WO2016203781A1 - 電流センサ - Google Patents

電流センサ Download PDF

Info

Publication number
WO2016203781A1
WO2016203781A1 PCT/JP2016/052250 JP2016052250W WO2016203781A1 WO 2016203781 A1 WO2016203781 A1 WO 2016203781A1 JP 2016052250 W JP2016052250 W JP 2016052250W WO 2016203781 A1 WO2016203781 A1 WO 2016203781A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic sensor
sensor
primary conductor
current
Prior art date
Application number
PCT/JP2016/052250
Other languages
English (en)
French (fr)
Inventor
清水 康弘
仁志 坂口
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2017524652A priority Critical patent/JP6540802B2/ja
Publication of WO2016203781A1 publication Critical patent/WO2016203781A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices

Definitions

  • the present invention relates to a current sensor, and more particularly to a current sensor that measures a large current.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-329749
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-329749
  • the magnetic device described in Patent Document 1 includes a substrate, at least one magnetic element mounted on the first main surface of the substrate, and a magnetic field of a soft magnetic material disposed on the first main surface side of the substrate. With a shield.
  • the magnetic shield includes a curved region that curves so as to be convex when viewed from the substrate.
  • the curved region includes at least a region where the magnetic shield and the magnetic element overlap when viewed from the top surface of the substrate.
  • the space between the magnetic shield and the magnetic element is magnetically hollow.
  • the current sensor described in Patent Document 2 is provided on the opposite side of the magnetic detection element with the measured conductor, the magnetic detection element for detecting the magnetism generated by the current flowing through the measured conductor, and the measured conductor interposed therebetween.
  • the magnetic device described in Patent Document 1 realizes a shielding effect in all directions by a curved magnetic shield.
  • the magnetic shield is arranged so as to intersect the detection axis of the magnetic sensor, the linearity between the input magnetic field and the output voltage in the magnetic sensor is lowered, and the measurement accuracy of the current sensor is lowered.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a current sensor with high measurement accuracy while reducing the influence of an external magnetic field.
  • a current sensor detects a primary conductor through which a current to be measured flows, the strength of a magnetic field generated by the current flowing through the primary conductor, and has at least one magnetic sensor having a detection axis; And a arch-shaped magnetic body portion that is fixed on the substrate and surrounds the magnetic sensor. A pair of openings formed by fixing the magnetic body portion on the substrate are arranged in a direction along the detection axis and face each other.
  • the current sensor further includes a calculation unit that calculates the value of the current by calculating the detection value of the first magnetic sensor and the detection value of the second magnetic sensor. Regarding the strength of the magnetic field generated by the current flowing through the primary conductor, the phase of the detection value of the first magnetic sensor and the phase of the detection value of the second magnetic sensor are opposite in phase.
  • the calculation unit is a subtractor or a differential amplifier.
  • the current sensor further includes a calculation unit that calculates the value of the current by calculating the detection value of the first magnetic sensor and the detection value of the second magnetic sensor. Regarding the strength of the magnetic field generated by the current flowing through the primary conductor, the phase of the detection value of the first magnetic sensor and the phase of the detection value of the second magnetic sensor are in phase.
  • the calculation unit is an adder or a summing amplifier.
  • the first magnetic sensor and the second magnetic sensor are mounted on one substrate.
  • the substrate is disposed so as to be orthogonal to the length direction of the primary conductor, and penetrates through the primary conductor.
  • the magnetic part is electrically grounded.
  • a current sensor is further provided with the 3rd magnetic body part surrounding the circumference
  • FIG. 1 is an exploded perspective view showing a configuration of a current sensor according to Embodiment 1 of the present invention.
  • FIG. 2 is a plan view showing the configuration of the current sensor according to Embodiment 1 of the present invention.
  • FIG. 3 is a side view of the current sensor of FIG. 2 as viewed from the direction of arrow III.
  • 4 is a cross-sectional view of the current sensor of FIG. 2 as viewed from the direction of arrows IV-IV.
  • FIG. 5 is a circuit diagram showing a circuit configuration of the current sensor according to Embodiment 1 of the present invention.
  • the primary conductor 110 is made of copper.
  • the material of the primary conductor 110 is not limited to this, and may be a metal such as silver or aluminum or an alloy containing these metals.
  • the surface treatment of the primary conductor 110 may be performed.
  • at least one plating layer made of a metal such as nickel, tin, silver, copper, or an alloy containing these metals may be provided on the surface of the primary conductor 110.
  • the primary conductor 110 is formed by pressing a thin plate.
  • the method of forming the primary conductor 110 is not limited to this, and the primary conductor 110 may be formed by a method such as cutting or casting.
  • the magnetic sensor 120 outputs a positive value when a magnetic field directed in one direction of the detection axis is detected, and a negative value when a magnetic field directed in a direction opposite to the one direction of the detection axis is detected.
  • the output has an odd function input / output characteristic.
  • the direction of the detection axis (magnetic sensing direction) of the magnetic sensor 120 is the width direction (X-axis direction) of the primary conductor 110. That is, the magnetic sensor 120 has a direction (X-axis direction) orthogonal to both the direction connecting the front and back surfaces of the primary conductor 110 in the shortest direction (Z-axis direction) and the direction in which the current 1 to be measured flows (Y-axis direction). ) Magnetic field can be detected.
  • the magnetic sensor 120 has a Wheatstone bridge type bridge circuit including four AMR (Anisotropic Magneto Resistance) elements which are magnetoresistive elements.
  • the magnetic sensor 120 may have a half bridge circuit composed of two magnetoresistive elements.
  • the magnetic sensor 120 is electrically connected to each of the differential amplifier and the passive element.
  • Magnetic sensor elements such as a magnetoresistive element and a Hall element may be packaged with a resin, or may be potted with a silicone resin or an epoxy resin. When a plurality of magnetic sensor elements are packaged, the plurality of magnetic sensor elements may be packaged in one, or each of the plurality of magnetic sensor elements may be packaged separately. In addition, a plurality of magnetic sensor elements and electronic components may be integrated into a single package.
  • the magnetic sensor 120 is mounted on a circuit board 130 together with a differential amplifier and passive elements. 1 to 4, the differential amplifier and the passive element are not shown.
  • the differential amplifier and the passive element may be mounted on a circuit board different from the circuit board 130 on which the magnetic sensor 120 is mounted.
  • the circuit board 130 is placed on the surface of the primary conductor 110.
  • the circuit board 130 is a printed wiring board, and is composed of a base material such as glass epoxy or alumina and a wiring formed by patterning a metal foil such as copper provided on the surface of the base material.
  • the magnetic body portion 140 covers a portion of the surface of the magnetic sensor 120 that does not face the circuit board 130 other than the surface that intersects the direction along the detection axis of the magnetic sensor 120.
  • the magnetic body part 140 includes a ceiling part 141 that faces the circuit board 130, and a pair of leg parts 142 that protrude from the ceiling part 141 at a distance from each other and are in contact with the circuit board 130.
  • the ceiling part 141 faces the magnetic sensor 120 in the thickness direction (Z-axis direction) of the primary conductor 110.
  • Each of the pair of leg portions 142 faces the magnetic sensor 120 in the length direction (Y-axis direction) of the primary conductor 110.
  • the ceiling part 141 has a flat plate shape, and the ceiling part 141 and the leg part 142 are substantially orthogonal to each other.
  • the ceiling part 141 may have a curved shape such as a convex hemispherical shape or a semicylindrical shape.
  • the magnetic part 140 may have a semi-cylindrical shape.
  • a gap is provided between the inner surface of the magnetic body 140 and the surface of the magnetic sensor 120, and the magnetic body 140 and the magnetic sensor 120 are not in contact with each other.
  • the magnetic part 140 is bonded onto the circuit board 130 with an adhesive or solder.
  • the magnetic body 140 may be resin-sealed in one package together with the magnetic sensor element.
  • the external magnetic field source is physically located between the magnetic sensor 120 and the magnetic body part 140. I can't.
  • the magnetic part 140 is made of a magnetic material such as silicon steel, ferrite, or permalloy.
  • a magnetic material such as silicon steel, ferrite, or permalloy.
  • the magnetic sensor 120 By covering the magnetic sensor 120 with the magnetic body portion 140, the magnetic sensor 120 can be prevented from being affected by an external magnetic field.
  • the high frequency component of the external magnetic field can penetrate only to a depth of about 2 to 3 times the skin depth of the magnetic part 140 due to the skin effect. Therefore, it can suppress that the high frequency component of an external magnetic field reaches the magnetic sensor 120 arrange
  • FIG. Note that the thickness of the magnetic part 140 is determined in accordance with the frequency of the high frequency component of the external magnetic field that is assumed.
  • the magnetic field component acting on the magnetic sensor 120 in the Y-axis direction and the Z-axis direction can be reduced, so that the input dynamic range of the current sensor 100 is expanded. Can do.
  • a pair of openings 140 h formed by fixing the magnetic body portion 140 on the circuit board 130 are arranged in a direction along the detection axis of the magnetic sensor 120 and face each other, so that the current 1 to be measured is
  • the generated magnetic flux enters the magnetic sensor 120 without passing through the magnetic part 140. Thereby, the linearity of the input magnetic field and output voltage in the magnetic sensor 120 can be maintained, and the measurement accuracy of the current sensor 100 can be increased.
  • the current sensor 100 includes the magnetic body portion 140, thereby maintaining high linearity between the input magnetic field and the output voltage in the magnetic sensor 120 while reducing the influence of the external magnetic field.
  • the measurement accuracy of the current sensor 100 can be increased.
  • FIG. 6 is a perspective view showing an arrangement of magnetic sensors included in the current sensor according to the embodiment.
  • FIG. 7 is a plan view of the magnetic sensor of FIG. 6 viewed from the direction of arrow VII.
  • FIG. 8 is a perspective view illustrating an arrangement of magnetic sensors included in the current sensor according to Comparative Example 1.
  • FIG. 9 is a plan view of the magnetic sensor of FIG. 8 viewed from the direction of the arrow IX.
  • FIG. 10 is a perspective view illustrating an arrangement of magnetic sensors included in the current sensor according to Comparative Example 2.
  • FIG. 11 is a plan view of the magnetic sensor of FIG. 10 viewed from the direction of arrow XI.
  • the pair of openings 140 h formed by fixing the magnetic body portion 140 on the circuit board 130 is along the detection axis of the magnetic sensor 120. They are lined up in direction 2 and face each other. As shown in FIGS. 8 and 9, in the current sensor according to Comparative Example 1, the magnetic body portion 140 is not provided. As shown in FIGS. 10 and 11, in the current sensor according to Comparative Example 2, the pair of openings 140 h formed by fixing the magnetic body portion 140 on the circuit board 130 serve as the detection axis of the magnetic sensor 120. They are aligned with each other in the orthogonal direction and face each other. That is, the current sensor according to the comparative example 2 differs from the current sensor according to the example in the attachment angle of the magnetic body part 140 in the plane of the circuit board 130 by 90 °.
  • the magnetic body 140 was made of silicon steel, the thickness of the magnetic body 140 was 0.2 mm, and a magnetic field of ⁇ 10 mT was applied in the direction 2 along the detection axis of the magnetic sensor 120.
  • the error rate of the output voltage of the magnetic sensor is defined.
  • the displacement of the virtual output voltage having linearity is calculated by approximating the displacement of the output voltage with respect to the magnetic flux density of the magnetic field applied to the magnetic sensor by a linear function using the least square method.
  • the ratio of the difference between the output voltage and the virtual output voltage with respect to the full scale which is the interval between the maximum value and the minimum value of the virtual output voltage in the magnetic flux density range of the applied magnetic field, and the error of the output voltage of the magnetic sensor. Rate.
  • FIG. 12 is a graph showing output characteristics of the magnetic sensor in the current sensor according to each of the example and the comparative example 1.
  • the vertical axis represents the output voltage (V) of the magnetic sensor 120
  • the horizontal axis represents the input magnetic field (mT).
  • the output voltage of the magnetic sensor 120 according to the example in which the magnetic body part 140 is provided is compared with the output voltage of the magnetic sensor 120 according to the comparative example 1 in which the magnetic body part 140 is not provided. However, the linearity with the input magnetic field was maintained.
  • FIG. 13 is a graph showing the distribution of the error rate of the output voltage of the magnetic sensor in the current sensor according to each of the example and the comparative example 2.
  • the vertical axis represents the error rate (% FS) of the output voltage of the magnetic sensor 120
  • the horizontal axis represents the input magnetic field (mT).
  • the error rate of the output voltage of the magnetic sensor 120 according to the example was smaller than the error rate of the output voltage of the magnetic sensor according to Comparative Example 2. From this result, by arranging the magnetic body part 140 so that the input magnetic field enters the magnetic sensor 120 without passing through the magnetic body part 140, the linearity between the input magnetic field and the output voltage in the magnetic sensor 120 is kept high. I was able to confirm that it was possible.
  • Embodiment 2 a current sensor according to Embodiment 2 of the present invention will be described.
  • the current sensor according to the present embodiment is mainly different from the current sensor 100 according to the first embodiment in that it includes two magnetic sensors, and therefore the same configuration as the current sensor 100 according to the first embodiment is the same. The description thereof will not be repeated.
  • FIG. 14 is a cross-sectional view showing the configuration of the current sensor according to Embodiment 2 of the present invention.
  • FIG. 15 is a circuit diagram showing a circuit configuration of a current sensor according to Embodiment 2 of the present invention. In FIG. 14, the same cross-sectional view as FIG. 3 is shown.
  • the first magnetic sensor 120a is disposed on the surface side of the primary conductor 110
  • the second magnetic sensor 120b is the primary conductor 110. It is arranged on the back side.
  • the first circuit board 130 a on which the first magnetic sensor 120 a is mounted is placed on the surface of the primary conductor 110.
  • a second circuit board 130b on which the second magnetic sensor 120b is mounted is disposed on the back surface of the primary conductor 110. That is, the first magnetic sensor 120a and the second magnetic sensor 120b are located on opposite sides of the primary conductor 110.
  • the first magnetic sensor 120a is surrounded by an arch-shaped first magnetic body portion 140a fixed on the first circuit board 130a.
  • a pair of first openings 140ah formed by fixing the first magnetic body portion 140a on the first circuit board 130a are arranged in a direction along the detection axis of the first magnetic sensor 120a and face each other.
  • the second magnetic sensor 120b is surrounded by an arched second magnetic body portion 140b fixed on the second circuit board 130b.
  • a pair of second openings 140bh formed by fixing the second magnetic body part 140b on the second circuit board 130b are arranged in a direction along the detection axis of the second magnetic sensor 120b and face each other.
  • the casing is preferably formed of an engineering plastic having high temperature resistance such as PPS (polyphenylene sulfide).
  • PPS polyphenylene sulfide
  • fastening with screws thermal welding with resin, bonding with an adhesive, or the like can be used.
  • non-magnetic screws it is preferable to use non-magnetic screws so as not to disturb the magnetic field.
  • the housing may be configured integrally with the primary conductor 110 or may be configured to be attachable to and detachable from the primary conductor 110.
  • the first magnetic sensor 120a is mounted on the first circuit board 130a together with the differential amplifier and the passive element.
  • the second magnetic sensor 120b is mounted on the second circuit board 130b together with the differential amplifier and the passive element. In FIG. 14, the differential amplifier and the passive element are not shown.
  • the direction (magnetic direction) of the detection axis of each of the first magnetic sensor 120a and the second magnetic sensor 120b is the width direction (X-axis direction) of the primary conductor 110. That is, each of the first magnetic sensor 120a and the second magnetic sensor 120b has a direction in which the front surface and the back surface of the primary conductor 110 are connected in the shortest direction (Z-axis direction) and a direction in which the current to be measured flows (Y-axis direction). It is possible to detect a magnetic field in a direction orthogonal to both (X-axis direction).
  • the first magnetic sensor 120a and the second magnetic sensor 120b output a positive value when a magnetic field directed in one direction of the detection axis is detected, and a magnetic field directed in a direction opposite to the one direction of the detection axis. It has an input / output characteristic that outputs a negative value when detected.
  • each of the magnetoresistive elements of the first magnetic sensor 120a and the second magnetic sensor 120b includes a barber pole type electrode, so that the magnetoresistive element has a predetermined angle with respect to the magnetization direction of the magnetoresistive film. Biased so that the current to be measured flows.
  • the magnetization direction of the magnetoresistive film in the magnetoresistive element of the first magnetic sensor 120a and the magnetization direction of the magnetoresistive film in the magnetoresistive element of the second magnetic sensor 120b are the same direction. Therefore, the fall of the output accuracy of the current sensor 200 by the influence of an external magnetic field can be made small.
  • each of the first magnetic sensor 120a and the second magnetic sensor 120b has a bridge circuit including four magnetoresistive elements.
  • the current sensor 200 further includes a calculation unit 290 that calculates the value of the current to be measured flowing through the primary conductor 110 by calculating the detection value of the first magnetic sensor 120a and the detection value of the second magnetic sensor 120b.
  • the calculation unit 290 is a differential amplifier. However, the calculation unit 290 may be a subtracter.
  • the primary conductor With respect to the strength of the magnetic field generated by the current to be measured flowing through 110, the phase of the detection value of the first magnetic sensor 120a is opposite to the phase of the detection value of the second magnetic sensor 120b.
  • the first circuit board 130a, the second circuit board 130b, and the primary conductor 110 are located between the first magnetic sensor 120a and the second magnetic sensor 120b.
  • the external magnetic field source cannot be physically located between the first magnetic sensor 120a and the second magnetic sensor 120b.
  • the direction of the magnetic field component in the direction of the detection axis of the magnetic field applied to the first magnetic sensor 120a from the external magnetic field source and the detection axis of the magnetic field applied to the second magnetic sensor 120b from the external magnetic field source is the same direction. Therefore, if the strength of the external magnetic field detected by the first magnetic sensor 120a is a positive value, the strength of the external magnetic field detected by the second magnetic sensor 120b is also a positive value.
  • the calculation unit 290 subtracts the detection value of the second magnetic sensor 120b from the detection value of the first magnetic sensor 120a, so that the magnetic field from the external magnetic field source is hardly detected. That is, the influence of the external magnetic field is reduced.
  • the directions of the detection axes with positive detection values may be opposite to each other (opposite 180 °).
  • the strength of the external magnetic field detected by the first magnetic sensor 120a is a positive value
  • the strength of the external magnetic field detected by the second magnetic sensor 120b is a negative value.
  • the phase of the detection value of the first magnetic sensor 120a and the phase of the detection value of the second magnetic sensor 120b are in phase.
  • an adder or an addition amplifier is used as the calculation unit 290 instead of the differential amplifier.
  • the detected value of the first magnetic sensor 120a and the detected value of the second magnetic sensor 120b are added by an adder or an adding amplifier, thereby obtaining the absolute value of the detected value of the first magnetic sensor 120a.
  • the absolute value of the detection value of the second magnetic sensor 120b is subtracted. Thereby, the magnetic field from the external magnetic field source is hardly detected. That is, the influence of the external magnetic field is reduced.
  • the detection value of the first magnetic sensor 120a and the detection value of the second magnetic sensor 120b are added by an adder or an addition amplifier.
  • the value of the current to be measured flowing through the primary conductor 110 is calculated.
  • an adder or an addition amplifier may be used as the calculation unit in place of the differential amplifier while the input / output characteristics of the first magnetic sensor 120a and the second magnetic sensor 120b have opposite polarities.
  • the current sensor 200 includes the first magnetic body part 140a and the second magnetic body part 140b, thereby reducing the influence of the external magnetic field, and each of the first magnetic sensor 120a and the second magnetic sensor 120b.
  • the linearity between the input magnetic field and the output voltage at can be maintained high, and the measurement accuracy of the current sensor 200 can be increased.
  • the current sensor 300 according to the present embodiment further includes a third magnetic body portion that surrounds the primary conductor and the circuit board, and that two magnetic sensors are mounted on one circuit board. Since the current sensor 200 is mainly different from the current sensor 200 according to the second embodiment, the same components as those of the current sensor 200 according to the second embodiment are denoted by the same reference numerals and description thereof is not repeated.
  • FIG. 16 is a perspective view showing a configuration of a current sensor according to Embodiment 3 of the present invention.
  • FIG. 17 is a front view of the current sensor of FIG. 16 as viewed from the direction of the arrow XVII.
  • FIG. 18 is a side view of the circuit board of the current sensor according to the third embodiment of the present invention as viewed from the side.
  • the first magnetic sensor 120a and the second magnetic sensor 120b are mounted on one circuit board 330.
  • a rectangular through hole into which the primary conductor 110 is inserted is provided in the center of the circuit board 330.
  • the circuit board 330 is disposed so as to be orthogonal to the length direction (Y-axis direction) of the primary conductor 110 and penetrates the primary conductor 110.
  • the first magnetic sensor 120a is mounted on the circuit board 330 together with the first operational amplifier 380a and the first passive element 390a which are differential amplifiers.
  • the second magnetic sensor 120b is mounted on the circuit board 330 together with the second operational amplifier 380b, which is a differential amplifier, and the second passive element 390b.
  • the current sensor 300 further includes a third magnetic body portion 350 surrounding the primary conductor 110 and the circuit board 330.
  • the third magnetic body portion 350 has a cylindrical shape.
  • the third magnetic body portion 350 surrounds the circuit board 330 with a space from the circuit board 330.
  • a spacer made of an insulator (not shown) is sandwiched between the third magnetic body portion 350 and the circuit board 330.
  • the third magnetic body portion 350 covers a portion of the surface of the first magnetic sensor 120a other than the surface that intersects the length direction (Y-axis direction) of the primary conductor 110.
  • the third magnetic body portion 350 covers a portion of the surface of the second magnetic sensor 120b other than the surface that intersects the length direction (Y-axis direction) of the primary conductor 110.
  • the third magnetic body portion 350 may be electrically grounded. In this case, the third magnetic body portion 350 functions as an electromagnetic shield.
  • a fourth magnetic body portion 340a formed of the same shape and material as the first magnetic body portion 140a, and a second magnetic body
  • a fifth magnetic body portion 340b formed of the same shape and material as the portion 140b is provided.
  • Each of the fourth magnetic body portion 340a and the fifth magnetic body portion 340b is bonded to the circuit board 330 with an adhesive or solder.
  • the fourth magnetic body portion 340a is disposed substantially in plane symmetry with the first magnetic body portion 140a with respect to the circuit board 330.
  • the fifth magnetic body portion 340b is disposed substantially in plane symmetry with the second magnetic body portion 140b with respect to the circuit board 330.
  • each shape of the 4th magnetic body part 340a and the 5th magnetic body part 340b is not restricted above, For example, flat form may be sufficient.
  • the 4th magnetic body part 340a and the 5th magnetic body part 340b do not necessarily need to be provided.
  • the first housing 360 is disposed between the primary conductor 110 and the circuit board 330.
  • the first housing 360 has a cylindrical shape.
  • the first housing 360 is inserted into the through hole of the circuit board 330, and the primary conductor 110 is inserted inside the first housing 360.
  • the first housing 360 is preferably formed of an engineering plastic having high temperature resistance such as PPS.
  • the first housing 360 may be configured integrally with the primary conductor 110 or may be configured to be detachable from the primary conductor 110.
  • the first magnetic sensor 120a and the second magnetic sensor 120b By covering the first magnetic sensor 120a and the second magnetic sensor 120b with the third magnetic body portion 350, it is possible to suppress the influence of an external magnetic field on each of the first magnetic sensor 120a and the second magnetic sensor 120b.
  • the magnetic field generated by the current to be measured flowing through the primary conductor 110 circulates inside the third magnetic body portion 350 and acts on each of the first magnetic sensor 120a and the second magnetic sensor 120b. Therefore, the linearity between the input magnetic field and the output voltage in each of the first magnetic sensor 120a and the second magnetic sensor 120b can be maintained.
  • the configuration is not limited to the configuration in which the first magnetic sensor 120a and the second magnetic sensor 120b are mounted on one circuit board 330, and the third magnetic body portion 350 is added to the current sensor 200 according to the second embodiment of the present invention. It is good also as a structure.
  • FIG. 19 is a front view showing a configuration in which the current sensor according to the present embodiment is applied to a three-phase three-wire wiring.
  • the current sensor 300 when the current sensor 300 according to the present embodiment is applied to a three-phase three-wire wiring, the current sensor 300 is aligned with the primary conductor 110 and includes two currents that are not measured. Other primary conductors 410 and 411 are further provided.
  • the third magnetic body portion 350 includes each of the first magnetic sensor 120a and the second magnetic sensor 120b and another primary conductor 410 in a direction along the detection axis of each of the first magnetic sensor 120a and the second magnetic sensor 120b. , 411.
  • the arrangement of the other primary conductors 410 and 411 is not limited to the case where they are arranged in parallel to the primary conductor 110 as shown in FIG.
  • the magnetic flux 410 e of the magnetic field generated by the non-measurement current flowing in the other primary conductor 410 passes through the third magnetic body portion 350 and then detected by the first magnetic sensor 120 a. It enters in an oblique direction with respect to the direction 2 along the axis.
  • the magnetic flux 410e mainly enters the first magnetic body part 140a having a higher permeability than the first magnetic sensor 120a to become the magnetic flux 411e, and after passing through the first magnetic body part 140a, from the first magnetic body part 140a. Advances to become magnetic flux 412e.
  • the magnetic flux 412e advances in the same direction as the magnetic flux 410e.
  • the first magnetic body portion 140a affects the first magnetic sensor 120a by the magnetic field generated by the current not measured. Can be suppressed. Also in the second magnetic sensor 120b, the second magnetic body portion 140b can suppress the influence of the magnetic field generated by the current outside the measurement target. As a result, the measurement accuracy of the current sensor 300 can be increased.
  • the third magnetic body portion 350 when the third magnetic body portion 350 is electrically grounded, the third magnetic body portion 350 functions as an electromagnetic shield, so that each of the first magnetic sensor 120a and the second magnetic sensor 120b is not subject to measurement. It is possible to more effectively suppress the magnetic field generated by the current from reaching.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Hall/Mr Elements (AREA)

Abstract

電流センサは、測定対象の電流が流れる1次導体(110)と、1次導体(110)を流れる上記電流により発生する磁界の強さを検出し、検出軸を有する少なくとも1つの磁気センサ(120)と、磁気センサ(120)が実装される基板(130)と、基板(130)上に固定され、磁気センサ(120)の周りを囲むアーチ状の磁性体部(140)とを備える。磁性体部(140)が基板上に固定されて形成される1対の開口部(140h)は、上記検出軸に沿う方向に並んで互いに対向している。

Description

電流センサ
 本発明は、電流センサに関し、特に、大電流を計測する電流センサに関する。
 磁気シールドを備えた磁性体装置を開示した先行文献として、国際公開第2011/046091号(特許文献1)、および、特開2003-329749号公報(特許文献2)がある。
 特許文献1に記載された磁性体装置は、基板と、基板の第1主面上に搭載された少なくとも1つの磁性体素子と、基板の第1主面側に配置された軟磁性体の磁気シールドとを備える。磁気シールドは、基板から見て凸になるように湾曲する湾曲領域を含む。その湾曲領域は、少なくとも、基板上面から見て磁気シールドと磁性体素子とがオーバーラップする領域を含む。磁気シールドと磁性体素子との間の空間は、磁気的に空洞である。
 特許文献2に記載された電流センサは、被測定導体と、被測定導体を流れる電流により発生した磁気を検出する磁気検出素子と、被測定導体を挟んで磁気検出素子の反対側に設けられた第1磁性体と、被測定導体および磁気検出素子を挟んで第1磁性体の反対側に設けられた第2磁性体とを備える。
国際公開第2011/046091号 特開2003-329749号公報
 特許文献1に記載された磁性体装置は、湾曲した磁気シールドによって、全方位に対するシールド効果を実現している。電流センサにおいては、磁気センサの検出軸と交差するように磁気シールドが配置された場合、磁気センサにおける入力磁界と出力電圧との線形性が低下し、電流センサの測定精度が低下する。
 特許文献2に記載された電流センサにおいては、磁気シールドによって、1次導体と磁気センサとを囲んでいる。磁気センサは、1次導体の発熱の影響の低減、および1次導体との絶縁距離の確保の観点から、1次導体に対して間隔を置いて配置される。そのため、磁気シールドと磁気センサとの間に比較的大きな隙間が存在し、この隙間によって外部磁界に対する磁気シールドの効果が低減し、電流センサの測定精度が低下する。
 本発明は上記の問題点に鑑みてなされたものであって、外部磁界の影響を低減しつつ測定精度の高い電流センサを提供することを目的とする。
 本発明に基づく電流センサは、測定対象の電流が流れる1次導体と、1次導体を流れる上記電流により発生する磁界の強さを検出し、検出軸を有する少なくとも1つの磁気センサと、磁気センサが実装される基板と、基板上に固定され、磁気センサの周りを囲むアーチ状の磁性体部とを備える。磁性体部が基板上に固定されて形成される1対の開口部は、上記検出軸に沿う方向に並んで互いに対向している。
 本発明の一形態においては、電流センサは、磁気センサとして第1磁気センサおよび第2磁気センサを有し、磁性体部として第1磁性体部および第2磁性体部を有する。第1磁気センサは、1次導体の表面側に配置され、第1磁性体部に周りを囲まれている。第2磁気センサは、1次導体の裏面側に配置され、第2磁性体部に周りを囲まれている。上記電流は、1次導体を1次導体の長さ方向に流れる。第1磁気センサの検出軸および第2磁気センサの検出軸の各々は、1次導体の厚さ方向および上記長さ方向の両方に直交する方向である1次導体の幅方向に向いている。
 本発明の一形態においては、電流センサは、第1磁気センサの検出値と第2磁気センサの検出値とを演算することにより上記電流の値を算出する算出部をさらに備える。1次導体を流れる上記電流により発生する磁界の強さについて、第1磁気センサの検出値の位相と第2磁気センサの検出値の位相とが逆相である。算出部は減算器または差動増幅器である。
 本発明の一形態においては、電流センサは、第1磁気センサの検出値と第2磁気センサの検出値とを演算することにより上記電流の値を算出する算出部をさらに備える。1次導体を流れる上記電流により発生する磁界の強さについて、第1磁気センサの検出値の位相と第2磁気センサの検出値の位相とが同相である。算出部は加算器または加算増幅器である。
 本発明の一形態においては、第1磁気センサおよび第2磁気センサが、1つの基板に実装されている。基板は、1次導体の長さ方向と直交するように配置され、1次導体に貫通されている。
 本発明の一形態においては、磁性体部は電気的に接地されている。
 本発明の一形態においては、電流センサは、1次導体および基板の周りを囲む、第3磁性体部をさらに備える。
 本発明の一形態においては、電流センサは、1次導体と並び、測定対象外の電流が流れる他の1次導体をさらに備える。上記検出軸に沿う方向にて、磁気センサと他の1次導体との間に、第3磁性体部が位置している。
 本発明によれば、外部磁界の影響を低減しつつ電流センサの測定精度を高めることができる。
本発明の実施形態1に係る電流センサの構成を示す分解斜視図である。 本発明の実施形態1に係る電流センサの構成を示す平面図である。 図2の電流センサを矢印III方向から見た側面図である。 図2の電流センサをIV-IV線矢印方向から見た断面図である。 本発明の実施形態1に係る電流センサの回路構成を示す回路図である。 実施例に係る電流センサが備える磁気センサの配置を示す斜視図である。 図6の磁気センサを矢印VII方向から見た平面図である。 比較例1に係る電流センサが備える磁気センサの配置を示す斜視図である。 図8の磁気センサを矢印IX方向から見た平面図である。 比較例2に係る電流センサが備える磁気センサの配置を示す斜視図である。 図10の磁気センサを矢印XI方向から見た平面図である。 実施例および比較例1の各々に係る電流センサにおける磁気センサの出力特性を示すグラフである。 実施例および比較例2の各々に係る電流センサにおける磁気センサの出力電圧の誤差率の分布を示すグラフである。 本発明の実施形態2に係る電流センサの構成を示す断面図である。 本発明の実施形態2に係る電流センサの回路構成を示す回路図である。 本発明の実施形態3に係る電流センサの構成を示す斜視図である。 図16の電流センサを矢印XVII方向から見た正面図である。 本発明の実施形態3に係る電流センサの回路基板を側面から見た側面図である。 本実施形態に係る電流センサを3相3線式の配線に適用した構成を示す正面図である。 図19の電流センサの第1磁気センサに作用する磁束を模式的に示す正面図である。
 以下、本発明の各実施形態に係る電流センサについて図を参照して説明する。以下の実施形態の説明においては、図中の同一または相当部分には同一符号を付して、その説明は繰り返さない。
 (実施形態1)
 図1は、本発明の実施形態1に係る電流センサの構成を示す分解斜視図である。図2は、本発明の実施形態1に係る電流センサの構成を示す平面図である。図3は、図2の電流センサを矢印III方向から見た側面図である。図4は、図2の電流センサをIV-IV線矢印方向から見た断面図である。図5は、本発明の実施形態1に係る電流センサの回路構成を示す回路図である。図1~4においては、後述する1次導体110の幅方向をX軸方向、1次導体110の長さ方向をY軸方向、1次導体110の厚さ方向をZ軸方向として、図示している。
 図1~4に示すように、本発明の実施形態1に係る電流センサ100は、測定対象の電流が流れる1次導体110と、1次導体110を流れる測定対象の電流1により発生する磁界の強さを検出し、検出軸を有する磁気センサ120と、磁気センサ120が実装される回路基板130と、回路基板130上に固定され、磁気センサ120の周りを囲むアーチ状の磁性体部140とを備える。磁性体部140が回路基板130上に固定されて形成される1対の開口部140hは、磁気センサ120の検出軸に沿う方向に並んで互いに対向している。測定対象の電流1は、1次導体110の長さ方向(Y軸方向)に流れる。
 本実施形態においては、1次導体110は、銅で構成されている。ただし、1次導体110の材料はこれに限られず、銀、アルミニウムなどの金属またはこれらの金属を含む合金でもよい。
 1次導体110は、表面処理が施されていてもよい。たとえば、ニッケル、錫、銀、銅などの金属またはこれらの金属を含む合金からなる、少なくとも1層のめっき層が、1次導体110の表面に設けられていてもよい。
 本実施形態においては、薄板をプレス加工することにより1次導体110を形成している。ただし、1次導体110の形成方法はこれに限られず、切削または鋳造などの方法によって1次導体110を形成してもよい。
 磁気センサ120は、検出軸の一方向に向いた磁界を検出した場合に正の値で出力し、かつ、検出軸の一方向とは反対方向に向いた磁界を検出した場合に負の値で出力する、奇関数入出力特性を有している。磁気センサ120の検出軸の方向(感磁方向)は、1次導体110の幅方向(X軸方向)である。すなわち、磁気センサ120は、1次導体110の表面と裏面とを最短で結ぶ方向(Z軸方向)および測定対象の電流1が流れる方向(Y軸方向)の両方と直交する方向(X軸方向)の磁界を検出可能とされている。
 図5に示すように、本実施形態に係る電流センサ100において、磁気センサ120は、磁気抵抗素子である4つのAMR(Anisotropic Magneto Resistance)素子からなるホイートストンブリッジ型のブリッジ回路を有する。なお、磁気センサ120が、2つの磁気抵抗素子からなるハーフ・ブリッジ回路を有していてもよい。磁気センサ120は、差動増幅器および受動素子の各々と電気的に接続されている。
 AMR素子は、バーバーポール型電極を含むことによって、奇関数入出力特性を有している。具体的には、AMR素子は、バーバーポール型電極を含むことにより、AMR素子における磁気抵抗膜の磁化方向に対して所定の角度をなす方向に測定対象の電流が流れるようにバイアスされている。なお、磁気センサ120が、AMR素子に代えて、GMR(Giant Magneto Resistance)若しくはTMR(Tunnel Magneto Resistance)などの磁気抵抗素子またはホール素子を有していてもよい。
 磁気抵抗素子およびホール素子などの磁気センサ素子は、樹脂パッケージされていてもよく、または、シリコーン樹脂若しくはエポキシ樹脂などでポッティングされていてもよい。複数の磁気センサ素子がパッケージされている場合、複数の磁気センサ素子が1つにパッケージされていてもよいし、複数の磁気センサ素子の各々が別々にパッケージされていてもよい。また、複数の磁気センサ素子と電子部品とが集積された状態で、1つにパッケージされていてもよい。
 図1~4に示すように、磁気センサ120は、差動増幅器および受動素子と共に回路基板130に実装されている。なお、図1~4においては、差動増幅器および受動素子は図示していない。差動増幅器および受動素子は、磁気センサ120が実装されている回路基板130とは異なる回路基板に、実装されていてもよい。
 回路基板130は、1次導体110の表面上に載置されている。回路基板130は、プリント配線板であり、ガラスエポキシまたはアルミナなどの基材と、基材の表面上に設けられた銅などの金属箔がパターニングされて形成された配線とから構成されている。
 磁性体部140は、磁気センサ120において回路基板130と面していない表面のうち、磁気センサ120の検出軸に沿う方向と交差する面以外の部分を覆っている。磁性体部140は、回路基板130と対向する天井部141と、互いに間隔を置いて天井部141から突出し、回路基板130に接する1対の脚部142とを含む。天井部141は、1次導体110の厚さ方向(Z軸方向)にて磁気センサ120と対向する。1対の脚部142の各々は、1次導体110の長さ方向(Y軸方向)にて磁気センサ120と対向する。
 本実施形態においては、天井部141は平板形状を有し、天井部141と脚部142とは略直交している。ただし、天井部141が、外側に凸状の半球形状、または、半円筒形状などの湾曲した形状を有していてもよい。または、磁性体部140が、半円筒形状を有していてもよい。
 磁性体部140の内面と磁気センサ120の表面との間には、隙間が設けられており、磁性体部140と磁気センサ120とは互いに接触していない。磁性体部140は、接着剤または半田などにより回路基板130上に接着されている。なお、磁性体部140が、磁気センサ素子とともに1つのパッケージ内にて樹脂封止されていてもよい。
 本実施形態に係る電流センサ100においては、磁気センサ120と磁性体部140との間の隙間が狭いため、外部磁界源は、物理的に磁気センサ120と磁性体部140との間に位置することができない。
 磁性体部140は、珪素鋼、フェライトまたはパーマロイなどの磁性体で構成されている。磁性体部140を構成する材料として、電流センサ100の測定範囲および磁気センサ120の入力ダイナミックレンジに応じて最適な磁性体材料を選択することにより、電流センサ100の出力特性を制御することができる。また、磁性体部140と磁気センサ素子との間の距離、磁性体部140の厚さおよび磁性体部140のX軸方向の幅を適宜調整することにより、電流センサ100の出力特性を最適化することができる。
 磁性体部140によって磁気センサ120を覆うことにより、磁気センサ120に外部磁界の影響が及ぶことを抑制できる。特に、外部磁界のうちの高周波成分は、表皮効果によって磁性体部140の表皮深さの2~3倍程度の深さまでしか侵入することができない。よって、磁性体部140の内側に配置された磁気センサ120に外部磁界のうちの高周波成分が及ぶことを抑制できる。なお、想定される外部磁界の高周波成分の周波数に対応して、磁性体部140の厚さが決定されている。
 また、磁性体部140によって磁気センサ120を覆うことにより、磁気センサ120に作用するY軸方向およびZ軸方向の磁界成分を低減することができるため、電流センサ100の入力ダイナミックレンジを拡大することができる。
 磁性体部140が回路基板130上に固定されて形成される1対の開口部140hが、磁気センサ120の検出軸に沿う方向に並んで互いに対向していることにより、測定対象の電流1により発生する磁界の磁束は磁性体部140を通過せずに磁気センサ120に進入する。これにより、磁気センサ120における入力磁界と出力電圧との線形性を維持して、電流センサ100の測定精度を高くすることができる。
 上記のように、本実施形態に係る電流センサ100は、磁性体部140を備えることにより、外部磁界の影響を低減しつつ、磁気センサ120における入力磁界と出力電圧との線形性を高く維持して、電流センサ100の測定精度を高くすることができる。
 次に、本発明の実施形態1に係る電流センサの作用および効果について検証するために、実施例に係る電流センサが備える磁気センサおよび比較例に係る電流センサが備える磁気センサについて実験した結果について説明する。
 図6は、実施例に係る電流センサが備える磁気センサの配置を示す斜視図である。図7は、図6の磁気センサを矢印VII方向から見た平面図である。図8は、比較例1に係る電流センサが備える磁気センサの配置を示す斜視図である。図9は、図8の磁気センサを矢印IX方向から見た平面図である。図10は、比較例2に係る電流センサが備える磁気センサの配置を示す斜視図である。図11は、図10の磁気センサを矢印XI方向から見た平面図である。
 図6,7に示すように、実施例に係る電流センサにおいては、磁性体部140が回路基板130上に固定されて形成される1対の開口部140hは、磁気センサ120の検出軸に沿う方向2に並んで互いに対向している。図8,9に示すように、比較例1に係る電流センサにおいては、磁性体部140が設けられていない。図10,11に示すように、比較例2に係る電流センサにおいては、磁性体部140が回路基板130上に固定されて形成される1対の開口部140hは、磁気センサ120の検出軸に直交する方向に並んで互いに対向している。すなわち、比較例2に係る電流センサは、実施例に係る電流センサとは、回路基板130の面内における磁性体部140の取付角度が90°異なっている。
 実験条件として、磁性体部140の材料を珪素鋼とし、磁性体部140の厚さを0.2mmとし、磁気センサ120の検出軸に沿う方向2に±10mTの磁界を印加した。
 ここで、磁気センサの出力電圧の誤差率について定義する。まず、磁気センサに印加された磁界の磁束密度に対する出力電圧の変位を最小二乗法を用いて1次関数にて近似することにより、線形性を有する仮想出力電圧の変位を算出する。印加された磁界の磁束密度の範囲における仮想出力電圧の最大値と最小値との間の間隔であるフルスケールに対する、出力電圧と仮想出力電圧との差の比率を、磁気センサの出力電圧の誤差率とする。
 図12は、実施例および比較例1の各々に係る電流センサにおける磁気センサの出力特性を示すグラフである。図12においては、縦軸に磁気センサ120の出力電圧(V)、横軸に入力磁界(mT)を示している。図12に示すように、磁性体部140が設けられている実施例に係る磁気センサ120の出力電圧は、磁性体部140が設けられていない比較例1に係る磁気センサ120の出力電圧と比較して低くなっているが、入力磁界との線形性は維持されていた。
 この結果から、磁気センサ120に、磁気センサ120の検出軸に沿う方向2に外部磁界が印加された場合にも、磁気センサ120の出力への外部磁界の影響を低減しつつ、磁気センサ120の入力磁界と出力電圧との線形性を維持できることが確認できた。
 図13は、実施例および比較例2の各々に係る電流センサにおける磁気センサの出力電圧の誤差率の分布を示すグラフである。図13においては、縦軸に磁気センサ120の出力電圧の誤差率(%FS)、横軸に入力磁界(mT)を示している。
 図13に示すように、実施例に係る磁気センサ120の出力電圧の誤差率は、比較例2に係る磁気センサの出力電圧の誤差率と比較して小さかった。この結果から、入力磁界が磁性体部140を通過せずに磁気センサ120に進入するように磁性体部140を配置することにより、磁気センサ120における入力磁界と出力電圧との線形性を高く維持できることが確認できた。
 (実施形態2)
 以下、本発明の実施形態2に係る電流センサについて説明する。なお、本実施形態に係る電流センサは、2つの磁気センサを備える点が主に実施形態1に係る電流センサ100とは異なるため、実施形態1に係る電流センサ100と同様である構成については同一の参照符号を付してその説明を繰り返さない。
 図14は、本発明の実施形態2に係る電流センサの構成を示す断面図である。図15は、本発明の実施形態2に係る電流センサの回路構成を示す回路図である。図14においては、図3と同一の断面視にて図示している。
 図14に示すように、本発明の実施形態2に係る電流センサ200においては、第1磁気センサ120aが、1次導体110の表面側に配置され、第2磁気センサ120bが、1次導体110の裏面側に配置されている。具体的には、第1磁気センサ120aを実装した第1回路基板130aが、1次導体110の表面上に載置されている。第2磁気センサ120bを実装した第2回路基板130bが、1次導体110の裏面上に配置されている。すなわち、第1磁気センサ120aと第2磁気センサ120bとは、1次導体110を挟んで互いに反対側に位置している。
 第1磁気センサ120aは、第1回路基板130a上に固定されたアーチ状の第1磁性体部140aによって周りを囲まれている。第1磁性体部140aが第1回路基板130a上に固定されて形成される1対の第1開口部140ahは、第1磁気センサ120aの検出軸に沿う方向に並んで互いに対向している。
 第2磁気センサ120bは、第2回路基板130b上に固定されたアーチ状の第2磁性体部140bによって周りを囲まれている。第2磁性体部140bが第2回路基板130b上に固定されて形成される1対の第2開口部140bhは、第2磁気センサ120bの検出軸に沿う方向に並んで互いに対向している。
 第1回路基板130aおよび第2回路基板130bの各々は、図示しない筐体に固定されている。筐体は、PPS(ポリフェニレンスルファイド)などの高温耐性を有するエンジニアリングプラスティックなどで形成されていることが好ましい。第1回路基板160aおよび第2回路基板160bの各々と筐体とを固定する方法としては、螺子による締結、樹脂による熱溶着、または、接着剤による接合などを用いることができる。螺子を用いて第1回路基板160aおよび第2回路基板160bの各々と筐体とを締結する場合には、磁界の乱れが生じないように、非磁性の螺子を用いることが好ましい。筐体は、1次導体110と一体に構成されていてもよいし、1次導体110に対して付け外し可能に構成されていてもよい。
 第1磁気センサ120aは、差動増幅器および受動素子とともに第1回路基板130aに実装されている。第2磁気センサ120bは、差動増幅器および受動素子とともに第2回路基板130bに実装されている。なお、図14においては、差動増幅器および受動素子は図示していない。
 第1磁気センサ120aおよび第2磁気センサ120bの各々の検出軸の方向(感磁方向)は、1次導体110の幅方向(X軸方向)である。すなわち、第1磁気センサ120aおよび第2磁気センサ120bの各々は、1次導体110の表面と裏面とを最短で結ぶ方向(Z軸方向)および測定対象の電流が流れる方向(Y軸方向)の両方と直交する方向(X軸方向)の磁界を検出可能とされている。
 第1磁気センサ120aおよび第2磁気センサ120bは、検出軸の一方向に向いた磁界を検出した場合に正の値で出力し、かつ、検出軸の一方向とは反対方向に向いた磁界を検出した場合に負の値で出力する、入出力特性を有している。具体的には、第1磁気センサ120aおよび第2磁気センサ120bの各々の磁気抵抗素子は、バーバーポール型電極を含むことにより、磁気抵抗素子における磁気抵抗膜の磁化方向に対して所定の角度に測定対象の電流が流れるようにバイアスされている。第1磁気センサ120aの磁気抵抗素子における磁気抵抗膜の磁化方向と、第2磁気センサ120bの磁気抵抗素子における磁気抵抗膜の磁化方向とは、同一方向である。これにより、外部磁界の影響による電流センサ200の出力精度の低下を小さくすることができる。
 図15に示すように、第1磁気センサ120aおよび第2磁気センサ120bの各々は、4つの磁気抵抗効果素子からなるブリッジ回路を有している。電流センサ200は、第1磁気センサ120aの検出値と第2磁気センサ120bの検出値とを演算することにより1次導体110を流れる測定対象の電流の値を算出する算出部290をさらに備える。算出部290は、差動増幅器である。ただし、算出部290が減算器であってもよい。
 1次導体110を流れる測定対象の電流により発生する磁界によって、第1磁気センサ120aに作用する磁束の向きと、第2磁気センサ120bに作用する磁束の向きとは反対であるため、1次導体110を流れる測定対象の電流により発生する磁界の強さについて、第1磁気センサ120aの検出値の位相と、第2磁気センサ120bの検出値の位相とは、逆相である。
 よって、第1磁気センサ120aの検出した磁界の強さを正の値とすると、第2磁気センサ120bの検出した磁界の強さは負の値となる。第1磁気センサ120aの検出値と第2磁気センサ120bの検出値とは、算出部290にて演算される。算出部290は、第1磁気センサ120aの検出値から第2磁気センサ120bの検出値を減算する。この結果から、1次導体110を流れた測定対象の電流の値が算出される。
 本実施形態に係る電流センサ200においては、第1磁気センサ120aと第2磁気センサ120bとの間に、第1回路基板130a、第2回路基板130bおよび1次導体110が位置しているため、外部磁界源は、物理的に第1磁気センサ120aと第2磁気センサ120bとの間に位置することができない。
 そのため、外部磁界源から第1磁気センサ120aに印加される磁界のうちの検出軸の方向における磁界成分の向きと、外部磁界源から第2磁気センサ120bに印加される磁界のうちの検出軸の方向における磁界成分の向きとは、同じ向きとなる。よって、第1磁気センサ120aの検出した外部磁界の強さを正の値とすると、第2磁気センサ120bの検出した外部磁界の強さも正の値となる。
 その結果、算出部290が第1磁気センサ120aの検出値から第2磁気センサ120bの検出値を減算することにより、外部磁界源からの磁界は、ほとんど検出されなくなる。すなわち、外部磁界の影響が低減される。
 本実施形態の変形例として、第1磁気センサ120aおよび第2磁気センサ120bにおいて、検出値が正となる検出軸の方向を互いに反対方向(180°反対)にしてもよい。この場合、第1磁気センサ120aの検出する外部磁界の強さを正の値とすると、第2磁気センサ120bの検出する外部磁界の強さは負の値となる。
 一方、1次導体110を流れる測定対象の電流により発生する磁界の強さについて、第1磁気センサ120aの検出値の位相と、第2磁気センサ120bの検出値の位相とは同相となる。
 本変形例においては、算出部290として差動増幅器に代えて加算器または加算増幅器を用いる。外部磁界の強さについては、第1磁気センサ120aの検出値と第2磁気センサ120bの検出値とを加算器または加算増幅器によって加算することにより、第1磁気センサ120aの検出値の絶対値と、第2磁気センサ120bの検出値の絶対値とが減算される。これにより、外部磁界源からの磁界は、ほとんど検出されなくなる。すなわち、外部磁界の影響が低減される。
 一方、1次導体110を流れる測定対象の電流により発生する磁界の強さについては、第1磁気センサ120aの検出値と第2磁気センサ120bの検出値とを加算器または加算増幅器によって加算することにより、1次導体110を流れた測定対象の電流の値が算出される。
 このように、第1磁気センサ120aと第2磁気センサ120bとの入出力特性を互いに逆の極性にしつつ、差動増幅器に代えて加算器または加算増幅器を算出部として用いてもよい。
 本実施形態に係る電流センサ200は、第1磁性体部140aおよび第2磁性体部140bを備えることにより、外部磁界の影響を低減しつつ、第1磁気センサ120aおよび第2磁気センサ120bの各々における入力磁界と出力電圧との線形性を高く維持して、電流センサ200の測定精度を高くすることができる。
 (実施形態3)
 以下、本発明の実施形態3に係る電流センサについて説明する。なお、本実施形態に係る電流センサ300は、1次導体および回路基板の周りを囲む第3磁性体部をさらに備える点、および、1つの回路基板に2つの磁気センサが実装されている点が主に実施形態2に係る電流センサ200とは異なるため、実施形態2に係る電流センサ200と同様である構成については同一の参照符号を付してその説明を繰り返さない。
 図16は、本発明の実施形態3に係る電流センサの構成を示す斜視図である。図17は、図16の電流センサを矢印XVII方向から見た正面図である。図18は、本発明の実施形態3に係る電流センサの回路基板を側面から見た側面図である。
 図16~18に示すように、本発明の実施形態3に係る電流センサ300は、第1磁気センサ120aおよび第2磁気センサ120bが、1つの回路基板330に実装されている。回路基板330の中央に、1次導体110が挿入される矩形状の貫通孔が設けられている。回路基板330は、1次導体110の長さ方向(Y軸方向)と直交するように配置され、1次導体110に貫通されている。
 第1磁気センサ120aは、差動増幅器である第1オペアンプ380aおよび第1受動素子390aとともに回路基板330に実装されている。第2磁気センサ120bは、差動増幅器である第2オペアンプ380bおよび第2受動素子390bとともに回路基板330に実装されている。
 電流センサ300は、1次導体110および回路基板330の周りを囲む、第3磁性体部350をさらに備える。第3磁性体部350は、筒状の形状を有している。第3磁性体部350は、回路基板330と間隔を置いて、回路基板330の周りを囲んでいる。第3磁性体部350と回路基板330との間に、図示しない絶縁体からなるスペーサが挟まれている。第3磁性体部350は、第1磁気センサ120aの表面のうち、1次導体110の長さ方向(Y軸方向)と交差する面以外の部分を覆っている。第3磁性体部350は、第2磁気センサ120bの表面のうち、1次導体110の長さ方向(Y軸方向)と交差する面以外の部分を覆っている。
 第3磁性体部350は、電気的に接地されていてもよい。この場合、第3磁性体部350は、電磁シールドとして機能する。
 本実施形態においては、図18に示すように、回路基板330の裏面上に、第1磁性体部140aと同様の形状および材料で形成された第4磁性体部340a、および、第2磁性体部140bと同様の形状および材料で形成された第5磁性体部340bが設けられている。第4磁性体部340aおよび第5磁性体部340bの各々は、接着剤または半田などにより回路基板330に接着されている。
 第4磁性体部340aは、回路基板330に関して第1磁性体部140aと略面対称に配置されている。第5磁性体部340bは、回路基板330に関して第2磁性体部140bと略面対称に配置されている。
 第1磁気センサ120aは、第4磁性体部340aによって、回路基板330と面している表面を覆われている。第2磁気センサ120bは、第5磁性体部340bによって、回路基板330と面している表面を覆われている。なお、第4磁性体部340aおよび第5磁性体部340bの各々の形状は、上記に限られず、たとえば、平板状であってもよい。また、第4磁性体部340aおよび第5磁性体部340bは、必ずしも設けられていなくてもよい。
 1次導体110と回路基板330との間には、第1筐体360が配置されている。第1筐体360は、筒状の形状を有している。第1筐体360は回路基板330の貫通孔に挿入され、第1筐体360の内側に1次導体110が挿入されている。第1筐体360は、PPSなどの高温耐性を有するエンジニアリングプラスティックなどで形成されていることが好ましい。
 回路基板330と第1筐体360とを固定する方法としては、螺子による締結、樹脂による熱溶着、または、接着剤による接合などを用いることができる。螺子を用いて回路基板330と第1筐体360とを締結する場合には、磁界の乱れが生じないように、非磁性の螺子を用いることが好ましい。第1筐体360は、1次導体110と一体に構成されていてもよいし、1次導体110に対して付け外し可能に構成されていてもよい。
 第3磁性体部350の外側に第2筐体370が配置されている。第2筐体370は、筒状の形状を有している。第2筐体370の内側に第3磁性体部350が配置されている。第2筐体370は、たとえば、ABS(Acrylonitrile Butadiene Styrene)樹脂などの樹脂で構成されている。第2筐体370と第3磁性体部350とが、インサート成形されて形成されていてもよい。
 第1磁気センサ120aと第2磁気センサ120bとは、1次導体110を挟んで互いに反対側に位置している。第1磁気センサ120aおよび第2磁気センサ120bの各々の検出軸の方向(感磁方向)は、1次導体110の幅方向(X軸方向)である。
 第3磁性体部350によって第1磁気センサ120aおよび第2磁気センサ120bを覆うことにより、第1磁気センサ120aおよび第2磁気センサ120bの各々に外部磁界の影響が及ぶことを抑制できる。
 1次導体110を流れる測定対象の電流により発生する磁界は、第3磁性体部350の内側を周回して第1磁気センサ120aおよび第2磁気センサ120bの各々に作用する。そのため、第1磁気センサ120aおよび第2磁気センサ120bの各々における入力磁界と出力電圧との線形性を維持することができる。
 本実施形態に係る電流センサ300は、第1磁性体部140a、第2磁性体部140b、第3磁性体部350、第4磁性体部340aおよび第5磁性体部340bを備えることにより、外部磁界の影響を低減しつつ、第1磁気センサ120aおよび第2磁気センサ120bの各々における入力磁界と出力電圧との線形性を高く維持して、電流センサ300の測定精度を高くすることができる。
 なお、1つの回路基板330に第1磁気センサ120aおよび第2磁気センサ120bが実装されている構成に限られず、本発明の実施形態2に係る電流センサ200に第3磁性体部350を追加した構成としてもよい。
 次に、本実施形態に係る電流センサ300を、たとえば、インバータなどの3相3線式の配線に適用した場合について説明する。図19は、本実施形態に係る電流センサを3相3線式の配線に適用した構成を示す正面図である。
 図19に示すように、本実施形態に係る電流センサ300を3相3線式の配線に適用した場合、電流センサ300は、1次導体110と並び、測定対象外の電流が流れる2本の他の1次導体410,411をさらに備える。第3磁性体部350は、第1磁気センサ120aおよび第2磁気センサ120bの各々の検出軸に沿う方向にて、第1磁気センサ120aおよび第2磁気センサ120bの各々と他の1次導体410,411との間に位置している。なお、他の1次導体410,411の配置は、図19に示すように1次導体110に対して平行に並んでいる場合に限られない。
 図20は、図19の電流センサの第1磁気センサに作用する磁束を模式的に示す正面図である。図20においては、他の1次導体410に流れた測定対象外の電流により発生した磁界の磁束と、1次導体110に流れた測定対象の電流により発生した磁界の磁束110eとを示している。
 図19,20に示すように、他の1次導体410に流れた測定対象外の電流により発生した磁界の磁束410eは、第3磁性体部350を通過した後、第1磁気センサ120aの検出軸に沿う方向2に対して斜め方向に進入する。
 磁束410eは、第1磁気センサ120aより透磁率の高い第1磁性体部140aの内部に主に進入して磁束411eとなり、第1磁性体部140aを通過した後、第1磁性体部140aから進出して磁束412eとなる。磁束412eは、磁束410eと同じ方向に進出する。
 このように、電流センサ300を3相3線式の配線に適用した場合においては、第1磁性体部140aによって、第1磁気センサ120aに測定対象外の電流により発生した磁界の影響が及ぶことを抑制できる。第2磁気センサ120bにおいても、測定対象外の電流により発生した磁界の影響が及ぶことを第2磁性体部140bによって抑制できる。その結果、電流センサ300の測定精度を高くすることができる。
 さらに、第3磁性体部350が電気的に接地されている場合、第3磁性体部350が電磁シールドとして機能するため、第1磁気センサ120aおよび第2磁気センサ120bの各々に測定対象外の電流により発生した磁界が及ぶことをより効果的に抑制できる。
 上述した実施形態の説明において、組み合わせ可能な構成を相互に組み合わせてもよい。
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 測定対象の電流、100,200,300 電流センサ、110,410,411 1次導体、120 磁気センサ、120a 第1磁気センサ、120b 第2磁気センサ、130,330 回路基板、130a,160a 第1回路基板、130b,160b 第2回路基板、140 磁性体部、140a 第1磁性体部、140ah 第1開口部、140b 第2磁性体部、140bh 第2開口部、140h 開口部、141 天井部、142 脚部、290 算出部、340a 第4磁性体部、340b 第5磁性体部、350 第3磁性体部、360 第1筐体、370 第2筐体、380a 第1オペアンプ、380b 第2オペアンプ、390a 第1受動素子、390b 第2受動素子、410e,411e,412e 磁束。

Claims (8)

  1.  測定対象の電流が流れる1次導体と、
     前記1次導体を流れる前記電流により発生する磁界の強さを検出し、検出軸を有する少なくとも1つの磁気センサと、
     前記磁気センサが実装される基板と、
     前記基板上に固定され、前記磁気センサの周りを囲むアーチ状の磁性体部とを備え、
     前記磁性体部が前記基板上に固定されて形成される1対の開口部は、前記検出軸に沿う方向に並んで互いに対向している、電流センサ。
  2.  前記磁気センサとして第1磁気センサおよび第2磁気センサを有し、
     前記磁性体部として第1磁性体部および第2磁性体部を有し、
     前記第1磁気センサは、前記1次導体の表面側に配置され、前記第1磁性体部に周りを囲まれ、
     前記第2磁気センサは、前記1次導体の裏面側に配置され、前記第2磁性体部に周りを囲まれ、
     前記電流は、前記1次導体を前記1次導体の長さ方向に流れ、
     前記第1磁気センサの検出軸および前記第2磁気センサの検出軸の各々は、前記1次導体の厚さ方向および前記長さ方向の両方に直交する方向である前記1次導体の幅方向に向いている、請求項1に記載の電流センサ。
  3.  前記第1磁気センサの検出値と前記第2磁気センサの検出値とを演算することにより前記電流の値を算出する算出部をさらに備え、
     前記1次導体を流れる前記電流により発生する磁界の強さについて、前記第1磁気センサの検出値の位相と前記第2磁気センサの検出値の位相とが逆相であり、
     前記算出部が減算器または差動増幅器である、請求項2に記載の電流センサ。
  4.  前記第1磁気センサの検出値と前記第2磁気センサの検出値とを演算することにより前記電流の値を算出する算出部をさらに備え、
     前記1次導体を流れる前記電流により発生する磁界の強さについて、前記第1磁気センサの検出値の位相と前記第2磁気センサの検出値の位相とが同相であり、
     前記算出部が加算器または加算増幅器である、請求項2に記載の電流センサ。
  5.  前記第1磁気センサおよび前記第2磁気センサが、1つの前記基板に実装されており、
     前記基板は、前記1次導体の前記長さ方向と直交するように配置され、前記1次導体に貫通されている、請求項2から4のいずれか1項に記載の電流センサ。
  6.  前記磁性体部が電気的に接地されている、請求項1から5のいずれか1項に記載の電流センサ。
  7.  前記1次導体および前記基板の周りを囲む、第3磁性体部をさらに備える、請求項1から6のいずれか1項に記載の電流センサ。
  8.  前記1次導体と並び、測定対象外の電流が流れる他の1次導体をさらに備え、
     前記検出軸に沿う方向にて、前記磁気センサと前記他の1次導体との間に、前記第3磁性体部が位置している、請求項7に記載の電流センサ。
PCT/JP2016/052250 2015-06-15 2016-01-27 電流センサ WO2016203781A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017524652A JP6540802B2 (ja) 2015-06-15 2016-01-27 電流センサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015120217 2015-06-15
JP2015-120217 2015-06-15

Publications (1)

Publication Number Publication Date
WO2016203781A1 true WO2016203781A1 (ja) 2016-12-22

Family

ID=57545129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052250 WO2016203781A1 (ja) 2015-06-15 2016-01-27 電流センサ

Country Status (2)

Country Link
JP (1) JP6540802B2 (ja)
WO (1) WO2016203781A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6385632B1 (ja) * 2017-06-14 2018-09-05 三菱電機株式会社 電流検出装置及び電力変換装置
WO2018230030A1 (ja) * 2017-06-14 2018-12-20 三菱電機株式会社 電流検出装置及び電力変換装置
WO2019181173A1 (ja) * 2018-03-20 2019-09-26 株式会社デンソー 電流センサ
WO2022034763A1 (ja) * 2020-08-12 2022-02-17 アルプスアルパイン株式会社 磁気センサおよび電流センサ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115443411A (zh) 2020-05-27 2022-12-06 阿尔卑斯阿尔派株式会社 电流传感器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002277A (ja) * 2008-06-19 2010-01-07 Tdk Corp 電流センサ
WO2012117841A1 (ja) * 2011-03-02 2012-09-07 アルプス・グリーンデバイス株式会社 電流センサ
JP2012247420A (ja) * 2011-05-30 2012-12-13 Melexis Technologies Nv 電線を流れる電流を測定するための装置
JP2015049184A (ja) * 2013-09-03 2015-03-16 Tdk株式会社 インバータ装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127170A (ja) * 1982-01-26 1983-07-28 Mitsubishi Electric Corp 電流測定装置
JPH0450540Y2 (ja) * 1987-09-30 1992-11-27
JPH10142263A (ja) * 1996-11-11 1998-05-29 Murata Mfg Co Ltd 電流検出装置
JP2005049185A (ja) * 2003-07-28 2005-02-24 Fuji Electric Holdings Co Ltd 電流センサのシールド構造
EP1855118A4 (en) * 2005-02-23 2009-12-09 Asahi Kasei Emd Corp CURRENT MEASURING INSTRUMENT
JP4816980B2 (ja) * 2008-11-11 2011-11-16 Tdk株式会社 電流センサ
JP5544502B2 (ja) * 2011-03-07 2014-07-09 アルプス・グリーンデバイス株式会社 電流センサ
JP2015090316A (ja) * 2013-11-06 2015-05-11 アルプス・グリーンデバイス株式会社 電流センサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002277A (ja) * 2008-06-19 2010-01-07 Tdk Corp 電流センサ
WO2012117841A1 (ja) * 2011-03-02 2012-09-07 アルプス・グリーンデバイス株式会社 電流センサ
JP2012247420A (ja) * 2011-05-30 2012-12-13 Melexis Technologies Nv 電線を流れる電流を測定するための装置
JP2015049184A (ja) * 2013-09-03 2015-03-16 Tdk株式会社 インバータ装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6385632B1 (ja) * 2017-06-14 2018-09-05 三菱電機株式会社 電流検出装置及び電力変換装置
WO2018230030A1 (ja) * 2017-06-14 2018-12-20 三菱電機株式会社 電流検出装置及び電力変換装置
US11293949B2 (en) 2017-06-14 2022-04-05 Mitsubishi Electric Corporation Current detection apparatus and power conversion apparatus
WO2019181173A1 (ja) * 2018-03-20 2019-09-26 株式会社デンソー 電流センサ
JP2019164078A (ja) * 2018-03-20 2019-09-26 株式会社デンソー 電流センサ
CN111919125A (zh) * 2018-03-20 2020-11-10 株式会社电装 电流传感器
US11397196B2 (en) 2018-03-20 2022-07-26 Denso Corporation Current sensor
US11953526B2 (en) 2018-03-20 2024-04-09 Denso Corporation Current sensor
WO2022034763A1 (ja) * 2020-08-12 2022-02-17 アルプスアルパイン株式会社 磁気センサおよび電流センサ

Also Published As

Publication number Publication date
JP6540802B2 (ja) 2019-07-10
JPWO2016203781A1 (ja) 2017-11-24

Similar Documents

Publication Publication Date Title
JP6265282B2 (ja) 電流センサ
JP6555387B2 (ja) 電流センサ
CN107533089B (zh) 电流传感器
US10215780B2 (en) Current sensor
WO2016203781A1 (ja) 電流センサ
WO2012157558A1 (ja) 磁気センサ装置
JP6696571B2 (ja) 電流センサおよび電流センサモジュール
US10274523B2 (en) Current sensor including a first current sensor and a second current sensor unit
JP6504260B2 (ja) 電流センサおよびこれを備える電力変換装置
JP5899012B2 (ja) 磁気センサ
US10267825B2 (en) Current sensor including a housing surrounded by bent portions of primary conductors
WO2016035606A1 (ja) 電流センサ
JP6361740B2 (ja) 電流センサ
WO2015174247A1 (ja) 電流センサ
JPWO2018008176A1 (ja) 磁気センサおよびそれを備えた電流センサ
JP6304380B2 (ja) 電流センサ
JP2018044788A (ja) 電流センサ
JP2016024163A (ja) 電流センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811256

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524652

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811256

Country of ref document: EP

Kind code of ref document: A1