WO2016201901A1 - 一种充电系统 - Google Patents

一种充电系统 Download PDF

Info

Publication number
WO2016201901A1
WO2016201901A1 PCT/CN2015/095663 CN2015095663W WO2016201901A1 WO 2016201901 A1 WO2016201901 A1 WO 2016201901A1 CN 2015095663 W CN2015095663 W CN 2015095663W WO 2016201901 A1 WO2016201901 A1 WO 2016201901A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging system
power supply
power receiving
rod
bracket
Prior art date
Application number
PCT/CN2015/095663
Other languages
English (en)
French (fr)
Inventor
索建国
李军
杨瀛瑜
张彦林
肖勇
林平
王秋红
冯叶
张海丰
陈敏坚
孙宁
周洁
郭瑾玉
Original Assignee
南车株洲电力机车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南车株洲电力机车有限公司 filed Critical 南车株洲电力机车有限公司
Priority to ATA9490/2015A priority Critical patent/AT520874B1/de
Publication of WO2016201901A1 publication Critical patent/WO2016201901A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/18Current collectors for power supply lines of electrically-propelled vehicles using bow-type collectors in contact with trolley wire
    • B60L5/19Current collectors for power supply lines of electrically-propelled vehicles using bow-type collectors in contact with trolley wire using arrangements for effecting collector movement transverse to the direction of vehicle motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/18Current collectors for power supply lines of electrically-propelled vehicles using bow-type collectors in contact with trolley wire
    • B60L5/22Supporting means for the contact bow
    • B60L5/28Devices for lifting and resetting the collector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/38Current collectors for power supply lines of electrically-propelled vehicles for collecting current from conductor rails

Definitions

  • the invention relates to the field of rapid charging technology, in particular to a charging system for rapidly charging an electric vehicle such as an energy storage type electric bus.
  • the so-called energy storage type electric bus vehicles refer to the use of super capacitors to store electric energy as power for traction.
  • the top receiving electrical device is subjected to flow and backflow, and the passenger is quickly charged in the tens of seconds of getting on and off the platform.
  • One charge can ensure that the energy storage electric bus is operated to the next station and then charged.
  • the model has been used more and more.
  • FIG. 1 is a schematic structural view of a power receiver of a conventional energy storage electric bus charging system
  • FIG. 2 is a side view of FIG. 1 .
  • the power receiver of the existing energy storage type electric bus charging system can be understood as a set of four-bar linkages installed in the longitudinal direction of the vehicle, and the power supply rail 1' is installed on the power receiver 2' (or Directly above the electric bow). Since the rods of the four-bar linkage are fixed length and the length of the rod is set at a certain ratio, under the action of the spring or the driving force of the cylinder, the collector head 3' of the electric receiver 2' can achieve an approximate vertical lifting, and After raising a certain height vertically, it is in contact with the power supply rail 1' directly above, and the vehicle is subjected to the flow.
  • Such a power receiver has the same working principle as a power receiver (or pantograph) mounted on the roof of other rail transit vehicles, trackless vehicles, etc., and is more suitable for rail transit vehicles, when applied to railless vehicles, such as storage.
  • a power receiver or pantograph mounted on the roof of other rail transit vehicles, trackless vehicles, etc.
  • rail transit vehicles when applied to railless vehicles, such as storage.
  • the modern energy storage bus adopts ordinary rubber wheels, and there is no track-oriented operation.
  • the parking error of the passengers and passengers is large, and the lateral deviation distance of the parking position allowed by the above-mentioned electrical appliances is only about 200mm, which is required for the operation of the passengers.
  • the parking position and parking angle put forward higher requirements, which are more difficult to meet the requirements of on-site use, which is not only not conducive to the operation convenience of the vehicle, but also causes unstable vehicle charging.
  • the power receiver rises in contact with the power rail directly above to provide kinetic energy to the vehicle.
  • the vehicle body sway will cause the power receiver installed on the roof to shake together.
  • the upper collector head will sway on the power rail, increasing the contact resistance and easily causing the flow problem.
  • the collector head in order to ensure that the collector head can be in contact with the power supply rail after being raised, the collector head is usually designed to grow in the form of a skateboard, and an excessively long collector head may cause structural instability.
  • the electrical appliance After the electrical appliance is dropped, it will occupy a large space on the top of the vehicle and affect the layout of other equipment such as the roof escape door.
  • the charging system allows a large deviation distance of the parking position, is convenient for vehicle operation, and can ensure stable flow in the case of shaking of the vehicle body, and has the advantages of stable structure and small space occupation.
  • the present invention provides a charging system comprising:
  • a power receiver for mounting on the top of the electric vehicle, comprising a collector head and a collector head driving mechanism, wherein the electric vehicle is charged by the contact of the collector head with the power supply rail;
  • the power supply rail is at a side above the vehicle at a charging position, and a plurality of power supply electrodes are integrated on a side thereof, and the power supply electrodes are arranged in parallel in a manner of being spaced apart from each other;
  • the collector head driving mechanism drives the collector head to have a vertical lifting stroke and a lateral movement stroke, and the power receiving electrode of the collector head is located outside in the lateral movement direction, and in a manner corresponding to the power supply electrode Parallel distribution.
  • the collector head driving mechanism is a four-bar linkage mechanism including a base, an upper rod, a lower rod and a draw rod, and the current collecting head is disposed at an extension end of the upper rod, in a vertical lifting stroke, The drawbar is held to a fixed length, and the drawbar is telescoped during the lateral travel stroke.
  • the pull rod is a telescopic pull rod provided with a telescopic control mechanism, and the fixed end is hinged with the base, and the telescopic end is hinged with the upper rod.
  • the telescopic pull rod is a cylinder provided with a pre-pressure.
  • the telescopic control mechanism comprises:
  • a fixed pulley set disposed on a rotating shaft at a lower end of the lower rod
  • a movable pulley block mounted to the base by a moving mechanism
  • a wire rope which is wound around the fixed pulley block and the movable pulley block, and one end of which is connected to the hinged end of the upper rod and the pull rod or the telescopic end of the pull rod, and the other end is connected to the base;
  • a cam coaxially fixed to the rotating shaft of the lower end of the lower rod, which supports the movable pulley block and drives the movable pulley block to tighten or loosen the wire rope when rotating.
  • one side of the movable pulley block is provided with a coaxial driven wheel, and the cam is engaged with the driven wheel.
  • a buffer spring is disposed between the movable pulley block and the base.
  • the movable pulley block is swingably mounted to the base by a swing frame.
  • the pull rod is an elastic pull rod
  • the rod body is provided with an elastic expansion and contraction portion formed by a spring along a length direction.
  • the power supply electrode is disposed on the insulating substrate, and an insulating portion is disposed between the adjacent power supply electrodes, and the insulating portion is higher than a bottom portion of the electrode and lower than a contact surface of the electrode, and is disposed A plurality of grooves parallel to the electrodes.
  • the power supply rail is further provided with a guide plate located above the power supply electrode and perpendicular to a plane in which it is located.
  • the collector head comprises:
  • a lateral power receiving component connected to the connecting component through a rotating connector, and the power receiving electrode is integrated on one side;
  • a guiding assembly is coupled to the rotating portion of the rotary joint and above the connecting assembly and/or the lateral power receiving assembly, and is provided with a rolling member.
  • the connecting component is a spring suspension device, comprising:
  • a connecting plate having a left shaft hole and a right shaft hole
  • a movable bracket connected to the connecting plate by a left support shaft and a right support shaft;
  • the support spring is disposed between the connecting plate and the movable bracket, one end of which is supported by the connecting plate, and the other end is supported by the movable bracket.
  • the connecting plate is provided with an adjusting screw, and one end of the supporting spring is supported by the adjusting screw.
  • the rotary joint comprises:
  • a power receiving component mounting plate for mounting the lateral power receiving component
  • the universal joint has a fixing portion connected to the bracket, and a universal rotating portion is connected to the power receiving assembly mounting plate.
  • the universal joint comprises a connecting shaft and a universal bearing, one end of the connecting shaft is connected with the bracket, and the other end is connected to the inner ring of the universal bearing through a sleeve, the The outer ring of the bearing is connected to the power receiving component mounting plate.
  • the method further includes an elastic recovery device disposed between the bracket and the power receiving component mounting plate for maintaining a position of the power receiving component mounting plate relative to the bracket.
  • the elastic recovery device comprises:
  • the first elastic support pin is disposed at a position above the universal joint in a horizontal direction, the fixed end is connected to the bracket, and the telescopic end is supported on the power receiving assembly mounting plate;
  • a second elastic support pin is disposed at a position below the universal joint in a horizontal direction, and a fixed end is connected to the bracket, and a telescopic end is supported on the power receiving assembly mounting plate;
  • the third elastic support pin is longitudinally arranged in a left-right direction, and the fixed end is connected to the bracket, and the telescopic end is supported upward on the horizontal support portion corresponding to the power receiving component mounting plate.
  • the guiding assembly comprises a wheel bracket, and the wheel bracket extends outwardly in the circumferential direction with a radial arm, and the ends of the arms are respectively provided with supporting disks, and the top of each of the supporting disks is provided A ball or roller that can roll freely.
  • the lateral power receiving component is provided with an insulating spacer, and each of the power receiving electrodes is respectively mounted on the insulating spacer through a buffer at both ends.
  • the buffers of the electrodes are connected by a first link and a second link that are symmetrically arranged left and right, and the opposite ends of the first link and the second link are hinged, and the other ends are respectively It is hinged to the corresponding buffer, and the middle portion is hinged to the insulating spacer.
  • the electrode mounting side of the insulating spacer is provided with a transition plate corresponding to each of the electrodes.
  • the invention integrates the plurality of power supply electrodes of the power supply rail together on the vertical insulating substrate in parallel at intervals, and is installed at one side of the charging position of the vehicle when used, and is located at the side above the vehicle, and the electrical receiver is perpendicular to
  • the vehicle body is mounted on the roof in the longitudinal direction, and the power receiving electrodes of the collector head are integrated on the side in the lateral movement direction, thereby forming a lateral charging system for charging in the side orientation.
  • the power supply rail is located at the side orientation of the power receiver, and the movement of the current collecting head is a trajectory movement of vertical lifting and lateral movement, and the collecting head first rises to a certain height (>1500 mm).
  • the collector head has a long-distance horizontal movement function, the allowable parking position deviation distance can be increased, which is convenient for vehicle operation, and the power supply rail and the collector head have large flow guiding capability and reliable insulation performance, and are maintained with pedestrians.
  • a safe distance it is convenient for the collector head and the power supply rail to accurately and stably locate the power, improve the charging performance, and ensure the safe and normal driving of the vehicle, especially suitable for modern energy storage electric buses.
  • FIG. 1 is a schematic structural view of a power receiver of a conventional energy storage type electric bus charging system
  • Figure 2 is a side view of Figure 1;
  • FIG. 3 is a schematic structural view of a specific embodiment of a charging system provided by the present invention.
  • Figure 4 is a schematic structural view of the power receiver of Figure 3;
  • Figure 5 is a schematic diagram of a design of a power receiver
  • FIG. 6 is a schematic structural view of a specific embodiment of the power receiver shown in FIG. 5;
  • Figure 7 is a partial enlarged view of the fixed pulley block and the movable pulley block portion of Figure 6;
  • Figure 8 is a reference view of the state of use of the lateral power receiver shown in Figure 6;
  • Figure 9 is another schematic diagram of the design of the power receiver
  • Figure 10 is a schematic view showing the lifting and lateral movement of the power receiver shown in Figure 9;
  • Figure 11 is a schematic view showing the drop of the flow receiver shown in Figure 9;
  • Figure 12 is a schematic structural view of a power supply rail
  • Figure 13 is a side view of the power supply rail shown in Figure 12;
  • Figure 14 is a plan view of the power supply rail shown in Figure 12;
  • Figure 15 is a front elevational view showing the electrode surface side of the collector head
  • Figure 16 is a left side view of the current collecting head shown in Figure 15;
  • Figure 17 is a rear elevational view of the current collecting head shown in Figure 15;
  • Figure 18 is a plan view of the collector head shown in Figure 15;
  • Figure 19 is a perspective view of the current collecting head shown in Figure 15 at a rear side view
  • Figure 20 is a half cross-sectional view showing the spring suspension device shown in Figure 15;
  • Figure 21 is a right side view of the spring suspension device of Figure 20;
  • Figure 22 is a half cross-sectional view showing the rotary joint shown in Figure 15;
  • Figure 23 is a right side view of the rotary joint of Figure 22;
  • Figure 24 is a perspective view of the current collecting head device shown in Figure 15 at a front side view.
  • FIG. 3 is a schematic structural diagram of a specific embodiment of a charging system according to the present invention
  • FIG. 4 is a schematic structural view of the power receiver of FIG.
  • the core of the charging system provided by the present invention is that the power receiver is installed perpendicularly to the longitudinal direction of the vehicle body, and the guide plate 16 (or the guide rail) is vertically assembled with the power supply rail 15, and the guide plate 16 is horizontally mounted on the upper end, and the power supply rail 15 is laterally oriented. After installation, the electric receiver rises vertically and then extends outward under the action of the guide plate 16, and contacts the lateral power supply rail 15 to receive the flow.
  • the system has an automatic guiding capability, and can extend outward from 0 to 700 mm under the action of the guiding plate 16, which increases the lateral yaw size, so that the bus has a larger parking yaw amount, simplifies the operation difficulty of the driver, and the electric receiver
  • the collecting head 5 is mounted on the movable joint and has a certain degree of freedom, and can swing the left and right sides of the vehicle body into the up and down movement of the power collecting head 5, and the collecting head 5 always has an upward movement tendency, and the guiding plate 16
  • the degree of freedom of the upward movement of the current collecting head 5 is also defined, so that the current collecting head 5 can be prevented from shaking with the vehicle body, and the flow instability caused by the body sway during the passenger getting on and off the vehicle can be eliminated.
  • FIG. 5 is a schematic diagram of a design of the power receiver
  • FIG. 6 is a schematic structural view of a specific embodiment of the power receiver shown in FIG.
  • the power receiver is mainly composed of a base 1, an upper rod 2, a lower rod 3, a tie rod 4, and a collector head 5, wherein the base 1, the upper rod 2, the lower rod 3 and the tie rod 4 form a collector head 5
  • the moving four-bar linkage mechanism has a lower end of the lower rod 3 hinged to the base 1 via a rotating shaft, an upper end hinged to the upper rod 2, a lower end of the pull rod 4 hinged to the base 1, and an upper end hinged to the arm of the rear end of the upper rod 2
  • the upper rod 2 is designed such that the outwardly extending end is narrower and the other end is a wider "V" shaped frame structure, hence the upper frame.
  • the drawbar 4 is a telescopic pull rod.
  • a cylinder with a pre-pressure is used, and the lower end and the bottom of the cylinder are used.
  • the seat 1 is hinged, the upper end of the piston rod is hinged with the upper rod 2, and the collector head 5 is mounted on the extension end of the upper rod 2 through a universal bearing, and the current receiving portion of the collector head 5 is located outside the lateral movement direction thereof.
  • the plurality of power receiving electrodes that are subjected to the flow are distributed in parallel on the upper surface of the upper surface.
  • FIG. 7 is a partial enlarged view of the fixed pulley block and the movable pulley block portion of FIG.
  • the pull rod 4 is provided with a telescopic control mechanism for releasing the pull rod 4 to be stretched and contracted when the current collecting head 5 is changed from the vertical lifting motion to the lateral outward moving motion, and is converted from the lateral inward moving motion to the vertical lowering in the collecting head 5.
  • the lever 4 is locked during movement to maintain a fixed length.
  • the telescopic control mechanism is mainly composed of a wire rope 6, a fixed pulley 7, a fixed pulley block 8, a movable pulley block 9, and a cam 10, wherein the fixed sliding 7 wheel is installed near the lower end of the tie rod 4, and the fixed pulley group 8 is mounted on the lower rod.
  • the movable pulley block 9 On the lower end of the rotating shaft, the movable pulley block 9 is mounted on the base 1 through a "Y"-shaped swinging frame 11, the lower end of the swinging frame 11 is hinged to the base 1, and the movable pulley block 9 is located in the notch of the upper end thereof, and one end of the wire rope 6 is connected
  • the upper rod 2 and the outer side of the hinge shaft of the pull rod 4 are connected to the base 1 , and are alternately wound around the fixed pulley set 8 and the movable pulley set 9 after passing around the fixed pulley 7 , and the wire rope 6 above the fixed pulley 7 is parallel with the pull rod 4 to Ensure that the tension of the wire rope is consistent with the direction of the force of the tie rod, so that the force form is more reasonable.
  • the cam 10 is used to adjust the position of the movable pulley block 9 through the cam surface when rotating, and is coaxially fixed on the rotating shaft 12 at the lower end of the lower rod 3.
  • One side of the movable pulley group 9 is provided with a coaxial driven wheel 13, the cam 10 and the driven wheel.
  • the 13-phase meshing, the driven wheel 13 of the movable pulley block 9 is supported on the cam 10, and the cam 10 can drive the movable pulley block 9 to tighten or loosen the wire rope 6 as it rotates together with the rotating shaft 12.
  • the function of the driven wheel 13 is to avoid dry friction when the cam 10 pushes the moving pulley block 9 to move. If the driven wheel 13 is not designed, it is also possible to directly drive the movable pulley block 9 by the cam 10.
  • the wire rope 6 is instantaneously released to cause a large impact, and a buffer spring 14 is disposed between the movable pulley block 9 side and the base 1.
  • FIG. 8 is a reference diagram of the state of use of the lateral power receiver shown in FIG.
  • the power supply device is installed at the charging location, usually a bus station platform, and the power supply rail 15 is vertically installed at the side above the vehicle, and the multi-channel power supply electrodes are arranged in parallel at intervals, and the arrangement thereof is
  • the arrangement of the electrodes of the collector head 5 is consistent, and the length of the power supply electrode is greater than the length of the power receiving electrode of the collector head 5, so that the collector head 5 can be in contact with the power supply rail 15 in a large area before and after the vehicle enters the station, each The width of the power supply electrode can be slightly wider than that of the collector head 5
  • the width of the pole is increased to improve the stability of the flow, and the guide plate 16 (or the guide rail) is horizontally mounted above the power supply rail 15 in a manner perpendicular to the plane of the power supply rail for limiting after the collector head 5 is raised to a certain height.
  • the vertical degree of freedom is such that it does not continue to move upwards, but instead moves outwards laterally.
  • a flat steel plate or the like can be used, and the lateral power receiver is mounted on the roof in a manner perpendicular to the length of the body 17 .
  • the lifting plane of the four-bar linkage mechanism and the lateral movement direction of the collector head are both perpendicular to the longitudinal direction of the vehicle body 17.
  • the cylinder 18 and the spring 19 cooperate to rotate the rotating shaft 12, and since the convex portion of the cam 10 meshes with the driven wheel 13 of the movable pulley block 9,
  • the rotating shaft 12 does not move within a certain angle of starting to rotate (for example, 0 to 30 degrees), the length of the wire rope 6 is fixed, the air pressure always exists in the cylinder of the pulling rod 4, and the pulling force of the steel wire rope 6 to the cylinder is greater than the cylinder pressure, the cylinder length Keeping unchanged, the collector head 5 rises in an approximately vertical manner in a vertical plane perpendicular to the length of the vehicle body.
  • the rotation axis 12 drives the cam 10 to rotate at an angle greater than 30 degrees, and the cam 10 is non-embossed.
  • the portion starts to mesh with the driven wheel 13 of the movable pulley block 9, and under the pulling force of the wire rope 6, the movable pulley block 9 swings together with the swing frame 11 toward the fixed pulley block, so that the wire rope 6 is released, and the wire rope 6 is released due to the length of the wire rope 6.
  • the pulling force of the cylinder is eliminated, and the cylinder is linearly extended under the action of air pressure to realize the function of the telescopic rod.
  • the collector head 5 is no longer raised under the restriction of the guide plate 16, and the tie rod 4 automatically changes its length.
  • the collector head 5 can laterally move 0 to 700 mm to the outside in a vertical plane perpendicular to the longitudinal direction of the vehicle body.
  • the power receiver can be retracted to the folded state by performing the reverse action.
  • the cylinder pre-pressure can be The lever is automatically retracted.
  • the amplification factor is related to the number of the fixed pulley and the movable pulley. If the amplification factor is N, the moving pulley group 9 is fixed to the fixed pulley group. 8 After moving a distance L, the length of the wire rope that can be released is L ⁇ N, so that the movable pulley block 9 can only release or retract a sufficiently long wire rope to meet the needs of the extension and retraction of the tie rod 4.
  • the movable pulley block 9 is mounted on the base 1 in addition to the swing frame 11 and can be mounted on the base 1 by other moving mechanisms such as a linear motion mechanism, for example, the two ends of the movable pulley block 9 are mounted. It is mounted on the slide rail so that it can move on the slide rail under the action of the wire rope 6 pulling force and the cam 10, and the function of releasing and retracting the wire rope 6 can be realized, that is, regardless of how the movable pulley block 9 is installed, as long as it can be kept away from and Close to the fixed pulley block 8.
  • the lever telescopic control mechanism can adopt the following form in addition to the above-mentioned structure of the wire rope-pulley-cam.
  • One is electrification control, which can be used to lock or unlock the telescopic function of the cylinder rod by inserting or withdrawing the lock pin between the cylinder block and the piston rod.
  • the lock pin is controlled by a small motor, cylinder or electromagnetic mechanism to control the lock pin.
  • the action timing can be installed on the four-bar linkage mechanism or the travel switch.
  • the angle sensor When the collector head 5 is raised to a certain height, the angle sensor outputs an angle signal, controls the lock pin to operate, or is operated by a four-bar linkage mechanism. The lever triggers the travel switch to control the lock pin to operate.
  • the other is mechanized control. Since the relative position between the rods is always changing during the lifting process, the angle of the upper rod relative to the rod 4 can be used to control the expansion and contraction timing of the rod 4.
  • the telescopic function of the cylinder rod is locked or unlocked by inserting or withdrawing the lock pin between the cylinder block and the piston rod, and the difference from the above electrification control method is that the mechanization mode is triggered on the upper rod 2
  • the block or the trigger plate is directly matched with the lock pin or connected to the lock pin through the transmission mechanism.
  • the trigger block or the trigger plate can drive the pin axially directly or through the transmission mechanism.
  • the trigger block or the triggering plate can move the pin axially directly or directly through the transmission mechanism, thereby relocking the cylinder and the piston rod.
  • tie rods 4 can also be designed in other forms, such as elastic pull rods.
  • FIG. 9 is another schematic diagram of the power receiver
  • FIG. 10 is a schematic diagram of the lifting and lateral movement of the power receiver shown in FIG. 9
  • Landing map is another schematic diagram of the power receiver
  • the pull rod 4 is an elastic pull rod formed by the pull-down rod 4-1 and the spring 4-2, wherein the spring 4-2 is located at the upper end, is hinged with the upper rod 2, and the pull-down rod 4-1 is located at the lower end, and the base 1 phase hinge, the specification of the spring 4-2 can be determined according to the force of the pull rod when the collector head is raised to ensure that the length of the spring 4-2 does not change during the vertical lifting stroke, but in the lateral movement stroke Inside, the spring 4-2 can be expanded and contracted. This method mainly controls the spring by force value calculation. With the telescopic node, it is not necessary to provide a telescopic control mechanism for the tie rod, which is a relatively simple embodiment of the present invention.
  • the position of the pull-down lever 4-1 and the spring 4-2 can also be interchanged as needed, that is, in the form of flip-chip; or the elastic pull rod is formed by the two-section pull rod and a pair of springs, the pull rod is at both ends, and the spring is located in the middle. Or, the elastic pull rod is formed by abutting two springs and a length of the pull rod, the spring is located at the two ends, and the pull rod is located in the middle; or the elastic pull rod is formed by alternately docking the plurality of springs and the plurality of rods.
  • the tie rod 4 can be composed of two rod segments which are combined by a telescopic structure, a spring is arranged between the two rod segments, and a pre-pressure is obtained by the spring, and the function similar to the cylinder rod can also be realized.
  • FIG. 12 is a schematic structural view of the power supply rail
  • FIG. 13 is a side view of the power supply rail shown in FIG. 12
  • FIG. 14 is a top view of the power supply rail shown in FIG.
  • the insulating substrate 15-1 of the power supply rail 15 is made of an insulating material and is a monolithic insulating board. Since it is vertically arranged in use, it is defined herein as a vertical insulating substrate, and the insulating substrate 15 is defined.
  • a mounting interface of the power supply electrode 15-2 is distributed over the -1, the power supply electrode 15-2 is made of a conductor material, and the four electrodes are integrated together on the insulating substrate 15-1.
  • the four power supply electrodes 15-2 are respectively a positive electrode, a negative electrode, a ground electrode, and a signal electrode, and are arranged in parallel on the surface of the insulating substrate 15-1 from the top to the bottom, and the power supply electrodes 15-2 are respectively arranged.
  • the lengths are equal, and the contact faces are located on the same vertical plane.
  • the power supply electrode 15-2 is separated from the insulating substrate 15-1 by a certain distance.
  • the signal pole can be omitted, and only three electrodes including the positive electrode, the negative electrode, and the ground electrode are retained.
  • a protruding insulating portion 15-3 is disposed between the adjacent power supply electrodes 15-2, and the insulating portion 15-3 and the insulating substrate 15-1 are integrally formed, which is higher than the bottom of the power supply electrode 15-2 and lower than
  • the contact surface of the power supply electrode 15-2 is provided with four grooves 15-4 parallel to the power supply electrode 15-2, and the depth of the groove 15-4 exceeds the bottom of the power supply electrode 15-2.
  • the groove 15-4 can also be considered to be formed by a number of parallel ribs.
  • the bracket of the power supply rail 15 is further provided with a guide plate 16 which is located above the power supply electrode 15-2 and perpendicular to the insulating substrate.
  • 15-1 which may be directly connected to the insulating substrate 15-1, or may be connected to other members (for example, a bracket), and is perpendicular to the insulating substrate 15-1 only at the mounting position.
  • FIG. 15 is a front view of the collector surface of the collector head;
  • FIG. 16 is a left side view of the collector head of FIG. 15;
  • FIG. 17 is a rear view of the collector head of FIG.
  • Figure 18 is a plan view of the current collecting head shown in Figure 15;
  • Figure 19 is a perspective view of the current collecting head shown in Figure 15 at a rear side viewing angle.
  • the collecting head is mainly composed of a connecting component 5-1, a lateral power receiving component 5-2, a rotating connecting component 5-3, and a guiding component 5-4, and the parts are sequentially connected by bolts to form a whole.
  • the connecting component 5-1 is used for mounting the entire collecting head device on a driving mechanism of the power receiver (such as a four-bar linkage mechanism), and the lateral power receiving component 5-2 is connected to the connecting component 5 through the rotating connecting member 5-3.
  • the -1 is connected, and the guide assembly 5-4 is connected to the rotating portion of the rotary joint 5-3 and is located above the joint assembly 5-1 and the lateral power receiving assembly 5-2, on which the rolling members are provided.
  • the guide assembly 5-4 can also be mounted on the lateral power receiving assembly 5-2, and the effect is substantially the same as that of the rotating portion directly mounted on the rotary connecting member 5-3, and can be practically required according to the size of the component, the arrangement space, and the like. And set.
  • FIG. 20 is a half cross-sectional view of the spring suspension device shown in FIG. 15.
  • FIG. 21 is a right side view of the spring suspension device shown in FIG.
  • the connecting component 5-1 is a mounting interface component of the collector head and the power receiver, and is designed in the form of a spring suspension device, which is mainly formed by connecting the connecting plates 5-11 and the movable brackets 5-12 through the supporting shafts.
  • the connecting plate 5-11 is provided with a bolt hole for connecting the collector head driving mechanism, and one side facing the electrode direction is provided with a longitudinal left bushing and a right bushing, and the left supporting shaft of the movable bracket 5-12 is 5-121.
  • the right support shaft 5-122 are respectively installed in the left sleeve and the right sleeve of the connecting plate 5-11, and both ends of each support shaft and the movable bracket 5-12 are fixed by a lock nut, the left shaft hole and the left support shaft Linear bearings 5-14 are respectively nested between the right shaft hole and the right support shaft, so that the movable bracket 5-12 and the connecting plate 5-11 are vertically slidably connected, and the movable bracket 5-12 can be opposite to the connecting plate 5 -11 moves in the axial direction of the support shaft.
  • a cylindrical compression spring 5-15 is also mounted between the connecting plate 5-11 and the movable bracket 5-12.
  • One end of the spring 5-15 acts on the adjusting screw 5-13 on the connecting plate 5-11, and the other end acts on the movable On the brackets 5-12, the mounting height of the adjusting screws 5-13 can be adjusted to provide a suitable spring force, and the inner spring 5-15 can provide a certain cushioning when the collector head rises and collides with the charging station ceiling. To avoid damage to the collector head due to excessive impact.
  • FIG. 22 is a half cross-sectional view of the rotary joint shown in FIG. 15.
  • FIG. 23 is a right side view of the rotary joint shown in FIG.
  • the function of the rotary joint 5-3 is to enable the lateral power receiving assembly 5-2 to have a multi-directional rotational freedom, which employs a universal bearing joint mechanism and is provided with a spring recovery device.
  • the rotary connecting member 5-3 is mainly connected by a bracket 5-31, a connecting shaft 5-32, a universal bearing 5-33, and a power receiving assembly mounting plate 5-34, and one end of the connecting shaft 5-32 is The thread is connected with the bracket 5-21, and the locking is achieved by installing the tightening nut, and the other end is provided with a step, and is connected with the inner ring of the universal bearing 5-33 through the sleeve 5-35, the universal bearing 5-33
  • the outer ring is connected to the power receiving assembly mounting plate 5-34 by bolts.
  • the guide assembly 5-4 is designed in the form of a disc, and the disc support 5-41 has six radial arms 5-42 extending outward in the circumferential direction, and the ends of the arms 5-42 are respectively provided with support plates 5-43.
  • the top of each support plate 5-43 has an upwardly arched arc shape, and is mounted with a freely rolling ball 5-44 (or a roller) at the highest central position, and the top of the power receiving component mounting plate 5-34
  • a guide assembly mounting plate 5-36 extending rearwardly in the form of a cantilever is connected in the middle by bolts.
  • the wheel bracket 5-41 is mounted above the guide assembly mounting plate 5-36, and the wheel can be matched with the ceiling on the one hand.
  • the height of the power receiving electrode is limited, and on the other hand, the ball can be slid toward the charging pole along the ceiling.
  • a spring recovery device is further mounted on the bracket 5-31, and the first elastic support pin 5-51 is arranged horizontally in a horizontal direction above the universal bearing, the fixed end is connected to the bracket 5-31, and the telescopic end is supported by the power receiving.
  • the third elastic support pin 5-53 is arranged longitudinally to the left and right, and the fixed end is connected to the bracket 5-31, and the telescopic end is supported upward on the horizontal support portion corresponding to both sides of the guide assembly mounting plate 5-36.
  • the function of the spring recovery device is to make the side receiving power when the wheel is not in contact with the charging station ceiling and the lateral power receiving unit 5-2 is not in contact with the charging pole, that is, the lateral power receiving unit 5-2 is not subjected to an external force.
  • the assembly 5-2 can be restored to the initial position relative to the bracket 5-31.
  • the collector head adopts the design of the universal joint to ensure the multi-directional freedom of the electrode, so that The electrode and the charging pole are more stable in conforming, the flow quality is higher, and the spring recovery device makes the current collecting head always in the initial state when it is not working, which makes up for the deficiency of the universal joint.
  • FIG. 24 is a perspective view of the current collecting head device shown in FIG. 15 under the front side viewing angle.
  • the lateral power receiving component 5-2 is mainly composed of an insulating spacer 5-21, a buffer 5-22, and a power receiving electrode 5-23, which is a collector head that is in contact with the charging pole and transmits current.
  • the insulating spacers 5-21 between the components and the rotary connecting member 5-3 ensure the insulation performance of the power receiver and the energy storage bus body.
  • the insulating spacers 5-21 are pre-buried with a screw sleeve for rotation.
  • the power receiving assembly mounting plate 5-34 of the connecting member 5-3 is fixed by a bolt connection.
  • the number of the power receiving electrodes 5-23 is four, which are the positive pole, the negative pole, the grounding pole and the signal pole, wherein the signal pole is an optional configuration, and the other three are extremely necessary configuration.
  • the charging current flows from the positive pole through the high voltage cable.
  • the bus energy storage power source flows out from the negative pole to form a charging circuit.
  • the grounding pole is connected with the receiver frame structure and the energy storage bus body to provide grounding protection.
  • the power receiving electrodes 5-23 are made of a conductor material, and the four electrodes are integrated together on the insulating spacers 5-21, and the plates on the outer side of the insulating spacers 5-21 are sequentially arranged in parallel from top to bottom, and the length of each electrode is Equally, the contact faces are located on the same vertical plane, and on the side of the longitudinal direction of the insulating spacers 5-21, the power receiving electrodes 5-23 are separated from the insulating spacers 5-21 by a certain distance.
  • Two buffers 5-22 are installed between each of the power receiving electrodes 5-23 and the insulating spacers 5-21, and provide a certain buffer when the power receiving electrodes 5-23 are in contact with the charging poles, and the buffers 5-22 include The telescopic shaft 5-221, the outer casing 5-222, and a spring that elastically connects the telescopic shaft 5-221 and the outer casing 5-222 inside the outer casing 5-222 (not shown due to the occlusion relationship), the outer casing 5-222 is connected to The back surface of the electric electrode 5-23 and the telescopic shaft 5-221 are connected to the insulating spacer 5-21.
  • transition plates 5-24 are mounted on the insulating spacers 5-21 by bolting at a certain distance, and the buffers 5-22 are bolted to the transition plates 5-24, and two buffers of each electrode are
  • the two links are connected together by two links, wherein the opposite ends of the first link 5-25 and the second link 5-26 are hinged, and the other ends are respectively hinged with the corresponding buffer 22, and the middle portion and the transition plate
  • the 5-24 is hinged, and the two buffers 5-22 are connected together by a linkage mechanism, which can realize synchronous buffering and avoid the jamming failure caused by uneven force.
  • the use of the insulating spacers 5-21 solves the problem of electrical insulation of the collector head, makes the structure simpler, and the size of the collector head can be made smaller and lighter, and the collector head adopts a spring shock absorbing structure at two places. Avoiding structural damage caused by impact will greatly improve reliability and service life.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

一种充电系统,包括供电轨和受电器,所述受电器包括集电头和集电头驱动机构;所述供电轨在充电位置处于车辆上方的侧部,包括竖向的绝缘基板及其侧面上集成的多道供电电极,所述供电电极以上下间隔的方式平行分布;所述集电头驱动机构带动所述集电头具有垂直升降行程和横向运动行程,所述集电头的受电电极在横向运动方向上位于其外侧,并且以上下间隔的方式平行分布。该充电系统允许的停车位置偏差距离较大,便于车辆操作,且具有大的导流能力和可靠的绝缘性能,在保持与行人具有安全距离的同时,便于集电头与供电轨准确、稳定地定位受电,保证车辆的安全正常行驶,特别适用于现代储能式电动公交车。

Description

一种充电系统
本申请要求2015年06月16日提交中国专利局、申请号为201510333427.8、发明名称为“一种充电系统”的发明专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及快速充电技术领域,特别是用于对储能式电动公交车等电动车辆进行快速充电的充电系统。
背景技术
随着社会的发展,节能、环保等城市轨道交通发展理念不断提升,储能式电动公交车辆应运而生,所谓储能式电动公交车辆是指使用超级电容来存储电能作为动力进行牵引,采用车顶受电器受流及回流,并利用乘客在站台上下车的几十秒的时间内快速完成充电,一次充电可保证储能式电动公交车辆运行至下一站再进行充电,正是由于上述特点,该车型得到了越来越多的推广使用。
请参考图1、图2,图1为现有储能式电动公交车充电系统的受电器结构示意图;图2为图1的侧视图。
如图所示,现有储能式电动公交车充电系统的受电器,其整体机构可理解为一组沿车辆纵向安装的四连杆机构,供电轨1'安装于受电器2'(或受电弓)的正上方。由于四连杆机构中各杆件为定长,且杆件长度按一定比例设定,在弹簧或气缸驱动力的作用下,受电器2'的集电头3'可实现近似垂直升降,并在垂直升起一定高度后与正上方供电轨1'接触,实现对车辆受流。
这种受电器与其他轨道交通车辆、无轨交通车辆等安装于车顶的受电器(或受电弓)的工作原理基本相同,较为适用于轨道交通车辆,当其应用于无轨交通车辆,例如储能公交车时,存在以下不足:
第一,现代储能公交车采用普通的橡胶车轮,无轨道导向运行,司乘人员停车误差较大,而上述受电器允许的停车位置横向偏差距离只有200mm左右,对司乘人员的操作技术要求较高,每次充电对车辆进站时的 停车位置及停车角度提出了较高要求,较难满足现场使用要求,不仅不利于车辆的操作方便性,还导致了车辆充电不稳定。
第二,由于采用车辆进站,受电器升起与正上方的供电轨接触充电的方式给车辆提供动能,乘客上下车时,车身晃动会导致安装于车顶的受电器一起晃动,如此受电器上的集电头会在供电轨上左右晃动,增加了接触电阻,容易导致受流问题。
第三,为保证集电头在升起后能够与供电轨接触,集电头通常设计成长滑板形式,而过长的集电头会导致结构不稳定。
第四,受电器落下后,会较大的占用车辆顶部空间,影响车顶逃生门等其他设备布置。
因此,如何增大充电系统允许的停车位置偏差距离,以便于车辆操作,并提高受流的稳定性,是本领域技术人员需要解决的技术问题。
发明内容
本发明的目的是提供一种充电系统。该充电系统允许停车位置存在较大偏差距离,便于车辆操作,而且在车身发生晃动的情况下仍能保证稳定受流,还具有结构稳定、占用空间小等优点。
为实现上述目的,本发明提供一种充电系统,包括:
供电轨,用于安装在充电位置;
受电器,用于安装在电动车辆的顶部,包括集电头和集电头驱动机构,其通过所述集电头与供电轨的接触对电动车辆进行充电;
所述供电轨在充电位置处于车辆上方的侧部,其侧面集成有多道供电电极,所述供电电极以上下间隔的方式平行分布;
所述集电头驱动机构带动所述集电头具有垂直升降行程和横向运动行程,所述集电头的受电电极在横向运动方向上位于其外侧,并且以对应于所述供电电极的方式平行分布。
优选地,所述集电头驱动机构为四连杆机构,包括底座、上杆、下杆及拉杆,所述集电头设于所述上杆的外延端,在垂直升降行程内,所述拉杆保持定长,在横向运动行程内,所述拉杆进行伸缩。
优选地,所述拉杆为设有伸缩控制机构的伸缩式拉杆,其固定端与所述底座相铰接,伸缩端与所述上杆相铰接。
优选地,所述伸缩式拉杆为设有预压力的气缸。
优选地,所述伸缩控制机构包括:
定滑轮,设于所述拉杆下端处;
定滑轮组,设于所述下杆下端的转轴上;
动滑轮组,通过移动机构安装于所述底座;
钢丝绳,绕经所述定滑轮后交替缠绕于所述定滑轮组和动滑轮组,其一端连接所述上杆与拉杆的铰接端或拉杆的伸缩端,另一端连接于所述底座;
凸轮,同轴固定于所述下杆下端的转轴上,其支撑所述动滑轮组并在转动时带动所述动滑轮组收紧或放松所述钢丝绳。
优选地,所述动滑轮组的一侧设有同轴的从动轮,所述凸轮与所述从动轮相啮合。
优选地,所述动滑轮组与底座之间设有缓冲弹簧。
优选地,所述动滑轮组通过摆动架可摆动的安装于所述底座。
优选地,所述拉杆为弹性拉杆,其杆身上沿长度方向设有由弹簧形成的弹性伸缩部。
优选地,所述供电电极设于绝缘基板,相邻的所述供电电极之间设有绝缘部位,所述绝缘部位高于所述电极的底部且低于所述电极的接触面,并设有若干与所述电极平行的凹槽。
优选地,所述供电轨进一步设有导向板,所述导向板位于所述供电电极上方并与其所在的平面相垂直。
优选地,所述集电头包括:
连接组件,用于连接所述集电头驱动机构;
侧向受电组件,其通过旋转连接件与所述连接组件相连接,一侧集成所述受电电极;
导向组件,连接于所述旋转连接件的旋转部,并位于所述连接组件和/或侧向受电组件的上方,其上设有滚动部件。
优选地,所述连接组件为弹簧悬挂装置,包括:
连接板,其上设有左轴孔和右轴孔;
活动支架,通过左支撑轴和右支撑轴与所述连接板上下滑动连接;
支撑弹簧,设于所述连接板与活动支架之间,其一端支撑于所述连接板,另一端支撑于所述活动支架。
优选地,所述连接板上设有调整螺钉,所述支撑弹簧的一端支撑于所述调整螺钉。
优选地,所述旋转连接件包括:
支架,用于连接所述连接组件;
受电组件安装板,用于安装所述侧向受电组件;
万向连接件,其固定部连接所述支架,万向旋转部连接所述受电组件安装板。
优选地,所述万向连接件包括连接轴和万向轴承,所述连接轴的一端与所述支架相连接,另一端通过轴套与所述万向轴承的内圈相连接,所述万向轴承的外圈与所述受电组件安装板相连接。
优选地,进一步包括弹性恢复装置,设于所述支架与受电组件安装板之间,用于保持所述受电组件安装板相对于所述支架的位置。
优选地,所述弹性恢复装置包括:
第一弹性支撑销,分左右沿水平方向布置于所述万向连接件以上的位置,其固定端连接所述支架,伸缩端支撑于所述受电组件安装板;
第二弹性支撑销,分左右沿水平方向布置于所述万向连接件以下的位置,其固定端连接所述支架,伸缩端支撑于所述受电组件安装板;
第三弹性支撑销,分左右纵向布置,其固定端连接所述支架,伸缩端向上支撑于所述受电组件安装板上与之相对应的水平支撑部位。
优选地,所述导向组件包括轮盘支架,所述轮盘支架在周向上向外延伸有径向支臂,所述支臂的末端分别设有支撑盘,各所述支撑盘的顶部设有能够自由滚动的滚珠或滚轮。
优选地,所述侧向受电组件设有绝缘隔板,各所述受电电极分别通过两端的缓冲器安装于所述绝缘隔板。
优选地,各所述电极的缓冲器之间通过左右对称布置的第一连杆和第二连杆相连接,所述第一连杆和第二连杆相对的一端相铰接,另一端分别 与对应的缓冲器相铰接,中部与所述绝缘隔板相铰接。
优选地,所述绝缘隔板的电极安装侧设有与各所述电极相对应的过渡板。
本发明将供电轨的多个供电电极一起以间隔平行的方式集成安装在竖向绝缘基板上,使用时安装在车辆充电位置的一侧,并位于车辆上方的侧部,同时将受电器垂直于车身长度方向安装于车顶,并将集电头的受电电极集成在横向运动方向的侧面上,从而形成在侧方位进行充电的侧向充电系统。工作时,电动车辆停靠后,供电轨位于受电器的侧方位,集电头的运动为垂直升降和横向运动的变轨迹运动,集电头先近似垂直升起到一定高度后(>1500mm),继续向外侧水平运动一定距离(>600mm),直至受电电极与供电电极接触实现受电功能。由于其集电头具有长距离水平运动功能,因此可以增大允许的停车位置偏差距离,便于车辆操作,且供电轨和集电头具有大的导流能力和可靠的绝缘性能,在保持与行人具有安全距离的同时,便于集电头与供电轨准确、稳定地定位受电,提高充电性能,保证车辆的安全正常行驶,特别适用于现代储能式电动公交车。
附图说明
图1为现有储能式电动公交车充电系统的受电器结构示意图;
图2为图1的侧视图;
图3为本发明所提供充电系统的一种具体实施方式的结构示意图;
图4为图3中受电器的结构示意图;
图5为受电器的一种设计原理图;
图6为图5所示受电器的一种具体实施方式的结构示意图;
图7为图6中定滑轮组与动滑轮组部位的局部放大图;
图8为图6所示侧向受电器的使用状态参考图;
图9为受电器的另一种设计原理图;
图10为图9所示受电器的起升及横向运动示意图;
图11为图9所示受流器的降落示意图;
图12为供电轨的结构示意图;
图13为图12所示供电轨的侧视图;
图14为图12所示供电轨的俯视图;
图15为集电头电极面一侧的正面示意图;
图16为图15所示集电头的左视图;
图17为图15所示集电头的后视图;
图18为图15所示集电头的俯视图;
图19为后侧视角下图15所示集电头的立体图;
图20为图15中所示弹簧悬挂装置的半剖示意图;
图21为图20所示弹簧悬挂装置的右视图;
图22为图15中所示旋转连接件的半剖示意图;
图23为图22所示旋转连接件的右视图;
图24为前侧视角下图15所示集电头装置的立体图。
图1、图2中:
供电轨1' 受电器2' 集电头3'
图3至图24中:
1.底座 2.上杆 3.下杆 4.拉杆 4-1.下拉杆 4-2.弹簧 5.集电头 6.钢丝绳 7.定滑轮 8.定滑轮组 9.动滑轮组 10.凸轮 11.摆动架 12.转轴 13.从动轮 14.缓冲弹簧 15.供电轨 16.导向板 17.车身 18.气缸 19.弹簧
5-1.连接组件 5-11.连接板 5-121.左支撑轴 5-122.右支撑轴 5-12.活动支架 5-13.调整螺钉 5-14.直线轴承 5-15.弹簧
5-2.侧向受电组件 5-21.绝缘隔板 5-22.缓冲器 5-23.电极 5-221.伸缩轴 5-222.外壳 5-24.过渡板 5-25.第一连杆 5-26.第二连杆
5-3.旋转连接件 5-31.支架 5-32.连接轴 5-33.万向轴承 5-34.受电组件安装板 5-35.轴套 5-36.导向组件安装板
5-4.导向组件 5-41.轮盘支架 5-42.支臂 5-43.支撑盘 5-44.滚珠
5-51.第一弹性支撑销 5-52.第二弹性支撑销 5-53.第三弹性支撑销 15-1.绝缘基板 15-2.供电电极 15-3.绝缘部位 15-4.凹槽
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。
本文中的上、下、内、外等用语是基于附图所示的位置关系而确立的,根据附图的不同,相应的位置关系也有可能随之发生变化,因此,并不能将其理解为对保护范围的绝对限定。
请参考图3、图4,图3为本发明所提供充电系统的一种具体实施方式的结构示意图;图4为图3中受电器的结构示意图。
本发明所提供的充电系统的核心在于将受电器垂直于车身长度方向安装,导向板16(或导向轨)与供电轨15垂直组装在一起,导向板16水平安装于上端,供电轨15侧向安装,受电器垂直升起后在导向板16的作用下向外延伸,与侧向的供电轨15接触受流。
该系统具有自动导向能力,能够在导向板16作用下向外延伸0~700mm,增大了横向偏摆尺寸,使公交车具有更大的停车偏摆量,简化了司机操作难度,同时受电器集电头5安装于活接头上,具有一定的自由度,能够将车身的左右晃动,转换为受电器集电头5的上下运动,而集电头5始终有向上运动的趋势,导向板16又限定了集电头5向上位移的自由度,因此可以避免集电头5随车身一起晃动,消除乘客上下车过程中车身晃动导致的受流不稳定性。
请参考图5、图6,图5为受电器的一种设计原理图;图6为图5所示受电器的一种具体实施方式的结构示意图;
如图所示,受电器主要由底座1、上杆2、下杆3、拉杆4和集电头5等构成,其中底座1、上杆2、下杆3和拉杆4形成带动集电头5运动的四连杆机构,下杆3的下端通过转轴与底座1相铰接,上端与上杆2相铰接,拉杆4的下端与底座1相铰接,上端与上杆2尾端的拐臂相铰接,上杆2设计成向外延伸的一端较窄,而另一端较宽的“V”字形框架结构,因此又称为上框架。
拉杆4为伸缩式拉杆,这里采用设有预压力的气缸,其缸体下端与底 座1相铰接,活塞杆上端与上杆2相铰接,集电头5通过万向轴承安装在上杆2的外延端,集电头5的受流部位位于其横向运动方向的外侧,其用于受流的多道受电电极在外立面上以上下间隔的方式平行分布。
请一并参考图7,图7为图6中定滑轮组与动滑轮组部位的局部放大图。
拉杆4设有伸缩控制机构,以便在集电头5从垂直起升运动转变为横向外移运动时释放拉杆4使其能够进行伸缩,并在集电头5从横向内移运动转变为垂直下降运动时锁定拉杆4使其保持定长。
具体地,伸缩控制机构主要由钢丝绳6、定滑轮7、定滑轮组8、动滑轮组9以及凸轮10等部件构成,其中,定滑7轮就近安装于拉杆4的下端处,定滑轮组8安装在下杆3下端的转轴上,动滑轮组9通过一“Y”字形摆动架11安装于底座1,摆动架11的下端与底座1相铰接,动滑轮组9位于其上端的槽口中,钢丝绳6的一端连接在上杆2与拉杆4的铰轴外侧,另一端连接于底座1,其在绕经定滑轮7后交替缠绕于定滑轮组8和动滑轮组9,定滑轮7以上的钢丝绳6与拉杆4平行,以保证钢丝绳拉力与拉杆受力方向一致,使受力形式更加合理。
凸轮10用于在转动时通过凸轮面调整动滑轮组9的位置,其同轴固定在下杆3下端的转轴12上,动滑轮组9的一侧设有同轴的从动轮13,凸轮10与从动轮13相啮合,动滑轮组9的从动轮13支撑在凸轮10上,凸轮10在随转轴12一起转动时可带动动滑轮组9收紧或放松钢丝绳6。
从动轮13的作用是在凸轮10推动动滑轮组9移动时避免干摩擦,如果不设计从动轮13,由凸轮10直接带动动滑轮组9也是可行的。
为避免凸轮10放松钢丝绳6后,钢丝绳6瞬间释放在造成较大的冲击,在动滑轮组9一侧与底座1之间设有缓冲弹簧14。
请参考图8,图8为图6所示侧向受电器的使用状态参考图。
如图所示,在实际使用时,供电装置安装在充电地点,通常为公交车站台,其供电轨15在车辆上方的侧部竖直安装,多道供电电极上下间隔平行分布,其排列方式与集电头5电极的排列方式相一致,供电电极的长度大于集电头5受电电极的长度,以便车辆进站时集电头5在前后较大区域内都能与供电轨15接触,各供电电极的宽度可略宽于集电头5受电电 极的宽度,以提高受流的稳定性,导向板16(或导向轨)以垂直于供电轨平面的方式水平安装在供电轨15上方,用于在集电头5升起至一定高度后限制其垂向自由度,使其不再继续向上运动,而改为向外横向运动,具体可采用平整的钢板等,侧向受电器以垂直于车身17长度方向的方式安装在车顶上,其四连杆机构的升降平面和集电头的横向运动方向均垂直于车身17的长度方向。
当车辆进站,受电器集电头5需要与供电轨15接触时,气缸18、弹簧19共同作用使转轴12转动,由于凸轮10的凸起部位与动滑轮组9的从动轮13相啮合,因此转轴12在开始转动的一定角度内(例如0~30度)动滑轮组9不动作,钢丝绳6长度固定不变,拉杆4的气缸中一直存在气压,钢丝绳6对气缸的拉力大于气缸压力,气缸长度保持不变,集电头5在垂直于车身长度方向的竖向平面内以近似垂直的方式升起。
当集电头5升起至1500mm左右高度时,通过其顶部的防摩擦滚轮支撑在导向板16的下表面上,此时转轴12带动凸轮10转动的角度大于30度,凸轮10的非凸起部位开始与动滑轮组9的从动轮13相啮合,在钢丝绳6的拉力作用下,动滑轮组9连同其摆动架11一起向定滑轮组方向摆动,使钢丝绳6得到释放,由于钢丝绳6长度释放,钢丝绳6对气缸的拉扯力消除,气缸在气压作用下线性伸长,实现可伸缩式拉杆功能。此时,集电头5在导向板16的限制下不再向上升起,拉杆4自动改变长度,集电头5在垂直于车身长度方向的竖向平面内可向外侧横向运动0~700mm,直至与供电装置的供电轨15接触受流,在完成充电后,执行反向动作即可将受电器收回至折叠状态,在收回过程中,当集电头5下降时,气缸的预压力能使拉杆自动缩回。
由于定滑轮组8和动滑轮组9上往复缠绕有多圈钢丝绳,根据动滑轮的行程放大原理,其放大系数与定滑轮和动滑轮的数量相关,如果其放大系数为N,则当动滑轮组9向定滑轮组8移动一段距离L后,能释放的钢丝绳长度为L×N,因此动滑轮组9仅产生较小的移动即可释放或收回足够长的钢丝绳来满足拉杆4伸长和缩回的需要。
动滑轮组9除了采用摆动架11安装在底座1上之外,还可以通过直线运动机构等其他移动机构安装在底座1上,例如,将动滑轮组9的两端安 装在滑轨上,使其在钢丝绳6拉力和凸轮10的作用下能够在滑轨上移动,同样能够实现释放和收回钢丝绳6的功能,即不论动滑轮组9如何安装,只要保证其能够远离和靠近定滑轮组8即可。
当然,对于需要设置伸缩控制机构的拉杆来讲,其拉杆伸缩控制机构除了上述钢丝绳-滑轮-凸轮的结构形式之外,还可以采用以下形式。
一种是电气化控制,可采用在气缸缸体与活塞杆之间插入或退出锁销的方式来锁定或解除气缸拉杆的伸缩功能,锁销由小型电机、气缸或电磁机构控制,为控制锁销的动作时机,可以在四连杆机构上安装角度传感器其或行程开关,当集电头5起升到一定高度后,角度传感器输出角度信号,控制锁销进行动作,或者由四连杆机构的杆件触发行程开关,进而控制锁销进行动作。
另一种是机械化控制,由于在起升过程中,各杆件之间的相对位置始终在发生变化,因此可以利用上杆相对于拉杆4的角度变化来控制拉杆4的伸缩时机。
例如,依然采用在气缸缸体与活塞杆之间插入或退出锁销的方式来锁定或解除气缸拉杆的伸缩功能,与上述电气化控制方式的不同之处在于,机械化方式在上杆2设有触发块或触发板,其直接与锁销相配合,或通过传动机构与锁销连接,当集电头5起升到一定高度后,触发块或触发板可直接或通过传动机构带动销轴向外退出,从而解除对气缸和活塞杆的锁定,当集电头5需要下降时,触发块或触发板又可以直接或通过传动机构带动销轴向内移动,从而重新锁定气缸和活塞杆。
除了气缸之外,拉杆4还可以设计成其他形式,例如弹性拉杆。
请参考图9、10、11,图9为受电器的另一种设计原理图;图10为图9所示受电器的起升及横向运动示意图;图11为图9所示受流器的降落示意图。
如图所示,拉杆4为弹性拉杆,由下拉杆4-1和弹簧4-2对接形成,其中弹簧4-2位于上端,与上杆2相铰接,下拉杆4-1位于下端,与底座1相铰接,弹簧4-2的规格可根据集电头向上升起时拉杆所承受的力来确定,以保证在垂直升降行程内,弹簧4-2长度不会发生变化,而在横向运动行程内,弹簧4-2可以进行伸缩。此种方式主要通过力值计算来控制弹簧可 以伸缩的节点,因此无需为拉杆设置伸缩控制机构,是本发明较为简易的一种实施方式。
当然,根据需要,下拉杆4-1和弹簧4-2的位置也可以互换,即采用倒装的形式;或者弹性拉杆由两段拉杆和一段弹簧对接形成,拉杆位于两端,弹簧位于中间;或者,弹性拉杆由两段弹簧和一段拉杆对接形成,弹簧位于两端,拉杆位于中间;又或者,弹性拉杆由多段弹簧和多段拉杆交替对接形成。
此外,作为拉杆4的另一种形式,其可以由两节通过伸缩结构组合在一起的杆段组成,两杆段之间设置弹簧,通过弹簧获得预压力,同样能够实现类似于气缸拉杆的功能。
请参考图12、13、14,图12为供电轨的结构示意图;图13为图12所示供电轨的侧视图;图14为图12所示供电轨的俯视图。
如图所示,供电轨15的绝缘基板15-1由绝缘材料制作,为一整块绝缘板,由于其在使用时需竖向布置,因此这里将其定义为竖向绝缘基板,绝缘基板15-1上分布有供电电极15-2的安装接口,供电电极15-2由导体材料制作,四道电极一起集成在绝缘基板15-1上。
具体地,四道供电电极15-2分别为正极、负极、接地极和信号极,在绝缘基板15-1一侧的板面上由上至下依次间隔平行分布,各供电电极15-2的长度相等,接触面位于同一竖平面,在绝缘基板15-1长度方向的一侧,供电电极15-2超出绝缘基板15-1一定距离。
当然,根据需要,也可以省去信号极,仅保留包括正极、负极、接地极在内的三个电极。
相邻的供电电极15-2之间设有凸起的绝缘部位15-3,绝缘部位15-3与绝缘基板15-1为一体式结构,其高于供电电极15-2的底部且低于供电电极15-2的接触面,各绝缘部位15-3上分别设有四道与供电电极15-2平行的凹槽15-4,凹槽15-4的深度超过供电电极15-2的底部,以增大供电电极15-2之间的爬电距离。当然,根据附图,凹槽15-4也可以视为由若干平行的肋条形成。
如上文所述,为限制集电头5的垂向自由度,供电轨15的支架上进一步设有导向板16,此导向板16位于供电电极15-2上方并垂直于绝缘基板 15-1,其既可以直接与绝缘基板15-1垂直连接,也可以连接在其他构件(例如支架上),仅在安装位置上与绝缘基板15-1保持垂直状态。
请参考图15至图19,图15为集电头电极面一侧的正面示意图;图16为图15所示集电头的左视图;图17为图15所示集电头的后视图;图18为图15所示集电头的俯视图;图19为后侧视角下图15所示集电头的立体图。
集电头主要由连接组件5-1、侧向受电组件5-2、旋转连接件5-3以及导向组件5-4等部分组成,各部分依次通过螺栓连接形成一个整体。
其中,连接组件5-1用于将整个集电头装置安装在受电器的驱动机构(如四连杆机构)上,侧向受电组件5-2通过旋转连接件5-3与连接组件5-1相连接,导向组件5-4与旋转连接件5-3的旋转部相连接,并位于连接组件5-1和侧向受电组件5-2的上方,其上设有滚动部件。
由于侧向受电组件5-2也与旋转连接件5-3的旋转部相连接,工作时,导向组件5-4与侧向受电组件5-2一起相对于连接组件5-1旋转,因此导向组件5-4也可以安装在侧向受电组件5-2上,其效果与直接安装在旋转连接件5-3的旋转部上基本相同,可根据零部件尺寸、布置空间等实际需要而定。
请一并参考图20、图21,图20为图15中所示弹簧悬挂装置的半剖示意图;图21为图20所示弹簧悬挂装置的右视图。
连接组件5-1是集电头与受电器的安装接口部件,这里设计成弹簧悬挂装置的形式,主要由连接板5-11、活动支架5-12通过支撑轴连接而成。
连接板5-11上设有用于连接集电头驱动机构的螺栓孔,其面向电极方向的一侧设有纵向的左轴套和右轴套,活动支架5-12的左支撑轴5-121和右支撑轴5-122分别安装在连接板5-11的左轴套和右轴套中,各支撑轴的两端与活动支架5-12通过锁紧螺母固定,左轴孔与左支撑轴之间以及右轴孔与右支撑轴之间分别嵌套有直线轴承5-14,从而实现活动支架5-12与连接板5-11的上下滑动连接,活动支架5-12可以相对连接板5-11沿支撑轴轴向方向运动。
在连接板5-11和活动支架5-12之间还安装有圆柱压缩弹簧5-15,弹簧5-15一端作用在连接板5-11上的调整螺钉5-13上,另一端作用在活动 支架5-12上,调整螺钉5-13的安装高度可以进行调节,以提供合适的弹簧力,通过内部的弹簧5-15可以在集电头上升过程与充电站顶棚相碰时提供一定的缓冲,避免集电头因冲击力过大出现损坏。
请参考图22、图23,图22为图15中所示旋转连接件的半剖示意图;图23为图22所示旋转连接件的右视图。
旋转连接件5-3的作用是使侧向受电组件5-2能够具有多方向的转动自由度,其采用了万向轴承关节机构,并设置了弹簧恢复装置。
具体地,旋转连接件5-3主要由支架5-31、连接轴5-32、万向轴承5-33以及受电组件安装板5-34等相连而成,连接轴5-32的一端为螺纹,与支架5-21相连接,通过安装并紧螺母实现锁紧,另一端设有台阶,通过轴套5-35与万向轴承5-33的内圈相连接,万向轴承5-33的外圈与受电组件安装板5-34通过螺栓相连接。
导向组件5-4设计成轮盘形式,其轮盘支架5-41在周向上向外延伸有六条径向支臂5-42,各支臂5-42的末端分别设有支撑盘5-43,各支撑盘5-43的顶部呈向上拱起的弧形,并在最高的中心位置嵌套安装有能够自由滚动的滚珠5-44(或滚轮),受电组件安装板5-34顶部的中间通过螺栓连接有一道向后延伸呈悬臂形式的导向组件安装板5-36,轮盘支架5-41安装在导向组件安装板5-36的上方,轮盘一方面可以通过与顶棚的配合来限定受电电极的高度,另一方面可以通过滚珠沿着顶棚滑向充电极。
支架5-31上还安装有弹簧恢复装置,其第一弹性支撑销5-51分左右沿水平方向布置于万向轴承以上的位置,其固定端连接支架5-31,伸缩端支撑于受电组件安装板5-34;第二弹性支撑销5-52分左右沿水平方向布置于万向轴承件以下的位置,其固定端连接支架5-31,伸缩端支撑于受电组件安装板5-34;第三弹性支撑销5-53分左右纵向布置,其固定端连接支架5-31,伸缩端向上支撑于导向组件安装板5-36两侧与之相对应的水平支撑部位。
弹簧恢复装置的作用是在轮盘不与充电站顶棚、侧向受电组件5-2不与充电极接触时,即侧向受电组件5-2不受外力作用时,使侧向受电组件5-2能恢复至相对支架5-31的初始位置。
集电头采用万向球关节的设计可以保证电极具有多方向的自由度,使 电极与充电极的贴合更稳定,受流质量更高,同时弹簧恢复装置,又使得集电头在非工作时始终保持在初始状态,弥补了万向球关节的不足。
请参考图24,图24为前侧视角下图15所示集电头装置的立体图。
如图所示,侧向受电组件5-2主要由绝缘隔板5-21、缓冲器5-22、受电电极5-23相连而成,是集电头与充电极接触并传递电流的部件,其与旋转连接件5-3之间的绝缘隔板5-21,保证了受电器以及储能公交车车体的绝缘性能,绝缘隔板5-21预埋有螺套,以便与旋转连接件5-3的受电组件安装板5-34通过螺栓连接固定。
受电电极5-23的数量为四个,分别为正极、负极、接地极以及信号极,其中信号极是可选配置,其他三极为必要配置,工作时,充电电流从正极流入,通过高压电缆,公交车储能电源,再由负极流出,形成充电回路,接地极与受电器框架结构以及储能公交车车体相连,起接地保护作用。
受电电极5-23由导体材料制作,四道电极一起集成在绝缘隔板5-21上,在绝缘隔板5-21外侧的板面上由上至下依次间隔平行分布,各电极的长度相等,接触面位于同一竖平面,在绝缘隔板5-21长度方向的一侧,受电电极5-23超出绝缘隔板5-21一定距离。
每个受电电极5-23与绝缘隔板5-21之间安装有两个缓冲器5-22,在受电电极5-23与充电极接触时提供一定的缓冲,缓冲器5-22包括伸缩轴5-221、外壳5-222以及在外壳5-222内部弹性连接伸缩轴5-221和外壳5-222的弹簧(由于遮挡关系,图中未示出),外壳5-222连接于受电电极5-23的背面,伸缩轴5-221连接于绝缘隔板5-21。
绝缘隔板5-21上间隔一定距离通过螺栓连接的方式安装了四根过渡板5-24,缓冲器5-22通过螺栓连接在过渡板5-24上,每个电极的两个缓冲器之间又通过两根连杆连接在一起,其中,第一连杆5-25和第二连杆5-26相对的一端相铰接,另一端分别与对应的缓冲器22相铰接,中部与过渡板5-24相铰接,两个缓冲器5-22通过连杆机构相连在一起,可以实现同步缓冲,避免受力不均可能引起的卡滞故障。
绝缘隔板5-21的使用解决了集电头电气绝缘的问题,使结构更为简单,集电头的尺寸就可以做得更小,更轻量化,集电头两处采用弹簧吸震结构,避免冲击引起结构失效,将大幅提高可靠性及使用寿命。
以上对本发明所提供的充电系统进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (22)

  1. 一种充电系统,包括:
    供电轨,用于安装在充电位置;
    受电器,用于安装在电动车辆的顶部,包括集电头和集电头驱动机构,其通过所述集电头与供电轨的接触对电动车辆进行充电;其特征在于:
    所述供电轨在充电位置处于车辆上方的侧部,其侧面集成有多道供电电极,所述供电电极以上下间隔的方式平行分布;
    所述集电头驱动机构带动所述集电头具有垂直升降行程和横向运动行程,所述集电头的受电电极在横向运动方向上位于其外侧,并且以对应于所述供电电极的方式平行分布。
  2. 根据权利要求1所述的充电系统,其特征在于,所述集电头驱动机构为四连杆机构,包括底座、上杆、下杆及拉杆,所述集电头设于所述上杆的外延端,在垂直升降行程内,所述拉杆保持定长,在横向运动行程内,所述拉杆进行伸缩。
  3. 根据权利要求2所述的充电系统,其特征在于,所述拉杆为设有伸缩控制机构的伸缩式拉杆,其固定端与所述底座相铰接,伸缩端与所述上杆相铰接。
  4. 根据权利要求3所述的充电系统,其特征在于,所述伸缩式拉杆为设有预压力的气缸。
  5. 根据权利要求3所述的充电系统,其特征在于,所述伸缩控制机构包括:
    定滑轮,设于所述拉杆下端处;
    定滑轮组,设于所述下杆下端的转轴上;
    动滑轮组,通过移动机构安装于所述底座;
    钢丝绳,绕经所述定滑轮后交替缠绕于所述定滑轮组和动滑轮组,其一端连接所述上杆与拉杆的铰接端或拉杆的伸缩端,另一端连接于所述底座;
    凸轮,同轴固定于所述下杆下端的转轴上,其支撑所述动滑轮组并在转动时带动所述动滑轮组收紧或放松所述钢丝绳。
  6. 根据权利要求5所述的充电系统,其特征在于,所述动滑轮组的一 侧设有同轴的从动轮,所述凸轮与所述从动轮相啮合。
  7. 根据权利要求5所述的充电系统,其特征在于,所述动滑轮组与底座之间设有缓冲弹簧。
  8. 根据权利要求5、6或7所述的充电系统,其特征在于,所述动滑轮组通过摆动架可摆动的安装于所述底座。
  9. 根据权利要求2所述的充电系统,其特征在于,所述拉杆为弹性拉杆,其杆身上沿长度方向设有由弹簧形成的弹性伸缩部。
  10. 根据权利要求1所述的充电系统,其特征在于,所述供电电极设于绝缘基板,相邻的所述供电电极之间设有绝缘部位,所述绝缘部位高于所述电极的底部且低于所述电极的接触面,并设有若干与所述电极平行的凹槽。
  11. 根据权利要求1所述的充电系统,其特征在于,所述供电轨进一步设有导向板,所述导向板位于所述供电电极上方并与其所在的平面相垂直。
  12. 根据权利要求1所述的充电系统,其特征在于,所述集电头包括:
    连接组件,用于连接所述集电头驱动机构;
    侧向受电组件,其通过旋转连接件与所述连接组件相连接,一侧集成所述受电电极;
    导向组件,连接于所述旋转连接件的旋转部,并位于所述连接组件和/或侧向受电组件的上方,其上设有滚动部件。
  13. 根据权利要求12所述的充电系统,其特征在于,所述连接组件为弹簧悬挂装置,包括:
    连接板,其上设有左轴孔和右轴孔;
    活动支架,通过左支撑轴和右支撑轴与所述连接板上下滑动连接;
    支撑弹簧,设于所述连接板与活动支架之间,其一端支撑于所述连接板,另一端支撑于所述活动支架。
  14. 根据权利要求13所述的充电系统,其特征在于,所述连接板上设有调整螺钉,所述支撑弹簧的一端支撑于所述调整螺钉。
  15. 根据权利要求12所述的充电系统,其特征在于,所述旋转连接件包括:
    支架,用于连接所述连接组件;
    受电组件安装板,用于安装所述侧向受电组件;
    万向连接件,其固定部连接所述支架,万向旋转部连接所述受电组件安装板。
  16. 根据权利要求15所述的充电系统,其特征在于,所述万向连接件包括连接轴和万向轴承,所述连接轴的一端与所述支架相连接,另一端通过轴套与所述万向轴承的内圈相连接,所述万向轴承的外圈与所述受电组件安装板相连接。
  17. 根据权利要求15所述的充电系统,其特征在于,进一步包括弹性恢复装置,设于所述支架与受电组件安装板之间,用于保持所述受电组件安装板相对于所述支架的位置。
  18. 根据权利要求17所述的充电系统,其特征在于,所述弹性恢复装置包括:
    第一弹性支撑销,分左右沿水平方向布置于所述万向连接件以上的位置,其固定端连接所述支架,伸缩端支撑于所述受电组件安装板;
    第二弹性支撑销,分左右沿水平方向布置于所述万向连接件以下的位置,其固定端连接所述支架,伸缩端支撑于所述受电组件安装板;
    第三弹性支撑销,分左右纵向布置,其固定端连接所述支架,伸缩端向上支撑于所述受电组件安装板上与之相对应的水平支撑部位。
  19. 根据权利要求12所述的充电系统,其特征在于,所述导向组件包括轮盘支架,所述轮盘支架在周向上向外延伸有径向支臂,所述支臂的末端分别设有支撑盘,各所述支撑盘的顶部设有能够自由滚动的滚珠或滚轮。
  20. 根据权利要求12所述的充电系统,其特征在于,所述侧向受电组件设有绝缘隔板,各所述受电电极分别通过两端的缓冲器安装于所述绝缘隔板。
  21. 根据权利要求20所述的充电系统,其特征在于,各所述电极的缓冲器之间通过左右对称布置的第一连杆和第二连杆相连接,所述第一连杆和第二连杆相对的一端相铰接,另一端分别与对应的缓冲器相铰接,中部与所述绝缘隔板相铰接。
  22. 根据权利要求20或21所述的集电头装置,其特征在于,所述绝 缘隔板的电极安装侧设有与各所述电极相对应的过渡板。
PCT/CN2015/095663 2015-06-16 2015-11-26 一种充电系统 WO2016201901A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ATA9490/2015A AT520874B1 (de) 2015-06-16 2015-11-26 Ladesystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510333427.8 2015-06-16
CN201510333427.8A CN104901382B (zh) 2015-06-16 2015-06-16 一种充电系统

Publications (1)

Publication Number Publication Date
WO2016201901A1 true WO2016201901A1 (zh) 2016-12-22

Family

ID=54033865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095663 WO2016201901A1 (zh) 2015-06-16 2015-11-26 一种充电系统

Country Status (3)

Country Link
CN (1) CN104901382B (zh)
AT (1) AT520874B1 (zh)
WO (1) WO2016201901A1 (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105391135A (zh) * 2015-12-15 2016-03-09 郑州宇通客车股份有限公司 一种充电架和采用该充电架的充电装置
CN107966628A (zh) * 2017-12-05 2018-04-27 西南交通大学 一种犁带滚动三相供电实验系统
CN108128169A (zh) * 2017-12-27 2018-06-08 青岛特来电新能源有限公司 车载受电弓及车载受电弓防护装置
CN108258557A (zh) * 2018-04-16 2018-07-06 北京瑞途科技有限公司 一种滑动式充电装置
CN110001404A (zh) * 2019-04-15 2019-07-12 吉林市萌鑫科技有限责任公司 垂直循环式动态充能车库受电器
CN110048480A (zh) * 2019-04-22 2019-07-23 上海快仓智能科技有限公司 充电头浮动机构及具有该机构的充电桩
CN110254238A (zh) * 2019-06-25 2019-09-20 西南交通大学 一种列车双极集电装置
CN111232870A (zh) * 2018-11-29 2020-06-05 比亚迪股份有限公司 用于充电系统的升降平台及充电系统
EP3657613A4 (en) * 2017-07-19 2020-08-05 Hangzhou Hikrobot Technology Co., Ltd. ALIGNMENT MECHANISM, CHARGING DEVICE AND CHARGING SYSTEM FOR AUTOMATIC CHARGING
CN111799863A (zh) * 2020-07-14 2020-10-20 贵州省公安厅交通管理科学研究所 一种滚轮式高导供电充电装置
CN112848901A (zh) * 2019-11-28 2021-05-28 比亚迪股份有限公司 受流器
CN112848902A (zh) * 2019-11-28 2021-05-28 比亚迪股份有限公司 受流器
EP3828024A1 (en) * 2019-11-28 2021-06-02 ABB Power Grids Switzerland AG Electrical vehicle comprising an energy transfer device
CN113942406A (zh) * 2021-11-23 2022-01-18 中铁第四勘察设计院集团有限公司 一种接触角度可调的伸缩式充电轨结构
EP4144565A1 (en) * 2021-09-02 2023-03-08 EC Engineering Spólka Z Ograniczona Odpowiedzialnoscia Current collector for charging electric vehicles
CN117323566A (zh) * 2023-11-03 2024-01-02 广州丰得利医疗器械股份有限公司 一种盆底治疗仪

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104901382B (zh) * 2015-06-16 2018-08-03 中车株洲电力机车有限公司 一种充电系统
CN104859455B (zh) * 2015-06-16 2017-09-08 中车株洲电力机车有限公司 一种集电头装置
CN105967105B (zh) * 2016-06-27 2018-09-18 上海振华港机(集团)宁波传动机械有限公司 Agv自动充电装置
DE102016211746A1 (de) * 2016-06-29 2018-01-04 Siemens Aktiengesellschaft Kraftfahrzeug
CN106160088B (zh) * 2016-07-21 2019-04-05 谢镕安 站台式充电系统
CN106108511B (zh) * 2016-08-18 2022-04-19 无锡智高点技术研发有限公司 一种纺织品展示架
CN106627165A (zh) * 2017-01-16 2017-05-10 陈革 受流器
CN108232486A (zh) * 2017-12-28 2018-06-29 高志男 集电头及应用其的集电器
CN108808403B (zh) * 2018-06-22 2023-11-24 中国三峡建工(集团)有限公司 一种洞内电动施工机械的供电系统
CN208855445U (zh) * 2018-08-01 2019-05-14 比亚迪股份有限公司 车辆的接地装置及车辆的导电系统
CN109263479B (zh) * 2018-10-22 2020-09-22 中车株洲电力机车有限公司 一种无轨电车受电系统
CN110065395A (zh) * 2019-05-13 2019-07-30 杭州傲拓迈科技有限公司 轨道车取电装置
CN110865285A (zh) * 2019-11-19 2020-03-06 国网浙江平湖市供电有限公司 一种开关柜局放试验模型装置
CN110850245A (zh) * 2019-11-19 2020-02-28 国网浙江平湖市供电有限公司 一种基于自动控制的开关柜局部放电模拟装置
CN112055269A (zh) * 2020-09-25 2020-12-08 重庆信息通信研究院 一种适用于5g通信技术的小型移动站
CN114954085B (zh) * 2022-07-07 2023-12-01 无锡市欧冠科技有限公司 车辆移动充电装置
CN115257418A (zh) * 2022-08-04 2022-11-01 中车资阳机车有限公司 一种机车动力电池受电弓式充电系统
CN117698433B (zh) * 2024-02-06 2024-05-24 保利长大工程有限公司 一种隧道施工移动供电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3608407B2 (ja) * 1998-12-04 2005-01-12 住友金属工業株式会社 台車への給電、受信用補助台車及び給電、受信方法
CN101580023A (zh) * 2009-06-18 2009-11-18 上海交通大学 单杆转动型公交电车受电杆
CN104859456A (zh) * 2015-06-16 2015-08-26 南车株洲电力机车有限公司 一种变轨迹受流器及电动车辆
CN104859455A (zh) * 2015-06-16 2015-08-26 南车株洲电力机车有限公司 一种集电头装置
CN104901382A (zh) * 2015-06-16 2015-09-09 南车株洲电力机车有限公司 一种充电系统
CN104890520A (zh) * 2015-06-16 2015-09-09 南车株洲电力机车有限公司 一种侧向受电器及电动车辆

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1321015C (zh) * 2005-11-11 2007-06-13 中国人民解放军国防科学技术大学 侧向受流器
WO2013124996A1 (ja) * 2012-02-22 2013-08-29 株式会社日立エンジニアリング・アンド・サービス トロリー式トラックのパンタグラフ装置
JP5932995B2 (ja) * 2012-05-31 2016-06-08 株式会社日立パワーソリューションズ トロリー式トラックのパンタグラフ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3608407B2 (ja) * 1998-12-04 2005-01-12 住友金属工業株式会社 台車への給電、受信用補助台車及び給電、受信方法
CN101580023A (zh) * 2009-06-18 2009-11-18 上海交通大学 单杆转动型公交电车受电杆
CN104859456A (zh) * 2015-06-16 2015-08-26 南车株洲电力机车有限公司 一种变轨迹受流器及电动车辆
CN104859455A (zh) * 2015-06-16 2015-08-26 南车株洲电力机车有限公司 一种集电头装置
CN104901382A (zh) * 2015-06-16 2015-09-09 南车株洲电力机车有限公司 一种充电系统
CN104890520A (zh) * 2015-06-16 2015-09-09 南车株洲电力机车有限公司 一种侧向受电器及电动车辆

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105391135B (zh) * 2015-12-15 2019-03-15 郑州宇通客车股份有限公司 一种充电架和采用该充电架的充电装置
CN105391135A (zh) * 2015-12-15 2016-03-09 郑州宇通客车股份有限公司 一种充电架和采用该充电架的充电装置
EP3657613A4 (en) * 2017-07-19 2020-08-05 Hangzhou Hikrobot Technology Co., Ltd. ALIGNMENT MECHANISM, CHARGING DEVICE AND CHARGING SYSTEM FOR AUTOMATIC CHARGING
US11515668B2 (en) 2017-07-19 2022-11-29 Hangzhou Hikrobot Co., Ltd. Alignment mechanism, charging device and charging system for automatic charging
CN107966628A (zh) * 2017-12-05 2018-04-27 西南交通大学 一种犁带滚动三相供电实验系统
CN107966628B (zh) * 2017-12-05 2023-09-15 西南交通大学 一种犁带滚动三相供电实验系统
CN108128169A (zh) * 2017-12-27 2018-06-08 青岛特来电新能源有限公司 车载受电弓及车载受电弓防护装置
CN108128169B (zh) * 2017-12-27 2024-03-22 青岛特来电新能源科技有限公司 车载受电弓及车载受电弓防护装置
CN108258557B (zh) * 2018-04-16 2024-02-27 北京瑞途科技有限公司 一种滑动式充电装置
CN108258557A (zh) * 2018-04-16 2018-07-06 北京瑞途科技有限公司 一种滑动式充电装置
CN111232870A (zh) * 2018-11-29 2020-06-05 比亚迪股份有限公司 用于充电系统的升降平台及充电系统
CN110001404B (zh) * 2019-04-15 2023-10-27 吉林市萌鑫科技有限责任公司 垂直循环式动态充能车库受电器
CN110001404A (zh) * 2019-04-15 2019-07-12 吉林市萌鑫科技有限责任公司 垂直循环式动态充能车库受电器
CN110048480A (zh) * 2019-04-22 2019-07-23 上海快仓智能科技有限公司 充电头浮动机构及具有该机构的充电桩
CN110254238B (zh) * 2019-06-25 2024-04-19 西南交通大学 一种列车双极集电装置
CN110254238A (zh) * 2019-06-25 2019-09-20 西南交通大学 一种列车双极集电装置
WO2021104842A1 (en) * 2019-11-28 2021-06-03 Abb Power Grids Switzerland Ag Electrical vehicle comprising an energy transfer device
JP2022548425A (ja) * 2019-11-28 2022-11-18 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト エネルギー伝送装置を備える電気自動車
CN112848901B (zh) * 2019-11-28 2022-04-15 比亚迪股份有限公司 受流器
CN112848902B (zh) * 2019-11-28 2022-04-15 比亚迪股份有限公司 受流器
JP7295339B2 (ja) 2019-11-28 2023-06-20 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト エネルギー伝送装置を備える電気自動車
CN112848901A (zh) * 2019-11-28 2021-05-28 比亚迪股份有限公司 受流器
EP3828024A1 (en) * 2019-11-28 2021-06-02 ABB Power Grids Switzerland AG Electrical vehicle comprising an energy transfer device
CN112848902A (zh) * 2019-11-28 2021-05-28 比亚迪股份有限公司 受流器
CN111799863B (zh) * 2020-07-14 2024-01-09 贵州省公安厅交通管理科学研究所 一种滚轮式高导供电充电装置
CN111799863A (zh) * 2020-07-14 2020-10-20 贵州省公安厅交通管理科学研究所 一种滚轮式高导供电充电装置
EP4144565A1 (en) * 2021-09-02 2023-03-08 EC Engineering Spólka Z Ograniczona Odpowiedzialnoscia Current collector for charging electric vehicles
CN113942406A (zh) * 2021-11-23 2022-01-18 中铁第四勘察设计院集团有限公司 一种接触角度可调的伸缩式充电轨结构
CN113942406B (zh) * 2021-11-23 2023-06-20 中铁第四勘察设计院集团有限公司 一种接触角度可调的伸缩式充电轨结构
CN117323566A (zh) * 2023-11-03 2024-01-02 广州丰得利医疗器械股份有限公司 一种盆底治疗仪
CN117323566B (zh) * 2023-11-03 2024-03-12 广州丰得利医疗器械股份有限公司 一种盆底治疗仪

Also Published As

Publication number Publication date
AT520874A5 (de) 2022-11-15
CN104901382A (zh) 2015-09-09
AT520874B1 (de) 2023-04-15
AT520874A2 (de) 2019-08-15
CN104901382B (zh) 2018-08-03
AT520874A8 (de) 2019-11-15

Similar Documents

Publication Publication Date Title
WO2016201901A1 (zh) 一种充电系统
WO2016201899A1 (zh) 一种侧向受电器及电动车辆
CN104859455B (zh) 一种集电头装置
WO2016201900A1 (zh) 一种变轨迹受流器及电动车辆
WO2020224557A1 (zh) 侧出式受电器及电动车辆
US20240227595A9 (en) Positioning unit for a charging station, and method for making contact
WO2019154068A1 (zh) 轨道车辆的充电装置及轨道交通系统
WO2022156184A1 (zh) 高空作业车
CN210038037U (zh) 一种弹簧式伸缩展开特高压试验平台
CN208378316U (zh) 一种移动式举升机
CN209666856U (zh) 电动单臂触点式受电弓
CN208378317U (zh) 一种移动式举升机
CN108640021B (zh) 一种移动式举升机
CN220114706U (zh) 一种可变形式车载移动变电站用车体及车载移动变电站
CN221393494U (zh) 一种救援轮装置及磁浮列车
CN113942406B (zh) 一种接触角度可调的伸缩式充电轨结构
CN221292995U (zh) 一种受电弓保护装置
CN221440271U (zh) 斗臂车及其臂架支架
CN220767821U (zh) 汽车限高装置
CN114659405B (zh) 一种中支滑轨式起竖装置和车载起竖设备
CN218727964U (zh) 一种铁路隧道雷达检测平台
CN214057924U (zh) 一种电动伸缩尾梯
CN112310880B (zh) 接触网检测装置
CN113479128B (zh) 一种动态调节局部电网质量的储能系统
CN221293256U (zh) 一种伸缩式踏板及汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895468

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: ATA 9490/2015

Country of ref document: AT

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.05.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15895468

Country of ref document: EP

Kind code of ref document: A1