WO2011021364A1 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2011021364A1
WO2011021364A1 PCT/JP2010/005007 JP2010005007W WO2011021364A1 WO 2011021364 A1 WO2011021364 A1 WO 2011021364A1 JP 2010005007 W JP2010005007 W JP 2010005007W WO 2011021364 A1 WO2011021364 A1 WO 2011021364A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
main surface
electrode
substrate
stress relaxation
Prior art date
Application number
PCT/JP2010/005007
Other languages
English (en)
French (fr)
Inventor
玉置 友博
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2011527570A priority Critical patent/JPWO2011021364A1/ja
Publication of WO2011021364A1 publication Critical patent/WO2011021364A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3178Coating or filling in grooves made in the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/105Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0612Layout
    • H01L2224/0613Square or rectangular array
    • H01L2224/06131Square or rectangular array being uniform, i.e. having a uniform pitch across the array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0612Layout
    • H01L2224/0613Square or rectangular array
    • H01L2224/06134Square or rectangular array covering only portions of the surface to be connected
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0612Layout
    • H01L2224/0613Square or rectangular array
    • H01L2224/06134Square or rectangular array covering only portions of the surface to be connected
    • H01L2224/06136Covering only the central area of the surface to be connected, i.e. central arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0612Layout
    • H01L2224/0615Mirror array, i.e. array having only a reflection symmetry, i.e. bilateral symmetry
    • H01L2224/06151Mirror array, i.e. array having only a reflection symmetry, i.e. bilateral symmetry being uniform, i.e. having a uniform pitch across the array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0612Layout
    • H01L2224/0615Mirror array, i.e. array having only a reflection symmetry, i.e. bilateral symmetry
    • H01L2224/06154Mirror array, i.e. array having only a reflection symmetry, i.e. bilateral symmetry covering only portions of the surface to be connected
    • H01L2224/06155Covering only the peripheral area of the surface to be connected, i.e. peripheral arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/1401Structure
    • H01L2224/1403Bump connectors having different sizes, e.g. different diameters, heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1017All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support
    • H01L2225/1023All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support the support being an insulating substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1047Details of electrical connections between containers
    • H01L2225/1058Bump or bump-like electrical connections, e.g. balls, pillars, posts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10158Shape being other than a cuboid at the passive surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Definitions

  • the present invention relates to a semiconductor device in which an integrated circuit wiring layer is formed on a substrate and a manufacturing method thereof, and more particularly to a semiconductor device mounted on another circuit substrate and packaged.
  • a semiconductor device is used as a package that is directly mounted on a circuit board on which a power supply circuit, a signal processing circuit, an input / output circuit element, and the like are mounted and surface-mounted.
  • FIG. 16 is a diagram showing a cross-sectional configuration of a flip chip BGA described in Patent Document 1 using a conventional semiconductor device.
  • the conventional flip chip BGA 50 is wired on the front and back surfaces of the semiconductor device 51 in which the integrated circuit wiring layer 62 and the electrode 63 are formed on the same surface of the substrate 61 and the interposer body 64.
  • the interposer 52 in which the patterns 65 and 66 are formed and the circuit board 53 in which the wiring pattern 68 is formed on the surface of the resin substrate 67 are laminated.
  • the electrode 63 of the semiconductor device 51 and the wiring pattern 65 formed on one surface of the interposer 52 are further combined with the wiring pattern 66 formed on the other surface of the interposer 52 and the resin of the circuit board 53.
  • a wiring pattern 68 formed on the substrate 67 is connected by a protruding electrode 54 made of a solder ball.
  • the thermal expansion coefficient of silicon that is the material of the substrate 61 of the semiconductor device 51 is different from that of the resin that is the material of the resin substrate 67 of the circuit substrate 53, solder reflow or the like when forming the flip chip BGA 50 is performed.
  • a shape change occurs between the semiconductor device 51 and the circuit board 53 during the high-temperature cycle.
  • the technique of Patent Document 1 is such that the interposer body 64 of the interposer 52 disposed between the semiconductor device 51 and the circuit board 53 is formed of a stretchable film or a material having rubber elasticity.
  • the interposer body 64 expands and contracts, so that the connection by the protruding electrodes 54 is disconnected, or the board 61 of the semiconductor device 51 that is weak in strength is cracked and damaged. It tries to solve such problems.
  • connection reliability is lowered due to the thinning of the semiconductor device 51.
  • the semiconductor device 51 is thinned, warpage occurs in the semiconductor device 51 due to film stress generated between silicon, which is a material of the substrate 61, and an insulating film such as SiN or SiO 2 formed on the surface of the substrate 61. To do.
  • the substrate 61 becomes thinner, the ratio of the thickness of the insulating film to the thickness of the substrate 61 increases, and the warp of the semiconductor device 51 increases.
  • the semiconductor device 51 is warped, the gap between the semiconductor device 51 and the interposer 52 is partially increased, and the connection between the semiconductor device 51 and the interposer 52 becomes insufficient, resulting in a decrease in connection reliability. .
  • the package thickness is increased by using the interposer 52 in the flip chip BGA 50. Since the thickness of the interposer 52 in which the wiring patterns 65 and 66 are formed on the two surfaces is about 0.1 mm to 0.3 mm, the flip chip BGA 50 is compared with the case where the interposer 52 is not used. Thicken by the thickness.
  • the interposer 52 there is a problem that physical damage such as chipping or cracking caused by an external force applied to the semiconductor substrate 51 during the assembly process or after completion cannot be avoided.
  • the silicon base material of the substrate 61 may be chipped or cracked.
  • the substrate 61 may be chipped or cracked due to, for example, thermal stress of the underfill resin.
  • the present invention solves the above-described problems in the prior art, provides a semiconductor device that can cope with an increase in area and thickness of a semiconductor device, does not deteriorate connection reliability, and is less prone to damage due to external force, and a method for manufacturing the same.
  • the purpose is to do.
  • a semiconductor device corresponds to a first main surface and a back surface of the first main surface, and a part of the protrusion has an area smaller than the area of the first main surface.
  • An integrated circuit wiring layer formed on the first main surface, and a plurality of electrodes formed on the convex portion of the second main surface. And a substrate connected by through wiring.
  • the semiconductor device manufacturing method of the present invention is any of the semiconductor device manufacturing methods according to the present invention, wherein the integrated circuit wiring layer is formed on the first main surface of the substrate;
  • the method includes a step of forming the through wiring on a substrate and a step of forming the electrode on the second main surface.
  • the integrated circuit wiring layer formed on the first main surface and the electrode formed on the convex portion of the second main surface are connected by the through wiring, and the electrode is connected to the first main surface. It is formed in the convex part of the 2nd main surface whose area is smaller than this. For this reason, even if the integrated circuit wiring layer is increased, the area of the convex portion of the second main surface on which the electrode connected to the circuit board is formed is small. Change does not increase. As a result, high connection reliability with the circuit board can be ensured even for a semiconductor device with a large area or a reduced thickness without increasing the thickness of the semiconductor package.
  • the semiconductor device of the present invention can be easily manufactured.
  • the semiconductor device corresponds to a first main surface and a back surface of the first main surface, and a second portion in which a protrusion having an area smaller than the area of the first main surface is formed.
  • the integrated circuit wiring layer formed on the first main surface and the plurality of electrodes formed on the convex portion of the second main surface are connected by through wiring.
  • a substrate was provided.
  • a stress relaxation material is embedded in a concave portion which is a portion other than the convex portion of the second main surface.
  • the surface of the stress relaxation material embedded in the concave portion is formed so as to protrude from the surface of the convex portion. In this way, when the semiconductor device is in a wafer state, even if a plurality of wafers are stacked, it is possible to effectively prevent physical contact between the integrated circuit wiring layer and the electrode of the adjacent wafer. It is possible to prevent electrostatic breakdown of circuit components in the integrated circuit wiring layer. Further, when the wafer is attached to a wafer attaching sheet or the like, it is possible to prevent the electrode from being damaged due to physical contact.
  • a plurality of electrodes are formed on the surface of the stress relaxation material embedded in the recess.
  • the electrode formed on the surface of the stress relaxation material is connected to the integrated circuit wiring layer by through wiring, so that the electrode formed on the surface of the stress relaxation material is integrated with the integrated circuit wiring layer and the circuit board. It can be used effectively for connection.
  • the surface of the stress relieving material is formed to be recessed from the surface of the convex portion, the electrode on the surface of the stress relieving material and the circuit board can be connected with a thick protruding electrode, Connection reliability between the semiconductor device and the circuit board can be improved.
  • the electrode formed on the convex portion of the second main surface is covered with an insulating layer, and the external electrode formed on the surface of the insulating layer is connected to the electrode. Can be formed.
  • the insulating layer from resin or the like, the difference in thermal expansion coefficient between the semiconductor device and the circuit board can be further reduced. For this reason, the connection reliability between the external electrode and the circuit board can be further improved.
  • connection line connecting the electrode formed on the second main surface and the external electrode formed on the surface of the insulating layer is drawn out radially from the electrode to the external electrode, so that the interval between the external electrodes (pitch ) Can be made wider than the interval (pitch) of the electrodes. This makes it possible to increase the size (bump or ball diameter) of the external electrode and improve the connection reliability between the external electrode and the circuit board.
  • a plurality of the semiconductor devices of the present invention described above are stacked in the thickness direction of the substrate, and a plurality of stacked electrodes formed on the integrated circuit wiring layer are stacked. It is preferable that it is connected with. By doing so, a packaged multi-layer semiconductor device can be easily obtained.
  • an electronic component or a heat radiating means is installed in the recess. By doing in this way, the recessed part of the 2nd main surface of a semiconductor device can be utilized more effectively.
  • the method for manufacturing a semiconductor device of the present invention includes a step of forming the integrated circuit wiring layer on the first main surface of the substrate, a step of forming the through wiring on the substrate, and the second main surface. Forming the electrode on the surface.
  • each figure referred below demonstrates only the main member required in order to demonstrate this invention among the members which comprise the semiconductor device which is embodiment of this invention for convenience of explanation. is there. Therefore, the semiconductor device and the manufacturing method thereof according to the present invention can include arbitrary constituent members that are not shown in the respective drawings to be referred to.
  • the dimensions of the members in each figure do not necessarily faithfully represent the dimensions of the actual constituent members and the dimensional ratios of the members.
  • FIG. 1 is a cross-sectional configuration diagram of a semiconductor device 100 according to a first embodiment of the present invention.
  • FIG. 1 shows a state in which the semiconductor device 100 of the present embodiment is mounted on the circuit board 7.
  • an integrated circuit wiring layer 3 is formed on a first main surface 2 of a substrate 1. Further, a convex portion 11 and a concave portion 12 are formed on the second main surface 4 corresponding to the back surface of the first main surface of the substrate 1, and a plurality of electrodes 5 are formed on the convex portion 11. .
  • the integrated circuit wiring layer 3 formed on the first main surface 2 is connected to the electrode 5 formed on the convex portion 11 of the second main surface 4 through the through wiring 6 penetrating the inside of the substrate.
  • the area of the convex portion 11 of the second main surface 4 of the substrate 1 is smaller than the area of the first main surface 2.
  • the side surfaces of the substrate 1 that connect the concave portions 12 and the convex portions 11 of the second main surface 4 are the first main surface 2 and the second main surface 4. It is formed so as to form a right angle.
  • the semiconductor device of the present invention is not limited to this, and there is no limitation on the shape of the side surface portion connecting the convex portion 11 and the concave portion 12 of the second main surface 4. Accordingly, the side surface portion connecting the convex portion 11 and the concave portion 12 may have a shape that forms an obtuse angle or a shape that forms an acute angle.
  • an inclined surface or an R surface (curved surface) may be formed, and a plurality of steps may be formed in a step shape.
  • the substrate 1 is formed of a semiconductor material such as silicon or a material such as resin.
  • the integrated circuit wiring layer 3 formed on the first main surface 2 of the substrate 1 may be a semiconductor integrated circuit, a MEMS (Micro-Electro-Mechanical-System) element, or a semiconductor integrated circuit. A structure in which both the MEMS element and the MEMS element are mixed may be used, or a conductor wiring or the like may be used.
  • the integrated circuit wiring layer 3 can be formed on the substrate 1 by a normal semiconductor formation process such as a photolithography method.
  • the through wiring 6 can be formed by using a general via hole forming method in which a through hole is formed in the substrate 1 by an etching method, a laser processing method, a drilling process using a drill, and the like, and a metal conductor is filled therein.
  • the etching method for the substrate 1 can be formed by forming a photoresist pattern or the like and performing a selective etching process from the second main surface 4 side.
  • the electrode 5 on the convex portion 11 of the second main surface 4 may be formed in a predetermined position overlapping the through wiring 6 by patterning a metal layer formed on the substrate 1 using a photolithography method or the like. it can.
  • the semiconductor device 100 includes an electrode 5 formed on the convex portion 11 of the second main surface 4 and a wiring electrode 8 formed on a circuit board 7 such as a mother board. It is joined and packaged by the protruding electrode 9.
  • the protruding electrode 9 used for connection between the semiconductor device 100 of the present embodiment and the circuit board 7 can be formed using a plating method, a printing method, a stud bump method, a mounting method, or the like.
  • the plating method is a method of forming by electrolytic plating or electroless plating
  • the printing method is a method of printing a solder paste and then melting the solder paste to form solder bumps.
  • a method of supplying solder balls onto the convex portions 11 of the second main surface 4 of the substrate 1 and melting the solder balls to form solder bumps can be used.
  • the stud bump method is a method of forming a wire used for wire bonding by hitting the electrode 5 and tearing it.
  • the electrical connection between the protruding electrode 9 and the electrode 5 and between the protruding electrode 9 and the wiring electrode 8 is a metal-to-metal bond, a metal-to-metal contact connection, an adhesion with a conductive paste, or the like
  • a connection method in which the protruding electrode 9 is inserted into the concave portion of the electrode 5 so that the concave portion is formed in the electrode 5 may be used.
  • the convex portion 11 of the second main surface 4 is located in the central portion in the lateral direction of the semiconductor device 100, and on both sides of the semiconductor device 100, that is, on the left and right ends in the drawing. Is formed with a recess 12.
  • FIG. 2 shows an example of the semiconductor device 200 in which the unevenness position of the second main surface 5 is different.
  • the semiconductor device 200 having different concave and convex positions on the second main surface 5 has convex portions 210 formed at both lateral ends, that is, both lateral ends in FIG.
  • a recess 220 is formed at the center of the direction.
  • the integrated circuit wiring layer 203 is formed on the entire surface of the first main surface 202 of the substrate 201, and a plurality of electrodes 205 are formed on the convex portion 210 of the second main surface 204.
  • the electrode 205 is connected to the integrated circuit wiring layer 203 through the through wiring 206 penetrating the substrate 1 in the same manner as the semiconductor device 100 described with reference to FIG.
  • the concave portion 220 of the second main surface 204 is formed in the central portion in the lateral direction, but the concave portion 220 is formed in the second main surface 204 of the silicon substrate 201.
  • Various methods such as an etching method, a cutting process using a dicing blade, a laser process, a drill process, and the like can be used.
  • a photoresist pattern or the like can be formed on the second main surface 205 of the substrate 201, and selective etching treatment can be performed from the second main surface 204 side.
  • the shape of the boundary portion between the concave portion 220 and the convex portion 210 is a shape that forms a right angle, but the concave portion and the convex portion on the second main surface of the semiconductor device of the present invention.
  • the shape of the boundary portion between and is not limited to the right-angled shape as illustrated.
  • Various shapes such as an obtuse angle shape, an acute angle shape, an R surface (curved surface), and an inclined surface can be adopted.
  • FIGS. 1 and 2 in the semiconductor device of the present invention, various arrangements can be adopted for the concave and convex shapes of the convex portion and the concave portion of the second main surface of the substrate.
  • FIG. 3 shows an arrangement pattern of convex and concave portions having concave and convex shapes as viewed from the second main surface side of the substrate.
  • FIG. 3A is a concavo-convex pattern of the second main surface 4 in the semiconductor device 100 shown in FIG. 1, and shows a cross section taken along the line II ′ in FIG. 3A. 1.
  • the convex portion 11 is formed in the central portion of the substrate 1 and the periphery thereof is the concave portion 12. And the electrode 5 normally called an area pad is provided in the convex part 11.
  • FIG. 3B is a concavo-convex pattern of the second main surface 204 in the semiconductor device 200 shown in FIG. 2, and shows a cross section taken along the line II-II ′ in FIG. 3B. 2.
  • the convex portions 210 are formed at the four corner portions of the substrate 201, and the concave portions 220 are formed in a substantially cross-shaped shape.
  • An electrode 205 is provided on the convex portion 210.
  • FIG. 3C shows another uneven pattern on the second main surface of the semiconductor device.
  • four convex portions 310 are formed at approximately the center of each of the four sides of the second main surface, and the other portions are concave portions 320.
  • An electrode 305 is formed on the convex portion 310.
  • the second main surface of the substrate can be provided with uneven shapes in various patterns.
  • the concave portion is formed, the area of the convex portion of the second main surface compared to the first main surface is small, so the thermal expansion coefficient of the substrate and the substrate itself It is possible to effectively solve the above-described problem of the related art that the reliability of the connection between the semiconductor device and the circuit board decreases due to warpage or the like.
  • the height difference between the surface formed by the convex portion of the second main surface and the surface formed by the concave portion in other words, the convex portion when considered on the basis of the surface formed by the concave portion
  • the surface and the recess formed by the convex portion of the second main surface of the semiconductor device are within a range in which the strength of the substrate that does not affect the integrated circuit wiring layer formed on the first main surface is maintained. It is preferable to increase the difference in height from the surface to be formed.
  • a stress relaxation material is provided in the concave portion of the second main surface of the substrate. It is different in that it is buried.
  • FIG. 4 is a cross-sectional configuration diagram of a semiconductor device 400 according to the second embodiment of the present invention.
  • FIG. 4 is a diagram corresponding to the cross-sectional configuration diagram of the semiconductor device 100 according to the first embodiment of the present invention described in FIG. 1, and shows a state in which the semiconductor device 400 is mounted on the circuit board 7. Show.
  • the integrated circuit wiring layer 403 is formed on the first main surface 402 of the substrate 401, and the second main circuit corresponding to the back surface of the first main surface 402.
  • a plurality of electrodes 405 are formed on the convex portion 410 of the surface 404.
  • a stress relaxation material 430 is embedded in the recess 420 of the second main surface 404. Note that the integrated circuit wiring layer 403 and the electrode 405 of the substrate 401 are connected via a through wiring 406 penetrating the substrate 401.
  • the electrode 405 formed on the convex portion 410 of the second main surface 404 is a wiring electrode 8 formed on the circuit board 7 such as a mother board. And are packaged by bonding with the protruding electrodes 9.
  • the stress relaxation material 430 is embedded in the concave portion 420 of the second main surface 404 of the substrate 401.
  • the semiconductor device 100 of the first embodiment shown in FIG. Is different.
  • the stress relaxation material 430 fills the entire recess 420, in other words, the height of the surface of the stress relaxation material 430 embedded in the recess 420 is the height of the projection 410 of the second main surface 404.
  • the present invention is not limited to this, and the stress relaxation material 430 may be partially filled in the recess 420. Further, the stress relaxation material 430 may protrude from the surface of the convex portion 410 of the second main surface 404.
  • an insulating resin such as epoxy resin, glass / epoxy resin, BT resin, polyimide, PPE resin, silicon resin, fluorine resin, or conductive resin can be used. Further, ceramic, glass, metal, or the like can be used.
  • the structure of the stress relieving material 430 can be porous, fibrous, or the like in order to enhance the effect of relieving stress.
  • the embedding of the stress relaxation material 430 in the concave portion 420 is performed by first applying a resin that is a stress relaxation material to the entire wafer including the concave portion by a printing method, a spray coating method, a spin coating method, a compression molding method, or the like. Cover with. Since the stress relieving material needs to be selectively formed in the concave portion, the resin in unnecessary regions is removed by etching or polishing.
  • FIG. 5 shows a cross-sectional shape of another semiconductor device 500 according to the second embodiment.
  • This semiconductor device 500 is different from that shown in FIG. 4 in that a recess 520 formed in the second main surface 504 is formed in the central portion in the lateral direction of the semiconductor device.
  • the integrated circuit wiring layer 503 is formed on the first main surface 502 of the substrate 501, and the protrusions 510 are disposed at both lateral ends of the second main surface 504 of the substrate 501.
  • a plurality of electrodes 505 are formed.
  • the electrode 505 is connected to the integrated circuit wiring layer 503 through a through wiring 506 that penetrates the substrate 501.
  • This basic structure is the same as that of the semiconductor device 200 described with reference to FIG. 2 in the first embodiment, but the semiconductor device 500 of FIG. 5 has a recess 520 formed on the second main surface 504, The difference is that the stress relaxation material 530 is embedded.
  • the stress relaxation material 530 may be filled in a part of the recess 520, and the stress relaxation material 530 may have a shape protruding from the projection 510 of the second main surface 504. Is similar to the semiconductor device 400 described with reference to FIG.
  • FIG. 6 is a diagram for explaining the effect of the stress relaxation material 430 in the semiconductor device 400 of the present embodiment.
  • the semiconductor device 400 when the semiconductor device 400 is thinned, silicon, which is a material of the substrate 401, and an insulating film (not shown) such as SiN or SiO 2 formed on the surface thereof As shown in FIG. 6, the semiconductor device 400 may be warped due to the film stress generated during this time. Even in such a case, in the semiconductor device of the present invention, the electrode for connection with the circuit board is formed on the convex portion of the second main surface with a small area, so that the connection with the circuit board is possible. As described above, the decrease in reliability can be avoided.
  • the underfill resin 440 may be filled to protect the connection portion between the semiconductor device 400 and the circuit board 7.
  • the underfill resin 440 normally reaches the side surface portion A of the substrate 401 as shown in FIG.
  • the underfill resin 440 is thermally deformed to the side surface portion A of the substrate 401.
  • a tensile or compressive thermal stress acts.
  • the substrate 401 may be chipped or cracked at the stress concentration point.
  • the stress is relaxed in the concave portion 420 of the second main surface 404.
  • the stress relaxation material 430 can effectively absorb and reduce the thermal stress acting from the underfill resin 440. Therefore, even when the underfill resin 440 is filled when the semiconductor device 400 is mounted on the circuit board 7, it can be avoided that the semiconductor device 400 is damaged due to the thermal stress of the underfill resin 440. it can.
  • FIG. 7 is a cross-sectional view showing the configuration of the semiconductor device 450 of the first modification of the present embodiment.
  • electrodes 451 and 452 are also formed on the surface of the stress relaxation material 430 embedded in the concave portion 420 of the second main surface 404. This is different from the semiconductor device 400 shown in FIG. 7 that have the same configuration as the semiconductor device 400 shown in FIG. 4 other than the electrodes 451 and 452 formed on the surface of the stress relaxation material 430 of the semiconductor device 450 shown in FIG. A detailed description will be omitted.
  • electrodes 451 and 452 are formed on the surface of the stress relaxation material 430. These electrodes 451 and 452 have the same configuration as the electrode 405 formed on the convex portion 404, and the wiring electrode 453 formed on the surface of the circuit board 7 by the protruding electrode 9 similarly to the electrode 405. It is connected. For this reason, the arrangement of the wiring electrodes 9 and 453 on the circuit board 7 is different from that of the circuit board 7 connected to the semiconductor device 100 shown in FIG.
  • the electrode 451 formed on the surface of the stress relieving material 430 has one end formed on the convex portion 404 and connected to the through electrode 406 penetrating the substrate, and the other end is stress relieving material. Located on 430, the other end is connected to the wiring electrode 453 on the circuit board 7 via the protruding electrode 9. By doing in this way, the arrangement position of the wiring electrodes 8 and 453 on the circuit board 7 can be expanded, and the circuit wiring pattern design margin on the circuit board 7 can be expanded.
  • the other electrode 452 formed on the surface of the stress relaxation material 430 is a dummy electrode that is not connected to the through electrode 406 connected to the integrated circuit wiring layer 403 formed on the first main surface 2. is there. Therefore, it is only physically fixed to the wiring electrode 453 of the circuit board 7 via the protruding electrode 9 and is electrically connected to a circuit wiring pattern (not shown) formed on the circuit board. Not.
  • the electrodes 451 and 452 are formed on the stress relaxation material 430 as described above, and these electrodes 451 and 452 are connected to the wiring electrodes of the circuit board 7 by the protruding electrodes 9.
  • the semiconductor device 450 is deformed and stress is applied in a direction in which the semiconductor device 450 and the circuit board 7 are separated from each other, this can be canceled. For this reason, the semiconductor device 450 with high connection reliability with the circuit board 7 can be obtained.
  • one electrode 451 formed on the stress relaxation material 430 is formed so that one end thereof extends over the surface of the convex portion 410, and the integrated circuit wiring on the first main surface 402 is formed through the through wiring.
  • the number of electrodes formed on the stress relaxation material 430 is not limited to two rows on one side, as shown in FIG. 7, and is formed according to the area of the formation region of the recess 420 and the stress relaxation material 430. The number of electrodes (number of columns) can be adjusted as appropriate.
  • FIG. 8 is a cross-sectional view showing a configuration of a semiconductor device 460 of a second modification example of the present embodiment.
  • the semiconductor device 460 of the second modification example of the present embodiment illustrated in FIG. 8 As in the semiconductor device 450 according to the first modification example illustrated in FIG. 7, the semiconductor device 460 is embedded in the concave portion 420 of the second main surface 404.
  • An electrode 463 is formed on the surface of the stress relieving material 430.
  • the electrode 463 formed on the surface of the stress relaxation material 430 is not a dummy electrode, and the through wiring 461 that penetrates the substrate and the through wiring that penetrates the stress relaxation material 430
  • the semiconductor device 450 is different from the semiconductor device 450 of the first modified example in that it is connected to the integrated circuit wiring layer 403 formed on the first main surface 402 via the first main surface 402.
  • an electrode is formed on the surface of the stress relaxation material 430, and this electrode 463 is connected to the integrated circuit wiring layer 403, and similarly to the electrode 405 formed on the surface of the convex portion 410, the protruding electrode 9 is connected to the wiring electrode 464 of the circuit board 7 through 9 to effectively use the entire area of the board 401 and reduce the influence of deformation due to the difference in thermal expansion coefficient between the board 401 and the circuit board 7. And it can avoid that the reliability of connection with the circuit board 7 falls.
  • FIG. 9 is a cross-sectional view showing a configuration of a semiconductor device 470 according to a third modification of the present embodiment.
  • a semiconductor device 470 of the third modification example of the present embodiment shown in FIG. 9 has an electrode 473 formed on the surface of a stress relaxation material 471, and this electrode 473 is connected to the wiring electrode 475 of the circuit board 7 via the protruding electrode 474.
  • the connection point is the same as that of the semiconductor device 450 as the first modified example and the semiconductor device 460 as the second modified example, but the thickness of the stress relaxation material 471 is small, and the stress relaxation material 471 The difference is that the surface 472 is recessed from the surface 404 of the convex portion.
  • the thickness of the stress relaxation material 471 is small, and the surface of the stress relaxation material 471 is recessed with respect to the surface 404 of the convex portion.
  • the distance between the surface 472 of the stress relaxation material 471 and the surface of the circuit board 7 facing the substrate 401 side of the semiconductor element is large.
  • the height of the protruding electrode 474 connecting the electrode 472 formed on the surface of the stress relaxation material 471 and the wiring electrode 475 formed on the surface of the circuit board 7 is formed on the surface of the convex portion 410. It is higher than the protruding electrode 9 that connects the electrode 405 and the wiring electrode 8 of the circuit board 7.
  • the deformation can be regulated via the stress relaxation material 471, and the connection with the circuit substrate 7 can be achieved. Can be effectively suppressed.
  • the area of the electrode 473 on the surface of the stress relaxation material 471 and the wiring electrode 475 on the circuit board 7 connected thereto is larger than those of the other electrodes 405 and the wiring electrode 8. Largely formed.
  • the protruding electrodes 9 and 474 when a solder ball is used as the protruding electrodes 9 and 474, the diameter increases as the height increases due to the surface tension. It is for connecting to. Therefore, it is not an essential requirement in the semiconductor device of the present embodiment that the protruding electrodes 9 and 475 have a large area for the electrodes 473 and the wiring electrodes 475, including the case where solder balls are not used.
  • the electrode 473 formed on the thin stress relaxation material 471 is a dummy electrode that is not connected to the integrated circuit wiring layer 403 on the first main surface 402, but the electrode 473 is illustrated. Can be used not as a dummy electrode but as an electrode for connecting the integrated circuit wiring layer 403 and the circuit wiring on the circuit board 7. In particular, in this case, when the area of the electrode 473 and the wiring electrode 475 is increased, the wiring resistance is reduced by using the power supply wiring or the ground (grounding) wiring that increases the amount of current flowing through these electrodes. It can be used as a good connection wiring.
  • FIG. 9 illustrates the case where the surface 472 of the stress relaxation material 471 is provided with only one row of electrodes 473, but in this embodiment, this is not an essential requirement, and is formed on the stress relaxation material 471. It is possible to have two or more electrodes. In addition, when the electrodes formed on the stress relaxation material 471 are two or more rows on one side, the areas of some of the electrodes can be increased by changing the areas.
  • FIG. 10 is a diagram showing a state in which a plurality of semiconductor devices 400 according to the present embodiment are formed side by side as wafers.
  • the semiconductor device 400A and the semiconductor device 400B are shown to be aligned.
  • semiconductor devices are collectively formed as a wafer in a state in which a plurality of wafers are arranged, and are separated into pieces by cutting them with a dicing blade. At this time, an external force applied from the dicing blade may cause physical damage such as chipping or cracking in the substrate.
  • the stress relaxation material 430 is embedded in the recesses 420 at both lateral ends of the second main surface 404, the second portion of the portion where the stress relaxation material 430 is located.
  • the dicing blade 450 is applied to the main surface 402 side of 1. Therefore, the stress applied to the semiconductor devices 400A and 400B from the dicing blade 450 is absorbed by the stress relaxation material 430, and it is possible to effectively prevent the semiconductor devices 400A and 400B from being damaged such as chips and cracks. .
  • FIG. 11 is a diagram for explaining still another operational effect of the semiconductor device 400 of the present embodiment.
  • a plurality of semiconductor devices 400 can be accommodated and moved in the state of wafers arranged side by side in a horizontal direction while being stacked in the vertical or horizontal direction.
  • static electricity is generated by the physical contact between the integrated circuit wiring layer and the electrodes of the wafers that are stacked and adjacent to each other, the circuit components of the integrated circuit wiring layer may be destroyed.
  • one wafer-like semiconductor device 400C, 400D is superimposed on the other wafer-like semiconductor device 400E, 400F.
  • the stress relaxation material 430 embedded in the concave portion 420 protrudes from the convex portion 410 of the second main surface 404, the electrodes 405 of one of the wafer-like semiconductor devices 400C and 400D and the other wafer-like shape are projected.
  • the integrated circuit wiring layers 402 of the semiconductor devices 400E and 400F are not in contact with each other. For this reason, static electricity is not generated, and the circuit components of the integrated circuit wiring layer 402 can be prevented from being damaged.
  • the stress relaxation material 430 is embedded in the concave portion 420 of the second main surface 404. At this time, the stress relaxation material 430 protrudes from the convex portion 410 of the second main surface 404, so that the problem in the case where the semiconductor device 400 is stacked and stored can be solved.
  • the wafer when the stress relaxation material 430 protrudes from the convex portion 410 of the second main surface 404, the wafer is attached to the wafer.
  • the wafer When pasted on a sheet or the like, it is possible to prevent damage caused by physical contact with the electrodes.
  • the semiconductor device according to the third embodiment is different from the semiconductor devices according to the first and second embodiments in that an insulating layer is formed on the second main surface of the substrate.
  • FIG. 12 is a cross-sectional configuration diagram of a semiconductor device 600 according to the third embodiment of the present invention.
  • FIG. 12 is a drawing corresponding to a cross-sectional configuration diagram of the semiconductor device 100 according to the first embodiment of the present invention and the semiconductor device 400 according to the second embodiment, and is a lateral end of the second main surface 604.
  • the semiconductor device 600 in which the concave portion 620 is formed is mounted on the circuit board 7.
  • the integrated circuit wiring layer 603 is formed on the first main surface 602 of the substrate 601, and the second main corresponding to the back surface of the first main surface 602.
  • a plurality of electrodes 605 are formed on the convex portion 610 of the surface 604.
  • a stress relaxation material 630 is embedded in the recess 620 of the second main surface 604. Note that the integrated circuit wiring layer 603 of the substrate 601 and the electrode 605 are connected via a through wiring 606 that penetrates the inside of the substrate 601.
  • the insulating layer 607 is formed on the second main surface 604 of the substrate 601 so as to cover the electrode 605 and the stress relaxation material 630 formed in the recess.
  • a plurality of external electrodes 608 are formed on the surface of the insulating layer 607, that is, on the lower side in FIG. 12, and the electrodes 605 formed on the convex portions 610 of the second main surface 604 and the surface of the insulating layer 607 are formed.
  • the formed external electrode 608 is electrically connected by a connection line (not shown). This connection line may be formed on the second main surface 604 or may be formed on the surface of the stress relaxation material 630 embedded in the recess 620 of the second main surface 604. Alternatively, a wiring penetrating the insulating layer 607 may be used.
  • the semiconductor device 600 according to the present embodiment is packaged by bonding the external electrode 608 formed on the surface of the insulating layer 607 with the wiring electrode 8 formed on the circuit board 7 such as a mother board and the protruding electrode 9. Has been.
  • the first effect is that the difference in thermal expansion coefficient between the semiconductor device and the circuit board can be further reduced by configuring the insulating layer with resin or the like. For this reason, the connection reliability between the external electrode and the circuit board can be further improved.
  • the second effect is that the interval (pitch) between the external electrodes formed on the surface of the insulating layer can be made wider than the interval (pitch) between the electrodes formed on the second main surface. Thereby, the dimension of the external electrode can be increased, and the connection reliability between the external electrode and the circuit board can be improved.
  • Both the electrode on the second main surface and the external terminal on the surface of the insulating layer may be arranged in a lattice pattern.
  • the electrodes may be arranged in a straight line and the external terminals may be arranged in a grid.
  • other sequences may be used.
  • the pitch of the external electrodes (0.65 mm) can be made wider than the electrode pitch (0.5 mm pitch) formed on the second main surface.
  • the dimensions (bump or ball diameter) of the external electrode can be increased, and the connection reliability between the external electrode and the circuit board can be improved.
  • FIG. 13 shows another shape of the semiconductor device according to the third embodiment of the present invention.
  • the semiconductor device 700 shown in FIG. 13 is described with reference to FIG. 12 above, in which the concave portion 720 of the second main surface 704 is formed in the central portion in the horizontal direction and the convex portions 710 are formed at both ends in the horizontal direction. Different from the semiconductor device 600 described above.
  • the insulating layer 707 is formed so as to cover the electrode 705 formed on the convex portion 710 of the second main surface 704 and the stress relaxation material 730 filled in the concave portion 720.
  • An external electrode 708 formed on the surface of 707 is connected to the electrode 705 by a connection line (not shown).
  • the semiconductor device 700 can also have the following effects by having the insulating layer 707.
  • the structure in which the convex portions are formed at both ends can further improve the connection reliability between the external electrode and the circuit board than the structure in which the convex portions are formed in the central portion.
  • the total area of the convex portions of the second main surface is 49 mm 2 .
  • one side of the convex region is 7 mm in terms of a square root with an area of 49 mm 2 .
  • one side of the convex portion region is 7 mm
  • one side of the convex portion region is 3.5 mm. It becomes.
  • the semiconductor device of the fourth embodiment is formed by laminating a plurality of the semiconductor devices described as the first to third embodiments of the present invention in the thickness direction of the substrate.
  • FIG. 14 is a cross-sectional configuration diagram of a semiconductor device according to the fourth embodiment of the present invention.
  • the semiconductor device is formed by superposing two semiconductor devices having the same shape as the semiconductor device 100 according to the first embodiment described with reference to FIG. 1 on a resin substrate 7. is there.
  • an integrated circuit wiring layer 803 formed on the first main surface 802 of the substrate 801 and an electrode 805 formed on the convex portion 810 of the second main surface 804 are formed as through wiring. 806 is connected.
  • the electrode 805 is connected to the wiring electrode 8 on the circuit board 7 such as a mother board by the protruding electrode 9.
  • a stacked electrode 840 is formed on the integrated circuit wiring layer 803 of the lower semiconductor device 800.
  • the upper semiconductor device 900 includes an integrated circuit wiring layer 903 formed on the first main surface 902 of the substrate 901 and an electrode 905 formed on the convex portion 910 of the second main surface 904. They are connected by through wiring 906.
  • the electrode 905 is connected to the stacked electrode 840 of the lower semiconductor device 800 by the stacked connection electrode 930.
  • the semiconductor device according to the present embodiment is a three-dimensional stacked structure SIP (system in package) in which a plurality of semiconductor devices according to the respective embodiments of the present invention are stacked in the thickness direction of the substrate.
  • SIP system in package
  • the electrode 805 of the semiconductor device 800 is formed on the convex portion 810 of the second main surface 804. Therefore, even if the shape change during expansion occurs due to the difference in thermal expansion coefficient between the substrate 801 and the circuit substrate 7 of the semiconductor substrate 800, the absolute value can be kept small, and connection failure with the circuit substrate 7 is caused. It can be effectively avoided.
  • the semiconductor device has been described as having a two-layer structure of the lower-layer semiconductor device 800 and the upper-layer semiconductor device 900. However, in this embodiment, further stacking of three or more layers of semiconductor devices is performed. It goes without saying that it is not something that is excluded.
  • the semiconductor device to be stacked is described using the shape shown in FIG. 1 in the first embodiment.
  • any semiconductor device according to the present invention may be stacked.
  • the semiconductor devices to be stacked need not all have the same shape, and a plurality of semiconductor devices having different shapes can be stacked.
  • the concave portion of the second main surface is not filled with a stress relaxation material, and members having different functions are arranged.
  • FIG. 15 shows a cross-sectional configuration of a semiconductor device according to the fifth embodiment of the present invention.
  • the semiconductor device of this embodiment is obtained by stacking and connecting a first semiconductor device 1000 and a second semiconductor device 2000 in parallel to a circuit board 7.
  • Each of the semiconductor devices 1000 and 2000 has been described with reference to FIG. 1 as the first embodiment of the present invention, and is formed on the first main surfaces 1002 and 2002 of the respective substrates 1001 and 2001.
  • the integrated circuit wiring layers 1003 and 2003 thus formed and the electrodes 1005 and 2005 formed on the convex portions 1010 and 2010 of the second main surfaces 1004 and 2004 are connected by through wirings 1006 and 2006.
  • the electrodes 1005 and 2005 are connected to the wiring electrode 8 on the circuit board 7 such as a mother board by the protruding electrode 9.
  • the two semiconductor devices 1000 and 2000 both have the recesses 1020 and 2020 at the lateral ends of the second main surfaces 1004 and 2004, they are close to the circuit board 7 as shown in FIG.
  • the recesses 1020 and 2020 form a common space at a portion between the two semiconductor devices 1000 and 2000 arranged in this manner.
  • a circuit board 2100 is disposed in this space, and the circuit component 2100 is connected to the wiring electrode 8 of the circuit board 7 via the protruding electrode 9 by an electrode 2110 formed on the lower surface thereof.
  • FIG. 15 shows an example in which an electronic circuit is used as the functional member disposed in the recess formed in the second main surface of the semiconductor device. In addition to this, the temperature rise of the semiconductor device is prevented.
  • the heat dissipation means can be formed.
  • As the heat dissipating means highly heat conductive resin, metal, heat pipe or the like can be used.
  • FIG. 15 shows an example in which two semiconductor devices are arranged close to each other on the circuit board 7, but in this embodiment, there is only one semiconductor device on the circuit board. Alternatively, three or more semiconductor devices may be arranged side by side on the circuit board 7.
  • the semiconductor device arranged close to the circuit board is described using the shape shown in FIG. 1 in the first embodiment, but any of the semiconductor devices according to the present invention is described.
  • the semiconductor device of the present invention can be arranged in the same manner, and is not limited to the semiconductor device having the same shape, and the semiconductor devices of the present invention having different shapes can be arranged close to each other.
  • the semiconductor device and the manufacturing method thereof According to the semiconductor device and the manufacturing method thereof according to the present invention, a semiconductor device that can obtain high connection reliability when packaged can be obtained, and an ultra-large and ultra-thin integrated substrate can be obtained with high connection reliability. It becomes possible to make a small package such as a flip chip BGA, a wafer level CSP, or a SIP (system in package) having a three-dimensional stacked structure or a two-dimensional mounting structure. For this reason, the present invention provides various semiconductors including electronic devices such as mobile phones, personal computers, IC cards, PDAs, optical communication devices, and medical devices, which are accelerating in size, speed, and multifunction. It is useful as a device and a manufacturing method thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

 半導体装置の大面積化や薄型化に対応し、接続信頼性が低下せず、外力による破損などが生じにくい半導体装置と、その製造方法を提供すること。第1の主面(2)と、前記第1の主面(2)の裏面に相当し、その一部に前記第1の主面(2)の面積より小さい面積の凸部(11)が形成された第2の主面(4)とを有し、前記第1の主面(2)に形成された集積回路配線層(3)と、前記第2の主面(4)の前記凸部(11)に形成された複数の電極(5)とが、貫通配線(6)で接続された基板(1)を備えた。

Description

半導体装置およびその製造方法
 本発明は、基板上に集積回路配線層が形成された半導体装置およびその製造方法に関し、特に、他の回路基板に搭載されてパッケージ化される半導体装置および製造方法に関する。
 従来、半導体装置は、電源回路や信号処理回路、入出力回路素子などが搭載された回路基板上に直接搭載されて表面実装された、パッケージとして用いられている。
 このような半導体装置のパッケージ化技術において、フリップチップBGA(Ball Grid Array)における、半導体装置とこれを搭載するパッケージ基板との間の熱膨張係数の差によるクラックを防止する技術として、伸縮性の材料からなるインターポーザーを用いることが提案されている(特許文献1参照)。
 図16は、特許文献1に記載された、従来の半導体装置を用いたフリップチップBGAの断面構成を示す図である。
 図16に示すように、従来のフリップチップBGA50は、基板61の同一面上に集積回路配線層62と電極63が形成された半導体装置51と、インターポーザー本体64の表裏2つの面にそれぞれ配線パターン65,66が形成されたインターポーザー52と、樹脂基板67の表面に配線パターン68が形成された回路基板53とが積層されている。
 また、半導体装置51の電極63と、インターポーザー52の一方の表面に形成された配線パターン65とが、さらに、インターポーザー52の他方の表面に形成された配線パターン66と、回路基板53の樹脂基板67に形成された配線パターン68とが、それぞれはんだボールからなる突起電極54で接続されている。
 ここで、半導体装置51の基板61の材料であるシリコンと、回路基板53の樹脂基板67の材料である樹脂との熱膨張係数が異なるために、フリップチップBGA50を形成する際のはんだリフローなどの高温サイクル時において、半導体装置51と回路基板53との間に形状の変化が生じる。特許文献1の技術は、半導体装置51と回路基板53との間に配置されるインターポーザー52のインターポーザー本体64を、伸縮性フィルムやゴム弾性を有する材料で形成することにより、半導体装置51と回路基板53との形状が変化した場合でも、インターポーザー本体64が伸縮することで、突起電極54による接続が外れたり、強度的に弱い半導体装置51の基板61にクラックが入って破損したりするなどの問題点を解決しようとするものである。
特開2008-118155号公報
 しかしながら、上記従来のフリップチップBGA50には、解決すべき課題が存在する。
 第1に、半導体装置51の大面積化が進んだ場合に、半導体装置51と回路基板53とがともに大面積化し、熱膨張係数の差による形状変化の絶対値が増大するという課題である。この場合には、インターポーザー52のインターポーザー本体64がゴム弾性によって変形しても、半導体装置51と回路基板53との形状変化を吸収しきれずに、両者の接続信頼性が低下してしまうおそれがある。
 第2に、半導体装置51の薄型化による、接続信頼性の低下という課題である。半導体装置51を薄型化した場合には、基板61の材料であるシリコンと、その表面に形成されたSiNやSiOなどの絶縁膜との間に生じる膜応力により、半導体装置51に反りが発生する。しかも、基板61が薄くなるほど、基板61の厚さに対する絶縁膜の厚さの比率が大きくなり、半導体装置51の反りが大きくなってしまう。このように、半導体装置51に反りが生じると、インターポーザー52との間隔が部分的に大きくなり、半導体装置51とインターポーザー52との間の接続が不十分となって接続信頼性が低下する。
 第3に、フリップチップBGA50に、インターポーザー52を用いていることによる、パッケージ厚さの増大という課題である。2つの表面に配線パターン65,66が形成されたインターポーザー52の厚さは、0.1mmから0.3mm程度であるため、インターポーザー52を用いない場合と比較して、フリップチップBGA50がこの厚さ分だけ厚くなる。
 第4に、インターポーザー52を用いる従来の方法では、半導体基板51に、組み立て工程中や完成後に加わる外力よって生じる、欠けやクラックなどの物理的な損傷を回避できないという課題である。例えば、組立工程途中においては、ダイシングによりウェーハを個片化する時に、基板61のシリコン基材に欠けやクラックが発生するおそれがある。また、組立完成後においては、例えばアンダーフィル樹脂の熱応力などにより、基板61に欠けやクラックが発生するおそれがある。これらの課題は、インターポーザーを用いることでは解決できない。
 第5には、半導体装置51の集積回路配線層62に静電破壊が発生するおそれがあり、また、電極63に物理的な損傷が発生するおそれがあるという課題である。半導体装置51がウェーハの状態にあるとき、ウェーハを複数枚、垂直または水平方向に重ね合わせて収納することがある。このとき、隣接するウェーハの集積回路配線層62と電極63とが物理的に接触することにより静電気が発生すると、集積回路配線層の回路部品が破壊されるおそれがある。また、ウェーハを、例えばウェーハ貼り付けシートなどに貼り付けた場合に、電極63への物理的な接触により損傷が生じるおそれがある。これらの課題も、インターポーザーを用いることで解決することはできない。
 本発明は、上記従来技術における課題を解決し、半導体装置の大面積化や薄型化に対応し、接続信頼性が低下せず、外力による破損などが生じにくい半導体装置と、その製造方法を提供することを目的とする。
 上記課題を解決するため、本発明の半導体装置は、第1の主面と、前記第1の主面の裏面に相当し、その一部に前記第1の主面の面積より小さい面積の凸部が形成された第2の主面とを有し、前記第1の主面に形成された集積回路配線層と、前記第2の主面の前記凸部に形成された複数の電極とが、貫通配線で接続された基板を備えたことを特徴とする。
 また、本発明の半導体装置の製造方法は、本発明にかかるいずれかの半導体装置の製造方法であって、前記基板の前記第1の主面に前記集積回路配線層を形成する工程と、前記基板に前記貫通配線を形成する工程と、前記第2の主面に前記電極を形成する工程とを備えたことを特徴とする。
 本発明の半導体装置は、第1の主面に形成された集積回路配線層と第2の主面の凸部に形成された電極とが貫通配線で接続され、電極は、第1の主面よりも面積が小さい第2の主面の凸部に形成されている。このため、集積回路配線層が大きくなっても、回路基板と接続される電極が形成された第2の主面の凸部の面積が小さいために、回路基板との熱膨張係数の差による形状変化が大きくならない。この結果、半導体パッケージを厚肉化することなく、大面積化や薄型化された半導体装置に対しても、回路基板との高い接続信頼性が確保できる。
 また、本発明の半導体装置の製造方法によれば、本発明の半導体装置を簡易に製造することができる。
本発明の第1の実施形態にかかる半導体装置の構成を示す断面図である。 本発明の第1の実施形態にかかる第2の主面の凹凸配置が異なる半導体装置の構成を示す断面図である。 本発明の第1の実施形態にかかる半導体装置の、第2の主面の凹凸の配置パターンを示す図である。 本発明の第2の実施形態にかかる半導体装置の構成を示す断面図である。 本発明の第2の実施形態にかかる第2の主面の凹凸配置が異なる半導体装置の構成を示す断面図である。 本発明の第2の実施形態にかかる半導体装置の効果を説明するための図である。 本発明の第2の実施形態にかかる半導体装置の第1の変形例の構成を示す断面図である。 本発明の第2の実施形態にかかる半導体装置の第2の変形例の構成を示す断面図である。 本発明の第2の実施形態にかかる半導体装置の第3の変形例の構成を示す断面図である。 本発明の第2の実施形態にかかる半導体装置の別の効果を説明するための図である。 本発明の第2の実施形態にかかる半導体装置のさらに別の効果を説明するための図である。 本発明の第3の実施形態にかかる半導体装置の構成を示す断面図である。 本発明の第3の実施形態にかかる第2の主面の凹凸配置が異なる半導体装置の構成を示す断面図である。 本発明の第4の実施形態にかかる半導体装置の構成を示す断面図である。 本発明の第5の実施形態にかかる半導体装置の構成を示す断面図である。 従来の半導体装置を用いたフリップチップBGAの構成を示す断面図である。
 本発明の半導体装置は、第1の主面と、前記第1の主面の裏面に相当し、その一部に前記第1の主面の面積より小さい面積の凸部が形成された第2の主面とを有し、前記第1の主面に形成された集積回路配線層と、前記第2の主面の前記凸部に形成された複数の電極とが、貫通配線で接続された基板を備えた。
 このようにすることで、半導体装置の集積回路配線層の面積が増大しても、回路基板との接続に用いられる電極が形成された第2の主面の凸部の面積は小さく維持することかできる。このため、半導体装置と回路基板との熱膨張係数の差による形状変化の絶対値を小さく抑えることができ、また、半導体装置に反りが生じても、回路基板との接続部分の隙間が広がりにくくなる。この結果として、従来技術のようなインターポーザーを用いずに薄型化された構造のまま、パッケージを形成する回路基板との高い接続信頼性を有する半導体装置を得ることができる。
 本発明の半導体装置において、前記第2の主面の前記凸部以外の部分である凹部に、応力緩和材が埋設されていることが好ましい。このようにすることで、半導体装置をダイシングする際に加わる物理的な応力や、アンダーフィルが原因となる熱応力を緩和し、半導体装置が破損してしまうことを効果的に保護することができる。
 さらに、前記凹部に埋設された前記応力緩和材の表面が、前記凸部の表面よりも突出して形成されていることが好ましい。このようにすることで、半導体装置がウェーハの状態にあるとき、ウェーハを複数枚重ね合わせた場合でも、隣接するウェーハの集積回路配線層と電極とが物理的に接触することを効果的に防止することができ、集積回路配線層の回路部品の静電的破壊生じにくくすることができる。また、ウェーハをウェーハ貼り付けシートなどに貼り付けた場合に、電極に、物理的な接触による損傷が生じることを防止することができる。
 また、前記凹部に埋設された前記応力緩和材の表面に複数の電極が形成されていることが好ましい。このようにすることで、応力緩和材表面の電極によって、半導体装置と回路基板との接続をより強固なものとすることができる。
 このとき、前記応力緩和材の表面に形成された前記電極が、貫通配線によって前記集積回路配線層と接続されていることで、応力緩和材表面に形成された電極を集積回路配線層と回路基板との接続に有効に使用することができる。
 さらにまた、前記応力緩和材の表面が前記凸部の表面よりも凹んで形成されていることによって、応力緩和材表面の電極と回路基板とを厚さの厚い突起電極で接続することができ、半導体装置と回路基板との接続信頼性を向上することができる。
 また、前記第2の主面の前記凸部に形成された前記電極が絶縁層で覆われていて、前記絶縁層の表面に形成された外部電極と、前記電極とが接続されているように形成することができる。絶縁層を樹脂などより構成することで、半導体装置と回路基板との熱膨張係数の差を、さらに小さくすることが可能となる。このため、外部電極と回路基板との接続信頼性をさらに向上することができる。
 さらに、第2の主面に形成された電極と、絶縁層の表面に形成された外部電極をつなぐ接続線を、電極から外部電極に対して、放射状に引き出すことにより、外部電極の間隔(ピッチ)を、電極の間隔(ピッチ)よりも、広くすることができる。これにより、外部電極の寸法(バンプ、あるいはボール直径)を大きくすることが可能となり、外部電極と回路基板との接続信頼性を向上することができる。
 さらに、上記した本発明の半導体装置が、前記基板の厚さ方向に複数個積層されていて、 前記集積回路配線層上に形成された複数の積層電極が、積層された前記半導体装置の前記電極と接続されていることが好ましい。このようにすることで、パッケージ化された多層積層体の半導体装置を容易に得ることができる。
 また、前記凹部に、電子部品、または、放熱手段が設置されることが好ましい。このようにすることで、半導体装置の第2の主面の凹部をより有効に活用することができる。
 さらに、本発明の半導体装置の製造方法は、前記基板の前記第1の主面に前記集積回路配線層を形成する工程と、前記基板に前記貫通配線を形成する工程と、前記第2の主面に前記電極を形成する工程とを備えている。このようにすることで、本発明の半導体装置を、簡易に製造することができる。
 以下、本発明にかかる半導体装置とその製造方法について、図面を用いて説明する。
 なお、以下で参照する各図は、説明の便宜上、本発明の実施形態である半導体装置を構成する部材のうち、本発明を説明するために必要な主要部材のみを簡略化して示したものである。従って、本発明にかかる半導体装置およびその製造方法は、参照する各図に示されていない任意の構成部材を備えることができる。
 また、各図中の部材の寸法、特に、半導体装置の厚さ方向の寸法は、実際の構成部材の寸法および各部材の寸法比率等を必ずしも忠実に表したものではない。
 (第1の実施形態)
 図1は、本発明の第1の実施形態にかかる半導体装置100の断面構成図である。なお、図1では、本実施形態の半導体装置100が、回路基板7にマウントされている状態を示している。
 図1に示すように、本実施形態にかかる半導体装置100は、基板1の第1の主面2に集積回路配線層3が形成されている。また、基板1の第1の主面の裏面に相当する第2の主面4には、凸部11と凹部12が形成されていて、凸部11には複数の電極5が形成されている。基板1において、第1の主面2に形成された集積回路配線層3は、基板内部を貫通する貫通配線6を介して第2の主面4の凸部11に形成された電極5と接続されている。そして、図1に示すように、基板1の第2の主面4の凸部11の面積は、第1の主面2の面積よりも小さい。
 図1に示す本実施形態の半導体装置100では、基板1の、第2の主面4の凹部12と凸部11とをつなぐ側面部分は、第1の主面2および第2の主面4と直角をなすように形成されている。しかし、本発明の半導体装置はこれに限られるものではなく、第2の主面4の凸部11と凹部12とをつなぐ側面部分の形状に制限はない。したがって、凸部11と凹部12とをつなぐ側面部分が、鈍角を形成する形状であっても、また、鋭角を形成する形状であってもよい。あるいは、傾斜面や、R面(曲面)を形成するようになっていてもよく、また、複数の段差が階段状に形成されていてもよい。
 本実施形態にかかる半導体装置100では、基板1は、シリコンなどの半導体材料や、あるいは、樹脂などの材料により形成されている。
 以下に、本実施形態の半導体装置100の製造方法を説明する。
 基板1の第1の主面2に形成された、集積回路配線層3は、半導体集積回路であっても、MEMS(メムス:Micro Electro Mechanical System)素子であっても、さらにまた、半導体集積回路とMEMS素子の両者を混在させた構成であってもよく、導体配線などであってもよい。集積回路配線層3は、フォトリソグラフィー法などの通常の半導体形成工程で、基板1上に形成することができる。
 貫通配線6は、エッチング法やレーザー加工法、ドリルによる孔開け加工などによって基板1に貫通孔を形成し、これに金属導体を充填する、一般的なビアホール形成方法を用いて形成することができる。なお、基板1へのエッチング法は、フォトレジストパターンなどを形成し、第2の主面4の側から、選択的エッチング処理を行うことなどにより形成することができる。
 第2の主面4の凸部11上の電極5は、基板1上に形成した金属層を、フォトリソグラフィー法などを用いてパターン形成し、貫通配線6と重なる所定の位置に形成することができる。
 本実施形態の半導体装置100は、図1に示すように、第2の主面4の凸部11に形成された電極5が、マザーボードなどの回路基板7上に形成された配線電極8と、突起電極9によって接合されてパッケージ化されている。
 本実施形態の半導体装置100と、回路基板7との接続に用いられる突起電極9は、めっき法、印刷法、スタッドバンプ法、マウント法などを用いて形成することができる。
 めっき法は、電解めっき、無電解めっきで形成する方法であり、印刷法は、はんだペーストを印刷し、その後はんだペーストを溶融してはんだバンプを形成するなどの方法である。また、はんだボールを基板1の第2の主面4の凸部11上に供給し、はんだボールを溶融してはんだバンプを形成するという方法を用いることもできる。スタッドバンプ法は、ワイヤボンディングに用いるワイヤを電極5上に打ち付け、引きちぎることで形成する方法である。
 本実施形態の半導体装置100において、突起電極9と電極5、および、突起電極9と配線電極8との電気的接続は、金属間結合、あるいは、金属間の接触接続、導電性ペーストによる密着などによって得ることができる。また、電極5に凹部を形成するようにして、突起電極9を電極5の凹部に挿入する接続方法などを用いてもよい。
 図1に示した例では、第2の主面4の凸部11は、半導体装置100の横方向の中央部分に位置しており、半導体装置100の両側方、すなわち図中の左右端部には凹部12が形成されている。
 図2は、第2の主面5の凹凸位置が異なる半導体装置200の例である。
 図2に示すように、第2の主面5の凹凸位置が異なる半導体装置200は、その横方向両端部、すなわち、図2中の左右方向両端部に凸部210が形成されていて、左右方向の中央部に凹部220が形成されている。なお、半導体装置200において、基板201の第1の主面202には、その全面に集積回路配線層203が形成されており、第2の主面204の凸部210には、複数の電極205が配置されていて、電極205は、基板1を貫通する貫通配線206を介して集積回路配線層203と接続されている点は、図1を用いて説明した、半導体装置100と同様である。
 図2に示した半導体装置200において、第2の主面204の凹部220がその横方向中央部に形成されているが、シリコン製の基板201の第2の主面204に、凹部220を形成する方法としては、エッチング法や、ダイシング・ブレードなどによる切削加工、レーザー加工、ドリル加工などの各種方法を用いることができる。例えば、エッチング法による場合は、基板201の第2の主面205にフォトレジストパターンなどを形成し、第2の主面204側から、選択的エッチング処理を行うことができる。
 図2に示した半導体装置200では、凹部220と凸部210との境界部分の形状を、直角をなすような形状としているが、本発明の半導体装置の第2の主面における凹部と凸部との境界部分の形状は、図示したような直角形状に限られるものではない。鈍角形状、鋭角形状、R面(曲面)、傾斜面など様々な形状を採ることができる。
 図1および図2で示したように、本発明の半導体装置において、基板の第2の主面の凸部と凹部との凹凸形状は、いろいろな配置を採用することができる。図3に、基板の第2の主面側から見た凹凸形状の凸部と凹部の配置パターンを示す。
 図3(a)は、図1で示した半導体装置100における第2の主面4の凹凸パターンであり、図3(a)中のI-I’矢視線部分の断面を見たものが図1である。
 このように、図3(a)の配置では、基板1の中央部に凸部11が形成され、その周囲が凹部12となっている。そして、凸部11に通常エリアパッドと呼ばれる電極5が設けられている。
 図3(b)は、図2で示した半導体装置200における第2の主面204の凹凸パターンであり、図3(b)中のII-II’矢視線部分の断面を見たものが図2である。このように、図3(b)の配置では、基板201の四隅部分に凸部210が形成され、略十文字状に凹部220が形成されている。そして、凸部210に電極205が設けられている。
 図3(c)は、半導体装置における第2の主面の、別の凹凸パターンである。図3(c)の凹凸パターンでは、第2の主面の4つの辺のそれぞれのほぼ中央部に、4箇所の凸部310が形成され、その他の部分が凹部320となっている。そして、凸部310に、電極305が形成されている。
 このように、本発明の半導体装置において、基板の第2の主面は、様々なパターンで凹凸形状を配置することができる。そして、いずれの場合でも、凹部を形成していることから、第1の主面と比較した第2の主面の凸部の面積は小さいものとなるため、基板の熱膨張係数や基板自体の反りなどにより、半導体装置と回路基板との接続の信頼性が低下するという上記した従来技術にかかる問題点を、有効に解消することができる。
 本実施形態の半導体装置において、第2の主面の凸部が形成する面と凹部が形成する面との高さの差、言い換えれば、凹部が形成する面を基準として考えた場合の凸部が形成する面の突出度合いが大きいほど、半導体装置と回路基板との接続信頼性が高くなる。これは、半導体装置の第2の主面の、凸部が形成する面と凹部が形成する面との高さの差が大きい場合には、半導体装置の第1の主面の変形が半導体装置の第2の主面の凸部表面に伝わりにくく、半導体装置の第2の主面の凸部に形成された電極と回路基板に形成された配線電極との接続を引きはがす方向に作用する力が小さいためと考えられる。したがって、第1の主面に形成される集積回路配線層に影響を与えないだけの基板の強度が保たれる範囲において、半導体装置の第2の主面の凸部が形成する面と凹部が形成する面との高さの差を大きくすることが好ましい。
 なお、第2の主面の凸部が形成する面と凹部が形成する面との高さの差を大きくすることが、長期間における接続信頼性を維持する上で好ましいことは、第2の実施形態として後述する、凹部に応力緩和材を埋め込んだ場合でも同様である。このとき、ポイントとなるのは、基板における第2の主面の凸部が形成する面と凹部が形成する面との高さの差であって、応力緩和材の表面の高さではないことは、いうまでもない。
 (第2の実施形態)
 次に、本発明の第2の実施形態にかかる半導体装置を、図面を用いて説明する。
 この第2の実施形態にかかる半導体装置は、上記図1から図3を用いて説明した実施の形態1の半導体装置と比較して、基板の第2の主面の凹部に、応力緩和材を埋設している点が異なる。
 図4は、本発明の第2の実施形態にかかる半導体装置400の断面構成図である。この図4は、図1で説明した、本発明の第1の実施の形態にかかる半導体装置100の断面構成図に対応する図面であり、半導体装置400が、回路基板7にマウントされた状態を示している。
 図4に示すように、本実施形態の半導体装置400は、基板401の第1の主面402に集積回路配線層403が形成され、第1の主面402の裏面に相当する第2の主面404の凸部410には、複数の電極405が形成されている。また、第2の主面404の凹部420には、応力緩和材430が埋設されている。なお、基板401の集積回路配線層403と電極405とは、基板401内部を貫通する貫通配線406を介して接続されている。
 また、本実施形態の半導体装置400は、図4に示すように、第2の主面404の凸部410に形成された電極405が、マザーボードなどの回路基板7上に形成された配線電極8と、突起電極9によって接合されてパッケージ化されている。
 本実施形態の半導体装置400では、基板401の第2の主面404の凹部420に、応力緩和材430が埋め込まれている点が、図1に示した、第1の実施形態の半導体装置100と異なっている。なお、図4では、応力緩和材430を凹部420の全体を埋めるように、言い換えると、凹部420に埋め込んだ応力緩和材430の表面の高さが、第2の主面404の凸部410の高さと一致して、一つの平面を形成するように埋め込んでいるが、本発明はこれに限定されるものではなく、応力緩和材430を凹部420に部分的に充填するようにしてもよい。また、応力緩和材430が、第2の主面404の凸部410表面から突出するようにしてもよい。
 応力緩和材430としては、エポキシ樹脂、ガラス・エポキシ樹脂、BTレジン、ポリイミド、PPE樹脂、シリコン樹脂、フッ素樹脂などの絶縁性樹脂あるいは、導電性樹脂を使用することができる。また、セラミック、ガラス、金属などを用いることができる。応力緩和材430の構造は、応力を緩和する効果を高めるために、ポーラス状、繊維状などとすることができる。
 また、凹部420への応力緩和材430の埋め込みは、まず、凹部を含むウェーハ全体に対して、応力緩和材である樹脂を、印刷法、スプレーコート法、スピンコート法あるいは、コンプレッション・モールド法などにより被覆する。そして、応力緩和材は、凹部分に選択的に形成する必要があるため、不要な領域の樹脂は、エッチングあるいは研磨などにより除去することで行われる。
 図5は、第2の実施形態にかかる別の半導体装置500の断面形状を示すものである。この半導体装置500は、第2の主面504に形成された凹部520が、半導体装置の横方向中央部に形成されている点が、図4に示したものと異なる。
 図5に示す半導体装置500は、基板501の第1の主面502に、集積回路配線層503が形成され、基板501の第2の主面504の横方向両端部に配置された凸部510に、複数の電極505が形成されている。この電極505は、基板501を貫通する貫通配線506を介して、集積回路配線層503に接続されている。
 この基本構造は、上記第1の実施形態で図2を用いて説明した半導体装置200と同じであるが、図5の半導体装置500は、第2の主面504に形成された凹部520に、応力緩和材530が埋め込まれている点が異なる。
 なお、応力緩和材530が、凹部520の一部に充填されていてもよい点、また、応力緩和材530が第2の主面504の凸部510よりも突出した形状であってもよい点は、上記図4を用いて説明した半導体装置400と同様である。
 図6は、本実施形態の半導体装置400における、応力緩和材430の効果を説明するための図である。
 従来技術における第2の課題として説明したように、半導体装置400を薄型化した場合には、基板401の材料であるシリコンと、その表面に形成された図示しないSiNやSiOなどの絶縁膜との間に生じる膜応力により、図6に示すように、半導体装置400に反りが発生する場合がある。なお、このような場合でも、本発明の半導体装置が、回路基板との接続のための電極が、面積の小さな第2の主面の凸部に形成されているため、回路基板との接続の信頼性が低下することを回避できることは、既に述べたとおりである。
 また、半導体装置400を回路基板7にマウントして半導体パッケージとする際に、半導体装置400と回路基板7との接続部を保護するために、アンダーフィル樹脂440を充填することがある。アンダーフィル樹脂440は、通常、図6に示すように、基板401の側面部Aにまで達している。このため、従来技術における第4の課題として説明したように、半導体パッケージが高温下や低温下におかれた場合には、アンダーフィル樹脂440の熱的な変形によって、基板401の側面部Aに、引っ張りあるいは圧縮の熱応力が作用する。このとき、熱応力が大きいと、応力集中箇所で基板401の欠けやクラックが発生するおそれがあるが、本実施形態の半導体装置400のように、第2の主面404の凹部420に応力緩和材430が埋め込まれている場合には、アンダーフィル樹脂440から作用する熱応力を、応力緩和材430が効果的に吸収低減することができる。したがって、半導体装置400を回路基板7にマウントする際に、アンダーフィル樹脂440を充填した場合でも、アンダーフィル樹脂440の熱応力により、半導体装置400が損傷を受ける事態となることを回避することができる。
 ここで、本実施形態にかかる半導体装置の変形例について説明する。
 図7は、本実施形態の第1の変形例の半導体装置450の構成を示す断面図である。
 図7に示す本実施形態の第1の変形例の半導体装置450は、第2の主面404の凹部420に埋め込まれた応力緩和材430の表面にも、電極451,452が形成されている点が、図4に示した半導体装置400と異なる。なお、図7に示した半導体装置450の、応力緩和材430の表面に形成された電極451、452以外の図4に示した半導体装置400と同様の構成を備えている部分には同じ符号を付し、詳細な説明は省略する。
 本実施形態の第1の変形例の半導体装置450は、応力緩和材430の表面に電極451,452が形成されている。これらの電極451,452は、凸部404に形成された電極405と同様の構成を有していて、電極405と同様に突起電極9によって、回路基板7の表面に形成された配線電極453と接続されている。このため、回路基板7上の配線電極9、453の配置は、図4に示した半導体装置100に接続される回路基板7のものと異なっている。
 図7に示すように、応力緩和材430の表面に形成された電極451は、その一端が凸部404上に形成されていて基板を貫通する貫通電極406に接続され、他端側が応力緩和材430上に位置して、この他端側が突起電極9を介して回路基板7上の配線電極453に接続されている。このようにすることで、回路基板7上の配線電極8,453の配置位置を広げることができ、回路基板7での回路配線パターン設計裕度を広げることができる。
 また、応力緩和材430の表面に形成されたもう一つの電極452は、第1の主面2に形成された集積回路配線層403に接続された貫通電極406と接続されていない、ダミー電極である。したがって、突起電極9を介して回路基板7の配線電極453と物理的に固着されているのみであり、回路基板上に形成された図示しない回路配線パターンとの間に、電気的な接続はされていない。
 本実施形態の第1の変形例の半導体装置450では、上記のように応力緩和材430上に電極451、452が形成され、これらの電極451、452が突起電極9によって回路基板7の配線電極453と接続されていることで、半導体装置450が変形して半導体装置450と回路基板7とが引き離される方向の応力が加わった場合に、これを打ち消すことができる。このため、回路基板7との接続信頼性の高い半導体装置450を得ることができる。
 なお、図7では、応力緩和材430上に形成された一方の電極451を、一端が凸部410の表面に跨って形成され、貫通配線を介して第1の主面402上の集積回路配線層403に接続されたものとして例示したが、本実施形態においてこのことは必須ではなく、応力緩和材430の表面に形成される電極全てを、ダミー電極452とすることができる。また、応力緩和材430上に形成する電極の数も、図7に示すように、片側2列に限られるものではなく、凹部420および応力緩和材430の形成領域の面積に応じて、形成される電極の数(列数)を適宜調整することができる。
 図8は、本実施形態の第2の変形例の半導体装置460の構成を示す断面図である。
 図8に示す本実施形態の第2の変形例の半導体装置460においても、図7で示した第1の変形例にかかる半導体装置450と同様に、第2の主面404の凹部420に埋め込まれた応力緩和材430の表面に電極463が形成されている。しかし、第2の変形例にかかる半導体装置460では、応力緩和材430の表面形成された電極463がダミー電極ではなく、基板内を貫通する貫通配線461と、応力緩和材430を貫通する貫通配線461とを介して、第1の主面402上に形成された集積回路配線層403と接続されている点が、第1の変形例の半導体装置450と異なっている。
 このように、応力緩和材430の表面に電極を形成し、かつ、この電極463を、集積回路配線層403と接続して、凸部410の表面に形成された電極405と同様に、突起電極9を介して回路基板7の配線電極464と接続することで、基板401の面積いっぱいを有効に利用しながら、かつ、基板401と回路基板7との熱膨張係数の差による変形の影響を緩和して、回路基板7との接続の信頼性が低下することを回避できる。
 図9は、本実施形態の第3の変形例の半導体装置470の構成を示す断面図である。
 図9に示す本実施形態の第3の変形例の半導体装置470は、応力緩和材471の表面に電極473が形成され、この電極473が突起電極474を介して回路基板7の配線電極475と接続されている点は、上記第1の変形例である半導体装置450および第2の変形例である半導体装置460と同様であるが、応力緩和材471の厚さが小さく、応力緩和材471の表面472が、凸部の表面404よりも凹んでいる点が異なっている。
 すなわち、図9に示すように、第3の変形例の半導体装置470では、応力緩和材471の厚さが小さく、応力緩和材471の表面が、凸部の表面404に対して凹んでいるため、応力緩和材471の表面472と回路基板7の半導体素子の基板401側と対向する表面との距離が大きくなっている。このため、応力緩和材471の表面に形成された電極472と、回路基板7の表面に形成された配線電極475とを接続する突起電極474の高さが、凸部410の表面に形成された電極405と回路基板7の配線電極8との間を接続する突起電極9よりも、高くなっている。
 このようにすることで、第3の変形例の半導体装置470では、基板1の反りが生じた場合でも、その変形を応力緩和材471を介して規制することができ、回路基板7との接続の信頼性低下を効果的に抑制することができる。
 なお、図9に示した半導体装置470では、応力緩和材471の表面の電極473と、これと接続される回路基板7上の配線電極475の面積を、他の電極405および配線電極8よりも大きく形成している。これは、図9に示すように、突起電極9,474としてはんだボールを用いた場合には、その表面張力の関係で高さが高くなると径が大きくなるため、表面積の大きな電極により、より強固に接続させるためである。したがって、突起電極9,475として、はんだボールを用いない場合を含め、電極473および配線電極475の面積を大きく形成することは、本実施形態の半導体装置において必須の要件ではない。
 また、図9では、厚さの薄い応力緩和材471に形成された電極473は、第1の主面402の集積回路配線層403と接続されていないダミー電極の場合を例示したが、電極473をダミー電極ではなく、集積回路配線層403と、回路基板7上の回路配線とを接続する電極として用いることができる。特に、この場合において、電極473と配線電極475の面積を大きくした場合には、これらの電極を流れる電流量が大きくなる電源配線、もしくは、グランド(接地)配線として用いることで、配線抵抗が少ない良好な接続配線として用いることができる。
 さらに、図9では、応力緩和材471の表面472に片側1列のみの電極473を設けたものを例示したが、本実施形態においてこれは必須の要件ではなく、応力緩和材471上に形成される電極を2列以上とすることが可能である。また、応力緩和材471上に形成された電極が片側2列以上の場合に、その面積を異ならせて一部の電極の面積を大きくすることができる。
 次に、図10、および図11を用いて、本実施形態の半導体装置400の有する応力緩和材430の別の効果について説明する。
 図10は、本実施形態の半導体装置400が、ウェーハとして複数個が並んで形成されている状態を示す図である。図10では、半導体装置400Aと、半導体装置400Bとが並んでいるように示されている。
 上記、従来技術における第4の課題として説明したように、半導体装置は、ウェーハとして複数個が並んだ状態で一括して形成され、これをダイシング・ブレードで切断することで個片化される。このとき、ダイシング・ブレードから加わる外力よって、基板に欠けやクラックなどの物理的な損傷が生じる可能性がある。
 これに対し、本実施形態の半導体装置400では、第2の主面404の横方向両端部の凹部420に応力緩和材430が埋め込まれているため、この応力緩和材430が位置する部分の第1の主面402側にダイシング・ブレード450が当てられることとなる。このため、ダイシング・ブレード450から半導体装置400A、400Bに加わる応力が、応力緩和材430で吸収され、半導体装置400A、400Bに欠けやクラックなどの損傷が生じることを効果的に防止することができる。
 図11は、本実施形態の半導体装置400の、さらに別の作用効果を説明するための図である。
 従来技術における第5の課題として説明したように、半導体装置400を、複数個横方向に並んで配列されたウェーハの状態で、複数枚、垂直または水平方向に重ね合わせて収納・移動させることがあり、このとき、重ね合わされて隣接するウェーハ同士の集積回路配線層と電極とが物理的に接触することにより静電気が発生すると、集積回路配線層の回路部品が破壊されるおそれがある。
 これに対し、図11に示すように、本実施形態の半導体装置400では、一方のウェーハ状の半導体装置400C、400Dが、もう一方のウェーハ状の半導体装置400E、400Fの上に重ね合わされた場合でも、第2の主面404の凸部410よりも凹部420に埋め込まれた応力緩和材430が突出しているため、一方のウェーハ状の半導体装置400C、400Dの電極405と、もう一方のウェーハ状の半導体装置400E、400Fの集積回路配線層402とが接触することがない。このため、静電気が発生することが無く、集積回路配線層402の回路部品が破損することを防止することができる。
 上記のように、本実施形態の半導体装置400は、第2の主面404の凹部420に、応力緩和材430が埋め込まれている。このとき、応力緩和材430が第2の主面404の凸部410よりも突出することで、半導体装置400を重ね合わせて保管等する場合の課題を解決することができる。
 なお、図示しての説明は省略するが、本実施形態の半導体装置400において、応力緩和材430を第2の主面404の凸部410よりも突出させた場合には、ウェーハをウェーハ貼り付けシートなどに貼り付けた場合に、電極への物理的な接触による損傷が生じることを防止することもできる。
 このように、応力緩和材430を第2の主面404の凸部410よりも突出させることで、基板401の集積回路配線層403の静電破壊や、電極405への物理的な損傷を防止する効果を奏し、従来技術における第5の課題を解決することができる。
 (第3の実施形態)
 次に、本発明の第3の実施形態にかかる半導体装置を、図面を用いて説明する。
 この第3の実施形態にかかる半導体装置は、上記実施の形態1および2の半導体装置と比較して、基板の第2の主面に、絶縁層が形成されている点が異なる。
 図12は、本発明の第3の実施形態の半導体装置600の断面構成図である。この図12は、本発明の第1の実施形態にかかる半導体装置100、第2の実施形態にかかる半導体装置400の断面構成図に対応する図面であり、第2の主面604の横方向端部に凹部620が形成された半導体装置600が、回路基板7にマウントされた状態を示している。
 図12に示すように、本実施形態の半導体装置600は、基板601の第1の主面602に集積回路配線層603が形成され、第1の主面602の裏面に相当する第2の主面604の凸部610には、複数の電極605が形成されている。また、第2の主面604の凹部620には、応力緩和材630が埋設されている。なお、基板601の集積回路配線層603と電極605とは、基板601内部を貫通する貫通配線606を介して接続されている。
 本実施形態の半導体装置600では、基板601の第2の主面604に、電極605と凹部に形成された応力緩和材630を覆うように絶縁層607が形成されている。そして、絶縁層607の表面、すなわち図12における下方に、複数の外部電極608が形成されていて、第2の主面604の凸部610に形成された電極605と、絶縁層607の表面に形成された外部電極608とは、図示しない接続線で電気的に接続されている。この接続線は、第2の主面604の上に形成してもよいし、あるいは、第2の主面604の凹部620に埋設した応力緩和材630の表面に形成してもよい。また、絶縁層607を貫通する配線であってもよい。
 そして、本実施形態の半導体装置600は、絶縁層607の表面に形成された外部電極608が、マザーボードなどの回路基板7上に形成された配線電極8と、突起電極9によって接合されてパッケージ化されている。
 このように、第2の主面604上に絶縁層を形成することで、以下の効果が得られる。
 第1の効果は、絶縁層を樹脂などにより構成することで、半導体装置と回路基板との熱膨張係数の差を、さらに小さくすることが可能となる。このため、外部電極と回路基板との接続信頼性をさらに向上することができる。
 第2の効果は、絶縁層の表面に形成された外部電極の間隔(ピッチ)を、第2の主面に形成された電極の間隔(ピッチ)よりも、広くすることができる。これにより、外部電極の寸法を大きくすることが可能となり、外部電極と回路基板との接続信頼性を向上することができる。
 第2の主面の電極と、絶縁層の表面の外部端子の両方を、格子状に配列してもよい。あるいは、電極は直線状に配列し、外部端子を格子状に配列してもよい。あるいは他の配列であってもよい。
 ここでは、例として、電極と外部端子の両方を格子状に配列し、かつ、絶縁層が、電極と凹部に形成された応力緩和材を覆うように形成されている場合を考える。すなわち、第1の主面の面積と、絶縁層の面積が等しい場合を考える。
 具体的な数値を用いて以下に説明する。
 例えば、第1の主面の面積と絶縁層の面積は等しく、10mm×10mm=100mmとする。第2の主面の面積を、7mm×7mm=49mmとする。
 このとき、第2の主面の電極を、0.5mmピッチの格子状に配列する場合には、電極数は、13列×13列となり、全電極数は、13×13=169個(/49mm)となる。
 これに対し、絶縁層の表面の外部端子が、0.65mmピッチの格子状に配列する場合には、電極数は、14列×14列となり、最大で、14×14=196個(/100mm)まで配列できる。
 上述のように、外部電極のピッチ(0.65mm)が、第2の主面に形成された電極ピッチ(0.5mmピッチ)より広くできる。これにより外部電極の寸法(バンプ、あるいはボール直径)を大きくすることが可能となり、外部電極と回路基板との接続信頼性を向上することができる。
 図13は、本発明の実施の形態3にかかる半導体装置の別の形状を示すものである。
 図13に示す、半導体装置700は、第2の主面704の凹部720が横方向中央部に形成され、横方向の両端部に凸部710が形成されている点が、上記図12で説明した半導体装置600と異なる。
 半導体装置700においても、第2の主面704の凸部710に形成された電極705と、凹部720に充填された応力緩和材730を覆うように、絶縁層707が形成されていて、絶縁層707の表面に形成された外部電極708は、図示しない接続線で電極705と接続されている。
 そして、半導体装置700も、絶縁層707を有することにより、以下の効果を奏することができる。
 凸部が両端部に凹部が中央部に形成された構造と、凸部が中央部に凹部が両端部に形成された構造の効果の違いを以下に説明する。
 凸部が両端部に形成された構造の方が、凸部が中央部に形成された構造より、外部電極と回路基板との接続信頼性をさらに向上することができる。
 例えば、第1の主面の面積を、10mm×10mm=100mmとする。第2の主面の凸部の総面積を、49mmとする。
 正方形の凸部が中央部に形成された構造では、凸部領域の一辺は、面積が49mmの平方根で7mmである。
 一方、正方形の凸部が4つのコーナー部に形成された構造では、ひとつの凸部領域の面積は、49/4=12.25mmである。したがって、ひとつの凸部領域の一辺は、12.25mmの平方根で3.5mmである。
 以上のように、凸部が中央部に形成された構造では、凸部領域の一辺は、7mmであり、凸部がコーナー部に形成された構造では、凸部領域の一辺は、3.5mmとなる。
 凸部領域の一辺の長さが小さいほど、半導体装置と回路基板との熱膨張係数の差は小さくなる。したがって、凸部がコーナー部に形成された構造の方が、外部電極と回路基板との接続信頼性をさらに向上することができる。
 (第4の実施形態)
 次に、本発明の実施の形態4にかかる半導体装置を、図面を用いて説明する。
 この第4の実施形態の半導体装置は、上記本発明の第1から第3の実施形態として説明した半導体装置を、基板の厚さ方向に複数積層して形成されたものである。
 図14は、本発明の第4の実施形態にかかる半導体装置の断面構成図である。図14に示すように、半導体装置は、図1を用いて説明した第1の実施形態にかかる半導体装置100と同じ形状の半導体装置が樹脂基板7上に2枚重ね合わされて形成されたものである。下層の半導体装置800は、その基板801の第1の主面802上に形成された集積回路配線層803と、第2の主面804の凸部810に形成された電極805とが、貫通配線806で接続されている。そして、電極805は、マザーボードなどの回路基板7上の配線電極8に、突起電極9により接続されている。
 下層の半導体装置800の集積回路配線層803上には、積層電極840が形成されている。そして、上層の半導体装置900は、その基板901の第1の主面902上に形成された集積回路配線層903と、第2の主面904の凸部910に形成された電極905とが、貫通配線906で接続されている。電極905は、下層の半導体装置800の積層電極840に、積層接続電極930により接続されている。
 このように、本実施形態の半導体装置は、本発明の各実施形態にかかる半導体装置をその基板の厚さ方向に複数枚積層し、3次元積層構造SIP(システム・イン・パッケージ)としたものであるが、下層の半導体装置800と回路基板7との接続において、半導体装置800の電極805が第2の主面804の凸部810に形成されている。このため、半導体基板800の基板801と回路基板7との熱膨張係数の差によって、膨張時の形状変化が生じても、その絶対値を小さくとどめることができ、回路基板7との接続不良が生じることを効果的に回避することができる。
 なお、本実施形態において、半導体装置が、下層の半導体装置800と上層の半導体装置900との2層構造であるものについて説明したが、本実施形態において、三層以上の半導体装置のさらなる積層を排除するものではないことは、言うまでもない。
 また、図10では、積層される半導体装置として、第1の実施形態において図1として示した形状のものを用いて説明したが、本発明にかかる半導体装置のいずれの形態のものでも積層することができ、また、積層される半導体装置の形状は、全て同じものである必要はなく、本発明の半導体装置の異なる形状のものを複数積層することも可能である。
 (第5の実施形態)
 次に、本発明の第5の実施形態にかかる半導体装置を、図面を用いて説明する。
 この第5の実施形態にかかる半導体装置は、第2の主面の凹部に応力緩和材を充填したものではなく、異なる機能の部材を配置したものである。
 図15に、本発明の第5の実施形態にかかる半導体装置の断面構成を示す。図11に示すように、本実施形態の半導体装置は、回路基板7に、第1の半導体装置1000と、第2の半導体装置2000とが、並列して積層接続されたものである。
 それぞれの半導体装置1000および2000は、いずれも本発明の第1の実施形態として、図1を用いて説明したものであり、それぞれの基板1001および2001の第1の主面1002、2002上に形成された集積回路配線層1003、2003と、第2の主面1004、2004の凸部1010,2010に形成された電極1005と2005とが、貫通配線1006、2006で接続されている。そして、電極1005、2005は、マザーボードなどの回路基板7上の配線電極8に、突起電極9により接続されている。
 2つの半導体装置1000および2000は、いずれも第2の主面1004,2004の横方向の端部に凹部1020、2020を有しているため、図15に示すように、回路基板7上に近接して配置された2つの半導体装置1000と2000との間の部分で、その凹部1020と2020とが共通の空間を形成する。そして、この空間内に、回路基板2100が配置されていて、回路部品2100は、その下面に形成された電極2110により、突起電極9を介して回路基板7の配線電極8と接続されている。
 このようにすることで、本実施形態の半導体装置では、回路基板7の表面積をより効率的に使用した2次元搭載SIP(システム・イン・パッケージ)を作成することができる。
 図15では、半導体装置の第2の主面に形成された凹部に配置される機能性の部材として、電子回路を用いた例を示したが、この他にも半導体装置の温度上昇を防止するための放熱手段を形成することができる。放熱手段としては、高熱伝導性樹脂や金属、または、ヒートパイプなどを使用することができる。
 なお、本実施形態において、図15では、回路基板7上に2つの半導体装置が近接して配置された例を示したが、本実施形態において、回路基板上の半導体装置は、一つであっても、または、3つの以上の半導体装置を回路基板7上に並べて配置するものであってもかまわない。
 また、図15では、回路基板上に近接して配置される半導体装置として、第1の実施形態において図1として示した形状のものを用いて説明したが、本発明にかかる半導体装置のいずれの形態のものでも同様に配置することができ、また、同じ形状の半導体装置に限らず、本発明の半導体装置の異なる形状のものを近接して配置することもできる。
 本発明にかかる半導体装置およびその製造方法によれば、パッケージ化されたときに高い接続信頼性が得られる半導体装置を得ることができ、超大型かつ超薄型の集積基板を、高い接続信頼性にてフリップチップBGA、ウェーハ・レベルCSPなどの小型パッケージや、3次元積層構造あるいは2次元搭載構造のSIP(システム・イン・パッケージ)にすることが可能になる。このため、本発明は、小型化、高速化、多機能化が加速度的に進む、携帯電話、パーソナルコンピュータ、ICカード、PDA、光通信機器、医療機器などの電子機器をはじめとして、各種の半導体装置およびその製造方法として有用である。

Claims (10)

  1.  第1の主面と、
     前記第1の主面の裏面に相当し、その一部に前記第1の主面の面積より小さい面積の凸部が形成された第2の主面とを有し、
     前記第1の主面に形成された集積回路配線層と、前記第2の主面の前記凸部に形成された複数の電極とが、貫通配線で接続された基板を備えたことを特徴とする半導体装置。
  2.  前記第2の主面の前記凸部以外の部分である凹部に、応力緩和材が埋設されている請求項1に記載の半導体装置。
  3.  前記凹部に埋設された前記応力緩和材の表面が、前記凸部の表面よりも突出して形成されている請求項2に記載の半導体装置。
  4.  前記凹部に埋設された前記応力緩和材の表面に複数の電極が形成されている請求項2に記載の半導体装置。
  5.  前記応力緩和材の表面に形成された前記電極が、貫通配線によって前記集積回路配線層と接続されている請求項4に記載の半導体装置。
  6.  前記応力緩和材の表面が前記凸部の表面よりも凹んで形成されている請求項4に記載の半導体装置。
  7.  前記第2の主面の前記凸部に形成された前記電極が絶縁層で覆われていて、前記絶縁層の表面に形成された外部電極と、前記電極とが接続されている請求項1から6のいずれか1項に記載の半導体装置。
  8.  請求項1から7のいずれか1項に記載の半導体装置が、前記基板の厚さ方向に複数個積層されていて、
     前記集積回路配線層上に形成された複数の積層電極が、積層された前記半導体装置の前記電極と接続されている半導体装置。
  9.  前記凹部に、電子部品、または、放熱手段が設置された請求項1から8のいずれか1項に記載の半導体装置。
  10.  請求項1から9のいずれか1項に記載の半導体装置の製造方法であって、
     前記基板の前記第1の主面に前記集積回路配線層を形成する工程と、
     前記基板に前記貫通配線を形成する工程と、
     前記第2の主面の前記凸部に前記電極を形成する工程とを備えたことを特徴とする半導体装置の製造方法。
PCT/JP2010/005007 2009-08-20 2010-08-10 半導体装置およびその製造方法 WO2011021364A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011527570A JPWO2011021364A1 (ja) 2009-08-20 2010-08-10 半導体装置およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-191319 2009-08-20
JP2009191319 2009-08-20

Publications (1)

Publication Number Publication Date
WO2011021364A1 true WO2011021364A1 (ja) 2011-02-24

Family

ID=43606824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005007 WO2011021364A1 (ja) 2009-08-20 2010-08-10 半導体装置およびその製造方法

Country Status (2)

Country Link
JP (1) JPWO2011021364A1 (ja)
WO (1) WO2011021364A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011146453A (ja) * 2010-01-13 2011-07-28 Renesas Electronics Corp 電子部品、半導体装置、及び半導体装置の製造方法
JP2015023186A (ja) * 2013-07-19 2015-02-02 株式会社ザイキューブ 電極、電極材料及び電極形成方法
WO2016199437A1 (ja) * 2015-06-12 2016-12-15 株式会社ソシオネクスト 半導体装置
WO2018180178A1 (ja) * 2017-03-30 2018-10-04 株式会社村田製作所 電子部品
WO2023105920A1 (ja) * 2021-12-08 2023-06-15 ソニーセミコンダクタソリューションズ株式会社 半導体装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002064162A (ja) * 2000-08-21 2002-02-28 Ibiden Co Ltd 半導体チップ
JP2003008186A (ja) * 2001-06-21 2003-01-10 Sony Corp 半導体装置
JP2004186651A (ja) * 2002-12-06 2004-07-02 Nec Corp 半導体装置及びその製造方法
JP2004281470A (ja) * 2003-03-12 2004-10-07 Kyocera Corp 配線基板
JP2006216691A (ja) * 2005-02-02 2006-08-17 Toshiba Corp 半導体装置及びその製造方法
JP2006344788A (ja) * 2005-06-09 2006-12-21 Canon Inc 三次元高密度実装構造
JP2007067215A (ja) * 2005-08-31 2007-03-15 Sanyo Electric Co Ltd 回路基板、回路基板の製造方法および回路装置
JP2007243104A (ja) * 2006-03-13 2007-09-20 Enzan Seisakusho Co Ltd 半導体ウェハ
JP2008263005A (ja) * 2007-04-11 2008-10-30 Toyobo Co Ltd インターポーザ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002064162A (ja) * 2000-08-21 2002-02-28 Ibiden Co Ltd 半導体チップ
JP2003008186A (ja) * 2001-06-21 2003-01-10 Sony Corp 半導体装置
JP2004186651A (ja) * 2002-12-06 2004-07-02 Nec Corp 半導体装置及びその製造方法
JP2004281470A (ja) * 2003-03-12 2004-10-07 Kyocera Corp 配線基板
JP2006216691A (ja) * 2005-02-02 2006-08-17 Toshiba Corp 半導体装置及びその製造方法
JP2006344788A (ja) * 2005-06-09 2006-12-21 Canon Inc 三次元高密度実装構造
JP2007067215A (ja) * 2005-08-31 2007-03-15 Sanyo Electric Co Ltd 回路基板、回路基板の製造方法および回路装置
JP2007243104A (ja) * 2006-03-13 2007-09-20 Enzan Seisakusho Co Ltd 半導体ウェハ
JP2008263005A (ja) * 2007-04-11 2008-10-30 Toyobo Co Ltd インターポーザ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011146453A (ja) * 2010-01-13 2011-07-28 Renesas Electronics Corp 電子部品、半導体装置、及び半導体装置の製造方法
JP2015023186A (ja) * 2013-07-19 2015-02-02 株式会社ザイキューブ 電極、電極材料及び電極形成方法
WO2016199437A1 (ja) * 2015-06-12 2016-12-15 株式会社ソシオネクスト 半導体装置
JPWO2016199437A1 (ja) * 2015-06-12 2018-03-29 株式会社ソシオネクスト 半導体装置
US10269774B2 (en) 2015-06-12 2019-04-23 Socionext Inc. Semiconductor device
WO2018180178A1 (ja) * 2017-03-30 2018-10-04 株式会社村田製作所 電子部品
WO2023105920A1 (ja) * 2021-12-08 2023-06-15 ソニーセミコンダクタソリューションズ株式会社 半導体装置

Also Published As

Publication number Publication date
JPWO2011021364A1 (ja) 2013-01-17

Similar Documents

Publication Publication Date Title
TWI758320B (zh) 半導體封裝
US7361972B2 (en) Chip packaging structure for improving reliability
CN100470793C (zh) 半导体器件和制造半导体器件的方法
JP4441328B2 (ja) 半導体装置及びその製造方法
KR100868419B1 (ko) 반도체장치 및 그 제조방법
TWI389183B (zh) 堆疊半導體晶片之方法與裝置
US8123965B2 (en) Interconnect structure with stress buffering ability and the manufacturing method thereof
US7989959B1 (en) Method of forming stacked-die integrated circuit
US6552267B2 (en) Microelectronic assembly with stiffening member
JP2010263192A (ja) 回路パターンの浮き上がり現象を抑制するパッケージオンパッケージ及びその製造方法
US8811031B2 (en) Multichip module and method for manufacturing the same
TWI636545B (zh) 半導體裝置
JP2006339331A (ja) 半導体装置およびその実装構造
US8692386B2 (en) Semiconductor device, method of manufacturing semiconductor device, and electronic device
WO2011086613A1 (ja) 半導体装置及びその製造方法
KR101047485B1 (ko) 전자소자 내장형 인쇄회로기판
JP2012109437A (ja) 半導体装置及びその製造方法
JP2007109790A (ja) フリップチップ型半導体装置
WO2011021364A1 (ja) 半導体装置およびその製造方法
KR20150131130A (ko) 반도체 장치 및 그 제조 방법
KR101708093B1 (ko) 반도체 장치
JP2010050150A (ja) 半導体装置及び半導体モジュール
JP2007142026A (ja) インターポーザとその製造方法及び半導体装置
TWI797701B (zh) 半導體裝置及其製造方法
JP4183070B2 (ja) マルチチップモジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809711

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011527570

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10809711

Country of ref document: EP

Kind code of ref document: A1