WO2016208092A1 - 立体成型部品の製造方法及び立体成型部品 - Google Patents

立体成型部品の製造方法及び立体成型部品 Download PDF

Info

Publication number
WO2016208092A1
WO2016208092A1 PCT/JP2015/084957 JP2015084957W WO2016208092A1 WO 2016208092 A1 WO2016208092 A1 WO 2016208092A1 JP 2015084957 W JP2015084957 W JP 2015084957W WO 2016208092 A1 WO2016208092 A1 WO 2016208092A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
dimensional molded
dimensional
wiring pattern
protective film
Prior art date
Application number
PCT/JP2015/084957
Other languages
English (en)
French (fr)
Inventor
道脇 茂
高木 剛
Original Assignee
株式会社メイコー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2015/068230 external-priority patent/WO2016208006A1/ja
Application filed by 株式会社メイコー filed Critical 株式会社メイコー
Priority to JP2016531083A priority Critical patent/JP6100975B1/ja
Priority to TW105119547A priority patent/TW201709790A/zh
Publication of WO2016208092A1 publication Critical patent/WO2016208092A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits

Definitions

  • the present invention relates to a method for manufacturing a three-dimensional molded part in which at least a part of a surface on which a wiring pattern is formed is covered with a protective film on a three-dimensional molded product having a wiring pattern formed on the surface, and a three-dimensional manufactured by the manufacturing method.
  • molded parts Regarding molded parts.
  • a conventionally known three-dimensional wiring board is a MID (Molded Interconnect Device) substrate, which is a component in which an electric circuit is directly and three-dimensionally formed on the surface of a structure having a three-dimensional structure.
  • MID Manufacturing Interconnect Device
  • methods such as a two-shot method, MIPTEC (Microscopic Integrated Processing Technology), and LDS (Laser Direct Direct Structure) are known.
  • MIPTEC Magnetic Integrated Processing Technology
  • LDS Laser Direct Direct Structure
  • Patent Document 1 discloses a technique related to an MID substrate and its manufacture.
  • the entire surface of the molded mold resin is metalized, and the metal (metalizing layer) at the outer edge portion of the wiring circuit is removed by laser light. Thereafter, a region to be a wiring circuit is energized to perform electroplating, and then the entire surface of the molded body is subjected to flash etching to remove metals other than the wiring circuit, thereby forming a wiring circuit on the mold resin.
  • a special laser irradiation apparatus corresponding to the three-dimensional shape of the molded mold resin is required, and there is a problem of increase in manufacturing cost due to labor of laser processing and equipment investment.
  • the metal necessary for the wiring circuit is deposited by electrolytic plating, it is necessary to energize only the region that becomes the wiring circuit, so that the region that becomes the wiring circuit is electrically connected to the outer periphery of the molded body. Or have to be electrically connected to the outer periphery via a feeder line. That is, there is a problem that it is difficult to electrically separate the region to be the wiring circuit from the outer peripheral portion of the molded body (that is, formation of an independent wiring pattern), and formation of a feed line that is finally unnecessary as a circuit and The problem of increased cost associated with removal arises.
  • LDS In LDS, primary molding is performed using a special resin material containing conductive particles, the region that becomes the wiring circuit is irradiated with laser light to expose the conductive particles, and the exposed portions of the conductive particles are plated. As a result, a wiring circuit is formed on the mold resin.
  • the minimum value of L / S is about 100/150 ⁇ m because of the problem of accuracy of exposing the conductive particles in the molded mold resin, and it is difficult to form a finer wiring pattern.
  • a special laser irradiation device is required as in MIPTEC, and there is a problem of increased manufacturing costs due to labor of laser processing and capital investment.
  • the wiring circuit is formed on the mold resin having a three-dimensional shape, so that the finally manufactured MID substrate is a single-sided substrate. For this reason, the freedom degree of a wiring circuit becomes small compared with a double-sided board, and the problem that size reduction of board
  • a method for solving the problem and the above-described problem there is a method of manufacturing a three-dimensional wiring board by forming a wiring circuit on a thermoplastic resin such as polyimide and then bending the resin by heating and pressing.
  • Patent Document 2 discloses that a metal foil is pasted on a polyimide film by thermocompression bonding, and then three-dimensional molding is disclosed, and Patent Document 3 discloses that a three-dimensional molding is performed after applying a conductive paste on a polysulfone resin. It is disclosed.
  • the formed wiring pattern is exposed. Therefore, when soldering is performed for component mounting, connection to another component, or connection to another board, a bridge between soldering lands occurs. It becomes easy to cause the deterioration of the wiring pattern metal material due to exposure to temperature or moisture, and the problem of short circuit due to mixed foreign matter. For this reason, it is a common practice to cover the portions other than the land portions necessary for component mounting with an insulating resin.
  • an insulating resin is applied to an ink-like thermosetting resin or ultraviolet curable resin by screen printing, spray coating, or ink jet printing.
  • an insulating resin is applied so that the portion to be soldered is exposed from the beginning, or an ultraviolet curable type is applied to the entire coated surface.
  • an ultraviolet curable type is applied to the entire coated surface.
  • JP 2012-94605 A Japanese Patent Laid-Open No. 06-188537 JP 2000-174399 A
  • the step of the three-dimensional molded product similarly prevents the spreading of the insulating resin along the surface of the three-dimensional molded product and the spreading of the landed droplets before curing.
  • the ultraviolet irradiation for temporary curing using the ultraviolet curable resin to be used requires that the gap between the inkjet head and the substrate be increased by a step. This is difficult due to the problem of curing the resin.
  • the present invention has been made in view of such problems, and the object of the present invention is to generate bubbles and gaps when a protective film is applied to a three-dimensional molded product having a wiring pattern formed on the surface.
  • Three-dimensional molded parts that can be manufactured easily and at low cost by covering the three-dimensional molded product with the protective film while arranging openings with high accuracy in the areas to be exposed in the wiring pattern to prevent It is to provide a manufacturing method.
  • the present invention has been made in view of such problems, and the object of the present invention is that there are no air bubbles and gaps between the three-dimensional molded product and the protective film, and there is an area where the wiring pattern should be exposed.
  • the object is to provide a low-cost three-dimensional molded part that is reliably exposed.
  • the method of manufacturing a three-dimensional molded part according to the present invention includes a three-dimensional molded article preparation step of preparing a three-dimensional molded article in which a wiring pattern is formed on the surface of a resin substrate, and a break elongation of 50% or more.
  • a protective film preparing step of preparing a flat protective film made of an adhesive provided on the surface of the resin film and the resin film provided, and corresponding to the area to be exposed of the wiring pattern for the flat protective film An opening forming step for forming an opening, a three-dimensional molding step for three-dimensionally molding the flat protective film in correspondence with a surface on which the wiring pattern of the three-dimensional molded product is formed, and the opening in an area to be exposed of the wiring pattern
  • the adhesive is pasted on the formation surface of the wiring pattern of the three-dimensional molded product while facing it, and the three-dimensional molded product is applied to the three-dimensional molded protective film.
  • the position, shape, and dimensions of the opening are designed in consideration of the shape of the resin base material at the time of patterning the wiring pattern. It is.
  • the three-dimensionally formed component of the present invention includes a three-dimensional molded product in which a wiring pattern is formed on the surface of a resin substrate, a resin film having a breaking elongation of 50% or more, and the surface of the resin film. And a protective film laminated on the surface of the three-dimensional molded product by the adhesive, and the protective film has an opening corresponding to an area to be exposed of the wiring pattern. At the same time, the three-dimensional molded product is covered along the three-dimensional shape of the three-dimensional molded product.
  • the present invention when a protective film is applied to a three-dimensional molded product with a wiring pattern formed on the surface, bubbles and gaps are prevented from being generated, and an opening is arranged with excellent accuracy in an area to be exposed of the wiring pattern. Then, the three-dimensional molded product can be manufactured easily and at low cost by covering the three-dimensional molded product with the protective film.
  • FIGS. 1, 2, 4, 9, 12, 17, 19, 23 to 25, and 30 to 34 are cross-sectional views in the manufacturing process of the three-dimensional wiring board.
  • 5 is an enlarged conceptual diagram of the broken line region V in FIG. 4
  • FIG. 10 is an enlarged conceptual diagram of the broken line region X in FIG. 9,
  • FIG. 18 is an enlarged conceptual diagram of the broken line region XVIII in FIG.
  • FIG. 20 is an enlarged conceptual diagram of the broken line area XX in FIG.
  • FIGS. 13 to 16 and FIGS. 26 to 29 are schematic views showing a manufacturing process related to three-dimensional molding according to the embodiment of the present invention.
  • FIG. 3 to FIG. 8, FIG. 11, and FIG. 21 are schematic views of metal film formation for a three-dimensional wiring board according to an embodiment of the present invention.
  • FIG. 22 is a perspective view of a base material constituting the three-dimensional wiring board according to the embodiment of the present invention
  • FIG. 35 is a cross-sectional view of the three-dimensional wiring board according to the embodiment of the present invention.
  • thermoplastic resin film 1 that is a resin base material is prepared (resin base material preparation step).
  • the thermoplastic resin film 1 for example, a known resin film such as polyimide or polyethylene terephthalate can be used.
  • the thickness of the thermoplastic resin film 1 is not limited, and can be appropriately changed according to the use and required characteristics of the three-dimensional wiring board of this embodiment corresponding to the three-dimensional wiring component of the present invention.
  • the thickness of the thermoplastic resin film 1 is adjusted to about 125 ⁇ m (75 ⁇ m to 150 ⁇ m).
  • the thickness is 50 ⁇ m. You may adjust to the following.
  • the resin film to be prepared is not limited to the thermoplastic type, and if it is a resin film having a relatively large elongation at break, a thermosetting resin film or a thermosetting resin and a thermoplastic resin are laminated ( That is, a composite resin film having a structure in which a thermoplastic resin film and a thermosetting resin film are bonded together may be used.
  • the relatively large elongation at break is a value of at least 50%, preferably 150% or more.
  • NC processing, laser processing, punching processing, or the like is performed in order to ensure conduction on the front and back surfaces (first surface 1a and second surface 1b) of the thermoplastic resin film 1.
  • Through-hole 2 is formed using the opening technique.
  • the opening diameter of the through hole 2 is about 0.3 mm.
  • an actual three-dimensional wiring board has a plurality of through holes 2.
  • the quantity of the through-hole 2 can also be suitably changed according to the circuit structure of a three-dimensional wiring board.
  • a positioning hole for example, an opening diameter of 3 mm
  • a positioning hole for use as positioning at the time of three-dimensional molding, which will be described later, is removed without forming an outer edge portion of the thermoplastic resin film 1 (that is, finally forming a three-dimensional wiring board). May be formed on a portion).
  • First metal film 3 is formed (first metal film forming step).
  • the metal is metallized on the surface of the thermoplastic resin film 1 by electroless plating using a known molecular bonding technique.
  • Ar plasma treatment is performed on the thermoplastic resin film 1 to remove the fragile layer on the surface of the thermoplastic resin film 1, and a functional group that is compatible with a molecular bonding agent described later. It is formed on the surface of the thermoplastic resin film 1.
  • the Ar resin-treated thermoplastic resin film 1 is immersed in a solution of the molecular bonding agent 4 (FIG. 3).
  • the molecular bonding agent 4 has a functional group (first functional group) that reacts with the thermoplastic resin film 1, the functional group of the thermoplastic resin film 1 and the functional group of the molecular bonding agent 4 are associated with each other. As shown in FIG. 4 and FIG.
  • the molecular bonding agent 4 is illustrated in a layered form for easy understanding, but actually exists in a nano-level state (the thickness of the molecular bonding agent 4 is several nm) as shown in FIG. It is very thin compared to other materials. Therefore, the molecular bonding agent 4 may be omitted from FIG.
  • the straight line extending up and down of the molecular bonding agent 4 in FIG. 5 represents a functional group, and more specifically, the straight line extending toward the thermoplastic resin film 1 is connected to the functional group of the thermoplastic resin film 1.
  • the straight line extending to the opposite side of the thermoplastic resin film 1 represents the functional group of the molecular bonding agent 4 that reacts with the metal of the first metal film 3.
  • the catalyst film (Sn—Pd colloid aqueous solution) is impregnated with the thermoplastic resin film 1 subjected to the molecular bonding treatment (FIG. 6).
  • the Sn—Pd colloid is electrically adsorbed on the surface of the thermoplastic resin film 1.
  • Sn covering the periphery of Pd is removed, and Pd ions are changed to metal Pd (FIG. 7). That is, a catalyst treatment (for example, Pd) is carried on the thermoplastic resin film 1 by performing a catalyst treatment.
  • the accelerator liquid sulfuric acid (concentration: 10%) containing oxalic acid (about 0.1%) can be used.
  • the thermoplastic resin film 1 carrying Pd as a catalyst is immersed in an electroless plating tank for 5 minutes, for example.
  • copper is precipitated using Pd as a catalyst, and the precipitated copper is bonded to the molecular bonding agent 4 (FIG. 8).
  • the molecular bonding agent 4 also includes a functional group (second functional group) that reacts with the metal of the first metal film 3, the end portion bonded to the thermoplastic resin film 1 of the molecular bonding agent 4.
  • a metal is chemically bonded to the end portion (second functional group) located on the opposite side of the substrate using a catalyst.
  • thermoplastic resin film 1 is heated at 150 ° C. for 10 minutes to terminate the chemical bond between the molecular bonding agent 4 and the metal, and as shown in FIG. 9, the surface of the thermoplastic resin film 1
  • the formation of the first metal film 3 (that is, the molecular bonding between the thermoplastic resin film 1 and the first metal film 3) is completed so as to cover the surface.
  • the molecular bonding agent 4 described above is a chemical for chemically bonding a resin and a metal or the like, and a functional group that bonds to the resin and a functional group that bonds to the metal exist in one molecular structure.
  • the molecular bonding technique is a technique for chemically bonding a resin and a metal or the like using the molecular bonding agent 4 having such a structure. Further, these molecular bonding agents and molecular bonding techniques are described in more detail in Japanese Patent No. 04936344, Japanese Patent No. 05729852, and Japanese Patent No. 05083926.
  • the electroless plating is generated in the form of particles, and the first metal film 3 is formed in a porous shape by the copper particles 3a.
  • the porous shape means that the first metal film 3 does not have a film thickness that is completely formed on the film, but at least a part of the particles that are not all in contact with each other makes contact as a whole film. (It is not always necessary to conduct electricity, and even if the distance between particles is separated by three-dimensional molding, it may be conducted by a second metal film described later).
  • copper is deposited in a particle form in the range of 0.02 ⁇ m to 0.20 ⁇ m to form the first metal film 3 having a thickness capable of transmitting light.
  • the reason for adjusting the state (that is, the film thickness) of the first metal film 3 is that if the first metal film 3 is formed in a complete film shape that does not transmit light, the three-dimensional molding described later is performed. This is because even if a crack occurs in the first metal film 3, it is difficult to repair the crack even by a second metal film described later.
  • the first metal film 3 is thinner than 0.02 ⁇ m, the contact between the resin and copper is reduced, the adhesion is lowered, and the distance between the particles after being stretched is too far apart, and the second metal film described later. It becomes difficult to repair continuity in Further, when the film is stretched in a state of transmitting light, the distance between the particles is only wide, so the crack is small. However, when the film is stretched in a complete film shape that does not transmit light, the metal film exceeding the limit (the first metal film 3). ) Is cracked and becomes a wide crack. In FIG. 10, it is shown that only one particle 3a exists in the film thickness direction of the first metal film 3. However, if the first metal film 3 is porous, a plurality of particles 3a. May be laminated in the film thickness direction.
  • the process of forming the first metal film 3 in a porous shape will be described in detail below.
  • the newly deposited copper is either the molecular bonding agent 4 or the copper that has already precipitated and reacts with the molecular bonding agent 4.
  • make metal bonds since the activity of Pd, which is a catalyst due to the autocatalytic action of copper, is higher, the production of copper proceeds in the surface direction (that is, the direction spreading on the surface of the thermoplastic resin film 1). It will also begin to proceed in the direction (that is, the film thickness direction of the first metal film 3).
  • thermoplastic resin film 1 and the first metal film 3 are chemically bonded via the molecular bonding agent 4, the interface between the thermoplastic resin film 1 and the first metal film 3 is formed. Both members can be firmly joined while being smooth. Thereby, it is not necessary to form unevenness on the surface of the thermoplastic resin film 1, and the manufacturing process can be facilitated, the manufacturing cost can be reduced, and the wiring circuit to be formed can have high definition.
  • the molecular bonding agent to be used is not limited to one type.
  • the molecular bonding agent 4 is mixed with another molecular bonding agent having a functional group that reacts with the molecular bonding agent 4 and the first metal film 3.
  • the compound formed may be used, and may be appropriately changed including other process conditions depending on the materials of the thermoplastic resin film 1 and the first metal film 3.
  • the material of the first metal film 3 is not limited to copper, and includes, for example, various metals such as silver, gold, or nickel, or an alloy or each metal including at least one of these metals and copper.
  • a laminated material may be used, it is preferable to use a metal that is relatively soft and has a high elongation at break.
  • the film thickness for realizing the state of transmitting light and conducting is different depending on the metal to be used, the first metal film 3 is formed in a porous shape when another metal is used. Therefore, the film thickness is adjusted as appropriate so that the above can be realized.
  • the method for forming the first metal film 3 is not limited to the method using the molecular bonding technique described above, and if the first metal film 3 can be formed in a porous shape, for example, sputtering, vapor deposition, Alternatively, a film forming technique such as wet plating other than the method using molecular bonding may be used. And about formation of the 1st metal film 3, according to the metal material used, you may select the optimal film-forming technique.
  • the first metal film is formed so as to cover the first surface 1a, the second surface 1b of the thermoplastic resin film 1 and the side surface 1c of the thermoplastic resin film 1 exposed by the through holes. 3, the first metal film 3 is formed only on either the first surface 1 a or the second surface 1 b of the thermoplastic resin film 1 in accordance with the required structure and characteristics of the three-dimensional wiring board. It may be formed. That is, the three-dimensional wiring board of the present invention includes not only those having wiring patterns formed on both sides but also those having wiring patterns formed only on one side.
  • the first metal film 3 is subjected to patterning by photolithography to form a desired wiring pattern (pattern forming step). Specifically, a mask film on which a predetermined pattern is printed by thermocompression bonding a resist film to the surface of the thermoplastic resin film 1 in a state where the first metal film 3 is formed and before the three-dimensional molding is flat. Is used for exposure and development. Subsequently, the first resist film 3 is etched using the developed resist film as an etching mask to form a desired wiring pattern. Thereafter, the resist film is peeled and removed.
  • it is preferable to adjust the shape of the wiring pattern (wiring width, wiring length, wiring interval, etc.) in consideration of the elongation and deformation of the first metal film 3 due to three-dimensional molding described later.
  • the first metal film 3 is patterned by photolithography, it is possible to realize a higher definition pattern than patterning using an inkjet printing technique or a gravure offset printing technique. That is, the first metal film 3 has a higher resolution (that is, excellent linearity and high-definition wiring formation) than a wiring pattern patterned using an ink jet printing technique or a gravure offset printing technique. ) Being.
  • thermoplastic resin film 1 on which the first metal film 3 is formed is subjected to heat treatment and pressure treatment to perform three-dimensional molding (first three-dimensional molding step).
  • first three-dimensional molding step first, the thermoplastic resin film 1 is positioned with respect to the molding die 11 using the positioning holes described above. This is for matching the molding position and the wiring pattern position. That is, as shown in FIG. 13, the thermoplastic resin film 1 is disposed between the upper mold 12 and the lower mold 13 of the mold 11. Subsequently, as shown in FIG. 14, the upper mold 12 is heated by the upper heating device 14, and the lower mold 13 is heated by the lower heating device 15.
  • the heating temperature is adjusted within a range of 270 ° C. to 350 ° C. (eg, 300 ° C.) higher than the glass transition temperature of the material.
  • the heating temperature is appropriately adjusted depending on the material of the thermoplastic resin film 1.
  • the heating temperature is required to be equal to or higher than the glass transition temperature and equal to or lower than the heat resistant temperature of the thermoplastic resin film 1, and is preferably set to the lowest possible temperature within the range. This is to reduce a decrease in adhesion due to heating of the first metal film 3 and the thermoplastic resin film 1 formed on the thermoplastic resin film 1.
  • the upper die 12 and the lower die 13 are brought close to each other, and the thermoplastic resin film 1 is pressed from above and below with a desired pressure (for example, 10 MPa) (FIG. 15).
  • the desired pressure is appropriately adjusted in consideration of the material of the thermoplastic resin film 1 and the point that the desired three-dimensional molding becomes difficult if the pressure is too weak.
  • the thermoplastic resin film 1 is taken out from the mold 11 (FIG. 16), and the three-dimensional molding of the thermoplastic resin film 1 is completed. In other words, the formation of the first base material 16 for the three-dimensional wiring board is completed.
  • the first metal film 3 is not shown.
  • the shape of the actual three-dimensional wiring board has a plurality of irregularities, so that the mold 11 also has a plurality of irregularities.
  • a structure in which a plurality of projections and depressions with the lower mold 13 are fitted to each other may be employed.
  • the thermoplastic resin film 1 (that is, the first base material 16 for the three-dimensional wiring board) that has undergone the three-dimensional molding has a crack 17 in the bent portion 1d that is bent by the three-dimensional molding. It has become easier.
  • the crack 17 is a gap formed by an increase in the interparticle distance of the copper particles 3 a constituting the first metal film 3, and is a complete metal film shape that does not transmit light.
  • the structure is different from that of a crack generated by stretching the metal film.
  • a crack may not occur.
  • the crack 17 is caused by the thermoplastic resin film 1 being stretched, whereas the first metal film 3 has an increased interparticle distance, but the first metal film 3 is Since it is formed in a porous shape, the depth of the crack 17 itself is equivalent to the size of the particle 3a and becomes very small, and further compared with the case where the first metal film 3 is formed in a complete film shape. Thus, the width of the crack 17 is also reduced. That is, the first base material 16 for the three-dimensional wiring board according to the present embodiment can repair the crack 17 more easily than the case where the first metal film 3 is formed in a complete film shape. It is in the state to do.
  • the crack 17 (gap between the particles) is small when stretched in a state where light is transmitted because the distance between the particles is only large, but the limit is exceeded when the film is stretched in a complete film shape that does not transmit light.
  • the metal film is cracked and a wide crack is generated.
  • the above-described three-dimensional molding may be performed in a state where the thermoplastic resin film 1 is sandwiched between two protective films.
  • angular part 1e in the bending part 1d can be made slightly smooth, and generation
  • the protective film is preferably formed of the same material as the thermoplastic resin film 1.
  • the shape of the corner portion 1e in the bent portion 1d is curved, or the angle is made smaller than 90 degrees (for example, 75 degrees to 85 degrees).
  • the mold 11 may be designed.
  • thermoplastic resin film 1 is pressed from above and below using the upper mold 12 and the lower mold 13.
  • the thickness uniformity of the thermoplastic resin film 1 after the heat press is performed. May be used, other press working methods such as a vacuum press or a pneumatic press may be used.
  • the second metal film 21 is formed so as to cover the surface of the first metal film 3 of the first base material 16 for the three-dimensional wiring board (second metal film forming step: FIG. 19).
  • a metal is additionally deposited on the surface of the first metal film 3 by general electroless plating.
  • the first base material 16 is removed with a desired cleaning liquid (for example, Soak in acid degreasing solution, sulfuric acid solution).
  • a catalyst treatment is performed to cause the first metal film 3 of the first base material 16 to react with a catalyst of a type that replaces the first metal film 3 (for example, a Pd catalyst).
  • a catalyst of a type that replaces the first metal film 3 for example, a Pd catalyst.
  • the metal is selectively deposited only around the first metal film 3 where the catalyst exists on the surface, and the metal is not formed in the region that does not become a wiring circuit (that is, the exposed region of the thermoplastic resin film 1). Is not deposited, and additional patterning of the second metal film 21 becomes unnecessary.
  • copper is used as the metal of the second metal film 21, and as can be seen from FIGS. 20 and 21, a plurality of copper particles 21 a are deposited on the particles 3 a of the first metal film 3. .
  • the second metal film 21 is formed in a complete film shape without being formed in a porous shape.
  • the second metal film 21 having a film thickness of 5 ⁇ m or more could be formed by immersion for 1 hour.
  • the particles 21a constituting the second metal film 21 grow around the particles 3a constituting the first metal film 3, and the thickness direction of the second metal film 21 and the thickness thereof are increased. It grows to the same extent with respect to the direction orthogonal to the direction (planar direction of the second metal film 21).
  • the 2nd metal film 21 can be formed so that the crack 17 of the 1st metal film 3 produced by three-dimensional molding may be repaired. That is, the formation of the second metal film 21 forms a wiring circuit (a conductor layer made up of the first metal film 3 and the second metal film 21) that can recover the conduction failure due to the crack 17 and realize reliable conduction. can do.
  • the repair of the crack 17 by the second metal film 21 can repair the width of the crack 17 about twice the film thickness of the second metal film 21, and therefore the film thickness of the second metal film 21 is assumed. It may be adjusted to 1 ⁇ 2 times or more of the maximum width of the crack 17, more preferably adjusted to a film thickness comparable to the width of the crack 17.
  • the second metal film 21 is also generated on the side surface 1c of the through hole 2 in the same manner as the surface layer, and it is possible to repair the conduction even if there is a front and back conduction failure due to the through hole 2.
  • the layer thickness (wiring pattern thickness) of the conductor layer necessary for the wiring circuit (wiring pattern) is insufficient with the film thickness of the first metal film 3, the second metal film 21 is formed. By forming, the necessary layer thickness of the conductor layer can be ensured.
  • the second metal film 21 is formed by electroless plating. However, if the second metal film 21 can be finally formed only on the surface of the first metal film 3, another film is formed. Techniques (for example, electrolytic plating, application of conductive ink, etc.) may be used. However, when the second metal film 21 is formed by electroless plating as in this embodiment, it can be formed even if the independent wiring, that is, the wiring circuit is electrically separated from the outer peripheral portion of the molded body. However, when the second metal film 21 is formed by electrolytic plating, it is necessary that all the wirings are electrically connected to the outer peripheral portion of the molded body, which is taken into consideration at the time of design including the installation of the feeder line. It will be necessary. Further, in this case, when a non-conductive portion is generated by the three-dimensional molding, the second metal film 21 cannot be formed because electricity does not flow beyond the non-conductive portion.
  • the material of the second metal film 21 is not limited to copper, and other metals such as nickel or nickel chrome, nickel copper, gold, or silver or alloys containing these may be used for the three-dimensional wiring board.
  • the material can be appropriately adjusted according to required characteristics and reliability.
  • the surface of the second metal film 21 is subjected to a rust preventive treatment to form a wiring pattern 22 having a laminated structure in which the first metal film 3 and the second metal film 21 are laminated.
  • the manufacture of the second substrate 30 for three-dimensional wiring composed of the thermoplastic resin film 1 and the wiring pattern 22 is completed.
  • the difference between the first base material 16 and the second base material 30 is only the presence or absence of the second metal film 21, and the second base material 30 corresponds to a three-dimensional molded product for constituting a three-dimensional wiring board. . That is, the three-dimensional molded product preparation step is completed by the above-described steps.
  • the second base material 30 in the second base material 30 according to the present example, cracks generated in the first metal film 3 formed in a porous shape on the surface of the thermoplastic resin film 1 are caused by the first metal.
  • the second metal film 21 formed with a film thickness thicker than that of the film 3 is surely repaired, and has excellent reliability in which the disconnection of the wiring pattern 22 is prevented.
  • the finally formed second base material 30 has different dimensions (that is, heights) in the Z direction at the respective positions in the X direction and the Y direction, and the XY plane.
  • FIG. FIG. 22 is a schematic diagram for explaining the three-dimensional shape of the second base material 30, and the wiring pattern 22 and the through hole are omitted.
  • thermoplastic resin film 31 having the same material as that of the thermoplastic resin film 1 used for the second substrate 30 is prepared. That is, as the thermoplastic resin film 31 in the present embodiment, a known resin film such as polyimide or polyethylene terephthalate can be used in the same manner as the thermoplastic resin film 1.
  • the elongation at break of the thermoplastic resin film 31 is at least 50% or more, preferably 150% or more.
  • the film thickness of the thermoplastic resin film 31 is adjusted to about 25 ⁇ m, but can be appropriately changed according to the application and required characteristics of the three-dimensional wiring board of the present embodiment.
  • the resin film used for the second substrate 30 is a thermosetting resin film other than the thermoplastic type, or a composite resin film in which a thermosetting resin and a thermoplastic resin are laminated
  • the thermoplastic resin film 31 is used. Instead of this, it is preferable to use a thermosetting resin film or the composite resin film.
  • thermoplastic resin film 31 is the same as the material of the thermoplastic resin film 1 used for the second substrate 30 . This is for adjustment.
  • elongation is the same, when the surface of the second base material 30 is covered with a protective film described later, occurrence of misalignment between the second base material 30 and the protective film is prevented, with excellent accuracy. Bonding becomes possible.
  • the prepared adhesive sheet 32 is pressure-bonded on one surface of the thermoplastic resin film 31, and the adhesive sheet 32 is laminated on the surface of the thermoplastic resin film 31.
  • a protective film (coverlay) 33 having a structure is formed.
  • the roller temperature is adjusted to about 100 ° C., and the thermoplastic resin film 31 and the adhesive sheet 32 are pressure bonded.
  • the film thickness of the adhesive sheet 32 was about 50 ⁇ m.
  • the film thickness of the adhesive sheet 32 is not limited to 50 ⁇ m, but the embedding property is improved from the viewpoint of preventing the generation of gaps and bubbles in the vicinity of the step particularly when the second base material 30 described later is coated.
  • the thickness is preferably about 25 ⁇ m or more.
  • the adhesive sheet 32 is pressure-bonded to the thermoplastic resin film 31 as an adhesive so that the protective film 33 can be attached to the thermoplastic resin film 31 in the coating step described later.
  • the adhesive attached to the thermoplastic resin film 31 is not limited to a sheet-like one.
  • a general adhesive may be applied on the surface of the thermoplastic resin film 31 and spread over the entire surface of the thermoplastic resin film 31.
  • an opening 34 corresponding to a region to be exposed of the wiring pattern 22 of the second base material 30 is formed in the protective film 33 (opening forming step).
  • a pinnacle mold corrosion blade mold
  • the position, shape, and dimensions of the opening are designed on the same design plane as the etching mask used for patterning the first metal film 3 is used. That is, in the pinnacle type, the position design of the position, shape, and dimensions of the opening 34 is performed in consideration of a flat film state that is a state before the protective film 33 is three-dimensionally molded.
  • the design of the position, shape, and dimensions of the pinnacle-shaped opening is the first metal. This is performed virtually on the same plane as the thermoplastic resin film 1 when the film 3 is patterned.
  • imagining the same plane and designing the position of the opening, etc. assumes the plane of the thermoplastic resin film 1 before three-dimensional molding, in a state that matches the assumed plane (that is, It means that the aperture design is performed (on the same plane).
  • a pin formed in the pinnacle mold is fitted into a positioning hole (not shown) of the protective film 33 for alignment, and then the protective film 33 is punched out with the pinnacle mold.
  • the opening 34 is formed.
  • the shape of the protective film 33 is determined in consideration of the shape of the thermoplastic resin film 1 when the wiring pattern 22 is patterned.
  • the position, shape, and dimensions of 34 are designed and the opening 34 is formed.
  • the position, shape, and dimensions of the opening 34 are designed, assuming the same plane as the thermoplastic resin film 1 at the time of patterning the first metal film 3, and the opening 34 is formed. Will do.
  • the second base material 30 is covered with the protective film 33 by aligning the shape of the thermoplastic resin film 1 when patterning the wiring pattern 22 and the shape of the protective film 33 when forming the opening 34. At this time, the alignment accuracy between the region to be exposed of the wiring pattern 22 and the opening 34 can be further improved.
  • the protective film 33 is three-dimensionally molded corresponding to the formation surface of the wiring pattern 22 of the second base material 30 (second three-dimensional molding process).
  • the mold 11 used in the three-dimensional molding of the thermoplastic resin film 1 described above is used.
  • a dedicated mold for the protective film 33 is used.
  • the manufacturing cost can be reduced by using the same mold 11.
  • the protective film 33 is positioned with respect to the molding die 11 using the positioning holes described above. This is for matching the molding position with the opening 34.
  • a release film 35 (film thickness of about 65 ⁇ m) is disposed above the protective film 33 (on the upper mold 12 side). That is, as shown in FIG. 26, the protective film 33 and the release film 35 are disposed between the upper mold 12 and the lower mold 13 of the mold 11.
  • the thermoplastic resin film 31 constituting the protective film 33 is disposed so as to contact the lower mold 13.
  • the upper mold 12 and the lower mold 13 are brought close to each other, and the protective film 33 and the release film 35 are pressed from above and below by a desired pressure (for example, 5 MPa) at room temperature or an adhesive for the protective film 33. This is performed for about 30 seconds at a temperature within a range where the sheet 32 is not cured (FIG. 27).
  • the desired pressure is appropriately adjusted in consideration of the material of the protective film 33 and the point that the desired three-dimensional molding becomes difficult if the pressure is too weak.
  • the protective film 33 and the release film 35 are taken out from the mold 11 (FIG. 29), and the release film 35 is peeled off from the protective film 33, whereby the three-dimensional molding of the protective film 33 is completed.
  • the protective film 33 three-dimensionally molded through the above steps is disposed on the lower side of the second base material 30 (that is, on the second surface 1b side of the thermoplastic resin film 1) in the coating step described later. Will be.
  • a protective film 36 disposed on the upper side of the second base material 30 (that is, the first surface 1a side of the thermoplastic resin film 1) is prepared and subjected to three-dimensional molding in the coating step described later ( FIG. 29).
  • the protective film preparation process, opening formation process, and 2nd three-dimensional molding process which concern on the said protective film 36 it is substantially the same as each process which concerns on the protective film 33 mentioned above.
  • the difference is that the pinnacle-type opening pattern used in the opening forming step and the position of the opening formed in the protective film 36, and the arrangement of the protective film 36 and the release film 35 when three-dimensionally molding the mold 11 are used. It is a relationship.
  • the release film 35 is positioned below (lower mold 13 side), and the protective film 36 is positioned above (upper mold 12 side). .
  • the thermoplastic resin film which comprises the protective film 36 will be arrange
  • the areas to be exposed of the wiring pattern 22 of the second base material 30 are exposed by the openings 34 and 37, and the areas other than the areas to be exposed of the second base material 30 are covered with the protective films 33 and 36 (covering). Process).
  • the mold 11 used in the three-dimensional molding of the thermoplastic resin film 1 described above is used, and both surfaces of the second base material 30 (the first surface 1a side of the thermoplastic resin film 1, the first 2 surface 1b side) is sandwiched between the protective films 33 and 36.
  • each protective film 33 is disposed on the lower mold 13
  • the second base material 30 is disposed on the disposed protective film 33
  • the protective film is further disposed on the second base material 30.
  • 36 is arranged (FIG. 30).
  • each protective film is arrange
  • each member is arranged by fitting a positioning hole provided in each member to a pin of the lower mold 13. And by the arrangement
  • fine adjustment by visual observation or the like may be performed so that the openings of the protective films are surely opposed to the areas to be exposed of the wiring pattern 22.
  • the upper mold 12 and the lower mold 13 are brought close to each other, and the second base material 30 and the protective films 33 and 36 are subjected to press treatment at a desired pressure (for example, 15 MPa) from above and below at about 50 ° C. (first 1 temperature) for about 60 seconds (FIG. 31), and the second substrate 30 and the protective films 33 and 36 are temporarily bonded.
  • a desired pressure for example, 15 MPa
  • first 1 temperature for about 60 seconds
  • various conditions such as temperature, pressure, and time in the press treatment can be appropriately adjusted within a range in which the second base material 30 and the protective films 33 and 36 can be temporarily bonded.
  • the upper mold 12 is removed, the surface of the protective film 36 is pressed using the resin rod 38, and the gaps and air bubbles generated between the protective film 36 and the second base material 30 are removed. (FIG. 32).
  • the tip (pressing portion) of the resin rod 38 is round so that the protective film 36 is not damaged by the pressing. Further, when pressing with the resin rod 38, it is preferable to maintain the lower mold 13 at 50 ° C. to develop the adhesive strength of the adhesive sheet of the protective film 36. Thereafter, the clearance and bubble removal work by pressing using the resin rod 38 is also performed on the protective film 33.
  • the upper mold 12 is inverted, and the second base material 30 and the protective films 33 and 36 that are temporarily bonded are arranged so that the protective film 36 contacts the inverted upper mold 12.
  • the surface of the protective film 33 is pressed using the resin rod 38. Note that this pressing operation may be omitted as appropriate according to the state of occurrence of gaps and bubbles, and a bar made of a material other than the resin bar or another pressing device may be used.
  • the second substrate 30 and the protective films 33 and 36 are finally bonded.
  • two release films 39 having cushioning properties (flexibility / flexibility) are prepared, and the second base material 30 and the protective films 33 and 36 in a temporarily bonded state are provided as the release films 39.
  • the upper mold 12 and the lower mold 13 are brought close to each other, and the release film 39, the second base material 30, and the protective films 33 and 36 are pressed with a desired pressure (for example, 15 MPa) from above and below. This is performed at about 160 ° C. (second temperature) for about 40 to 60 minutes (FIG.
  • the reason for disposing the release film 39 is to spread the release film 39 so as to fill the openings 34 and 37 by heating during the main bonding, and to open the adhesive sheet of the protective films 33 and 36. This is to prevent the spread toward 37.
  • thermosetting various conditions such as temperature, pressure, and time in the press treatment can be appropriately adjusted within a range in which the second base material 30 and the protective films 33 and 36 can be completely bonded. However, it is basically within the curing conditions of the adhesive sheet, which is thermosetting.
  • the press treatment time may be shortened to 5 to 10 minutes, and then a predetermined thermosetting treatment (160 ° C., 30 minutes or more) may be performed.
  • the release film 39 is peeled off from the protective films 33 and 36 to complete the coating process, thereby completing the three-dimensional wiring board 40 which is a kind of three-dimensional molded part as shown in FIG.
  • the portion other than the region to be exposed of the wiring pattern 22 is reliably covered with the protective films 33 and 36 and used for electrical connection such as component mounting.
  • a part of the wiring pattern 22 is exposed with certainty and accuracy through the openings 34 and 37.
  • a special device for attaching the protective films 33 and 36 is not required, and the low cost of the three-dimensional wiring board 40 is achieved.
  • the bonding in the covering process is performed twice, that is, temporary bonding and main bonding.
  • the protective films 33 and 36 are attached to the second base material 30 on which the wiring pattern 22 is formed. It is easy to cover the second base material 30 with the protective films 33 and 36 while preventing the generation of bubbles and gaps when attaching, and arranging the openings 34 and 37 with excellent accuracy in the areas to be exposed of the wiring pattern 22. If it is possible to manufacture the three-dimensional wiring board 40 at a low cost, only this bonding may be performed without performing temporary bonding.
  • both surfaces of the 2nd base material 30 were coat
  • the wiring pattern 22 is formed on only one side, only the formation surface side on which the wiring pattern 22 is formed may be covered.
  • the protective film 33, 36 is coated on the surface of the second base material 30 formed by three-dimensionally molding a film-like resin. It is not limited to the thing like the 2nd base material 30 of an Example.
  • various MID components MID substrates
  • the protective film according to the present embodiment can be covered on the circuit forming surface of the MID components.
  • the wiring pattern of the MID parts is performed after resin molding is completed.
  • the opening design of the protective film covering the MID parts and the pattern design documented in the opening formation are as follows. This is performed in consideration of the three-dimensional shape when forming the wiring pattern of the MID component. In this case, a special mold for pressing the protective film against the MID component and performing heat press is required.
  • the manufacturing method of the three-dimensional wiring component which concerns on 1st embodiment of this invention is equipped with the three-dimensional molded object preparation process which prepares the three-dimensional molded object by which the wiring pattern was formed in the surface of the resin base material, and 50% or more elongation at break.
  • a protective film preparation step of preparing a flat protective film made of a resin film and an adhesive provided on the surface of the resin film, and an opening corresponding to an area to be exposed of the wiring pattern with respect to the flat protective film An opening forming step for forming the three-dimensional molding, a three-dimensional molding step for three-dimensionally molding the flat protective film in correspondence with the wiring pattern forming surface of the three-dimensional molded product, and the opening facing the region to be exposed of the wiring pattern
  • the adhesive is pasted on the wiring pattern forming surface of the three-dimensional molded product, and the three-dimensional molded product is covered with the three-dimensional molded protective film.
  • the shape of the protective film is designed in consideration of the shape of the resin base material at the time of patterning the wiring pattern, the position, shape, and dimensions of the opening to expose the wiring pattern, and the protective film is Since the opening is formed in a flat state, it is possible to precisely align the region to be exposed of the wiring pattern of the three-dimensional molded product and the opening of the protective film in the covering step. As a result, when a protective film is applied to a three-dimensional molded product with a wiring pattern formed on the surface, it is possible to prevent the generation of bubbles and gaps, and it is excellent in the area where the wiring pattern should be exposed.
  • the opening can be arranged with high accuracy.
  • the resin is adapted to the surface shape of the three-dimensional molded product.
  • a special apparatus that performs coating or UV irradiation is not required, and it is possible to manufacture a three-dimensional wiring component at low cost.
  • the manufacturing method of the three-dimensional wiring component which concerns on 2nd embodiment of this invention performs the patterning of the said wiring pattern in the said solid base material film state in the said three-dimensional molded object preparation process of 1st Embodiment mentioned above.
  • the design of the position, shape, and dimensions of the opening is performed by virtually imagining the same plane as the resin base material at the time of patterning the wiring pattern.
  • the shape of the resin base material when patterning the wiring pattern of the three-dimensional molded product can be made the same as the shape of the protective film when forming the opening, so that the opening design can be performed.
  • the alignment accuracy between the region to be exposed of the wiring pattern and the opening of the protective film can be further improved.
  • the three-dimensional molded product and the protective film are temporarily bonded at a first temperature in the covering step of the first or second embodiment described above. Then, after the temporary bonding, the three-dimensional molded product and the protective film are permanently bonded at a second temperature higher than the first temperature. Thereby, generation
  • the manufacturing method of the three-dimensional wiring component which concerns on the 4th embodiment of this invention is between the said three-dimensional molded product and the said protective film in the said 3rd embodiment after the said temporary bonding and before the said main bonding. It is to remove gaps and bubbles. Thereby, generation
  • the manufacturing method of the three-dimensional wiring component which concerns on 5th embodiment of this invention performs the three-dimensional shaping
  • the manufacturing method of the three-dimensional wiring component which concerns on the 6th embodiment of this invention is the said any one of the 1st thru
  • the resin base material and the resin film have the same material in any of the first to sixth embodiments described above. Thereby, the elongation of the three-dimensional molded product and the protective film becomes substantially the same, and it becomes possible to perform the alignment of the three-dimensional molded product and the three-dimensional molded protective film with higher accuracy.
  • a three-dimensional wiring component according to an eighth embodiment of the present invention is provided on a three-dimensional molded product having a wiring pattern formed on the surface of a resin base material, a resin film having a breaking elongation of 50% or more, and the surface of the resin film. And a protective film laminated on the surface of the three-dimensional molded product by the adhesive, and the protective film has an opening corresponding to a region to be exposed of the wiring pattern, and The three-dimensional molded product is covered along the three-dimensional shape of the three-dimensional molded product.
  • the protective member covering the three-dimensional molded article is a three-dimensional molded protective film
  • a special device for applying a resin or irradiating ultraviolet rays in accordance with the surface shape of the three-dimensional molded article is unnecessary.
  • the cost of the three-dimensional wiring component can be reduced.
  • the base material of the three-dimensional molded product and the material of the protective film are resin, the elongation characteristics at the time of the three-dimensional molding are the same, and the position of the area where the wiring pattern of the three-dimensional molded product should be exposed and the opening of the protective film Matching is done with high definition. Thereby, in the three-dimensional molded component, there are no air bubbles and gaps between the three-dimensional molded product and the protective film, and the region to be exposed of the wiring pattern is reliably exposed.
  • the resin base material and the resin film have the same material.
  • the stretch of the three-dimensional molded product and the protective film becomes substantially the same, and a highly accurate coating of the three-dimensional molded product by the three-dimensional molded protective film is realized. That is, it is possible to accurately and reliably expose only the area to be exposed of the wiring pattern of the three-dimensional wiring board.
  • the three-dimensional wiring component according to the tenth embodiment of the present invention is that, in the ninth embodiment described above, the resin base material is made of a film-like resin having an elongation at break of 50% or more. Thereby, also about the member which carried out the three-dimensional shaping
  • a three-dimensional wiring component according to an eleventh embodiment of the present invention has a laminated structure in which the three-dimensional molded product is covered on both sides with two protective films in any of the above-described eighth to tenth embodiments. That is. As a result, even for a three-dimensional molded product having wiring patterns on both sides, the wiring pattern can be reliably and precisely protected.
  • a three-dimensional wiring component according to a twelfth embodiment of the present invention is the first metal according to any one of the eighth to eleventh embodiments, wherein the wiring pattern has a porous structure in which metal is deposited in the form of particles. And a second metal film laminated on the first metal film. Thereby, even if a crack occurs in the first metal film, it is repaired by the second metal film, and a wiring circuit having no conduction failure and excellent reliability is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

 樹脂基材の表面に配線パターンが形成された立体成型物を準備する立体成型物準備工程と、50%以上の破断伸びを備える樹脂フィルム及び接着剤からなる平坦な保護フィルムを準備する保護フィルム準備工程と、前記平坦な保護フィルムに対して、前記配線パターンの露出すべき領域に対応した開口を形成する開口形成工程と、前記平坦な保護フィルムを立体成型された前記立体成型物の前記配線パターンの形成面に対応させて立体成型する立体成型工程と、前記開口を前記配線パターンの露出すべき領域に対向させつつ、前記立体成型物の前記配線パターンの形成面に前記接着剤を貼り付け、前記立体成型物を前記保護フィルムによって被覆する被覆工程と、を有し、前記開口形成工程においては、前記配線パターンのパターニング時における前記樹脂基材の形状を考慮し、前記開口の位置、形状、及び寸法の設計を行う。

Description

立体成型部品の製造方法及び立体成型部品
 本発明は、配線パターンが表面に形成された立体成型物に対して、当該配線パターンの形成面の少なくとも一部を保護フィルムによって被覆する立体成型部品の製造方法、その製造方法よって製造される立体成型部品に関する。
 従来から知られている立体配線基板としては、三次元構造を備える構造体の表面上に電気回路を直接的かつ立体的に形成した部品であるMID(Molded Interconnect Device)基板がある。MID基板に関する技術としては、2ショット法、MIPTEC(Microscopic Integrated Processing Technology)、及びLDS(Laser Direct Structuring)等の工法が知られている。いずれの工法においても、モールド樹脂に対して三次元構造を形成した後に、その表面に対して配線回路を形成することになる。例えば、特許文献1には、MID基板及びその製造に関する技術が開示されている。
 2ショット法においては、一次成型されたモールド樹脂上の配線形成をしない部分に対して、新たな樹脂による二次成型を行い、当該二次成型に係る樹脂をレジストとして触媒塗布及びめっきを行うことにより、モールド樹脂上に配線回路を形成する。しかしながら、2次成型された樹脂によって配線パターン形状を規制するため、2次成型のための金型加工精度の限界から、導体幅と導体間隙とを示すL/S(line width and spacing)の最小値が150/150μm程度となり、より微細な配線パターンの形成が困難であった。
 MIPTECにおいては、成型されたモールド樹脂の表面全体にメタライジングを施し、レーザ光によって配線回路の外縁部分の金属(メタライジング層)を除去する。その後、配線回路となる領域に通電して電解めっきを行い、その後に成型体の全面にフラッシュエッチングを施して配線回路以外の金属を除去することにより、モールド樹脂上に配線回路を形成する。しかしながら、レーザ光の使用にあたっては、成型されたモールド樹脂の三次元形状に対応した特殊なレーザ照射装置が必要となり、レーザ加工の手間及び設備投資による製造コストの増加が問題となる。また、電解めっきによって配線回路に必要となる金属を堆積するため、配線回路となる領域のみに通電する必要があることから、当該配線回路となる領域が成型体の外周部と電気的に接続しているか、或いは給電線を介して外周部と電気的に接続されている必要がある。すなわち、当該配線回路となる領域を成型体の外周部から電気的に離間すること(すなわち、独立した配線パターンの形成)が困難となる問題や、回路として最終的に不要な給電線の形成及び除去に伴うコスト増加の問題が生じる。
 LDSにおいては、導電粒子を含んだ特殊な樹脂材料を使用して1次成型を行い、配線回路となる領域にレーザ光を照射して当該導電粒子を露出させ、当該導電粒子の露出部分にめっきを行うことにより、モールド樹脂上に配線回路を形成する。しかしながら、成型されたモールド樹脂内の導電粒子を露出させる精度の問題から、L/Sの最小値が100/150μm程度となり、より微細な配線パターンの形成が困難であった。また、MIPTECと同様に特殊なレーザ照射装置が必要となり、レーザ加工の手間及び設備投資による製造コストの増加が問題となる。
 そして、上記いずれの工法においても、三次元的な形状を備えるモールド樹脂に配線回路を形成するため、最終的に製造されるMID基板は片面基板となる。このため、両面基板と比較して配線回路の自由度が小さくなり、基板自体の小型化も困難になる問題が生じる。当該問題及び上述した問題を解決する方法として、ポリイミド等の熱可塑性樹脂に配線回路を形成した後に、加熱及び加圧によって樹脂に折り曲げ加工を施し、立体配線基板を製造する方法がある。例えば、特許文献2にはポリイミドフィルム上に熱圧着により金属箔を貼り付けた後に立体成型することが開示され、特許文献3にはポリサルホン樹脂上に導電性ペーストを塗布した後に立体成型することが開示されている。
 上述した立体配線基板においては、形成された配線パターンは露出しているため、部品実装、他の部品、又は他の基板との接続に半田付けをする際、半田付けのランド間のブリッジが起きやすくなり、又は温度若しくは水分にさらされることによる配線パターン金属材の酸化等の劣化、混入異物による短絡の問題等が発生しやすくなる。このため、部品実装に必要なランド部以外は、絶縁性樹脂によって被覆することが一般的に行われる。このような被覆方法としては、例えば、インク状の熱硬化樹脂若しくは紫外線硬化樹脂をスクリーン印刷、スプレーコート、又はインクジェット印刷によって絶縁性樹脂を塗布する。ここで、半田付けをする部分の配線パターンを露出する方法としては、半田付けをする部分を始めから露出するように絶縁性樹脂を塗布する方法や、或いは被覆面全体に対して紫外線硬化型の樹脂を塗布した後に、フォトリソグラフィ技術を利用して必要部分に開口を形成する方法等がある。
特開2012-94605号公報 特開平06-188537号公報 特開2000-174399号公報
 しかしながら、スクリーン印刷による塗布においては、立体成型物に段差が存在するため、立体成型物の表面に沿って絶縁性樹脂を塗布することが困難である。また、スプレーコートによる塗布においては、立体成型物の表面全体に対して絶縁樹脂を塗布することは可能であるが、立体成型物に段差が存在するため、フォトマスクを用いて所望の領域に紫外線を適切に照射することが困難である。更に、インクジェット印刷による塗布においても同様に、立体成型物の段差により、立体成型物の表面に沿った絶縁性樹脂の塗布、及び着弾した液滴の硬化前の濡れ広がりを防止する為、昨今よく使用される紫外線硬化樹脂を用いた仮硬化の為の紫外線照射が、インクジェットヘッドと基板の間隔を段差により広くとらなければならないことで、基板表面での紫外線の反射によるインクジェットヘッドノズル内の射出前の樹脂を硬化させてしまう問題等により、困難である。
 ここで、一般的な平面基板に使用されているフィルム状の保護膜を、印刷用の絶縁性樹脂に替えて使用することが考えられるが、立体成型物の面積の増加及びその形状の複雑化により、薄い保護膜を立体成型物の表面全体に亘って均一に加圧することは困難となり、立体成型物と保護膜との間に気泡や隙間が生じることになる。また、加圧時における保護膜の伸縮により、露出すべき配線パターンの部分に対して、精細な精度による開口形成が困難である。
 本発明はこのような課題に鑑みてなされたものであり、その目的とするところは、配線パターンが表面に形成された立体成型物に対して保護フィルムを貼り付ける際に気泡及び隙間の発生の防止を図り、配線パターンの露出すべき領域に優れた精度で開口を配置させつつ当該保護フィルムによって当該立体成型物を被覆して容易且つ低コストで立体成型部品を製造することができる立体成型部品の製造方法を提供することである。また、本発明は、このような課題に鑑みてなされたものであり、その目的とするところは、立体成型物と保護フィルムとの間に気泡及び隙間がなく、配線パターンの露出すべき領域が確実に露出された低コストの立体成型部品を提供することにある。
 上記目的を達成するため、本発明の立体成型部品の製造方法は、 樹脂基材の表面に配線パターンが形成された立体成型物を準備する立体成型物準備工程と、50%以上の破断伸びを備える樹脂フィルム及び前記樹脂フィルムの表面に設けられた接着剤からなる平坦な保護フィルムを準備する保護フィルム準備工程と、前記平坦な保護フィルムに対して、前記配線パターンの露出すべき領域に対応した開口を形成する開口形成工程と、前記平坦な保護フィルムを前記立体成型物の前記配線パターンの形成面に対応させて立体成型する立体成型工程と、前記開口を前記配線パターンの露出すべき領域に対向させつつ、前記立体成型物の前記配線パターンの形成面に前記接着剤を貼り付け、前記立体成型物を立体成型された前記保護フィルムによって被覆する被覆工程と、を有し、前記開口形成工程においては、前記配線パターンのパターニング時における前記樹脂基材の形状を考慮し、前記開口の位置、形状、及び寸法の設計を行うことである。
 また、上記目的を達成するため、本発明の立体形成部品は、樹脂基材の表面に配線パターンが形成された立体成型物と、50%以上の破断伸びを備える樹脂フィルム及び前記樹脂フィルムの表面に設けられた接着剤からなり、前記接着剤によって前記立体成型物の表面に積層された保護フィルムと、を有し、前記保護フィルムは、前記配線パターンの露出すべき領域に対応した開口を備えるとともに、前記立体成型物の立体形状に沿って前記立体成型物を被覆することである。
 本発明により、配線パターンが表面に形成された立体成型物に対して保護フィルムを貼り付ける際に気泡及び隙間の発生の防止を図り、配線パターンの露出すべき領域に優れた精度で開口を配置させつつ当該保護フィルムによって当該立体成型物を被覆して容易且つ低コストで立体成型部品を製造することができる。また、本発明により、立体成型物と保護フィルムとの間に気泡及び隙間がなく、配線パターンの露出すべき領域が確実に露出された低コストの立体成型部品を提供することができる。
本発明の実施例に係る立体配線基板の製造工程における断面図である。 本発明の実施例に係る立体配線基板の製造工程における断面図である。 本発明の実施例に係る立体配線基板についての金属膜形成における概略図である。 本発明の実施例に係る立体配線基板の製造工程における断面図である。 図4における破線領域Vの拡大概念図である。 本発明の実施例に係る立体配線基板についての金属膜形成における概略図である。 本発明の実施例に係る立体配線基板についての金属膜形成における概略図である。 本発明の実施例に係る立体配線基板についての金属膜形成における概略図である。 本発明の実施例に係る立体配線基板の製造工程における断面図である。 図9における破線領域X拡大概念図である。 本発明の実施例に係る立体配線基板についての金属膜形成における概略図である。 本発明の実施例に係る立体配線基板の製造工程における断面図である。 本発明の実施例に係る立体成型に係る製造工程を示す概略図である。 本発明の実施例に係る立体成型に係る製造工程を示す概略図である。 本発明の実施例に係る立体成型に係る製造工程を示す概略図である。 本発明の実施例に係る立体成型に係る製造工程を示す概略図である。 本発明の実施例に係る立体配線基板の製造工程における断面図である。 図17の破線領域XVIIIの拡大概念図である。 本発明の実施例に係る立体配線基板の製造工程における断面図である。 図19における破線領域XXの拡大概念図である。 本発明の実施例に係る立体配線基板についての金属膜形成における概略図である。 本発明の実施例に係る立体配線基板を構成する基材の斜視図である。 本発明の実施例に係る立体配線基板の製造工程における断面図である。 本発明の実施例に係る立体配線基板の製造工程における断面図である。 本発明の実施例に係る立体配線基板の製造工程における断面図である。 本発明の実施例に係る立体成型に係る製造工程を示す概略図である。 本発明の実施例に係る立体成型に係る製造工程を示す概略図である。 本発明の実施例に係る立体成型に係る製造工程を示す概略図である。 本発明の実施例に係る立体成型に係る製造工程を示す概略図である。 本発明の実施例に係る立体配線基板の製造工程における断面図である。 本発明の実施例に係る立体配線基板の製造工程における断面図である。 本発明の実施例に係る立体配線基板の製造工程における断面図である。 本発明の実施例に係る立体配線基板の製造工程における断面図である。 本発明の実施例に係る立体配線基板の製造工程における断面図である。 本発明の実施例に係る立体配線基板の断面図である。
 以下、図面を参照し、本発明の実施の形態について、実施例に基づき詳細に説明する。なお、本発明は以下に説明する内容に限定されるものではなく、その要旨を変更しない範囲において任意に変更して実施することが可能である。また、実施例の説明に用いる図面は、いずれも本発明による立体成型部品及びその構成部材を模式的に示すものであって、理解を深めるべく部分的な強調、拡大、縮小、または省略などを行っており、立体成型部品及びその構成部材の縮尺や形状等を正確に表すものとはなっていない場合がある。更に、実施例で用いる様々な数値は、一例を示す場合もあり、必要に応じて様々に変更することが可能である。
<実施例>
 以下において、図1乃至図35を参照しつつ、本発明の実施例に係る立体配線基板の製造方法について詳細に説明する。ここで、図1、図2、図4、図9、図12、図17、図19、図23乃至図25、及び図30乃至図34は、立体配線基板の製造工程における断面図である。また、図5は図4における破線領域Vの拡大概念図であり、図10は図9における破線領域Xの拡大概念図であり、図18は図17の破線領域XVIIIの拡大概念図であり、図20は図19における破線領域XXの拡大概念図である。更に、図13乃至図16、及び図26乃至図29は、本発明の実施例に係る立体成型に係る製造工程を示す概略図である。そして、図3、図6乃至図8、図11、図21は、本発明の実施例に係る立体配線基板についての金属膜形成における概略図である。図22は、本発明の実施例に係る立体配線基板を構成する基材の斜視図であり、図35は、本発明の実施例に係る立体配線基板の断面図である。
 先ず、図1に示すように、樹脂基材である熱可塑性樹脂フィルム1を準備する(樹脂基材準備工程)。熱可塑性樹脂フィルム1としては、例えば、ポリイミド又はポリエチレンテレフタラート等の公知の樹脂フィルムを用いることができる。熱可塑性樹脂フィルム1の厚みには限定はなく、本発明の立体配線部品に該当する本実施例の立体配線基板の用途及び要求される特性に応じて適宜変更することができる。例えば、本実施例においては、熱可塑性樹脂フィルム1の厚みを約125μm程度(75μm以上150μm以下)に調整したが、立体配線基板を他のモールド樹脂等の保持部材とともに使用する場合には、50μm以下に調整してもよい。
 なお、準備する樹脂フィルムは熱可塑性タイプに限定されることなく、比較的に大きな破断伸びを備える樹脂フィルムであれば、熱硬化性樹脂フィルム、或いは熱硬化性樹脂と熱可塑性樹脂を積層した(すなわち、熱可塑性樹脂フィルムと熱硬化性樹脂フィルムとを貼り合わせた)構造を備える複合樹脂フィルムを用いてもよい。ここで、比較的に大きな破断伸びとは、少なくとも50%以上の値であり、好ましくは150%以上である。破断伸びについては成型する立体形状により必要な特性が要求され、複雑で大きな段差形状を持つ場合には立体成型による材料が耐えられる様に、より大きな破断伸び強度を持つ樹脂フィルム材が必要となる。
 次に、図2に示すように、熱可塑性樹脂フィルム1の表裏面(第1の面1a、及び第2の面1b)における導通を確保するために、NC加工、レーザ加工、又はパンチング加工等の開口技術を用いて貫通孔2を形成する。本実施例においては、貫通孔2の開口径を約0.3mmとした。なお、図2においては、1つの貫通孔2のみが示されているが、実際の立体配線基板においては複数の貫通孔2を有することになる。また、貫通孔2の数量は、立体配線基板の回路構成に応じて適宜変更することもできる。更に、後述する立体成型時の位置決めとして使用するための位置決め孔(例えば、開口径が3mm)を、熱可塑性樹脂フィルム1の外縁部分(すなわち、最終的に立体配線基板を構成することなく除去される部分)に形成してもよい。
 次に、熱可塑性樹脂フィルム1の第1の面1a、第2の面1b、及び貫通孔によって露出した熱可塑性樹脂フィルム1の側面1cを被覆するように、熱可塑性樹脂フィルム1の表面上に第1金属膜3を形成する(第1金属膜形成工程)。本実施例においては、熱可塑性樹脂フィルム1の表面上に、公知の分子接合技術を利用した無電解めっきによって金属をメタライジングする。
 より具体的には、先ず、前処理として、熱可塑性樹脂フィルム1にArプラズマ処理を施し、熱可塑性樹脂フィルム1の表面の脆弱層を除去し、後述する分子接合剤と相性のよい官能基を熱可塑性樹脂フィルム1の表面上に形成する。その後、Arプラズマ処理後の熱可塑性樹脂フィルム1を分子接合剤4の溶液に浸ける(図3)。ここで、分子接合剤4は熱可塑性樹脂フィルム1と反応する官能基(第1官能基)を備えているため、熱可塑性樹脂フィルム1の官能基と分子接合剤4の官能基とか結びつき、図4及び図5に示すように、熱可塑性樹脂フィルム1の表面上に分子接合剤4が結合した状態が得られる。なお、図4においては分子接合剤4をわかり易く示す観点から層状に図示しているが、実際には図5に示すようなナノレベルの状態(分子接合剤4の厚みが数nm)で存在しており、他の材料と比較して非常に薄くなっている。よって、図9以降では分子接合剤4を省略することがある。また、図5における分子接合剤4の上下に伸びる直線は官能基を示し、より具体的には、熱可塑性樹脂フィルム1に向かって伸びた直線が熱可塑性樹脂フィルム1の官能基と結びついた状態の分子接合剤4の官能基を示し、熱可塑性樹脂フィルム1とは反対側に伸びた直線が第1金属膜3の金属と反応することになる分子接合剤4の官能基を示している。
 次に、分子接合処理がなされた熱可塑性樹脂フィルム1をキャタリスト液(Sn-Pdコロイド水溶液)に含浸する(図6)。ここで、Sn-Pdコロイドは、熱可塑性樹脂フィルム1の表面に電気的に吸着される。その後、Sn-Pdコロイドが表面に担持した状態の熱可塑性樹脂フィルム1をアクセラレータ液に含浸すると、Pdの周囲を覆っていたSnが除去され、Pdイオンが金属Pdに変化する(図7)。すなわち、触媒処理を行って熱可塑性樹脂フィルム1に触媒(例えばPd)を担持させることになる。なお、アクセラレータ液としては、シュウ酸(0.1%程度)を含む硫酸(濃度が10%)を用いることができる。その後、触媒であるPdを担持した熱可塑性樹脂フィルム1を無電解めっき槽に例えば5分間浸漬する。当該浸漬により、Pdを触媒として例えば銅が析出し、析出した銅が分子接合剤4と結合することになる(図8)。ここで、分子接合剤4は、第1金属膜3の金属と反応する官能基(第2官能基)も備えているため、分子接合剤4の熱可塑性樹脂フィルム1と結合している端部とは反対側に位置する端部(第2官能基)には、触媒を利用して金属が化学的に結合する。続いて、熱可塑性樹脂フィルム1に150℃、10分の加熱処理を施して、分子接合剤4と当該金属との化学結合を終結させ、図9に示すように、熱可塑性樹脂フィルム1の表面を覆うように、第1金属膜3の形成(すなわち、熱可塑性樹脂フィルム1と第1金属膜3との分子接合)が完了する。
 ここで、上述した分子接合剤4とは、樹脂と金属等を化学的に結合させるための化学物であり、樹脂と結合する官能基と金属と結合する官能基が一つの分子構造中に存在するものである。また、分子接合技術とは、このような構造を備える分子接合剤4を用いて、樹脂と金属等を化学的に結合させる技術である。そして、これらの分子接合剤、及び分子接合技術は、特許第04936344号明細書、特許第05729852号明細書、及び特許第05083926号明細書において、より詳細に説明がなされている。
 本実施例においては、第1金属膜3の金属として銅を用い、図10に示すように、無電解めっきは粒子状に生成され、銅の粒子3aによってポーラス状に第1金属膜3が形成される。ここで、ポーラス状とは、第1金属膜3が膜上に完全に形成される膜厚を備えることがないものの、粒子どうしが全部ではないものの少なくとも一部が接触することによって膜全体として導通している状態をいう(必ずしも電気的な導通が必要というわけではなく、立体成型で粒子間距離が離れても、後述する第2金属膜で導通されれば良い。)。これらのことを換言すると、本実施例においては、銅を粒子状に0.02μm以上0.20μm以下堆積し、光を透過することができる膜厚を備える第1金属膜3を形成している。このように第1金属膜3の状態(すなわち、膜厚)を調整する理由は、光を透過しない完全な膜状に第1金属膜3を形成してしまうと、後述する立体成型の際に第1金属膜3に亀裂が生じたとしても、後述する第2金属膜によっても当該亀裂の修復が困難になるからである。より具体的には、第1金属膜3が0.02μmより薄いと、樹脂と銅の接点が減少し密着が低下するとともに、伸ばされた後の粒子間距離がはなれすぎ後述する第2金属膜での導通修復が困難になる。また、光を透過する状態で伸ばされた場合、粒子間の距離が空くだけなので亀裂は小さいが、光が透過しない完全な膜状で伸ばされると限界をこえた金属膜(第1金属膜3)には亀裂が生じ幅の広いクラックとなる。なお、図10においては、第1金属膜3の膜厚方向には1つの粒子3aのみが存在するように示されているが、第1金属膜3がポーラス状であれば、複数の粒子3aが膜厚方向に積層してもよい。
 第1金属膜3がポーラス状に形成される工程を、以下においてより詳細に説明する。図8に示した銅が析出を開始した状態から更に銅の析出を続けると、新たに析出する銅は、分子接合剤4と、又は既に析出して分子接合剤4と反応している銅と金属結合をする。この際、銅の自己触媒作用によって触媒であるPdの方が活性度が高いため、銅の生成は面方向(すなわち、熱可塑性樹脂フィルム1の表面に広がる方向)に進むことになるものの、厚み方向(すなわち、第1金属膜3の膜厚方向)にも進み始めることになる。そして、銅の自己触媒作用が始まると、銅が順次析出して銅どうしの金属結合が進むことになり、銅の成長は厚み方向により進み、膜厚が増加することになる。この状態においては、図11に示すように、銅の存在しない空隙部分が存在し、部分的には電気的導通が得られていない部分があるものの、形成された金属膜全体としては電気的な接続経路が存在するため電気的導通が得られている。上述したように、このような状態が、本実施例におけるポーラス状ということになる。そして、このようなポーラス状の第1金属膜3においては、銅の破断伸び率を超えても、大きなクラックが発生することなく、部分的に銅分子どうしの距離が若干広がるに留まることになる。
 また、本実施例においては、分子接合剤4を介して、熱可塑性樹脂フィルム1と第1金属膜3とを化学結合しているため、熱可塑性樹脂フィルム1と第1金属膜3と界面を平滑にしつつも、両部材を強固に接合することができる。これにより、熱可塑性樹脂フィルム1の表面に凹凸を形成する必要がなくなり、製造工程の容易化及び製造コストの低減ならびに形成する配線回路の高精細化を図ることができる。なお、使用する分子接合剤は1種類に限定されることなく、例えば、分子接合剤4と当該分子接合剤4及び第1金属膜3と反応する官能基を備える他の分子接合剤とを混合して形成した化合物であってもよく、熱可塑性樹脂フィルム1及び第1金属膜3の材料に応じて、他のプロセス条件を含め適宜変更することができる。
 また、第1金属膜3の材料は、銅に限定されることなく、例えば、銀、金、又はニッケル等の様々な金属、或いはこれらの金属及び銅のいずれかを少なくとも含む合金や各金属を積層したものを用いてもよいが、比較的にやわらかく破断伸び強度の高い金属を用いることが好ましい。ここで、使用する金属に応じて、光を透過し且つ導通している状態を実現するための膜厚が異なるため、他の金属を用いる場合には、第1金属膜3がポーラス状に形成されることを実現できるように、膜厚を適宜調整することになる。
 更に、第1金属膜3の形成方法については、上述した分子接合技術を用いた方法に限定されることなく、第1金属膜3をポーラス状に形成することができれば、例えば、スパッタ、蒸着、又は分子接合を使用する方法以外の湿式めっき等の成膜技術を用いてもよい。そして、第1金属膜3の形成については、使用される金属材料に応じて、最適な成膜技術を選択してもよい。
 なお、本実施例においては、熱可塑性樹脂フィルム1の第1の面1a、第2の面1b、及び貫通孔によって露出した熱可塑性樹脂フィルム1の側面1cを被覆するように、第1金属膜3を形成していたが、要求される立体配線基板の構造及び特性に応じて、熱可塑性樹脂フィルム1の第1の面1a又は第2の面1bのいずれかのみに第1金属膜3を形成してもよい。すなわち、本発明の立体配線基板には、両面に配線パターンが形成されたもののみならず、片面のみに配線パターンが形成されているものが含まれることになる。
 次に、図12に示すように、フォトリソグラフィによって第1金属膜3にパターニング処理を施し、所望の配線パターンを形成する(パターン形成工程)。具体的には、第1金属膜3が形成された状態であって立体成型前の平坦な状態の熱可塑性樹脂フィルム1の表面にレジストフィルムを熱圧着し、所定のパターンが印刷されたマスクフィルムを用いて露光及び現像を行う。続いて、現像されたレジストフィルムをエッチングマスクとして第1金属膜3にエッチングを施して所望の配線パターンを形成する。その後に、当該レジストフィルムを剥離除去する。ここで、後述する立体成型による第1金属膜3の伸び及び変形を考慮して、配線パターンの形状(配線幅、配線長、配線間隔等)を調整しておくことが好ましい。
 このように、フォトリソグラフィによって第1金属膜3にパターニングを施すため、インクジェット印刷技術又はグラビアオフセット印刷技術等を用いたパターニング形成よりも高精細なパターンを実現することができる。すなわち、第1金属膜3は、インクジェット印刷技術又はグラビアオフセット印刷技術等を用いてパターンニングされた配線パターンよりも、解像度が高く(すなわち、直線性が優れ高精細な配線形成が実現される。)なる。
 次に、第1金属膜3が形成された状態の熱可塑性樹脂フィルム1に対して、加熱処理及び加圧処理を施して立体成型を行う(第1の立体成型工程)。具体的な第1の立体成型工程としては、先ず、上述した位置決め孔を用いて、成型用の金型11に対して熱可塑性樹脂フィルム1の位置決めを行う。これは、成型位置と配線パターン位置を合わせるためのものである。すなわち、図13に示すように、金型11の上部金型12と下部金型13との間に熱可塑性樹脂フィルム1を配置することになる。続いて、図14に示すように、上部金型12を上部加熱装置14で加熱するとともに、下部金型13を下部加熱装置15によって加熱を行う。ここで、本実施例においては、熱可塑性樹脂フィルム1にポリイミドフィルムを用いているため、加熱温度は材料のガラス転移点温度より高い270℃~350℃の範囲内(例えば、300℃)で調整することができるが、熱可塑性樹脂フィルム1の材料に応じて当該加熱温度は適宜調整されることになる。ここで、加熱温度は、当該ガラス転移温度以上であって、熱可塑性樹脂フィルム1の耐熱温度以下であることが必要となるが、当該範囲内においてできる限り低い温度に設定することが好ましい。これは、熱可塑性樹脂フィルム1上に形成される第1金属膜3と熱可塑性樹脂フィルム1の加熱による密着低下を低減するためである。
 当該加熱処理を行いつつ、上部金型12及び下部金型13を近づけ、熱可塑性樹脂フィルム1に対して、上下から所望の圧力(例えば、10MPa)によってプレス処理を行う(図15)。なお、所望の圧力とは、熱可塑性樹脂フィルム1の材料、圧力が弱すぎると所望の立体成型が困難になる点を考慮して適宜調整することになる。そして、プレス処理の完了後に、熱可塑性樹脂フィルム1を金型11から取り出し(図16)、熱可塑性樹脂フィルム1の立体成型が完了する。換言すると、立体配線基板用の第1基材16の形成が完了する。なお、図13乃至図16において、第1金属膜3の図示は省略している。また、要求される立体形状にもよるが、実際の立体配線基板の形状は複数の凹凸が形成されることになるため、金型11も複数の凹凸を有しており、上部金型12と下部金型13との複数の凹凸が互いに嵌合するような構造が採用されてもよい。
 図17に示されているように、立体成型が完了した熱可塑性樹脂フィルム1(すなわち、立体配線基板用の第1基材16)には、立体成型によって屈曲した屈曲部1dに亀裂17が生じやすくなっている。ここで、図18に示すように、亀裂17とは、第1金属膜3を構成する銅の粒子3aの粒子間距離の拡大によって生じる隙間のことであり、光が透過しない完全な金属膜状において当該金属膜が伸ばされることによって生じる亀裂と比較して、その構造が異なっている。なお、第1金属膜3の成膜状態、及び立体成型による三次元形状によっては、亀裂が発生しない場合もある。また、図18に示すように、亀裂17は、熱可塑性樹脂フィルム1が伸ばされたのに対し、第1金属膜3はそれに従って粒子間距離が広がることになるが、第1金属膜3がポーラス状に形成されているため、亀裂17自体の深さは粒子3aの寸法と同等であって非常に小さくなり、更には第1金属膜3が完全な膜状にて形成される場合と比較して亀裂17の幅も小さくなる。すなわち、本実施例に係る立体配線基板用の第1基材16は、第1金属膜3が完全な膜状にて形成される場合と比較して、亀裂17の修復をより容易に可能とする状態になっている。換言すれば、光を透過する状態で伸ばされた場合、粒子間の距離が空くだけなので亀裂17(粒子間の隙間)は小さいが、光が透過しない完全な膜状で伸ばされると限界をこえた金属膜には亀裂が生じ幅の広いクラックが生じることになる。
 また、屈曲部1dにおける亀裂17の発生を減少させる方法として、熱可塑性樹脂フィルム1を2枚の保護フィルムによって挟んだ状態において、上述した立体成型を行ってもよい。これにより、屈曲部1dにおける角部1eの形状を若干滑らかにすることができ、亀裂17の発生を抑制することができる。ここで、当該保護フィルムは、熱可塑性樹脂フィルム1と同一の材料で形成することが好ましい。更に、屈曲部1dにおける亀裂17の発生を減少させる方法として、屈曲部1dにおける角部1eの形状を湾曲させる、或いはその角度を90度よりも小さく(例えば、75度~85度)となるように、金型11を設計してもよい。
 なお、本実施例においては、熱可塑性樹脂フィルム1を上部金型12及び下部金型13を用いて上下からプレス処理を施しているが、ヒートプレス後における熱可塑性樹脂フィルム1の厚みの均一性を確保することができれば、真空プレス、又は圧空プレス等の他のプレス加工方法を用いてもよい。
 次に、立体配線基板用の第1基材16の第1金属膜3の表面を被覆するように、第2金属膜21を形成する(第2金属膜形成工程:図19)。本実施例においては、一般的な無電解めっきによって第1金属膜3の表面上に金属を追加的に堆積する。
 具体的な第2金属膜形成工程としては、先ず、成型工程の加熱によって第1基材16の表面上に形成された酸化層を除去するために、第1基材16を所望の洗浄液(例えば、酸脱脂液、硫酸液)に浸す。続いて、触媒処理を行って第1基材16の第1金属膜3に、第1金属膜3と置換するタイプの触媒(例えばPd触媒)を反応させ、その後に第1基材16を無電解めっき液に浸す。そして、表面に触媒が存在する第1金属膜3の周囲に対してのみ選択的に金属が堆積することになり、配線回路とならない領域(すなわち、熱可塑性樹脂フィルム1の露出領域)には金属が堆積されず、第2金属膜21の追加のパターニングが不要となる。
 本実施例においては、第2金属膜21の金属として銅を用い、図20及び図21から分かるように、複数の銅の粒子21aが第1金属膜3の粒子3a上に堆積することになる。ここで、第2金属膜21をポーラス状に形成することなく、完全な膜状に形成する。特に、本実施例においては、1時間の浸漬により、5μm以上の膜厚を備える第2金属膜21を形成することができた。また、本実施例においては、第2金属膜21を構成する粒子21aが、第1金属膜3を構成する粒子3aの周囲に成長することになり、第2金属膜21の厚み方向及び当該厚み方向に直交する方向(第2金属膜21の平面方向)に対して同程度に成長することになる。これにより、立体成型によって生じた第1金属膜3の亀裂17を修復するように、第2金属膜21を形成することができる。すなわち、第2金属膜21の形成により、亀裂17による導通不良を回復させ、確実な導通を実現することができる配線回路(第1金属膜3及び第2金属膜21からなる導体層)を形成することができる。ここで、第2金属膜21による亀裂17の修復は、第2金属膜21の膜厚に対して2倍程度の亀裂17の幅を修復できるため、第2金属膜21の膜厚を想定される亀裂17の最大幅の1/2倍以上に調整してもよく、より好ましくは亀裂17の幅と同程度の膜厚に調整してもよい。また、この第2金属膜21は貫通孔2の側面1cにも表層と同様に生成され、貫通孔2による表裏の導通不良が仮にあった場合でも導通を修復することが可能である。
 更に、本実施例においては、配線回路(配線パターン)として必要となる導体層の層厚(配線パターン厚み)が第1金属膜3の膜厚では不足しているものの、第2金属膜21を形成することによって当該導体層の必要な層厚を確保することができる。
 なお、本実施例においては、無電解めっきによって第2金属膜21を形成したが、最終的に第1金属膜3の表面上のみ第2金属膜21を形成することができれば、他の成膜技術(例えば、電解めっき、導電性インクの塗布等)を用いてもよい。但し、本実施例の様に無電解メッキにより第2金属膜21を形成する場合は、独立した配線すなわち当該配線回路が成型体の外周部から電気的に離間していても形成が可能であるが、電解めっきによって第2金属膜21を形成する場合は、全ての配線が成型体の外周部と電気的に導通していることが必要であり、給電線の設置を含めて設計時に考慮することが必要となる。また、この場合、立体成型による非導通部分が発生していた場合、非導通部分から先は電気が流れないため第2金属膜21が形成出来なくなる。
 なお、第2金属膜21の材料は、銅に限定されることなく、ニッケル若しくはニッケルクロム、ニッケル銅、金、又は銀等の他の金属またはこれらを含む合金を用いてよく、立体配線基板に要求される特性及び信頼性に応じてその材料を適宜調整することができる。
 上述した製造工程を経た後に、第2金属膜21の表面に防錆剤処理を施して、第1金属膜3及び第2金属膜21が積層された積層構造を備える配線パターン22が形成されるとともに、熱可塑性樹脂フィルム1及び配線パターン22から構成される立体配線用の第2基材30の製造が完了する。ここで、第1基材16と第2基材30との相違は、第2金属膜21の有無だけであり、第2基材30が立体配線基板を構成するための立体成型物に該当する。すなわち、上述した工程により、立体成型物準備工程が完了することになる。
 図19乃至図21からわかるように、本実施例に係る第2基材30においては、熱可塑性樹脂フィルム1の表面においてポーラス状に形成された第1金属膜3に生じる亀裂が、第1金属膜3よりも厚い膜厚で形成された第2金属膜21によって確実に修復されており、配線パターン22の断線が防止された優れた信頼性が備えられている。また、上述した製造方法より、MID基板と比較して、より容易に微細な配線パターン(例えば、L/S=30/30μm)を実現することができ、小型化及び低コスト化も実現されている。
 そして、最終的に形成される第2基材30は、図22に示すように、X方向及びY方向のそれぞれの位置において、Z方向の寸法(すなわち、高さ)が異なっており、XY平面において凹凸が形成されている。なお、図22は、第2基材30の3次元形状を説明するための模式的な図面であり、配線パターン22及び貫通孔は省略している。
 次に、準備した第2基材30の表裏面を被覆しつつ、配線パターン22の露出すべき部分を高精度に露出するための平坦な保護フィルムを準備する(保護フィルム準備工程)。具体的には、先ず、図23に示すように、第2基材30に用いた熱可塑性樹脂フィルム1と同一の材質を有する平坦な熱可塑性樹脂フィルム31を準備する。すなわち、本実施例における熱可塑性樹脂フィルム31には、熱可塑性樹脂フィルム1と同様に、ポリイミド又はポリエチレンテレフタラート等の公知の樹脂フィルムを用いることができる。また、熱可塑性樹脂フィルム31の破断伸びは、少なくとも50%以上の値であり、好ましくは150%以上である。本実施例においては、熱可塑性樹脂フィルム31の膜厚を約25μmに調整したが、本実施例の立体配線基板の用途及び要求される特性に応じて適宜変更することができる。なお、第2基材30に用いられる樹脂フィルムが熱可塑性タイプ以外の熱硬化性樹脂フィルム、或いは熱硬化性樹脂と熱可塑性樹脂を積層した複合樹脂フィルムである場合には、熱可塑性樹脂フィルム31に替えて、熱硬化性樹脂フィルム又は当該複合樹脂フィルムが用いられることが好ましい。
 熱可塑性樹脂フィルム31の材質を第2基材30に用いた熱可塑性樹脂フィルム1の材質と同一にする理由は、熱可塑性樹脂フィルム31及び熱可塑性樹脂フィルム1の立体成型時における伸びを同一に調整するためである。当該伸びが同一となることにより、第2基材30の表面を後述する保護フィルムによって被覆する際に、第2基材30と当該保護フィルムとの位置ずれの発生が防止され、優れた精度で貼り合わせが可能になる。
 続いて、図24に示すように、熱可塑性樹脂フィルム31の一方の表面上に、準備した接着剤シート32を圧着し、熱可塑性樹脂フィルム31の表面上に接着剤シート32が積層された積層構造を備える保護フィルム(カバーレイ)33を形成する。例えば、一般的なプリント配線基板用のラミネータ装置を用い、ローラ温度を約100℃に調整し、熱可塑性樹脂フィルム31と接着剤シート32とを圧着する。本実施例においては、接着剤シート32の膜厚を約50μmとした。接着剤シート32の膜厚は、50μmに限定されないが、後述する第2基材30への被覆の際における特に段差近傍の隙間及び気泡の発生を防止する観点から、埋め込み性が良くなるように約25μm以上とすることが好ましい。上記熱可塑性樹脂フィルム31の準備から接着剤シート32の圧着までの工程を経ることにより、保護フィルム準備工程が完了することになる。
 なお、本実施例においては、後述する被覆工程において保護フィルム33を熱可塑性樹脂フィルム31に対して貼り付け可能とするために、接着剤として接着剤シート32を熱可塑性樹脂フィルム31に圧着したが、熱可塑性樹脂フィルム31に貼り付けられる接着剤はシート状のものに限定されることはない。例えば、熱可塑性樹脂フィルム31の表面上に一般的な接着剤を塗布し、熱可塑性樹脂フィルム31の表面全体に広げるようにしてもよい。
 次に、図25に示すように、保護フィルム33に対して、第2基材30の配線パターン22の露出すべき領域に対応した開口34を形成する(開口形成工程)。本実施例においては、第1金属膜3のパターニングに使用したエッチングマスクと同一の設計平面上において開口の位置、形状、及び寸法の設計を行ったピナクル型(腐食刃金型)を用いる。すなわち、当該ピナクル型とは、保護フィルム33を立体成型する前の状態である平坦なフィルム状態を考慮し、開口34の位置、形状、及び寸法の位置設計が行われている。特に、本実施例においては、熱可塑性樹脂フィルム1が平坦な状態にて第1金属膜3のパターニングを施すことから、当該ピナクル型の開口の位置、形状、及び寸法の設計は、第1金属膜3のパターニング時における熱可塑性樹脂フィルム1と同一平面を仮想して行われることになる。ここで、同一平面を仮想して開口の位置等の設計を行うとは、立体成型前の熱可塑性樹脂フィルム1の平面を想定し、当該想定された平面上に合致した状態にて(すなわち、同一平面上にて)開口設計が行われることを意味する。より具体的な開口方法としては、当該ピナクル型に形成されたピンを保護フィルム33の位置決め孔(図示せず)に嵌装して位置合わせを行い、その後に保護フィルム33をピナクル型で打ち抜き加工することにより開口34を形成する。
 上述したピナクル型を用いて開口34を形成するため、本実施例における開口形成工程においては、保護フィルム33の形状が配線パターン22のパターニング時における熱可塑性樹脂フィルム1の形状を考慮して、開口34の位置、形状、及び寸法の設計が行われるとともに当該開口34が形成されることになる。換言すると、本開口形成工程においては、第1金属膜3のパターニング時における熱可塑性樹脂フィルム1と同一平面を仮想し、開口34位置、形状、及び寸法の設計を行い、当該開口34の形成を行うことになる。このような配線パターン22のパターニング時における熱可塑性樹脂フィルム1の形状と、開口34の形成時における保護フィルム33の形状とをそろえることにより、第2基材30に対して保護フィルム33を被覆する際において、配線パターン22の露出すべき領域と開口34との位置合わせ精度をより向上させることができる。
 次に、開口34が形成された状態の保護フィルム33に対して、第2基材30の立体形状に対応するように、立体成型を施す。換言すると、第2基材30の配線パターン22の形成面に対応させ、保護フィルム33を立体成型する(第2の立体成型工程)。具体的な本実施例における成型方法としては、上述した熱可塑性樹脂フィルム1の立体成型の際に使用した金型11を使用する。ここで、熱可塑性樹脂フィルム1の表面に第1金属膜3が形成された状態の基材の膜厚と保護フィルム33の膜厚とは異なるため、保護フィルム33の専用の金型を用いることがより良いが、同一の金型11を使用することによって製造コストの低減を図ることができる。
 より具体的な成型方法としては、先ず、上述した位置決め孔を用いて、成型用の金型11に対して保護フィルム33の位置決めを行う。これは、成型位置と開口34を合わせるためのものである。当該位置決めの際に、保護フィルム33の上方(上部金型12側)には、離型フィルム35(膜厚約65μm)を配置する。すなわち、図26に示すように、金型11の上部金型12と下部金型13との間に保護フィルム33及び離型フィルム35を配置することになる。なお、当該位置合わせの際には、保護フィルム33を構成する熱可塑性樹脂フィルム31が、下部金型13に接触するように配置されることになる。続いて、上部金型12及び下部金型13を近づけ、保護フィルム33及び離型フィルム35に対して、上下から所望の圧力(例えば、5MPa)によってプレス処理を、常温または保護フィルム33の接着剤シート32が硬化しない範囲の温度にて約30秒間行う(図27)。なお、所望の圧力とは、保護フィルム33の材料、圧力が弱すぎると所望の立体成型が困難になる点を考慮して適宜調整することになる。そして、プレス処理の完了後に、保護フィルム33及び離型フィルム35を金型11から取り出し(図29)、離型フィルム35を保護フィルム33から剥離することによって保護フィルム33の立体成型が完了する。ここで、上記工程を経て立体成型された保護フィルム33は、後述する被覆工程の際に、第2基材30の下側(すなわち、熱可塑性樹脂フィルム1の第2の面1b側)に配置されることになる。
 次に、後述する被覆工程の際に、第2基材30の上側(すなわち、熱可塑性樹脂フィルム1の第1の面1a側)に配置される保護フィルム36を準備し、立体成型を行う(図29)。当該保護フィルム36に係る、保護フィルム準備工程、開口形成工程、第2の立体成型工程については、上述した保護フィルム33に係る各工程とほぼ同一である。異なる点は、開口形成工程の際に使用されるピナクル型の開口パターン及び保護フィルム36に形成される開口の位置、並びに金型11によって立体成型する際における保護フィルム36と離型フィルム35の配置関係である。より具体的には、保護フィルム36の立体成型の際には、離型フィルム35が下方(下部金型13側)に位置し、保護フィルム36が上方(上部金型12側)に配置される。また、当該配置の際には、保護フィルム36を構成する熱可塑性樹脂フィルムが、上部金型12に接触するように配置されることになる。その他の製造条件、及び製造装置は同一であるため、その説明を省略する。
 次に、第2基材30の配線パターン22の露出すべき領域を開口34、37によって露出しつつ、第2基材30の当該露出すべき領域以外を保護フィルム33、36によって被覆する(被覆工程)。本実施例においては、上述した熱可塑性樹脂フィルム1の立体成型の際に使用した金型11を使用し、第2基材30の両面(熱可塑性樹脂フィルム1の第1の面1a側、第2の面1b側)を保護フィルム33、36によって挟むことになる。ここで、熱可塑性樹脂フィルム1の表面に第1金属膜3が形成された状態の基材の膜厚と、第2基材30、保護フィルム33、36とが積層された状態の膜厚とは異なるため、当該被覆工程用の専用金型を用いることがより良いが、同一の金型11を使用することによって製造コストの低減を図ることができる。
 より具体的な被覆方法としては、先ず、保護フィルム33を下部金型13に配置し、配置された保護フィルム33上に第2基材30を配置し、更に第2基材30上に保護フィルム36を配置する(図30)。ここで、各保護フィルムは、接着剤シートが第2基材30(すなわち、配線パターン22の形成面)と接触するように配置され、熱可塑性樹脂フィルムが各金型に接触することになる。また、各部材の配置は、各部材に設けられた位置決め孔を下部金型13のピンに嵌装することによって行われる。そして、当該位置決め孔を用いた配置により、第2基材30の配線パターン22の露出すべき領域に各保護フィルムの開口が対向することになる。なお、位置決め孔及びピンを用いた位置決めの際に、配線パターン22の露出すべき領域に各保護フィルムの開口が確実に対向するように、目視等による微調整を行ってもよい。
 続いて、上部金型12及び下部金型13を近づけ、第2基材30、及び保護フィルム33、36に対して、上下から所望の圧力(例えば、15MPa)によってプレス処理を約50℃(第1温度)にて約60秒間行い(図31)、第2基材30、及び保護フィルム33、36を仮接着する。ここで、プレス処理における温度、圧力、時間等の各種の条件は、第2基材30、及び保護フィルム33、36を仮接着することができる範囲内で適宜調整することができる。
 プレス処理の完了後に、上部金型12を取り外し、樹脂棒38を使用して保護フィルム36の表面を押圧し、保護フィルム36と第2基材30との間に生じた隙間及び気泡を除去する(図32)。樹脂棒38は、当該押圧によって保護フィルム36が破損等しないように、その先端(押圧部分)が丸くなっている。また、当該樹脂棒38による押圧の際には、下部金型13を50℃に維持し、保護フィルム36の接着剤シートの粘着力を発現させることが好ましい。その後、樹脂棒38を使用した押圧による隙間及び気泡除去作業を、保護フィルム33に対しても行う。この場合には、上部金型12を反転させ、保護フィルム36が反転した上部金型12に接触するように、仮接着された状態の第2基材30、及び保護フィルム33、36を配置し、樹脂棒38を使用して保護フィルム33の表面を押圧することになる。なお、かかる押圧作業は、隙間及び気泡の発生状況に応じて、適宜省略してもよく、樹脂棒以外の他の材質の棒又は他の押圧装置を使用してもよい。
 上記仮接着及び押圧作業後に、第2基材30、及び保護フィルム33、36の本接着を行う。具体的には、クッション性(柔軟性・屈曲性)を備える離型フィルム39を2枚準備し、仮接着された状態の第2基材30、及び保護フィルム33、36を当該離型フィルム39によって挟んだ状態で金型11内に配置する(図33)。続いて、上部金型12及び下部金型13を近づけ、離型フィルム39、第2基材30、及び保護フィルム33、36に対して、上下から所望の圧力(例えば、15MPa)によってプレス処理を約160℃(第2温度)にて約40分~60分間行い(図34)、第2基材30、及び保護フィルム33、36を本接着する。ここで、離型フィルム39を配置する理由は、本接着の際の加熱によって開口34、37を充填するように離型フィルム39を広がらせ、保護フィルム33、36の接着剤シートの開口34、37に向けた広がりを防止するためである。
 なお、プレス処理における温度、圧力、時間等の各種の条件は、第2基材30、及び保護フィルム33、36を完全に接着することができる範囲内で適宜調整することができる。ただし、基本的には熱硬化である接着材シートの硬化条件内となる。例えば、プレス処理時間を5~10分に短縮し、その後に所定の熱硬化処理(160℃、30分以上)を行ってもよい。
 上記本接着後に、離型フィルム39を保護フィルム33、36から剥離することによって被覆工程が完了し、図35に示すような立体成型部品の一種である立体配線基板40が完成する。図35に示すように、立体配線基板40においては、配線パターン22の露出するべき領域以外の部分が、保護フィルム33、36によって確実に被覆されるとともに、部品実装等の電気的接続に使用される配線パターン22の一部の領域が、開口34、37によって確実且つ精度よく露出することになる。また、立体配線基板40の製造工程においては、保護フィルム33、36を貼り付ける特殊な装置が不要となっており、立体配線基板40の低コストが図られている。
 上述した実施例においては、被覆工程における接着を仮接着及び本接着の2回実施していたが、配線パターン22が表面に形成された第2基材30に対して保護フィルム33、36を貼り付ける際に気泡及び隙間の発生を防止し、配線パターン22の露出すべき領域に優れた精度で開口34、37を配置させつつ保護フィルム33、36によって第2基材30を被覆して容易且つ低コストで立体配線基板40を製造することが可能であれば、仮接着を行うことなく本接着のみを実施してもよい。
 また、上述した実施例においては、第2基材30の両面を保護フィルム33、36によって被覆していたが、第2基材30の状態に応じて、保護フィルムによる被覆を片面のみにしてもよい。例えば、配線パターン22が片面のみに形成されている場合には、当該配線パターン22が形成されている形成面側のみを被覆するようにしてもよい。
 更に、上述した実施例においては、フィルム状の樹脂を立体成型して形成された第2基材30の表面に保護フィルム33、36を被覆したが、保護フィルムによって被覆される立体成型物は本実施例の第2基材30のようなものに限定されない。例えば、立体成型物として種々のMID部品(MID基板)を選択することができ、本実施例に係る保護フィルムを当該MID部品の回路形成面に被覆することもできる。立体成型物にMID部品を用いる場合には、MID部品の配線パターンは樹脂成型が完了した後に行われるが、MID部品を被覆する保護フィルムの開口形成、及び当該開口形成に資料されるパターン設計は、当該MID部品の配線パターン形成時における立体形状を考慮して行われることになる。この場合、MID部品に保護フィルムを押し当てヒートプレスするための専用金型が必要となる。
<本発明の実施態様>
 本発明の第1実施態様に係る立体配線部品の製造方法は、樹脂基材の表面に配線パターンが形成された立体成型物を準備する立体成型物準備工程と、50%以上の破断伸びを備える樹脂フィルム及び前記樹脂フィルムの表面に設けられた接着剤からなる平坦な保護フィルムを準備する保護フィルム準備工程と、前記平坦な保護フィルムに対して、前記配線パターンの露出すべき領域に対応した開口を形成する開口形成工程と、前記平坦な保護フィルムを前記立体成型物の前記配線パターンの形成面に対応させて立体成型する立体成型工程と、前記開口を前記配線パターンの露出すべき領域に対向させつつ、前記立体成型物の前記配線パターンの形成面に前記接着剤を貼り付け、前記立体成型物を立体成型された前記保護フィルムによって被覆する被覆工程と、を有し、前記開口形成工程においては、前記配線パターンのパターニング時における前記樹脂基材の形状を考慮し、前記開口の位置、形状、及び寸法の設計を行うことである。
 第1実施態様においては、保護フィルムの形状が配線パターンのパターニング時における樹脂基材の形状を考慮し、配線パターンを露出すべき開口の位置、形状、及び寸法の設計を行い、且つ保護フィルムが平坦な状態において開口を形成するため、被覆工程の際における立体成型物の配線パターンの露出すべき領域と、保護フィルムの開口との位置合わせを高精細に行うことが可能になる。これにより、配線パターンが表面に形成された立体成型物に対して保護フィルムを貼り付ける際に、気泡及び隙間の発生の防止を図ることが可能になるとともに、配線パターンの露出すべき領域に優れた精度で開口を配置させることができる。また、第1実施形態においては、保護フィルムが平坦な状態において開口を形成するとともに、立体成型物を被覆する保護部材を立体成型した保護フィルムとしているため、立体成型物の表面形状に合わせた樹脂の塗布又は紫外線の照射を行うような特殊な装置が不要となり、低コストで立体配線部品を製造することが可能になる。
 本発明の第2実施態様に係る立体配線部品の製造方法は、上述した第1実施態様の前記立体成型物準備工程において、前記樹脂基材が平坦なフィルム状態において、前記配線パターンのパターニングを施し、前記配線パターンのパターニング時における前記樹脂基材と同一平面を仮想し、前記開口の位置、形状、及び寸法の設計を行うことである。これにより、立体成型物の配線パターンのパターニングする際における樹脂基材の形状と、開口を形成する際における保護フィルムの形状とを同一にして、開口設計を行うことができるため、被覆工程の際に、配線パターンの露出すべき領域と保護フィルムの開口との位置合わせ精度をより向上することができる。
 本発明の第3実施態様に係る立体配線部品の製造方法は、上述した第1又は第2実施態様の前記被覆工程において、第1温度にて前記立体成型物と前記保護フィルムとを仮接着し、前記仮接着後において前記第1温度よりも大なる第2温度にて前記立体成型物と前記保護フィルムとを本接着を行うことである。これにより、立体成型物と保護フィルムとの間における隙間や気泡の発生を防止することができ、保護フィルムの貼り付けをより高精細に実施することが可能になる。
 本発明の第4実施態様に係る立体配線部品の製造方法は、上述した第3実施態様において、前記仮接着後であって前記本接着前に、前記立体成型物と前記保護フィルムとの間の隙間及び気泡を除去することである。これにより、立体成型物と保護フィルムとの間における隙間や気泡の発生をより一層防止することができ、保護フィルムの貼り付けをより高精細且つ確実に実施することが可能になる。
 本発明の第5実施態様に係る立体配線部品の製造方法は、上述した第1乃至4実施態様のいずれかにおいて、同一の金型を用いて前記立体成型物及び前記保護フィルムの立体成型を施すことである。これにより、製造コストのより一層の削減を図ることができる。
 本発明の第6実施態様に係る立体配線部品の製造方法は、上述した第1乃至第5実施態様のいずれかにおいて、前記被覆工程で2枚の前記保護フィルムによって前記立体成型物を両面から被覆することである。これにより、両面に配線パターンを備える立体成型物に対しても、確実且つ高精細に配線パターンの保護が可能になる。
 本発明の第7実施態様に係る立体配線部品の製造方法は、上述した第1乃至6実施態様のいずれかにおいて、前記樹脂基材と前記樹脂フィルムとは、同一の材質を有することである。これにより、立体成型物及び保護フィルムの伸びが概ね同一となり、立体成型物と立体成型された保護フィルムとの位置合わせをより高精度に行うことが可能になる。
 本発明の第8実施態様に係る立体配線部品は、樹脂基材の表面に配線パターンが形成された立体成型物と、50%以上の破断伸びを備える樹脂フィルム及び前記樹脂フィルムの表面に設けられた接着剤からなり、前記接着剤によって前記立体成型物の表面に積層された保護フィルムと、を有し、前記保護フィルムは、前記配線パターンの露出すべき領域に対応した開口を備えるとともに、前記立体成型物の立体形状に沿って前記立体成型物を被覆している。
 第8実施態様においては、立体成型物を被覆する保護部材を立体成型した保護フィルムとしているため、立体成型物の表面形状に合わせた樹脂の塗布又は紫外線の照射を行うような特殊な装置が不要となり、立体配線部品の低コスト化を図ることができる。また、立体成型物の基材と、保護フィルムの材料が樹脂であるため、立体成型時における伸び特性が同様となり、立体成型物の配線パターンの露出すべき領域と、保護フィルムの開口との位置合わせが高精細に行われている。これにより、立体成型部品においては、立体成型物と保護フィルムとの間に気泡及び隙間がなく、配線パターンの露出すべき領域が確実に露出されていることになる。
 本発明の第9実施態様に係る立体配線部品は、上述した第8実施態様において、前記樹脂基材と前記樹脂フィルムとが同一の材質を有することである。これにより、立体成型物及び保護フィルムの伸びが概ね同一となり、立体成型された保護フィルムによる立体成型物のより高精度な被覆が実現されることになる。すなわち、立体配線基板の配線パターンの露出すべき領域のみを、高精度且つ確実に露出することが可能になる。
 本発明の第10実施態様に係る立体配線部品は、上述した第9実施態様において、前記樹脂基材が50%以上の破断伸びを備えるフィルム状の樹脂からなることである。これにより、樹脂フィルムを立体成型した部材についても、その表面に形成された配線パターンの露出すべき領域のみを、高精度且つ確実に露出することが可能になる。
 本発明の第11実施態様に係る立体配線部品は、上述した第8乃至第10実施態様のいずれかにおいて、前記立体成型物が2枚の前記保護フィルムによってその両面が被覆された積層構造を有することである。これにより、両面に配線パターンを備える立体成型物に対しても、確実且つ高精細に配線パターンの保護が可能になる。
 本発明の第12実施態様に係る立体配線部品は、上述した第8乃至第11実施態様のいずれかにおいて、前記配線パターンが金属を粒子状に堆積してなるポーラス状の構造を備える第1金属膜、及び前記第1金属膜上に積層された第2金属膜からなることである。これにより、第1金属膜に亀裂が生じても第2金属膜で修復されており、導通不良がなく且つ優れた信頼性を備える配線回路が実現されている。
 1  熱可塑性樹脂フィルム(樹脂基材)
 1a  第1の面
 1b  第2の面
 1c  側面
 1d  屈曲部
 1e  角部
 2  貫通孔
 3  第1金属膜
 3a  粒子
 4  分子接合剤
 11  金型
 12  上部金型
 13  下部金型
 14  上部加熱装置
 15  下部加熱装置
 16  第1基材
 17  亀裂
 21  第2金属膜
 21a  粒子
 22  配線パターン
 30  第2基材(立体成型物)
 31  熱可塑性樹脂フィルム
 32  接着剤シート
 33  保護フィルム
 34  開口
 35  離型フィルム
 36  保護フィルム
 37  開口
 38  樹脂棒
 39  離型フィルム
 40  立体配線基板(立体成型部品)
 

Claims (12)

  1.  樹脂基材の表面に配線パターンが形成された立体成型物を準備する立体成型物準備工程と、
     50%以上の破断伸びを備える樹脂フィルム及び前記樹脂フィルムの表面に設けられた接着剤からなる平坦な保護フィルムを準備する保護フィルム準備工程と、
     前記平坦な保護フィルムに対して、前記配線パターンの露出すべき領域に対応した開口を形成する開口形成工程と、
     前記平坦な保護フィルムを前記立体成型物の前記配線パターンの形成面に対応させて立体成型する立体成型工程と、
     前記開口を前記配線パターンの露出すべき領域に対向させつつ、前記立体成型物の前記配線パターンの形成面に前記接着剤を貼り付け、前記立体成型物を立体成型された前記保護フィルムによって被覆する被覆工程と、を有し、
     前記開口形成工程においては、前記配線パターンのパターニング時における前記樹脂基材の形状を考慮し、前記開口の位置、形状、及び寸法の設計を行う立体成型部品の製造方法。
  2.  前記立体成型物準備工程においては、前記樹脂基材が平坦なフィルム状態において、前記配線パターンのパターニングを施し、
     前記開口形成工程においては、前記配線パターンのパターニング時における前記樹脂基材と同一平面を仮想し、前記開口の位置、形状、及び寸法の設計を行う請求項1に記載の立体成型部品の製造方法。
  3.  前記被覆工程においては、第1温度にて前記立体成型物と前記保護フィルムとを仮接着し、前記仮接着後において前記第1温度よりも大なる第2温度にて前記立体成型物と前記保護フィルムとを本接着を行う請求項1または2に記載の立体成型部品の製造方法。
  4.  前記仮接着後であって前記本接着前において、前記立体成型物と前記保護フィルムとの間の隙間及び気泡を除去する請求項3に記載の立体成型部品の製造方法。
  5.  同一の金型を用いて前記立体成型物及び前記保護フィルムの立体成型を施す請求項1乃至4のいずれか1項に記載の立体成型部品の製造方法。
  6.  前記被覆工程においては、2枚の前記保護フィルムによって前記立体成型物を両面から被覆する請求項1乃至5のいずれか1項に記載の立体成型部品の製造方法。
  7.  前記樹脂基材と前記樹脂フィルムとは、同一の材質を有する請求項1乃至6のいずれか1項に記載の立体成型部品の製造方法。
  8.  樹脂基材の表面に配線パターンが形成された立体成型物と、
     50%以上の破断伸びを備える樹脂フィルム及び前記樹脂フィルムの表面に設けられた接着剤からなり、前記接着剤によって前記立体成型物の表面に積層された保護フィルムと、を有し、
     前記保護フィルムは、前記配線パターンの露出すべき領域に対応した開口を備えるとともに、前記立体成型物の立体形状に沿って前記立体成型物を被覆する立体成型部品。
  9.  前記樹脂基材と前記樹脂フィルムとは、同一の材質を有する請求項8に記載の立体成型部品。
  10.  前記樹脂基材は、50%以上の破断伸びを備えるフィルム状の樹脂からなる請求項9に記載の立体成型部品。
  11.  前記立体成型物は、2枚の前記保護フィルムによってその両面が被覆された積層構造を有する請求項8乃至10のいずれか1項に記載の立体成型部品。
  12.  前記配線パターンは、金属を粒子状に堆積してなるポーラス状の構造を備える第1金属膜、及び前記第1金属膜上に積層された第2金属膜からなる請求項8乃至11のいずれか1項に記載の立体成型部品。
PCT/JP2015/084957 2015-06-24 2015-12-14 立体成型部品の製造方法及び立体成型部品 WO2016208092A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016531083A JP6100975B1 (ja) 2015-06-24 2015-12-14 立体成型部品の製造方法及び立体成型部品
TW105119547A TW201709790A (zh) 2015-06-24 2016-06-22 立體成型構件的製造方法及立體成型構件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPPCT/JP2015/068230 2015-06-24
PCT/JP2015/068230 WO2016208006A1 (ja) 2015-06-24 2015-06-24 立体配線基板の製造方法、立体配線基板、立体配線基板用基材
PCT/JP2015/080796 WO2016208090A1 (ja) 2015-06-24 2015-10-30 立体配線基板の製造方法、立体配線基板、立体配線基板用基材
JPPCT/JP2015/080796 2015-10-30

Publications (1)

Publication Number Publication Date
WO2016208092A1 true WO2016208092A1 (ja) 2016-12-29

Family

ID=57145231

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2015/084958 WO2016208093A1 (ja) 2015-06-24 2015-12-14 立体配線基板、及び立体配線基板の製造方法
PCT/JP2015/084957 WO2016208092A1 (ja) 2015-06-24 2015-12-14 立体成型部品の製造方法及び立体成型部品
PCT/JP2016/068595 WO2016208651A1 (ja) 2015-06-24 2016-06-23 立体成型部品の製造方法及び立体成型部品

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084958 WO2016208093A1 (ja) 2015-06-24 2015-12-14 立体配線基板、及び立体配線基板の製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068595 WO2016208651A1 (ja) 2015-06-24 2016-06-23 立体成型部品の製造方法及び立体成型部品

Country Status (2)

Country Link
JP (1) JP6014792B1 (ja)
WO (3) WO2016208093A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6302613B1 (ja) * 2017-03-01 2018-03-28 ナノコイル株式会社 ナノコイル型gsrセンサ素子の製造方法
CN110035619A (zh) * 2019-04-22 2019-07-19 健鼎(湖北)电子有限公司 一种内层干膜生产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281248A (ja) * 2003-03-17 2004-10-07 Pioneer Electronic Corp 耐熱絶縁フィルム及び絶縁方法
JP2005183484A (ja) * 2003-12-16 2005-07-07 Fujikura Ltd カバーフィルムの加工方法及びプリント配線基板
JP2006269496A (ja) * 2005-03-22 2006-10-05 Mitsui Mining & Smelting Co Ltd フレキシブルプリント配線基板、および半導体装置
WO2014168220A1 (ja) * 2013-04-12 2014-10-16 セーレン株式会社 立体導電パターン構造体の製造方法及びそれに用いる立体成形用材料
WO2015037511A1 (ja) * 2013-09-10 2015-03-19 Dic株式会社 積層体、導電性パターン、電子回路及び積層体の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4479322B2 (ja) * 2004-04-15 2010-06-09 トヨタ自動車株式会社 三次元露光マスクおよび三次元露光方法
JP2006228887A (ja) * 2005-02-16 2006-08-31 Fujikura Ltd リジッド−フレックス多層プリント配線板の製造方法
JP4993068B2 (ja) * 2006-08-21 2012-08-08 富士電機株式会社 絶縁膜形成方法
JP5144583B2 (ja) * 2009-04-24 2013-02-13 パナソニック株式会社 シート材料及びプリント配線板
CN104475758B (zh) * 2009-09-16 2018-01-05 日立化成株式会社 液状组合物
JP5973190B2 (ja) * 2012-03-06 2016-08-23 タイコエレクトロニクスジャパン合同会社 立体積層配線基板
JP2013235878A (ja) * 2012-05-02 2013-11-21 Ibiden Co Ltd 電子部品実装基板、ケースユニット、及び電子部品実装基板の製造方法
JP6230625B2 (ja) * 2014-01-14 2017-11-15 太陽インキ製造株式会社 立体回路基板およびこれに用いるソルダーレジスト組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281248A (ja) * 2003-03-17 2004-10-07 Pioneer Electronic Corp 耐熱絶縁フィルム及び絶縁方法
JP2005183484A (ja) * 2003-12-16 2005-07-07 Fujikura Ltd カバーフィルムの加工方法及びプリント配線基板
JP2006269496A (ja) * 2005-03-22 2006-10-05 Mitsui Mining & Smelting Co Ltd フレキシブルプリント配線基板、および半導体装置
WO2014168220A1 (ja) * 2013-04-12 2014-10-16 セーレン株式会社 立体導電パターン構造体の製造方法及びそれに用いる立体成形用材料
WO2015037511A1 (ja) * 2013-09-10 2015-03-19 Dic株式会社 積層体、導電性パターン、電子回路及び積層体の製造方法

Also Published As

Publication number Publication date
WO2016208651A1 (ja) 2016-12-29
JPWO2016208090A1 (ja) 2017-06-29
JP6014792B1 (ja) 2016-10-25
WO2016208093A1 (ja) 2016-12-29

Similar Documents

Publication Publication Date Title
JP6100975B1 (ja) 立体成型部品の製造方法及び立体成型部品
US20060060558A1 (en) Method of fabricating package substrate using electroless nickel plating
US20160133555A1 (en) Wiring board and method for manufacturing the same
JP5373971B2 (ja) 配線板の製造方法
JP4775204B2 (ja) 導電性パターンの形成方法、配線板の製造方法及び配線板
JP4801189B2 (ja) 印刷回路基板及びその製造方法
JP6169304B1 (ja) 立体配線基板、立体配線基板の製造方法、立体配線基板用基材
KR20090117634A (ko) 배선 회로 기판의 제조 방법
WO2016208092A1 (ja) 立体成型部品の製造方法及び立体成型部品
US20120160554A1 (en) Multilayer printed circuit board and method for making same
CN103717015B (zh) 柔性印刷电路板制造方法
JP2013058545A (ja) 電子デバイス及びその製造方法
CN115500023A (zh) 一种带有多个飞尾结构的刚挠结合板及其制备方法
JP2020088012A (ja) 配線シート及びその製造方法
JP2006253512A (ja) 配線基板、製造方法
WO2008038663A1 (fr) Procédé de fabrication d'une carte à câblage imprimé

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016531083

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15896410

Country of ref document: EP

Kind code of ref document: A1