WO2016199437A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2016199437A1
WO2016199437A1 PCT/JP2016/002851 JP2016002851W WO2016199437A1 WO 2016199437 A1 WO2016199437 A1 WO 2016199437A1 JP 2016002851 W JP2016002851 W JP 2016002851W WO 2016199437 A1 WO2016199437 A1 WO 2016199437A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
semiconductor device
semiconductor chip
semiconductor
terminal
Prior art date
Application number
PCT/JP2016/002851
Other languages
English (en)
French (fr)
Inventor
山田 隆史
Original Assignee
株式会社ソシオネクスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソシオネクスト filed Critical 株式会社ソシオネクスト
Priority to JP2017523120A priority Critical patent/JPWO2016199437A1/ja
Publication of WO2016199437A1 publication Critical patent/WO2016199437A1/ja
Priority to US15/838,180 priority patent/US10269774B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5384Conductive vias through the substrate with or without pins, e.g. buried coaxial conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5386Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5389Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/20Structure, shape, material or disposition of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/105Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/20Structure, shape, material or disposition of high density interconnect preforms
    • H01L2224/21Structure, shape, material or disposition of high density interconnect preforms of an individual HDI interconnect
    • H01L2224/214Connecting portions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73209Bump and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92132Sequential connecting processes the first connecting process involving a build-up interconnect
    • H01L2224/92133Sequential connecting processes the first connecting process involving a build-up interconnect the second connecting process involving a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92244Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06527Special adaptation of electrical connections, e.g. rewiring, engineering changes, pressure contacts, layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06548Conductive via connections through the substrate, container, or encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • H01L2225/06558Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking the devices having passive surfaces facing each other, i.e. in a back-to-back arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06582Housing for the assembly, e.g. chip scale package [CSP]
    • H01L2225/06586Housing with external bump or bump-like connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1017All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support
    • H01L2225/1035All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support the device being entirely enclosed by the support, e.g. high-density interconnect [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1041Special adaptations for top connections of the lowermost container, e.g. redistribution layer, integral interposer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1047Details of electrical connections between containers
    • H01L2225/1058Bump or bump-like electrical connections, e.g. balls, pillars, posts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/143Digital devices
    • H01L2924/1431Logic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/143Digital devices
    • H01L2924/1434Memory
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15151Shape the die mounting substrate comprising an aperture, e.g. for underfilling, outgassing, window type wire connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Definitions

  • the present disclosure relates to a semiconductor device on which a stacked body of semiconductor chips is mounted.
  • a structure in which a plurality of semiconductor chips are stacked and mounted is used.
  • a stacked structure of semiconductor chips for example, a chip-on-chip (COC) connection structure for connecting terminals provided on a circuit forming surface of a plurality of semiconductor chips is known.
  • COC chip-on-chip
  • Patent Document 1 shows a structure in which a chip extension portion is provided so as to surround a peripheral portion of a lower semiconductor chip in a chip-on-chip structure.
  • a wiring connected to the terminal of the lower semiconductor chip is provided on the chip extension portion, and the wiring and the external electrode of the package substrate are connected by a bonding wire.
  • Patent Document 2 shows a structure in which a second semiconductor chip is mounted on a first semiconductor chip embedded in a resin layer so as to expose a terminal in a chip-on-chip structure.
  • a wiring layer connected to an external terminal of the semiconductor device is provided on the surface of the resin layer, and terminals such as bumps of the second semiconductor chip are connected to this wiring layer.
  • the terminals of the semiconductor chip and the external electrodes of the package substrate are connected by bonding wires. For this reason, a space and a region for wire bonding are required, so that further miniaturization is difficult. Further, since the bonding wire has a high impedance and a large LC component, it is not suitable for ultrahigh-speed signal transmission of about 10 Gbps, for example. Also, in terms of power supply, a power supply voltage drop tends to occur in the semiconductor chip. Also, the manufacturing process is complicated.
  • the problem in the configuration of Patent Document 1 is solved temporarily.
  • the electrical path from the second semiconductor chip to the external terminal of the semiconductor device includes terminals such as bumps of the second semiconductor chip and a wiring layer provided on the surface of the resin layer in which the first semiconductor chip is embedded. Contains. For this reason, there are problems that the frequency band characteristics are deteriorated due to the impedance at the junction between the terminal and the wiring layer, and that a voltage drop is likely to occur because the current allowable value of the terminal such as a bump is low.
  • This disclosure is intended to provide a semiconductor device including a chip-on-chip structure that has a high density and a small size and is suitable for high-speed operation.
  • a semiconductor device in one aspect of the present invention, includes a support and a first terminal portion provided with a plurality of terminals on a main surface, and a back surface is mounted on the surface of the support.
  • the semiconductor chip has a second terminal portion provided with a plurality of terminals on the main surface, the main surface faces the main surface of the first semiconductor chip, and each terminal of the second terminal portion Comprises a second semiconductor chip connected to each terminal of the first terminal portion of the first semiconductor chip, and an external terminal, the first semiconductor chip comprising the external terminal and a single metal. Connected by conductors.
  • the first semiconductor chip and the external terminal of the semiconductor device are connected by the conductor made of a single metal.
  • the impedance in the electrical path from the first semiconductor chip to the external terminal of the semiconductor device is lowered, and the LC component is also kept low. Therefore, signal attenuation and power supply voltage drop in this electrical path are suppressed, so that the semiconductor device can operate at high speed.
  • a semiconductor device including a chip-on-chip structure can be realized with a high density and a small size and suitable for high speed operation.
  • FIG. 3 is a plan view illustrating a configuration example of the semiconductor device according to the first embodiment.
  • Process sectional drawing which shows an example of the manufacturing method of the semiconductor device which concerns on 1st Embodiment.
  • Process sectional drawing which shows an example of the manufacturing method of the semiconductor device which concerns on 1st Embodiment.
  • Process sectional drawing which shows an example of the manufacturing method of the semiconductor device which concerns on 1st Embodiment.
  • Process sectional drawing which shows an example of the manufacturing method of the semiconductor device which concerns on 1st Embodiment.
  • Process sectional drawing which shows an example of the manufacturing method of the semiconductor device which concerns on 1st Embodiment.
  • Process sectional drawing which shows an example of the manufacturing method of the semiconductor device which concerns on 1st Embodiment.
  • Process sectional drawing which shows an example of the manufacturing method of the semiconductor device which concerns on 1st Embodiment.
  • Process sectional drawing which shows an example of the manufacturing method of the semiconductor device which concerns on 1st Embodiment.
  • Process sectional drawing which shows an example of the manufacturing method of the semiconductor device which concerns on 1st Embodiment.
  • Process sectional drawing which shows an example of the manufacturing method of the semiconductor device which concerns on 1st Embodiment.
  • Process sectional drawing which shows an example of the manufacturing method of the semiconductor device which concerns on 1st Embodiment.
  • Sectional drawing which shows the structural example of the semiconductor device which concerns on 2nd Embodiment.
  • Sectional drawing which shows the structural example of the semiconductor device which concerns on 3rd Embodiment.
  • Process sectional drawing which shows an example of the manufacturing method of the semiconductor device which concerns on 3rd Embodiment.
  • Process sectional drawing which shows an example of the manufacturing method of the semiconductor device which concerns on 3rd Embodiment.
  • Process sectional drawing which shows an example of the manufacturing method of the semiconductor device which concerns on 3rd Embodiment.
  • Process sectional drawing which shows an example of the manufacturing method of the semiconductor device which concerns on 3rd Embodiment.
  • Process sectional drawing which shows an example of the manufacturing method of the semiconductor device which concerns on 3rd Embodiment.
  • Process sectional drawing which shows an example of the manufacturing method of the semiconductor device which concerns on 3rd Embodiment.
  • Process sectional drawing which shows an example of the manufacturing method of the semiconductor device which concerns on 3rd Embodiment.
  • Process sectional drawing which shows an example of the manufacturing method of the semiconductor device which concerns on 3rd Embodiment.
  • Process sectional drawing which shows an example of the manufacturing method of the semiconductor device which concerns on 3rd Embodiment.
  • Process sectional drawing which shows an example of the manufacturing method of the semiconductor device which concerns on 3rd Embodiment.
  • Process sectional drawing which shows an example of the manufacturing method of the semiconductor device which concerns on 3rd Embodiment.
  • Process sectional drawing which shows the other example of the manufacturing method of the semiconductor device which concerns on 3rd Embodiment.
  • Process sectional drawing which shows the other example of the manufacturing method of the semiconductor device which concerns on 3rd Embodiment.
  • Process sectional drawing which shows the other example of the manufacturing method of the semiconductor device which concerns on 3rd Embodiment.
  • Process sectional drawing which shows the other example of the manufacturing method of the semiconductor device which concerns on 3rd Embodiment.
  • the top view which shows the structural example of the semiconductor device which concerns on 3rd Embodiment.
  • Sectional drawing which shows the structural example of the semiconductor device which concerns on 4th Embodiment.
  • Process sectional drawing which shows an example of the manufacturing method of the semiconductor device which concerns on 4th Embodiment Process sectional drawing which shows an example of the manufacturing method of the semiconductor device which concerns on 4th Embodiment Process sectional drawing which shows an example of the manufacturing method of the semiconductor device which concerns on 4th Embodiment Process sectional drawing which shows an example of the manufacturing method of the semiconductor device which concerns on 4th Embodiment Process sectional drawing which shows an example of the manufacturing method of the semiconductor device which concerns on 4th Embodiment Process sectional drawing which shows an example of the manufacturing method of the semiconductor device which concerns on 4th Embodiment Process sectional drawing which shows an example of the manufacturing method of the semiconductor device which concerns on 4th Embodiment Sectional drawing which shows the structural example of the semiconductor device which concerns on 5th Embodiment.
  • Sectional drawing which shows the other structural example of the semiconductor device which concerns on 5th Embodiment. Sectional drawing which shows the other structural example of the semiconductor device which concerns on 5th Embodiment. Sectional drawing which shows the structural example of the semiconductor device which concerns on a modification
  • the semiconductor device described here includes a chip-on-chip (COC) connection structure that connects terminals such as micro bumps provided on the main surface (circuit formation surface) of a plurality of semiconductor chips.
  • COC chip-on-chip
  • FIG. 1 is a cross-sectional view showing a configuration example of the semiconductor device according to the first embodiment. Note that FIG. 1 and the subsequent cross-sectional views are diagrams schematically showing a cross-section of the main part of the semiconductor device.
  • the first semiconductor chip 10 is mounted on the surface of the support 1.
  • the support 1 may be a metal or a substrate such as an organic material or glass epoxy.
  • the first semiconductor chip 10 is, for example, a SoC (System on Chip) and has an integrated circuit such as a logic or a memory.
  • the first semiconductor chip 10 is bonded to the support 1 with an adhesive 8 with the circuit formation surface (corresponding to the main surface) facing upward (direction facing the opposite side of the support 1).
  • the lower side of the drawing is the upper side of the semiconductor device
  • the upper side of the drawing is the lower side of the semiconductor device.
  • the following configuration cross-sectional views are the same unless otherwise specified.
  • the black triangles written in the semiconductor chip indicate which surface of the semiconductor chip is the main surface, and the surface pointed by the vertex of the black triangle is the main surface of the semiconductor chip.
  • the first semiconductor chip 10 is provided with a plurality of terminals 11 made of micro-bump electrodes or pillar electrodes made of Cu on the circuit forming surface. A region where the plurality of terminals 11 are provided is referred to as a first terminal portion 12.
  • the second semiconductor chip 20 is mounted such that the circuit formation surface (corresponding to the main surface) faces the main surface of the first semiconductor chip 10.
  • the second semiconductor chip 20 is a memory chip, for example, and has an integrated circuit such as logic or memory.
  • the second semiconductor chip 20 is provided with a plurality of terminals 21 such as pillar electrodes made of Cu, for example, on the circuit formation surface. A region where the plurality of terminals 21 are provided is referred to as a second terminal portion 22.
  • each terminal 21 of the second terminal portion 22 is connected to each terminal 11 of the first terminal portion 12 of the first semiconductor chip 10.
  • the surface area of the second semiconductor chip 20 is assumed to be larger than the surface area of the first semiconductor chip 10.
  • the chip extension 3 is provided so as to surround the peripheral edge of the first semiconductor chip 10.
  • the chip extension portion 3 is formed of, for example, resin and covers a region other than the first terminal portion 12 on the surface of the circuit formation surface of the first semiconductor chip 10 in addition to the peripheral portion of the first semiconductor chip 10. .
  • a wiring 6 is formed on the surface on the second semiconductor chip 20 side, and a via 7 connected to the wiring 6 is formed.
  • the via 7 is formed in a portion of the chip extension portion 3 that covers the circuit formation surface of the first semiconductor chip 10, and is connected to a terminal 15 provided inside the chip of the first semiconductor chip 10.
  • the connected wiring 6 and via 7 are integrally formed as a conductor made of a single metal such as Cu, for example.
  • An external terminal 2 such as a solder ball connected to the wiring 6 is formed on the surface of the chip extension portion 3. Further, a solder resist 5 is formed so as to cover a region of the surface of the chip extension portion 3 where the external terminals 2 are not formed and the back surface and side surfaces of the second semiconductor chip 20. However, this solder resist 5 may be omitted.
  • a filling layer 4 made of resin is formed between the first semiconductor chip 10 and the second semiconductor chip 20. That is, the portion connecting each terminal 11 of the first semiconductor chip 10 and each terminal 21 of the second semiconductor chip 20 is covered with only one layer of resin.
  • FIG. 2 is a plan view showing a configuration example of the semiconductor device according to the present embodiment, and is a view of the configuration of FIG. FIG. 2 schematically shows a principal plane of the semiconductor device.
  • the second semiconductor chip 20 is mounted on the first semiconductor chip 10, and the external output terminal 2 is connected to the first semiconductor chip 10 via the wiring 6 and the via 7.
  • Each terminal 11 of the first semiconductor chip 10 is connected to each terminal 21 of the second semiconductor chip 20.
  • FIG. 3A to FIG. 3F and FIG. 4A to FIG. 4D are process cross-sectional views illustrating an example of a method for manufacturing a semiconductor device according to the present embodiment.
  • the support 1 is prepared (FIG. 3A), and a thin film of resin 3A having fluidity that becomes the chip extension portion 3 when cured is formed (FIG. 3B).
  • the first semiconductor chip 10 is mounted on the support 1 using the mounter 91 (FIG. 3C).
  • the first semiconductor chip 10 is bonded to the support 1 with an adhesive 8.
  • a resin is poured (FIG. 3D), and the chip expansion portion 3 is formed by curing the resin while flattening the surface of the resin (FIG. 3E).
  • a via 7 connected to an in-chip terminal of the first semiconductor chip 10 is formed inside the chip extension portion 3, and a wiring 6 is formed on the surface of the chip extension portion 3.
  • the via 7 and the wiring 6 are integrally formed of a single metal. For example, it is formed by Cu plating. Further, a passivation film 92 is formed so as to cover the chip extension portion 3 for protection against singulation (FIG. 3F).
  • the passivation film 92 is removed.
  • the filler 4A is applied on the circuit forming surface of the first semiconductor chip 10, and the second semiconductor chip 20 is mounted on the first semiconductor chip 10 (FIG. 4A).
  • the filler 4A is thermocompression bonded to form the filler layer 4, and the second semiconductor chip 20 is fixed (FIG. 4B).
  • a solder resist 5 is formed on the front surface of the chip extension portion 3, the back surface and side surfaces of the second semiconductor chip 20 (FIG. 4C), and external terminals 2 such as solder balls connected to the wiring 6 are formed (FIG. 4). 4D).
  • the first semiconductor chip 10 and the external terminal 2 of the semiconductor device are connected by the via 7 and the wiring 6.
  • the via 7 and the wiring 6 are integrally formed of a single metal by, for example, Cu plating.
  • connection portion between the first semiconductor chip 10 and the second semiconductor chip 20 is covered with one layer of resin.
  • the first semiconductor chip embedded in the resin layer is connected to the second semiconductor chip, and the space between the first semiconductor chip and the second semiconductor is filled with another resin.
  • the connection portion with the chip is covered with two layers of resin.
  • the semiconductor device according to the present embodiment can be realized by a simple manufacturing process.
  • FIG. 5 is a cross-sectional view showing a configuration example of the semiconductor device according to the second embodiment. 5, the basic configuration is substantially the same as that of FIG. 1 in the first embodiment, and the same reference numerals are given to the same components as those in FIG. 1, and the detailed description thereof may be omitted.
  • the support 1 has a recess 31 on the main surface, that is, the surface on which the first semiconductor chip 10 is mounted.
  • the first semiconductor chip 10 is placed in the recess 31.
  • the chip extension part 3 is thinner and the height of the semiconductor device is lower.
  • the thickness of the first semiconductor chip 10 can be kept thicker than that of the first embodiment when realizing a semiconductor device having an equivalent height.
  • the first semiconductor chip 10 is mounted so as to fit into the recess 31 of the support 1. Thereby, the amount of resin for forming the chip extension portion 3 can be reduced. In addition, since it is not necessary to reduce the thickness of the first semiconductor chip 10, a wafer slice polishing process and manufacturing equipment can be omitted, and manufacturing costs can be reduced. Moreover, since the thermal conductivity of the first semiconductor chip 10 can be kept high by keeping the thickness of the first semiconductor chip 10 thick, the thermal conductivity from the upper surface of the semiconductor device can be increased.
  • FIG. 6 is a cross-sectional view illustrating a configuration example of a semiconductor device according to the third embodiment.
  • the basic configuration is almost the same as that of FIG. 1 in the first embodiment, and the same reference numerals are given to the same components as in FIG. 1, and detailed description thereof is omitted here. There is.
  • the first semiconductor chip 10 is provided with a convex portion 32 made of an insulating material such as resin or polyimide on the circuit forming surface.
  • Each terminal 11 in the first terminal portion 12 of the first semiconductor chip 10 is provided on the top surface of the convex portion 32.
  • the support 1 has a recess 31 on the surface on which the first semiconductor chip 10 is mounted, and the first semiconductor chip 10 fits into the recess 31. Has been implemented.
  • the convex portion 32 may be provided on the circuit formation surface of the first semiconductor chip 10.
  • the support 1 has a hole 33 penetrating from the back surface, that is, the surface opposite to the surface on which the first semiconductor chip 10 is mounted, to the inner surface of the recess 31.
  • the hole 33 is used for sucking the resin forming the chip extension portion 3 in the manufacturing process.
  • the hole 33 may be omitted. Further, in the configuration of FIG. 5, the holes 33 may be formed.
  • FIG. 7A to FIG. 7F and FIG. 8A to FIG. 8D are process cross-sectional views illustrating an example of a method for manufacturing a semiconductor device according to the present embodiment.
  • the support body 1 in which the recessed part 31 and the hole 33 were formed is prepared (FIG. 7A), and if it hardens
  • the mounter 91 the first semiconductor chip 10 having the convex portions 32 formed on the circuit forming surface is mounted on the support 1 (FIG. 7C).
  • the first semiconductor chip 10 is bonded to the support 1 with an adhesive 8.
  • the first semiconductor chip 10 is bonded while sucking excess fluid resin 3A from the hole 33 (FIG. 7D), and the resin is cured while flattening the surface of the resin, thereby extending the chip extension portion. 3 is formed (FIG. 7E).
  • control is performed so that the resin does not flow into the top surface of the convex portion 32.
  • Vias 7 connected to the in-chip terminals of the first semiconductor chip 10 are formed inside the chip extension portion 3, the terminals 11 are formed on the convex portions 32, and the wiring 6 is formed on the surface of the chip extension portion 3. .
  • the via 7 and the wiring 6 are integrally formed of a single metal.
  • a passivation film 92 is formed so as to cover the chip extension portion 3 for protection against singulation (FIG. 7F).
  • the passivation film 92 is removed.
  • the filler 4A is applied on the circuit formation surface of the first semiconductor chip 10, and the second semiconductor chip 20 is mounted on the first semiconductor chip 10 (FIG. 8A).
  • the filler 4A is thermocompression bonded to form the filling layer 4, and the second semiconductor chip 20 is fixed (FIG. 8B).
  • a solder resist 5 is formed on the front surface of the chip extension portion 3, the back surface and side surfaces of the second semiconductor chip 20 (FIG. 8C), and external terminals 2 such as solder balls connected to the wiring 6 are formed (FIG. 8). 8D).
  • FIG. 9A to 9E are process cross-sectional views illustrating another example of the method for manufacturing a semiconductor device according to the present embodiment.
  • the support body 1 in which the recessed part 31 was formed is prepared (FIG. 9A), and the 1st semiconductor chip 10 in which the convex part 32 was formed in the circuit formation surface is mounted in the support body 1 using the mounter 91 (FIG. 9). 9B).
  • the first semiconductor chip 10 is bonded to the support 1 with an adhesive 8.
  • the resin 3A having fluidity is poured by the coater 93 (FIG. 9C).
  • the resin may be poured while rotating the support 1.
  • the chip extension portion 3 is formed by curing the resin while flattening the surface of the resin (FIG. 9D).
  • a via 7 connected to the output terminal of the first semiconductor chip 10 is formed inside the chip extension portion 3, a terminal 11 is formed on the convex portion 32, and a wiring 6 is formed on the surface of the chip extension portion 3.
  • the via 7 and the wiring 6 are integrally formed of a single metal.
  • a passivation film 92 is formed so as to cover the chip extension portion 3 for protection against singulation (FIG. 9E). The steps after the separation are the same as those described with reference to FIGS. 8A to 8D.
  • the first semiconductor chip 10 has the convex portion 32 formed on the main surface, and the first terminal portion 12 is provided on the top surface of the convex portion 32.
  • the portion joined to the second semiconductor chip 20 is higher than the chip surface.
  • the planar shape of the top surface of the convex portion 32 may be, for example, a square.
  • FIG. 11 is a cross-sectional view illustrating a configuration example of a semiconductor device according to the fourth embodiment.
  • symbol is attached
  • a resin layer 41 is formed on the chip extension portion 3 so as to cover the second semiconductor chip 20 instead of the external terminals 2.
  • External terminals 44 such as solder balls are formed on the surface of the resin layer 41.
  • a via 42 connected to the wiring 6 formed on the surface of the chip extension layer 3 is formed inside the resin layer 41.
  • wirings 43 that connect the vias 42 and the external terminals 44 are formed on the surface of the resin layer 41.
  • FIGS. 13A to 13C are process cross-sectional views illustrating an example of a method for manufacturing a semiconductor device according to the present embodiment. Note that the steps up to singulation are the same as those described with reference to FIGS. 9A to 9E in the third embodiment.
  • the passivation film 92 is removed.
  • the filler 4A is applied on the circuit forming surface of the first semiconductor chip 10, and the second semiconductor chip 20 is mounted on the first semiconductor chip 10 (FIG. 12A).
  • the filling material 4A is thermocompression bonded to form the filling layer 4, and the second semiconductor chip 20 is fixed (FIG. 12B).
  • a resin layer 41 is formed on the chip extension portion 3, and is cured while being flattened (FIG. 12C).
  • veer 42 connected with the wiring 6 formed in the surface of the chip expansion part 3 is formed in the resin layer 41 (FIG. 12D).
  • the effects described in the third embodiment can be obtained, and the external terminals 44 can be formed in a range corresponding to the back surface of the second semiconductor chip 20. Therefore, the number of external terminals 44 can be easily increased.
  • a through electrode is formed on a support on which the first semiconductor chip 10 is mounted.
  • the support in this case may be, for example, a substrate structure in which a through hole is formed, or may be formed by forming a via in a metal and insulating the periphery of the via.
  • FIG. 14 is a cross-sectional view showing a configuration example of the semiconductor device according to the fifth embodiment.
  • symbol is attached
  • a support body 51 in which a through electrode 53 is formed is used instead of the support body 1.
  • a via 52 for connecting the wiring 6 formed on the surface of the chip extension 3 and the through electrode 53 is formed in the chip extension 3.
  • a PoP (Package on Package) memory 55 is mounted on the surface of the support 51 opposite to the surface on which the first semiconductor chip 10 is mounted, and the electrode 54 of the PoP memory 55 is connected.
  • the through electrode 53 of the support 51 is connected.
  • FIGS. 16A to 16D are process cross-sectional views illustrating an example of a method for manufacturing a semiconductor device according to the present embodiment.
  • the support body 51 on which the through electrode 53 is formed is prepared (FIG. 15A), and a thin film of the resin 3A to be the chip extension portion 3 is formed (FIG. 15B).
  • the mounter 91 the first semiconductor chip 10 having the convex portions 32 formed on the circuit formation surface is mounted on the support 51 (FIG. 15C).
  • a resin is poured (FIG. 15D), the surface of the resin is flattened, and the resin is cured to form the chip extension portion 3 (FIG. 15E).
  • the via 7 connected to the in-chip terminal of the first semiconductor chip 10 is formed inside the chip extension portion 3, the terminal 11 is formed on the convex portion 32, and the through electrode 53 in the inside of the chip extension portion 3 Vias 52 are formed at corresponding positions.
  • the via 7 and the wiring 6 are integrally formed of a single metal.
  • a passivation film 92 is formed so as to cover the chip extension portion 3 for protection against singulation (FIG. 15F).
  • the passivation film 92 is removed.
  • the filler 4A is applied on the circuit formation surface of the first semiconductor chip 10, and the second semiconductor chip 20 is mounted on the first semiconductor chip 10 (FIG. 16A).
  • the filler 4A is thermocompression bonded to form the filler layer 4, and the second semiconductor chip 20 is fixed (FIG. 16B).
  • a solder resist 5 is formed on the front surface of the chip extension portion 3, the back surface and side surfaces of the second semiconductor chip 20 (FIG. 16C), and external terminals 2 such as solder balls connected to the wiring 6 are formed (FIG. 16). 16D).
  • FIG. 17 is a sectional view showing another configuration example of the semiconductor device according to the fifth embodiment.
  • the same components as those in FIG. 14 are denoted by the same reference numerals, and detailed description thereof may be omitted here.
  • the upper and lower sides of FIG. 14 and the semiconductor device are reversed.
  • external terminals 57 such as solder balls are formed on the surface of the support 51 opposite to the surface on which the first semiconductor chip 10 is mounted. On the other hand, no external terminal is formed on the surface of the chip extension portion 3.
  • another chip 56 is stacked on the second semiconductor chip 20 to form, for example, a stacked memory.
  • FIG. 18 is a cross-sectional view showing another configuration example of the semiconductor device according to the fifth embodiment.
  • the same components as those in FIG. 14 are denoted by the same reference numerals, and detailed description thereof may be omitted here.
  • the upper and lower sides of the semiconductor device in FIG. 18 are denoted by the same reference numerals, and detailed description thereof may be omitted here.
  • external terminals 57 such as solder balls are formed on the surface of the support 51 opposite to the surface on which the first semiconductor chip 10 is mounted.
  • the wiring 6 connected to the via 52 connected to the through electrode 53 of the support 51 and the external terminal 61 connected to the first semiconductor chip 10 are formed.
  • the PoP memory 55 is mounted, and the electrode 54 of the PoP memory 55 is connected to the external terminal 61.
  • the PoP memory 55 may be a functional component such as a CMOS sensor.
  • FIG. 19 is a cross-sectional view showing another configuration example of the semiconductor device according to the fifth embodiment.
  • the same components as those in FIG. 14 are denoted by the same reference numerals, and detailed description thereof may be omitted here.
  • the configuration of FIG. 19 is obtained by applying the structure according to the fourth embodiment to the configuration of FIG. That is, the resin layer 41 is formed on the chip extension portion 3 so as to cover the second semiconductor chip 20 instead of the external terminals 2. External terminals 44 such as solder balls are formed on the surface of the resin layer 41. Inside the resin layer 41, a via 42 connected to the wiring 6 formed on the surface of the chip extension layer 3 is formed. On the surface of the resin layer 41, wirings 43 that connect the vias 42 and the external terminals 44 are formed.
  • another semiconductor chip or the like can be stacked on the side opposite to the second semiconductor chip 20.
  • the features of the semiconductor device according to the present embodiment may be combined with the semiconductor device according to the first or second embodiment.
  • the chip extension unit 3 may be composed of a plurality of layers. By providing wiring layers on the surfaces of the plurality of layers and connecting the external terminals 2 and the first semiconductor chip 10 using the wiring layers, the connectivity can be improved.
  • FIG. 20 is a cross-sectional view showing a configuration example of a semiconductor device according to this modification.
  • the configuration of FIG. 20 is obtained by configuring the chip extension portion 3 with a plurality of layers (here, two layers) 3a and 3b in the configuration of FIG. 1 shown in the first embodiment.
  • Other configurations are substantially the same as those in FIG. 1, and the same reference numerals are given to the same components as those in FIG. 1, and detailed description thereof may be omitted here.
  • a wiring layer is provided on the surface of each of the plurality of layers 3a and 3b.
  • a wiring 6a is formed on the surface of the layer 3a
  • a wiring 6b is formed on the surface of the layer 3b.
  • the via 7a as the second via connects the wiring 6a in the lowermost layer and the first semiconductor chip 10.
  • the via 7b connects the wiring 6a and the wiring 6b.
  • the wiring 6b in the uppermost layer is connected to the external terminal 2. With such a configuration, the connectivity between the external terminal 2 and the first semiconductor chip 10 can be improved.
  • the wirings 6a and 6b and the vias 7a and 7b are integrally formed as a conductor made of a single metal such as Cu, for example.
  • the chip extension unit 3 is configured with two layers, but the chip extension unit 3 may be configured with three or more layers.
  • wiring is formed on the surface of each layer as a plurality of wirings.
  • a first via that connects the wirings and a second via that connects the wiring in the lowermost layer and the first semiconductor chip 10 are provided, and the wiring in the uppermost layer is connected to the external terminal 2.
  • the chip extension portion composed of a plurality of layers is formed by performing the step of forming the chip extension portion 3, the via 7 and the wiring 6 (FIGS. 3E and 3F) a plurality of times. It can be formed by repeating.
  • the chip extension unit 3 may be composed of a plurality of layers as in FIG. Thereby, the connectivity between the external terminal 2 and the first semiconductor chip 10 can be improved.
  • the convex portion 32 is provided on the circuit forming surface of the first semiconductor chip 10 as in the configuration shown in FIG. 6 in the third embodiment, the number of layers and the height of the chip extension portion 3 are determined.
  • the height of the convex portion 32 may be adjusted to keep the distance between the second semiconductor chip 20 and the terminal 11 constant.
  • a semiconductor device including a chip-on-chip structure can be realized with a high density, a small size, and a structure suitable for high-speed operation.
  • an ultrahigh-speed signal transmission LSI can be realized in a small size. Useful for.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

半導体装置において、第1半導体チップ(10)は、主面に複数の端子(11)が設けられた第1端子部(12)を有し、裏面が支持体(1)の表面上に実装されている。第2半導体チップ(20)は、主面に複数の端子(21)が設けられた第2端子部(22)を有し、主面が第1半導体チップ(10)の主面と対向しており、第2端子部(22)の各端子(21)が第1端子部(12)の各端子(11)とそれぞれ接続されている。第1半導体チップ(10)と半導体装置の外部端子(2)とは、単一金属からなる導体(6,7)によって接続されている。

Description

半導体装置
 本開示は、半導体チップの積層体が実装された半導体装置に関する。
 半導体パッケージの高密度化および小型化のために、複数の半導体チップを積層化して実装する構造が用いられている。半導体チップの積層化構造として、例えば、複数の半導体チップの回路形成面に設けられている端子同士を接続するチップオンチップ(Chip On Chip:COC)接続構造が知られている。
 特許文献1では、チップオンチップ構造において、下側の半導体チップの周縁部を取り囲むようにチップ拡張部が設けられた構造が示されている。この構造では、チップ拡張部上に、下側の半導体チップの端子と接続された配線が設けられており、この配線とパッケージ基板の外部電極とがボンディングワイヤによって接続されている。
 特許文献2では、チップオンチップ構造において、端子を表出するように樹脂層に埋め込まれた第1半導体チップの上に、第2半導体チップが搭載された構造が示されている。この構造では、樹脂層の表面に、半導体装置の外部端子と接続された配線層が設けられており、第2半導体チップが有するバンプ等の端子がこの配線層に接続されている。
特開2013-30568号公報 特開2012-169440号公報
 特許文献1の構成では、半導体チップの端子とパッケージ基板の外部電極とがボンディングワイヤによって接続されている。このため、ワイヤボンディング用の空間や領域が必要になるため、さらなる小型化が困難である。また、ボンディングワイヤはインピーダンスが高く、LC成分も大きいため、例えば10Gbps程度の超高速信号伝送には不向きである。また、電源供給の点でも、半導体チップ内に電源電圧降下が生じやすい。また、製造工程も複雑である。
 特許文献2の構成では、ワイヤボンディングを用いないため、特許文献1の構成における問題は一応解決している。ただし、第2半導体チップから半導体装置の外部端子に至る電気的経路が、第2半導体チップが有するバンプ等の端子と、第1半導体チップが埋め込まれた樹脂層表面に設けられた配線層とを含んでいる。このため、端子と配線層との接合部におけるインピーダンスによって周波数帯域特性が劣化したり、バンプ等の端子の電流許容値が低いため電圧降下が生じやすくなったりする、といった問題がある。
 本開示は、チップオンチップ構造を含む半導体装置について、高密度で小型であって、かつ、高速動作にも適した構造を提供することを目的とする。
 本発明の一態様では、半導体装置は、支持体と、主面に、複数の端子が設けられた第1端子部を有し、裏面が、前記支持体の表面上に実装されている第1半導体チップと、主面に、複数の端子が設けられた第2端子部を有し、前記主面が、前記第1半導体チップの主面と対向しており、前記第2端子部の各端子が、前記第1半導体チップの前記第1端子部の各端子とそれぞれ接続されている第2半導体チップと、外部端子とを備え、前記第1半導体チップは、前記外部端子と、単一金属からなる導体によって接続されている。
 この態様によると、第1半導体チップと半導体装置の外部端子とは、単一金属からなる導体によって接続されている。これにより、第1半導体チップから半導体装置の外部端子に至る電気的経路におけるインピーダンスが低くなり、かつ、LC成分も低く抑えられる。したがって、この電気的経路における信号の減衰や電源電圧降下が抑制されるので、半導体装置の高速動作が可能になる。
 本開示によると、チップオンチップ構造を含む半導体装置について、高密度で小型であって、かつ、高速動作にも適した構造を実現することができる。
第1実施形態に係る半導体装置の構成例を示す断面図 第1実施形態に係る半導体装置の構成例を示す平面図 第1実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第1実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第1実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第1実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第1実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第1実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第1実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第1実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第1実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第1実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第2実施形態に係る半導体装置の構成例を示す断面図 第3実施形態に係る半導体装置の構成例を示す断面図 第3実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第3実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第3実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第3実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第3実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第3実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第3実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第3実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第3実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第3実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第3実施形態に係る半導体装置の製造方法の他の例を示す工程断面図 第3実施形態に係る半導体装置の製造方法の他の例を示す工程断面図 第3実施形態に係る半導体装置の製造方法の他の例を示す工程断面図 第3実施形態に係る半導体装置の製造方法の他の例を示す工程断面図 第3実施形態に係る半導体装置の製造方法の他の例を示す工程断面図 第3実施形態に係る半導体装置の構成例を示す平面図 第4実施形態に係る半導体装置の構成例を示す断面図 第4実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第4実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第4実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第4実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第4実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第4実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第4実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第5実施形態に係る半導体装置の構成例を示す断面図 第5実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第5実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第5実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第5実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第5実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第5実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第5実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第5実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第5実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第5実施形態に係る半導体装置の製造方法の一例を示す工程断面図 第5実施形態に係る半導体装置の他の構成例を示す断面図 第5実施形態に係る半導体装置の他の構成例を示す断面図 第5実施形態に係る半導体装置の他の構成例を示す断面図 変形例に係る半導体装置の構成例を示す断面図
 以下、実施形態に係る半導体装置について、図面を参照して説明する。ここで説明する半導体装置は、複数の半導体チップの主面(回路形成面)に設けられているマイクロバンプ等の端子同士を接続するチップオンチップ(Chip On Chip:COC)接続構造を含む。
 (第1実施形態)
 図1は第1実施形態に係る半導体装置の構成例を示す断面図である。なお、図1および以降の断面図は、半導体装置の要部断面を模式的に示す図である。
 図1において、支持体1の表面に第1半導体チップ10が実装されている。支持体1は金属であってもよいし、有機材やガラスエポキシ等の基板であってもかまわない。第1半導体チップ10は、例えばSoC(System on Chip)であり、ロジックやメモリなどの集積回路を有している。第1半導体チップ10は、回路形成面(主面に相当する)を上向き(支持体1と反対側に向かう向き)にして、接着材8によって支持体1に接着されている。なお、図1では、図面下側を半導体装置の上側とし、図面上側を半導体装置の下側としている。以降の構成断面図も、特に断りのない限り、同様である。また、半導体チップ内に記された黒三角は半導体チップのいずれの面が主面であるかを示すものであり、黒三角の頂点で指す方の面が半導体チップの主面である。第1半導体チップ10は、回路形成面に、マイクロバンプ電極またはCuからなるピラー電極などからなる複数の端子11が設けられている。複数の端子11が設けられた領域を第1端子部12とする。
 第2半導体チップ20は、回路形成面(主面に相当する)が、第1半導体チップ10の主面と対向するように実装されている。第2半導体チップ20は、例えばメモリチップであり、ロジックやメモリなどの集積回路を有している。また第2半導体チップ20は、回路形成面に、例えばCuからなるピラー電極などの複数の端子21が設けられている。複数の端子21が設けられた領域を第2端子部22とする。第2半導体チップ20は、第2端子部22の各端子21が、第1半導体チップ10の第1端子部12の各端子11とそれぞれ接続されている。ここでは、第2半導体チップ20の表面積は第1半導体チップ10の表面積よりも大きいものとしている。
 チップ拡張部3は、第1半導体チップ10の周縁部を取り囲むように設けられている。チップ拡張部3は、例えば樹脂によって形成されており、第1半導体チップ10の周縁部に加えて、第1半導体チップ10の回路形成面の表面における第1端子部12以外の領域を覆っている。チップ拡張部3は、第2半導体チップ20側の表面に配線6が形成されており、また、この配線6と接続されたビア7が形成されている。ビア7は、チップ拡張部3における、第1半導体チップ10の回路形成面を覆う部分に形成されており、第1半導体チップ10のチップ内部に設けられた端子15と接続されている。接続された配線6およびビア7は、ここでは、例えばCu等の単一金属からなる導体として、一体に形成されている。そして、チップ拡張部3の表面には、配線6と接続された例えば半田ボール等の外部端子2が形成されている。また、チップ拡張部3の表面のうち外部端子2が形成されていない領域、並びに、第2半導体チップ20の裏面および側面を覆うように、ソルダーレジスト5が形成されている。ただし、このソルダーレジスト5はなくてもかまわない。
 また、第1半導体チップ10と第2半導体チップ20との間に、樹脂からなる充填層4が形成されている。すなわち、第1半導体チップ10の各端子11と第2半導体チップ20の各端子21とを接続する部分は、一層の樹脂のみによって覆われている。
 図2は本実施形態に係る半導体装置の構成例を示す平面図であり、図1の構成を図面下から(すなわち半導体装置の上から)見た図である。図2は半導体装置の要部平面を模式的に示している。図2に示すように、第1半導体チップ10の上に第2半導体チップ20が実装されており、外部出力端子2は配線6およびビア7を介して第1半導体チップ10に接続されている。また、第1半導体チップ10の各端子11は第2半導体チップ20の各端子21とそれぞれ接続されている。
 図3A~図3Fおよび図4A~図4Dは、本実施形態に係る半導体装置の製造方法の一例を示す工程断面図である。まず、支持体1を準備し(図3A)、硬化させるとチップ拡張部3になる流動性のある樹脂3Aの薄膜を形成する(図3B)。その後、マウンタ91を用いて第1半導体チップ10を支持体1に実装する(図3C)。第1半導体チップ10は接着材8によって支持体1に接着される。その後、樹脂を流し込み(図3D)、樹脂の表面を平坦化しつつ、樹脂を硬化させることによって、チップ拡張部3を形成する(図3E)。チップ拡張部3の内部に、第1半導体チップ10のチップ内端子と接続されたビア7を形成するとともに、チップ拡張部3の表面に配線6を形成する。ビア7と配線6とは、単一金属によって一体に形成される。例えば、Cuメッキによって形成される。また、個片化に対する保護のために、チップ拡張部3を覆うようにパシベーション膜92が形成される(図3F)。
 個片化の後、パシベーション膜92が除去される。そして、第1半導体チップ10の回路形成面上に充填材4Aが塗布され、第2半導体チップ20が第1半導体チップ10の上に搭載される(図4A)。充填材4Aが熱圧着されて充填層4が形成され、第2半導体チップ20が固定される(図4B)。その後、チップ拡張部3の表面、第2半導体チップ20の裏面および側面にソルダーレジスト5が形成され(図4C)、配線6と接続された例えば半田ボール等の外部端子2が形成される(図4D)。
 本実施形態の構成によると、第1半導体チップ10と、半導体装置の外部端子2とは、ビア7および配線6によって接続されている。そして、このビア7および配線6は、例えばCuメッキによって、単一金属によって一体に形成される。これにより、第1半導体チップ10から半導体装置の外部端子2に至る電気的経路におけるインピーダンスが低くなり、かつ、LC成分も低く抑えられる。したがって、この電気的経路における信号の減衰や電源電圧降下が抑制されるので、半導体装置の高速動作が可能になる。
 また、本実施形態の構成では、第1半導体チップ10と第2半導体チップ20との接続部分は、1層の樹脂によって覆われている。一方、上述した特許文献2の構成では、樹脂層に埋め込まれた第1半導体チップが第2半導体チップと接続され、その間を別の樹脂で充填しているため、第1半導体チップと第2半導体チップとの接続部分は2層の樹脂によって覆われている。このため、樹脂同士の膨張係数の相違から接合不良が生じやすい、曲げ応力によりクラック等が発生しやすい、という問題があった。これに対して本実施形態では、このような問題が生じず、信頼性がより高くなる。
 また、工程断面図から分かるように、ワイヤボンディング工程が不要であり、また、工程途中で半導体装置の上下を入れ替える必要もない。したがって、簡素な製造工程によって、本実施形態に係る半導体装置を実現することができる。
 (第2実施形態)
 図5は第2の実施形態に係る半導体装置の構成例を示す断面図である。図5は、基本的な構成は第1実施形態における図1とほぼ同様であり、図1と共通の構成要素には同一の符号を付し、その詳細な説明を省略する場合がある。
 図5の構成では、支持体1は、主面、すなわち第1半導体チップ10が実装される側の面に凹部31を有している。そして、第1半導体チップ10は、その凹部31内に置かれている。このため、図1の構成と比べると、チップ拡張部3は厚みが薄くなっており、半導体装置の高さが低くなっている。逆にいうと、同等の高さの半導体装置を実現する際に、第1実施形態よりも、第1半導体チップ10の厚さを厚く保つことができる。
 本実施形態の構成によると、第1半導体チップ10は、支持体1の凹部31に嵌まるように、実装されている。これにより、チップ拡張部3を形成するための樹脂の量が少なくて済む。また、第1半導体チップ10の厚さを薄くする必要がないため、ウェハスライスの研磨プロセスや製造設備を省くことができ、製造コストを削減できる。また、第1半導体チップ10の厚さを厚く保つことにより、第1半導体チップ10の熱伝導率を高く保てるため、半導体装置上面からの熱伝導率を大きくできる。
 (第3実施形態)
 図6は第3の実施形態に係る半導体装置の構成例を示す断面図である。図6は、基本的な構成は第1実施形態における図1とほぼ同様であり、図1と共通の構成要素には同一の符号を付しており、ここではその詳細な説明を省略する場合がある。
 図6の構成では、第1半導体チップ10は、回路形成面に、例えば樹脂やポリミド等の絶縁性物質等からなる凸部32が設けられている。そして、第1半導体チップ10の第1端子部12における各端子11は、凸部32の天面上に設けられている。また、第2実施形態と同様に、支持体1は、第1半導体チップ10が実装される側の面に凹部31を有しており、第1半導体チップ10は、その凹部31に嵌まるように、実装されている。なお、支持体1に凹部31が形成されていない図1の構成において、第1半導体チップ10の回路形成面に凸部32を設けた構成としてもよい。
 さらに、支持体1は、裏面、すなわち、第1半導体チップ10が実装された面と反対の面から、凹部31の内面まで貫通する孔33が形成されている。孔33は、製造工程において、チップ拡張部3を形成する樹脂を吸引するために用いられる。なお、孔33は省いてもかまわない。また、図5の構成において、孔33を形成してもよい。
 図7A~図7Fおよび図8A~図8Dは、本実施形態に係る半導体装置の製造方法の一例を示す工程断面図である。まず、凹部31および孔33が形成された支持体1を準備し(図7A)、硬化させるとチップ拡張部3になる流動性のある樹脂3Aの薄膜を形成する(図7B)。その後、マウンタ91を用いて、回路形成面に凸部32が形成された第1半導体チップ10を支持体1に実装する(図7C)。第1半導体チップ10は接着材8によって支持体1に接着される。このとき、孔33から余分な流動性のある樹脂3Aを吸引しながら、第1半導体チップ10を接着し(図7D)、樹脂の表面を平坦化しつつ、樹脂を硬化させることによって、チップ拡張部3を形成する(図7E)。このとき、凸部32の天面には樹脂が流れ込まない制御を行う。チップ拡張部3の内部に、第1半導体チップ10のチップ内端子と接続されたビア7を形成し、凸部32に端子11を形成するとともに、チップ拡張部3の表面に配線6を形成する。ビア7と配線6とは単一金属によって一体に形成される。また、個片化に対する保護のために、チップ拡張部3を覆うようにパシベーション膜92が形成される(図7F)。
 個片化の後、パシベーション膜92が除去される。そして、第1半導体チップ10の回路形成面上に充填材4Aが塗布され、第2半導体チップ20が第1半導体チップ10の上に搭載される(図8A)。充填材4Aが熱圧着されて充填層4が形成され、第2半導体チップ20が固定される(図8B)。その後、チップ拡張部3の表面、第2半導体チップ20の裏面および側面にソルダーレジスト5が形成され(図8C)、配線6と接続された例えば半田ボール等の外部端子2が形成される(図8D)。
 図9A~図9Eは、本実施形態に係る半導体装置の製造方法の他の例を示す工程断面図である。まず、凹部31が形成された支持体1を準備し(図9A)、マウンタ91を用いて、回路形成面に凸部32が形成された第1半導体チップ10を支持体1に実装する(図9B)。第1半導体チップ10は接着材8によって支持体1に接着される。その後、コーター93によって流動性のある樹脂3Aを流し込む(図9C)。このとき、支持体1を回転させながら樹脂を流し込んでもよい。そして、樹脂の表面を平坦化しつつ、樹脂を硬化させることによって、チップ拡張部3を形成する(図9D)。チップ拡張部3の内部に、第1半導体チップ10の出力端子と接続されたビア7を形成し、凸部32に端子11を形成するとともに、チップ拡張部3の表面に配線6を形成する。ビア7と配線6とは単一金属によって一体に形成される。また、個片化に対する保護のために、チップ拡張部3を覆うようにパシベーション膜92が形成される(図9E)。個片化以降の工程は、図8A~図8Dを用いて説明した工程と同様である。
 本実施形態に係る構成によると、第1半導体チップ10は、主面に凸部32が形成されており、第1端子部12は、凸部32の天面上に設けられている。このため、第2半導体チップ20と接合される部分が、チップ表面より高くなっている。これにより、第2半導体チップ20の第2端子部22における各端子21の高さを低くすることができるので、第1または第2実施形態よりも狭いピッチで端子21を生成することができる。また、端子21を形成する材料コストを削減できる。また、充填層4の熱硬化と端子11,21の接合との時間差による接合不良を抑制することができる。
 なお、図10に示すように、凸部32の天面の平面形状は、例えば正方形であってもよい。これにより、第1半導体チップ10を樹脂3Aに埋め込む工程において、樹脂3AがCoC接合部に流れ込むことを防ぐことができる。また、第1半導体チップ10を搬送する際のマウンタへの吸着がより安定する。
 (第4実施形態)
 図11は第4の実施形態に係る半導体装置の構成例を示す断面図である。図11では、第3実施形態における図6と共通の構成要素には同一の符号を付しており、ここではその詳細な説明を省略する場合がある。
 図11の構成では、チップ拡張部3の上に、外部端子2の代わりに、樹脂層41が、第2半導体チップ20を覆うように形成されている。そして樹脂層41の表面に、例えば半田ボール等の外部端子44が形成されている。樹脂層41の内部には、チップ拡張層3の表面に形成された配線6と接続されたビア42が形成されている。樹脂層41の表面には、ビア42と外部端子44とを接続する配線43が形成されている。
 図12A~図12Dおよび図13A~図13Cは、本実施形態に係る半導体装置の製造方法の一例を示す工程断面図である。なお、個片化までの工程は、第3実施形態で図9A~図9Eを用いて説明した工程と同様である。
 個片化の後、パシベーション膜92が除去される。そして、第1半導体チップ10の回路形成面上に充填材4Aが塗布され、第2半導体チップ20が第1半導体チップ10の上に搭載される(図12A)。充填材4Aが熱圧着されて充填層4が形成され、第2半導体チップ20が固定される(図12B)。その後、チップ拡張部3の上に、樹脂層41が形成されて、平坦化しつつ硬化される(図12C)。そして、樹脂層41の内部に、チップ拡張部3の表面に形成された配線6と接続されるビア42が形成される(図12D)。
 ビア42が形成された樹脂層41の表面に、例えばCuからなる配線43が形成される(図13A)。その後、樹脂層41の表面にソルダーレジスト45が形成され(図13B)、配線43と接続された例えば半田ボール等の外部端子44が形成される(図13C)。
 本実施形態に係る半導体装置の構造によると、第3の実施形態で説明した作用効果が得られるとともに、外部端子44は、第2半導体チップ20の裏面に対応する範囲にも形成することができるので、外部端子44の個数を容易に増やすことができる。
 なお、本実施形態に係る半導体装置の特徴は、第1または第2実施形態に係る半導体装置と組み合わせてもよい。
 (第5実施形態)
 第5実施形態では、第1半導体チップ10が実装される支持体に、貫通電極が形成されているものとする。この場合の支持体は、例えば、スルーホールが形成されたサブストレート構造であってもよいし、あるいは、金属にビアを形成し、ビアの周囲を絶縁したものであってもよい。
 図14は第5実施形態に係る半導体装置の構成例を示す断面図である。図14では、第3実施形態における図6と共通の構成要素には同一の符号を付しており、ここではその詳細な説明を省略する場合がある。
 図14の構成では、支持体1の代わりに、貫通電極53が形成された支持体51が用いられている。チップ拡張部3に、チップ拡張部3表面に形成された配線6と貫通電極53とを接続するビア52が形成されている。そして図14の構成では、支持体51の、第1半導体チップ10が実装された面と反対側の面に、PoP(Package on Package)メモリ55が実装されており、PoPメモリ55の電極54が支持体51の貫通電極53と接続されている。
 図15A~図15Fおよび図16A~図16Dは、本実施形態に係る半導体装置の製造方法の一例を示す工程断面図である。まず、貫通電極53が形成された支持体51を準備し(図15A)、チップ拡張部3になる樹脂3Aの薄膜を形成する(図15B)。その後、マウンタ91を用いて、回路形成面に凸部32が形成された第1半導体チップ10を支持体51に実装する(図15C)。その後、樹脂を流し込み(図15D)、樹脂の表面を平坦化し、樹脂を硬化させることによって、チップ拡張部3を形成する(図15E)。チップ拡張部3の内部に、第1半導体チップ10のチップ内端子と接続されたビア7を形成し、凸部32に端子11を形成するとともに、チップ拡張部3の内部における、貫通電極53と対応する位置にビア52を形成する。ビア7と配線6とは単一金属によって一体に形成される。また、個片化に対する保護のために、チップ拡張部3を覆うようにパシベーション膜92が形成される(図15F)。
 個片化の後、パシベーション膜92が除去される。そして、第1半導体チップ10の回路形成面上に充填材4Aが塗布され、第2半導体チップ20が第1半導体チップ10の上に搭載される(図16A)。充填材4Aが熱圧着されて充填層4が形成され、第2半導体チップ20が固定される(図16B)。その後、チップ拡張部3の表面、第2半導体チップ20の裏面および側面にソルダーレジスト5が形成され(図16C)、配線6と接続された例えば半田ボール等の外部端子2が形成される(図16D)。
 図17は第5実施形態に係る半導体装置の他の構成例を示す断面図である。図17では、図14と共通の構成要素には同一の符号を付しており、ここではその詳細な説明を省略する場合がある。なお、図17では、図14と半導体装置の上下が反対に図示されている。
 図17の構成では、支持体51の、第1半導体チップ10が実装された面と反対側の面に、例えば半田ボール等の外部端子57が形成されている。一方、チップ拡張部3の表面には外部端子が形成されていない。また、第2半導体チップ20には他のチップ56が積層されており、例えば積層メモリを構成している。
 図18は第5実施形態に係る半導体装置の他の構成例を示す断面図である。図18では、図14と共通の構成要素には同一の符号を付しており、ここではその詳細な説明を省略する場合がある。なお、図18では、図14と半導体装置の上下が反対に図示されている。
 図18の構成では、支持体51の、第1半導体チップ10が実装された面と反対側の面に、例えば半田ボール等の外部端子57が形成されている。一方、チップ拡張部3の表面には、支持体51の貫通電極53とつなぐビア52とつながる配線6と第1半導体チップ10と接続された外部端子61が形成されている。そして図18の構成では、PoPメモリ55が実装されており、PoPメモリ55の電極54が外部端子61と接続されている。なお、PoPメモリ55はCMOSセンサー等の機能部品であってもよい。
 図19は第5実施形態に係る半導体装置の他の構成例を示す断面図である。図19では、図14と共通の構成要素には同一の符号を付しており、ここではその詳細な説明を省略する場合がある。
 図19の構成は、図14の構成に、第4実施形態に係る構造を適用したものである。すなわち、チップ拡張部3の上に、外部端子2の代わりに、樹脂層41が、第2半導体チップ20を覆うように形成されている。そして樹脂層41の表面に、例えば半田ボール等の外部端子44が形成されている。樹脂層41の内部には、チップ拡張層3の表面に形成された配線6と接続されたビア42が形成されている。樹脂層41の表面には、ビア42と外部端子44とを接続する配線43が形成されている。
 本実施形態の構成によると、第2半導体チップ20と反対側にも他の半導体チップ等の積層が可能になる。なお、本実施形態に係る半導体装置の特徴は、第1または第2実施形態に係る半導体装置と組み合わせてもよい。
 (変形例)
 また、上述の各実施形態において、チップ拡張部3は、複数の層からなるものとしてもよい。この複数の層の表面に配線層をそれぞれ設けて、この配線層を利用して外部端子2と第1半導体チップ10とを接続することによって、その接続性を向上させることができる。
 図20は本変形例に係る半導体装置の構成例を示す断面図である。図20の構成は、第1実施形態で示した図1の構成において、チップ拡張部3を複数の層(ここでは2層)3a,3bによって構成したものである。その他の構成は図1とほぼ同様であり、図1と共通の構成要素には同一の符号を付しており、ここではその詳細な説明を省略する場合がある。複数の層3a,3bの表面には配線層がそれぞれ設けられており、複数の配線として、層3aの表面に配線6aが形成され、層3bの表面に配線6bが形成されている。第2ビアとしてのビア7aは、最下層にある配線6aと第1半導体チップ10とを接続している。ビア7bは配線6aと配線6bとを接続している。最上層にある配線6bが外部端子2と接続されている。このような構成により、外部端子2と第1半導体チップ10との接続性を向上させることができる。配線6a,6bおよびビア7a,7bは、ここでは、例えばCu等の単一金属からなる導体として、一体に形成されている。
 なお、図20では、チップ拡張部3は2層で構成されているものとしたが、チップ拡張部3は3層以上で構成されてもよい。この場合は、複数の配線として、各層の表面にそれぞれ配線が形成される。そして、配線同士を接続する第1ビアと、最下層にある配線と第1半導体チップ10とを接続する第2ビアとが設けられ、最上層にある配線が外部端子2と接続される。
 また、複数の層からなるチップ拡張部は、例えば、第1実施形態で示した製造方法において、チップ拡張部3、ビア7および配線6を形成する工程(図3Eおよび図3F)を、複数回繰り返すことによって、形成することができる。
 また、ここでは、第1実施形態に係る構成についての変形例を示したが、その他の実施形態についても、図20と同様に、チップ拡張部3は複数の層からなるものとしてもよい。これにより、外部端子2と第1半導体チップ10との接続性を向上させることができる。なお、第3実施形態において図6に示した構成のように、第1半導体チップ10の回路形成面に凸部32を設ける構成の場合には、チップ拡張部3の層数や高さに応じて凸部32の高さを調整し、第2半導体チップ20と端子11との間隔を一定に保つようにしてもよい。
 本開示では、チップオンチップ構造を含む半導体装置について、高密度で小型であって、かつ、高速動作にも適した構造を実現できるので、例えば、超高速信号伝送用LSIを小さなサイズで実現するのに有用である。
1 支持体
2 外部端子
3 チップ拡張部
3a,3b 層
6 配線
6a,6b 配線
7 ビア
7a,7b ビア
10 第1半導体チップ
11 端子
12 第1端子部
20 第2半導体チップ
21 端子
22 第2端子部
31 凹部
32 凸部
33 孔
41 樹脂層
42 ビア
44 外部端子
51 基板
53 貫通電極

Claims (11)

  1.  支持体と、
     主面に、複数の端子が設けられた第1端子部を有し、裏面が、前記支持体の表面上に実装されている第1半導体チップと、
     主面に、複数の端子が設けられた第2端子部を有し、前記主面が、前記第1半導体チップの主面と対向しており、前記第2端子部の各端子が、前記第1半導体チップの前記第1端子部の各端子とそれぞれ接続されている第2半導体チップと、
     外部端子とを備え、
     前記第1半導体チップは、前記外部端子と、単一金属からなる導体によって接続されている
    ことを特徴とする半導体装置。
  2.  請求項1記載の半導体装置において、
     前記第1半導体チップの周縁部を取り囲むように設けられたチップ拡張部を備え、
     前記外部端子は、前記チップ拡張部上に設けられており、
     前記導体は、
     前記チップ拡張部の表面に形成されており、前記外部端子と接続された配線と、
     前記チップ拡張部の内部に形成されており、前記第1半導体チップと前記配線とを接続するビアとを備えている
    ことを特徴とする半導体装置。
  3.  請求項1記載の半導体装置において、
     前記第1半導体チップと前記第2半導体チップとの間の、前記第1端子部と前記第2端子部とが接続された部分は、一層の樹脂によって覆われている
    ことを特徴とする半導体装置。
  4.  請求項1記載の半導体装置において、
     前記支持体は、前記第1半導体チップが実装された面に、凹部を有しており、
     前記第1半導体チップは、前記凹部内に置かれている
    ことを特徴とする半導体装置。
  5.  請求項4記載の半導体装置において、
     前記支持体は、前記第1半導体チップが実装された面と反対側の面から、前記凹部の内面まで貫通する孔が形成されている
    ことを特徴とする半導体装置。
  6.  請求項1記載の半導体装置において、
     前記第1半導体チップは、前記主面に、凸部が形成されており、
     前記第1端子部は、前記凸部の天面上に設けられている
    ことを特徴とする半導体装置。
  7.  請求項6記載の半導体装置において、
     前記凸部の天面の平面形状は、正方形である
    ことを特徴とする半導体装置。
  8.  請求項1記載の半導体装置において、
     前記第2半導体チップの周縁部を取り囲むように、かつ、前記第2半導体チップの裏面を覆うように設けられた樹脂層を備え、
     前記外部端子は、前記樹脂層の、前記第2半導体チップの裏面上に相当する表面上に形成されており、
     前記導体は、前記樹脂層内に形成されたビアを含む
    ことを特徴とする半導体装置。
  9.  請求項1記載の半導体装置において、
     前記支持体は、貫通電極が形成された基板である
    ことを特徴とする半導体装置。
  10.  請求項9記載の半導体装置において、
     前記外部端子は、前記基板の裏面に形成されており、
     前記導体は、前記貫通電極を含む
    ことを特徴とする半導体装置。
  11.  請求項1記載の半導体装置において、
     前記第1半導体チップの周縁部を取り囲むように設けられており、複数の層からなるチップ拡張部を備え、
     前記外部端子は、前記チップ拡張部上に設けられており、
     前記導体は、
     前記チップ拡張部を構成する前記複数の層の表面にそれぞれ形成された、複数の配線と、
     前記チップ拡張部の内部に形成されており、前記複数の配線同士を接続する第1ビアと、
     前記チップ拡張部の内部に形成されており、前記複数の配線のうち最下層にある配線と前記第1半導体チップとを接続する第2ビアとを備えており、
     前記複数の配線のうち最上層にある配線が、前記外部端子と接続されている
    ことを特徴とする半導体装置。
PCT/JP2016/002851 2015-06-12 2016-06-13 半導体装置 WO2016199437A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017523120A JPWO2016199437A1 (ja) 2015-06-12 2016-06-13 半導体装置
US15/838,180 US10269774B2 (en) 2015-06-12 2017-12-11 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015119379 2015-06-12
JP2015-119379 2015-06-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/838,180 Continuation US10269774B2 (en) 2015-06-12 2017-12-11 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2016199437A1 true WO2016199437A1 (ja) 2016-12-15

Family

ID=57503343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002851 WO2016199437A1 (ja) 2015-06-12 2016-06-13 半導体装置

Country Status (3)

Country Link
US (1) US10269774B2 (ja)
JP (1) JPWO2016199437A1 (ja)
WO (1) WO2016199437A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7442616B2 (ja) 2019-07-18 2024-03-04 インターナショナル・ビジネス・マシーンズ・コーポレーション 3d半導体メモリ構造体を形成する方法、構造体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10381330B2 (en) * 2017-03-28 2019-08-13 Silicon Storage Technology, Inc. Sacrificial alignment ring and self-soldering vias for wafer bonding

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326211A (ja) * 1993-05-17 1994-11-25 Hitachi Ltd 半導体パッケージと回路基板およびそれを用いた電子機器
JP2001257310A (ja) * 2000-03-09 2001-09-21 Oki Electric Ind Co Ltd 半導体装置およびその製造方法およびその試験方法
JP2008251912A (ja) * 2007-03-30 2008-10-16 Nec Corp 半導体装置及びその製造方法
WO2010047227A1 (ja) * 2008-10-21 2010-04-29 日本電気株式会社 半導体装置及びその製造方法
WO2011021364A1 (ja) * 2009-08-20 2011-02-24 パナソニック株式会社 半導体装置およびその製造方法
WO2013057867A1 (ja) * 2011-10-21 2013-04-25 パナソニック株式会社 半導体装置
WO2013105153A1 (ja) * 2012-01-12 2013-07-18 パナソニック株式会社 半導体装置
JP2014090148A (ja) * 2012-10-31 2014-05-15 Kyocer Slc Technologies Corp 配線基板およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5856174A (en) * 1995-06-29 1999-01-05 Affymetrix, Inc. Integrated nucleic acid diagnostic device
JP4580730B2 (ja) * 2003-11-28 2010-11-17 ルネサスエレクトロニクス株式会社 オフセット接合型マルチチップ半導体装置
US20100047227A1 (en) * 2006-02-17 2010-02-25 Kenji Yamamoto Novel anticancer cathepsin formulations and anticancer agent for use in combined anticancer therapy
GB0722068D0 (en) * 2007-11-09 2007-12-19 Mars Inc Predictive test
US20140090148A1 (en) * 2010-09-08 2014-04-03 Foodhandler, Inc. Method for producing thin film gloves using the cutting and sealing process and glove produced therefrom
JP2012169440A (ja) 2011-02-14 2012-09-06 Fujitsu Semiconductor Ltd 半導体装置及びその製造方法
JP2013030568A (ja) 2011-07-27 2013-02-07 Panasonic Corp 半導体装置
US9502270B2 (en) * 2014-07-08 2016-11-22 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device packages, packaging methods, and packaged semiconductor devices

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326211A (ja) * 1993-05-17 1994-11-25 Hitachi Ltd 半導体パッケージと回路基板およびそれを用いた電子機器
JP2001257310A (ja) * 2000-03-09 2001-09-21 Oki Electric Ind Co Ltd 半導体装置およびその製造方法およびその試験方法
JP2008251912A (ja) * 2007-03-30 2008-10-16 Nec Corp 半導体装置及びその製造方法
WO2010047227A1 (ja) * 2008-10-21 2010-04-29 日本電気株式会社 半導体装置及びその製造方法
WO2011021364A1 (ja) * 2009-08-20 2011-02-24 パナソニック株式会社 半導体装置およびその製造方法
WO2013057867A1 (ja) * 2011-10-21 2013-04-25 パナソニック株式会社 半導体装置
WO2013105153A1 (ja) * 2012-01-12 2013-07-18 パナソニック株式会社 半導体装置
JP2014090148A (ja) * 2012-10-31 2014-05-15 Kyocer Slc Technologies Corp 配線基板およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7442616B2 (ja) 2019-07-18 2024-03-04 インターナショナル・ビジネス・マシーンズ・コーポレーション 3d半導体メモリ構造体を形成する方法、構造体

Also Published As

Publication number Publication date
US20180102346A1 (en) 2018-04-12
JPWO2016199437A1 (ja) 2018-03-29
US10269774B2 (en) 2019-04-23

Similar Documents

Publication Publication Date Title
US11257727B2 (en) Seal for microelectronic assembly
TWI651828B (zh) 晶片封裝結構及其製造方法
US8159057B2 (en) Semiconductor device and manufacturing method therefor
JP4830120B2 (ja) 電子パッケージ及びその製造方法
US8461689B2 (en) Packaging structure having embedded semiconductor element
US9129870B2 (en) Package structure having embedded electronic component
JP5091221B2 (ja) 半導体装置
US10121736B2 (en) Method of fabricating packaging layer of fan-out chip package
US20060076665A1 (en) Package stack and manufacturing method thereof
JP2008166373A (ja) 半導体装置およびその製造方法
JP2009141169A (ja) 半導体装置
US8963318B2 (en) Packaged semiconductor device
JP2016062995A (ja) 半導体装置および半導体装置の製造方法
JP5358089B2 (ja) 半導体装置
JP2009194079A (ja) 半導体装置用配線基板とその製造方法及びそれを用いた半導体装置
JP2014072487A (ja) 半導体装置およびその製造方法
TWI688067B (zh) 半導體裝置及其製造方法
US20130256915A1 (en) Packaging substrate, semiconductor package and fabrication method thereof
WO2016199437A1 (ja) 半導体装置
JP5547703B2 (ja) 半導体装置の製造方法
US8975758B2 (en) Semiconductor package having interposer with openings containing conductive layer
TWI550805B (zh) 晶片堆疊封裝結構
JP2013197341A (ja) 積層型半導体装置とその製造方法
JP5170134B2 (ja) 半導体装置及びその製造方法
JP2014026997A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807144

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017523120

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16807144

Country of ref document: EP

Kind code of ref document: A1