the base surface.
  • the second joint portion J2 is a bending joint centered on the second rotation axis RA2 arranged perpendicular to the first rotation axis RA1.
  • the third joint portion J3 is a joint in which the arm portion 2 expands and contracts linearly around a third axis (moving axis) RA3 arranged perpendicular to the second rotation axis RA2.
  • the fourth joint portion J4 is a torsion joint centered on the fourth rotation axis RA4.
  • the fourth rotation axis RA4 substantially coincides with the third movement axis RA3 when a later-described seventh joint portion J7 is not rotating, that is, when the entire arm portion 2 is linear.
  • the fifth joint J5 is a bending joint centered on a fifth rotation axis RA5 orthogonal to the fourth rotation axis RA4.
  • the sixth joint portion J6 is a bending joint centered on the sixth rotation axis RA6 that is perpendicular to the fourth rotation axis RA4 and perpendicular to the fifth rotation axis RA5.
  • the arm support (first support) 11a forming the base 1 has a cylindrical hollow structure formed around the first rotation axis RA1 of the first joint J1.
  • the first joint portion J1 is attached to a fixed base (not shown).
  • the arm portion 2 pivots left and right along with the shaft rotation of the first support 11a.
  • the first support 11a may be fixed to the ground plane.
  • the arm part 2 is provided in a structure that turns independently of the first support 11a.
  • a second support part 11b is connected to the upper part of the first support 11a.
  • the second support portion 11b has a hollow structure that is continuous with the first support portion 11a.
  • One end of the second support portion 11b is attached to the rotating portion of the first joint portion J1.
  • the other end of the second support portion 11b is opened, and the third support portion 11c is fitted so as to be rotatable on the second rotation axis RA2 of the second joint portion J2.
  • the 3rd support part 11c has a hollow structure which consists of a scale-like exterior which is connected to the 1st support part 11a and the 2nd support part.
  • the third support portion 11c is accommodated in the second support portion 11b and sent out as the second joint portion J2 is bent and rotated.
  • the rear part of the arm part 2 that constitutes the linear motion expansion / contraction joint part J3 (third joint part J3) of the robot arm mechanism is housed in the hollow structure in which the first support part 11a and the second support part 11b are continuous by contraction.
  • the third support portion 11c is fitted to the lower end portion of the second support portion 11b so as to be rotatable about the second rotation axis RA2 at the lower end portion of the second support portion 11b.
  • a second joint portion J2 as a bending joint portion around the second rotation axis RA2 is configured.
  • the arm portion 2 rotates in a vertical direction around the second rotation axis RA2, that is, performs a undulation operation.
  • the fourth joint portion J4 is a torsional joint having a fourth rotation axis RA4 that is typically in contact with the arm central axis along the expansion / contraction direction of the arm portion 2, that is, the third movement axis RA3 of the third joint portion J3.
  • the fifth joint J5 is a bending joint having a fifth rotation axis RA5 orthogonal to the fourth rotation axis RA4 of the fourth joint J4.
  • the sixth joint J6 is a bending joint having a sixth rotation axis RA6 perpendicular to the fourth rotation axis RA4 of the fourth joint J4 and perpendicular to the fifth rotation axis RA5 of the fifth joint J5.
  • the robot hand turns left and right.
  • the robot hand attached to the adapter of the wrist part 4 has the first, second and third joint parts J1. J2. It is moved to an arbitrary position by J3, and is arranged in an arbitrary posture by the fourth, fifth, and sixth joint portions J4, J5, and J6.
  • the length of the extension distance of the arm part 2 of the third joint part J3 enables the robot hand to reach a wide range of objects from the close position of the base 1 to the remote position.
  • the third joint portion J3 is characterized by a linear expansion / contraction operation realized by a linear motion expansion / contraction mechanism constituting the third joint portion J3 and the length of the expansion distance.
  • FIG. 2 is a perspective view showing the internal structure of the robot arm mechanism of FIG.
  • the linear motion expansion / contraction mechanism has an arm part 2 and an injection part 30.
  • the arm unit 2 includes a first connection frame row 21 and a second connection frame row 22.
  • the first connected frame row 21 includes a plurality of first connected frames 23.
  • the first connection piece 23 is formed in a substantially flat plate shape.
  • the front and rear first connecting pieces 23 are connected in a row so as to be freely bent by pins at the end portions of each other.
  • column 21 can be bent freely inside and outside.
  • the second linked frame row 22 includes a plurality of second linked frames 24.
  • the second connecting piece 24 is configured as a short groove having a U-shaped cross section.
  • the front and rear second connecting pieces 24 are connected in a row so as to be freely bent by pins at the bottom end portions of each other.
  • the second connecting frame row 22 can be bent inward. Since the cross section of the second connecting piece 24 is U-shaped, the second connecting piece row 22 does not bend outward because the side plates of the adjacent second connecting pieces 24 collide with each other.
  • the surfaces of the first and second connecting pieces 23 and 24 facing the second rotation axis RA2 are referred to as inner surfaces, and the opposite surfaces are referred to as outer surfaces.
  • the first first linked frame 23 in the first linked frame sequence 21 and the first second linked frame 24 in the second linked frame sequence 22 are connected by a linked frame 27.
  • the connecting piece 27 has a shape in which the second connecting piece 24 and the first connecting piece 23 are combined.
  • the injection unit 30 includes a plurality of upper rollers 31 and a plurality of lower rollers 32 supported by a rectangular tube-shaped frame 35.
  • the plurality of upper rollers 31 are arranged along the arm central axis at an interval substantially equal to the length of the first connecting piece 23.
  • the plurality of lower rollers 32 are arranged along the arm central axis at an interval substantially equivalent to the length of the second connecting piece 24.
  • a guide roller 40 and a drive gear 50 are provided behind the injection unit 30 so as to face each other with the first connecting piece row 21 interposed therebetween.
  • the drive gear 50 is connected to the stepping motor 330 via a speed reducer (not shown).
  • a linear gear is formed on the inner surface of the first connecting piece 23 along the connecting direction.
  • the linear gears are connected in a straight line to form a long linear gear.
  • the drive gear 50 is meshed with a linear linear gear.
  • the linear gear connected in a straight line forms a rack and pinion mechanism together with the drive gear 50.
  • the first connecting piece row 21 is brought into a posture parallel to the arm central axis by the guide roller 40, and the upper roller 31 and the lower roller 32 are moved. Be guided in between.
  • the second connection piece row 22 is guided between the upper roller 31 and the lower roller 32 of the injection unit 30 by a guide rail (not shown) disposed behind the injection unit 30. .
  • the first and second connecting frame rows 21 and 22 guided between the upper roller 31 and the lower roller 32 are pressed against each other. Thereby, the columnar body by the 1st, 2nd connection top row
  • the injection unit 30 joins the first and second connecting frame rows 21 and 22 to form a columnar body, and supports the columnar body vertically and horizontally.
  • the columnar body formed by joining the first and second connecting piece rows 21 and 22 is firmly held by the injection unit 30, so that the joining state of the first and second connecting piece rows 21 and 22 is maintained.
  • the bending of the first and second connection frame rows 21 and 22 is constrained to each other.
  • columns 21 and 22 comprise the columnar body provided with fixed rigidity.
  • the columnar body refers to a columnar rod body in which the first connection frame row 21 is joined to the second connection frame row 22.
  • the second connecting piece 24 and the first connecting piece 23 are formed into cylindrical bodies having various cross-sectional shapes as a whole.
  • the cylindrical body is defined as a shape in which the top, bottom, left, and right sides are surrounded by a top plate, a bottom plate, and both side plates, and a front end portion and a rear end portion are opened.
  • the columnar body formed by joining the first and second connecting piece rows 21 and 22 starts from the connecting piece 27 and linearly extends from the opening of the third support portion 11c along the third movement axis RA3. Sent out.
  • the first connecting piece row 21 engaged with the drive gear 50 is pulled back into the first support 11a.
  • the columnar body is pulled back into the third support body 11c with the movement of the first connection frame row.
  • the columnar body pulled back is separated behind the injection unit 30.
  • the first connecting piece row 21 constituting the columnar body is sandwiched between the guide roller 40 and the drive gear 50, and the second connecting piece row 22 constituting the columnar body is pulled downward by gravity, whereby the second connecting piece row 22 is drawn.
  • the frame row 22 and the first linked frame row 21 are separated from each other. The separated first and second connecting frame rows 21 and 22 return to a bendable state.
  • the second connection piece row 22 is bent and conveyed from the injection unit 30 to the storage portion inside the first support 11a (base 1), and the first connection piece row 21 is also transferred to the second connection piece. It is bent and conveyed in the same direction (inner side) as the row 22.
  • the first linked frame row 21 is stored in a state substantially parallel to the second linked frame row 22.
  • FIG. 3 is a diagram showing the robot arm mechanism of FIG.
  • the robot arm mechanism three position degrees of freedom are realized by the first joint portion J1, the second joint portion J2, and the third joint portion J3 that form the three base axes.
  • three posture degrees of freedom are realized by the fourth joint portion J4, the fifth joint portion J5, and the sixth joint portion J6 constituting the wrist three axes.
  • the robot coordinate system ⁇ b is a coordinate system having an arbitrary position on the first rotation axis RA1 of the first joint portion J1 as an origin.
  • three orthogonal axes (Xb, Yb, Zb) are defined.
  • the Zb axis is an axis parallel to the first rotation axis RA1.
  • the Xb axis and the Yb axis are orthogonal to each other and orthogonal to the Zb axis.
  • the hand coordinate system ⁇ h is a coordinate system having an arbitrary position (hand reference point) of the robot hand 5 attached to the wrist 4 as an origin.
  • the position of the hand reference point (hereinafter simply referred to as the hand) is defined as the center position between the two fingers.
  • the hand coordinate system ⁇ h three orthogonal axes (Xh, Yh, Zh) are defined.
  • the Zh axis is an axis parallel to the sixth rotation axis RA6.
  • the Xh axis and the Yh axis are orthogonal to each other and orthogonal to the Zh axis.
  • the Xh axis is an axis parallel to the front-rear direction of the robot hand 5.
  • the hand posture is a rotation angle around each of three orthogonal axes of the hand coordinate system ⁇ h with respect to the robot coordinate system ⁇ b (rotation angle around the Xh axis (yaw angle) ⁇ , rotation angle around the Yh axis (pitch angle) ⁇ , Zh axis It is given as the surrounding rotation angle (roll angle) ⁇ .
  • 1st joint part J1 is arrange
  • the rotation axis RA1 is arranged perpendicular to the reference plane BP of the base on which the fixing portion of the first joint portion J1 is installed.
  • 2nd joint part J2 is comprised as a bending joint centering on rotating shaft RA2.
  • the rotation axis RA2 of the second joint portion J2 is provided in parallel to the Xb axis on the spatial coordinate system.
  • the rotation axis RA2 of the second joint portion J2 is provided in a direction perpendicular to the rotation axis RA1 of the first joint portion J1.
  • the second joint portion J2 is offset with respect to the first joint portion J1 in two directions, that is, the direction of the first rotation axis RA1 (Zb axis direction) and the Yb axis direction perpendicular to the first rotation axis RA1.
  • the second support 11b is attached to the first support 11a so that the second joint J2 is offset in the two directions with respect to the first joint J1.
  • a virtual arm rod portion (link portion) that connects the second joint portion J2 to the first joint portion J1 has a crank shape in which two hook-shaped bodies whose tips are bent at right angles are combined.
  • This virtual arm rod part is comprised by the 1st, 2nd support bodies 11a and 11b which have a hollow structure.
  • 3rd joint part J3 is comprised as a linear motion expansion-contraction joint centering on movement axis RA3.
  • the movement axis RA3 of the third joint portion J3 is provided in a direction perpendicular to the rotation axis RA2 of the second joint portion J2.
  • the movement axis RA3 of the third joint portion J3 is the second joint
  • the rotation axis RA2 of the part J2 and the rotation axis RA1 of the first joint part J1 are provided in a direction perpendicular to the rotation axis RA2.
  • the movement axis RA3 of the third joint portion J3 is provided in parallel to the Yb axis perpendicular to the Xb axis and the Zb axis. Further, the third joint portion J3 is offset with respect to the second joint portion J2 in two directions, that is, the direction of the rotation axis RA2 (Yb axis direction) and the direction of the Zb axis orthogonal to the movement axis RA3.
  • the third support 11c is attached to the second support 11b so that the third joint J3 is offset in the two directions with respect to the second joint J2.
  • the virtual arm rod portion (link portion) that connects the third joint portion J3 to the second joint portion J2 has a hook-shaped body whose tip is bent vertically. This virtual arm rod portion is constituted by the second and third supports 11b and 11c.
  • the fourth joint portion J4 is configured as a torsion joint with the rotation axis RA4 as the center.
  • the rotation axis RA4 of the fourth joint part J4 is arranged to substantially coincide with the movement axis RA3 of the third joint part J3.
  • the fifth joint J5 is configured as a bending joint with the rotation axis RA5 as the center.
  • the rotation axis RA5 of the fifth joint portion J5 is disposed so as to be substantially orthogonal to the movement axis RA3 of the third joint portion J3 and the rotation axis RA4 of the fourth joint portion J4.
  • the sixth joint portion J6 is configured as a torsion joint with the rotation axis RA6 as the center.
  • the rotation axis RA6 of the sixth joint portion J6 is disposed so as to be substantially orthogonal to the rotation axis RA4 of the fourth joint portion J4 and the rotation axis RA5 of the fifth joint portion J5.
  • the sixth joint J6 is provided to turn the robot hand 5 as a hand effector left and right.
  • the sixth joint portion J6 may be configured as a bending joint whose rotation axis RA6 is substantially orthogonal to the rotation axis RA4 of the fourth joint portion J4 and the rotation axis RA5 of the fifth joint portion J5.
  • one bending joint portion of the base three axes of the plurality of joint portions J1-J6 is replaced with a linear motion expansion / contraction joint portion, and the second joint portion J2 is offset in two directions with respect to the first joint portion J1.
  • the robot arm mechanism of the robot apparatus according to the present embodiment eliminates the singularity posture structurally.
  • FIG. 4 is a block diagram showing the configuration of the robot apparatus according to this embodiment.
  • Stepping motors 310, 320, 330, 340, 350, and 360 are provided as actuators at joints J1, J2, J3, J4, J5, and J6 of the robot arm mechanism of the robot apparatus according to the present embodiment, respectively.
  • Driver units 210, 220, 230, 240, 250, and 260 are electrically connected to the stepping motors 310, 320, 330, 340, 350, and 360.
  • the driver units 210, 220, 230, 240, 250, and 260 are provided in the stepping motors to be controlled, respectively.
  • driver units 210, 220, 230, 240, 250, and 260 have the same configuration and perform the same operation on the stepping motor to be controlled according to the control signal from the control device 100.
  • driver unit 210 will be described, and description of the other driver units 220, 230, 240, 250, and 260 will be omitted.
  • Stepping motor 310 is formed by arranging a plurality of stator coils around a rotor to which a drive shaft is connected.
  • the stator coil is connected to the power supply circuit 212 via a switching element.
  • These switching elements are turned on by a pulse signal supplied from the pulse signal generator 213.
  • the stepping motor 310 rotor
  • the rotation speed of the stepping motor 310 can be changed by changing the cycle for switching the pulse signal.
  • the reciprocal of this period is defined as the pulse frequency.
  • the driver unit 210 controls the driving and stopping of the stepping motor 310.
  • the driver unit 210 includes a control unit 211, a power supply circuit 212, a pulse signal generation unit 213, a rotary encoder 215, and a counter 217.
  • the control unit 211 controls the driver unit 210 in accordance with the command value input from the control device 100.
  • the current command code representing the exciting current value of the stepping motor 310 is input from the control device 100 to the control unit 211.
  • the control unit 211 outputs a control signal corresponding to the current command code to the power supply circuit 212.
  • the power supply circuit 212 is a variable current AC / DC conversion power supply circuit, and generates a current having an excitation current value designated by a current command code. The generated excitation current is supplied to the stator coil of the stepping motor 310.
  • a position command code representing the next joint angle is input from the control device 100 to the control unit 211.
  • the next joint angle refers to a joint angle after a predetermined control period ⁇ t (for example, 10 ms).
  • joint angle represents a positive / negative rotation angle from the reference position
  • extension distance represents a distance from the most contracted state.
  • the control unit 211 outputs a pulse control signal corresponding to the position command code to the pulse signal generation unit 213. Specifically, the control unit 211 determines the number of pulses from the current joint variable by dividing the difference from the joint angle after a predetermined control period ⁇ t input from the control device 100 by the step angle, The control period ⁇ t is divided by the number of pulses, and the pulse frequency is determined by the reciprocal thereof. The control unit 211 outputs a pulse control signal corresponding to the determined pulse condition (number of pulses and pulse frequency) to the pulse signal generation unit 213.
  • the pulse signal generator 213 supplies an excitation pulse to each switching element according to a predetermined excitation sequence in accordance with the pulse control signal output from the controller 211. Thereby, the joint part J1 rotates to the next joint angle.
  • each of the driver units 220, 240, 250, 260 corresponding to the joint portions J2, J4, J5, J6 has a position command code indicating the next joint angle, and the driver unit 230 corresponding to the joint portion J3.
  • a position command code indicating the next extension distance is input from the control device 100.
  • the rotary encoder 215 is connected to the drive shaft of the stepping motor 310 and outputs a pulse signal (encoder pulse) at every fixed rotation angle.
  • the counter 217 calculates the count number by adding or subtracting the number of encoder pulses output from the rotary encoder 215 according to the rotation direction.
  • the counter 217 outputs data relating to the cumulative count number every control cycle ⁇ t. Data relating to the cumulative count number output by the counter 217 is input to the control device 100 via the driver unit interface 11.
  • the temperature sensor 410 outputs a signal corresponding to the temperature of the stepping motor 310.
  • the temperature sensor 410 is a surface temperature measurement sensor using a thermocouple as a detection element.
  • the temperature sensor 410 is attached to the surface of the stepping motor 310 with a magnet or the like, for example.
  • the temperature sensor 410 outputs a voltage signal corresponding to the temperature of the stepping motor 310 at every predetermined control period ⁇ t.
  • the voltage signal output from the temperature sensor 410 is input to the control device 100 via the temperature sensor interface 112.
  • the control device 100 includes a system control unit 101, an operation unit interface 102, a storage unit 103, a current position / attitude calculation unit 104, a command value calculation unit 105, an operation state determination unit 106, and a movable limit determination unit 107.
  • Data relating to the cumulative count number of encoder pulses is input to the control device 100 from each of the driver units 210 to 260 via the driver unit interface 11.
  • a voltage signal corresponding to the temperature of each of the stepping motors 310 to 360 is input to the control device 100 at a predetermined control cycle (for example, every 10 ms) from the temperature sensors 410 to 460 via the temperature sensor interface 112. Is done.
  • An operation unit 60 is connected to the control device 100 via an operation unit interface 102.
  • the operation unit 60 functions as an input interface for the operator to change the position (movement) of the point of interest of the wrist part 4 or the robot hand (hand effector), change the posture, and input the movement speed.
  • the operation unit 60 includes a joystick or the like for designating a final target position for moving the robot hand and a moving time.
  • the final target position and movement time of the robot hand are input based on the direction in which the joystick is operated, the angle at which the joystick is tilted, and the operation acceleration of the joystick.
  • these input devices constituting the operation unit 60 can be replaced with other devices such as a mouse, a keyboard, a trackball, and a touch panel.
  • a touch panel or the like is typically used as the operation unit 60 as a pendant during direct teaching.
  • the system control unit 101 includes a CPU (Central Processing Unit), a semiconductor memory, and the like, and controls the control device 100 in an integrated manner. Each unit is connected to the system control unit 101 via a control / data bus 120.
  • CPU Central Processing Unit
  • semiconductor memory and the like
  • the storage unit 103 stores joint variable threshold value (movable threshold value) data of the joint variable (joint angle, extension distance (also referred to as the feed length from the arm origin) in J3) of each of the joint portions J1 to J6 and the stepping motor 310 360 stores temperature threshold data and speed threshold data of stepping motors 310-360.
  • the threshold value of the joint variable is preferably set to a structural limit of each joint portion J1 to J6 or a safety or control limit value approximate thereto.
  • the temperature threshold is preferably set to a temperature limit value that prevents overheating of the stepping motor.
  • the speed threshold value is set to a value at which the rotational angular velocities of the joint portions J1, J2, J4-J6 do not exceed the upper limit value provided for safety or prevention of step-out.
  • the speed threshold is set to a value at which the expansion / contraction speed of the joint portion J3 does not exceed the upper limit value provided for safety or prevention of step-out.
  • the current position / posture calculation unit 104 calculates the current position / posture of the hand point of interest based on the current joint variables of the joint portions J1-J6. Specifically, the current position / posture calculation unit 104 multiplies the cumulative counts counted by the counters of the driver units 210-260 by a step angle corresponding to 1 count, thereby obtaining each of the joints J1-J6. Compute the current joint variable of. The current position / posture calculation unit 104 substitutes the current joint variables of the joints J1-J6 as parameters into the homogeneous transformation matrix K, thereby obtaining the current position / posture of the hand point of interest as viewed from the robot coordinate system ⁇ b. calculate.
  • the homogeneous transformation matrix K is a determinant that defines the relationship between the hand coordinate system ⁇ h and the robot coordinate system ⁇ b.
  • the homogeneous transformation matrix K is determined by the relationship between the links constituting the robot arm mechanism (link length and link twist angle) and the relationship between the joint axes (distance between links and angle between links).
  • the current position / posture calculation unit 104 repeatedly performs the above calculation process for each control cycle ⁇ t, and calculates the current position / posture of the hand point of interest for each control cycle ⁇ t.
  • the command value calculation unit 105 calculates a joint variable vector after the control period ⁇ t has passed, which is given as a command value to each of the driver units 210 to 260.
  • the joint variable vector refers to six variables of the six joint variables of the joint portions J1-J6, that is, the joint angles of the rotary joint portions J1, J2, J4-J6 and the linear displacement of the linear motion expansion / contraction joint portion J3. .
  • the command value calculation unit 105 sets the target position of the hand point of interest for each unit time ⁇ t (control cycle, for example, 10 ms) connecting the points. Compute a sequence of points.
  • the current position / posture of the hand is given from the calculation processing by the current position / posture calculation unit 104.
  • the final target position / posture of the hand and the movement time are input by the operator via the operation unit 60, for example.
  • the trajectory calculation unit 105 substitutes the current position / posture of the hand focus point and the final target position / posture of the hand focus point as parameters in the trajectory calculation formula of the hand focus point that is preset in advance. Trajectory (hereinafter referred to as the hand trajectory) is calculated, and a point sequence of the target position per unit time ⁇ t is calculated on the hand trajectory. An arbitrary method is adopted as the trajectory calculation method.
  • the command value calculation unit 105 calculates a plurality of joint variable vectors corresponding to the calculated target positions.
  • the command calculation unit calculates the hand speed based on the current position / posture of the hand point of interest, the next target position / posture after the unit time ⁇ t, and the unit time ⁇ t, and the calculated hand speed is a Jacobian inverse matrix.
  • Jacobian inverse matrix is given by the knitting differential with joint variables of the vector representing the position and hand posture of the hand point of interest. Is a matrix to convert to The Jacobian inverse matrix is calculated from the current joint variable vector and the link parameters of the arm structure.
  • the command value calculation unit 105 multiplies the joint angular velocity by the unit time ⁇ t to calculate the displacement amount of each joint part during the unit time ⁇ t, and the calculated displacement amount of each joint part immediately before the movement (currently ) To calculate the joint variable vector after elapse of unit time ⁇ t.
  • the output unit 113 outputs the command values (joint variables) of the joint portions J1-J6 calculated by the command value calculation unit 105 to the driver units 210-260 according to the control of the system control unit 101.
  • the operation state determination unit 106 determines whether or not each of the joint portions J1-J6 is operating. Specifically, the motion state determination unit 106 repeatedly inputs the joint angle of the joint portion J1 at a predetermined cycle, and compares the current joint angle of the joint portion J1 with the joint angle immediately before (one cycle before). When the current joint angle is not displaced from the previous joint angle, the motion state determination unit 106 determines that the joint portion J1 is “stopped” and notifies that the joint portion J1 is stopped. The operation determination signal to be output is output. On the other hand, when the current joint angle is displaced with respect to the previous joint angle, the motion state determination unit 106 determines that the joint portion J1 is “in motion” and the joint portion J1 is in motion.
  • the operation determination signal for notifying is output.
  • the motion state determination unit 106 determines whether each of the other joint portions J2-J6 is operating.
  • the motion determination signal output from the motion state determination unit 106 includes a code for specifying the joint portion and a code indicating the motion state (“operating” or “stopped”).
  • the movable limit determination unit 107 determines whether or not each of the joint portions J1-J6 is a movable limit.
  • the movable limit of the joint portion J3 refers to a state where the arm portion 2 of the joint portion J3 is extended to a preset extension distance (linear displacement) threshold.
  • the threshold of the extension distance may be set to the longest distance on the structure where the arm part 2 can be extended, or slightly shorter than the longest distance on the structure in order to reliably continue the extension / contraction control of the arm part 2. It may be set to a safety or control limit distance.
  • the longest structural distance corresponds to the distance that the arm portion 2 is extended until the linear gear of the first connecting piece 23 at the end of the first connecting piece row 21 is engaged with the drive gear 50.
  • the movable limit of the joint portions J1, J2, J4, J5, and J6 refers to a state in which each of the joint portions J1, J2, J4, J5, and J6 is rotated to a preset joint angle threshold value.
  • the threshold of the joint angle may be set to the maximum structural angle at which each joint can rotate, or slightly smaller than the maximum structural angle to ensure continued rotation control of each joint. It may be set.
  • the movable limit determination unit 107 compares the current joint angle of the joint portion J1 with the joint angle threshold value. When the current joint angle has reached the threshold value, the movable limit determination unit 107 determines that the joint portion J1 has reached the movable limit and notifies that the joint portion J1 is at the movable limit. Is output. In a similar manner, the movable limit determination unit 107 determines whether or not each of the joint portions J2-J6 is a movable limit.
  • the movement limit determination signal output from the movement limit determination unit 107 includes a code for specifying the joint that has reached the movement limit.
  • the overheat state determination unit 108 determines whether or not each of the stepping motors of the joint portions J1 to J6 is in an overheated state (overheat), that is, whether or not each of the stepping motors of the joint portions J1 to J6 exceeds the steady temperature range. .
  • the overheat state determination unit 108 stores data of a correspondence table between the output voltage of the temperature sensor 410 and the temperature in the ROM.
  • the overheat state determination unit 108 converts the voltage signal output from the temperature sensor 410 into a temperature with reference to the above correspondence table. This temperature corresponds to the current temperature of the stepping motor 310 measured by the temperature sensor 410.
  • the overheat state determination unit 108 compares the current temperature of the stepping motor 310 against the temperature threshold.
  • the overheat state determination unit 108 determines that the stepping motor 310 is in the “overheat state” and outputs an overheat determination signal notifying that the stepping motor 310 is in the overheat state. . In a similar manner, the overheat state determination unit 108 determines whether or not each of the stepping motors 320 to 360 corresponding to the joint portions J2 to J6 is in an overheat state.
  • the overheat determination signal output from the overheat state determination unit 108 includes a code for specifying a joint portion including a stepping motor in an overheat state.
  • the step-out determination unit 109 determines whether or not the stepping motors of the joint portions J1-J6 have stepped out. Each of the stepping motors 310 to 360 is repeatedly given a joint variable as a command value every control cycle ⁇ t. Accordingly, the step-out determination unit 109 can determine whether or not the step-out state is in accordance with whether or not each of the stepping motors 310 to 360 has been displaced to the joint variable according to the command value after the control period ⁇ t has elapsed. . Specifically, the step-out determination unit 109 compares the current joint variable of the joint part J1 with the command value (joint variable) given to the stepping motor 310 immediately before (one cycle before).
  • the current joint variable is obtained from calculation processing by the current position / posture calculation unit 104.
  • the step-out determination unit 109 determines that the stepping motor 310 of the joint portion J1 has “stepped out”, and the step-out determination unit 109 Outputs a key judgment signal.
  • the step-out determination unit 109 determines whether or not the stepping motors 320-360 corresponding to the joint portions J2-J6 have stepped out.
  • the step-out determination signal output from the step-out determination unit 109 includes a code for specifying the stepped-out joint unit.
  • the upper limit of the movement speed is set in advance from the viewpoint of safety with respect to the movement speed of the hand of the robot hand 5 attached to the tip of the arm unit 2.
  • the upper limit value of the rotational angular velocity is set in advance for each of the joint portions J1-J6.
  • the overspeed determination unit 114 sets the rotational angular velocity of the rotation shaft of the joint portion J1-J6 in advance from the viewpoint of step-out prevention or safety. It is determined whether or not the upper limit value of each joint angular velocity is exceeded.
  • the rotation axis of the joint portion J1 exceeds the speed upper limit value provided for preventing step-out or for safety. The same applies to the determination process of excess joint speed of the other joint portions J2-J6.
  • a constant control cycle ⁇ t (for example, to realize the movement speed and movement direction of the hand according to the movement operation (operation angle, operation direction) of the pendant (operation unit) 60 with respect to the joystick, for example.
  • the command value (joint position (joint angle from the reference position)) for the joint portion J3 is calculated every 10 ms).
  • the output unit 113 sequentially outputs the command value at each time for each control cycle ⁇ t as time elapses from the start of operation.
  • the overspeed determination unit 114 calculates a difference between a pair of command values (joint angles) at times before and after on the time axis, that is, an angular width displaced during the control cycle ⁇ t, and divides by the control cycle ⁇ t.
  • the rotational angular velocity commanded to the stepping motor 310 is calculated from the command value.
  • the overspeed determination unit 114 compares the calculated rotation angular speed with a speed threshold set in advance for the joint J3. When the calculated rotational angular velocity exceeds the speed threshold, the overspeed determination unit 114 determines that “the rotational angular velocity of the joint J3 has exceeded the upper limit value”, and outputs an overspeed signal before outputting the command value. .
  • the speed excess determination unit 114 determines whether or not the speed of each of the joints J2-J6 (the rotational angular speed for J2, J4-J5, and the expansion / contraction speed for J3) exceeds a preset upper limit value. To do.
  • the overspeed determination signal output from the overspeed determination unit 114 includes a code for specifying a joint part that has exceeded the speed.
  • the system control unit 101 generates a notification screen corresponding to the state of each of the joint portions J1-J6 and writes the notification screen in the frame memory of the display control unit 110.
  • the display control unit 110 reads out the image data stored in the frame memory and displays it on the display unit 41.
  • Examples of the display unit 41 typically include a CRT display, a liquid crystal display, an organic EL display, a plasma display, and the like.
  • FIG. 5 is a diagram showing an example of a notification screen 400 for notifying the state of the joints J1-J6 displayed on the display unit 41 of FIG.
  • the system control unit 101 determines whether the joints J1-J6 are stopped or in motion, the movable limit according to the determination results of the motion determination signal, the movable limit determination signal, the overheat determination signal, the step-out determination signal, and the overspeed determination signal.
  • the notification screen 400 is configured to display a list of information (error codes) that specify whether or not an abnormality has occurred, whether or not an abnormality has occurred, and whether or not an abnormality has occurred, and display it on the display unit 41.
  • the storage unit 103 stores the template data of the notification screen 400 and the various character string data.
  • the screen template includes an item 401-1 representing a joint, an item 401-2 representing an operation state, an item 401-3 representing a movable state, and an item 401-4 representing an error code display in a row direction. Is arranged.
  • character strings 402-1 to 402-6 for distinguishing the joint portions J1-J6 are arranged in the column direction.
  • the operation states 403-1 to 403-6 of the joint portions J1-J6 are arranged by a character string for distinguishing whether the operation is stopped or in operation.
  • character strings 404-1 to 404-6 expressing whether or not each of the joint portions J1-J6 has reached the movable limit are arranged.
  • the character string “movable limit” is displayed.
  • error codes 405-1 to 405-6 for identifying an abnormality occurring in each of the joint portions J1-J6 are arranged.
  • the system control unit 101 Based on the code representing each joint J1-J6 and the code representing the motion state of each joint J1-J6 included in the motion determination signal, the system control unit 101 stores each joint J1-J6 from the storage unit 103. Character string data representing an operation state is read out, and data of the notification screen 400 is generated by superimposing the read character string on each of the operation state display areas 403-1 to 403-6 of the screen template. For example, when the motion determination signal includes a code indicating that the joint portion J1 is stopped, the system control unit 101 is stopped in the operation state display area 403-1 of the screen template as shown in FIG. The data of the notification screen 400 in which the character string representing is laid out is generated.
  • the system control unit 101 operates in the motion status display area 403-2 of the screen template as shown in FIG. Data of the notification screen 400 in which a character string representing the inside is laid out is generated.
  • the system control unit 101 laid out a character string representing the movable limit in the movable state display area corresponding to the joint that has reached the movable limit of the screen template based on the code representing the joint included in the movable limit determination signal.
  • Data of the notification screen 400 is generated. For example, when the code indicating the joint portion J3 is included in the movable limit determination signal, the system control unit 101 has reached the movable limit in the movable state display area 404-3 of the screen template as shown in FIG.
  • a notification screen 400 laying out a character string representing is generated.
  • the system control unit 101 Based on the code representing the joint part included in the step-out determination signal, the system control unit 101 adds an error code corresponding to the out-of-step occurrence to the error code display area corresponding to the joint part where the step-out of the screen template has occurred.
  • Data of the notification screen 400 in which a character string to be represented is laid out is generated. For example, when a step out determination signal including a code representing the joint portion J5 is output from the step out determination unit 109, the system control unit 101 steps out to the error code display area 405-5 of the screen template as shown in FIG. Data of the notification screen 400 in which a character string representing an error code corresponding to the key is laid out is generated.
  • the system control unit 101 Based on the code representing the joint part included in the overspeed determination signal, the system control unit 101 responds to overspeed in the error code display area corresponding to the joint part to which the command value for overspeed of the screen template is input. Data of the notification screen 400 in which character strings representing error codes are laid out is generated. For example, when the overspeed signal including the code representing the joint portion J1 is output from the overspeed determination unit 114, the system control unit 101 displays the speed in the error code display area 405-1 of the screen template as shown in FIG. Data of the notification screen 400 in which a character string representing an error code corresponding to the excess is laid out is generated.
  • the system control unit 101 Based on the code representing the joint part included in the overheat determination signal, the system control unit 101 notifies the notification screen 400 in which the character string representing the overheated state is laid out in the error code display area corresponding to the overheated joint part of the screen template. Generate the data.
  • the display unit 41 is attached to the side surface of the cylindrical cover that covers the sixth joint portion J6 of the wrist portion 4, as shown in FIG.
  • the display unit 41 displays a notification screen that indicates the state of each of the joint portions J1-J6. The operator can grasp the state of each joint portion J1-J6 by visually recognizing the notification screen.
  • the operator can grasp whether the joint has rotated to the movable limit, whether an inappropriate value is input as a command value to the driver unit of the joint, or whether the joint has stepped out. For example, by visually recognizing the notification screen shown in FIG. 5, the reason why the operator cannot perform the extension operation of the arm part 2 of the joint part J3 is not an abnormality on the robot apparatus side, and the arm part 2 of the joint part J3 reaches the limit It can be grasped that it has been stretched. Further, the operator can grasp that the reason why the joint portion J1 does not move is that a command value that exceeds the preset upper limit value of the speed is input to the driver unit 210 of the joint portion J1. Further, the operator can grasp that the reason why the joint portion J5 does not move is that the joint portion J5 has stepped out.
  • the display unit 41 provided on the wrist unit 4 indicates whether the robot arm cannot be operated because it is not an abnormality on the side of the robot apparatus such as giving a command value exceeding the speed or causing a step-out. Can be grasped by visually checking the display screen. For this reason, when the operator operates the operation unit 60 while paying attention to the point of interest of the hand, such as direct teaching, the operator grasps the reason without moving the line of sight from the hand when the robot arm stops moving. can do.
  • the robot apparatus can reduce the work burden on the operator when a situation occurs in which the robot arm does not move. If the reason why the robot arm has stopped moving is not the reason why the robot apparatus cannot be said to be abnormal, the operator can perform work according to the reason. For example, if the robot arm stops moving because the stepping motor has stepped out, the operator may change the workpiece to be gripped by the robot hand. If the robot arm stops moving because a command value exceeding the speed is given, the command value may be changed. If the joint portion has reached the movable limit, the joint portion can be displaced in the direction to return it.
  • the display unit 41 is attached to the side surface of the cylindrical cover that covers the sixth joint portion J6.
  • the arrangement of the display unit 41 is not limited to this.
  • the display part 41 should just be provided in the position according to the operator's position with respect to the installation position of a robot apparatus, or an operator's preference. Further, in order to prevent the visibility of the display unit 41 from being lowered by the operator even if the posture of the wrist unit 4 changes, a plurality of display units 41 may be provided on the wrist unit 4.
  • the first, second, third, fourth, fifth, and sixth modified examples relate to other arrangement examples of the display unit 41.
  • FIG. 6 is a perspective view showing the positions of the display units 42 and 43 of the robot arm mechanism according to the first modification of the present embodiment.
  • the display units 42 and 43 may be provided at both end portions of the cover that covers the fifth joint portion J5.
  • the display units 42 and 43 are provided such that the respective display center axes are parallel to the fifth rotation axis RA5 and opposite to each other.
  • the display screen can be viewed from both the left and right sides.
  • FIG. 7 is a perspective view showing the positions of the display units 44 and 45 of the robot arm mechanism according to the second modification of the present embodiment.
  • the display parts 44 and 45 may be provided on the side surface of the cover of the V-shaped link connecting the fifth joint part J5 and the sixth joint part J6.
  • the display unit 44 is provided such that the direction of the display center axis is different from the display center axis of the display unit 45.
  • FIG. 8 is a perspective view showing the position of the display unit 46 of the robot arm mechanism according to the third modification of the present embodiment.
  • the display unit 46 may be provided on one end surface of a cylindrical cover that covers the sixth joint portion J6. A hand portion is attached to the other end face.
  • FIG. 9 is a perspective view showing the position of the display unit of the robot arm mechanism according to the fourth modification example of the present embodiment.
  • the display units 47 and 48 may be attached to the front surface and the back surface of the cover that covers the fourth joint portion J4, respectively.
  • the display units 47 and 48 are arranged at symmetrical positions across a plane defined by the fourth rotation axis RA4 and the fifth rotation axis RA5. Even if the arm 2 is raised or lowered, the operator can visually recognize one of the display portions 47 and 48 regardless of the angle.
  • FIG. 10 is a perspective view showing the position of the display unit 52 of the robot arm mechanism according to the sixth modification of the present embodiment.
  • the display unit 52 may be provided on a cover that covers each of the joint portions J1-J3, instead of a cover that covers the wrist portion 4.
  • the display unit 52 is provided in the vicinity of the injection port of the cover that covers the third joint portion J3.
  • FIG. 11 is a perspective view showing the positions of the display units 49, 50, 51 of the robot arm mechanism according to the sixth modification of the present embodiment. As shown in FIG. 11, the display units 49 and 50 are provided at positions corresponding to the display units 47 and 48 of the fourth modified example, respectively. The display unit 51 is provided at a position that matches the display unit 41 of the present embodiment.
  • a notification screen indicating the state of each joint portion J1-J6 is displayed on the display screen, thereby notifying the operator of the state of each joint portion J1-J6.
  • the robot apparatus may include an indicator lamp for notifying the operator of the state of each joint J1-J6 as a display device.
  • the seventh and eighth modifications relate to an arrangement example of the indicator lamp.
  • FIG. 12 is a perspective view showing the positions of indicator lamps 71, 72, 73 of the robot arm mechanism according to the seventh modification of the present embodiment.
  • an indicator lamp set 74 including a plurality of, here three, indicator lamps 71, 72, 73 is provided in the vicinity of the joint portion J1.
  • the indicator lamps 71, 72, and 73 distinguish and notify the operator of various states of the joint portion J ⁇ b> 1 by changing the display mode such as the color of the lamp and the blinking of the lamp. For example, when the indicator lamp 71 is lit in blue, the joint portion J1 is “operating”, and when it is lit in red, the joint portion J1 is “stopped”.
  • the indicator lamp 72 When the indicator lamp 72 is lit in blue, it indicates that the joint portion J1 is not at the movable limit, and when it is lit in red, it indicates that the joint portion J1 is at the movable limit.
  • the indicator lamp 73 When the indicator lamp 73 is lit in blue, it indicates that the stepping motor 310 of the joint portion J1 is not overheated, and when it is lit in red, it indicates that the stepping motor 310 of the joint portion J1 is in an overheated state. .
  • indicator lamp sets 75-79 for presenting the operation states of the corresponding joint portions are arranged in the vicinity of the joint portions J2-J6. ing.
  • the operator grasps the cause by the change in the lamp color and the lamp display mode of each of the plurality of indicator sets 74-79 corresponding to the joint portions J1-J6. be able to.
  • FIG. 13 is a perspective view showing the position of the indicator lamp 80 of the robot arm mechanism according to the eighth modification of the present embodiment.
  • one indicator lamp 80 may be provided on the side surface of the cylindrical cover that covers the sixth joint portion J6 of the wrist portion 4.
  • the indicator lamp 80 is lit in blue, each of the joints J1-J6 has not reached the movable limit, and the stepping motors of the joints J1-J6 are not overheated, that is, each of the joints J1-J6 is operated. Represents a possible state.
  • the indicator lamp 80 is lit yellow, it indicates that at least one of the joint portions J1-J6 is at the movable limit.
  • the indicator lamp 80 When the indicator lamp 80 is lit red, it indicates that the stepping motor corresponding to at least one of the joint portions J1-J6 is in an overheated state. When the indicator lamp 80 blinks alternately in red and yellow, at least one of the joints J1-J6 is at the movable limit, and the stepping corresponding to at least one of the joints J1-J6 Indicates that the motor is overheated. Thereby, when the operator cannot move the robot arm, the operator can grasp the cause by the change in the color of the lamp and the display mode of the lamp.
  • the robot apparatus may include both a display unit and an indicator lamp as a display device for notifying the state of each joint portion J1-J6.
  • a display unit may be provided on the wrist unit 4, and an indicator lamp set may be provided on a joint unit that is frequently driven among the joint units J1-J6. Thereby, the operator can perceive the change of the state of the joint part by the indicator lamp, and can grasp the reason by visually recognizing the display part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

ロボットアームが動かない事態が生じたときに、その原因追求を含めたオペレータの作業負担を軽減させることのできるロボット装置を提供する。 本実施形態に係るロボット装置は、複数の関節部(J1-J6)を有する多関節アーム機構を備える。これら複数の関節部(J1-J6)のうち少なくとも一の関節部を覆うカバーには複数の関節部(J1-J6)各々の状態を表示するための表示デバイス(41)が装備されることを特徴としている

Description

ロボット装置
 本発明の実施形態はロボット装置に関する。
 ロボット装置では、オペレータはロボットアームの先端に装備されたハンドが動くべき作業点や経由点、また作業点での手先作業内容などの動作をロボット装置に教示する必要があり、実際にオペレータがティーチングペンダントと呼ばれる操作部を操作してアームを動かしてその動作をロボット装置に教示することはダイレクトティーチングと呼ばれる。
 このダイレクトティーチングでは操作部を操作していても実際にはロボットアームが移動しないことがあり、その原因は様々考えられる。原因を特定し、回復させる作業はダイレクトティーチングの作業効率を低下させる。
 また操作部60に表示画面を設けてそこにエラーメッセージを表示する機能を備えた機種があるが、その多くがAC/DCモータ等のアクチュエータの過熱に代表される装置側の“異常”を通知するに過ぎず、外部との衝突等の装置側の異常とは言えない理由でロボットアームが動かない状況も実際上度々発生し、その場合には当然にして装置側で原因を解消させる必要はない。ダイレクトティーチングの作業中はオペレータはハンド(手先)を注視しており、ロボットアームが移動しないときその都度、オペレータは操作部に視線を移動してその原因が装置側の異常によるものか否かをまず確認する必要があり、非常に面倒であった。
 もちろん、ロボットアームが動かない事態はダイレクトティーチング期間中だけでなく通常のタスク中にも生じ、その原因を特定し、回復させる作業負担及びその作業に要するダウンタイムによる影響は決して低いものではなかった。
 目的は、ロボットアームが動かない事態が生じたときその原因追求を含めたオペレータの作業負担を軽減させることにある。
 本実施形態によるロボット装置は、複数の関節部を備える多関節アーム機構を備え、前記複数の関節部のうち少なくとも一の関節部を覆うカバーに前記複数の関節部各々の状態を表示するための表示デバイスが装備されることを特徴とする。
図1は、本実施形態に係るロボット装置のロボットアーム機構の外観斜視図である。 図2は、図1のロボットアーム機構の内部構造を示す側面図である。 図3は、図1のロボットアーム機構の構成を図記号表現により示す図である。 図4は、本実施形態に係るロボット装置の構成を示すブロック図である。 図5は、図4の表示部の表示画面の一例を示す図である。 図6は、本実施形態の第1変形例に係るロボットアーム機構の表示部の位置を示す斜視図である。 図7は、本実施形態の第2変形例に係るロボットアーム機構の表示部の位置を示す斜視図である。 図8は、本実施形態の第3変形例に係るロボットアーム機構の表示部の位置を示す斜視図である。 図9は、本実施形態の第4変形例に係るロボットアーム機構の表示部の位置を示す斜視図である。 図10は、本実施形態の第5変形例に係るロボットアーム機構の表示部の位置を示す斜視図である。 図11は、本実施形態の第6変形例に係るロボットアーム機構の表示部の位置を示す斜視図である。 図12は、本実施形態の第7変形例に係るロボットアーム機構のインジケータランプの位置を示す斜視図である。 図13は、本実施形態の第8変形例に係るロボットアーム機構のインジケータランプの位置を示す斜視図である。
 以下、図面を参照しながら本実施形態に係るロボット装置を説明する。ロボット装置は、複数の関節部を有する多関節アーム機構を備える。本実施形態に係るロボット装置には、複数の関節部各々の状態を表示する表示部が装備される。その表示部には、関節部各々の動作状態(動作中か停止中か)、関節部が可動限界に到達したか、関節部のアクチュエータが過熱状態か、関節部のアクチュエータが脱調したか等が表示される。これにより、オペレータがペンダントを操作してもロボットアームが移動しないとき、その原因がアクチュエータの過熱に代表されるロボット装置側の動作異常にあるのか、それとも関節部が可動限界に達した等のロボット装置側の動作異常ではない理由なのか、その区別をオペレータが表示部を視認することで即時に確認することができる。なお当該作用効果は、関節部のアクチュエータとして、ACサーボモータ、DCサーボモータ、ステッピングモータのいずれのモータであっても達成できる。ここではアクチュエータとしてステッピングモータが使用された場合を例に説明する。なお、当該ロボット装置としては、複数の関節部のうち一が直動伸縮関節を備えた多関節アーム機構を例に説明する。以下の説明において、略同一の機能及び構成を有する構成要素については、同一符号を付し、重複説明は必要な場合にのみ行う。
 図1は、本実施形態に係るロボット装置の外観斜視図である。ロボット装置を構成するロボットアーム機構は、略円筒形状の基部1と基部1に接続されるアーム部2とアーム部2の先端に取り付けられる手首部4とを有する。手首部4には図示しないアダプタが設けられている。例えば、アダプタは後述の第6回転軸RA6の回転部に設けられる。手首部4に設けられたアダプタには、用途に応じたロボットハンドが取り付けられる。
 ロボットアーム機構は、複数、ここでは6つの関節部J1,J2,J3,J4,J5,J6を有する。複数の関節部J1,J2,J3,J4,J5,J6は基部1から順番に配設される。一般的に、第1、第2、第3関節部J1,J2,J3は根元3軸と呼ばれ、第4、第5、第6関節部J4,J5,J6はロボットハンドの姿勢を変化させる手首3軸と呼ばれる。手首部4は第4、第5、第6関節部J4,J5,J6を有する。根元3軸を構成する関節部J1,J2,J3の少なくとも一つは直動伸縮関節である。ここでは第3関節部J3が直動伸縮関節部、特に伸張距離の比較的長い関節部として構成される。アーム部2は直動伸縮関節部J3(第3関節部J3)の伸縮部分を表している。
 手首部4の第6関節部J6を覆う円筒形状のカバーの前方側面にはその30度乃至90度の範囲にわたって、関節部J1-J6各々の状態を通知するための表示部(表示デバイス)41が、その円筒形状に沿って湾曲した状態で取り付けられる。表示部41は例えばCRTディスプレイや液晶ディスプレイ、有機ELディスプレイ、プラズマディスプレイ等が挙げられる。なお、表示部41は、カバーに直接取り付けられているのではなく、カバーに設けられた台座や取り付けフック等に取り付けられてもよい。例えば、第6関節部J6を覆う円筒形状のカバーの前方側面に表示部41を、その表示面が前方を向くように備え付けるための台座が設けられ、その台座に表示部41が取り付けられてもよい。
 第1関節部J1は基台面に対して例えば垂直に支持される第1回転軸RA1を中心としたねじり関節である。第2関節部J2は第1回転軸RA1に対して垂直に配置される第2回転軸RA2を中心とした曲げ関節である。第3関節部J3は、第2回転軸RA2に対して垂直に配置される第3軸(移動軸)RA3を中心として直線的にアーム部2が伸縮する関節である。
 第4関節部J4は、第4回転軸RA4を中心としたねじり関節である。第4回転軸RA4は、後述の第7関節部J7が回転していないとき、つまりアーム部2の全体が直線形状にあるとき、第3移動軸RA3と略一致する。第5関節部J5は第4回転軸RA4に対して直交する第5回転軸RA5を中心とした曲げ関節である。第6関節部J6は第4回転軸RA4に対して直交し、第5回転軸RA5に対して垂直に配置される第6回転軸RA6を中心とした曲げ関節である。
 基部1を成すアーム支持体(第1支持体)11aは、第1関節部J1の第1回転軸RA1を中心に形成される円筒形状の中空構造を有する。第1関節部J1は図示しない固定台に取り付けられる。第1関節部J1が回転するとき、アーム部2は第1支持体11aの軸回転とともに左右に旋回する。なお、第1支持体11aが接地面に固定されていてもよい。その場合、第1支持体11aとは独立してアーム部2が旋回する構造に設けられる。第1支持体11aの上部には第2支持部11bが接続される。
 第2支持部11bは第1支持部11aに連続する中空構造を有する。第2支持部11bの一端は第1関節部J1の回転部に取り付けられる。第2支持部11bの他端は開放され、第3支持部11cが第2関節部J2の第2回転軸RA2において回動自在に嵌め込まれる。第3支持部11cは第1支持部11a及び第2支持部に連通する鱗状の外装からなる中空構造を有する。第3支持部11cは、第2関節部J2の曲げ回転に伴ってその後部が第2支持部11bに収容され、また送出される。ロボットアーム機構の直動伸縮関節部J3(第3関節部J3)を構成するアーム部2の後部はその収縮により第1支持部11aと第2支持部11bの連続する中空構造の内部に収納される。
 第3支持部11cはその後端下部において第2支持部11bの開放端下部に対して第2回転軸RA2を中心として回動自在に嵌め込まれる。それにより第2回転軸RA2を中心とした曲げ関節部としての第2関節部J2が構成される。第2関節部J2が回動するとき、アーム部2は第2回転軸RA2を中心に垂直方向に回動、つまり起伏動作をする。
 第4関節部J4は、アーム部2の伸縮方向に沿ったアーム中心軸、つまり第3関節部J3の第3移動軸RA3に典型的には接する第4回転軸RA4を有するねじり関節である。第4関節部J4が回転すると、手首部4及び手首部4に取り付けられたロボットハンドは第4回転軸RA4を中心に回転する。第5関節部J5は、第4関節部J4の第4回転軸RA4に対して直交する第5回転軸RA5を有する曲げ関節部である。第5関節部J5が回転すると、第5関節部J5から先端にかけてロボットハンドとともに上下(第5回転軸RA5を中心に垂直方向)に回動する。第6関節部J6は、第4関節部J4の第4回転軸RA4に直交し、第5関節部J5の第5回転軸RA5に垂直な第6回転軸RA6を有する曲げ関節である。第6関節部J6が回転すると、ロボットハンドは左右に旋回する。
 上記の通り手首部4のアダプタに取り付けられたロボットハンドは、第1、第2、第3関節部J1.J2.J3により任意位置に移動され、第4、第5、第6関節部J4、J5、J6により任意姿勢に配置される。特に第3関節部J3のアーム部2の伸張距離の長さは、基部1の近接位置から遠隔位置までの広範囲の対象にロボットハンドを到達させることを可能にする。第3関節部J3はそれを構成する直動伸縮機構により実現される直線的な伸縮動作とその伸張距離の長さとが特徴的である。
 図2は、図1のロボットアーム機構の内部構造を示す斜視図である。直動伸縮機構はアーム部2と射出部30とを有する。アーム部2は第1連結コマ列21と第2連結コマ列22とを有する。第1連結コマ列21は複数の第1連結コマ23からなる。第1連結コマ23は略平板形に構成される。前後の第1連結コマ23は、互いの端部箇所においてピンにより屈曲自在に列状に連結される。第1連結コマ列21は内側や外側に自在に屈曲できる。
 第2連結コマ列22は複数の第2連結コマ24からなる。第2連結コマ24は横断面コ字形状の短溝状体に構成される。前後の第2連結コマ24は、互いの底面端部箇所においてピンにより屈曲自在に列状に連結される。第2連結コマ列22は内側に屈曲できる。第2連結コマ24の断面はコ字形状であるので、第2連結コマ列22は、隣り合う第2連結コマ24の側板同士が衝突して、外側には屈曲しない。なお、第1、第2連結コマ23、24の第2回転軸RA2に向いた面を内面、その反対側の面を外面というものとする。第1連結コマ列21のうち先頭の第1連結コマ23と、第2連結コマ列22のうち先頭の第2連結コマ24とは結合コマ27により接続される。例えば、結合コマ27は第2連結コマ24と第1連結コマ23とを合成した形状を有している。
 射出部30は、複数の上部ローラ31と複数の下部ローラ32とが角筒形状のフレーム35に支持されてなる。例えば、複数の上部ローラ31は第1連結コマ23の長さと略等価な間隔を隔ててアーム中心軸に沿って配列される。同様に、複数の下部ローラ32は第2連結コマ24の長さと略等価な間隔を隔ててアーム中心軸に沿って配列される。射出部30の後方には、ガイドローラ40とドライブギア50とが第1連結コマ列21を挟んで対向するように設けられる。ドライブギア50は図示しない減速器を介してステッピングモータ330に接続される。第1連結コマ23の内面には連結方向に沿ってリニアギアが形成されている。複数の第1連結コマ23が直線状に整列されたときに互いのリニアギアは直線状につながって、長いリニアギアを構成する。ドライブギア50は、直線状のリニアギアにかみ合わされる。直線状につながったリニアギアはドライブギア50とともにラックアンドピニオン機構を構成する。
 アーム伸長時、モータ55が駆動し、ドライブギア50が順回転すると、第1連結コマ列21はガイドローラ40により、アーム中心軸と平行な姿勢となって、上部ローラ31と下部ローラ32との間に誘導される。第1連結コマ列21の移動に伴い、第2連結コマ列22は射出部30の後方に配置された図示しないガイドレールにより射出部30の上部ローラ31と下部ローラ32との間に誘導される。上部ローラ31と下部ローラ32との間に誘導された第1、第2連結コマ列21,22は互いに押圧される。これにより、第1、第2連結コマ列21,22による柱状体が構成される。射出部30は、第1、第2連結コマ列21,22を接合して柱状体を構成するとともに、その柱状体を上下左右に支持する。第1、第2連結コマ列21、22の接合による柱状体が射出部30により堅持されることで、第1、第2連結コマ列21,22の接合状態が保持される。第1、第2連結コマ列21、22の接合状態が維持されているとき、第1、第2連結コマ列21,22の屈曲は互いに拘束される。それにより第1、第2連結コマ列21、22は、一定の剛性を備えた柱状体を構成する。柱状体とは、第2連結コマ列22に第1連結コマ列21が接合されてなる柱状の棒体を言う。この柱状体は第2連結コマ24が第1連結コマ23とともに全体として様々な断面形状の筒状体に構成される。筒状体とは上下左右が天板、底板及び両側板で囲まれ、前端部と後端部とが開放された形状として定義される。第1、第2連結コマ列21、22の接合による柱状体は、結合コマ27が始端となって、第3移動軸RA3に沿って直線的に第3支持部11cの開口から外に向かって送り出される。
 アーム収縮時、モータ55が駆動し、ドライブギア50が逆回転されると、ドライブギア50と係合している第1連結コマ列21が第1支持体11a内に引き戻される。第1連結コマ列の移動に伴って、柱状体が第3支持体11c内に引き戻される。引き戻された柱状体は射出部30後方で分離される。例えば、柱状体を構成する第1連結コマ列21はガイドローラ40とドライブギア50とに挟まれ、柱状体を構成する第2連結コマ列22は重力により下方に引かれ、それにより第2連結コマ列22と第1連結コマ列21とは互いに離反される。離反された第1、第2連結コマ列21,22はそれぞれ屈曲可能な状態に復帰する。収納に際しては、射出部30から、第1支持体11a(基部1)の内部の収納部に第2連結コマ列22は内側に屈曲されて搬送され、第1連結コマ列21も第2連結コマ列22と同じ方向(内側)に屈曲されて搬送される。第1連結コマ列21は第2連結コマ列22に略平行な状態で格納される。
 図3は、図1のロボットアーム機構を図記号表現により示す図である。ロボットアーム機構において、根元3軸を構成する第1関節部J1と第2関節部J2と第3関節部J3とにより3つの位置自由度が実現される。また、手首3軸を構成する第4関節部J4と第5関節部J5と第6関節部J6とにより3つの姿勢自由度が実現される。
 ロボット座標系Σbは第1関節部J1の第1回転軸RA1上の任意位置を原点とした座標系である。ロボット座標系Σbにおいて、直交3軸(Xb、Yb,Zb)が規定されている。Zb軸は第1回転軸RA1に平行な軸である。Xb軸とYb軸とは互いに直交し、且つZb軸に直交する軸である。手先座標系Σhは、手首部4に取り付けられたロボットハンド5の任意位置(手先基準点)を原点とした座標系である。例えば、ロボットハンド5が2指ハンドのとき、手先基準点(以下、単に手先という。)の位置は2指先間中央位置に規定される。手先座標系Σhにおいて、直交3軸(Xh、Yh,Zh)が規定されている。Zh軸は第6回転軸RA6に平行な軸である。Xh軸とYh軸とは互いに直交し、且つZh軸に直交する軸である。例えば、Xh軸は、ロボットハンド5の前後方向に平行な軸である。手先姿勢とは、手先座標系Σhのロボット座標系Σbに対する直交3軸各々周りの回転角(Xh軸周りの回転角(ヨウ角)α、Yh軸周りの回転角(ピッチ角)β、Zh軸周りの回転角(ロール角)γとして与えられる。
 第1関節部J1は、第1支持部11aと第2支持部11bとの間に配設されており、回転軸RA1を中心としたねじり関節として構成されている。回転軸RA1は第1関節部J1の固定部が設置される基台の基準面BPに垂直に配置される。
 第2関節部J2は回転軸RA2を中心とした曲げ関節として構成される。第2関節部J2の回転軸RA2は空間座標系上のXb軸に平行に設けられる。第2関節部J2の回転軸RA2は第1関節部J1の回転軸RA1に対して垂直な向きに設けられる。さらに第2関節部J2は、第1関節部J1に対して、第1回転軸RA1の方向(Zb軸方向)と第1回転軸RA1に垂直なYb軸方向との2方向に関してオフセットされる。第2関節部J2が第1関節部J1に対して上記2方向にオフセットされるように、第2支持体11bは第1支持体11aに取り付けられる。第1関節部J1に第2関節部J2を接続する仮想的なアームロッド部分(リンク部分)は、先端が直角に曲がった2つの鈎形状体が組み合わされたクランク形状を有している。この仮想的なアームロッド部分は、中空構造を有する第1、第2支持体11a、11bにより構成される。
 第3関節部J3は移動軸RA3を中心とした直動伸縮関節として構成される。第3関節部J3の移動軸RA3は第2関節部J2の回転軸RA2に対して垂直な向きに設けられる。第2関節部J2の回転角がゼロ度、つまりアーム部2の起伏角がゼロ度であってアーム部2が水平な基準姿勢においては、第3関節部J3の移動軸RA3は、第2関節部J2の回転軸RA2とともに第1関節部J1の回転軸RA1にも垂直な方向に設けられる。空間座標系上では、第3関節部J3の移動軸RA3はXb軸及びZb軸に対して垂直なYb軸に平行に設けられる。さらに、第3関節部J3は、第2関節部J2に対して、その回転軸RA2の方向(Yb軸方向)と、移動軸RA3に直交するZb軸の方向との2方向に関してオフセットされる。第3関節部J3が第2関節部J2に対して上記2方向にオフセットされるように、第3支持体11cは第2支持体11bに取り付けられる。第2関節部J2に第3関節部J3を接続する仮想的なアームロッド部分(リンク部分)は、先端が垂直に曲がった鈎形状体を有している。この仮想的なアームロッド部分は、第2、第3支持体11b、11cにより構成される。
 第4関節部J4は回転軸RA4を中心としたねじり関節として構成される。第4関節部J4の回転軸RA4は第3関節部J3の移動軸RA3に略一致するよう配置される。 
 第5関節部J5は回転軸RA5を中心とした曲げ関節として構成される。第5関節部J5の回転軸RA5は第3関節部J3の移動軸RA3及び第4関節部J4の回転軸RA4に略直交するよう配置される。 g
 第6関節部J6は回転軸RA6を中心としたねじり関節として構成される。第6関節部J6の回転軸RA6は第4関節部J4の回転軸RA4及び第5関節部J5の回転軸RA5に略直交するよう配置される。第6関節部J6は手先効果器としてのロボットハンド5を左右に旋回するために設けられている。なお、第6関節部J6は、その回転軸RA6が第4関節部J4の回転軸RA4及び第5関節部J5の回転軸RA5に略直交する曲げ関節として構成されてもよい。
 このように複数の関節部J1-J6の根元3軸のうちの一つの曲げ関節部を直動伸縮関節部に換装し、第1関節部J1に対して第2関節部J2を2方向にオフセットさせ、第2関節部J2に対して第3関節部J3を2方向にオフセットさせることにより、本実施形態に係るロボット装置のロボットアーム機構は、特異点姿勢を構造上解消している。
 図4は、本実施形態に係るロボット装置の構成を示すブロック図である。本実施形態に係るロボット装置のロボットアーム機構の関節部J1,J2,J3,J4,J5、J6には、アクチュエータとして、それぞれステッピングモータ310,320,330,340,350,360が設けられている。ステッピングモータ310,320,330,340,350,360には、ドライバユニット210、220,230,240,250,260が電気的に接続されている。典型的には、ドライバユニット210、220,230,240,250,260は、それぞれ制御対象のステッピングモータに併設される。これらドライバユニット210、220,230,240,250,260は、同一の構成を有し、制御装置100からの制御信号に従って、制御対象のステッピングモータに対して同一の動作をする。ここでは、ドライバユニット210のみ説明し、他のドライバユニット220,230,240,250,260の説明は省略する。
 ステッピングモータ310は、ドライブシャフトが接続されたロータの周囲に複数のステータコイルを配置してなる。ステータコイルはスイッチング素子を介して電源回路212に接続される。これらスイッチング素子は、パルス信号発生部213から供給されるパルス信号によりオンされる。これらスイッチング素子を順番にオンすることでステッピングモータ310(ロータ)を所定のステップ角で順次回転させることができる。パルス信号を切り替える周期を変化させることでステッピングモータ310の回転速度を変化させる事ができる。この周期の逆数はパルス周波数と定義される。
 ドライバユニット210は、ステッピングモータ310の駆動および停止を制御する。ドライバユニット210は、制御部211と、電源回路212と、パルス信号発生部213と、ロータリーエンコーダ215と、カウンタ217とを有する。制御部211は、制御装置100から入力された指令値に従って、ドライバユニット210を統括して制御する。
 制御部211には制御装置100からステッピングモータ310の励磁電流値を表す電流指令コードが入力される。制御部211は、電源回路212に対して、電流指令コードに応じた制御信号を出力する。電源回路212は、電流可変のAC/DC変換方式電源回路であり、電流指令コードにより指定された励磁電流値の電流を発生する。発生された励磁電流はステッピングモータ310のステータコイルに供給される。また、制御部211には制御装置100から次の関節角度を表す位置指令コードが入力される。次の関節角度とは、所定の制御周期Δt(例えば、10ms)後の関節角度を指す。なお、関節部J1,J2,J4,J5、J6において、関節角度とは、基準位置からの正負の回転角度を表し、関節部J3において、伸張距離とは、最も収縮した状態からの距離を表す。関節角度と伸長距離とを関節変数と総称する。
 制御部211は、パルス信号発生部213に対して、位置指令コードに応じたパルス制御信号を出力する。具体的には、制御部211は、現在の関節変数から、制御装置100から入力された所定の制御周期△t後の関節角度との差をステップ角で除算することによりパルス数を決定し、制御周期△tをパルス数で除算しその逆数によりパルス周波数を決定する。制御部211は、決定したパルス条件(パルス数とパルス周波数)に対応するパルス制御信号をパルス信号発生部213に対して出力する。
 パルス信号発生部213は、制御部211から出力されたパルス制御信号に従って、予め決められた励磁シーケンスにより、各スイッチング素子に励磁パルスを供給する。これにより、関節部J1は、次の関節角度まで回転する。同様に、関節部J2,J4、J5,J6に対応するドライバユニット220,240,250,260各々には、次の関節角度を表す位置指令コードが、関節部J3に対応するドライバユニット230には次の伸張距離(直動変位)を表す位置指令コードが制御装置100から入力される。
 ロータリーエンコーダ215は、ステッピングモータ310のドライブシャフトに接続され、一定の回転角ごとにパルス信号(エンコーダパルス)を出力する。 
 カウンタ217は、ロータリーエンコーダ215から出力されたエンコーダパルスの数を回転方向に応じて加減算することによりカウント数を計算する。カウンタ217は、累積カウント数に関するデータを制御周期Δt毎に出力する。カウンタ217により出力された累積カウント数に関するデータは、ドライバユニットインターフェース111を介して制御装置100に入力される。
 温度センサ410は、ステッピングモータ310の温度に応じた信号を出力する。例えば、温度センサ410は、検出素子に熱電対を使用した表面温度測定用センサである。温度センサ410は、例えば、ステッピングモータ310の表面に磁石等により取り付けられる。温度センサ410はステッピングモータ310の温度に応じた電圧信号を所定の制御周期Δt毎に出力する。温度センサ410により出力された電圧信号は、温度センサインターフェース112を介して、制御装置100に入力される。
 制御装置100は、システム制御部101と、操作部インターフェース102と、記憶部103と、現在位置・姿勢計算部104と、指令値計算部105と、動作状態判定部106と、可動限界判定部107と、過熱状態判定部108と、脱調判定部109と、表示制御部110と、ドライバユニットインターフェース111と、温度センサインターフェース112と、出力部113と、速度超過判定部114とを有する。 
 制御装置100には、ドライバユニット210-260各々から、エンコーダパルスの累積カウント数に関するデータがドライバユニットインターフェース111を介して入力される。また、制御装置100には、温度センサ410―460各々から、ステッピングモータ310―360各々の温度に対応する電圧信号が温度センサインターフェース112を介して所定の制御周期毎(例えば、10ms毎)に入力される。
 制御装置100には、操作部インターフェース102を介して操作部60が接続されている。操作部60は、手首部4又はロボットハンド(手先効果器)の着目点の位置の変更(移動)、姿勢の変更およびそれら移動速度をオペレータが入力するための入力インターフェースとして機能する。例えば、操作部60は、ロボットハンドを移動させる最終目標位置と移動時間とを指定するためのジョイスティック等を備える。例えば、ジョイスティックが操作された方向、ジョイスティックが傾けられた角度、ジョイスティックの操作加速度に基づいて、ロボットハンドの最終目標位置と移動時間とが入力される。なお、操作部60を構成するこれらの入力デバイスは、他のデバイス、例えば、マウス、キーボード、トラックボールおよびタッチパネル等で代替が可能である。例えば、ダイレクトティーチング時のペンダントとしの操作部60は、典型的にはタッチパネル等が採用される。
 システム制御部101は、CPU(Central Processing Unit)と半導体メモリ等を有し、制御装置100を統括して制御する。システム制御部101には、制御/データバス120を介して各部が接続されている。
 記憶部103は、関節部J1-J6各々の関節変数(関節角度、J3では伸張距離(アームの原点からの送り出し長ともいう))の関節変数の閾値(可動閾値)のデータとステッピングモータ310―360各々の温度閾値のデータとステッピングモータ310-360各々の速度閾値のデータとを記憶する。
 関節変数の閾値は、好適には、関節部J1-J6各々の構造上の限界又はそれに近似する安全上あるいは制御上の限界値に設定される。温度閾値は、好適には、ステッピングモータの過熱を防止する温度限界値に設定される。速度閾値は、関節部J1、J2,J4-J6各々の回転角速度が、安全面または脱調防止のために設けられた上限値を超えない値に設定される。また、速度閾値は、関節部J3の伸縮速度が、安全面または脱調防止のために設けられた上限値を超えない値に設定される。関節変数の閾値と温度閾値と速度閾値とは、操作部60を介したオペレータ指示に従って、適宜変更することができる。
 現在位置・姿勢計算部104は、関節部J1-J6各々の現在の関節変数に基づいて、手先着目点の現在位置・姿勢を計算する。具体的には、現在位置・姿勢計算部104は、ドライバユニット210-260各々のカウンタにより計数された累積カウント数に、1カウントに対応するステップ角を乗算することにより、関節部J1-J6各々の現在の関節変数を計算する。現在位置・姿勢計算部104は、同次変換行列Kにパラメータとして関節部J1-J6各々の現在の関節変数を代入することにより、ロボット座標系Σbから見た手先着目点の現在位置・姿勢を計算する。同次変換行列Kは、手先座標系Σhとロボット座標系Σbとの関係を定義する行列式である。同次変換行列Kは、ロボットアーム機構を構成するリンク間の関係(リンク長とリンクのねじれ角)と関節部の軸間の関係(リンク間距離とリンクの間角度)とで決まる。現在位置・姿勢計算部104は、制御周期Δt毎に上述の計算処理を繰り返し行い、制御周期Δt毎の手先着目点の現在位置・姿勢を計算する。
 指令値計算部105は、ドライバユニット210~260各々に対して指令値として与える、制御周期Δt経過後の関節変数ベクトルを計算する。なお、関節変数ベクトルとは、関節部J1-J6の6つの関節変数、つまり回転関節部J1、J2、J4-J6の関節角度と直動伸縮関節部J3の直動変位との6変数をいう。
 指令値計算部105は、手先着目点の現在位置・姿勢と手先の最終目標位置・姿勢とに基づいて、その間を結ぶ単位時間△t(制御周期、例えば10ms)毎の手先着目点の目標位置の点列を計算する。手先の現在位置・姿勢は、現在位置・姿勢計算部104による計算処理から与えられる。手先の最終目標位置・姿勢と移動時間とは、例えば操作部60を介してオペレータにより入力される。軌道計算部105は、予めプリセットされている、手先着目点の軌道計算式に、パラメータとして手先着目点の現在位置・姿勢と手先着目点の最終目標位置・姿勢を代入することにより、手先着目点の軌道(以下、手先軌道という)を計算し、その手先軌道上に単位時間△t毎の目標位置の点列を計算する。軌道計算方法としては任意の方法が採用される。
 指令値計算部105は、計算された複数の目標位置に対応する複数の関節変数ベクトルを計算する。指令計算部は、手先着目点の現在位置・姿勢と、単位時間Δt後の次の目標位置・姿勢と、単位時間Δtとに基づいて、手先速度を計算し、計算した手先速度をヤコビアン逆行列を用いて関節角速度に変換する。ヤコビアン逆行列は、手先着目点の位置・手先姿勢を表すベクトルの関節変数による編微分で与えられ、手先速度(手先位置・姿勢の微小変化)を関節角速度(関節角度・伸縮長の微小変化)に変換する行列である。ヤコビアン逆行列は、現在の関節変数ベクトルとアーム構造のリンクパラメータとにより計算される。指令値計算部105は、関節角速度に単位時間△tを乗算することにより、単位時間△tの間の各関節部の変位量を計算し、計算した各関節部の変位量を移動直前(現在)の関節変数ベクトルに加算することにより、単位時間△t経過後の関節変数ベクトルを計算する。
 出力部113は、システム制御部101の制御に従って、指令値計算部105で計算された関節部J1-J6各々の指令値(関節変数)を、ドライバユニット210-260各々に対して出力する。
 動作状態判定部106は、関節部J1-J6各々が動作中か否かを判定する。具体的には、動作状態判定部106は、関節部J1の関節角度を所定周期で繰り返し入力し、関節部J1の現在の関節角度を直前(1周期前)の関節角度に対して比較する。直前の関節角度に対して現在の関節角度が変位していないとき、動作状態判定部106は、関節部J1が「停止中」であると判定し、関節部J1が停止中であることを通知する動作判定信号を出力する。一方、直前の関節角度に対して現在の関節角度が変位しているとき、動作状態判定部106は、関節部J1が「動作中」であると判定し、関節部J1が動作中であることを通知する動作判定信号を出力する。同様の手法で、動作状態判定部106は、他の関節部J2-J6各々が動作中か否かを判定する。動作状態判定部106から出力される動作判定信号には、関節部を特定するためのコードと、動作状態(「動作中」か「停止中」か)を表すコードとが含まれる。
 可動限界判定部107は、関節部J1-J6各々が可動限界か否かを判定する。関節部J3の可動限界とは、関節部J3のアーム部2が予め設定された伸張距離(直動変位)の閾値まで伸張された状態をいう。伸張距離の閾値は、アーム部2を伸張できる構造上の最長距離に設定されていてもよいし、アーム部2の伸縮制御を確実に継続するために、構造上の最長距離よりもわずかに短い安全上あるいは制御上の限界距離に設定されていてもよい。構造上の最長距離とは、第1連結コマ列21の最後尾の第1連結コマ23のリニアギアがドライブギア50に噛み合わされるまで、アーム部2が伸張された距離に対応する。関節部J1,J2,J4,J5,J6の可動限界とは、関節部J1,J2,J4,J5,J6各々が予め設定された関節角度の閾値まで回転された状態をいう。関節角度の閾値は、各関節部が回転できる構造上の最大角度に設定されていてもよいし、各関節部の回転制御を確実に継続するために、構造上の最大角度よりもわずかに小さく設定されていてもよい。
 具体的には、可動限界判定部107は、関節部J1の現在の関節角度を関節角度の閾値に対して比較する。現在の関節角度が閾値に達していたとき、可動限界判定部107は、関節部J1が「可動限界に達した」と判定し、関節部J1が可動限界であることを通知する可動限界判定信号を出力する。同様の手法で、可動限界判定部107は、関節部J2-J6各々が可動限界か否かを判定する。可動限界判定部107から出力される可動限界判定信号には、可動限界に達した関節部を特定するためのコードが含まれる。
 過熱状態判定部108は、関節部J1-J6各々のステッピングモータが過熱状態(オーバーヒート)か否か、つまり関節部J1-J6各々のステッピングモータが定常温度範囲を超過しているか否かを判定する。具体的には、過熱状態判定部108は、そのROMに温度センサ410の出力電圧と温度との対応表のデータを保持する。過熱状態判定部108は、温度センサ410により出力された電圧信号を、上述の対応表を参照して温度に変換する。この温度は、温度センサ410により計測されたステッピングモータ310の現在の温度に対応する。過熱状態判定部108は、ステッピングモータ310の現在の温度を温度閾値に対して比較する。現在の温度が温度閾値に達したとき、過熱状態判定部108は、ステッピングモータ310が「過熱状態」であると判定し、ステッピングモータ310が過熱状態であることを通知する過熱判定信号を出力する。同様の手法で、過熱状態判定部108は、関節部J2-J6にそれぞれ対応するステッピングモータ320-360各々が過熱状態か否かを判定する。過熱状態判定部108から出力される過熱判定信号には、過熱状態のステッピングモータを備える関節部を特定するためのコードが含まれる。
 脱調判定部109は、関節部J1-J6各々のステッピングモータが脱調したか否かを判定する。ステッピングモータ310-360各々には、指令値として制御周期Δt毎に繰り返し関節変数が与えられる。したがって、脱調判定部109は、制御周期Δt経過後に、ステッピングモータ310―360各々が指令値とおりの関節変数まで変位したか否かによって、脱調状態であるか否かを判定することができる。具体的には、脱調判定部109は、関節部J1の現在の関節変数をステッピングモータ310に直前(1周期前)に与えた指令値(関節変数)に対して比較する。現在の関節変数は、現在位置・姿勢計算部104による計算処理から得られる。1周期前に指令値として与えた関節変数に対して現在の関節変数が一致していないとき、脱調判定部109は、関節部J1のステッピングモータ310が「脱調した」と判定し、脱調判定信号を出力する。同様の手法で、脱調判定部109は、関節部J2-J6にそれぞれ対応するステッピングモータ320-360が脱調したか否かを判定する。脱調判定部109から出力される脱調判定信号には、脱調した関節部を特定するためのコードが含まれる。
 アーム部2の先端に取り付けられたロボットハンド5の手先の移動速度に対して安全上の観点から移動速度の上限が事前に設定されている。この手先速度の上限値に従って関節部J1-J6各々に対して回転角速度の上限値が事前に設定されている。
 速度超過判定部114は、指令値計算部105で計算された指令値に基づいて、関節部J1-J6の回転軸の回転角速度が、脱調防止、又は安全上の観点から事前に設定されたそれぞれの関節角速度の上限値を超過するか否かを判定する。ここでは関節部J1の回転軸が、脱調防止又は安全上設けられた速度上限値を超過するか否かを判定する例として説明する。他の関節部J2-J6の関節速度超過の判定処理についても同様である。
 指令値計算部105ではペンダント(操作部)60の例えばジョイスティックに対するオペレータの移動操作(操作角度、操作方向)に応じた手先の移動速度、移動方向を実現するために一定の制御周期△t(例えば10ms)毎に関節部J3に対する指令値(関節位置(基準位置からの関節角度))を計算する。出力部113は操作開始からの時間経過に従って制御周期△t毎に各時刻の指令値を順番に出力する。速度超過判定部114は、時間軸上で前後する時刻の一対の指令値(関節角度)の差、つまり制御周期△tの間に変位する角度幅を計算し、制御周期Δtで除算することにより、指令値によりステッピングモータ310に指令する回転角速度を計算する。速度超過判定部114は、計算した回転角速度を、関節部J3に対して予め設定されている速度閾値に比較する。計算した回転角速度が速度閾値を超過したとき、速度超過判定部114は「関節部J3の回転角速度が上限値を超過した」と判定し、その指令値を出力する前に速度超過信号を出力する。
 同様の手法で、速度超過判定部114は、関節部J2-J6各々の速度(J2,J4-J5では回転角速度、J3では伸縮速度)が予め設定された上限値を超過するか否かを判定する。速度超過判定部114から出力される速度超過判定信号には、速度が超過した関節部を特定するためのコードが含まれる。
 システム制御部101は、関節部J1-J6各々の状態に応じた通知画面を発生し、表示制御部110のフレームメモリに書き込む。表示制御部110は、フレームメモリに格納された画像のデータを読み出し、表示部41に表示する。表示部41としては、典型的に例えばCRTディスプレイや液晶ディスプレイ、有機ELディスプレイ、プラズマディスプレイ等が挙げられる。
 図5は、図4の表示部41に表示される、関節部J1-J6の状態を通知するための通知画面400の一例を示す図である。システム制御部101は、動作判定信号、可動限界判定信号、過熱判定信号、脱調判定信号及び速度超過判定信号の判定結果に従って、関節部J1-J6それぞれの停止中/動作中の区別、可動限界に達しているか否か、異常が発生しているか否か、発生している異常を特定する情報(エラーコード)を一覧で表示する通知画面400を構成し表示部41に表示させる。
 記憶部103には、通知画面400のテンプレートデータ、上記各種文字列データが記憶されている。図5に示すように、画面テンプレートには、関節を表す項目401-1、動作状態を表す項目401-2、可動状態を表す項目401-3、エラーコード表示を表す項目401-4が行方向に配列されている。また、関節項目401-1の下方には、関節部J1-J6を区別する文字列402-1~402-6が列方向に配列されている。項目401-3の下方には、関節部J1-J6それぞれの動作状態403-1~403-6が停止中/動作中を区別する文字列により配列される。同様に、項目401-3の下方には、関節部J1-J6それぞれが可動限界に達しているか否かを表記する文字列404-1~404-6が配列される。ここでは可動限界に達している場合にのみ「可動限界」との文字列を表示するものとしている。項目401-4の下方には、関節部J1-J6それぞれで発生した異常を特定するエラーコード405-1~405-6が配列されている。
 システム制御部101は、動作判定信号に含まれる関節部J1-J6各々を表すコードと関節部J1-J6各々の動作状態を表すコードとに基づいて、記憶部103から関節部J1-J6各々の動作状態を表す文字列データを読み出し、読み出した文字列を画面テンプレートの動作状態表示エリア403-1~403-6各々に重ねた通知画面400のデータを発生する。例えば、動作判定信号に関節部J1が停止中であることを表すコードが含まれているとき、システム制御部101は、図5に示すように画面テンプレートの動作状態表示エリア403-1に停止中を表す文字列をレイアウトした通知画面400のデータを発生する。同様に、動作判定信号に関節部J2が動作中であることを表すコードが含まれているとき、システム制御部101は、図5に示すように画面テンプレートの動作状態表示エリア403-2に動作中を表す文字列をレイアウトした通知画面400のデータを発生する。
 システム制御部101は、可動限界判定信号に含まれる関節部を表すコードに基づいて、画面テンプレートの可動限界に達した関節部に対応する可動状態表示エリアに、可動限界を表す文字列をレイアウトした通知画面400のデータを発生する。例えば、可動限界判定信号に関節部J3を表すコードが含まれているとき、システム制御部101は、図5に示すように画面テンプレートの可動状態表示エリア404-3に可動限界に達していることを表す文字列をレイアウトした通知画面400を発生する。システム制御部101は、脱調判定信号に含まれる関節部を表すコードに基づいて、画面テンプレートの脱調が発生した関節部に対応するエラーコード表示エリアに、脱調発生に対応するエラーコードを表す文字列をレイアウトした通知画面400のデータを発生する。例えば、脱調判定部109から関節部J5を表すコードを含む脱調判定信号が出力されたとき、システム制御部101は、図5に示すように画面テンプレートのエラーコード表示エリア405-5に脱調に対応するエラーコードを表す文字列をレイアウトした通知画面400のデータを発生する。システム制御部101は、速度超過判定信号に含まれる関節部を表すコードに基づいて、画面テンプレートの速度超過する指令値が入力された関節部に対応するエラーコード表示エリアに、速度超過に対応するエラーコードを表す文字列をレイアウトした通知画面400のデータを発生する。例えば、速度超過判定部114から関節部J1を表すコードが含まれる速度超過信号が出力されたとき、システム制御部101は、図5に示すように画面テンプレートのエラーコード表示エリア405-1に速度超過に対応するエラーコードを表す文字列をレイアウトした通知画面400のデータを発生する。システム制御部101は、過熱判定信号に含まれる関節部を表すコードに基づいて、画面テンプレートの過熱状態の関節部に対応するエラーコード表示エリアに、過熱状態を表す文字列をレイアウトした通知画面400のデータを発生する。 
 以上説明した本実施形態に係るロボット装置によれば、図1に示すように、表示部41は、手首部4の第6関節部J6を覆う円筒形状のカバーの側面に取り付けられている。この表示部41には、関節部J1-J6各々の状態を表す通知画面が表示される。オペレータは、通知画面を視認することで、関節部J1-J6各々の状態を把握することができる。例えば、オペレータは、関節部が可動限界まで回転したか、関節部のドライバユニットに指令値として不適切な値が入力されたか、関節部が脱調してしまったか等を把握することができる。例えば、図5に示す通知画面を視認することで、オペレータは、関節部J3のアーム部2の伸張操作ができない理由が、ロボット装置側の異常ではなく、関節部J3のアーム部2が限界まで伸張されてしまったためであるのを把握することができる。また、オペレータは、関節部J1が動かない理由が、関節部J1のドライバユニット210に予め設定した速度の上限値を超過してしまう指令値が入力されたためであることを把握することができる。また、オペレータは、関節部J5が動かない理由が、関節部J5が脱調してしまったからであることを把握することができる。
 このように、ロボットアームが動かなくなったときに、オペレータは、ステッピングモータの過熱に代表されるロボット装置側の異常により、ロボットアームの操作ができないのか、関節部J1-J6各々が可動限界に達してしまった、速度超過する指令値を与えていた、脱調が発生した等のロボット装置側の異常とは言えない理由でロボットアームを操作できないのか、を手首部4に設けられた表示部41の表示画面を視認することで把握することができる。そのため、ダイレクトティーチングなどの、オペレータが手先着目点に注視して操作部60を操作する場合において、オペレータは、ロボットアームが動かなくなったときに、視線を手先から移動させることなく、その理由を把握することができる。すなわち、本実施形態に係るロボット装置は、ロボットアームが動かない事態が生じたときのオペレータの作業負担を軽減させることができる。また、ロボットアームが動かなくなった理由が、ロボット装置側の異常とは言えない理由であれば、オペレータはその理由に応じた作業を行うことができる。例えば、ステッピングモータに脱調が発生したために、ロボットアームが動かなくなったのであれば、オペレータはロボットハンドに把持させるワークを変更等すればよい。また、速度超過する指令値を与えていたために、ロボットアームが動かなくなったのであれば、指令値の変更等をすればよい。関節部が可動限界に達していたのであれば、それを戻す方向には関節部を変位させることができる。
 (第1変形例) 
 上述したロボット装置では、表示部41は第6関節部J6を覆う円筒形状のカバーの側面に取り付けられていた。しかしながら、表示部41の配置はこれに限定されない。表示部41は、ロボット装置の設置位置に対するオペレータの位置やオペレータの嗜好に応じた位置に設けられればよい。また、手首部4の姿勢が変化してもオペレータによる表示部41の視認性の低下を防ぐために、手首部4に複数の表示部41が設けられてもよい。第1、第2、第3、第4、第5、第6変形例は、表示部41の他の配置例に関するものである。
 図6は、本実施形態の第1変形例に係るロボットアーム機構の表示部42、43の位置を示す斜視図である。図6に示すように、表示部42、43は、第5関節部J5を覆うカバーの両端部分に設けられてもよい。表示部42、43は、それぞれの表示中心軸が第5回転軸RA5に平行に、且つ互いに逆向き設けられる。左右両側のいずれからでも表示画面を視認することができる。
 (第2変形例) 
 図7は、本実施形態の第2変形例に係るロボットアーム機構の表示部44,45の位置を示す斜視図である。図7に示すように、表示部44,45は、第5関節部J5と第6関節部J6とを接続するV字形のリンクのカバーの側面に設けられてもよい。表示部44は、その表示中心軸の向きが表示部45の表示中心軸と異なるように設けられる。
 (第3変形例) 
 図8は、本実施形態の第3変形例に係るロボットアーム機構の表示部46の位置を示す斜視図である。図8に示すように、表示部46は第6関節部J6を覆う円筒形状のカバーの一端面に設けられてもよい。なお他方の端面にはハンド部が装着される。
 (第4変形例) 
 図9は、本実施形態の第4変形例に係るロボットアーム機構の表示部の位置を示す斜視図である。図9に示すように、表示部47,48は、それぞれ第4関節部J4を覆うカバーの表面と裏面とにそれぞれ取り付けられてもよい。表示部47、48は第4回転軸RA4と第5回転軸RA5とで規定される平面を挟んで対称の位置に配置される。アーム2が起伏したとしてもその角度に関わらずオペレータは表示部47,48の一方を視認する事ができる。
 (第5変形例) 
 図10は、本実施形態の第6変形例に係るロボットアーム機構の表示部52の位置を示す斜視図である。表示部52は、手首部4を覆うカバーではなく、関節部J1-J3各々を覆うカバーに設けられてもよい。例えば、図10に示すように、表示部52は、第3関節部J3を覆うカバーの、射出口の近傍に設けられる。
 (第6変形例) 
 上述したロボット装置における表示部の複数の位置のうち、少なくとも2つの位置に表示部が設けられてもよい。これにより、手首部4の姿勢変化による表示画面の視認性の低下を防ぐことができる。図11は、本実施形態の第6変形例に係るロボットアーム機構の表示部49,50,51の位置を示す斜視図である。図11に示すように、表示部49,50は、第4変形例の表示部47,48とそれぞれ一致する位置に設けられる。表示部51は、本実施形態の表示部41と一致する位置に設けられる。
 (第7変形例) 
 上述したロボット装置では、関節部J1-J6各々の状態を表す通知画面を表示画面に表示することにより、オペレータに対して関節部J1-J6各々の状態を通知していた。しかしながら、ロボット装置は、表示デバイスとして、オペレータに対して関節部J1-J6各々の状態を通知するためのインジケータランプを備えてもよい。第7,8変形例は、インジケータランプの配置例に関するものである。
 図12は、本実施形態の第7変形例に係るロボットアーム機構のインジケータランプ71,72,73の位置を示す斜視図である。図12に示すように、関節部J1の近傍には、複数、ここでは3つのインジケータランプ71,72、73からなるインジケータランプセット74が設けられている。例えば、インジケータランプ71、72、73は、ランプの色、ランプの点滅等の表示態様の変化により、関節部J1の様々な状態を区別してオペレータに対して通知する。例えば、インジケータランプ71が青色に点灯しているとき、関節部J1が「動作中」であることを表し、赤色に点灯しているとき、関節部J1が「停止中」であることを表す。インジケータランプ72が青色に点灯しているとき、関節部J1が可動限界ではないことを表し、赤色に点灯しているとき、関節部J1が可動限界であることを表す。インジケータランプ73が青色に点灯しているとき、関節部J1のステッピングモータ310が過熱状態でないことを表し、赤色に点灯しているとき、関節部J1のステッピングモータ310が過熱状態であることを表す。
 関節部J1の近傍に配置されたインジケータランプセット74と同様に、関節部J2-J6各々の近傍には、それぞれ対応する関節部の動作状態を提示するためのインジケータランプセット75-79が配置されている。これにより、オペレータは、ロボットアームが動かないとき、関節部J1-J6にそれぞれ対応する複数のインジケータセット74-79各々のランプの色とランプの表示態様との変化により、直ちにその原因を把握することができる。
 (第8変形例) 
 図13は、本実施形態の第8変形例に係るロボットアーム機構のインジケータランプ80の位置を示す斜視図である。図13に示すように、手首部4の第6関節部J6を覆う円筒形状のカバーの側面に1つのインジケータランプ80が設けられてもよい。インジケータランプ80が青色に点灯しているとき、関節部J1-J6各々が可動限界に達してなく、且つ関節部J1-J6各々のステッピングモータが過熱状態でない、つまり関節部J1-J6各々が操作可能状態であることを表す。インジケータランプ80が黄色に点灯しているとき、関節部J1-J6のうち、少なくとも1つの関節部が可動限界であることを表す。インジケータランプ80が赤色に点灯しているとき、関節部J1-J6のうち、少なくとも1つの関節部に対応するステッピングモータが過熱状態であることを表す。インジケータランプ80が赤色と黄色とで交互に点滅しているとき、関節部J1-J6のうち少なくとも1つの関節部が可動限界で、関節部J1-J6のうち少なくとも1つの関節部に対応するステッピングモータが過熱状態であることを表す。これにより、オペレータは、ロボットアームが動かせないとき、オペレータは、これらランプの色とランプの表示態様との変化により、その原因を把握することができる。
 なお、ロボット装置は、関節部J1-J6各々の状態を通知するための表示デバイスとして、表示部とインジケータランプとの両方を備えてもよい。例えば、手首部4に表示部が設けられ、関節部J1-J6のうち頻繁に駆動される関節部には、インジケータランプセットが設けられてもよい。これにより、オペレータは、インジケータランプにより、関節部の状態の変化を察知することができ、その理由を表示部を視認することで把握することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
 1…基部、2…アーム部、4…手首部、J1,J2,J4,J5,J6、J7…回転関節部、J3…直動伸縮関節部、11a…第1支持体、11b…第2支持体、11c…第3支持体、21…第1連結コマ列、22…第2連結コマ列、23…第1連結コマ、24…第2連結コマ、27…結合コマ、41…表示部

Claims (12)

  1.  複数の関節部を有する多関節アーム機構を備えるロボット装置において、
     前記複数の関節部のうち少なくとも一の関節部を覆うカバーに前記複数の関節部各々の状態を表示するための表示デバイスが装備されることを特徴とするロボット装置。
  2.  前記表示デバイスは、前記複数の関節部のうち手首部を構成する少なくとも一の関節部を覆うカバーに装備されることを特徴とする請求項1記載のロボット装置。
  3.  前記表示デバイスには、前記複数の関節部各々が可動限界又はその近傍に達しているか否かが表示されることを特徴とする請求項2記載のロボット装置。
  4.  前記複数の関節部各々にはアクチュエータとしてステッピングモータが設けられ、
     前記表示デバイスには、前記複数の関節部各々が可動限界又はその近傍に達しているか否かに加えて、前記複数の関節部各々のステッピングモータに脱調が発生しているか否かが表示されることを特徴とする請求項3記載のロボット装置。
  5.  前記複数の関節部各々にはアクチュエータとしてACモータまたはDCモータが設けられ、
     前記表示デバイスには、前記複数の関節部各々が可動限界又はその近傍に達しているか否かに加えて、前記複数の関節部各々のモータが過負荷であるか否かが表示されることを特徴とする請求項3記載のロボット装置。
  6.  前記表示デバイスには、前記複数の関節部各々が可動限界又はその近傍に達しているか否かに加えて、前記複数の関節部各々の動作中と停止中との区別が表示されることを特徴とする請求項3記載のロボット装置。
  7.  前記表示デバイスには、前記複数の関節部各々が可動限界又はその近傍に達しているか否か及び前記複数の関節部各々の動作中と停止中との区別に加えて、前記複数の関節部各々が速度超過か否かが表示されることを特徴とする請求項4記載のロボット装置。
  8.  前記手首部のカバーには、前記表示デバイスと異なる向きに、前記複数の関節部各々の状態を表示するための他の表示デバイスが装備されることを特徴とする請求項2記載のロボット装置。
  9.  前記複数の関節部の近傍には複数のインジケータランプがそれぞれ装備され、前記複数のインジケータランプはそれぞれ近傍の関節部の状態を表示することを特徴とする請求項2記載のロボット装置。
  10.  前記複数の関節部の一は直動伸縮関節部であり、
     前記直動伸縮関節部は、
     硬直状態と屈曲状態との間で状態変化可能なアーム部と、
     前記硬直状態にある前記アーム部を支持する支持部と、
     前記屈曲状態にある前記アーム部を収納する収納部と、
     前記アーム部を前記支持部と前記収納部との間で搬送する搬送部とを有することを特徴とする請求項2記載のロボット装置。
  11.  複数の関節部を備える多関節アーム機構を備えるロボット装置において、
     前記複数の関節部のうち少なくとも一の関節部を覆うカバーに前記複数の関節部の少なくとも一つが可動限界又はその近傍に達しているか否かを表示するためのインジケータランプが装備されることを特徴とするロボット装置。
  12.  前記インジケータランプは、前記複数の関節部のうち手首部を構成する少なくとも一の関節部を覆うカバーに装備されることを特徴とする請求項11記載のロボット装置。
PCT/JP2016/067460 2015-06-22 2016-06-12 ロボット装置 WO2016208431A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-124994 2015-06-22
JP2015124994A JP6760717B2 (ja) 2015-06-22 2015-06-22 ロボット装置

Publications (1)

Publication Number Publication Date
WO2016208431A1 true WO2016208431A1 (ja) 2016-12-29

Family

ID=57585607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067460 WO2016208431A1 (ja) 2015-06-22 2016-06-12 ロボット装置

Country Status (3)

Country Link
JP (1) JP6760717B2 (ja)
TW (1) TW201702033A (ja)
WO (1) WO2016208431A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6708581B2 (ja) * 2017-04-07 2020-06-10 ライフロボティクス株式会社 教示装置、表示装置、教示プログラム及び表示プログラム
CN107414817B (zh) * 2017-07-04 2023-04-25 国网吉林省电力有限公司白山供电公司 一种拼插式六自由度关节型工业机器人
JP7001439B2 (ja) * 2017-11-24 2022-01-19 川崎重工業株式会社 監視方法
CN111655434B (zh) * 2019-06-12 2024-06-25 上海非夕机器人科技有限公司 具有用于指示致动器状态的灯装置的机器人和工业机器人

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171097U (ja) * 1983-04-27 1984-11-15 三菱電機株式会社 産業機械の安全表示装置
JPS6336306A (ja) * 1986-07-30 1988-02-17 Fujitsu Ltd サ−ボ制御装置のエラ−検知方式
JPH0347788U (ja) * 1989-09-19 1991-05-07
JPH05169391A (ja) * 1991-12-20 1993-07-09 Meidensha Corp マニプレータ装置
JPH08141975A (ja) * 1994-11-15 1996-06-04 Shibaura Eng Works Co Ltd 産業用ロボット
JP2000042955A (ja) * 1998-07-29 2000-02-15 Janome Sewing Mach Co Ltd スカラロボット
JP2005335000A (ja) * 2004-05-25 2005-12-08 Yaskawa Electric Corp 人間介入型ロボットの制御装置
JP2009072833A (ja) * 2007-09-18 2009-04-09 Yaskawa Electric Corp ロボットの直接教示装置
WO2011152265A1 (ja) * 2010-05-31 2011-12-08 独立行政法人産業技術総合研究所 直動伸縮アーム機構および当該直動伸縮アーム機構を備えたロボットアーム
JP2012218139A (ja) * 2011-04-14 2012-11-12 Seiko Epson Corp モーターユニット、およびロボット
JP2013086223A (ja) * 2011-10-20 2013-05-13 Seiko Epson Corp ロボット、ロボットの動作表示制御方法
WO2013114737A1 (ja) * 2012-01-31 2013-08-08 株式会社五合 機器の表示装置および表示装置を設けた機器
JP2013202731A (ja) * 2012-03-28 2013-10-07 Denso Wave Inc ロボット情報表示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218502A (ja) * 1990-01-24 1991-09-26 Murata Mach Ltd ロボットの教示装置
JP3183355B2 (ja) * 1991-12-20 2001-07-09 株式会社ダイヘン 産業用ロボットの制御装置
US9050119B2 (en) * 2005-12-20 2015-06-09 Intuitive Surgical Operations, Inc. Cable tensioning in a robotic surgical system
US5978748A (en) * 1998-07-07 1999-11-02 Faro Technologies, Inc. Host independent articulated arm
JP2005231010A (ja) * 2004-02-23 2005-09-02 Fanuc Ltd 表示装置
KR20060085993A (ko) * 2005-01-25 2006-07-31 삼성전자주식회사 반도체 제조 설비의 웨이퍼 이송 장치
CN203622451U (zh) * 2013-09-28 2014-06-04 上海摩西海洋工程有限公司 一种工业机器人状态可视化系统
CN204054051U (zh) * 2014-09-09 2014-12-31 袁川来 一种测量腕力传感器的机械臂平台

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171097U (ja) * 1983-04-27 1984-11-15 三菱電機株式会社 産業機械の安全表示装置
JPS6336306A (ja) * 1986-07-30 1988-02-17 Fujitsu Ltd サ−ボ制御装置のエラ−検知方式
JPH0347788U (ja) * 1989-09-19 1991-05-07
JPH05169391A (ja) * 1991-12-20 1993-07-09 Meidensha Corp マニプレータ装置
JPH08141975A (ja) * 1994-11-15 1996-06-04 Shibaura Eng Works Co Ltd 産業用ロボット
JP2000042955A (ja) * 1998-07-29 2000-02-15 Janome Sewing Mach Co Ltd スカラロボット
JP2005335000A (ja) * 2004-05-25 2005-12-08 Yaskawa Electric Corp 人間介入型ロボットの制御装置
JP2009072833A (ja) * 2007-09-18 2009-04-09 Yaskawa Electric Corp ロボットの直接教示装置
WO2011152265A1 (ja) * 2010-05-31 2011-12-08 独立行政法人産業技術総合研究所 直動伸縮アーム機構および当該直動伸縮アーム機構を備えたロボットアーム
JP2012218139A (ja) * 2011-04-14 2012-11-12 Seiko Epson Corp モーターユニット、およびロボット
JP2013086223A (ja) * 2011-10-20 2013-05-13 Seiko Epson Corp ロボット、ロボットの動作表示制御方法
WO2013114737A1 (ja) * 2012-01-31 2013-08-08 株式会社五合 機器の表示装置および表示装置を設けた機器
JP2013202731A (ja) * 2012-03-28 2013-10-07 Denso Wave Inc ロボット情報表示装置

Also Published As

Publication number Publication date
TW201702033A (zh) 2017-01-16
JP6760717B2 (ja) 2020-09-23
JP2017007034A (ja) 2017-01-12

Similar Documents

Publication Publication Date Title
WO2016204099A1 (ja) ロボット装置及びモータ制御装置
WO2016208431A1 (ja) ロボット装置
JP6659238B2 (ja) ロボット装置及びステッピングモータ制御装置
JP6255724B2 (ja) ロボットおよびロボットの操作方法
JP6399591B2 (ja) ロボットアーム機構及びステッピングモータ制御装置
US20160361816A1 (en) Device and method for controlling link actuation device
US20160052141A1 (en) Method and Apparatus For Controlling Operations Of Robot
WO2016175157A1 (ja) 多関節アーム機構の動作制御装置及びロボット装置
JP2013086223A (ja) ロボット、ロボットの動作表示制御方法
US20150343639A1 (en) Gear incorporation system and gear incorporation method
WO2017043583A1 (ja) ロボット装置
EP3225364A1 (en) Robot device and robot control device
JP5418915B2 (ja) ロボット、状態呈示装置及び状態呈示方法並びにロボットの教示方法
US10377041B2 (en) Apparatus for and method of setting boundary plane
WO2016190141A1 (ja) ロボット装置及びステッピングモータ制御装置
US20180001486A1 (en) Robot, robot control device, and robot system
TW201703949A (zh) 機器人裝置
JP2009148894A (ja) 多関節ロボット
WO2018212199A1 (ja) 操作装置及びその運転方法
WO2022210412A1 (ja) 表示部を有するロボットを備えるロボットシステム
JP2015000438A (ja) ロボット、位置姿勢補正装置および位置姿勢補正方法
JP2016101651A (ja) ロボット装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814202

Country of ref document: EP

Kind code of ref document: A1