WO2016206125A1 - 一种有机发光二极管的封装方法及显示装置 - Google Patents

一种有机发光二极管的封装方法及显示装置 Download PDF

Info

Publication number
WO2016206125A1
WO2016206125A1 PCT/CN2015/082669 CN2015082669W WO2016206125A1 WO 2016206125 A1 WO2016206125 A1 WO 2016206125A1 CN 2015082669 W CN2015082669 W CN 2015082669W WO 2016206125 A1 WO2016206125 A1 WO 2016206125A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass cloth
cloth tape
light emitting
organic light
emitting diode
Prior art date
Application number
PCT/CN2015/082669
Other languages
English (en)
French (fr)
Inventor
杨清斗
刘亚伟
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/774,133 priority Critical patent/US9859522B2/en
Publication of WO2016206125A1 publication Critical patent/WO2016206125A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a method and a display device for packaging an organic light emitting diode.
  • planar light source technology is a new type of light source, and its technology research and development is close to the market mass production level.
  • the bonding and soldering of two flat glass sheets is an important technology, and the sealing effect will directly affect the performance of the device.
  • LCD/OLED is encapsulated by ultraviolet (UV) curing technology, which has the following characteristics: no solvent or a small amount of solvent is used to reduce the environmental pollution of the solvent; low energy consumption, low temperature curing, suitable for heat sensitive materials; Fast curing speed, high efficiency, can be used in high-speed production lines, and the curing equipment covers a small area.
  • UV glue is an organic material, the molecular gap is large after curing, and the water vapor and the oxygen are relatively easy to pass through the medium to reach the inner sealing region. Therefore, it is more suitable for applications that are less sensitive to moisture and oxygen, such as LCDs. However, it is not suitable for water vapor and oxygen sensitive OLEDs.
  • Frit packaging technology is a new flat glass sealing technology currently under development. It is a solution in which glass powder is formulated into a certain viscosity, coated on a packaging glass, heated to remove the solvent, and then bonded to the glass to be packaged, using a laser (laser) ) The frit glass powder is instantly burned to melt, thereby bonding the two sheets of flat glass together. Because Frit technology is an inorganic packaging medium, its ability to block water vapor and oxygen is strong. Particularly suitable for OLED technology sensitive to water vapor and oxygen. However, the use of Frit packaging technology requires a process of applying glue and heating to remove the solvent, and the requirements for both processes are high, so that it is not easy to implement.
  • An object of the present invention is to provide a method and a display device for packaging an organic light emitting diode, which are intended to solve the problems in the prior art.
  • Frit packaging technology requires a process of applying glue and heating to remove the solvent, and the requirements of both processes are high, so it is not easy to implement.
  • a method of packaging an organic light emitting diode comprising:
  • the glass cloth tape is melted by a laser to weld the organic light emitting diode substrate to the package substrate.
  • the method includes:
  • the step of pasting the glass cloth tape at the position includes:
  • the glass cloth tape is stuck in the groove.
  • the step of melting the glass cloth tape by laser comprising:
  • a focal spot is used to solder the organic light emitting diode substrate to the package substrate.
  • a method of packaging an organic light emitting diode comprising:
  • the glass cloth tape is melted to weld the organic light emitting diode substrate to the package substrate.
  • the method includes:
  • the step of pasting the glass cloth tape at the position includes:
  • the glass cloth tape is stuck in the groove.
  • the step of melting the glass cloth tape comprises:
  • the glass cloth tape is melted by a laser.
  • the step of melting the glass cloth tape by laser comprises:
  • a focal spot is used to solder the organic light emitting diode substrate to the package substrate.
  • a display device comprising:
  • a groove is formed in the package substrate or the organic light emitting diode substrate, and the glass cloth tape is disposed in the groove.
  • the glass cloth tape has a melting point of less than 900 °C.
  • the glass cloth tape has a thickness of 3 micrometers to 50 micrometers.
  • the glass cloth tape has a width of 200 ⁇ m to 2000 ⁇ m.
  • the material of the glass cloth tape is the same as the material of the organic light emitting diode substrate and/or the package substrate.
  • the present invention adheres an organic light emitting diode substrate and a package substrate by laser welding by attaching a glass cloth tape to a package substrate, so that the organic light emitting diode is sealed on the organic light emitting diode substrate and the Between the package substrates. Since the glass cloth tape has flatness, the organic light emitting diode substrate can be sufficiently contacted with the package substrate to avoid the occurrence of soldering gaps, so that external air cannot enter the inside of the package body, which can effectively prevent water vapor and oxygen from entering the inside of the package, thereby improving the OLED. Device lifetime.
  • the glass cloth tape is easy to obtain from the market and is inexpensive, so that the welding cost of the OLED can be effectively reduced. Furthermore, by using glass cloth tape welding, the frit coating process and the frit heating and drying process can be omitted, and the water vapor and oxygen sealing effects are remarkably improved, and the realization is simple.
  • FIG. 1 is a schematic flow chart showing an implementation of a method for packaging an organic light emitting diode according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic flow chart of an implementation method of a method for packaging an organic light emitting diode according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic structural diagram of a display device according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic structural view of a glass cloth tape attached to a package substrate according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a display device according to Embodiment 4 of the present invention.
  • the organic light emitting diode substrate and the package substrate are bonded together by using a glass cloth tape so that the organic light emitting diode is sealed between the organic light emitting diode substrate and the package substrate. Therefore, according to the packaging method of the organic light emitting diode provided by the present invention, the frit coating process and the frit heating and drying process can be omitted.
  • FIG. 1 is a flowchart for implementing a method for packaging an organic light emitting diode according to a first embodiment of the present invention, which mainly includes the following steps:
  • step S101 a package substrate is provided
  • step S102 a position where the glass cloth tape is pasted is divided on the package substrate
  • step S103 the glass cloth tape is pasted at the position
  • step S104 the organic light emitting diode substrate is bonded to the package substrate
  • the organic light emitting diode is placed on the organic light emitting diode substrate in advance; and the organic light emitting diode substrate on which the organic light emitting diode is placed is bonded to the package substrate under vacuum conditions, so that The organic light emitting diode is sealed between the organic light emitting diode substrate and the package substrate.
  • step S105 the glass cloth tape is melted to weld the organic light emitting diode substrate and the package substrate together.
  • the glass cloth tape is melted by laser to weld the organic light emitting diode substrate and the package substrate together, so that the inside of the welding area is isolated from the outside, thereby preventing water vapor and oxygen from entering the seal from the outside.
  • a carbon dioxide laser or other suitable laser with a wavelength range of 800 nm to 1200 nm, adjusting the focal length and focal spot size and laser energy intensity, so that the focal spot falls on the glass cloth tape and moves along the glass cloth tape
  • the focal spot of the carbon dioxide laser solders the organic light emitting diode substrate to the package substrate.
  • the glass cloth tape has a melting point of less than 900 °C.
  • the glass cloth tape has a thickness of from 3 micrometers to 50 micrometers, preferably from 3.8 micrometers to 50 micrometers.
  • the glass cloth tape has a width of 200 micrometers to 2000 micrometers.
  • the material of the glass cloth tape is the same as the material of the organic light emitting diode substrate and the package substrate.
  • the glass cloth tape has a thermal expansion coefficient of 3.0 to 6.0, and the unit is 10-6. m/K.
  • the OLED tape is adhered to the package substrate, and the OLED substrate and the package substrate are bonded together by laser welding, so that the OLED is sealed on the OLED substrate.
  • the organic light emitting diode substrate can be sufficiently contacted with the package substrate to avoid the occurrence of soldering gaps, so that external air cannot enter the inside of the package body, which can effectively prevent water vapor and oxygen from entering the inside of the package, thereby improving the OLED.
  • Device lifetime the glass cloth tape is easy to obtain from the market and is inexpensive, so that the welding cost of the OLED can be effectively reduced.
  • the frit coating process and the frit heating and drying process can be omitted, and the water vapor and oxygen sealing effects are remarkably improved, and the realization is simple.
  • FIG. 2 is a flow chart for implementing an encapsulation method of an organic light emitting diode according to Embodiment 2 of the present invention, which mainly includes the following steps:
  • step S201 a package substrate is provided
  • step S202 a position where the glass cloth tape is pasted is divided on the package substrate
  • step S203 a groove is opened at the position
  • step S204 the glass cloth tape is stuck in the groove
  • step S205 the organic light emitting diode substrate is bonded to the package substrate
  • the organic light emitting diode is placed on the organic light emitting diode substrate in advance; and the organic light emitting diode substrate on which the organic light emitting diode is placed is bonded to the package substrate under vacuum conditions, so that The organic light emitting diode is sealed between the organic light emitting diode substrate and the package substrate.
  • step S206 the glass cloth tape is melted to weld the organic light emitting diode substrate and the package substrate together.
  • the width of the groove is larger than the width of the glass cloth tape; the height of the groove is smaller than the thickness of the glass cloth tape.
  • the glass cloth tape is melted by laser to weld the organic light emitting diode substrate and the package substrate together, so that the inside of the welding area is isolated from the outside, thereby preventing water vapor and oxygen from entering the seal from the outside.
  • a carbon dioxide laser or other suitable laser with a wavelength range of 800 nm to 1200 nm, adjusting the focal length and focal spot size and laser energy intensity, so that the focal spot falls on the glass cloth tape and moves along the glass cloth tape
  • the focal spot of the carbon dioxide laser solders the organic light emitting diode substrate to the package substrate.
  • the glass cloth tape has a melting point of less than 900 °C.
  • the thickness of the glass cloth tape is also preferably from 3.8 microns to 50 microns.
  • the glass cloth tape has a width of 200 micrometers to 2000 micrometers.
  • the material of the glass cloth tape is the same as the material of the organic light emitting diode substrate and the package substrate.
  • the glass cloth tape has a thermal expansion coefficient of 3.0 to 6.0, and the unit is 10-6. m/K.
  • FIG. 3 is a schematic structural diagram of a display device according to Embodiment 3 of the present invention
  • FIG. 4 is a schematic structural view of a glass cloth tape attached to a package substrate according to an embodiment of the present invention. For the convenience of description, only parts related to the embodiment of the present invention are shown.
  • the display device includes an organic light emitting diode substrate 10, a package substrate 20, an organic light emitting diode 30 disposed between the organic light emitting diode substrate 10 and the package substrate 20, and a glass cloth tape 40.
  • the cloth tape 40 is located between the OLED substrate 10 and the package substrate 20 and is located around the OLED 30.
  • the glass cloth tape 40 has a melting point of less than 900 °C.
  • the glass cloth tape 40 has a thickness of from 3 micrometers to 50 micrometers, preferably from 3.8 micrometers to 50 micrometers.
  • the glass cloth tape 40 has a width of 200 micrometers to 2000 micrometers.
  • the material of the glass cloth tape 40 is the same as that of the organic light emitting diode substrate 10 and the package substrate 20.
  • the glass cloth tape 40 has a thermal expansion coefficient of 3.0 to 6.0, and the unit is 10-6. m/K.
  • FIG. 5 is a schematic structural diagram of a display device according to Embodiment 4 of the present invention. For the convenience of description, only parts related to the embodiment of the present invention are shown.
  • the display device includes an organic light emitting diode substrate 10, a package substrate 20, an organic light emitting diode 30 disposed between the organic light emitting diode substrate 10 and the package substrate 20, and a glass cloth tape 40.
  • the cloth tape 40 is located between the OLED substrate 10 and the package substrate 20 and is located around the OLED 30.
  • a groove 50 is defined in the package substrate 20, and the glass cloth tape 40 is disposed in the groove 50.
  • a groove may also be formed on the OLED substrate 10, and the glass cloth tape 40 is disposed in the groove.
  • the shape of the groove 50 can be designed according to actual requirements, as long as the shape of the organic light emitting diode 30 can be enclosed and sealed.
  • the width of the groove is larger than the width of the glass cloth tape; the height of the groove is smaller than the thickness of the glass cloth tape.
  • the glass cloth tape 40 has a melting point of less than 900 °C.
  • the glass cloth tape 40 has a thickness of 3.8 micrometers to 50 micrometers.
  • the glass cloth tape 40 has a width of 200 micrometers to 2000 micrometers.
  • the material of the glass cloth tape 40 is the same as that of the organic light emitting diode substrate 10 and the package substrate 20.
  • the glass cloth tape 40 has a thermal expansion coefficient of 3.0 to 6.0, and the unit is 10-6. m/K.
  • the OLED tape is pasted on the package substrate, and the OLED substrate and the package substrate are bonded together by laser welding, so that the OLED is sealed on the OLED substrate.
  • the organic light emitting diode substrate can be sufficiently contacted with the package substrate to avoid the occurrence of soldering gaps, so that external air cannot enter the inside of the package body, which can effectively prevent water vapor and oxygen from entering the inside of the package, thereby improving the OLED.
  • Device lifetime the glass cloth tape is easy to obtain from the market and is inexpensive, so that the welding cost of the OLED can be effectively reduced.
  • the frit coating process and the frit heating and drying process can be omitted, and the water vapor and oxygen sealing effects are remarkably improved, and the realization is simple.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机发光二极管的封装方法:在封装基板(20)上划分粘贴玻璃布胶带(40)的位置;在位置上粘贴玻璃布胶带(40);将有机发光二极管基板(10)与封装基板(20)贴合;融化玻璃布胶带(40),以使有机发光二极管基板(10)与封装基板(20)焊接在一起,能避免焊接缝隙的出现,使外部气体无法进入封装体内部,提高了OLED的器件寿命。

Description

一种有机发光二极管的封装方法及显示装置 技术领域
本发明涉及显示技术领域,特别涉及一种有机发光二极管的封装方法及显示装置。
背景技术
在显示技术领域,平板显示技术(如LCD、OLED)已经逐步取代CRT显示器。平面光源技术是新型的光源,其技术研发已经接近市场化量产水平。在平板显示与平面光源技术当中,对于两片平板玻璃的粘结、焊接是一项很重要的技术,其封止效果将直接影响器件的性能。
LCD/OLED采用紫外光(UV)固化技术来进行封装,其具有如下特点:不用溶剂或少量溶剂,减少了溶剂对环境的污染;耗能少,可低温固化,适用于对热敏感的材料;固化速度快,效率高,可在高速生产线上使用,固化设备占地面积小等。但是,由于UV胶是有机材料,其固化后分子间隙较大,水汽与氧气比较容易透过介质抵达内部密封区域。所以,其比较适合用于对水汽、氧气不太敏感的应用领域,比如LCD。然而,对于水汽、氧气敏感的OLED则不适合。
Frit封装技术是目前正在研发的新型平板玻璃封止技术,它是将玻璃粉配成一定粘度的溶液,涂覆在封装玻璃上,加热除去溶剂,然后与待封装玻璃贴合,利用激光(laser)将frit玻璃粉瞬间烧至融化,从而将两片平板玻璃粘结在一起。Frit技术由于是无机封装介质,所以其阻止水汽与氧气的能力很强。特别适合对水汽、氧气敏感的OLED技术。然而,采用Frit封装技术需要涂胶及加热除去溶剂的工艺,且对这二项工艺要求都很高,因此实现起来不容易。
故,有必要提出一种新的技术方案,以解决上述技术问题。
技术问题
本发明的 目的在于提供一种 有机发光二极管的封装方法及显示装置,旨在解决现有技术中存在的采用 Frit 封装技术需要涂胶及加热除去溶剂的工艺,且对这二项工艺要求都很高,因此实现起来不容易的问题。
技术解决方案
一种有机发光二极管的封装方法,其中所述方法包括:
提供一封装基板;
在所述封装基板上划分粘贴玻璃布胶带的位置;
在所述位置上粘贴所述玻璃布胶带;
将有机发光二极管基板与所述封装基板贴合;其中,所述有机发光二极管基板上方放置有有机发光二极管;
通过激光融化所述玻璃布胶带,以使所述有机发光二极管基板与所述封装基板焊接在一起。
优选的,在所述的有机发光二极管的封装方法中,其中在所述封装基板上划分粘贴玻璃布胶带的位置的步骤之后,包括:
在所述位置上开设一凹槽;
在所述位置上粘贴所述玻璃布胶带的步骤,包括:
将所述玻璃布胶带粘贴在所述凹槽中。
优选的,在所述的有机发光二极管的封装方法中,其中所述通过激光融化所述玻璃布胶带的步骤,包括:
使用二氧化碳激光器,波长范围800nm~1200nm,调整焦距与焦斑大小及激光能量强度,使所述焦斑落在所述玻璃布胶带上,沿着所述玻璃布胶带移动所述二氧化碳激光器的所述焦斑,使所述有机发光二极管基板与所述封装基板焊接在一起。
一种有机发光二极管的封装方法,所述方法包括:
提供一封装基板;
在所述封装基板上划分粘贴玻璃布胶带的位置;
在所述位置上粘贴所述玻璃布胶带;
将有机发光二极管基板与所述封装基板贴合;
融化所述玻璃布胶带,以使所述有机发光二极管基板与所述封装基板焊接在一起。
优选的,在所述有机发光二极管的封装方法中,在所述封装基板上划分粘贴玻璃布胶带的位置的步骤之后,包括:
在所述位置上开设一凹槽;
在所述位置上粘贴所述玻璃布胶带的步骤,包括:
将所述玻璃布胶带粘贴在所述凹槽中。
优选的,在所述有机发光二极管的封装方法中,所述融化所述玻璃布胶带的步骤,包括:
通过激光融化所述玻璃布胶带。
优选的,在所述有机发光二极管的封装方法中,所述通过激光融化所述玻璃布胶带的步骤,包括:
使用二氧化碳激光器,波长范围800nm~1200nm,调整焦距与焦斑大小及激光能量强度,使所述焦斑落在所述玻璃布胶带上,沿着所述玻璃布胶带移动所述二氧化碳激光器的所述焦斑,使所述有机发光二极管基板与所述封装基板焊接在一起。
一种显示装置,所述显示装置包括:
一有机发光二极管基板、一封装基板、设置于所述有机发光二极管基板与所述封装基板之间的有机发光二极管,以及玻璃布胶带,所述玻璃布胶带位于所述有机发光二极管基板与所述封装基板之间,且位于所述有机发光二极管的四周。
优选的,在所述的显示装置中,在所述封装基板或所述有机发光二极管基板上开设有凹槽,所述玻璃布胶带设置于所述凹槽中。
优选的,在所述的显示装置中,所述玻璃布胶带的熔点低于900℃。
优选的,在所述的显示装置中,所述玻璃布胶带的厚度在3微米~50微米。
优选的,在所述的显示装置中,所述玻璃布胶带的宽度在200微米~2000微米。
优选的,在所述的显示装置中,所述玻璃布胶带的材质与所述有机发光二极管基板和/或所述封装基板的材质相同。
有益效果
相对现有技术,本发明通过将玻璃布胶带粘贴在封装基板,利用激光焊接,将有机发光二极管基板与封装基板贴合在一起,以使有机发光二极管密封在所述有机发光二极管基板与所述封装基板之间。由于玻璃布胶带具有平整性,因此可以使得有机发光二极管基板与封装基板充分接触,避免焊接缝隙的出现,使外部气体无法进入封装体内部,能有效阻止水汽、氧气进入封装体内部,提高了OLED的器件寿命。另外,玻璃布胶带易于从市场上获得,且价格便宜,因此可以有效降低OLED的焊接成本。再者,采用玻璃布胶带焊接,可以省去frit涂胶工序及frit加热烘干工序,且其水汽、氧气封止效果显著提高,实现简单。
附图说明
图1为本发明实施例一提供的有机发光二极管的封装方法的实现流程示意图。
图2为本发明实施例二提供的有机发光二极管的封装方法的实现流程示意图。
图3为本发明实施例三提供的显示装置的结构示意图。
图4为本发明实施例提供的封装基板上粘贴玻璃布胶带的结构示意图。
图5为本发明实施例四提供的显示装置的结构示意图。
本发明的最佳实施方式
本说明书所使用的词语“实施例”意指用作实例、示例或例证。此外,本说明书和所附权利要求中所使用的冠词“一”一般地可以被解释为意指“一个或多个”,除非另外指定或从上下文清楚导向单数形式。
在本发明中,通过采用玻璃布胶带将有机发光二极管基板与封装基板贴合在一起,以使有机发光二极管密封在所述有机发光二极管基板与所述封装基板之间。因此,采用本发明提供的有机发光二极管的封装方法,可以省去frit涂胶工序及frit加热烘干工序。
为了说明本发明所述的技术方案,下面通过具体实施例来进行说明。
实施例一
请参阅图1,为本发明实施例一提供的有机发光二极管的封装方法的实现流程,其主要包括以下步骤:
在步骤S101中,提供一封装基板;
在步骤S102中,在所述封装基板上划分粘贴玻璃布胶带的位置;
在步骤S103中,在所述位置上粘贴所述玻璃布胶带;
在步骤S104中,将有机发光二极管基板与所述封装基板贴合;
在本发明实施例中,事先将有机发光二极管放置于所述有机发光二极管基板上方;在真空条件下,将放置有所述有机发光二极管的有机发光二极管基板与所述封装基板贴合,以使所述有机发光二极管密封在所述有机发光二极管基板与所述封装基板之间。
在步骤S105中,融化所述玻璃布胶带,以使所述有机发光二极管基板与所述封装基板焊接在一起。
在本发明实施例中,通过激光融化所述玻璃布胶带,以使所述有机发光二极管基板与所述封装基板焊接在一起,使得焊接区域内部与外部隔绝,从而阻止水汽、氧气从外部进入密封区域内部,具体实现如下:
使用二氧化碳激光器或者是其他合适的激光器,波长范围800nm~1200nm,调整焦距与焦斑大小及激光能量强度,使所述焦斑刚好落在所述玻璃布胶带上,沿着所述玻璃布胶带移动所述二氧化碳激光器的所述焦斑,使所述有机发光二极管基板与所述封装基板焊接在一起。
作为本发明一优选实施例,所述玻璃布胶带的熔点低于900℃。 所述玻璃布胶带的厚度在3微米~50微米,优选为3.8微米~50微米。所述玻璃布胶带的宽度在200微米~2000微米。所述玻璃布胶带的材质与所述有机发光二极管基板和所述封装基板的材质相同。所述玻璃布胶带的热膨胀系数在3.0~6.0,单位10-6 m/K。
由上可知,本实施例通过将玻璃布胶带粘贴在封装基板,利用激光焊接,将有机发光二极管基板与封装基板贴合在一起,以使有机发光二极管密封在所述有机发光二极管基板与所述封装基板之间。由于玻璃布胶带具有平整性,因此可以使得有机发光二极管基板与封装基板充分接触,避免焊接缝隙的出现,使外部气体无法进入封装体内部,能有效阻止水汽、氧气进入封装体内部,提高了OLED的器件寿命。另外,玻璃布胶带易于从市场上获得,且价格便宜,因此可以有效降低OLED的焊接成本。再者,采用玻璃布胶带焊接,与UV胶封装相比,可以省去frit涂胶工序及frit加热烘干工序,且其水汽、氧气封止效果显著提高,实现简单。
实施例二
请参阅图2,为本发明实施例二提供的有机发光二极管的封装方法的实现流程,其主要包括以下步骤:
在步骤S201中,提供一封装基板;
在步骤S202中,在所述封装基板上划分粘贴玻璃布胶带的位置;
在步骤S203中,在所述位置上开设一凹槽;
在步骤S204中,将所述玻璃布胶带粘贴在所述凹槽中;
在步骤S205中,将有机发光二极管基板与所述封装基板贴合;
在本发明实施例中,事先将有机发光二极管放置于所述有机发光二极管基板上方;在真空条件下,将放置有所述有机发光二极管的有机发光二极管基板与所述封装基板贴合,以使所述有机发光二极管密封在所述有机发光二极管基板与所述封装基板之间。
在步骤S206中,融化所述玻璃布胶带,以使所述有机发光二极管基板与所述封装基板焊接在一起。
作为本发明一优选实施例,所述凹槽的宽度大于所述玻璃布胶带的宽度;所述凹槽的高度小于所述玻璃布胶带的厚度。采用这样的设计,能够控制所述有机发光二极管基板与所述封装基板之间的间隙。
在本发明实施例中,通过激光融化所述玻璃布胶带,以使所述有机发光二极管基板与所述封装基板焊接在一起,使得焊接区域内部与外部隔绝,从而阻止水汽、氧气从外部进入密封区域内部,具体实现如下:
使用二氧化碳激光器或者是其他合适的激光器,波长范围800nm~1200nm,调整焦距与焦斑大小及激光能量强度,使所述焦斑刚好落在所述玻璃布胶带上,沿着所述玻璃布胶带移动所述二氧化碳激光器的所述焦斑,使所述有机发光二极管基板与所述封装基板焊接在一起。
作为本发明一优选实施例,所述玻璃布胶带的熔点低于900℃。 所述玻璃布胶带的厚度同样优选在3.8微米~50微米。所述玻璃布胶带的宽度在200微米~2000微米。所述玻璃布胶带的材质与所述有机发光二极管基板和所述封装基板的材质相同。所述玻璃布胶带的热膨胀系数在3.0~6.0,单位10-6 m/K。
实施例三
请一并参阅图3及图4,图3为本发明实施例三提供的显示装置的结构示意图,图4为本发明实施例提供的封装基板上粘贴玻璃布胶带的结构示意图。为了便于说明,仅示出了与本发明实施例相关的部分。
所述显示装置包括:一有机发光二极管基板10、一封装基板20、设置于所述有机发光二极管基板10与所述封装基板20之间的有机发光二极管30,以及玻璃布胶带40,所述玻璃布胶带40位于所述有机发光二极管基板10与所述封装基板20之间,且位于所述有机发光二极管30的四周。
作为本发明一优选实施例,所述玻璃布胶带40的熔点低于900℃。 所述玻璃布胶带40的厚度在3微米~50微米,优选3.8微米~50微米。所述玻璃布胶带40的宽度在200微米~2000微米。所述玻璃布胶带40的材质与所述有机发光二极管基板10和所述封装基板20的材质相同。所述玻璃布胶带40的热膨胀系数在3.0~6.0,单位10-6 m/K。
实施例四
请参阅图5,图5为本发明实施例四提供的显示装置的结构示意图。为了便于说明,仅示出了与本发明实施例相关的部分。
所述显示装置包括:一有机发光二极管基板10、一封装基板20、设置于所述有机发光二极管基板10与所述封装基板20之间的有机发光二极管30,以及玻璃布胶带40,所述玻璃布胶带40位于所述有机发光二极管基板10与所述封装基板20之间,且位于所述有机发光二极管30的四周。其中,在所述封装基板20上开设一凹槽50,所述玻璃布胶带40设置于所述凹槽50中。然而,可以理解的是,也可以在所述有机发光二极管基板10上开设一凹槽,所述玻璃布胶带40设置于所述凹槽中。
在本发明实施例中,所述凹槽50的形状可根据实际要求进行设计,只要能将所述有机发光二极管30围合密封在内的形状都可以。
作为本发明一优选实施例,所述凹槽的宽度大于所述玻璃布胶带的宽度;所述凹槽的高度小于所述玻璃布胶带的厚度。采用这样的设计,能够控制所述有机发光二极管基板与所述封装基板之间的间隙。
作为本发明一优选实施例,所述玻璃布胶带40的熔点低于900℃。 所述玻璃布胶带40的厚度在3.8微米~50微米。所述玻璃布胶带40的宽度在200微米~2000微米。所述玻璃布胶带40的材质与所述有机发光二极管基板10和所述封装基板20的材质相同。所述玻璃布胶带40的热膨胀系数在3.0~6.0,单位10-6 m/K。
综上所述,本发明实施例通过将玻璃布胶带粘贴在封装基板,利用激光焊接,将有机发光二极管基板与封装基板贴合在一起,以使有机发光二极管密封在所述有机发光二极管基板与所述封装基板之间。由于玻璃布胶带具有平整性,因此可以使得有机发光二极管基板与封装基板充分接触,避免焊接缝隙的出现,使外部气体无法进入封装体内部,能有效阻止水汽、氧气进入封装体内部,提高了OLED的器件寿命。另外,玻璃布胶带易于从市场上获得,且价格便宜,因此可以有效降低OLED的焊接成本。再者,采用玻璃布胶带焊接,与UV胶封装相比,可以省去frit涂胶工序及frit加热烘干工序,且其水汽、氧气封止效果显著提高,实现简单。
尽管已经相对于一个或多个实现方式示出并描述了本发明,但是本领域技术人员基于对本说明书和附图的阅读和理解将会想到等价变型和修改。本发明包括所有这样的修改和变型,并且仅由所附权利要求的范围限制。特别地关于由上述组件执行的各种功能,用于描述这样的组件的术语旨在对应于执行所述组件的指定功能(例如其在功能上是等价的)的任意组件(除非另外指示),即使在结构上与执行本文所示的本说明书的示范性实现方式中的功能的公开结构不等同。此外,尽管本说明书的特定特征已经相对于若干实现方式中的仅一个被公开,但是这种特征可以与如可以对给定或特定应用而言是期望和有利的其他实现方式的一个或多个其他特征组合。而且,就术语“包括”、“具有”、“含有”或其变形被用在具体实施方式或权利要求中而言,这样的术语旨在以与术语“包含”相似的方式包括。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (13)

  1. 一种有机发光二极管的封装方法,其中所述方法包括:
    提供一封装基板;
    在所述封装基板上划分粘贴玻璃布胶带的位置;
    在所述位置上粘贴所述玻璃布胶带;
    将有机发光二极管基板与所述封装基板贴合;其中,所述有机发光二极管基板上方放置有有机发光二极管;
    通过激光融化所述玻璃布胶带,以使所述有机发光二极管基板与所述封装基板焊接在一起。
  2. 根据权利要求1所述的有机发光二极管的封装方法,其中在所述封装基板上划分粘贴玻璃布胶带的位置的步骤之后,包括:
    在所述位置上开设一凹槽;
    在所述位置上粘贴所述玻璃布胶带的步骤,包括:
    将所述玻璃布胶带粘贴在所述凹槽中。
  3. 根据权利要求1所述的有机发光二极管的封装方法,其中所述通过激光融化所述玻璃布胶带的步骤,包括:
    使用二氧化碳激光器,波长范围800nm~1200nm,调整焦距与焦斑大小及激光能量强度,使所述焦斑落在所述玻璃布胶带上,沿着所述玻璃布胶带移动所述二氧化碳激光器的所述焦斑,使所述有机发光二极管基板与所述封装基板焊接在一起。
  4. 一种有机发光二极管的封装方法,其中所述方法包括:
    提供一封装基板;
    在所述封装基板上划分粘贴玻璃布胶带的位置;
    在所述位置上粘贴所述玻璃布胶带;
    将有机发光二极管基板与所述封装基板贴合;
    融化所述玻璃布胶带,以使所述有机发光二极管基板与所述封装基板焊接在一起。
  5. 根据权利要求4所述的有机发光二极管的封装方法,其中在所述封装基板上划分粘贴玻璃布胶带的位置的步骤之后,包括:
    在所述位置上开设一凹槽;
    在所述位置上粘贴所述玻璃布胶带的步骤,包括:
    将所述玻璃布胶带粘贴在所述凹槽中。
  6. 根据权利要求4所述的有机发光二极管的封装方法,其中所述融化所述玻璃布胶带的步骤,包括:
    通过激光融化所述玻璃布胶带。
  7. 根据权利要求6所述的有机发光二极管的封装方法,其中所述通过激光融化所述玻璃布胶带的步骤,包括:
    使用二氧化碳激光器,波长范围800nm~1200nm,调整焦距与焦斑大小及激光能量强度,使所述焦斑落在所述玻璃布胶带上,沿着所述玻璃布胶带移动所述二氧化碳激光器的所述焦斑,使所述有机发光二极管基板与所述封装基板焊接在一起。
  8. 一种显示装置,其中所述显示装置包括:
    一有机发光二极管基板、一封装基板、设置于所述有机发光二极管基板与所述封装基板之间的有机发光二极管,以及玻璃布胶带,所述玻璃布胶带位于所述有机发光二极管基板与所述封装基板之间,且位于所述有机发光二极管的四周。
  9. 根据权利要求8所述的显示装置,其中在所述封装基板或所述有机发光二极管基板上开设有凹槽,所述玻璃布胶带设置于所述凹槽中。
  10. 根据权利要求8所述的显示装置,其中所述玻璃布胶带的熔点低于900℃。
  11. 根据权利要求8所述的显示装置,其中所述玻璃布胶带的厚度在3微米~50微米。
  12. 根据权利要求8所述的显示装置,其中所述玻璃布胶带的宽度在200微米~2000微米。
  13. 根据权利要求8所述的显示装置,其中所述玻璃布胶带的材质与所述有机发光二极管基板和/或所述封装基板的材质相同。
PCT/CN2015/082669 2015-06-23 2015-06-29 一种有机发光二极管的封装方法及显示装置 WO2016206125A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/774,133 US9859522B2 (en) 2015-06-23 2015-06-29 Method for packaging an organic light emitting diode and a display device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510349610.7 2015-06-23
CN201510349610.7A CN104934519B (zh) 2015-06-23 2015-06-23 一种有机发光二极管的封装方法及显示装置

Publications (1)

Publication Number Publication Date
WO2016206125A1 true WO2016206125A1 (zh) 2016-12-29

Family

ID=54121593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082669 WO2016206125A1 (zh) 2015-06-23 2015-06-29 一种有机发光二极管的封装方法及显示装置

Country Status (3)

Country Link
US (1) US9859522B2 (zh)
CN (1) CN104934519B (zh)
WO (1) WO2016206125A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105702882A (zh) * 2016-01-29 2016-06-22 深圳市华星光电技术有限公司 封装组件及其封装方法
CN107358871B (zh) * 2017-08-25 2020-12-11 京东方科技集团股份有限公司 显示器件
US11289677B2 (en) * 2018-04-25 2022-03-29 Yungu (Gu'an) Technology Co., Ltd. Display panel and display device having a protective pattern
KR20210113503A (ko) 2020-03-06 2021-09-16 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
CN112952025A (zh) * 2021-03-31 2021-06-11 京东方科技集团股份有限公司 显示基板及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005222789A (ja) * 2004-02-05 2005-08-18 Nishiyama Stainless Chem Kk 有機エレクトロルミネッセンスディスプレイ(以下、有機eld)パネルの製造方法、および、有機eldパネル用ガラス基板の薄型化方法
CN201749877U (zh) * 2010-06-29 2011-02-16 彩虹集团公司 一种有机发光器件的封装盖板
CN102403466A (zh) * 2011-11-18 2012-04-04 上海大学 一种用于光电器件封装的激光键合方法
CN102690045A (zh) * 2011-03-21 2012-09-26 上海微电子装备有限公司 封装装置及封装方法
CN103383992A (zh) * 2013-08-13 2013-11-06 深圳市华星光电技术有限公司 Oled器件的封装方法及用该方法封装的oled器件

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100688791B1 (ko) * 2006-01-27 2007-03-02 삼성에스디아이 주식회사 유기 전계 발광 표시장치 및 그 제조 방법.
CN102066280A (zh) * 2009-07-23 2011-05-18 旭硝子株式会社 带密封材料层的玻璃构件的制造方法及制造装置以及电子器件的制造方法
WO2011049582A1 (en) * 2009-10-23 2011-04-28 Hewlett-Packard Development Company, L.P. Raman spectroscopy light amplifying structure
DE102012202377A1 (de) * 2011-10-21 2013-04-25 Tesa Se Klebemasse insbesondere zur Kapselung einer elektronischen Anordnung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005222789A (ja) * 2004-02-05 2005-08-18 Nishiyama Stainless Chem Kk 有機エレクトロルミネッセンスディスプレイ(以下、有機eld)パネルの製造方法、および、有機eldパネル用ガラス基板の薄型化方法
CN201749877U (zh) * 2010-06-29 2011-02-16 彩虹集团公司 一种有机发光器件的封装盖板
CN102690045A (zh) * 2011-03-21 2012-09-26 上海微电子装备有限公司 封装装置及封装方法
CN102403466A (zh) * 2011-11-18 2012-04-04 上海大学 一种用于光电器件封装的激光键合方法
CN103383992A (zh) * 2013-08-13 2013-11-06 深圳市华星光电技术有限公司 Oled器件的封装方法及用该方法封装的oled器件

Also Published As

Publication number Publication date
US20160380228A1 (en) 2016-12-29
CN104934519A (zh) 2015-09-23
US9859522B2 (en) 2018-01-02
CN104934519B (zh) 2018-03-27

Similar Documents

Publication Publication Date Title
WO2016206125A1 (zh) 一种有机发光二极管的封装方法及显示装置
US9793507B2 (en) OLED device packaging method and OLED device packaged with same
US8448468B2 (en) Mask and method for sealing a glass envelope
JP4601673B2 (ja) ガラス外囲器を製造する方法
US8375744B2 (en) Hermetically sealed glass package and method of manufacture
TWI503044B (zh) 電激發光元件封裝體及其封裝方法
WO2014029133A1 (zh) 配向膜的涂布方法
TWI451610B (zh) 發光裝置之母板結構以及發光裝置及其製造方法
TWI394732B (zh) 密封玻璃包封之方法
WO2014048012A1 (zh) 液晶显示面板及其制作方法
US20100154476A1 (en) System and Method for Frit Sealing Glass Packages
WO2017117931A1 (zh) Oled显示面板的封装方法、oled显示面板及oled显示装置
WO2016169153A1 (zh) 显示面板及其封装方法、显示装置
WO2016061852A1 (zh) 基板的封装方法及封装结构
US20140342148A1 (en) Glass structures and methods of creating and processing glass structures
WO2014169721A1 (zh) 一种发光二极管封装基板与封装结构及其制作方法
US20100227524A1 (en) Method of manufacturing organic light emitting diode display device
JP2010269371A (ja) 光照射装置及びそれを用いた有機電界発光表示装置の製造方法
WO2015027534A1 (zh) 一种玻璃基板的封装方法
WO2018040237A1 (zh) 双面oled显示装置
WO2017049652A1 (zh) 一种有机发光器件
TW201521260A (zh) 電激發光組件的封裝方法
WO2015078041A1 (zh) 液晶面板及其制作方法
CN108281566B (zh) Oled面板及其制作方法
WO2014029116A1 (zh) 液晶面板的制作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14774133

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15896021

Country of ref document: EP

Kind code of ref document: A1