WO2022034763A1 - 磁気センサおよび電流センサ - Google Patents

磁気センサおよび電流センサ Download PDF

Info

Publication number
WO2022034763A1
WO2022034763A1 PCT/JP2021/026150 JP2021026150W WO2022034763A1 WO 2022034763 A1 WO2022034763 A1 WO 2022034763A1 JP 2021026150 W JP2021026150 W JP 2021026150W WO 2022034763 A1 WO2022034763 A1 WO 2022034763A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
shield
coil
magnetic field
shield portion
Prior art date
Application number
PCT/JP2021/026150
Other languages
English (en)
French (fr)
Inventor
洋介 井出
Original Assignee
アルプスアルパイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプスアルパイン株式会社 filed Critical アルプスアルパイン株式会社
Publication of WO2022034763A1 publication Critical patent/WO2022034763A1/ja
Priority to US18/158,266 priority Critical patent/US20230160928A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/007Environmental aspects, e.g. temperature variations, radiation, stray fields
    • G01R33/0076Protection, e.g. with housings against stray fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/205Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0011Arrangements or instruments for measuring magnetic variables comprising means, e.g. flux concentrators, flux guides, for guiding or concentrating the magnetic flux, e.g. to the magnetic sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0017Means for compensating offset magnetic fields or the magnetic flux to be measured; Means for generating calibration magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/096Magnetoresistive devices anisotropic magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors

Definitions

  • the present invention relates to a magnetic sensor and a current sensor including a magnetic sensor.
  • a current sensor capable of measuring a large current in a non-contact manner.
  • a current sensor one using a magnetic sensor that detects an induced magnetic field from a measured current is known.
  • the magnetic detection element for a magnetic sensor include a magnetoresistive element such as a GMR (giant magnetoresistive effect) element.
  • the magnetoresistive sensor has high detection sensitivity, it has high linearity and the detectable magnetic field strength range is relatively narrow. Therefore, as in the current sensor shown in FIG. 3 of Patent Document 1, a magnetic shield is arranged between the measured current and the magnetoresistive effect element, and the induced magnetic field attenuated by the magnetic shield is used as the magnetoresistive effect element.
  • the method of application may be used.
  • an induced magnetic field having an intensity within the range in which the magnetoresistive sensor exhibits good detection characteristics can be applied to the magnetoresistive sensor. In this way, it is possible to reduce the strength of the magnetic field substantially applied to the magnetoresistive sensor by the magnetic shield and expand the detectable magnetic field strength range.
  • the effect of reducing the magnetic field strength is increased by reducing the distance of the magnetic shield from the magnetoresistive effect element.
  • the applied magnetic field is as strong as several tens of mT
  • residual magnetization is likely to occur even with a magnetic shield made of a soft magnetic material.
  • the zero magnetic field hysteresis of the magnetoresistive sensor may increase to the negative side, which may adversely affect the measurement accuracy of the magnetoresistive sensor.
  • the magnetic shield when a strong magnetic field is applied to the magnetic shield, the magnetic shield is magnetically saturated, and the magnetic field shielding effect is weakened accordingly, and a strong magnetic field is applied to the magnetic resistance effect element, resulting in hysteresis of the free magnetic layer.
  • the resistance of the magnetic resistance effect element becomes large and the resistance of the magnetic resistance effect element deviates from a predetermined value.
  • Patent Document 2 describes a magnetic sensor provided with a magnetic shield having a main body portion and a magnetic absorption portion. According to this magnetic sensor, the resistance of the magnetoresistive sensor to the orthogonal magnetic field applied in the direction orthogonal to the sensitivity axis while suppressing the influence of the residual magnetization of the magnetic shield applied in the direction parallel to the sensitivity axis of the magnetoresistive sensor. Can be raised.
  • An object of the present invention is to provide a magnetic sensor having high resistance to an orthogonal magnetic field. It is also an object of the present invention to provide a current sensor including such a magnetic sensor.
  • the present invention provided to solve the above problems, in one embodiment, comprises a magnetic resistance effect element formed on an element forming surface and having a sensitivity axis along the in-plane direction of the element forming surface, and the magnetic resistance effect.
  • a magnetic shield that is spaced away from the element in the thickness direction orthogonal to the element forming surface and attenuates the strength of the measured magnetic field applied to the magnetic resistance effect element, and between the magnetic resistance effect element and the magnetic shield.
  • a magnetic sensor that measures the strength of the magnetic field to be measured based on the current flowing through the magnetic equilibrium coil, wherein the magnetic shield is in the plane of the element forming surface.
  • a first shield portion having an in-plane orthogonal direction orthogonal to the sensitivity axis in the direction and a second shield portion provided on both sides of the first shield portion in the longitudinal direction are provided, and the first shield portion is provided.
  • the shield portion 1 has a portion that overlaps the magnetic resistance effect element when viewed from the thickness direction
  • the second shield portion has a portion that overlaps the magnetic resistance effect element when viewed from the in-plane orthogonal direction. It is possible to form a magnetic path from one of the second shielded portions to the other via the first shielded portion with respect to the magnetic field in the in-plane orthogonal direction.
  • a second shield portion having a portion overlapping the magnetoresistive effect element when viewed from the in-plane orthogonal direction orthogonal to the sensitivity axis is provided, and a magnetic path is provided from one of the second shields to the other via the first shield portion.
  • the first shield portion and the second shield portion may be magnetically connected via a gap.
  • the distance between the first shield portion and the second shield portion is preferably 20 ⁇ m or less.
  • the magnetic equilibrium coil includes a parallel portion extending in parallel in the in-plane orthogonal direction and an intersection extending in a direction intersecting in the in-plane orthogonal direction when viewed from the thickness direction. It is preferable that the shield portion is provided at a position where it overlaps with the parallel portion and the magnetic resistance effect element and does not overlap with the intersection when viewed from the thickness direction. With the above configuration, the first shield portion can enhance (enhance) only the magnetic field applied to the magnetoresistive sensor from the parallel portion without being affected by the magnetic field from the intersection portion.
  • the magnetic equilibrium coil has a first coil and a second coil, and the first coil and the second coil pass through the magnetic resistance effect element when viewed from the thickness direction.
  • the first coil and the second coil are arranged line-symmetrically with respect to the parallel portion extending parallel to the in-plane orthogonal direction and the in-plane orthogonal direction, respectively, when viewed from the thickness direction.
  • the first shield portion includes an intersection extending in the intersecting direction, and the first shield portion is formed from the parallel portion of the adjacent first coil and the parallel portion of the second coil when viewed from the thickness direction.
  • the second shield portion is provided at a position that overlaps with the adjacent portion and the magnetic resistance effect element and does not overlap with the intersection, and the second shield portion is with the intersection of the first coil when viewed from the thickness direction. , May be provided between the second coil and the intersection.
  • the magnetoresistive effect elements There are a plurality of the magnetoresistive effect elements, and the plurality of the magnetoresistive effect elements are arranged in the in-plane orthogonal direction, and the first coil and the second coil are viewed from the thickness direction. It may be arranged line-symmetrically by a line passing through the plurality of the magnetoresistive effect elements.
  • a magnetic equilibrium coil having a first coil and a second coil arranged line-symmetrically when viewed from the thickness direction is used, and a second shield portion is provided between adjacent intersections. Therefore, the second shield portion can be arranged so as not to overlap the intersection portion of the magnetic equilibrium coil. As a result, the influence of the magnetic field from the intersection of the first shield portion covering the adjacent portion via the second shield portion that is magnetically coupled only at the end portion can be significantly reduced. Therefore, the first shield portion can enhance only the magnetic field applied to the magnetoresistive effect element from the adjacent portion without being affected by the magnetic field from the intersection portion.
  • the first shield portion and the second shield portion may be connected.
  • the magnetic shield can easily form a magnetic path, so that the orthogonal magnetic field from the in-plane orthogonal direction can be efficiently attenuated.
  • the second shield portion has a connection end connected to the first shield portion and a non-connection end on the side opposite to the connection end, and the magnetoresistive portion is viewed from the thickness direction. It is preferable that the distance between the effect element and the non-connecting end is larger than the distance between the magnetoresistive effect element and the connecting end.
  • the magnetic sensor is provided, and the magnetic sensor provides a current sensor in which the induced magnetic field of the measured current is the measured magnetic field.
  • the present invention can provide a magnetic sensor that is less susceptible to the influence of a orthogonal magnetic field on a magnetoresistive sensor and is less likely to cause a decrease in measurement accuracy due to the influence of an external magnetic field. Further, a current sensor using such a magnetic sensor is also provided.
  • FIG. 1 A plan view schematically showing the structure of the magnetic sensor according to the first embodiment, (b) an enlarged view of the enclosed portion R of FIG. 1 (a).
  • the members constituting the magnetic sensor are disassembled and shown (a) a plan view of a magnetoresistive effect element, (b) a plan view of a coil for magnetic equilibrium, and (c) a plan view of a magnetic shield.
  • Top view schematically showing other modifications of the magnetic sensor A cross-sectional view schematically showing a cross section of the magnetic sensor shown in FIG. 5 by line V3-V3.
  • FIG. 7 is a cross-sectional view schematically showing a cross section of the magnetic sensor shown in FIG. 7 by line V4-V4.
  • Top view schematically showing a modified example of a magnetic sensor A cross-sectional view schematically showing a cross section of the magnetic sensor shown in FIG. 9 by line V5-V5.
  • A) A plan view showing the shape and gap (Gap) of the magnetic shield in the magnetic sensor of Example 3, and
  • FIG. 13 is a cross-sectional view schematically showing a cross section of the magnetic sensor of Comparative Example 1 shown in FIG. 13 by lines V6-V6.
  • FIG. 13 is a cross-sectional view schematically showing a cross section of the magnetic sensor of Comparative Example 2 shown in FIG. 13 by lines V6-V6.
  • a structure in which a magnetic shield is arranged on the magnetoresistive effect element is used in order to suppress the offset due to the attenuation of the orthogonal magnetic field.
  • the magnetic field strength at which the offset occurs can be shifted to the higher side, and the orthogonal magnetic field resistance of the magnetic sensor can be improved.
  • the magnetic shield having an excellent shielding effect makes it possible to obtain a magnetic sensor having excellent resistance to an orthogonal magnetic field.
  • FIG. 20 is a cross-sectional view schematically showing a laminated structure included in the GMR element 110.
  • the GMR element 110 has a structure in which a fixed magnetic layer 111, a non-magnetic material layer 112, and a free magnetic layer 113 are laminated.
  • the resistance value changes depending on the relative relationship between the fixed magnetic layer 111 in which the magnetization direction is fixed and the free magnetic layer 113 in which the magnetization direction is changed by an external magnetic field.
  • the magnetic sensor can detect the direction and strength of the external magnetic field based on the change in the resistance value.
  • an exchange bias magnetic field using an exchange coupling magnetic field with the antiferromagnetic layer 114 is applied in a direction orthogonal to the sensitivity axis.
  • the bias magnetic field is not limited to the exchange bias magnetic field, and may be a hard bias magnetic field using a permanent magnet.
  • the free magnetic layer 113 When a weak external magnetic field whose magnetization direction is not reversed is applied, the free magnetic layer 113 returns to the initial state before the external magnetic field is applied by returning to the zero magnetic field. However, when a strong external magnetic field in which the magnetization direction is reversed is applied, the free magnetic layer 113 does not return to the initial state even if it is returned to the zero magnetic field. That is, when the magnetization direction of the free magnetic layer 113 is reversed by a strong external magnetic field, even if the external magnetic field is removed and the magnetic field returns to zero, the hysteresis of the free magnetic layer 113 causes a deviation (offset) from the initial state.
  • FIG. 21 is an explanatory diagram illustrating the offset of the resistance due to the hysteresis of the free magnetic layer.
  • the external magnetic field orthogonal magnetic field
  • the inverting magnetic field B if the external magnetic field returns to zero, the free magnetic layer becomes a solid line. It changes in the direction of the arrow (1) along and returns to the initial state. Therefore, when the magnitude of the external magnetic field is from 0 to less than the inversion magnetic field B, when the external magnetic field becomes zero, the resistance of the free magnetic layer becomes the initial A.
  • the free magnetic layer does not return to the initial state even if the external magnetic field returns to zero.
  • a saturated magnetic field C is applied to the free magnetic layer
  • the resistance changes as shown by the broken line due to the hysteresis of the free magnetic layer. Therefore, when the external magnetic field becomes zero, it changes in the direction of the arrow (2) along the broken line, and the resistance of the free magnetic layer becomes D.
  • the resistance of the free magnetic layer deviates from the initial value due to the hysteresis of the free magnetic layer.
  • the resistance of the free magnetic layer is offset after becoming a zero magnetic field.
  • the offset of the resistance generated in the free magnetic layer varies depending on the magnitude of the external magnetic field, and varies within the range indicated by the white arrow in FIG. Since the detection accuracy decreases when the resistance of the free magnetic layer fluctuates, it is preferable that the magnetic sensor has high resistance to an external magnetic field.
  • a magnetic shield that attenuates the external magnetic field is used.
  • the external magnetic field is applied to the magnetoresistive effect element 11 while being attenuated by the magnetic shield. Therefore, the inverting magnetic field B shifts to the high magnetic field side, and the range in which the detection accuracy of the magnetic sensor can be satisfactorily maintained becomes wide.
  • the magnetic shield is preferably provided at a short distance from the magnetoresistive sensor from the viewpoint of attenuating the external magnetic field.
  • the influence of the recirculation magnetic field due to the residual magnetization of the magnetic shield becomes large. This contributes to a decrease in the detection accuracy of the magnetic sensor. Therefore, in the conventional magnetic sensor, a magnetic shield is generally provided at a position away from the magnetoresistive effect element.
  • FIG. 1 (a) is a plan view schematically showing the structure of the magnetic sensor 10 according to the present embodiment
  • FIG. 1 (b) is an enlarged view of a portion R surrounded by a square in FIG. 1 (a). be.
  • FIG. 1A for convenience, the magnetoresistive effect elements 11A to 11D located under the magnetic shield 15 (Z1-Z2 direction Z2 side, see FIG. 3) are shown by broken lines, and the magnetic equilibrium coil 16 is shown. It is omitted. Figures of other magnetic sensors are also omitted.
  • FIG. 1 (b) the magnetic equilibrium coil 16 under the magnetic shield 15 is shown by a broken line.
  • FIG. 2 (a) and 2 (c) are plan views showing the members constituting the magnetic sensor 10 of FIG. 1 (a) in an exploded manner, and FIG. 2 (a) shows a magnetoresistive effect element and FIG. 2 (a). b) shows a coil for magnetic equilibrium, and FIG. 2 (c) shows a magnetic shield.
  • the magnetic sensor 10 is formed on the element forming surface (XY plane) and is formed in the in-plane direction (Y1-Y2 direction, appropriately Y) of the element forming surface.
  • the four magnetic resistance effect elements 11 (when the magnetic resistance effect elements 11A to 11D are not distinguished, they are appropriately referred to as the magnetic resistance effect element 11) and the magnetic resistance effect element 11 having a sensitivity axis along the direction).
  • Magnetic equilibrium with a magnetic shield 15 that is spaced apart in the thickness direction (Z1-Z2 direction, appropriately referred to as Z direction) orthogonal to the element forming surface and attenuates the strength of the measured magnetic field applied to the magnetoresistive effect element 11.
  • the magnet 16 is provided on the same chip.
  • the magnetic sensor 10 measures the strength of the magnetic field to be measured based on the current flowing through the magnetic equilibrium coil 16.
  • the magnetic equilibrium coil 16 is shown by a thick line. As shown by this thick line, the coil wiring is arranged so as to orbit in the XY plane. In FIG. 3, a cross section of a plurality of rotating coil wirings in the magnetic equilibrium coil 16 is shown extending in the X1-X2 direction.
  • the magnetic equilibrium coil 16 is located between the magnetoresistive effect element 11 and the magnetic shield 15, so that an induced magnetic field that cancels the external magnetic field applied in a state attenuated by the magnetic shield 15 is a relatively small current. Can be caused by. Therefore, it is possible to operate the magnetically balanced magnetic sensor with low power consumption.
  • the magnetic equilibrium coil 16 is located in a direction orthogonal to the sensitivity axis (X1-X2 direction, appropriately referred to as X direction) in the in-plane direction of the element forming surface when viewed from the thickness direction. It has a first coil 16A and a second coil 16B arranged line-symmetrically with respect to a straight line L1 along the line.
  • the first coil 16A and the second coil 16B are provided on two parallel portions 16p extending in parallel in the X direction (in-plane orthogonal direction) and on both sides of the parallel portion 16p in the extending direction, respectively, when viewed from the thickness direction. It is provided with an intersection portion 16c extending in a direction intersecting with respect to the X direction.
  • the adjacent parallel portions 16p of the first coil 16A and the second coil 16B are referred to as adjacent portions 16pa.
  • the four magnetoresistive effect elements 11 are arranged below the straight line L1 located at the center of the adjacent portion 16pa (see FIG. 1A).
  • Each of the four magnetoresistive elements 11 has the same laminated structure as the GMR element 110 shown in FIG. 20, and is a full-bridge circuit in which fixed magnetic layers 111 having different magnetization directions are arranged on the same substrate (1 chip). To form. Further, as shown in FIG. 1A, the four magnetoresistive effect elements 11 are arranged in a row along the X direction on the lower side (Z direction Z1 side) of the parallel portion 16p of the magnetic equilibrium coil 16. ing.
  • Each of the four magnetoresistive elements 11 includes a giant magnetoresistive element (GMR element) having a meander shape (a shape formed by connecting a plurality of long patterns extending in the X direction so as to be folded back).
  • GMR element giant magnetoresistive element
  • Each magnetoresistive sensor 11 has a sensitivity axis in the direction indicated by the white arrow in FIGS. 1 and 2 (a).
  • the sensitivity axis direction P of the four magnetoresistive effect elements 11 is the Y direction.
  • the fact that the sensitivity axis direction P of the magnetoresistive effect element 11 is the Y direction means that the sensitivity axis direction P is the same side (parallel direction) or the opposite side (anti-parallel direction) along the Y direction.
  • a bias magnetic field is applied to the four magnetoresistive effect elements 11 from the X1 side in the X direction toward the X2 side in the X direction.
  • the sensitivity axial direction P of the magnetoresistive effect element 11A and the magnetoresistive element 11D faces the Y direction Y2 side
  • the sensitivity axial direction P of the magnetoresistive effect element 11B and the magnetoresistive effect element 11C faces the Y direction. It is set to face the Y1 side.
  • the wiring 5 connected to the input terminal 5a is connected to one end of the magnetoresistive element 11A, the other end of the magnetoresistive element 11A and one end of the magnetoresistive element 11B are connected in series, and the magnetoresistive element 11B is connected. The other end of the is connected to the ground terminal 6a via the wiring 6.
  • the wiring 5 connected to the input terminal 5a branches in the middle and is also connected to one end of the magnetoresistive sensor 11C, and the other end of the magnetoresistive element 11C and one end of the magnetoresistive element 11D are connected in series. The other end of the magnetoresistive sensor 11D is connected to the ground terminal 6a via the wiring 6.
  • the first midpoint potential measuring terminal 7a is connected by a wiring 7 between the other end of the magnetoresistive effect element 11A and one end of the magnetoresistive effect element 11B, and the second midpoint potential measuring terminal 8a is a magnetic resistance. It is connected by a wiring 8 between the other end of the effect element 11C and one end of the magnetoresistive effect element 11D.
  • the magnetic sensor 10 compares the potential of the first midpoint potential measuring terminal 7a with the potential of the second midpoint potential measuring terminal 8a to induce a magnetic field of the measured current Io flowing through the current line 81. Measure the strength and direction of the measured magnetic field).
  • FIG. 3 is a cross-sectional view schematically showing a cross section of the magnetic sensor 10 shown in FIG. 1 (a) by the V1-V1 line, and is a short cross section of a plurality of long patterns constituting the meander shape of the magnetoresistive sensor 11.
  • FIG. 3 is a cross-sectional view obtained by cutting the magnetic sensor 10 on a plane whose normal line is a direction along an axial direction (Y direction).
  • the magnetoresistive effect element 11 is formed on the substrate 29 and is covered with an insulating layer IM made of an insulating material (alumina, silicon nitride and the like are given as specific examples). Further, an oxidation protection layer PL made of silicon nitride (SiN) or the like is formed on the magnetic shield 15.
  • an insulating layer IM made of an insulating material (alumina, silicon nitride and the like are given as specific examples).
  • an oxidation protection layer PL made of silicon nitride (SiN) or the like is formed on the magnetic shield 15.
  • the magnetic shield 15 is arranged on the four magnetoresistive elements 11 (Z1 side in the Z direction) apart from the magnetoresistive element 11.
  • the Z1 side in the Z direction may be referred to as "upper” and the Z2 side in the Z direction may be referred to as "lower”.
  • the distance between the magnetic shield 15 and the magnetoresistive sensor 11 is adjusted by the thickness of the insulating layer IM located between them.
  • the magnetic shield 15 attenuates the strength of the measured magnetic field applied to the magnetoresistive effect element 11 and also attenuates the external magnetic field.
  • the magnetic shield 15 has an in-plane orthogonal direction (X direction) orthogonal to the sensitivity axis along the in-plane direction of the element forming surface when viewed from the thickness direction. ) Is a hexagonal first shield portion 15A, and a second shield portion 15B of an isosceles triangle whose apex is the first shield portion 15A side provided on both sides in the longitudinal direction thereof. ..
  • the magnetic shield 15 is composed of a soft magnetic material containing iron group elements such as Fe, Co, and Ni.
  • the thickness of the magnetic shield 15 is arbitrarily set within the range in which the magnetic shield 15 has a predetermined magnetic shielding function.
  • An example in which the thickness of the magnetic shield 15 is not limited is 1 ⁇ m or more and 50 ⁇ m or less, and the thickness of the magnetic shield 15 may be preferably 5 ⁇ m or more and 40 ⁇ m or less, and more preferably 10 ⁇ m or more and 35 ⁇ m or less.
  • the distance between the magnetic shield 15 and the magnetoresistive element 11 is set in consideration of the influence of the residual magnetization and the shielding effect of the external magnetic field.
  • the distance in the Z direction can be, for example, 5 ⁇ m or more and 13 ⁇ m or less.
  • the magnetic shield 15 can be manufactured by any method.
  • a base layer is formed by a dry process such as sputtering or a wet process such as electroless plating, and a resist layer patterned in a predetermined shape on the base layer.
  • a dry process such as sputtering or a wet process such as electroless plating
  • a resist layer patterned in a predetermined shape on the base layer.
  • the first shield portion 15A of the magnetic shield 15 has four magnetoresistive elements 11 along the line L1 connecting the two corners at the farthest positions of the hexagon when viewed from the Z direction (thickness direction). overlapping. That is, when viewed from the Z direction (thickness direction), the line L1 passes through the center of each of the four magnetoresistive effect elements 11.
  • the magnetic shield 15 further includes a second shield portion 15B magnetically connected to the first shield portion.
  • the second shield portion 15B is provided at both ends of the first shield portion 15A in the X direction so as to cover the magnetoresistive effect element 11 when viewed from the X direction (in-plane orthogonal direction).
  • the vertices of the second shield portion 15B having the shape of an isosceles triangle are connected to each of the two vertices at the farthest positions of the first shield portion 15A having the shape of a hexagon. Therefore, the second shield portion 15B has a component in the Z direction (thickness direction) and extends, and because it is arranged in this way, the second shield portion 15B has an orthogonal magnetic field in the X direction. Can be attenuated.
  • the orthogonal magnetic field applied to the magnetoresistive element 11 is generated by creating a magnetic path from one second shield portion 15B through the first shield portion 15A to the other second shield portion 15B.
  • the fact that the second shield portion 15B covers the magnetoresistive effect element 11 means that the second shield portion 15B is provided at a position overlapping the magnetoresistive effect element 11 when viewed from the X direction (in-plane orthogonal direction). That means.
  • the second shield portion 15B covering the magnetoresistive sensor 11 is in the X direction (in-plane orthogonal direction) passing through the center of the four magnetoresistive elements 11 in the Z direction (thickness direction). It intersects the straight line H.
  • the second shield portion 15B is arranged so as not to overlap with the magnetic equilibrium coil 16 when viewed from the thickness direction.
  • the second shield portion 15B can be formed, for example, by engraving a separation portion between the intersection 16c of the first coil 16A and the intersection 16c of the second coil 16B in the Z direction and then forming a film.
  • the first shield portion 15A overlaps with the adjacent portion 16pa of the magnetic equilibrium coil 16 and the magnetoresistive element 11 when viewed from the thickness direction, and is magnetically balanced. It is provided at a position that does not overlap with the intersection 16c of the coil 16.
  • the first shield portion 15A has an effect of attenuating the external magnetic field applied to the magnetoresistive effect element 11 and an effect of enhancing the magnetic equilibrium coil 16.
  • the first shield portion 15A has a shape that is line-symmetrical with respect to the straight line L1 (see FIG. 2C) when viewed from the Z direction (viewed from the thickness direction). With this shape, the magnitude of the magnetic field applied to the magnetoresistive effect element 11 can be made more uniform and the deviation of the midpoint potential can be alleviated. Further, the influence of the magnetic field based on the residual magnetization of the magnetic shield 15 on the four magnetoresistive effect elements 11 can be made equal to the positive and negative polarities.
  • the first shield portion 15A is arranged so as to overlap only the parallel portion 16p of the magnetic equilibrium coil 16 when viewed from the thickness direction. As a result, the influence of the magnetic field from the intersection 16c on the first shield portion 15A due to the current flowing through the magnetic equilibrium coil 16 can be significantly reduced. Therefore, the first shield portion 15A is hardly affected by the magnetic field from the intersection portion 16c when enhancing the magnetic field applied to the magnetoresistive effect element 11 by the adjacent portion 16pa of the magnetic equilibrium coil 16.
  • the second shield portion 15B has an intersection 16c of the first coil 16A and an intersection 16c of the second coil 16B when viewed from the thickness direction. That is, it is provided at a portion where the first coil 16A and the second coil 16B are separated from each other (hereinafter, also appropriately referred to as a separated portion) at both ends of the adjacent portion 16pa in the X direction. Since the second shield portion 15B is provided at the separated portion, the second shield portion 15B is hardly affected by the magnetic field from the intersection portion 16c due to the current flowing through the magnetic equilibrium coil 16 as in the first shield portion 15A.
  • the first shield portion 15A is hardly affected by the magnetic field from the intersection 16c via the second shield portion 15B magnetically connected. Therefore, the adverse effect of the second shield portion 15B on the effect of enhancing the magnetic equilibrium coil 16 by the first shield portion 15A can be significantly reduced.
  • the first shield portion 15A and the second shield portion 15B are arranged and connected so as to be in contact with each other at the end portions in the X direction. Therefore, it is possible to form a magnetic path from one of the second shielded portions 15B to the other via the first shielded portion 15A, and effectively attenuate the external magnetic field from the X direction.
  • the first shield portion 15A and the second shield portion 15B may be integrally formed by using the same material or may be formed as separate bodies by using different materials.
  • the second shield portion 15B is opposite to the connection end 15E1 connected to the first shield portion 15A and the connection end 15E1 in the X direction (in-plane orthogonal direction). It has a non-connecting end 15E2 on the side. Then, as shown in FIGS. 1A and 3, the distance H2 between the magnetoresistive effect element 11 and the non-connecting end 15E2 is the distance H2 between the magnetoresistive effect elements 11A to 11D and the connecting end 15E1 when viewed from the thickness direction. Greater than the distance H1.
  • the second shield portion 15B extends from the connected end 15E1 toward the non-connected end 15E2 with components in the Z direction (thickness direction) and the X direction (in-plane orthogonal direction). With this configuration, a magnetic path from the non-connecting end 15E2 of one second shielded portion 15B to the non-connecting end 15E2 of the other second shielded portion via the connecting end 15E1 and the first shielded portion 15A. , The magnetic field in the X direction perpendicular to the sensitivity axis direction can be efficiently attenuated.
  • the distance H1 and the distance H2 seen from the thickness direction between the connected end 15E1 and the non-connected end 15E2 and the magnetoresistive effect element in the second shield portion 15B are the four magnetoresistive effect elements 11. Of these, the distance in the X direction from the magnetoresistive sensor 11 located closest to the second shield portion 15B.
  • the magnetoresistive effect element 11 included in the magnetic sensor 10 is composed of the GMR element 110 (see FIG. 20) is a specific example, but the present invention is not limited to this.
  • the magnetoresistive element is one selected from the group consisting of an anisotropic magnetoresistive element (AMR element), a giant magnetoresistive element (GMR element), and a tunnel magnetoresistive element (TMR element). It consists of the above elements.
  • the fixed magnetic layer of each GMR element constituting the magnetoresistive effect elements 11A to 11D included in the magnetic sensor 10 has a self-pin structure, the fixed magnetic layer can be magnetized by film formation in a magnetic field. No heat treatment in a magnetic field is required after film formation. Therefore, it is possible to form a full bridge circuit by arranging GMR elements having different magnetization directions of the fixed magnetic layer on the same substrate.
  • the magnetic sensor 10 provided with the magnetoresistive effect element according to the embodiment of the present invention can be suitably used as a current sensor.
  • a specific example of the magnetically balanced current sensor is a current sensor 10A using the magnetic sensor 10 shown in FIGS. 1 (a) and 3; in such a current sensor 10A, the measured current Io is above FIG.
  • the flowing current line 81 is positioned so as to extend in the X direction.
  • the current sensor 10A includes the magnetoresistive effect elements 11A to 11D and the magnetic shield 15, and further includes a magnetic equilibrium coil 16 having a spiral shape between the magnetoresistive effect element 11 and the magnetic shield 15.
  • the induced magnetic field of the measured current Io which is the measured magnetic field
  • the induced magnetic field of the measured current Io is applied to the magnetoresistive effect element 11 in the direction along the sensitivity axial direction P (Y direction). Since a part of the magnetic field to be measured passes through the magnetic shield 15 having a higher magnetic permeability, the strength of the magnetic field to be measured substantially applied to the magnetoresistive sensor 11 can be reduced. Therefore, the amount of current flowing through the magnetic equilibrium coil 16 can be reduced in order to generate an induced magnetic field that cancels the magnetic field due to the measured current Io substantially applied to the four magnetoresistive effect elements 11. , Power saving of the current sensor is realized.
  • FIG. 4 is a plan view schematically showing a magnetic sensor 20 which is a modification of the magnetic sensor 10 shown in FIG. 1 (a).
  • the shape of the second shield portion 25B in the magnetic shield 25 of the magnetic sensor 20 is different from that of the magnetic sensor 10 when viewed from the thickness direction.
  • the magnetic shield 25 includes second shield portions 25B provided on both sides of the first shield portion 25A having a longitudinal direction in the X direction (in-plane orthogonal direction) orthogonal to the Y direction (direction of the sensitivity axis). , It is rectangular when viewed from the thickness direction. Therefore, when viewed from the thickness direction, a part of the second shield portion 25B overlaps with the intersecting portions 16c on both sides of the adjacent portion 16pa.
  • the first shield portion 25A is connected to the second shield portion 25B at two narrowed portions at both ends of the first shield portion 25A in the longitudinal direction.
  • the only difference between the magnetic sensor 20 and the magnetic sensor 10 is the shape of the second shield portion 25B as viewed from the thickness direction. Therefore, the cross section of the magnetic sensor 30 shown in FIG. 4 along the V2-V2 line is the same as that in FIG.
  • FIG. 5 is a plan view schematically showing a magnetic sensor 30 which is another modification of the magnetic sensor 10 shown in FIG. 1 (a).
  • the shape of the magnetic shield 35 of the magnetic sensor 30 is different from that of the magnetic sensor 10 when viewed from the thickness direction.
  • the first shield portion 35A having the longitudinal direction in the X direction and the second shield portions 35B provided on both sides in the longitudinal direction thereof are both rectangular when viewed from the thickness direction, and these are Y.
  • the widths in the directions are equal.
  • a gap G (gap) that can be magnetically connected is provided between the first shield portion 35A and the second shield portion 35B.
  • the gap G between the first shield portion 35A and the second shield portion 35B is preferably 3 to 25 ⁇ m. More preferably, it is 5 to 20 ⁇ m or less.
  • FIG. 6 is a cross-sectional view schematically showing a cross section of the magnetic sensor 30 shown in FIG. 5 by line V3-V3.
  • the magnetic sensor 30 a part of the parallel portion 16p of the magnetic equilibrium coil 16 is not covered by the first shield portion 35A on the parallel portion 16p (Z1 side in the Z direction). Therefore, from the viewpoint of the enhancement effect of the first shield portion 35A, the magnetic sensor 30 (FIGS. 1A and 3) in which the entire parallel portion 16p of the magnetic equilibrium coil 16 is covered with the first shield portion 15A. See) is more preferred.
  • FIG. 7 is a plan view schematically showing the structure of the magnetic sensor 40 according to the present embodiment.
  • FIG. 8 is a cross-sectional view schematically showing a cross section of the magnetic sensor 40 shown in FIG. 7 by lines V4-V4.
  • the magnetic sensor 40 of the present embodiment is different from the magnetic sensor 20 shown in FIG. 4 in the first embodiment in that the magnetic equilibrium coil 16 is only the first coil 16A. There is.
  • the second shield portion 25B of the magnetic sensor 40 has a larger proportion of the portion overlapping the intersection portion 16c in the magnetic equilibrium coil 16 than the magnetic sensor 20. Therefore, from the viewpoint of the effect that the first shield portion 35A enhances the magnetic equilibrium coil 16, the magnetic sensor 20 (see FIGS. 3 and 4) having a small proportion of the portion overlapping the intersection portion 16c is more than the magnetic sensor 40. Can also be said to be preferable.
  • FIG. 9 is a plan view schematically showing the magnetic sensor 50 which is a modification of the magnetic sensor 40 shown in FIG. 7.
  • FIG. 10 is a cross-sectional view schematically showing a cross section of the magnetic sensor 50 shown in FIG. 9 along with lines V5-V5. As shown in these figures, the shape of the magnetic shield 35 of the magnetic sensor 50 is different from that of the magnetic sensor 40 when viewed from the thickness direction.
  • a gap G that can be magnetically connected is provided between the first shield portion 35A and the second shield portion 35B that constitute the magnetic shield 35.
  • a gap G having an appropriate size, it is possible to form a magnetic path of the magnetic shield 35 with respect to a magnetic field orthogonal to the X direction, that is, when a magnetic field is applied from the Y direction, the second shield portion 35B A magnetic path from one to the other is formed via the first shielded portion 35A. Further, it is possible to prevent the magnetic field of the intersecting portion 16c from having an adverse effect on the enhancing effect of the first shield portion 35A.
  • FIG. 11A is a plan view showing the shape of the magnetic shield 15 included in the magnetic sensor 10 of the first embodiment as viewed from the thickness direction.
  • the magnetic sensor 10 shown in FIGS. 1 (a) and 3 was manufactured.
  • the distance D1 between the magnetoresistive element 11 and the magnetic shield 15 (directly above the magnetoresistive element, see FIG. 3) was 9.0 ⁇ m (common), and the rated magnetic field of the magnetic sensor 10 was ⁇ 18 mT.
  • FIG. 11B is a plan view showing the shape of the magnetic shield 25 included in the magnetic sensor of the second embodiment as viewed from the thickness direction.
  • the magnetic sensor 40 shown in FIGS. 7 and 8 was manufactured by using the magnetic shield 25 having the shape shown in the figure.
  • the distance D1 and the rated magnetic field between the magnetic shield 25 and the magnetoresistive element 11 were the same as in Example 1, and a GMR element having the same film configuration as that of Example 1 was used as the magnetoresistive element 11.
  • FIG. 12A is a plan view showing the shape of the magnetic shield 35 included in the magnetic sensor 30 of the third embodiment as viewed from the thickness direction.
  • the magnetic sensor 30 shown in FIGS. 5 and 6 was manufactured by setting the gap (Gap) of the magnetic shield 35 having the shape shown in the figure to 3 ⁇ m, 5 ⁇ m, 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 50 ⁇ m, and 100 ⁇ m.
  • the distance D1 and the rated magnetic field between the magnetic shield 35 and the magnetoresistive element 11 were the same as in Example 1, and a GMR element having the same film configuration as that of Example 1 was used as the magnetoresistive element 11.
  • a magnetic sensor 60 provided with a magnetic shield 65 having the planar shape shown in FIG. 13 and the cross-sectional shape shown in FIG. 14 was manufactured.
  • the planar shape of the magnetic shield 65 is a rectangle having a width of 150 ⁇ m and a length of 800 ⁇ m, and corresponds to the magnetic shield 35 of Example 3 shown in FIG. 12A excluding the second shield portion 35B.
  • the distance D1 and the rated magnetic field between the magnetic shield 65 and the magnetoresistive element 11 were the same as in Example 1, and a GMR element having the same film configuration as that of Example 1 was used as the magnetoresistive element 11.
  • FIG. 15 A magnetic sensor 70 provided with a magnetic shield 75 having the planar shape shown in FIG. 13 and the cross-sectional shape shown in FIG. 15 was manufactured.
  • the planar shape of the magnetic shield 65 is a rectangle having a width of 150 ⁇ m and a length of 800 ⁇ m, and like the magnetic shield 65 of Comparative Example 1, the second shield portion 35B is obtained from the magnetic shield 35 of Example 3 shown in FIG. Corresponds to the one excluded.
  • FIG. 15 in a configuration in which the end portions 75E on both sides of the magnetic shield 75 are provided with a magnetic attraction portion protruding 2.5 ⁇ m on the Z2 side in the Z direction toward the magnetoresistive element 11, a comparative example. It is different from the magnetic shield 65 of 1.
  • the distance D1 and the rated magnetic field between the magnetic shield 75 and the magnetoresistive element 11 were the same as in Example 1, and a GMR element having the same film configuration as that of Example 1 was used as the magnetoresistive element 11.
  • 16 and 17 are graphs showing the measurement results of the external magnetic field resistance of the magnetic sensors (10 each) in Examples 1 and 2.
  • 18 and 19 are graphs showing the measurement results of the external magnetic field resistance of the magnetic sensors (10 each) in Comparative Example 1 and Comparative Example 2.
  • the magnetic sensor according to the first embodiment did not have an offset up to an external magnetic field of ⁇ 25 mT.
  • the magnetic sensor according to the second embodiment has an offset at an external magnetic field of ⁇ 16 mT, but the offset fluctuation amount is kept small.
  • FIG. 18 in the magnetic sensor of Comparative Example 1, an offset occurred when the external magnetic field was ⁇ 13 mT, and the amount of offset fluctuation was also large.
  • FIG. 19 by providing the magnetic attraction portion in the magnetic shield, the resistance to the external magnetic field in the direction orthogonal to the sensitivity axis is slightly improved, but the offset is generated by the external magnetic field smaller than that of the first embodiment, and the embodiment is performed.
  • the orthogonal magnetic field resistance of the magnetic sensor is obtained by providing the second shield portion covering the first shield portion on both sides in the longitudinal direction in the direction orthogonal to the sensitivity axis of the magnetoresistive sensor.
  • the orthogonal magnetic field resistance of the magnetic sensor is obtained by providing the second shield portion covering the first shield portion on both sides in the longitudinal direction in the direction orthogonal to the sensitivity axis of the magnetoresistive sensor.
  • a magnetic sensor having good orthogonal magnetic field resistance due to the combination of the first coil and the second coil arranged linearly symmetrically when viewed from the thickness direction and the figure eight-shaped magnetic equilibrium coil having the first coil and the second coil. was able to be realized.
  • FIG. 12B is a graph showing the shape and gap of the magnetic shield in Example 3 and the external magnetic field resistance of the magnetic sensor.
  • the figure shows the magnitude of the orthogonal magnetic field in which the offset occurs when magnetic shields with different gaps are used.
  • Gap 0 ⁇ m in the figure shows the result of Example 1 provided with the magnetic shield 15 shown in FIG. 11 (a). As shown in the figure, it was found that the orthogonal magnetic field resistance is improved by setting the gap between the first shield portion and the second shield portion to 20 ⁇ m or less.
  • the magnetic sensor provided with the magnetoresistive effect element according to the embodiment of the present invention is suitably used as a component of a current sensor of infrastructure equipment such as a columnar transformer and a component of a current sensor of an electric vehicle, a hybrid car, or the like. sell.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

磁気抵抗効果素子の感度軸と直交する方向に加えられる直交磁場に対する耐性が高い本発明に係る磁気センサ10は、Y方向に感度軸を持つ磁気抵抗効果素子11と、磁気抵抗効果素子11とZ方向に離間配置され、被測定磁界の強度を減衰させる磁気シールド15と、磁気平衡用コイル16とを備え、磁気シールド15が、X方向を長手とする第1のシールド部15Aと、第1のシールド部15Aの両側に設けられた第2のシールド部15Bと、を備え、第1のシールド部15Aは、Z方向からみて、磁気抵抗効果素子11と重なる部分を有し、第2のシールド部15Bは、X方向からみて、磁気抵抗効果素子11と重なる部分を有し、X方向の磁場に対して、第1のシールド部15Aを介して、第2のシールド部15Bの一方から他方への磁路を形成可能である。

Description

磁気センサおよび電流センサ
 本発明は磁気センサおよび磁気センサを備えた電流センサに関する。
 電気自動車やハイブリッドカーにおけるモータ駆動技術などの分野や、柱状トランスなどインフラ関連の分野では、比較的大きな電流が取り扱われる。このため、大電流を非接触で測定可能な電流センサが求められている。このような電流センサとしては、被測定電流からの誘導磁界を検出する磁気センサを用いたものが知られている。磁気センサ用の磁気検出素子として、例えば、GMR(巨大磁気抵抗効果)素子などの磁気抵抗効果素子が挙げられる。
 磁気抵抗効果素子は、検出感度が高いものの、線形性高く検出可能な磁界強度範囲が比較的狭い。このため、特許文献1の図3に示される電流センサのように、被測定電流と磁気抵抗効果素子との間に磁気シールドを配置し、磁気シールドにより減衰された誘導磁界を磁気抵抗効果素子に印加する方法が用いられる場合がある。これにより、磁気抵抗効果素子が良好な検出特性を示す範囲内の強度にした誘導磁界を磁気抵抗効果素子に印加することができる。このように、磁気シールドにより磁気抵抗効果素子に実質的に印加される磁界の強度を低減させて、検出可能な磁界強度範囲を拡げることが実現される。
 磁界強度を低減させる効果は、磁気抵抗効果素子から磁気シールドの距離を近くすることによって大きくなる。しかし、印加される磁場が数十mT程度と強い場合には、軟磁性材料から構成された磁気シールドであっても、残留磁化が生じやすい。磁気シールドの残留磁化に基づく磁界が磁気抵抗効果素子に印加されると、磁気抵抗効果素子のゼロ磁場ヒステリシスがマイナス側に大きくなるなど、磁気抵抗効果素子の測定精度に悪影響を与えるおそれがある。また、磁気シールドに強い磁場が印加されると、磁気シールドが磁気的に飽和し、それに伴い磁場遮蔽効果が弱まって磁気抵抗効果素子に強い磁場が印加され、その結果、フリー磁性層のヒステリシスが大きくなり、磁気抵抗効果素子の抵抗が所定の値からずれるという問題もある。
 そこで、特許文献2には、本体部と吸磁部とを有する磁気シールドを備えた磁気センサが記載されている。この磁気センサによれば、磁気抵抗効果素子の感度軸と平行な方向に加えられる磁気シールドの残留磁化の影響を抑えながら、感度軸と直交する方向に加えられる直交磁場に対する磁気抵抗効果素子の耐性を高くすることができる。
国際公開第2011/111493号 特開2019-138807号公報
 特許文献2に記載の磁気シールドのように、形状の適正化によって直交磁場に対する磁気センサの耐性が向上するが、大きな電流が取り扱われる分野等において、磁気センサの直交磁場に対する耐性がさらに向上した磁気センサが望まれている。
 本発明は、直交磁場に対する耐性の高い磁気センサを提供することを目的とする。本発明は、かかる磁気センサを備える電流センサを提供することをも目的とする。
 上記の課題を解決するために提供される本発明は、一態様において、素子形成面に形成され前記素子形成面の面内方向に沿った感度軸を持つ磁気抵抗効果素子と、前記磁気抵抗効果素子から前記素子形成面に直交する厚さ方向に離間配置され、前記磁気抵抗効果素子に印加される被測定磁界の強度を減衰させる磁気シールドと、前記磁気抵抗効果素子と前記磁気シールドとの間に設けられた磁気平衡用コイルとを備え、前記磁気平衡用コイルに流れる電流に基づいて前記被測定磁界の強度を測定する磁気センサであって、前記磁気シールドは、前記素子形成面の面内方向において前記感度軸に直交する面内直交方向を長手とする第1のシールド部と、前記第1のシールド部の長手方向の両側に設けられた第2のシールド部と、を備え、前記第1のシールド部は、前記厚さ方向からみて、前記磁気抵抗効果素子と重なる部分を有し、前記第2のシールド部は、前記面内直交方向からみて、前記磁気抵抗効果素子と重なる部分を有し、前記面内直交方向の磁場に対して、前記第1のシールド部を介して、前記第2のシールド部の一方から他方への磁路を形成可能である。
 感度軸に直交する面内直交方向からみて、磁気抵抗効果素子と重なる部分を有する第2のシールド部を設け、当該第2のシールドの一方から他方へ、第1のシールド部を介して磁路を形成して迂回させることで、直交磁場を効果的に減衰できる。
 前記第1のシールド部と前記第2のシールド部とはギャップを介して磁気的に接続されていてもよい。この場合、前記第1のシールド部と前記第2のシールド部との距離は、20μm以下であることが好ましい。
 第1のシールド部と第2のシールド部との間にギャップを設けることにより、第1のシールド部による磁気平衡用コイルのエンハンス効果に、第2のシールド部が悪い影響を及ぼすことを抑制できる。また、ギャップの距離を20μm以下とすれば、第1のシールド部と第2のシールド部とを磁気的に結合させ、第2のシールド部の一方から他方への第1のシールド部を介する磁路を形成し、直交磁場を磁気抵抗効果素子から迂回させることができる。
 前記磁気平衡用コイルは、前記厚さ方向からみて、前記面内直交方向に平行に延びる平行部と、前記面内直交方向に交差する方向に延びる交差部とを備えており、前記第1のシールド部は、前記厚さ方向からみて、前記平行部および前記磁気抵抗効果素子と重なり、前記交差部と重ならない位置に設けられていることが好ましい。
 上記の構成により、第1のシールド部は、交差部からの磁界の影響を受けることなく、平行部から磁気抵抗効果素子に印加される磁界のみをエンハンス(増強)することができる。
 前記磁気平衡用コイルは、第1のコイルと第2のコイルと、を有し、前記第1のコイルと前記第2のコイルとは、前記厚さ方向からみて、前記磁気抵抗効果素子を通る線で線対称に配置され、前記第1のコイルおよび前記第2のコイルはそれぞれ、前記厚さ方向からみて、前記面内直交方向に平行に延びる平行部と、前記面内直交方向に対して交差する方向に延びる交差部と、を備え、前記第1のシールド部は、前記厚さ方向からみて、隣接する前記第1のコイルの前記平行部と前記第2のコイルの前記平行部とからなる隣接部および前記磁気抵抗効果素子と重なり、前記交差部と重ならない位置に設けられており、前記第2のシールド部は、前記厚さ方向からみて、前記第1のコイルの前記交差部と、前記第2のコイルの前記交差部との間に設けられていてもよい。
 前記磁気抵抗効果素子が複数であり、複数の前記磁気抵抗効果素子は、前記面内直交方向に並んでおり、前記第1のコイルと前記第2のコイルとは、前記厚さ方向からみて、複数の前記磁気抵抗効果素子を通る線で線対称に配置されていてもよい。
 厚さ方向から見て、線対称に配置された第1のコイルと第2のコイルとを有する磁気平衡用コイルを用い、隣接部に連続する交差部の間に第2のシールド部を設けることにより、磁気平衡用コイルの交差部と重ならないように、第2のシールド部を配置できる。これにより、隣接部を覆う第1シールド部が、端部においてのみ磁気的に結合する第2のシールド部を介した交差部からの磁界の影響を大幅に低減できる。したがって、第1シールド部は、交差部からの磁界の影響をほとんど受けずに、隣接部から磁気抵抗効果素子に印加される磁界のみをエンハンスすることができる。
 前記第1のシールド部と前記第2のシールド部とが接続されていてもよい。この構成により、磁気シールドは、磁路を形成しやすくなるから、面内直交方向からの直交磁場を効率よく減衰できる。
 前記第2のシールド部は、前記第1のシールド部と接続される接続端と、前記接続端とは反対側の非接続端とを有しており、前記厚さ方向からみて、前記磁気抵抗効果素子と前記非接続端との距離が、前記磁気抵抗効果素子と前記接続端との距離よりも大きいことが好ましい。
 上記の構成により、第2のシールド部の一方の非接続端から直交磁場を吸収して、直交磁場を減衰させることができる。
 本発明は、他の一態様として、上記の磁気センサを備え、前記磁気センサは被測定電流の誘導磁界を前記被測定磁界とする電流センサを提供する。
 本発明は、磁気抵抗効果素子への直交磁場の影響を受け難く、外部磁場の影響による測定精度の低下が起こりにくい磁気センサを提供することができる。また、かかる磁気センサを用いてなる電流センサも提供される。
(a)第1の実施形態に係る磁気センサの構造を模式的に示す平面図、(b)図1(a)の囲んだ部分Rの拡大図 磁気センサを構成する部材を分解して示す(a)磁気抵抗効果素子の平面図、(b)磁気平衡用コイルの平面図、(c)磁気シールドの平面図 磁気センサのV1-V1線による断面を模式的に示す断面図 磁気センサの変形例を模式的に示す平面図 磁気センサの他の変形例を模式的に示す平面図 図5に示す磁気センサのV3-V3線による断面を模式的に示す断面図 第2の実施形態に係る磁気センサの構造を模式的に示す平面図 図7に示す磁気センサのV4-V4線による断面を模式的に示す断面図 磁気センサの変形例を模式的に示す平面図 図9に示す磁気センサのV5-V5線による断面を模式的に示す断面図 (a)実施例1の磁気センサにおける磁気シールドの形状を示す平面図、(b)実施例2における磁気センサの磁気シールドの形状を示す平面図 (a)実施例3の磁気センサにおける磁気シールドの形状およびギャップ(Gap)を示す平面図、(b)実施例3における磁気シールドの形状およびギャップと、磁気センサの外部磁場耐性とを示すグラフ 比較例1および比較例2の磁気センサを模式的に示す平面図 図13に示す比較例1の磁気センサのV6-V6線による断面を模式的に示す断面図 図13に示す比較例2の磁気センサのV6-V6線による断面を模式的に示す断面図 実施例1の磁気センサの外部磁場耐性を示すグラフ 実施例2の磁気センサの外部磁場耐性を示すグラフ 比較例1の磁気センサの外部磁場耐性を示すグラフ 比較例2の磁気センサの外部磁場耐性を示すグラフ GMR素子の積層構造を模式的に示す断面図 ヒステリシスに起因するフリー磁性層の抵抗のオフセットを説明する説明図
(第1の実施形態)
 磁気抵抗効果素子を用いた磁気センサでは、感度軸に直交する方向に磁場が印加されるとフリー磁性層が多磁区化してヒステリシスが大きくなる。そこで、フリー磁性層の多磁区化を抑制するため、フリー磁性層に隣接してIrMn等の反強磁性層を積層してエクスチェンジバイアス磁界を印加する構造が用いられる。しかし、この構造を用いた場合でも、フリー磁性層が初期磁化方向の逆方向に反転すると、ゼロ磁場となったときに、フリー磁性層の磁化は初期方向に戻るものの、ヒステリシスに起因するオフセットが生じる。
 また、磁気センサでは、直交磁場の減衰によりオフセットを抑えるために、磁気抵抗効果素子上に磁気シールドを配置する構造が用いられる。この構造により、オフセットが生じる磁場強度を高い側にシフトさせて、磁気センサの直交磁場耐性を向上させることができる。シールド効果に優れた磁気シールドにより、直交磁場耐性に優れた磁気センサとすることができる。
 電流センサや磁気センサの磁気抵抗効果素子として用いられるGMR素子(巨大磁気抵抗効果素子)におけるフリー磁性層に生じるオフセットについて、以下に説明する。
 図20は、GMR素子110が備える積層構造を模式的に示す断面図である。GMR素子110は、固定磁性層111、非磁性材料層112およびフリー磁性層113が積層された構成を備えている。その抵抗値は、磁化方向が固定された固定磁性層111と、外部磁場により磁化方向が変わるフリー磁性層113との磁化方向の相対関係により変化する。磁気センサは、この抵抗値の変化に基づいて外部磁場の向きと強さとを検知することができる。
 フリー磁性層113の内部で磁壁が移動すると、バルクハウゼンノイズが発生する。そこで、GMR素子110を備えた磁気センサの出力を安定化するバイアス磁界として、反強磁性層114との交換結合磁界を使用したエクスチェンジバイアス磁界が、感度軸と直交する方向に与えられる。バイアス磁界の印加により、フリー磁性層113を形成する軟磁性材料の磁化方向を揃えることができる。なお、バイアス磁界は、エクスチェンジバイアス磁界に限らず、永久磁石を使用したハードバイアス磁界であってもよい。
 フリー磁性層113は、磁化方向が反転しない弱い外部磁場が印加された場合、ゼロ磁場に戻ることにより、外部磁場が印加される前の初期状態に戻る。しかし、磁化方向が反転する強い外部磁場が印加された場合、ゼロ磁場に戻しても、フリー磁性層113は初期状態には戻らない。すなわち、強い外部磁場によってフリー磁性層113の磁化方向が反転すると、外部磁場が除かれてゼロ磁場に戻ってもフリー磁性層113のヒステリシスによって、初期状態からのずれ(オフセット)が生じる。
 図21は、フリー磁性層のヒステリシスに起因する抵抗のオフセットを説明する説明図である。同図に示すように、フリー磁性層に対して感度軸と直交する方向に印加される外部磁場(直交磁場)が反転磁場Bより小さい場合、外部磁場がゼロに戻れば、フリー磁性層は実線に沿って矢印(1)の方向に変化して初期の状態に戻る。このため、外部磁場の大きさが0から反転磁場B未満である場合、外部磁場がゼロになれば、フリー磁性層の抵抗は初期のAになる。
 しかし、反転磁場B以上の外部磁場が印加された場合、フリー磁性層は、外部磁場がゼロに戻っても初期の状態に戻らない。例えば、フリー磁性層に飽和磁界Cが印加された場合、フリー磁性層のヒステリシスによって、破線に示すように抵抗が変化する。このため、外部の磁場がゼロになると、破線に沿って矢印(2)の方向に変化して、フリー磁性層の抵抗がDとなる。このように、外部磁場の大きさが反転磁場B以上である場合、フリー磁性層のヒステリシスによってフリー磁性層の抵抗が初期の値からずれてしまう。
 以上のように、反転磁場Bよりも大きな外部磁場が印加されてフリー磁性層が初期の磁化方向から反転すると、ゼロ磁場となった後にフリー磁性層の抵抗にオフセットが生じる。フリー磁性層に生じる抵抗のオフセットは外部磁場の大きさによって変動し、図21に白抜き矢印で表した範囲で変動する。フリー磁性層の抵抗が変動すると検知精度が低下するから、磁気センサは外部磁場に対する高い耐性を備えることが好ましい。
 そこで、磁気センサの検知精度を良好にするために、外部磁場を減衰する磁気シールドが用いられる。外部磁場は、磁気シールドにより減衰されながら、磁気抵抗効果素子11に印加される。このため、反転磁場Bは高磁場側にシフトし、磁気センサの検知精度を良好に維持できる範囲が広くなる。
 磁気シールドは、外部磁場を減衰する観点から、磁気抵抗効果素子から近い距離に設けられることが好ましい。しかし、磁気シールドが磁気抵抗効果素子の近くに設けられると、磁気シールドの残留磁化に伴う還流磁場の影響が大きくなる。このことは磁気センサの検知精度低下の一因となる。そこで、従来の磁気センサでは、一般に、磁気抵抗効果素子から離れた位置に磁気シールドが設けられている。
 図1(a)は、本実施形態に係る磁気センサ10の構造を模式的に示す平面図であり、図1(b)は、図1(a)における四角で囲んだ部分Rの拡大図である。なお、図1(a)では、便宜上、磁気シールド15の下(Z1-Z2方向Z2側、図3参照)側にある、磁気抵抗効果素子11A~11Dを破線で示し、磁気平衡用コイル16を省略している。他の磁気センサの図も同様に省略して示す。図1(b)では、磁気シールド15の下側にある磁気平衡用コイル16を破線で示している。
 図2(a)~図2(c)は、図1(a)の磁気センサ10を構成する部材を分解して示す平面図であり、図2(a)は磁気抵抗効果素子、図2(b)は磁気平衡用コイル、図2(c)は磁気シールド、を示している。
 磁気センサ10は、図2(a)~図2(c)および図3に示すように、素子形成面(XY平面)に形成され素子形成面の面内方向(Y1-Y2方向、適宜、Y方向という)に沿った感度軸を持つ、4つの磁気抵抗効果素子11(磁気抵抗効果素子11A~11Dを区別しないときは、適宜、磁気抵抗効果素子11と記す)と、磁気抵抗効果素子11と素子形成面に直交する厚さ方向(Z1-Z2方向、適宜、Z方向という)に離間配置され、磁気抵抗効果素子11に印加される被測定磁界の強度を減衰させる磁気シールド15と、磁気平衡用コイル16とを同一チップ上に備えている。磁気センサ10は、磁気平衡用コイル16に流れる電流に基づいて、被測定磁界の強度を測定する。
 図1(a)、図1(b)および図2(b)では、磁気平衡用コイル16が太線にて示されている。この太線で示されるようにX-Y平面内を周回するようにコイル配線が配置される。図3では、磁気平衡用コイル16における周回する複数のコイル配線の断面がX1-X2方向に延びて示されている。
 磁気平衡用コイル16は、磁気抵抗効果素子11と磁気シールド15との間に位置することにより、磁気シールド15により減衰した状態で印加される外部磁場をキャンセルするような誘導磁界を比較的小さな電流により生じさせることが可能となる。このため、磁気平衡式の磁気センサを省電力で動作させることが可能である。
 磁気平衡用コイル16は、図2(b)に示すように、厚さ方向からみて、素子形成面の面内方向において感度軸に直交する方向(X1-X2方向、適宜、X方向という)に沿った直線L1に対して線対称に配置された、第1のコイル16Aおよび第2のコイル16Bを有している。第1のコイル16Aおよび第2のコイル16Bはそれぞれ、厚さ方向からみて、X方向(面内直交方向)に平行に延びる2つの平行部16pと、平行部16pの伸長方向両側にそれぞれ設けられたX方向に対して交差する方向に延びる交差部16cとを備えている。第1のコイル16Aおよび第2のコイル16Bの隣接する平行部16pを隣接部16paという。4つの磁気抵抗効果素子11は、隣接部16paの中心に位置する直線L1の下に配置される(図1(a)参照)。
 4つの磁気抵抗効果素子11は、それぞれ図20に示すGMR素子110と同じ積層構造を備えており、同一基板(1チップ)上に磁化の向きが異なる固定磁性層111が配置されたフルブリッジ回路を形成する。また、4つの磁気抵抗効果素子11は、図1(a)に示すように、磁気平衡用コイル16の平行部16pの下側(Z方向Z1側)に、X方向に沿って一列に配列されている。
 4つの磁気抵抗効果素子11は、それぞれ、ミアンダ形状(X方向に延在する複数の長尺パターンが折り返すようにつながって構成される形状)を有する巨大磁気抵抗効果素子(GMR素子)を備える。各磁気抵抗効果素子11は、図1および図2(a)において白抜き矢印にて示した方向に感度軸を有する。4つの磁気抵抗効果素子11の感度軸方向PはY方向である。ここで、磁気抵抗効果素子11の感度軸方向PがY方向であるとは、感度軸方向Pが、Y方向に沿って、同じ側(平行方向)または反対側(反平行方向)であることをいう。また、4つの磁気抵抗効果素子11には、図2(a)に片側矢印で示されるように、X方向X1側からX方向X2側に向かってバイアス磁界が印加されている。
 図1に示すように、磁気抵抗効果素子11Aおよび磁気抵抗効果素子11Dの感度軸方向PがY方向Y2側を向き、磁気抵抗効果素子11Bおよび磁気抵抗効果素子11Cの感度軸方向PがY方向Y1側を向くように設定されている。
 入力端子5aに接続される配線5は磁気抵抗効果素子11Aの一端に接続され、磁気抵抗効果素子11Aの他端と磁気抵抗効果素子11Bの一端とが直列に接続されて、磁気抵抗効果素子11Bの他端が配線6を介してグランド端子6aに接続される。入力端子5aに接続される配線5は途中で分岐して磁気抵抗効果素子11Cの一端にも接続され、磁気抵抗効果素子11Cの他端と磁気抵抗効果素子11Dの一端とが直列に接続されて、磁気抵抗効果素子11Dの他端が配線6を介してグランド端子6aに接続される。第1の中点電位測定用端子7aは磁気抵抗効果素子11Aの他端と磁気抵抗効果素子11Bの一端との間に配線7により接続され、第2の中点電位測定用端子8aは磁気抵抗効果素子11Cの他端と磁気抵抗効果素子11Dの一端との間に配線8により接続される。磁気センサ10は、第1の中点電位測定用端子7aの電位と第2の中点電位測定用端子8aの電位とを対比することにより、電流線81を流れる被測定電流Ioの誘導磁界(被測定磁界)の強度および向きを測定する。
 図3は、図1(a)に示す磁気センサ10のV1-V1線による断面を模式的に示した断面図であり、磁気抵抗効果素子11のミアンダ形状を構成する複数の長尺パターンの短軸方向(Y方向)に沿った方向を法線とする面で磁気センサ10を切断して得られる断面図である。
 磁気抵抗効果素子11は、基板29上に形成され、絶縁材料(アルミナ、窒化ケイ素などが具体例として挙げられる。)からなる絶縁層IMによって覆われている。また、磁気シールド15の上には、窒化シリコン(SiN)などからなる酸化保護層PLが形成されている。
 磁気シールド15は、4つの磁気抵抗効果素子11の上(Z方向Z1側)に磁気抵抗効果素子11から離間して配置される。なお、本明細書においては、説明の便宜上、Z方向Z1側を「上」、Z方向Z2側を「下」と記載することがある。磁気シールド15と磁気抵抗効果素子11とが離間する距離は、間に位置する絶縁層IMの厚さによって調整される。
 磁気シールド15は、磁気抵抗効果素子11に印加される被測定磁界の強度を減衰させるとともに、外部磁場を減衰させるものである。図1(a)および図2(c)に示されるように、磁気シールド15は、厚さ方向からみて、素子形成面の面内方向に沿った感度軸に直交する面内直交方向(X方向)を長手とする六角形の第1のシールド部15Aと、その長手方向両側にそれぞれ設けられた、第1のシールド部15A側を頂点とする二等辺三角形の第2のシールド部15Bとを有する。
 磁気シールド15はFe、Co、Niなど鉄族元素を含む軟磁性材料から構成される。磁気シールド15の厚さは、磁気シールド15が所定の磁気遮蔽機能を有する範囲で任意に設定される。磁気シールド15の厚さの限定されない例として、1μm以上50μm以下が挙げられ、磁気シールド15の厚さは、5μm以上40μm以下が好ましい場合があり、10μm以上35μm以下がより好ましい場合がある。
 磁気シールド15の残留磁化の影響を抑制するには、磁気シールド15と磁気抵抗効果素子11との距離を大きくとることが好ましい。しかし、この要請を満たすべく磁気シールド15を磁気抵抗効果素子11から離れた位置に設けると、磁気シールド15の外部磁場を遮蔽する機能が低下してしまう。そこで、磁気シールド15と磁気抵抗効果素子とのZ方向の距離は、残留磁化の影響と外部磁場の遮蔽効果とを考慮して設定される。Z方向の距離は、例えば、5μm以上13μm以下とすることができる。
 磁気シールド15は、任意の方法により製造できるが、例えば、スパッタリングなどのドライプロセス、無電解めっきなどのウェットプロセスによって下地層を形成し、この下地層の上に所定の形状にパターニングされたレジスト層を形成した後、軟磁性層を電気めっきにより形成する方法を用いて製造することができる。
 磁気シールド15の第1のシールド部15Aは、Z方向(厚さ方向)からみて、六角形の最も遠い位置にある2つの角を結んだ線L1に沿って、4つの磁気抵抗効果素子11と重なっている。すなわち、Z方向(厚さ方向)からみて、線L1は4つの磁気抵抗効果素子11のそれぞれの中心を通っている。
 磁気シールド15は、さらに、第1のシールド部と磁気的に接続された第2のシールド部15Bを備えている。第2のシールド部15Bは、第1のシールド部15AのX方向における両端のそれぞれに、X方向(面内直交方向)からみて磁気抵抗効果素子11を覆うように設けられている。二等辺三角形の形状を有する第2のシールド部15Bの頂点は、六角形の形状を有する第1のシールド部15Aの最も遠い位置にある2つの頂点のそれぞれに連設されている。それゆえ、第2のシールド部15BはZ方向(厚さ方向)の成分を有して延在しており、このように配置されているため、第2のシールド部15BはX方向の直交磁場を減衰することができる。すなわち、一方の第2のシールド部15Bから、第1のシールド部15Aを経て、他方の第2のシールド部15Bの至る経路で磁路を作ることにより、磁気抵抗効果素子11にかかる直交磁場を減衰できる。ここで、第2のシールド部15Bが磁気抵抗効果素子11を覆うとは、X方向(面内直交方向)からみて磁気抵抗効果素子11と重なる位置に第2のシールド部15Bが設けられていることをいう。磁気抵抗効果素子11を覆う第2のシールド部15Bは、図3に示すように、4つの磁気抵抗効果素子11のZ方向(厚さ方向)の中心を通るX方向(面内直交方向)の直線Hと交差する。
 第2のシールド部15Bは、厚さ方向からみて、磁気平衡用コイル16と重ならないように配置されている。第2のシールド部15Bは、例えば、第1のコイル16Aの交差部16cと第2のコイル16Bの交差部16cとの間の離間部をZ方向に彫り込んでから成膜することにより形成できる。
 第1のシールド部15Aは、図1(a)および図1(b)に示すように、厚さ方向からみて、磁気平衡用コイル16の隣接部16paおよび磁気抵抗効果素子11と重なり、磁気平衡用コイル16の交差部16cとは重ならない位置に設けられる。第1のシールド部15Aは、磁気抵抗効果素子11に印加される外部磁場を減衰する効果と、磁気平衡用コイル16をエンハンスする効果とを奏する。
 第1のシールド部15Aは、Z方向から見て(厚さ方向からみて)、直線L1(図2(c)参照)に対して線対称の形状である。この形状にすることにより、磁気抵抗効果素子11に印加される磁界の大きさをより均一にして中点電位のずれを緩和することができる。また、4つの磁気抵抗効果素子11に対する磁気シールド15の残留磁化に基づく磁界の影響を正負の極性に対して等しくすることができる。
 第1のシールド部15Aは、厚さ方向からみて、磁気平衡用コイル16の平行部16pのみと重なるように配置される。これにより、磁気平衡用コイル16に電流が流れることによる第1のシールド部15Aに対する交差部16cからの磁界の影響を大幅に低減できる。このため、第1のシールド部15Aは、磁気平衡用コイル16の隣接部16paにより磁気抵抗効果素子11に印加される磁界をエンハンスする際、交差部16cからの磁界の影響をほとんど受けない。
 第2のシールド部15Bは、図1(a)および図1(b)に示すように、厚さ方向からみて、第1のコイル16Aの交差部16cと、第2のコイル16Bの交差部16cとの間、すなわち、隣接部16paのX方向の両端における第1のコイル16Aと第2のコイル16Bとが離間する部分(以下、適宜、離間部ともいう)に設けられている。第2のシールド部15Bは、離間部に設けられているから、第1のシールド部15A同様、磁気平衡用コイル16に電流が流れることにより交差部16cからの磁界の影響をほとんど受けない。したがって、第1のシールド部15Aは、磁気的に接続された第2のシールド部15Bを介して、交差部16cからの磁界の影響をほとんど受けない。このため、第1のシールド部15Aによる磁気平衡用コイル16をエンハンスする効果に対する、第2のシールド部15Bによる悪影響を大幅に低減することができる。
 図1~3に示す磁気センサ10では、第1のシールド部15Aと第2のシールド部15BとがそれぞれのX方向の端部で接触するように配置され、接続されている。このため、第2のシールド部15Bの一方から他方への第1のシールド部15Aを介した磁路を形成して、X方向からの外部磁場を効果的に減衰することができる。なお、第1のシールド部15Aと第2のシールド部15Bとは、同材料を用いて同時に一体に形成されたものでも、別材料を用いて別体として形成されたものでもよい。
 第2のシールド部15Bは、図2(c)、図3に示すように、第1のシールド部15Aと接続される接続端15E1と、X方向(面内直交方向)における接続端15E1と反対側の非接続端15E2とを有している。そして、図1(a)、図3に示すように、厚さ方向からみて、磁気抵抗効果素子11と非接続端15E2との距離H2が、磁気抵抗効果素子11A~11Dと接続端15E1との距離H1よりも大きい。第2のシールド部15Bは、接続端15E1から非接続端15E2に向かって、Z方向(厚さ方向)およびX方向(面内直交方向)の成分を有して延在している。この構成により、一方の第2のシールド部15Bの非接続端15E2から、他方の第2のシールド部の非接続端15E2への、接続端15E1および第1のシールド部15Aを介した磁路により、感度軸方向と垂直なX方向の磁界を効率よく減衰することができる。
 第2のシールド部15Bにおける接続端15E1・非接続端15E2と、磁気抵抗効果素子との厚さ方向からみた距離H1・距離H2とは、図3に示すように、4つの磁気抵抗効果素子11のうち、第2のシールド部15Bに最も近い位置にある、磁気抵抗効果素子11とのX方向の距離をいう。
 上述した実施形態では、磁気センサ10が備える磁気抵抗効果素子11がGMR素子110(図20参照)からなる場合を具体例としているが、これに限定されない。限定されない一例において、磁気抵抗効果素子は、異方性磁気抵抗効果素子(AMR素子)、巨大磁気抵抗効果素子(GMR素子)およびトンネル磁気抵抗効果素子(TMR素子)からなる群から選ばれる1種以上の素子からなる。
 なお、磁気センサ10が備える磁気抵抗効果素子11A~11Dを構成するそれぞれのGMR素子の固定磁性層がセルフピン構造を有する場合には、固定磁性層の磁化は磁場中成膜によって行うことができ、成膜後に磁場中の加熱処理が必要とされない。このため、固定磁性層の磁化の向きが異なるGMR素子を同一基板上に配置してフルブリッジ回路を構成することが可能となる。
 本発明の一実施形態に係る磁気抵抗効果素子を備えた磁気センサ10は、電流センサとして好適に使用されうる。磁気平衡式電流センサの具体例は、図1(a)、図3に示される磁気センサ10を用いた電流センサ10Aであり、かかる電流センサ10Aでは、図1の上方において、被測定電流Ioが流れる電流線81がX方向に延びるように位置する。電流センサ10Aは、磁気抵抗効果素子11A~11Dおよび磁気シールド15を備え、さらに磁気抵抗効果素子11と磁気シールド15との間にスパイラル形状を有する磁気平衡用コイル16を備える。
 被測定磁界である被測定電流Ioの誘導磁界は、磁気抵抗効果素子11に対して感度軸方向P(Y方向)に沿った方向に印加される。被測定磁界の一部はより透磁率の高い磁気シールド15を通るため、磁気抵抗効果素子11に実質的に印加される被測定磁界の強度を低減させることができる。それゆえ、4つの磁気抵抗効果素子11に実質的に印加される被測定電流Ioによる磁界をキャンセルするような誘導磁界を発生させるべく磁気平衡用コイル16に流される電流量を少なくすることができ、電流センサの省電力化が実現される。
 図4は、図1(a)に示す磁気センサ10の変形例である磁気センサ20を模式的に示す平面図である。磁気センサ20は、厚さ方向からみて、磁気シールド25における第2のシールド部25Bの形状が磁気センサ10と異なっている。
 磁気シールド25は、Y方向(感度軸の方向)に直交するX方向(面内直交方向)を長手とする第1のシールド部25Aの長手方向の両側に設けられた第2のシールド部25Bが、厚さ方向からみて矩形である。このため、厚さ方向からみて、第2のシールド部25Bの一部が、隣接部16paの両側の交差部16cと重なる。
 しかし、交差部16cと重なるのは、第2のシールド部25Bの一部の領域である。そして、第1のシールド部25Aは、第1のシールド部25Aの長手方向における両端の2つの狭まった部分において、第2のシールド部25Bと接続されている。この構成により、交差部16cからの磁場が、第2のシールド部25Bを介して第1のシールド部25Aに及ぼす影響を小さくすることができる。このため、第1のシールド部25Aの磁気平衡用コイル16の磁気に対するエンハンスする効果において、交差部16cからの磁場がノイズとなることを抑えられる。
 なお、磁気センサ20と磁気センサ10との相違は、第2のシールド部25Bの厚さ方向からみた形状のみである。このため、図4に示す磁気センサ30のV2-V2線による断面は図3と同様となる。
 図5は、図1(a)に示す磁気センサ10の他の変形例である磁気センサ30を模式的に示す平面図である。磁気センサ30は、厚さ方向からみて、磁気シールド35の形状が磁気センサ10と異なっている。
 磁気シールド35では、X方向を長手とする第1のシールド部35A、およびその長手方向の両側に設けられた第2のシールド部35Bはいずれも、厚さ方向からみて矩形であり、これらはY方向の幅が等しい。そして、第1のシールド部35Aと第2のシールド部35Bとの間には、磁気的に接続可能なギャップG(隙間)が設けられている。ギャップGを適切な大きさとすることで、第1のシールド部35Aと第2のシールド部35Bとを磁気的に接続して、X方向の直交磁場を迂回させる磁路を形成することが可能になる。
 また、適切なギャップGを設けることにより、交差部16cからの磁場が第2のシールド部35Bを介して、第1のシールド部35Aが磁気平衡用コイル16をエンハンスする際にノイズとなることを抑制できる。交差部16cからのノイズの影響を抑えつつ、直交方向の磁路を形成する観点から、第1のシールド部35Aと、第2のシールド部35Bとの間のギャップGは、3~25μmが好ましく、5~20μm以下がより好ましい。
 図6は、図5に示す磁気センサ30のV3-V3線による断面を模式的に示す断面図である。磁気センサ30では、磁気平衡用コイル16の平行部16pの一部の領域が、その上(Z方向Z1側)に第1のシールド部35Aに覆われていない。このため、第1のシールド部35Aのエンハンス効果の観点から、磁気平衡用コイル16の平行部16pの全体が第1のシールド部15Aにより覆われた磁気センサ30(図1(a)、図3参照)がより好ましいといえる。
(第2の実施形態)
 図7は、本実施形態に係る磁気センサ40の構造を模式的に示す平面図である。
 図8は、図7に示す磁気センサ40のV4-V4線による断面を模式的に示す断面図である。
 これらの図に示すように、本実施形態の磁気センサ40は、磁気平衡用コイル16が第1のコイル16Aのみである点において、第1の実施例における図4に示す磁気センサ20と異なっている。
 図8に示すように、磁気センサ40の第2のシールド部25Bは、磁気センサ20と比較して、磁気平衡用コイル16における交差部16cと重なる部分の割合が大きい。このため、第1のシールド部35Aが磁気平衡用コイル16をエンハンスする効果の観点から、交差部16cと重なる部分の割合が小さい磁気センサ20(図3、図4参照)が、磁気センサ40よりも好ましいといえる。
 図9は、図7に示す磁気センサ40の変形例である磁気センサ50を模式的に示す平面図である。
 図10は、図9に示す磁気センサ50のV5-V5線による断面を模式的に示す断面図である。
 これらの図に示すように、磁気センサ50は、厚さ方向からみて、磁気シールド35の形状が磁気センサ40と異なっている。
 磁気シールド35を構成する、第1のシールド部35Aと第2のシールド部35Bとの間には、磁気的に接続可能なギャップGが設けられている。適切な大きさのギャップGを設けることにより、X方向の直交磁場に対して磁気シールド35の磁路を形成可能とする、すなわちY方向から磁場が印加されたときに、第2のシールド部35Bの一方から他方への磁路が、第1のシールド部35Aを介して形成される。また、第1のシールド部35Aのエンハンス効果に対して、交差部16cの磁場が悪影響をおよぼすことを抑えることができる。
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
 以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。
(実施例1)
 図11(a)は、厚さ方向からみた、実施例1の磁気センサ10の備える磁気シールド15の形状を示す平面図である。同図に示す形状の磁気シールド15を用いて、図1(a)および図3に示す磁気センサ10を作製した。磁気抵抗効果素子11と磁気シールド15との間の距離D1(磁気抵抗効果素子の直上、図3参照)は9.0μm(共通)、磁気センサ10の定格磁場を±18mTとした。
 磁気抵抗効果素子11として、以下の膜構成を備えたGMR素子を用いた。()内の数字は層の厚さ(Å)を示している。
 下地層:NiFeCr(42)/固定磁性層:Fe60at%Co40at%(19)/非磁性材料層:Ru(3.6)/固定磁性層:Co90at%Fe10at%(24)/非磁性材料層:Cu(20)/フリー磁性層:[Co90at%Fe10at%(10)/Ni82.5at%Fe17.5at%(70)]/反強磁性層:IrMn(80)/保護層:Ta(100)
(実施例2)
 図11(b)は、厚さ方向からみた、実施例2の磁気センサの備える磁気シールド25の形状を示す平面図である。同図に示す形状の磁気シールド25を用いて、図7および図8に示す磁気センサ40を作製した。
 磁気シールド25と磁気抵抗効果素子11との間の距離D1および定格磁場は、実施例1と同様にし、磁気抵抗効果素子11として、実施例1と同じ膜構成を備えたGMR素子を用いた。
(実施例3)
 図12(a)は、厚さ方向からみた、実施例3の磁気センサ30の備える磁気シールド35の形状を示す平面図である。同図に示す形状の磁気シールド35のギャップ(Gap)を3μm、5μm、10μm、20μm、30μm、50μm、および100μmとして、図5および図6に示す磁気センサ30を作製した。
 磁気シールド35と磁気抵抗効果素子11との間の距離D1および定格磁場は、実施例1と同様にし、磁気抵抗効果素子11として、実施例1と同じ膜構成を備えたGMR素子を用いた。
(比較例1)
 図13に示す平面形状および図14に示す断面形状を備えた磁気シールド65を備えた、磁気センサ60を作製した。磁気シールド65の平面形状は幅150μm、長さ800μmの矩形であり、図12(a)に示す実施例3の磁気シールド35から、第2のシールド部35Bを除いたものに相当する。
 磁気シールド65と磁気抵抗効果素子11との間の距離D1および定格磁場は、実施例1と同様にし、磁気抵抗効果素子11として、実施例1と同じ膜構成を備えたGMR素子を用いた。
(比較例2)
 図13に示す平面形状および図15に示す断面形状を備えた磁気シールド75を備えた、磁気センサ70を作製した。磁気シールド65の平面形状は幅150μm、長さ800μmの矩形であり、比較例1の磁気シールド65同様、図12(a)に示す実施例3の磁気シールド35から、第2のシールド部35Bを除いたものに相当する。しかし、図15に示すように、磁気シールド75の両側の端部75Eが、磁気抵抗効果素子11に向かって、Z方向Z2側に2.5μm突出した吸磁部を備えた構成において、比較例1の磁気シールド65とは異なっている。
 磁気シールド75と磁気抵抗効果素子11との間の距離D1および定格磁場は、実施例1と同様にし、磁気抵抗効果素子11として、実施例1と同じ膜構成を備えたGMR素子を用いた。
(測定例1)オフセット変動量の測定
 実施例1、2の磁気センサおよび比較例1、2の磁気センサのそれぞれについて、感度軸に直交する方向に印加する外部磁場(ストレス磁場、直交磁場)を±XmT(Xは5~30、5~20は1mTごと、20~30は5mTごと)として、交互に印加されるプラスとマイナスの外部磁場の絶対値が徐々に大きくなるように外部磁場を変化させながら、磁気センサの出力のオフセット変動量を測定した。
 図16および図17は、実施例1および実施例2における磁気センサ(各10個)についての外部磁場耐性の測定結果を示すグラフである。
 図18および図19は、比較例1および比較例2における磁気センサ(各10個)の外部磁場耐性の測定結果を示すグラフである。
 図16に示すように、実施例1に係る磁気センサは、外部磁場±25mTまでオフセットが生じなかった。また、図17に示すように、実施例2に係る磁気センサは、外部磁場±16mTでオフセットが生じるものの、オフセット変動量が小さく維持されていた。
 対して、図18に示すように、比較例1の磁気センサは、外部磁場が±13mTでオフセットが生じ、また、オフセット変動量も大きかった。図19に示すように、磁気シールドに吸磁部を設けることにより、感度軸に直交する方向の外部磁場に対する耐性がやや向上したが、実施例1よりも小さな外部磁場によりオフセットが生じ、実施例1、2よりオフセット変動量が大きかった。
 図16~図19に示す結果から、第1のシールド部の長手方向両側に、磁気抵抗効果素子の感度軸と直交する方向に覆う第2のシールド部を設けることにより、磁気センサの直交磁場耐性が向上することが分かった。特に、厚さ方向からみて、線対称に配置された第1のコイルと第2のコイルと、を有する8の字形状の前記磁気平衡用コイルとの組み合せにより、直交磁場耐性が良好な磁気センサを実現することができた。
(測定例3)
 図12(b)は、実施例3における磁気シールドの形状およびギャップと、磁気センサの外部磁場耐性とを示すグラフである。同図では、ギャップの異なる磁気シールドを用いた場合に、オフセットが生じた直交磁場の大きさを示している。なお、同図のGap0μmは、図11(a)に示す磁気シールド15を備えた実施例1の結果を示している。同図に示すように、第1のシールド部と第2のシールド部とのギャップを20μm以下とすることにより、直交磁場耐性が向上することが分かった。
 本発明の一実施形態に係る磁気抵抗効果素子を備えた磁気センサは、柱状トランスなどのインフラ設備の電流センサの構成要素や、電気自動車、ハイブリッドカーなどの電流センサの構成要素として好適に使用されうる。
5、6、7、8:配線
5a   :入力端子
6a   :グランド端子
7a   :第1の中点電位測定用端子
8a   :第2の中点電位測定用端子
10、20、30、40、50、60、70:磁気センサ
10A  :電流センサ
11、11A、11B、11C、11D:磁気抵抗効果素子
15、25、35、65、75:磁気シールド
15A、25A、35A:第1のシールド部
15B、25B、35B:第2のシールド部
15E1 :接続端
15E2 :非接続端
16   :磁気平衡用コイル
16A  :第1のコイル
16B  :第2のコイル
16c  :交差部
16p  :平行部
16pa :隣接部
29   :基板
75E  :端部
81   :電流線
110  :GMR素子
111  :固定磁性層
112  :非磁性材料層
113  :フリー磁性層
114  :反強磁性層
A、D  :抵抗
B    :反転磁場
C    :飽和磁界
D1   :距離
G    :ギャップ
IM   :絶縁層
Io   :被測定電流
L1、H :直線
P    :感度軸方向
PL   :酸化保護層
H1、H2:距離

Claims (9)

  1.  素子形成面に形成され前記素子形成面の面内方向に沿った感度軸を持つ磁気抵抗効果素子と、前記磁気抵抗効果素子から前記素子形成面に直交する厚さ方向に離間配置され、前記磁気抵抗効果素子に印加される被測定磁界の強度を減衰させる磁気シールドと、前記磁気抵抗効果素子と前記磁気シールドとの間に設けられた磁気平衡用コイルとを備え、前記磁気平衡用コイルに流れる電流に基づいて前記被測定磁界の強度を測定する磁気センサであって、
     前記磁気シールドは、前記素子形成面の面内方向において前記感度軸に直交する面内直交方向を長手とする第1のシールド部と、前記第1のシールド部の長手方向の両側に設けられた第2のシールド部と、を備え、
     前記第1のシールド部は、前記厚さ方向からみて、前記磁気抵抗効果素子と重なる部分を有し、
     前記第2のシールド部は、前記面内直交方向からみて、前記磁気抵抗効果素子と重なる部分を有し、
     前記面内直交方向の磁場に対して、前記第1のシールド部を介して、前記第2のシールド部の一方から他方への磁路を形成可能である、磁気センサ。
  2.  前記第1のシールド部と前記第2のシールド部とはギャップを介して磁気的に接続されている、請求項1に記載の磁気センサ。
  3.  前記第1のシールド部と、前記第2のシールド部と距離が20μm以下である、請求項2に記載の磁気センサ。
  4.  前記磁気平衡用コイルは、前記厚さ方向からみて、前記面内直交方向に平行に延びる平行部と、前記面内直交方向に交差する方向に延びる交差部とを備えており、
     前記第1のシールド部は、前記厚さ方向からみて、前記平行部および前記磁気抵抗効果素子と重なり、前記交差部と重ならない位置に設けられている、請求項1~3のいずれか一項に記載の磁気センサ。
  5.  前記磁気平衡用コイルは、第1のコイルと第2のコイルと、を有し、
     前記第1のコイルと前記第2のコイルとは、前記厚さ方向からみて、前記磁気抵抗効果素子を通る線で線対称に配置され、
     前記第1のコイルおよび前記第2のコイルはそれぞれ、前記厚さ方向からみて、前記面内直交方向に平行に延びる平行部と、前記面内直交方向に対して交差する方向に延びる交差部と、を備え、
     前記第1のシールド部は、前記厚さ方向からみて、隣接する前記第1のコイルの前記平行部と前記第2のコイルの前記平行部とからなる隣接部および前記磁気抵抗効果素子と重なり、前記交差部と重ならない位置に設けられており、
     前記第2のシールド部は、前記厚さ方向からみて、前記第1のコイルの前記交差部と、前記第2のコイルの前記交差部との間に設けられている、
    請求項1に記載の磁気センサ。
  6.  前記磁気抵抗効果素子が複数であり、
     複数の前記磁気抵抗効果素子は、前記面内直交方向に並んでおり、
     前記第1のコイルと前記第2のコイルとは、前記厚さ方向からみて、複数の前記磁気抵抗効果素子を通る線で線対称に配置されている、
    請求項5に記載の磁気センサ。
  7.  前記第1のシールド部と前記第2のシールド部とが接続されている、請求項5または6に記載の磁気センサ。
  8.  前記第2のシールド部は、前記第1のシールド部と接続される接続端と、前記接続端とは反対側の非接続端とを有しており、
     前記厚さ方向からみて、前記磁気抵抗効果素子と前記非接続端との距離が、前記磁気抵抗効果素子と前記接続端との距離よりも大きい、請求項1から7のいずれか一項に記載の磁気センサ。
  9.  請求項1から請求項8のいずれか一項に記載される磁気センサを備え、前記磁気センサは被測定電流の誘導磁界を前記被測定磁界とする電流センサ。
PCT/JP2021/026150 2020-08-12 2021-07-12 磁気センサおよび電流センサ WO2022034763A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/158,266 US20230160928A1 (en) 2020-08-12 2023-01-23 Magnetic sensor and current sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-136314 2020-08-12
JP2020136314A JP2023130536A (ja) 2020-08-12 2020-08-12 磁気センサおよび電流センサ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/158,266 Continuation US20230160928A1 (en) 2020-08-12 2023-01-23 Magnetic sensor and current sensor

Publications (1)

Publication Number Publication Date
WO2022034763A1 true WO2022034763A1 (ja) 2022-02-17

Family

ID=80247185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026150 WO2022034763A1 (ja) 2020-08-12 2021-07-12 磁気センサおよび電流センサ

Country Status (3)

Country Link
US (1) US20230160928A1 (ja)
JP (1) JP2023130536A (ja)
WO (1) WO2022034763A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10244889A1 (de) * 2002-09-26 2004-04-15 Siemens Ag Einrichtung zur Signalübertragung mit mindestens einem magnetoresistiven Sensorelementen vom TMR-Typ
US20060061350A1 (en) * 2004-09-17 2006-03-23 Nve Corporation Inverted magnetic isolator
WO2013161773A1 (ja) * 2012-04-23 2013-10-31 日立金属株式会社 磁気センサデバイス
JP2014066589A (ja) * 2012-09-25 2014-04-17 Stanley Electric Co Ltd 電流検出装置
JP2016170127A (ja) * 2015-03-13 2016-09-23 株式会社フジクラ 電流検出装置
WO2016203781A1 (ja) * 2015-06-15 2016-12-22 株式会社村田製作所 電流センサ
US20160377691A1 (en) * 2015-06-26 2016-12-29 Stmicroelectronics S.R.L. Integrated amr magnetoresistor with large scale
WO2017094336A1 (ja) * 2015-12-03 2017-06-08 アルプス電気株式会社 磁界検知装置
JP2019002742A (ja) * 2017-06-13 2019-01-10 Tdk株式会社 電流センサ
JP2019528624A (ja) * 2016-08-18 2019-10-10 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. 平衡磁気抵抗周波数ミキサ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10244889A1 (de) * 2002-09-26 2004-04-15 Siemens Ag Einrichtung zur Signalübertragung mit mindestens einem magnetoresistiven Sensorelementen vom TMR-Typ
US20060061350A1 (en) * 2004-09-17 2006-03-23 Nve Corporation Inverted magnetic isolator
WO2013161773A1 (ja) * 2012-04-23 2013-10-31 日立金属株式会社 磁気センサデバイス
JP2014066589A (ja) * 2012-09-25 2014-04-17 Stanley Electric Co Ltd 電流検出装置
JP2016170127A (ja) * 2015-03-13 2016-09-23 株式会社フジクラ 電流検出装置
WO2016203781A1 (ja) * 2015-06-15 2016-12-22 株式会社村田製作所 電流センサ
US20160377691A1 (en) * 2015-06-26 2016-12-29 Stmicroelectronics S.R.L. Integrated amr magnetoresistor with large scale
WO2017094336A1 (ja) * 2015-12-03 2017-06-08 アルプス電気株式会社 磁界検知装置
JP2019528624A (ja) * 2016-08-18 2019-10-10 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. 平衡磁気抵抗周波数ミキサ
JP2019002742A (ja) * 2017-06-13 2019-01-10 Tdk株式会社 電流センサ

Also Published As

Publication number Publication date
US20230160928A1 (en) 2023-05-25
JP2023130536A (ja) 2023-09-21

Similar Documents

Publication Publication Date Title
US8760158B2 (en) Current sensor
JP5012939B2 (ja) 電流センサ
US9891293B2 (en) Magnetic sensor device preventing concentration of magnetic fluxes to a magnetic sensing element
WO2009084433A1 (ja) 磁気センサ及び磁気センサモジュール
WO2009084434A1 (ja) 磁気センサ及び磁気センサモジュール
WO2012120939A1 (ja) 電流センサ
WO2010010872A1 (ja) 磁気センサ及び磁気センサモジュール
JP6299069B2 (ja) 磁気センサ装置
WO2012090631A1 (ja) 磁気比例式電流センサ
JP2009300150A (ja) 磁気センサ及び磁気センサモジュール
CN112904246B (zh) 磁传感器
JP2017072375A (ja) 磁気センサ
WO2011111536A1 (ja) 磁気平衡式電流センサ
WO2009151023A1 (ja) 磁気センサ及び磁気センサモジュール
JP7057680B2 (ja) 磁気センサおよび電流センサ
JP2018112481A (ja) 磁気センサ
JP5597305B2 (ja) 電流センサ
WO2011111537A1 (ja) 電流センサ
JP5505817B2 (ja) 磁気平衡式電流センサ
WO2022034763A1 (ja) 磁気センサおよび電流センサ
WO2011111747A1 (ja) 磁気検出素子を備えた電流センサ
JP7122836B2 (ja) 磁気センサおよび電流センサ
JP6726040B2 (ja) 磁気センサおよび電流センサ
WO2020054112A1 (ja) 磁気センサおよび電流センサ
WO2012117784A1 (ja) 電流センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21855842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP