WO2016202191A1 - 一种聚碳酸酯组合物及其制备方法与应用 - Google Patents

一种聚碳酸酯组合物及其制备方法与应用 Download PDF

Info

Publication number
WO2016202191A1
WO2016202191A1 PCT/CN2016/085101 CN2016085101W WO2016202191A1 WO 2016202191 A1 WO2016202191 A1 WO 2016202191A1 CN 2016085101 W CN2016085101 W CN 2016085101W WO 2016202191 A1 WO2016202191 A1 WO 2016202191A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate
parts
perfluoro
flame retardant
polycarbonate composition
Prior art date
Application number
PCT/CN2016/085101
Other languages
English (en)
French (fr)
Inventor
杨燕
何继辉
佟伟
孙东海
Original Assignee
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司 filed Critical 金发科技股份有限公司
Publication of WO2016202191A1 publication Critical patent/WO2016202191A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/095Carboxylic acids containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Definitions

  • the invention relates to the technical field of engineering plastics, in particular to a polycarbonate composition and a preparation method and application thereof.
  • Polycarbonate is a tough thermoplastic resin, second only to polyamide's second largest engineering plastics. Polycarbonate is heat resistant, impact resistant, and has good mechanical properties at normal service temperatures. It is widely used in automobiles. , electronics, electrical appliances, construction, office equipment, packaging and other fields.
  • polycarbonate due to the high requirements for flame retardancy of materials in electronics, electrical appliances, construction and office equipment, polycarbonate must be flame retarded.
  • polycarbonate has high hygroscopic property, easy to produce bubbles and silver streaks, easy to generate residual internal stress, high sensitivity to notch, low fatigue resistance, poor friction and wear resistance, especially under high humidity. Easy to hydrolyze.
  • a polycarbonate sheet containing a silicone and/or a fluorinated component as a flame retardant is described in the patents JP-A 2007 031 583, JP-A 2006 335 893, JP-A 2007 191 499, and JP-A 2008 222 813, which cannot be applied to the above due to the above-mentioned defects of polycarbonate. field.
  • Patent CN201210446256.6 discloses a flame-retardant polycarbonate alloy having excellent wear resistance and a preparation method thereof, the flame-retardant polycarbonate alloy comprising the following components and contents: PC 70-90 parts by weight, ABS 5 -20 parts by weight, 0.5 to 3 parts by weight of the organosilicon compound, and 10 to 20 parts by weight of the flame retardant.
  • the preparation method comprises the following steps: mixing the above raw materials in a medium speed mixer for 10-30 min, placing them in a twin-screw extruder, feeding on the side of the flame retardant, and performing granulation to obtain a product after melt extrusion.
  • the invention is modified with an organosilicon compound to improve wear resistance.
  • the inventors have surprisingly found through extensive experimentation that a specific content of perfluoro-substituted polyolefin and a total weight of the polycarbonate composition of 5 ppm to 100 ppm of perfluoro-substituted alkyl acid are selected in the polycarbonate composition formulation.
  • a specific content of perfluoro-substituted polyolefin and a total weight of the polycarbonate composition of 5 ppm to 100 ppm of perfluoro-substituted alkyl acid are selected in the polycarbonate composition formulation.
  • the hydrolytic stability, abrasion resistance and flame retardancy of the polycarbonate composition can be remarkably improved, and it is particularly suitable for use in the field of electronic appliances.
  • Another object of the present invention is to provide a process for the preparation of the above polycarbonate composition.
  • a further object of the invention is to provide the use of the above polycarbonate compositions.
  • a polycarbonate composition comprising, by weight, the following composition:
  • the sum of the weight components of the three components a, b, and c is 100 parts.
  • a polycarbonate composition by weight, comprises the following composition:
  • the sum of the weight components of the three components a, b, and c is 100 parts;
  • the content of the perfluoro-substituted alkyl acid and its derivative in the total weight of the polycarbonate composition is from 5 ppm to 100 ppm.
  • Test method for the content of perfluoro-substituted alkyl acid and its derivatives The sample is cut into small pieces of about 1 cm 2 , 20 g (accurate to 0.0001 g) sample is weighed, carbon tetrachloride/methanol is used as an extraction solvent, and placed in Soxhlet In the extraction filter cartridge, Soxhlet extraction for 16 hours, the extract was purified by filtration, and then dehydrated and concentrated by sodium sulfate, and the volume was adjusted to 10 mL. The mobile phase was methanol and tested by liquid chromatography-mass spectrometry (LC-MS).
  • LC-MS liquid chromatography-mass spectrometry
  • Mass Spectrometry Condition Ion Source Negative Chemical Source (NCI). Ion source and quadrupole temperature: 150 °C. Determination method: Select ion scan (SIM), solvent delay: 315 min. Wherein the perfluoro-substituted alkyl acid and its derivative have a water solubility of ⁇ 700 mg ⁇ L -1 as measured according to the OECD 105 method.
  • OECD 105 test method Weigh 2.5020g sample dissolved in 50mL pure water, shake at 30 °C for 24h, take it out and rest at 20 °C for 24h; filter, take 2mL of supernatant from each sample, measure it by UPLC-MS/MS concentration.
  • perfluoro-substituted alkyl acid and its derivative are selected from the group consisting of a perfluoro-substituted alkyl acid, a perfluoro-substituted alkyl acid halide, a perfluoro-substituted alkyl acid amino compound, and a perfluoro-substituted sulfonic acid.
  • the content of the perfluoro-substituted alkyl acid and its derivative in the total weight of the polycarbonate composition is from 10 ppm to 90 ppm, preferably from 15 ppm to 80 ppm; more preferably from 20 ppm to 50 ppm.
  • the perfluoro-substituted polyolefin has a melting point of from 320 ° C to 330 ° C as measured according to ASTM D-4591.
  • the perfluoro-substituted polyolefin is selected from one or more of polytetrafluoroethylene PTFE, perfluoro-substituted polyethylene propylene, and perfluoro-substituted polypropylene, preferably polytetrafluoroethylene PTFE.
  • the polycarbonate is selected from one or more of an aromatic polycarbonate, an aliphatic polycarbonate, an aromatic-aliphatic polycarbonate, a branched polycarbonate, and a siloxane copolycarbonate; It is preferably an aromatic polycarbonate.
  • the polycarbonate is an aromatic polycarbonate having a viscosity average molecular weight of 13,000 to 40,000, more preferably an aromatic polycarbonate having a viscosity average molecular weight of 16,000 to 28,000.
  • the viscosity average molecular weight was calculated by using a solution of dichloromethane as a solvent at a test temperature of 25 ° C.
  • Bisphenol A and sodium hydroxide solution form bisphenol A sodium salt, which is sent to phosgenation reactor, and phosgene is introduced in the presence of dichloromethane solvent to react with bisphenol A sodium salt at the interface.
  • Low molecular polycarbonate The vinegar is then polycondensed into a high molecular polycarbonate by adding triethylamine and caustic soda solution in a polycondensation kettle.
  • the polycarbonate resin may contain a resin prepared by transesterification of a phenol compound (for example, a dihydric phenol compound) and a carbonate precursor (for example, diphenyl carbonate).
  • the flame retardant is selected from the group consisting of a halogen-based flame retardant or a halogen-free flame retardant, preferably a halogen-free flame retardant;
  • the halogen-based flame retardant is selected from the group consisting of brominated polystyrene, brominated polyphenylene ether, and bromine Bisphenol A type epoxy resin, brominated styrene-maleic anhydride copolymer, brominated epoxy resin, brominated phenoxy resin, decabromodiphenyl ether, decabromobiphenyl, brominated polycarbonate One or more of a perfluorotricyclopentadecane or a brominated aromatic crosslinked polymer;
  • the halogen-free flame retardant is selected from the group consisting of a nitrogen-containing flame retardant, a phosphorus-containing flame retardant, and a nitrogen-containing and phosphorus-containing One or more of a flame retardant, a silicon-containing flame retardant
  • the polyester composition may further comprise 0-9.3 parts of rubber, and the rubber may be at least one selected from the group consisting of C 4 -C 6 diene rubber, (meth) acrylate rubber, and silicone rubber.
  • a rubber monomer; the rubber may also be a silicone rubber which comprises only a silicone rubber and/or a (meth) acrylate rubber, thereby improving the structural stability of the polycarbonate.
  • the polyester composition may further comprise 0-3 parts of other auxiliary agents; the other auxiliary agents are selected from one or more of an antioxidant, a light stabilizer, an anti-drip agent, a lubricant, and a colorant.
  • the other auxiliary agents are selected from one or more of an antioxidant, a light stabilizer, an anti-drip agent, a lubricant, and a colorant.
  • the anti-drip agent is selected from the group consisting of polytetrafluoroethylene, pure polytetrafluoroethylene powder, AS coated modified polytetrafluoroethylene powder, and PMMA coated modified polytetrafluoroethylene powder. .
  • the antioxidant is selected from one or more of a complex of phenols, phosphites, thioesters.
  • the light stabilizer can improve the photoaging resistance of the material during use, and can be selected from one or more compounds of hindered amines, benzotriazoles, and benzoxazinone complexes.
  • the lubricant is selected from one or more of a polyol ester, a metal soap, a stearic acid complex ester or an amide.
  • the colorant is selected from one or more of inorganic and organic colorants such as titanium dioxide, carbon black, phthalocyanine, ultramarine blue, azo, naphthalenone, and the like.
  • the preparation method of the above polycarbonate composition comprises the following steps:
  • Polycarbonate, flame retardant, perfluoro-substituted polyolefin, perfluoro-substituted alkyl acid and its derivatives, and other additives are uniformly mixed in a high-mixer according to the ratio, and the speed of the mixer is 450 rpm. At 500 rpm, it was added to a twin-screw extruder, melt-mixed at a temperature of 240 ° C to 260 ° C, and then granulated, cooled, and dried to obtain a polycarbonate composition.
  • the polycarbonate composition of the present invention can be applied to the field of electronic appliances.
  • the invention has the following beneficial effects:
  • the present invention selects a specific content of the perfluoro-substituted polyolefin in the polycarbonate composition formulation and a perfluoro-substituted alkyl acid and a derivative thereof based on the total weight of the polycarbonate composition of 5 ppm to 100 ppm, due to the fluorine atom
  • the large volume and the negative charge of the fluorine atom of adjacent macromolecules have a repulsive effect, so that the fluoride has low cohesive force and good wear resistance, and its negative charge of fluorine atoms makes it possible to stabilize the end groups in the polycarbonate resin, which will be specific.
  • a perfluoro-substituted polyolefin and a perfluoro-substituted alkyl acid and a derivative thereof can significantly improve the hydrolytic stability of the polycarbonate composition (high flame retardancy retention rate, high temperature resistance and high temperature resistance) Wet), abrasion resistance and flame retardancy, especially suitable for the field of electronic appliances.
  • the sample was cut into small pieces of about 1 cm 2 , and 20 g (accurate to 0.0001 g) sample was weighed, carbon tetrachloride/methanol was used as an extraction solvent, placed in a Soxhlet extraction cartridge, Soxhlet extraction for 16 hours, and the extract was filtered and purified. , dehydrated and concentrated with sodium sulfate, and concentrated to 10 mL.
  • the mobile phase was methanol and tested by liquid chromatography-mass spectrometry (LC-MS).
  • Mass Spectrometry Condition Ion Source Negative Chemical Source (NCI). Ion source and quadrupole temperature: 150 °C. Determination method: Select ion scan (SIM), solvent delay: 315 min.
  • Test Method for Water Solubility was performed according to the OECD 105 method. 2.5020 g of the sample was dissolved in 50 mL of pure water, shaken at 30 ° C for 24 h, taken out and placed at 20 ° C for 24 h; filtered, each sample was taken 2 mL of the supernatant, and its concentration was determined by UPLC-MS/MS.
  • test strip thickness is 1.5mm
  • Hydrolysis stability test according to ASTM D2126-04, the test conditions are 90 ° C, 98% humidity, 500h; evaluation method: the flame retardant performance is maintained and the impact performance retention rate is >80%, which is judged to be excellent, the flame retardant performance is maintained and the impact performance retention rate is 70% or more and less than 80%, which is judged to be good, and the flame retardant performance is maintained and impacted.
  • the performance retention rate is 60% or more and less than 70%, and the judgment is good; the flame retardancy performance is lowered or the impact performance retention rate is less than 60%;
  • Abrasion resistance test The wear resistance coefficient is determined according to ASTM D1894; the evaluation method: the abrasion resistance coefficient ⁇ 0.4 is judged to be good, and the abrasion resistance coefficient > 0.4 is judged to be poor;
  • the polycarbonate used in the present invention is prepared as follows:
  • Bisphenol A and sodium hydroxide solution form bisphenol A sodium salt, which is sent to a phosgenation reactor, and phosgene is passed through in the presence of dichloromethane solvent to form a reaction with bisphenol A sodium salt at the interface.
  • the low molecular weight polycarbonate is then polycondensed into a high molecular polycarbonate by adding a solution of triethylamine and caustic soda in a polycondensation kettle.
  • the polycarbonate resin may contain a resin prepared by transesterification of a phenol compound (for example, a dihydric phenol compound) and a carbonate precursor (for example, diphenyl carbonate).
  • KSS diphenyl sulfonate, METRO KSS, Metropolitan Eximchem Limited
  • PF1 is C 7 F 15 COOH (perfluorooctanoic acid, 3M);
  • Perfluoro-substituted polyolefins for use in the present invention are Perfluoro-substituted polyolefins for use in the present invention:
  • PPF-1 is PTFE, melting point is 320 ° C; (polytetrafluoroethylene, SOLVAY);
  • PPF-2 is PTFE, melting point is 328 ° C; (polytetrafluoroethylene, 3F);
  • PPF-3 is PTFE, melting point is 286 ° C; (polytetrafluoroethylene, 3F);
  • PPF-4 is PTFE with a melting point of 340 °C. (polytetrafluoroethylene, 3F).
  • the polycarbonate, flame retardant, perfluoro-substituted polyolefin, perfluoro-substituted alkyl acid and its derivatives, and other additives are uniformly mixed in a high-mixer, and the speed of the mixer is 450.
  • Rpm/min -500 rpm added to a twin-screw extruder, melt-mixed at a temperature of 240 ° C to 260 ° C, then granulated, cooled, and dried to obtain a polycarbonate composition;
  • the flame retardancy, hydrolytic stability and abrasion resistance of the materials were tested.
  • the data is shown in Table 1.
  • the present invention selectively adds a specific amount of perfluoro-substituted polyolefin to the polycarbonate composition formulation and the total weight based on the polycarbonate composition is
  • the fluoride has low cohesive force, good wear resistance and fluorine.
  • the atomic negative charge acts to stabilize the end groups in the polycarbonate resin, and the specific content of perfluoro-substituted polyolefin and perfluoro-substituted alkyl acid and its derivatives are added to the polycarbonate resin, which can significantly increase the polycarbonate.
  • the ester composition has high hydrolytic stability (high flame retardancy retention, high temperature and high humidity resistance), abrasion resistance and flame retardancy, and is particularly suitable for use in the field of electronic appliances.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种聚碳酸酯组合物,按重量份计,包括以下组成: a、86份-99.5份的聚碳酸酯; b、0.2份-0.7份的全氟取代聚烯烃; c、0.3份-13.8份的阻燃剂;其中,a、b、c三种组分的重量份之和为100份。本发明通过选用在聚碳酸酯组合物配方中添加特定含量的全氟取代聚烯烃以及基于聚碳酸酯组合物的总重量为5ppm-100ppm的全氟取代烷基酸及其衍生物时,能够明显提高聚碳酸酯组合物的水解稳定性、耐磨性和阻燃性,特别适用于电子电器领域。

Description

一种聚碳酸酯组合物及其制备方法与应用 技术领域
本发明涉及工程塑料技术领域,特别涉及一种聚碳酸酯组合物及其制备方法与应用。
背景技术
聚碳酸酯是一种强韧的热塑性树脂,产量仅次于聚酰胺的第二大工程塑料,聚碳酸酯耐热,抗冲击,在普通使用温度内都有良好的机械性能,广泛应用于汽车、电子、电器、建筑、办公设备、包装等领域。
但是由于电子、电器、建筑、办公设备对材料阻燃性的高要求,必须对聚碳酸酯进行阻燃处理。此外,聚碳酸酯吸湿性能大,加工易产生气泡及银纹,制品易产生残余内应力、并对缺口敏感性大,耐疲劳性低、磨擦性及耐磨性不好,尤其在高湿度下易水解。
专利JP-A2007031583、JP-A2006335893、JP-A2007191499和JP-A2008222813描述了含有硅酮和/或氟化组分作为阻燃剂的聚碳酸酯板,由于聚碳酸酯存在上述缺陷而不能应用于上述领域。
专利WO2003002643A1和DE-A10160138中描述了含有含磷阻燃剂的聚碳酸酯;但是,这些专利申请没有公开在改进的高温高湿的阻燃性质及加工性能方面的解决方案。
专利CN201210446256.6公开了一种具有优异耐磨性能的阻燃聚碳酸酯合金及其制备方法,所述的阻燃聚碳酸酯合金包括以下组分和含量:PC 70-90重量份,ABS 5-20重量份,有机硅化合物0.5-3重量份,阻燃剂10-20重量份。其制备方法是:将上述原材料在中速混合器中混合10-30min,投置于双螺杆挤出机中、阻燃剂侧喂,经过熔融挤出,造粒即得产品。该发明采用有机硅化合物进行改性,提高了耐磨性能。
但是,到目前为止,关于在聚碳酸酯组合物配方中添加全氟取代聚烯烃以及全氟取代烷基酸及其衍生物对所述聚碳酸酯组合物的水解稳定性、耐磨性和阻燃性的影响还未见报道。
本发明人经过大量实验惊讶地发现,选用在聚碳酸酯组合物配方中添加特定含量的全氟取代聚烯烃以及基于聚碳酸酯组合物的总重量为5ppm-100ppm的全氟取代烷基酸及其衍生物时,能够明显提高聚碳酸酯组合物的水解稳定性、耐磨性和阻燃性,特别适用于电子电器领域。
发明内容
为了克服现有技术的缺点与不足,本发明的首要目的在于提供一种具有优异的水解稳定性、耐磨性和阻燃性的聚碳酸酯组合物。
本发明的另一目的是提供上述聚碳酸酯组合物的制备方法。
本发明的再一目的是提供上述聚碳酸酯组合物的用途。
本发明是通过以下技术方案实现的:
一种聚碳酸酯组合物,按重量份计,包括以下组成:
a、86份-99.5份的聚碳酸酯;
b、0.2份-0.7份的全氟取代聚烯烃;
c、0.3份-13.8份的阻燃剂;
其中,a、b、c三种组分的重量份之和为100份。
优选地,一种聚碳酸酯组合物,按重量份计,包括以下组成:
a、90份-99.3份的聚碳酸酯;
b、0.3份-0.6份的全氟取代聚烯烃;
c、0.4份-9.7份的阻燃剂;
其中,a、b、c三种组分的重量份之和为100份;
基于聚碳酸酯组合物的总重量中全氟取代烷基酸及其衍生物的含量为5ppm-100ppm。
全氟取代烷基酸及其衍生物的含量的测试方法:样品剪成约1cm2的小片,称取20g(精确至0.0001g)样品,二氯化碳/甲醇作提取溶剂,置于索氏萃取滤筒中,索氏萃取16小时,萃取液经过滤净化后,再水硫酸钠脱水浓缩萃取、定容至10mL。流动相为甲醇,采用液相色谱-质谱联用(LC-MS)进行测试。
色谱柱:HP-Innowax毛细管(柱30m×0.25mmi.d.,0.25μm);柱温:50℃(5min)30℃Πmin 240℃(5min);进样方式:不分流进样;接口温度:280℃;载气:高纯氦气(99.999%);流速:0.8mLΠmin;进样量:1μL。
质谱条件离子源:负化学源(NCI)。离子源和四极杆温度:150℃。测定方式:选择离子扫描(SIM),溶剂延迟:315min。其中,所述全氟取代烷基酸及其衍生物根据OECD 105方法测得的水溶解度≤700mg·L-1
OECD 105测试方法:称取2.5020g样品溶于50mL纯水中,于30℃振荡24h后,取出置于20℃静止24h;过滤,各样品取上清液2mL,利用UPLC-MS/MS测定其浓度。
其中,所述全氟取代烷基酸及其衍生物选自全氟取代烷基酸、全氟取代烷基酸卤化物、全氟取代烷基酸氨基化合物、全氟取代磺酸中的一种或几种;优选为C8F17I、C8F17CH2CH2I、C8F17CH=CH2、C4F9CH2CH2OH、C6F13CH2CH2OOCCH=CH2、C8F17CH2CH2OOCC(CH3)=CH2、C8F17CH2COOH、C7F15CF=CHCOOH、C7F15COOH、C4F9SO2OH、C8H4F15NO2、C8F17SO2ONH3、C4F9I,C4F9CH2CH2OH、C7F15COOHNH3中的一种或几种;更优选为C4F9I,C4F9CH2CH2OH、C6F13CH2CH2OOCCH=CH2、C7F15CF=CHCOOH、C4F9SO2OH、C8F17I、C8F17SO2ONH3、C7F15COOH、C7F15COOHNH3中的一种或几种。
优选地,所述基于聚碳酸酯组合物的总重量中全氟取代烷基酸及其衍生物的含量为10ppm-90ppm,优选为15ppm-80ppm;更优选为20ppm-50ppm。
所述全氟取代聚烯烃根据ASTM D-4591测得的熔点为320℃-330℃。
所述全氟取代聚烯烃选自聚四氟乙烯PTFE、全氟取代聚乙烯丙烯、全氟取代聚丙烯中的一种或几种,优选为聚四氟乙烯PTFE。
其中,所述聚碳酸酯选自芳香族聚碳酸酯、脂肪族聚碳酸酯、芳香族-脂肪族聚碳酸酯、支化聚碳酸酯、硅氧烷共聚碳酸酯中的一种或几种;优选为芳香族聚碳酸酯。
优选地,所述聚碳酸酯为粘均分子量13000-40000的芳香族聚碳酸酯,更优选为粘均分子量16000-28000的芳香族聚碳酸酯。当粘均分子量在上述范围内,机械强度良好并且能保持优异的成型性。其中,粘均分子量是通过使用二氯甲烷作为溶剂在测试温度为25℃的溶液粘度计算出来的。
上述聚碳酸酯的制备方法:
双酚A与氢氧化钠溶液生成双酚A钠盐,送入光气化反应釜,在二氯甲烷溶剂存在的条件下通入光气,使其在界面上与双酚A钠盐反应生成低分子聚碳酸 醋,然后在缩聚釜内加入三乙胺和烧碱溶液缩聚成高分子聚碳酸酯。此外,聚碳酸酯树脂可以包含通过酚化合物(例如,二元酚化合物)和碳酸酯前体(例如,碳酸二苯酯)的酯交换制备的树脂。
其中,所述阻燃剂选自卤系阻燃剂或无卤阻燃剂,优选无卤阻燃剂;所述卤系阻燃剂选自溴化聚苯乙烯、溴化聚苯醚、溴化双酚A型环氧树脂、溴化苯乙烯-马来酸酐共聚物、溴化环氧树脂、溴化苯氧基树脂、十溴二苯醚、十溴代联苯、溴化聚碳酸酯、全溴三环十五烷或溴化芳香族交联聚合物的一种或几种;所述无卤阻燃剂选自含氮阻燃剂、含磷阻燃剂、含氮和磷的阻燃剂、含硅阻燃剂、含硼阻燃剂、磺酸盐阻燃剂中的一种或几种。
该聚酯组合物中还可以包括0-9.3份的橡胶,橡胶可以为包含选自由C4-C6二烯橡胶、(甲基)丙烯酸酯橡胶、和硅橡胶所组成的组中的至少一种橡胶单体;橡胶也可以为通过仅包含硅橡胶和/或与(甲基)丙烯酸酯橡胶结合的硅橡胶,从而具有提高聚碳酸酯的结构稳定性。
该聚酯组合物中还可以进一步包括0-3份的其他助剂;所述其他助剂选自抗氧剂、光稳定剂、抗滴落剂、润滑剂、着色剂中的一种或几种。
所述抗滴落剂选自聚四氟乙烯、纯聚四氟乙烯粉、AS包覆改性的聚四氟乙烯粉、PMMA包覆改性的聚四氟乙烯粉中的一种或几种。
所述抗氧剂选自酚类、亚磷酸酯类、硫代酯类的复合物中的一种或几种复配。
所述光稳定剂可以提高材料在使用过程中的耐光老化性能,可选自受阻胺类、苯并三唑类、苯并噁嗪酮类复合物中的一种或几种复配。
所述润滑剂选自多元醇酯类、金属皂、硬脂酸复合酯或酰胺类中的一种或几种。
所述着色剂选自钛白粉、炭黑、酞菁、群青、偶氮、萘环酮等无机及有机着色剂中的一种或几种。
上述聚碳酸酯组合物的制备方法,包括如下步骤:
将聚碳酸酯、阻燃剂、全氟取代聚烯烃、全氟取代烷基酸及其衍生物、其它助剂按照配比在高混机中混合均匀,混合机的转速为450转/分钟-500转/分钟,加入到双螺杆挤出机中,在240℃-260℃的温度下进行熔融混合,然后造粒、冷却、干燥得到聚碳酸酯组合物。
本发明的聚碳酸酯组合物可应用于电子电器领域。
本发明与现有技术相比,具有如下有益效果:
本发明选用在聚碳酸酯组合物配方中添加特定含量的全氟取代聚烯烃以及基于聚碳酸酯组合物的总重量为5ppm-100ppm的全氟取代烷基酸及其衍生物时,由于氟原子体积大且相邻大分子的氟原子负电荷有相斥作用,使得氟化物内聚力低,耐磨性好,且其氟原子负电荷作用使其能够稳定聚碳酸酯树脂中的端基,将特定含量的全氟取代聚烯烃和全氟取代烷基酸及其衍生物添加到聚碳酸酯树脂中,能够明显提高聚碳酸酯组合物的水解稳定性(阻燃性保持率高,具有耐高温高湿性)、耐磨性和阻燃性,特别适用于电子电器领域。
具体实施方式
下面通过具体实施方式来进一步说明本发明,以下实施例为本发明较佳的实施方式,但本发明的实施方式并不受下述实施例的限制。
各性能的测试标准或方法:
全氟取代烷基酸及其衍生物的含量的测试方法:
样品剪成约1cm2的小片,称取20g(精确至0.0001g)样品,二氯化碳/甲醇作提取溶剂,置于索氏萃取滤筒中,索氏萃取16小时,萃取液经过滤净化后,再水硫酸钠脱水浓缩萃取、定容至10mL。流动相为甲醇,采用液相色谱-质谱联用(LC-MS)进行测试。
色谱柱:HP-Innowax毛细管(柱30m×0.25mmi.d.,0.25μm);柱温:50℃(5min)30℃Πmin 240℃(5min);进样方式:不分流进样;接口温度:280℃;载气:高纯氦气(99.999%);流速:0.8mLΠmin;进样量:1μL。
质谱条件离子源:负化学源(NCI)。离子源和四极杆温度:150℃。测定方式:选择离子扫描(SIM),溶剂延迟:315min。
水溶解度的测试方法:根据OECD 105方法进行水溶解度测试。称取2.5020g样品溶于50mL纯水中,于30℃振荡24h后,取出置于20℃静止24h;过滤,各样品取上清液2mL,利用UPLC-MS/MS测定其浓度。
熔点的测试方法:ASTM D-4591;
阻燃测试:按照UL94标准,测试样条厚度为1.5mm;
水解稳定性测试:按照ASTM D2126-04,测试条件为90℃,98%的湿度, 500h;评估方法:,阻燃性能保持且冲击性能保持率>80%,判定为优秀,阻燃性能保持且冲击性能保持率大于等于70%小于80%,判定为良好,阻燃性能保持且冲击性能保持率大于等于60%小于70%,判定为好;阻燃性能下降或冲击性能保持率<60%判定为差;
耐磨性测试:依据ASTM D1894测定耐磨系数;评估方法:耐磨系数≤0.4判定为好,耐磨系数>0.4判定为差;
现对实施例及对比例所用的原材料做如下说明,但不限于这些材料:
本发明中使用的聚碳酸酯按照下述方法制备:
双酚A与氢氧化钠溶液生成双酚A钠盐,送人光气化反应釜,在二氯甲烷溶剂存在的条件下通人光气,使其在界面上与双酚A钠盐反应生成低分子聚碳酸醋,然后在缩聚釜内加人三乙胺和烧碱溶液缩聚成高分子聚碳酸酯。此外,聚碳酸酯树脂可以包含通过酚化合物(例如,二元酚化合物)和碳酸酯前体(例如,碳酸二苯酯)的酯交换制备的树脂。
本发明中使用的阻燃剂:
KSS(二苯砜磺酸盐,METRO KSS,Metropolitan Eximchem Limited);
本发明中使用的全氟取代烷基酸及其衍生物:
PF1为C7F15COOH(全氟辛酸,3M);
PF2为C4F9I/C4F9CH2CH2OH=1:1(丙烯酸辛酯混合物,自制);
本发明中使用的全氟取代聚烯烃:
PPF-1为PTFE,熔点为320℃;(聚四氟乙烯,SOLVAY);
PPF-2为PTFE,熔点为328℃;(聚四氟乙烯,3F);
PPF-3为PTFE,熔点为286℃;(聚四氟乙烯,3F);
PPF-4为PTFE,熔点为340℃。(聚四氟乙烯,3F)。
实施例1-10及对比例1-10:聚碳酸酯组合物的制备
按表1的配方将聚碳酸酯、阻燃剂、全氟取代聚烯烃、全氟取代烷基酸及其衍生物、其它助剂按比例在高混机中混合均匀,混合机的转速为450转/分钟-500转/分钟,加入到双螺杆挤出机中,在240℃-260℃的温度下进行熔融混合,然后造粒、冷却、干燥得到聚碳酸酯组合物;对聚碳酸酯组合物的阻燃性、水解稳定性和耐磨性进行测试,数据见表1。
表1实施例1-10及对比例1-10的具体配比(重量份)及其测试性能结果
Figure PCTCN2016085101-appb-000001
续表1
Figure PCTCN2016085101-appb-000002
从表1的实施例和对比例的比较可以看出,本发明选用在聚碳酸酯组合物配方中添加特定含量的全氟取代聚烯烃以及基于聚碳酸酯组合物的总重量为 5ppm-100ppm的全氟取代烷基酸及其衍生物时,由于氟原子体积大且相邻大分子的氟原子负电荷有相斥作用,使得氟化物内聚力低,耐磨性好,且其氟原子负电荷作用使其能够稳定聚碳酸酯树脂中的端基,将特定含量的全氟取代聚烯烃和全氟取代烷基酸及其衍生物添加到聚碳酸酯树脂中,能够明显提高聚碳酸酯组合物的水解稳定性(阻燃性保持率高,具有耐高温高湿性)、耐磨性和阻燃性,特别适用于电子电器领域。

Claims (13)

  1. 一种聚碳酸酯组合物,按重量份计,包括以下组成:
    a、86份-99.5份的聚碳酸酯;
    b、0.2份-0.7份的全氟取代聚烯烃;
    c、0.3份-13.8份的阻燃剂;
    其中,a、b、c三种组分的重量份之和为100份。
  2. 一种如权利要求1所述的聚碳酸酯组合物,按重量份计,包括以下组成:
    a、90份-99.3份的聚碳酸酯;
    b、0.3份-0.6份的全氟取代聚烯烃;
    c、0.4份-9.7份的阻燃剂;
    其中,a、b、c三种组分的重量份之和为100份;
    基于聚碳酸酯组合物的总重量中全氟取代烷基酸及其衍生物的含量为5ppm-100ppm。
  3. 根据权利要求2所述的聚碳酸酯组合物,其特征在于,所述全氟取代烷基酸及其衍生物根据OECD 105方法测得的水溶解度≤700mg·L-1
  4. 根据权利要求2-3任一项所述的聚碳酸酯组合物,其特征在于,所述全氟取代烷基酸及其衍生物选自全氟取代烷基酸、全氟取代烷基酸卤化物、全氟取代烷基酸氨基化合物、全氟取代磺酸中的一种或几种;优选为C8F17I、C8F17CH2CH2I、C8F17CH=CH2、C4F9CH2CH2OH、C6F13CH2CH2OOCCH=CH2、C8F17CH2CH2OOCC(CH3)=CH2、C8F17CH2COOH、C7F15CF=CHCOOH、C7F15COOH、C4F9SO2OH、C8H4F15NO2、C8F17SO2ONH3、C4F9I,C4F9CH2CH2OH、C7F15COOHNH3中的一种或几种;更优选为C4F9I,C4F9CH2CH2OH、C6F13CH2CH2OOCCH=CH2、C7F15CF=CHCOOH、C4F9SO2OH、C8F17I、C8F17SO2ONH3、C7F15COOH、C7F15COOHNH3中的一种或几种。
  5. 根据权利要求2-4任一项所述的聚碳酸酯组合物,其特征在于,所述基于聚碳酸酯组合物的总重量中全氟取代烷基酸及其衍生物的含量为10ppm-90ppm,优选为15ppm-80ppm;更优选为20ppm-50ppm。
  6. 根据权利要求1或2所述的聚碳酸酯组合物,其特征在于,所述全氟取代聚烯烃根据ASTM D-4591测得的熔点为320℃-330℃。
  7. 根据权利要求1或2所述的聚碳酸酯组合物,其特征在于,所述全氟取代聚烯烃选自聚四氟乙烯PTFE、全氟取代聚乙烯丙烯、全氟取代聚丙烯中的一种或几种,优选为聚四氟乙烯PTFE。
  8. 根据权利要求1或2所述的聚碳酸酯组合物,其特征在于,所述聚碳酸酯选自芳香族聚碳酸酯、脂肪族聚碳酸酯、芳香族-脂肪族聚碳酸酯、支化聚碳酸酯、硅氧烷共聚碳酸酯中的一种或几种;优选为芳香族聚碳酸酯。
  9. 根据权利要求8所述的聚碳酸酯组合物,其特征在于,所述芳香族聚碳酸酯选自粘均分子量13000-40000的芳香族聚碳酸酯,优选为粘均分子量16000-28000的芳香族聚碳酸酯。
  10. 根据权利要求1或2所述的聚碳酸酯组合物,其特征在于,所述阻燃剂选自卤系阻燃剂或无卤阻燃剂,优选无卤阻燃剂;所述卤系阻燃剂选自溴化聚苯乙烯、溴化聚苯醚、溴化双酚A型环氧树脂、溴化苯乙烯-马来酸酐共聚物、溴化环氧树脂、溴化苯氧基树脂、十溴二苯醚、十溴代联苯、溴化聚碳酸酯、全溴三环十五烷或溴化芳香族交联聚合物的一种或几种;所述无卤阻燃剂选自含氮阻燃剂、含磷阻燃剂、含氮和磷的阻燃剂、含硅阻燃剂、含硼阻燃剂、磺酸盐阻燃剂中的一种或几种。
  11. 根据权利要求1或2所述的聚碳酸酯组合物,其特征在于,还包括0-9.3份的橡胶和0-3份的其他助剂,所述其他助剂选自抗氧剂、光稳定剂、抗滴落剂、润滑剂、着色剂中的一种或几种。
  12. 如权利要求1-11任一项所述的聚碳酸酯组合物的制备方法,其特征在于,包括如下步骤:
    将聚碳酸酯、阻燃剂、全氟取代聚烯烃、全氟取代烷基酸及其衍生物、其它助剂按照配比在高混机中混合均匀,混合机的转速为450转/分钟-500转/分钟,加入到双螺杆挤出机中,在240℃-260℃的温度下进行熔融混合,然后造粒、冷却、干燥得到聚碳酸酯组合物。
  13. 如根据权利要求1-11任一项所述的聚碳酸酯组合物在电子电器领域的应用。
PCT/CN2016/085101 2015-06-18 2016-06-07 一种聚碳酸酯组合物及其制备方法与应用 WO2016202191A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510340241.5 2015-06-18
CN201510340241.5A CN104962057B (zh) 2015-06-18 2015-06-18 一种聚碳酸酯组合物及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2016202191A1 true WO2016202191A1 (zh) 2016-12-22

Family

ID=54216161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085101 WO2016202191A1 (zh) 2015-06-18 2016-06-07 一种聚碳酸酯组合物及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN104962057B (zh)
WO (1) WO2016202191A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672059A (zh) * 2022-05-03 2022-06-28 兰州理工大学 一种聚碳酸酯表面耐磨阻燃一体化改性方法
CN117247668A (zh) * 2023-11-17 2023-12-19 安米卡(无锡)新材料科技有限公司 一种阻燃pc材料的制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104962058B (zh) * 2015-06-18 2017-05-24 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法与应用
CN104962057B (zh) * 2015-06-18 2017-05-24 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法与应用
CN104962060B (zh) * 2015-06-18 2017-05-31 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法与应用
CN106280364B (zh) * 2016-08-05 2018-08-03 江苏金发科技新材料有限公司 含增强填料的高流动性聚碳酸酯组合物及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101200584A (zh) * 2006-12-08 2008-06-18 帝人化成株式会社 阻燃性聚碳酸酯树脂组合物
CN101270224A (zh) * 2007-03-22 2008-09-24 帝人化成株式会社 阻燃性芳香族聚碳酸酯树脂组合物
CN101445653A (zh) * 2008-12-11 2009-06-03 上海交通大学 一种无卤阻燃聚碳酸酯/丙烯腈-丁二烯-苯乙烯共聚物合金的制备方法
JP5031949B2 (ja) * 2001-03-29 2012-09-26 帝人化成株式会社 難燃性芳香族ポリカーボネート樹脂組成物
CN103649224A (zh) * 2011-07-14 2014-03-19 普立万公司 非卤化阻燃聚碳酸酯复合物
CN104962057A (zh) * 2015-06-18 2015-10-07 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法与应用
CN104962060A (zh) * 2015-06-18 2015-10-07 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法与应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001031854A (ja) * 1999-07-19 2001-02-06 Dainippon Ink & Chem Inc パーフルオロアルキルスルホン酸塩の製造方法、難燃性ポリカーボネートの製造方法およびそれよりなる成形体
US6613824B2 (en) * 2001-11-12 2003-09-02 General Electric Company Flame retardant resinous compositions and method
JP2006028389A (ja) * 2004-07-20 2006-02-02 Teijin Chem Ltd 芳香族ポリカーボネート樹脂組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5031949B2 (ja) * 2001-03-29 2012-09-26 帝人化成株式会社 難燃性芳香族ポリカーボネート樹脂組成物
CN101200584A (zh) * 2006-12-08 2008-06-18 帝人化成株式会社 阻燃性聚碳酸酯树脂组合物
CN101270224A (zh) * 2007-03-22 2008-09-24 帝人化成株式会社 阻燃性芳香族聚碳酸酯树脂组合物
CN101445653A (zh) * 2008-12-11 2009-06-03 上海交通大学 一种无卤阻燃聚碳酸酯/丙烯腈-丁二烯-苯乙烯共聚物合金的制备方法
CN103649224A (zh) * 2011-07-14 2014-03-19 普立万公司 非卤化阻燃聚碳酸酯复合物
CN104962057A (zh) * 2015-06-18 2015-10-07 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法与应用
CN104962060A (zh) * 2015-06-18 2015-10-07 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法与应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672059A (zh) * 2022-05-03 2022-06-28 兰州理工大学 一种聚碳酸酯表面耐磨阻燃一体化改性方法
CN114672059B (zh) * 2022-05-03 2023-04-14 兰州理工大学 一种聚碳酸酯表面耐磨阻燃一体化改性方法
CN117247668A (zh) * 2023-11-17 2023-12-19 安米卡(无锡)新材料科技有限公司 一种阻燃pc材料的制备方法

Also Published As

Publication number Publication date
CN104962057B (zh) 2017-05-24
CN104962057A (zh) 2015-10-07

Similar Documents

Publication Publication Date Title
WO2016202191A1 (zh) 一种聚碳酸酯组合物及其制备方法与应用
JP6342799B2 (ja) ポリホスホネートおよびコポリホスホネートの加法混合物
WO2016202192A1 (zh) 一种聚碳酸酯组合物及其制备方法与应用
WO2016197914A1 (zh) 一种聚碳酸酯组合物及其制备方法
KR20150063579A (ko) 난연성 폴리카르보네이트 조성물
AU2010214811A1 (en) Flame retarder, flame-retardant resin composition and method of producing the flame retarder
EP3321324B1 (en) Polycarbonate composition and preparation method therefor
WO2016202193A1 (zh) 一种聚碳酸酯组合物及其制备方法与应用
WO2016197906A1 (zh) 一种聚碳酸酯组合物及其制备方法
KR20140035142A (ko) 난연성 폴리실록산-폴리카보네이트 수지 조성물 및 이의 성형품
KR101256262B1 (ko) 난연성 열가소성 수지 조성물 및 이를 이용한 성형품
WO2006093542A1 (en) Flame retardant polycarbonate composition
US20150247024A1 (en) Flame-retardant polycarbonate compositions
JP6176066B2 (ja) ポリカーボネート樹脂組成物
KR20120092129A (ko) 폴리카보네이트 수지 조성물
JP3192983B2 (ja) 樹脂用難燃剤及び難燃性樹脂組成物
CN101067036A (zh) 无卤无磷阻燃聚碳酸酯组合物及其制备方法
KR20150142942A (ko) 비할로겐 난연성 폴리카보네이트 수지 조성물
JP6352030B2 (ja) ポリカーボネート樹脂組成物および成形品
US20070123634A1 (en) Process for making a flame retardant polycarbonate composition
US20200385572A1 (en) Thermoplastic Resin Composition and Molded Product Formed Therefrom
JP2000080283A (ja) 難燃性樹脂組成物
CN113652052A (zh) 一种阻燃abs组合物及其制备方法和应用
WO2023156339A1 (en) Flame-retardant polycarbonate composition
JP6542507B2 (ja) 芳香族ポリカーボネート樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16810932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16810932

Country of ref document: EP

Kind code of ref document: A1