WO2016199194A1 - ハイブリッド車両の発電制御装置 - Google Patents

ハイブリッド車両の発電制御装置 Download PDF

Info

Publication number
WO2016199194A1
WO2016199194A1 PCT/JP2015/066492 JP2015066492W WO2016199194A1 WO 2016199194 A1 WO2016199194 A1 WO 2016199194A1 JP 2015066492 W JP2015066492 W JP 2015066492W WO 2016199194 A1 WO2016199194 A1 WO 2016199194A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
idle
motor
battery
vehicle
Prior art date
Application number
PCT/JP2015/066492
Other languages
English (en)
French (fr)
Inventor
良平 豊田
軍司 憲一郎
智宏 宮川
古閑 雅人
寛之 福田
秀和 八木
忍 釜田
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to MYPI2017704626A priority Critical patent/MY167707A/en
Priority to US15/578,272 priority patent/US10093166B2/en
Priority to JP2017522767A priority patent/JP6384606B2/ja
Priority to BR112017026235-5A priority patent/BR112017026235B1/pt
Priority to CN201580080793.5A priority patent/CN107709117B/zh
Priority to CA2988622A priority patent/CA2988622C/en
Priority to RU2017144544A priority patent/RU2670557C1/ru
Priority to EP15894880.2A priority patent/EP3305614B1/en
Priority to KR1020177036672A priority patent/KR101849898B1/ko
Priority to MX2017015642A priority patent/MX2017015642A/es
Priority to PCT/JP2015/066492 priority patent/WO2016199194A1/ja
Publication of WO2016199194A1 publication Critical patent/WO2016199194A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18027Drive off, accelerating from standstill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18054Propelling the vehicle related to particular drive situations at stand still, e.g. engine in idling state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18063Creeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/076Slope angle of the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4808Electric machine connected or connectable to gearbox output shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/18Braking system
    • B60W2510/186Status of parking brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/04Vehicle stop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a power generation control device for a hybrid vehicle that performs EV start using a first motor supplied with power generated by a second motor and battery power when the vehicle starts.
  • the conventional series hybrid vehicle has a configuration in which only the torque of the starting motor is used at the start, and necessary power is supplied to the starting motor by battery power and series generated power. For this reason, there is a problem that the vehicle cannot start when the required power cannot be covered by the battery power and the series generated power, such as when the battery SOC is low.
  • the present invention has been made paying attention to the above problems, and an object of the present invention is to provide a power generation control device for a hybrid vehicle that ensures electric power necessary for starting while the vehicle is stopped.
  • the hybrid vehicle of the present invention is mechanically coupled to the drive wheels, and is mechanically coupled to the internal combustion engine and the first electric motor mainly used for traveling driving, and the electric power that can be generated is the first.
  • a second electric motor smaller than the electric motor, and a battery electrically coupled to the first electric motor and the second electric motor.
  • EV start is performed using the first motor supplied with power generated by the second motor and battery power as a drive source.
  • a power generation controller is provided that generates power at least one of the first electric motor and the second electric motor using the torque of the internal combustion engine.
  • the power generation controller disconnects the first motor, which has a larger power generation capacity than the second motor, from the drive wheel and is coupled to the internal combustion engine, and receives the torque from the internal combustion engine to generate power by the first motor. I do.
  • the first motor which can generate more power than the second motor, is disconnected from the drive wheel and coupled to the internal combustion engine, and receives the torque from the internal combustion engine and generates power by the first motor. Idle power generation is performed. That is, since MG1 idle power generation by the first motor is performed while the vehicle is stopped, more generated power can be obtained compared to MG2 idle power generation by the second motor when the stop time is the same. Capacity reduction is prevented. As a result, it is possible to secure electric power necessary for starting while the vehicle is stopped.
  • FIG. 1 is an overall system diagram showing a drive system and a control system of a hybrid vehicle to which a shift control device according to a first embodiment is applied.
  • 1 is a control system configuration diagram illustrating a configuration of a transmission control system of a multi-stage gear transmission mounted on a hybrid vehicle to which a transmission control device according to a first embodiment is applied.
  • FIG. 3 is a shift map schematic diagram showing a concept of switching the shift speed in a multi-stage gear transmission mounted on a hybrid vehicle to which the shift control apparatus of the first embodiment is applied.
  • FIG. 3 is a fastening table showing gear positions according to switching positions of three engagement clutches in a multi-stage gear transmission mounted on a hybrid vehicle to which the gear shift control device of Embodiment 1 is applied.
  • 3 is a flowchart showing a flow of power generation control processing executed by the hybrid control module of Embodiment 1. Time chart showing characteristics of ICE, MG1, MG2 rotation speed, ICE, MG1, MG2 torque, range, engagement clutch C1, C2, C3, and battery SOC when executing MG1 idle power generation in the hybrid vehicle of the first embodiment It is.
  • FIG. 6 is a torque flow diagram showing an ICE torque transmission path in a multi-stage gear transmission when a gear stage “EV- ICEgen” is selected in MG1 idle power generation.
  • FIG. 6 is a torque flow diagram showing an ICE torque transmission path in a multi-stage gear transmission when a gear stage “EV1st ICE-” is selected in MG2 idle power generation.
  • Time chart showing characteristics of ICE, MG1, MG2 rotation speed, ICE, MG1, MG2 torque, range, engagement clutch C1, C2, C3, and battery SOC when executing double idle power generation in the hybrid vehicle of the first embodiment It is.
  • FIG. 7 is a torque flow diagram showing an ICE torque transmission path in a multi-stage gear transmission when a shift stage “EV- ICEgen” is selected in double idle power generation.
  • FIG. 7 is a torque flow diagram showing an ICE torque transmission path in a multi-stage gear transmission when a shift stage “EV- ICEgen” is selected in double idle limited power generation. It is a flowchart which shows the flow of the electric power generation control process performed with the hybrid control module of Example 1, and shows a 1st characteristic structure.
  • the power generation control device of the first embodiment includes a hybrid vehicle (an example of a hybrid vehicle) including, as drive system components, one engine, two motor generators, and a multi-stage gear transmission having three engagement clutches. Is applied.
  • a hybrid vehicle an example of a hybrid vehicle
  • the configuration of the power generation control device for the hybrid vehicle in the first embodiment will be described by being divided into “overall system configuration”, “shift control system configuration”, “shift speed configuration”, and “power generation control processing configuration”.
  • FIG. 1 shows a drive system and a control system of a hybrid vehicle to which the power generation control device of the first embodiment is applied.
  • the overall system configuration will be described below with reference to FIG.
  • the drive system of the hybrid vehicle includes an internal combustion engine ICE, a first motor generator MG1, a second motor generator MG2, and a multi-stage gear transmission 1 having three engagement clutches C1, C2, C3.
  • ICE is an abbreviation for “Internal-Combustion Engine”.
  • the internal combustion engine ICE is, for example, a gasoline engine or a diesel engine disposed in the front room of the vehicle with the crankshaft direction as the vehicle width direction.
  • the internal combustion engine ICE is connected to the transmission case 10 of the multi-stage gear transmission 1 and the output shaft of the internal combustion engine is connected to the first shaft 11 of the multi-stage gear transmission 1.
  • the internal combustion engine ICE basically starts MG2 using the second motor generator MG2 as a starter motor. However, the starter motor 2 is left in preparation for the case where the MG2 start using the high-power battery 3 cannot be secured, such as at a very low temperature.
  • Both the first motor generator MG1 and the second motor generator MG2 are three-phase AC permanent magnet synchronous motors using the high-power battery 3 as a common power source.
  • the stator of first motor generator MG1 is fixed to the case of first motor generator MG1, and the case is fixed to transmission case 10 of multi-stage gear transmission 1.
  • a first motor shaft that is integral with the rotor of first motor generator MG1 is connected to second shaft 12 of multi-stage gear transmission 1.
  • the stator of the second motor generator MG2 is fixed to the case of the second motor generator MG2, and the case is fixed to the transmission case 10 of the multi-stage gear transmission 1.
  • a second motor shaft integrated with the rotor of second motor generator MG2 is connected to sixth shaft 16 of multi-stage gear transmission 1.
  • a first inverter 4 that converts direct current to three-phase alternating current during power running and converts three-phase alternating current to direct current during regeneration is connected to the stator coil of first motor generator MG1 via first AC harness 5.
  • a second inverter 6 is connected to the stator coil of the second motor generator MG2 via a second AC harness 7 for converting direct current into three-phase alternating current during power running and converting three-phase alternating current into direct current during regeneration.
  • the high-power battery 3 is connected to the first inverter 4 and the second inverter 6 by a DC harness 8 via a junction box 9.
  • the multi-stage gear transmission 1 is a constantly meshing transmission having a plurality of gear pairs with different gear ratios, and is arranged in parallel with each other in a transmission case 10 and has six gear shafts 11 to 16 provided with gears. And three engagement clutches C1, C2, C3 for selecting a gear pair.
  • As the gear shaft a first shaft 11, a second shaft 12, a third shaft 13, a fourth shaft 14, a fifth shaft 15 and a sixth shaft 16 are provided.
  • As the engagement clutch a first engagement clutch C1, a second engagement clutch C2, and a third engagement clutch C3 are provided.
  • the transmission case 10 is provided with an electric oil pump 20 that supplies lubricating oil to a bearing portion and a gear meshing portion in the case.
  • the first shaft 11 is a shaft to which the internal combustion engine ICE is connected.
  • a first gear 101, a second gear 102, and a third gear 103 are arranged in order from the right side of FIG. .
  • the first gear 101 is provided integrally (including integrated fixing) with respect to the first shaft 11.
  • the second gear 102 and the third gear 103 are idle gears in which bosses protruding in the axial direction are inserted into the outer periphery of the first shaft 11, and are connected to the first shaft 11 via the second engagement clutch C2. It is provided so that drive connection is possible.
  • the second shaft 12 is a cylindrical shaft that is connected to the first motor generator MG1 and is coaxially arranged with the axial center aligned with the outer position of the first shaft 11, and the second shaft 12 has a right side in FIG.
  • a fourth gear 104 and a fifth gear 105 are arranged in this order.
  • the fourth gear 104 and the fifth gear 105 are provided integrally with the second shaft 12 (including integrated fixing).
  • the third shaft 13 is a shaft disposed on the output side of the multi-stage gear transmission 1.
  • the third shaft 13 includes a sixth gear 106, a seventh gear 107, and an eighth gear in order from the right side of FIG. 108, a ninth gear 109, and a tenth gear 110 are arranged.
  • the sixth gear 106, the seventh gear 107, and the eighth gear 108 are provided integrally with the third shaft 13 (including integrated fixing).
  • the ninth gear 109 and the tenth gear 110 are idle gears in which bosses protruding in the axial direction are inserted into the outer periphery of the third shaft 13, and are connected to the third shaft 13 via the third engagement clutch C3. It is provided so that drive connection is possible.
  • the sixth gear 106 meshes with the second gear 102 of the first shaft 11, the seventh gear 107 meshes with the sixteenth gear 116 of the differential gear 17, and the eighth gear 108 meshes with the third gear 103 of the first shaft 11.
  • the ninth gear 109 meshes with the fourth gear 104 of the second shaft 12, and the tenth gear 110 meshes with the fifth gear 105 of the second shaft 12.
  • the fourth shaft 14 is a shaft whose both ends are supported by the transmission case 10, and the eleventh gear 111, the twelfth gear 112, and the thirteenth gear 113 are sequentially arranged on the fourth shaft 14 from the right side in FIG. Be placed.
  • the eleventh gear 111 is provided integrally with the fourth shaft 14 (including integrated fixation).
  • the twelfth gear 112 and the thirteenth gear 113 are idle gears in which bosses protruding in the axial direction are inserted into the outer periphery of the fourth shaft 14, and are connected to the fourth shaft 14 via the first engagement clutch C1. It is provided so that drive connection is possible.
  • the eleventh gear 111 is engaged with the first gear 101 of the first shaft 11
  • the twelfth gear 112 is engaged with the second gear 102 of the first shaft 11
  • the thirteenth gear 113 is engaged with the fourth gear 104 of the second shaft 12. Mesh with.
  • the fifth shaft 15 is a shaft whose both ends are supported by the transmission case 10, and a fourteenth gear 114 that meshes with the eleventh gear 111 of the fourth shaft 14 is provided integrally (including integral fixing).
  • the sixth shaft 16 is a shaft to which the second motor generator MG2 is connected, and a fifteenth gear 115 that meshes with the fourteenth gear 114 of the fifth shaft 15 is provided integrally (including integrated fixing).
  • the second motor generator MG2 and the internal combustion engine ICE are mechanically connected by a gear train including a 15th gear 115, a 14th gear 114, an 11th gear 111, and a first gear 101 that mesh with each other.
  • This gear train is a reduction gear train that decelerates the MG2 rotation speed when the internal combustion engine ICE is started by the second motor generator MG2, and the engine rotation is generated during the MG2 power generation that generates the second motor generator MG2 by driving the internal combustion engine ICE. It becomes a speed increasing gear train that increases the number.
  • the first engagement clutch C1 is interposed between the twelfth gear 112 and the thirteenth gear 113 of the fourth shaft 14, and is not fastened by a meshing stroke in a rotationally synchronized state by having no synchronization mechanism. It is a dog clutch.
  • the first engagement clutch C1 When the first engagement clutch C1 is in the left engagement position (Left), the fourth shaft 14 and the thirteenth gear 113 are drivingly connected.
  • the first engagement clutch C1 is in the neutral position (N), the fourth shaft 14 and the twelfth gear 112 are released, and the fourth shaft 14 and the thirteenth gear 113 are released.
  • the first engagement clutch C1 is in the right engagement position (Right), the fourth shaft 14 and the twelfth gear 112 are drivingly connected.
  • the second engagement clutch C2 is interposed between the second gear 102 and the third gear 103 of the first shaft 11, and is not fastened by a meshing stroke in a rotationally synchronized state by having no synchronization mechanism. It is a dog clutch.
  • the second engagement clutch C2 When the second engagement clutch C2 is in the left engagement position (Left), the first shaft 11 and the third gear 103 are drivingly connected.
  • the second engagement clutch C2 When the second engagement clutch C2 is in the neutral position (N), the first shaft 11 and the second gear 102 are released, and the first shaft 11 and the third gear 103 are released.
  • the second engagement clutch C2 is in the right engagement position (Right), the first shaft 11 and the second gear 102 are drivingly connected.
  • the third engagement clutch C3 is interposed between the ninth gear 109 and the tenth gear 110 of the third shaft 13, and is not fastened by a meshing stroke in a rotationally synchronized state by having no synchronization mechanism. It is a dog clutch.
  • the third engagement clutch C3 When the third engagement clutch C3 is in the left side engagement position (Left), the third shaft 13 and the tenth gear 110 are drivingly connected.
  • the third engagement clutch C3 is in the neutral position (N), the third shaft 13 and the ninth gear 109 are released, and the third shaft 13 and the tenth gear 110 are released.
  • the third engagement clutch C3 is in the right engagement position (Right), the third shaft 13 and the ninth gear 109 are drivingly connected.
  • a sixteenth gear 116 meshed with a seventh gear 107 provided integrally (including integral fixing) with the third shaft 13 of the multi-stage gear transmission 1 is left and right via the differential gear 17 and the left and right drive shafts 18. Are connected to the drive wheel 19.
  • the hybrid vehicle control system includes a hybrid control module 21, a motor control unit 22, a transmission control unit 23, and an engine control unit 24.
  • the hybrid control module 21 (abbreviation: “HCM”) is an integrated control means having a function of appropriately managing the energy consumption of the entire vehicle.
  • the hybrid control module 21 is connected to other control units (such as a motor control unit 22, a transmission control unit 23, and an engine control unit 24) via a CAN communication line 25 so that bidirectional information can be exchanged.
  • CAN of the CAN communication line 25 is an abbreviation of “Controller Area Network”.
  • the motor control unit 22 (abbreviation: “MCU”) performs power running control and regenerative control of the first motor generator MG1 and the second motor generator MG2 in accordance with control commands for the first inverter 4 and the second inverter 6.
  • Control modes for the first motor generator MG1 and the second motor generator MG2 include “torque control” and “rotational speed FB control”. “Torque control” performs control for causing the actual motor torque to follow the target motor torque when the target motor torque to be shared with respect to the target torque is determined.
  • “Rotational speed FB control” determines the target motor rotational speed to synchronize the clutch input / output rotational speed when there is a shift request for meshing and engaging any of the engagement clutches C1, C2, and C3 during travel. Control is performed to output FB torque so that the rotation speed converges to the target motor rotation speed.
  • the transmission control unit 23 (abbreviation: “TMCU”) outputs a current command to the electric actuators 31, 32, 33 (see FIG. 2) based on predetermined input information, thereby shifting the multi-stage gear transmission 1. Shift control for changing gears is performed.
  • the engagement clutches C1, C2, and C3 are selectively meshed and engaged / released, and a gear pair involved in power transmission is selected from a plurality of pairs of gears.
  • the first motor generator MG1 or the first motor is used to ensure mesh engagement by suppressing the differential rotational speed of the clutch input / output.
  • 2-Rotation speed FB control rotation synchronization control
  • the engine control unit 24 (abbreviation: “ECU”) outputs a control command to the motor control unit 22, the ignition plug, the fuel injection actuator, and the like based on predetermined input information, thereby controlling the start-up of the internal combustion engine ICE and the internal combustion engine. Performs engine ICE stop control and fuel cut control.
  • the multi-stage gear transmission 1 is characterized in that efficiency is improved by reducing drag by employing engagement clutches C1, C2, and C3 (dog clutches) by mesh engagement as transmission elements. . If there is a shift request for engaging and engaging any of the engagement clutches C1, C2, and C3, the differential rotational speed of the clutch input / output is set to the first motor generator MG1 (when the engagement clutch C3 is engaged) or the second motor. This is realized by synchronizing the rotation with the generator MG2 (when the engagement clutches C1 and C2 are engaged) and starting the meshing stroke when it is within the synchronization determination rotation speed range.
  • the transmission control system includes a first engagement clutch C1, a second engagement clutch C2, and a third engagement clutch C3 as engagement clutches.
  • a first electric actuator 31 for C2, C3 shift operation, a second electric actuator 32 for C2, C3 selection operation, and a third electric actuator 33 for C3 shift operation are provided.
  • a C1 / C2 select operation mechanism 40, a C1 shift operation mechanism 41, a C2 shift operation mechanism 42, and a C3 shift operation mechanism 43 are provided as shift mechanisms that convert the actuator operation into clutch engagement / release operation.
  • a transmission control unit 23 is provided as a control means for the first electric actuator 31, the second electric actuator 32, and the third electric actuator 33.
  • the first engagement clutch C1, the second engagement clutch C2, and the third engagement clutch C3 are in a neutral position (N: release position), a left engagement position (Left: left clutch engagement engagement position), and a right engagement position. (Right: right clutch meshing engagement position).
  • Each of the engagement clutches C1, C2, and C3 has the same configuration, and includes coupling sleeves 51, 52, and 53, left dog clutch rings 54, 55, and 56, and right dog clutch rings 57, 58, and 59.
  • the coupling sleeves 51, 52, and 53 are provided so as to be capable of stroke in the axial direction by spline coupling via hubs (not shown) fixed to the fourth shaft 14, the first shaft 11, and the third shaft 13.
  • dog teeth 51a, 51b, 52a, 52b, 53a, 53b with flat top surfaces are provided on both sides. Furthermore, fork grooves 51c, 52c, and 53c are provided at the center portions in the circumferential direction of the coupling sleeves 51, 52, and 53.
  • the left dog clutch rings 54, 55, 56 are fixed to the bosses of the respective gears 113, 103, 110, which are the left idle gears of the respective engagement clutches C1, C2, C3, and are flat top surfaces facing the dog teeth 51a, 52a, 53a. Dog teeth 54a, 55a, and 56a.
  • the right dog clutch rings 57, 58, 59 are fixed to the bosses of the respective gears 112, 102, 109, which are the right idle gears of the engagement clutches C1, C2, C3, and are flat top surfaces facing the dog teeth 51b, 52b, 53b. Dog teeth 57b, 58b, 59b.
  • the C1 / C2 select operation mechanism 40 has a first position for selecting connection between the first electric actuator 31 and the C1 shift operation mechanism 41, and a second position for selecting connection between the first electric actuator 31 and the C2 shift operation mechanism 42. And a mechanism for selecting between.
  • first position is selected, the shift rod 62 and the shift rod 64 of the first engagement clutch C1 are connected, and the shift rod 65 of the second engagement clutch C2 is locked at the neutral position.
  • the second position is selected, the shift rod 62 and the shift rod 65 of the second engagement clutch C2 are connected, and the shift rod 64 of the first engagement clutch C1 is locked at the neutral position. That is, when a position for shifting one engagement clutch is selected from the first position and the second position, the other engagement clutch is locked and fixed at the neutral position.
  • the C1 shift operation mechanism 41, the C2 shift operation mechanism 42, and the C3 shift operation mechanism 43 are mechanisms that convert the rotation operation of the electric actuators 31, 33 into the axial stroke operation of the coupling sleeves 51, 52, 53. .
  • Each of the shift operation mechanisms 41, 42, 43 has the same configuration, and includes rotation links 61, 63, shift rods 62, 64, 65, 66, and shift forks 67, 68, 69.
  • One end of each of the rotation links 61 and 63 is provided on the actuator shaft of the electric actuators 31 and 33, and the other end is connected to the shift rod 64 (or the shift rod 65) and 66 so as to be relatively displaceable.
  • the shift rods 64, 65, 66 are provided with springs 64 a, 65 a, 66 a at rod division positions, and can be expanded and contracted according to the magnitude and direction of the rod transmission force.
  • One end of the shift forks 67, 68, 69 is fixed to the shift rods 64, 65, 66, and the other end is disposed in the fork grooves 51c, 52c, 53c of the coupling sleeves 51, 52, 53.
  • the transmission control unit 23 includes a vehicle speed sensor 71, an accelerator opening sensor 72, a transmission output shaft rotational speed sensor 73, an engine rotational speed sensor 74, an MG1 rotational speed sensor 75, an MG2 rotational speed sensor 76, an inhibitor switch 77, a battery. Sensor signals and switch signals from the SOC sensor 78, road surface gradient sensor 79, brake switch 80, MG2 temperature sensor 81 of the second motor generator MG2, and the like are input.
  • the transmission output shaft rotation speed sensor 73 is provided at the shaft end of the third shaft 13 and detects the shaft rotation speed of the third shaft 13.
  • a position servo control unit (for example, a position servo system based on PID control) that controls engagement and disengagement of engagement clutches C1, C2, and C3 determined by the positions of the coupling sleeves 51, 52, and 53 is provided.
  • This position servo control unit inputs sensor signals from the first sleeve position sensor 81, the second sleeve position sensor 82, and the third sleeve position sensor 83. Then, the sensor values of the sleeve position sensors 81, 82, 83 are read, and electric currents are supplied to the electric actuators 31, 32, 33 so that the positions of the coupling sleeves 51, 52, 53 become the fastening position or the releasing position by the meshing stroke. give.
  • the idle gear is set in the engagement state where the dog teeth welded to the coupling sleeves 51, 52, 53 and the dog teeth welded to the idle gear are engaged with each other, so that the idle gear is in the fourth axis. 14, drivingly connected to the first shaft 11 and the third shaft 13.
  • the coupling sleeves 51, 52, 53 are displaced in the axial direction, the dog teeth welded to the coupling sleeves 51, 52, 53 and the dog teeth welded to the idle gear are in the non-engagement position.
  • the idle gear is separated from the fourth shaft 14, the first shaft 11, and the third shaft 13.
  • the multi-stage gear transmission 1 of the first embodiment reduces power transmission loss by not having a rotation difference absorbing element such as a fluid coupling, and reduces the ICE gear stage by assisting the internal combustion engine ICE by motors, thereby reducing the size ( EV shift stage: 1-2 speed, ICE shift stage: 1-4 speed).
  • a rotation difference absorbing element such as a fluid coupling
  • the gear configuration of the multi-stage gear transmission 1 will be described with reference to FIGS. 3 and 4.
  • the concept of the gear position is that, in the starting region where the vehicle speed VSP is equal to or lower than the predetermined vehicle speed VSP0, the multi-stage gear transmission 1 does not have a starting element (sliding element). Motor start (EV start) using only power.
  • the traveling region as shown in FIG. 3, when the demand for the driving force is large, the concept of the shift stage is adopted in which the engine driving force is supported by the “parallel HEV mode” that assists with the motor driving force. That is, as the vehicle speed VSP increases, the ICE shift speed shifts from (ICE1st ⁇ ) ICE2nd ⁇ ICE3rd ⁇ ICE4th, and the EV shift speed shifts from EV1st ⁇ EV2nd. Therefore, a shift map for issuing a shift request for switching the shift stage is created based on the concept of the shift stage shown in FIG.
  • FIG. 4 shows all the speeds that can be theoretically realized by the multi-stage gear transmission 1 having the engagement clutches C1, C2, and C3.
  • “Lock” in FIG. 4 represents an interlock shift stage that is not established as a shift stage
  • “EV-” represents a state in which the first motor generator MG1 is not drivingly connected to the drive wheels 19
  • “ICE” “-” Represents a state in which the internal combustion engine ICE is not drivingly connected to the drive wheels 19.
  • each gear stage will be described.
  • the shift stage of “EV-ICEgen” is selected at the time of MG1 idle power generation by the first motor generator MG1 by the internal combustion engine ICE or double idle power generation by adding MG2 power generation to MG1 power generation while the vehicle is stopped.
  • the “Neutral” gear stage is a gear stage that is selected during MG2 idle power generation by the second motor generator MG2 by the internal combustion engine ICE while the vehicle is stopped.
  • the shift stage of “EV2nd ICE-” is set in the “EV mode” in which the internal combustion engine ICE is stopped and the first motor generator MG1 travels, or while the second motor generator MG2 generates power with the internal combustion engine ICE. This is the gear stage selected in the “series HEV mode” in which the first motor generator MG1 performs the second-speed EV traveling.
  • the multi-stage gear transmission 1 uses the multi-stage gear transmission 1 to remove all the gear stages from which the "interlock gear stage (cross hatching in FIG. 4)" and "the gear stage that cannot be selected by the shift mechanism (upward hatching in FIG. A plurality of shift stages that can be realized.
  • the gears that cannot be selected by the shift mechanism include “EV1.5 ICE2nd” in which the first engagement clutch C1 is “Left” and the second engagement clutch C2 is “Left”, and the first engagement “EV2.5 ICE4th” in which the clutch C1 is “Left” and the second engagement clutch C2 is “Right”.
  • the reason why it cannot be selected by the shift mechanism is that one first electric actuator 31 is a shift actuator that is also used for the two engagement clutches C1 and C2, and one engagement clutch by the C1 / C2 selection operation mechanism 40. Is due to being neutral locked.
  • the “normally used shift speeds” include EV shift speed (EV1st1ICE-, EV2nd ICE-), ICE shift speed (EV- ICE2nd, EV- ICE3rd, EV- ICE4th), and combination shift speed (EV1st ICE2nd, EV1st ICE3rd, EV2nd ICE2nd, EV2nd ICE3rd, EV2nd ICE4th) is added by adding “Neutral”.
  • FIG. 5 shows a flow of power generation control processing executed by the hybrid control module 21 of the first embodiment (power generation controller).
  • This process is “START” when the ignition is turned on, and is repeatedly executed at predetermined processing times (for example, 10 ms) during vehicle startup.
  • step S1 it is determined whether or not the hybrid vehicle is stopped. If YES (while the vehicle is stopped), the process proceeds to step S2. If NO (while the vehicle is traveling, etc.), step S1 is repeated.
  • whether or not the vehicle is “stopped” is determined from a plurality of pieces of information such as vehicle speed VSP information from the vehicle speed sensor 71.
  • step S2 following the determination that “the vehicle is stopped” in step S1, it is determined whether there is a power generation request from the driver. If YES (there is a power generation request), the process proceeds to step S3. If NO (no power generation request), the process proceeds to step S4.
  • the “power generation request from the driver” is, for example, a case where the driver operates a “power generation request switch” provided on an instrument panel or the like in the vehicle and turns on the switch. This information is input to the hybrid control module 21, for example.
  • step S3 following the determination that “power generation is requested” in step S2, it is determined whether or not the required generated power from the driver is greater than a predetermined value. If YES (required generated power> predetermined value), the process proceeds to step S12. If NO (required generated power ⁇ predetermined value), the process proceeds to step S13.
  • the “required generated power from the driver” means, for example, that the driver operates a dial provided together with the above “generation request switch”, and the required generated power is set according to the position of the dial. This information is input to the hybrid control module 21, for example. In addition to the dial, the dial may be switched by multiple stages such as “large” and “small”. In short, any device that can set the required generated power may be used.
  • the “predetermined value” is the same as the “predetermined value” in step S10 described later.
  • step S4 following the determination of “no power generation request” in step S2, it is determined whether or not the P range is switched to the D range by the driver's selection operation on the select lever. If YES (P ⁇ D select), the process proceeds to step S18, and if NO (not P ⁇ D select), the process proceeds to step S5.
  • information P range, D range, N range, R range, etc. is acquired from the inhibitor switch 77 that detects the position of the select lever. For example, when the current range is the P range and the next process is switched to the D range, it is determined that “P ⁇ D select”.
  • step S5 following the determination of “not P ⁇ D select” in step S4, it is determined whether or not the battery SOC is less than the first capacity threshold. If YES (battery SOC ⁇ first capacity threshold, when battery capacity (battery SOC) is insufficient), the process proceeds to step S6; if NO (battery SOC ⁇ first capacity threshold, battery capacity (battery SOC) is satisfied), step Proceed to S18.
  • battery SOC is the battery capacity (charge capacity) of the high-power battery 3, and battery SOC information is acquired by the battery SOC sensor 78.
  • the “first capacity threshold value” is a threshold value for determining whether or not there is a battery SOC request (charging request) in the management of the high-power battery 3 that secures the electric power necessary for starting the EV.
  • the “first capacity threshold” may be determined based on whether or not the battery SOC request (charging request) is present in consideration of not using a battery SOC region that is low enough to adversely affect the life of the high-power battery 3.
  • the “first capacity threshold” is, for example, 50% for the battery SOC.
  • step S6 following the determination of “battery SOC ⁇ first capacity threshold” in step S5, it is determined whether or not a road surface gradient is detected. If YES (road surface gradient is detected (is a gradient road)), the process proceeds to step S13. If NO (road surface gradient is not detected (not a gradient road)), the process proceeds to step S7.
  • the “road gradient” is a longitudinal gradient ⁇ [rad] that is a gradient of a road on which the hybrid vehicle is stopped, and is detected by, for example, a road gradient sensor 79. Note that the road surface gradient may be estimated from the front-rear G sensor instead of the road surface gradient sensor 79.
  • step S7 it is determined whether or not the brake switch 80 is ON or OFF, following the determination that “road surface gradient is not detected” in step S6. If YES (brake switch ON), the process proceeds to step S9. If NO (brake switch OFF), the process proceeds to step S8.
  • step S8 following the determination of “brake switch OFF” in step S7, it is determined whether or not the P range (parking range) is selected by the driver's selection operation on the select lever. If YES (P range), the process proceeds to step S9. If NO (N, D range, etc.), the process proceeds to step S13.
  • the information (P range, D range, N range, R range, etc.) from the inhibitor switch 77 is acquired as to whether or not it is “P range”.
  • step S9 following the determination of “brake switch ON” in step S7 or the determination of “P range” in step S8, it is determined whether or not the battery SOC is less than the second capacity threshold value. If YES (battery SOC ⁇ second capacity threshold), the process proceeds to step S10, and if NO (battery SOC ⁇ second capacity threshold), the process proceeds to step S11.
  • the “second capacity threshold value” is a threshold value for determining whether there is a battery SOC request and the request level is high or low. In other words, it is a threshold value that determines whether or not the required level is quick charge.
  • the “second capacity threshold” is, for example, 45% for the battery SOC.
  • step S10 following the determination of “battery SOC ⁇ second capacity threshold” in step S9, it is determined whether the MG2 power that can be generated by the second motor generator MG2 is greater than a predetermined value. If YES (MG2 power generation possible power> predetermined value), the process proceeds to step S14. If NO (MG2 power generation possible power ⁇ predetermined value), the process proceeds to step S15.
  • “MG2 electric power that can be generated” is electric power that can be generated by the second motor generator MG2. This MG2 power that can be generated is determined from, for example, the MG2 temperature information obtained by the MG2 temperature sensor 81 of the second motor generator MG2 and the MG2 temperature.
  • the “predetermined value” is set to a value that allows the second motor generator MG2 to continuously generate power for a predetermined time. This value is set depending on the performance of the second motor generator MG2, but is 15 kW, for example.
  • step S11 following the determination of “battery SOC ⁇ second capacity threshold” in step S9, it is determined whether the MG2 power that can be generated by the second motor generator MG2 is greater than a predetermined value. If YES (MG2 power generation possible power> predetermined value), the process proceeds to step S16. If NO (MG2 power generation possible power ⁇ predetermined value), the process proceeds to step S17.
  • MG2 power that can be generated and “predetermined value” are as described above.
  • step S12 following the determination of “required generated power> predetermined value” in step S3, while the vehicle is stopped, MG1 idle power generation is performed by the first motor generator MG1 by the internal combustion engine ICE, and the process proceeds to the end.
  • MG1 idle power generation (MG1 power generation) corresponding to the required power generation from the driver is executed.
  • the operating point of the internal combustion engine ICE during MG1 idle power generation is determined in consideration of generated power, power generation efficiency, and sound vibration.
  • the sound vibration may increase and the driver may feel uncomfortable. For this reason, in such a case, the sound vibration is prioritized over the power generation efficiency, and the ICE torque is increased by lowering the ICE rotation speed (engine rotation speed).
  • step S13 it is determined that “required generated power ⁇ predetermined value” in step S3, “road surface gradient is detected” in step S6, or “N, D range, etc.” in step S8.
  • MG2 idle power generation is performed by the internal combustion engine ICE using the second motor generator MG2, and the process proceeds to the end. Note that MG2 idle power generation (MG2 power generation) is executed after switching to the “EV1st ICE-” gear position.
  • step S14 following the determination that “MG2 power generation possible power> predetermined value” in step S10, double idle power generation (double power generation (double power generation (for example, 15 kW)) is added to MG1 idle power generation while the vehicle is stopped. No limit))) and go to the end.
  • double idle power generation is executed after switching to the shift stage of “EV- ICEgen”.
  • step S15 following the determination of “MG2 power generation possible power ⁇ predetermined value” in step S10, a double idle limit obtained by adding MG2 idle power generation (for example, power generation at 5 kW) to which MG2 idle power generation is limited to MG1 idle power generation. Execute power generation (double power generation (with restrictions)) and go to the end. That is, MG2 idle power generation is limited by the determination of “MG2 power generation possible power ⁇ predetermined value” in step S10. After switching to the “EV- ICEgen” gear position, double idle limited power generation is executed.
  • MG2 idle power generation for example, power generation at 5 kW
  • step S16 following the determination that “MG2 power generation possible power> predetermined value” in step S11, MG2 idle power generation is executed while the vehicle is stopped, as in step S13, and the process proceeds to the end. Note that MG2 idle power generation is executed after switching to the “EV1st ICE-” gear position.
  • step S17 following the determination that “MG2 power generation possible power ⁇ predetermined value” in step S11, as in step S12, MG1 idle power generation is executed while the vehicle is stopped, and the process proceeds to the end. That is, since the MG2 idle power generation is limited by the determination of “MG2 power generation possible power ⁇ predetermined value” in step S11, the second motor generator MG2 is not used for power generation. Note that MG1 idle power generation is performed after switching to the “EV- ICEgen” gear position.
  • step S18 following the determination of “P ⁇ D select” in step S4 or the determination of “battery SOC ⁇ first capacity threshold” in step S5, the first motor generator MG1 also uses the second motor. Generator MG2 does not generate power and proceeds to the end.
  • step S18 if the first motor generator MG1 is mechanically coupled to the drive wheels 19, it remains coupled. On the other hand, if the first motor generator MG1 is not mechanically coupled to the drive wheel 19, clutch replacement is performed to fasten the third engagement clutch C3 to be coupled. This is to prepare for an EV start (motor start) request.
  • step S1 is repeated in the flowchart of FIG. 5 until it is determined that the hybrid vehicle is stopped.
  • step S1 if it is determined in step S1 that the vehicle is stopped, the flow from step S1 to step S2 is the same.
  • step S3 it is determined whether or not the required generated power from the driver is greater than a predetermined value (required generated power> predetermined value). If it is determined in step S3 that “required generated power> predetermined value”, the process proceeds from step S3 to step S12.
  • step S12 MG1 idle power generation according to the required generated power from the driver is executed. That is, the power generation control when executing the MG1 idle power generation is a flow that proceeds from START ⁇ step S1 ⁇ step S2 ⁇ step S3 ⁇ step S12 ⁇ end in the flowchart of FIG.
  • step S4 it is determined whether or not the P range is switched to the D range by the driver's selection operation. If it is determined in step S4 that “P ⁇ D is not selected”, the process proceeds to step S5. In step S5, it is determined whether or not the battery SOC is less than a first capacity threshold value (battery SOC ⁇ first capacity threshold value). If it is determined in step S5 that “battery SOC ⁇ first capacity threshold”, the process proceeds to step S6.
  • a first capacity threshold value battery SOC ⁇ first capacity threshold value
  • step S6 it is determined whether a road surface gradient is detected. If it is determined in step S6 that “road surface gradient is not detected”, the process proceeds from step S6 to step S7.
  • step S7 it is determined whether the brake switch is ON or OFF. If it is determined in step S7 that “the brake switch is ON”, the process proceeds from step S7 to step S9. On the other hand, if it is determined in step S7 that “the brake switch is OFF”, the process proceeds from step S7 to step S8.
  • step S8 it is determined whether or not the range is the P range. If “P range” is determined in step S8, the process proceeds from step S8 to step S9. That is, if it is determined in step S7 that “the brake switch is ON” or if “P range” is determined in step S8, the process proceeds from step S7 or step S8 to step S9.
  • step S9 it is determined whether or not the battery SOC is less than the second capacity threshold (battery SOC ⁇ second capacity threshold). If it is determined in step S9 that “battery SOC ⁇ second capacity threshold”, the process proceeds to step S11.
  • step S11 it is determined whether the MG2 power that can be generated is greater than a predetermined value (MG2 power that can be generated> predetermined value). If it is determined in step S11 that “MG2 power generation possible power ⁇ predetermined value”, the process proceeds from step S11 to step S17.
  • step S17 MG1 idle power generation is executed. That is, the power generation control when executing the MG1 idle power generation is shown in the flowchart of FIG.
  • Step S17 The flow proceeds to the end.
  • each step of the power generation control processing configuration when executing MG1 idle power generation when it is determined that “no power generation request from the driver” is described.
  • the preconditions of FIG. 6 it is determined that “road surface gradient is not detected”, “brake switch OFF” is determined, and “MG2 power generation possible power ⁇ predetermined value” is determined.
  • step S7 ⁇ step S9 in the flowchart of FIG. 5, it corresponds to START ⁇ step S1 ⁇ step S2 ⁇ step S4 ⁇ step S5 ⁇ step S6 ⁇ step S7 ⁇ step S8 ⁇ step S9 ⁇ step S11 ⁇ step S17.
  • step S7 ⁇ step S9 in the flowchart of FIG.
  • the internal combustion engine ICE is started MG2 from time t2 using the second motor generator MG2 as a starter motor.
  • the first motor generator MG1 is driven to bring the first engagement clutch C1 into a rotationally synchronized state.
  • clutch replacement for engaging the first engagement clutch C1 (“N" ⁇ "Left") is performed in a rotationally synchronized state.
  • MG1 idle power generation is executed (started) at a speed of “EV-ICEgen” slightly after time t3.
  • the flow of the ICE torque of the internal combustion engine ICE (the torque of the internal combustion engine ICE) in the multi-stage gear transmission 1 when the shift stage “EV- ICEgen” at this time is selected will be described with reference to FIG.
  • the first engagement clutch C1 is in the “Left” position
  • the second engagement clutch C2 is in the “N” position
  • the third engagement clutch C3 is in the “N” position. is there.
  • the ICE torque is generated from the internal combustion engine ICE by the first shaft 11 ⁇ the first gear 101 ⁇ the eleventh gear 111 ⁇ the fourth shaft 14 ⁇ the thirteenth gear 113 ⁇ the fourth gear 104 ⁇ the second shaft 12 ⁇ the first motor generator MG1. It flows to. That is, the first motor generator MG1 and the drive wheel 19 are disconnected while the vehicle is stopped, the first motor generator MG1 and the internal combustion engine ICE are coupled, and MG1 idle power generation is executed by the ICE torque.
  • Step S1 corresponds to repetition of step S17 ⁇ end.
  • step S2 corresponds to step S2, step S4, step S18 in the flowchart of FIG.
  • the engagement clutches C1 and C3 are replaced to prepare for re-start (EV start), and “EV- ICEgen” is switched to “EV1st ICE-”.
  • ICE torque clutch transmission torque
  • the clutch replacement is performed to release the first engagement clutch C1 (“Left” ⁇ “N”). Is done.
  • time t4 to time t5 the internal combustion engine ICE is stopped, and the rotation speed of the first motor generator MG1 is synchronized with the rotation speed of the drive wheels 19. That is, the first motor generator MG1 is stopped.
  • clutch replacement for engaging the third engagement clutch C3 ("N" ⁇ "Left") is performed in a rotation-synchronized state. That is, the third engagement clutch C3 is set to the start position to prepare for the start request.
  • the hybrid vehicle starts EV at the shift stage “EV1st1ICE-”.
  • the second motor generator MG2 is rotating from time t2 to time t5. This is due to the rotation of the internal combustion engine ICE, and MG2 idle power generation is limited by “MG2 power generation possible power ⁇ predetermined value”. Therefore, the second motor generator MG2 is not used for power generation.
  • step S3 it is determined whether or not the required generated power from the driver is greater than a predetermined value (required generated power> predetermined value). If it is determined in step S3 that “required generated power ⁇ predetermined value”, the process proceeds from step S3 to step S13.
  • step S13 MG2 idle power generation is executed. That is, the power generation control when performing MG2 idle power generation is a flow that proceeds from START ⁇ step S1 ⁇ step S2 ⁇ step S3 ⁇ step S13 ⁇ end in the flowchart of FIG.
  • step S4 the flowchart of FIG.
  • step S6 the description thereof is omitted.
  • step S6 it is determined whether or not a road surface gradient is detected. If it is determined in step S6 that “road slope has been detected”, the process proceeds from step S6 to step S13. That is, the power generation control when executing the MG2 idle power generation is a flow that proceeds from START ⁇ step S1 ⁇ step S2 ⁇ step S4 ⁇ step S5 ⁇ step S6 ⁇ step S13 ⁇ end in the flowchart of FIG.
  • step S6 determines whether the brake switch is ON or OFF. If it is determined in step S7 that “the brake switch is OFF”, the process proceeds from step S7 to step S8.
  • step S8 it is determined whether or not the range is the P range. If “N, D range, etc.” is determined in step S8, the process proceeds from step S8 to step S13. That is, when it is determined that “the brake switch is OFF” in step S7 and “N, D range, etc.” is determined in step S8, the process proceeds from step S8 to step S13.
  • the power generation control when executing the MG2 idle power generation is as follows: START ⁇ Step S1 ⁇ Step S2 ⁇ Step S4 ⁇ Step S5 ⁇ Step S6 ⁇ Step S7 ⁇ Step S8 ⁇ Step S13 ⁇ End in the flowchart of FIG. It is a flow to go.
  • step S7 or step S8 the process proceeds from step S7 or step S8 to step S9.
  • the flow from step S7 or step S8 to step S11 is the same as the “power generation control processing operation when executing MG1 idle power generation”, and thus the description thereof is omitted.
  • step S11 it is determined whether or not the MG2 power that can be generated is greater than a predetermined value (MG2 power that can be generated> predetermined value). If it is determined in step S11 that “MG2 power generation possible power> predetermined value”, the process proceeds from step S11 to step S16.
  • step S16 MG2 idle power generation is executed. That is, the power generation control when executing the MG2 idle power generation is shown in the flowchart of FIG. 5 with START ⁇ Step S1 ⁇ Step S2 ⁇ Step S4 ⁇ Step S5 ⁇ Step S6 ⁇ Step S7 ⁇ (Step S8 ⁇ ) Step S9 ⁇ Step S11. ⁇ Step S16 ⁇ The process proceeds to the end.
  • the description up to time t12 is the same as the description up to time t2 in the time chart of FIG.
  • time t12 corresponds to START ⁇ step S1 ⁇ step S2 ⁇ step S4 ⁇ step S5 ⁇ step S6 ⁇ step S13 in the flowchart of FIG.
  • step S6 corresponds to Step S6 ⁇ Step S7 ⁇ Step S8 ⁇ Step S13 in the flowchart of FIG.
  • the flow of the ICE torque of the internal combustion engine ICE in the multi-stage gear transmission 1 when the shift stage “EV1st ICE-” at this time is selected will be described with reference to FIG.
  • the first engagement clutch C1 is in the “N” position
  • the second engagement clutch C2 is in the “N” position
  • the third engagement clutch C3 is in the “Left” position. is there.
  • the ICE torque flows from the internal combustion engine ICE to the first shaft 11 ⁇ the first gear 101 ⁇ the eleventh gear 111 ⁇ the fourteenth gear 114 ⁇ the fifteenth gear 115 ⁇ the sixth shaft 16 ⁇ the second motor generator MG2. That is, the first motor generator MG1 remains mechanically coupled to the drive wheel 19.
  • the battery SOC becomes equal to or higher than the first capacity threshold (battery SOC ⁇ first capacity threshold), and MG2 idle power generation is terminated. That is, from time t12 to immediately before time t14 when “battery SOC ⁇ first capacity threshold”, START ⁇ step S1 ⁇ step S2 ⁇ step S4 ⁇ step S5 ⁇ step S6 ⁇ step in the flowchart of FIG. This corresponds to the repetition of S13 ⁇ End.
  • the time t14 corresponds to step S1, step S2, step S4, step S5, and step S18 in the flowchart of FIG.
  • step S4 the flow from step S4 to step S9 is the same as the “power generation control processing operation when executing MG1 idle power generation”, and thus the description thereof is omitted.
  • step S9 it is determined whether the battery SOC is less than the second capacity threshold (battery SOC ⁇ second capacity threshold). If it is determined in step S9 that “battery SOC ⁇ second capacity threshold”, the process proceeds to step S10.
  • step S10 it is determined whether the MG2 power that can be generated is greater than a predetermined value (MG2 power that can be generated> predetermined value). If it is determined in step S10 that “MG2 power that can be generated> predetermined value”, the process proceeds from step S10 to step S14.
  • step S14 double idle power generation is executed. In other words, the power generation control when executing the double idle power generation is shown in the flowchart of FIG. 5 by referring to START ⁇ Step S1 ⁇ Step S2 ⁇ Step S4 ⁇ Step S5 ⁇ Step S6 ⁇ Step S7 ⁇ (Step S8 ⁇ ) ⁇ Step S14 ⁇ The flow proceeds to the end.
  • each step of the power generation control processing configuration when executing double idle power generation when it is determined that “no power generation request from the driver” is described.
  • the description up to time t22 is the same as the description up to time t2 in the time chart of FIG.
  • the shift stage “EV1st ICE-” before time t22 is switched to “EV-ICEgen” shown in FIG. That is, in the case of the shift stage “EV-ICEgen”, as shown in FIG. 11, there is one first engagement clutch C1 (Left) on the power transmission path from the internal combustion engine ICE to the first motor generator MG1 ( Same as FIG.
  • the description regarding the switching to the gear position is the same as “the power generation control processing operation when executing MG1 idle power generation”, and from the time t22 in FIG. 10 to the time t23 in FIG. The description is omitted because it is similar to the description from time t2 to time t3 in the chart.
  • double idle power generation is executed (start) by adding MG2 idle power generation to MG1 idle power generation slightly after time t23 at the shift stage of “EV-ICEgen”. Is done.
  • the first motor generator MG1 and the drive wheel 19 are disconnected while the vehicle is stopped, the first motor generator MG1 and the internal combustion engine ICE are coupled, and MG1 idle power generation is executed by the ICE torque. Further, a part of the ICE torque is transferred from the internal combustion engine ICE to the first shaft 11 ⁇ the first gear 101 ⁇ the eleventh gear 111 ⁇ the fourteenth gear 114 ⁇ the fifteenth gear 115 ⁇ the sixth shaft 16 ⁇ the second motor generator MG2. Flowing.
  • the battery SOC is gradually increased by double idle power generation. Note that because of the double idle power generation, the torque of the internal combustion engine ICE is larger than that during the MG1 idle power generation.
  • step S1 corresponds to repetition of step S14 ⁇ end.
  • step S2 corresponds to step S2, step S4, step S18 in the flowchart of FIG.
  • the engagement clutches C1 and C3 are replaced and switched from “EV- ICEgen” to “EV1st ICE-”.
  • the description regarding the change of the gear position is the same as “the power generation control processing operation when executing the MG1 idle power generation”, and from time t24 to time t26 in FIG. 10, time t4 in the time chart of FIG. To the time t6, the description is omitted.
  • step S4 the flow from step S4 to step S10 is the same as the “power generation control processing operation when executing double idle power generation”, and thus the description thereof is omitted.
  • step S10 it is determined whether or not the MG2 power that can be generated is greater than a predetermined value (MG2 power that can be generated> predetermined value). If it is determined in step S10 that "MG2 power that can be generated ⁇ predetermined value", the process proceeds from step S10 to step S15.
  • step S15 double idle limited power generation is executed. In other words, the power generation control when executing the double idle limited power generation is shown in the flowchart of FIG. 5 by referring to START ⁇ Step S1 ⁇ Step S2 ⁇ Step S4 ⁇ Step S5 ⁇ Step S6 ⁇ Step S7 ⁇ (Step S8 ⁇ ) Step S9 ⁇ Step The flow proceeds from S10 to step S15 to the end.
  • each step of the power generation control processing configuration when executing the double idle limited power generation when it is determined that “no power generation request from the driver” is described.
  • the preconditions of FIG. 12 it is determined that “road surface gradient is not detected”, “brake switch OFF” is determined, and “MG2 power generation possible power ⁇ predetermined value” is determined.
  • the description up to time t32 is the same as the description up to time t2 in the time chart of FIG.
  • time t32 corresponds to START ⁇ step S1 ⁇ step S2 ⁇ step S4 ⁇ step S5 ⁇ step S6 ⁇ step S7 ⁇ step S8 ⁇ step S9 ⁇ step S10 ⁇ step S15 in the flowchart of FIG.
  • the brake switch is ON
  • the shift stage “EV1st ICE-” before time t32 is switched to “EV-ICEgen” shown in FIG. That is, in the case of the shift stage “EV-ICEgen”, as shown in FIG. 13, there is one first engagement clutch C1 (Left) on the power transmission path from the internal combustion engine ICE to the first motor generator MG1 ( Same as FIG. 7 and FIG. Here, the description regarding the switching to the gear position is the same as “the power generation control processing operation when executing the MG1 idle power generation”, and from the time t32 in FIG. 12 to the time t33 in FIG.
  • the description is omitted because it is similar to the description from time t2 to time t3 in the chart.
  • the rotational speed of the rotation synchronization is larger than that in the MG1 idle power generation.
  • the MG1 idle power generation is performed with “MG2 power generation possible power ⁇ predetermined value” at a speed of “EV-ICEgen” slightly later than time t33.
  • Double idle limited power generation including MG2 idle limited power generation that limits power generation is executed (started).
  • the first motor generator MG1 and the drive wheel 19 are disconnected while the vehicle is stopped, the first motor generator MG1 and the internal combustion engine ICE are coupled, and MG1 idle power generation is executed by the ICE torque. Further, a part of the ICE torque is transferred from the internal combustion engine ICE to the first shaft 11 ⁇ the first gear 101 ⁇ the eleventh gear 111 ⁇ the fourteenth gear 114 ⁇ the fifteenth gear 115 ⁇ the sixth shaft 16 ⁇ the second motor generator MG2. Flowing. Since the second motor generator MG2 is MG2 idle limited power generation, the amount of ICE torque flowing to the first motor generator MG1 is larger than the amount flowing to the second motor generator MG2.
  • the battery SOC is gradually increased due to double idle limited power generation. Because of the double idle limited power generation, the torque of the internal combustion engine ICE is larger than that during MG1 idle power generation, and the torque of the internal combustion engine ICE is smaller than that during double idle power generation.
  • a power generation control device for a hybrid vehicle that performs EV start using a first motor supplied with power generated by a second motor and battery power when the vehicle starts as a drive source is used as a comparative example.
  • the engine is started according to the state of charge of the battery, and the battery is charged from the generator (series hybrid vehicle).
  • the hybrid control module 21 disconnects the first motor generator MG1 having a power that can be generated larger than that of the second motor generator MG2 from the drive wheel 19 and the internal combustion engine ICE while the vehicle is stopped.
  • the MG1 idle power generation is performed in which the first motor generator MG1 generates power by receiving torque from the internal combustion engine ICE (FIG. 14).
  • the same step number as FIG. 5 is attached
  • the MG1 idle power generation generated by the first motor generator MG1 is performed while the vehicle is stopped, it is possible to obtain more generated power than the MG2 idle power generation generated by the second motor generator MG2 when the stop time is the same.
  • the battery SOC is prevented from being lowered. Therefore, it is possible to secure electric power necessary for starting while the vehicle is stopped.
  • the hybrid control module 21 is configured to perform MG1 idle power generation when the vehicle SOC is stopped and the battery SOC is less than the first capacity threshold value when the battery SOC (battery capacity) is insufficient (FIG. 15).
  • the vehicle SOC when the battery SOC (battery capacity) is greater than or equal to the first capacity threshold, the first motor generator MG1 remains mechanically coupled to the drive wheels 19 without performing MG1 idle power generation. (FIG. 15). That is, when the battery SOC is satisfied, MG1 idle power generation is not performed, and the first motor generator MG1 remains mechanically coupled to the drive wheels 19, so that a start request is prepared.
  • the vehicle can start quickly in response to the start request.
  • the MG1 idle power generation is performed when the battery SOC is insufficient, the battery SOC is prevented from being lowered. Therefore, when the vehicle is stopped and the battery SOC is insufficient, it is possible to secure power necessary for starting.
  • the hybrid control module 21 performs MG2 idle power generation that is generated by the second motor generator MG2 when the electric power that can be generated by the second motor generator MG2 is larger than a predetermined value when the vehicle is stopped and the battery SOC is insufficient.
  • the first motor generator MG1 is mechanically coupled to the drive wheels 19 without performing MG1 idle power generation (FIG. 16). Further, when the battery SOC is insufficient while the vehicle is stopped, MG1 idle power generation is performed when the power that can be generated by the second motor generator MG2 is equal to or less than a predetermined value (FIG. 16).
  • MG2 idle power generation is performed, so that the battery SOC is prevented from being lowered.
  • the MG1 idle power generation is not performed, and the first motor generator MG1 is mechanically coupled to the drive wheels 19, so that it is prepared for a start request. Accordingly, when the battery SOC is insufficient while the vehicle is stopped, if the power that can be generated by the second motor generator MG2 is greater than a predetermined value, it is possible to secure power necessary for starting and to start quickly in response to the start request.
  • the second motor generator MG2 if the power that can be generated by the second motor generator MG2 is less than or equal to a predetermined value, MG2 idle power generation is limited, and therefore the second motor generator MG2 is not used for power generation. However, since MG1 idle power generation is performed, a decrease in battery SOC is prevented. Accordingly, when the battery SOC is insufficient while the vehicle is stopped, if the power that can be generated by the second motor generator MG2 is equal to or less than a predetermined value, it is possible to secure the power necessary for starting. That is, when the battery SOC is insufficient, MG1 idle power generation or MG2 idle power generation is performed, so that the battery SOC is prevented from being lowered.
  • the second motor generator MG2 when the vehicle is stopped and the battery SOC is insufficient, it is possible to secure electric power necessary for starting. In addition, if the electric power that can be generated by the second motor generator MG2 is less than or equal to a predetermined value, the second motor generator MG2 is not used for power generation, so that the second motor generator MG2 can be prevented from being damaged.
  • the hybrid control module 21 is configured to perform double idle power generation by adding MG2 idle power generation to MG1 idle power generation when the vehicle is stopped and the battery SOC is insufficient (FIG. 17). Further, when the battery SOC is satisfied while the vehicle is stopped, MG1 idle power generation is not performed, and the first motor generator MG1 is mechanically coupled to the drive wheels 19 (FIG. 17). That is, when the battery SOC is insufficient, MG1 idle power generation plus MG2 idle power generation is performed, so when the stop time is the same, it is much shorter in time than when generating power with MG1 idle power generation or MG2 idle power generation. The generated power can be obtained, and the battery SOC is prevented from lowering.
  • the hybrid control module 21 performs MG2 idle power generation and does not perform MG1 idle power generation when the vehicle SOC is short, when the battery SOC is insufficient, and when the battery SOC is greater than or equal to the second capacity threshold value smaller than the first capacity threshold value.
  • the first motor generator MG1 is configured to remain mechanically coupled to the drive wheels 19 (FIG. 18). Further, when the battery SOC is insufficient while the vehicle is stopped, if the battery SOC is less than the second capacity threshold, double idle power generation is performed (FIG. 18).
  • the hybrid control module 21 stops, when the battery SOC is insufficient, the battery SOC is equal to or greater than the second capacity threshold value, and the power that can be generated by the second motor generator MG2 is greater than a predetermined value, the MG2 idle
  • the first motor generator MG1 is mechanically coupled to the drive wheels 19 without generating MG1 idle power generation while generating power (FIG. 19).
  • MG1 idle power generation is performed when the battery SOC is equal to or greater than the second capacity threshold and the power generation possible power of the second motor generator MG2 is equal to or less than a predetermined value ( FIG. 19).
  • the vehicle can start quickly in response to the start request.
  • the second motor generator MG2 can be prevented from being damaged.
  • the electric power that can be generated by the second motor generator MG2 is larger than a predetermined value, MG2 idle power generation is performed, so that the battery SOC is prevented from being lowered. Therefore, when the battery SOC is insufficient while the vehicle is stopped, if the battery SOC is greater than or equal to the second capacity threshold value and the power that can be generated by the second motor generator MG2 is greater than a predetermined value, the power required for starting can be ensured. .
  • the electric power that can be generated by the second motor generator MG2 is equal to or less than a predetermined value, MG2 idle power generation is limited, but MG1 idle power generation is performed, so that a decrease in battery SOC is prevented. Accordingly, when the battery SOC is insufficient while the vehicle is stopped, if the battery SOC is equal to or greater than the second capacity threshold and the power generation possible power of the second motor generator MG2 is equal to or less than a predetermined value, it is possible to secure power necessary for starting. it can. That is, when the battery SOC is “second capacity threshold ⁇ battery SOC ⁇ first capacity threshold”, MG1 idle power generation or MG2 idle power generation is performed, so that the decrease in the battery SOC is prevented. Therefore, when the battery SOC is insufficient when the vehicle is stopped, if the battery SOC is greater than or equal to the second capacity threshold, it is possible to secure the power required for starting.
  • the battery SOC when the vehicle is stopped, the battery SOC is insufficient, the battery SOC is less than the second capacity threshold value, and the power that can be generated by the second motor generator MG2 is greater than a predetermined value. It was set as the structure by which electric power generation is performed (FIG. 19). Further, when the vehicle is stopped, when the battery SOC is insufficient, if the battery SOC is less than the second capacity threshold value and the electric power that can be generated by the second motor generator MG2 is equal to or less than a predetermined value, the MG1 idle power generation is more effective than the MG2 idle power generation.
  • the configuration is such that double idle limited power generation including MG2 idle limited power generation that limits power generation is performed (FIG. 19).
  • MG2 idle power generation is limited.
  • MG1 idle power generation plus double MG2 idle power generation is performed, so when the stopping time is the same, more power is generated in a shorter time than when MG1 idle power generation or MG2 idle power generation is used. Electric power can be obtained, and a decrease in battery SOC is prevented. Accordingly, when the vehicle is stopped and the battery SOC is insufficient, if the battery SOC is less than the second capacity threshold and the power generation possible power of the second motor generator MG2 is less than or equal to a predetermined value, power is generated by MG1 idle power generation or MG2 idle power generation.
  • MG1 idle power generation is performed if the required power generation from the driver is greater than a predetermined value ( Step S12 in FIG. Further, when generating power based on a power generation request from the driver while the vehicle is stopped, if the required power generation from the driver is equal to or less than a predetermined value, the MG2 idle power generation is performed and the first motor generator MG1 is not performed without performing the MG1 idle power generation.
  • the configuration is such that the drive wheel 19 remains mechanically coupled (step S13 in FIG. 5).
  • MG1 idle power generation is performed, and therefore MG1 idle power generation corresponding to the required generated power from the driver is performed. Also, if the required generated power from the driver is less than or equal to a predetermined value, MG1 idle power generation is not performed, and the first motor generator MG1 remains mechanically coupled to the drive wheels 19, so that a start request is prepared. Therefore, when generating power based on a power generation request from the driver while the vehicle is stopped, if the required power generation from the driver is greater than a predetermined value, the required power generation from the driver can be met. If it is less than the predetermined value, it is possible to start quickly in response to the start request.
  • the MG2 idle power generation is performed when the required generated power from the driver is equal to or less than the predetermined value, the battery SOC is prevented from being lowered. Therefore, when the vehicle is generating power based on the power generation request from the driver while the vehicle is stopped, the power required for starting can be ensured if the required power generation from the driver is equal to or less than a predetermined value.
  • step S6 when the road surface gradient is detected by the hybrid control module 21, MG1 idle power generation is prohibited (step S6 ⁇ step S13 in FIG. 5).
  • step S6 when the vehicle is stopped and the drive motor is disconnected from the drive wheel, when the vehicle restarts from power generation, the time from when the driver removes his foot from the brake until the drive motor is connected to the drive wheel. Since the torque of the drive motor is not transmitted to the drive wheels, the vehicle slides down on the slope road.
  • MG1 idle power generation when the road surface gradient is detected, MG1 idle power generation is prohibited, so that the first motor generator MG1 remains mechanically coupled to the drive wheels 19.
  • MG1 idle power generation is permitted (“YES” in step S7 in FIG. 5).
  • the clutch that connects the drive motor to the drive wheels malfunctions and the drive motor is connected to the drive wheels during power generation by the drive motor, the vehicle suddenly starts.
  • the braking force is generated on the drive wheel 19, MG1 idle power generation is permitted, so the third engagement clutch that connects the first motor generator MG1 and the drive wheel 19 is used. Even if C3 malfunctions, the vehicle does not start suddenly. Therefore, when braking force is generated, it is possible to prevent the vehicle from starting suddenly during MG1 idle power generation.
  • MG1 idle power generation is permitted (“YES” in step S8 in FIG. 5).
  • the clutch that connects the drive motor to the drive wheels malfunctions and the drive motor is connected to the drive wheels during power generation by the drive motor, the vehicle suddenly starts.
  • MG1 idle power generation is permitted, so that the third engagement clutch C3 that connects the first motor generator MG1 and the drive wheels 19 malfunctions.
  • the vehicle does not start suddenly. Therefore, when the P range is selected, the vehicle can be prevented from suddenly starting during MG1 idle power generation.
  • first electric motor first motor generator MG1
  • second electric motor second motor generator MG2
  • first electric motor first motor generator MG1
  • second electric motor second motor generator MG2
  • a battery high power battery 3 electrically coupled to the first electric motor (first motor generator MG1) and the second electric motor (second motor generator MG2)
  • a power generation controller hybrid control module 21
  • a power generation controller that generates at least one of the first electric motor (first motor generator MG1) and the second electric motor (second motor generator MG2) using the torque of the internal combustion engine ICE (ICE torque);
  • the power generation controller (hybrid control module 21) disconnects the first electric motor (first motor generator MG1) having a larger power generation capacity than the second electric
  • MG1 idle power generation is performed in which the first motor (first motor generator MG1) receives the torque (ICE torque) from the internal combustion engine ICE (FIG. 14). For this reason, the electric power required for starting can be ensured while stopping.
  • the power generation controller (hybrid control module 21) performs MG1 idle power generation and charges the battery when the battery capacity (battery SOC) is less than the first capacity threshold.
  • the battery capacity battery SOC
  • the first electric motor first motor generator MG1
  • the vehicle can start quickly in response to the start request.
  • the power generation controller causes the MG1 idle power generation to generate the second electric motor (battery SOC) when the battery charge capacity (battery SOC) is less than the first capacity threshold.
  • MG2 idle power generation is performed by adding MG2 idle power generation generated by the second motor generator MG2), and when the battery capacity (battery SOC) that the battery charge capacity (battery SOC) is equal to or greater than the first capacity threshold is satisfied, MG1 idle power generation is performed. Without doing so, the first electric motor (first motor generator MG1) remains mechanically coupled to the drive wheels 19 (FIG. 17).
  • the battery charge capacity (battery SOC) is greater than or equal to the second capacity threshold value, and the second motor generator MG2 can generate power. If the electric power is larger than the predetermined value, it is possible to start immediately in response to the start request, the charge capacity of the battery (battery SOC) is equal to or greater than the second capacity threshold, and the electric power that can be generated by the second motor generator MG2 is If it is less than or equal to the predetermined value, the second motor generator MG2 can be prevented from being damaged.
  • the power generation controller has a battery charge capacity (battery SOC) that is less than the second capacity threshold value when the vehicle is stopped and the battery capacity (battery SOC) is insufficient. If the power that can be generated by motor generator MG2) is greater than a predetermined value, double idle power generation is performed, the battery charge capacity (battery SOC) is less than the second capacity threshold, and the second electric motor (second motor generator MG2) If the power that can be generated is equal to or less than the predetermined value, double idle limited power generation is performed by adding MG2 idle power generation, which is limited to MG2 idle power generation, to MG1 idle power generation (FIG. 19).
  • the power generation controller (hybrid control module 21) When the power generation controller (hybrid control module 21) generates power based on a power generation request from the driver while the vehicle is stopped, if the power generation demand from the driver is greater than a predetermined value, the power generation controller (hybrid control module 21) performs MG1 idle power generation. If the required generated power is less than or equal to a predetermined value, the MG2 idle power is generated by the second electric motor (second motor generator MG2) and the first electric motor (first motor generator MG1) is driven without the MG1 idle power generation. 19 remains mechanically coupled (steps S12 and S13 in FIG. 5).
  • the power generation controller (hybrid control module 21) prohibits MG1 idle power generation when detecting the road gradient (step S6 ⁇ step S13 in FIG. 5). For this reason, in addition to the effects (1) to (8), when the road surface gradient is detected when the vehicle restarts from the power generation while the vehicle is stopped, the vehicle can be prevented from sliding down on the gradient road.
  • the power generation controller (hybrid control module 21) permits MG1 idle power generation when the braking force is generated for the drive wheels 19 (“YES” in step S7 in FIG. 5). For this reason, in addition to the effects (1) to (9), when braking force is generated, it is possible to prevent the vehicle from starting suddenly during MG1 idle power generation.
  • the power generation controller (hybrid control module 21) permits MG1 idle power generation when the parking range is selected (“YES” in step S8 in FIG. 5). Therefore, in addition to the effects (1) to (10), when the P range is selected, it is possible to prevent the vehicle from starting suddenly during MG1 idle power generation.
  • Example 1 As mentioned above, although the electric power generation control apparatus of the hybrid vehicle of this invention has been demonstrated based on Example 1, it is not restricted to this Example 1 about a concrete structure, The invention which concerns on each claim of a claim Design changes and additions are permitted without departing from the gist of the present invention.
  • step S16 MG2 idle power generation may be executed after switching to the “Neutral” gear.
  • step S16 when the gear is switched to “Neutral” in step S16, the engagement clutches C1 and C3 are replaced to prepare for re-start (EV start) after the end of MG2 idle power generation, and “Neutral” To “EV1st ICE-”.
  • a speed change controller a speed change stage in which a speed change stage that is not selectable by an interlock speed change stage and a shift mechanism is removed from all speed change stages by a combination of engaging clutches C1, C2, and C3.
  • a plurality of shift speeds that can be realized by the machine 1 is shown.
  • the shift controller may be an example in which the shift speeds that are obtained by removing the interlock shift speed from all the shift speeds based on the combination of engaging clutches are a plurality of shift speeds that can be realized by the transmission.
  • the shift mechanism is a mechanism that causes each of the engagement clutches C1, C2, and C3 to independently perform a stroke operation
  • the “speed stage that cannot be selected by the shift mechanism” is eliminated.
  • the gear stage used as the gear stage at the time of failure increases.
  • the internal combustion engine ICE may be used only for power generation. That is, the power generation control device for a hybrid vehicle of the present invention may be applied to a series hybrid vehicle.

Abstract

停車中、発進に必要な電力を確保するハイブリッド車両の発電制御装置を提供すること。 駆動輪(19)に機械的に結合され、第1モータジェネレータ(MG1)と、内燃機関(ICE)に機械的に結合され、発電可能電力が第1モータジェネレータ(MG1)よりも小さい第2モータジェネレータ(MG2)と、両モータジェネレータ(MG1,MG2)に電気的に結合される強電バッテリ(3)と、を備え、車両発進時、第1モータジェネレータ(MG1)を駆動源とするEV発進を行う。このハイブリッド車両において、内燃機関(ICE)のトルクを用いて2つのモータジェネレータ(MG1,MG2)のうち少なくとも一方を発電するハイブリッドコントロールモジュール(21)を設ける。このモジュール(21)は停車中、第1モータジェネレータ(MG1)を、駆動輪(19)から切り離すと共に内燃機関(ICE)と結合し、内燃機関(ICE)からのトルクを受けて第1モータジェネレータ(MG1)により発電する。

Description

ハイブリッド車両の発電制御装置
 本発明は、車両発進時、第2電動機で発電した電力とバッテリ電力が供給される第1電動機を駆動源とするEV発進を行うハイブリッド車両の発電制御装置に関する。
 従来、バッテリの充電状態に応じてエンジンを始動し、発電機よりバッテリに充電するシリーズハイブリッド車両が知られている(例えば、特許文献1参照)。
特開昭55-157901号公報
 しかしながら、従来のシリーズハイブリッド車両にあっては、発進時は発進用モータのトルクのみを用い、発進用モータへはバッテリ電力とシリーズ発電電力によって必要な電力を供給する構成になっていた。このため、バッテリSOCが少ない場合などバッテリ電力とシリーズ発電電力で必要電力を賄いきれない場合、発進できない、という問題がある。
 本発明は、上記問題に着目してなされたもので、停車中、発進に必要な電力を確保するハイブリッド車両の発電制御装置を提供することを目的とする。
 上記目的を実現するため、本発明のハイブリッド車両は、駆動輪に機械的に結合され、主に走行駆動に用いられる第1電動機と、内燃機関に機械的に結合され、発電可能電力が第1電動機よりも小さい第2電動機と、第1電動機及び第2電動機に電気的に結合されるバッテリと、を備える。車両発進時、第2電動機で発電した電力とバッテリ電力が供給される第1電動機を駆動源とするEV発進を行う。
このハイブリッド車両において、内燃機関のトルクを用いて第1電動機と第2電動機の少なくとも一方を発電する発電コントローラを設ける。
発電コントローラは、停車中、第2電動機よりも発電可能電力が大きい第1電動機を、駆動輪から切り離すと共に内燃機関と結合し、内燃機関からのトルクを受けて第1電動機により発電するMG1アイドル発電を行う。
 よって、発電コントローラにより、停車中、第2電動機よりも発電可能電力が大きい第1電動機を、駆動輪から切り離すと共に内燃機関と結合し、内燃機関からのトルクを受けて第1電動機により発電するMG1アイドル発電が行われる。
即ち、停車中、第1電動機により発電するMG1アイドル発電が行われるため、停車時間が同じときに第2電動機により発電するMG2アイドル発電に比べ、より多くの発電電力を得ることができ、バッテリの容量低下が防止される。
この結果、停車中、発進に必要な電力を確保することができる。
実施例1の変速制御装置が適用されたハイブリッド車両の駆動系及び制御系を示す全体システム図である。 実施例1の変速制御装置が適用されたハイブリッド車両に搭載された多段歯車変速機の変速制御系の構成を示す制御系構成図である。 実施例1の変速制御装置が適用されたハイブリッド車両に搭載された多段歯車変速機において変速段を切り替える考え方を示す変速マップ概要図である。 実施例1の変速制御装置が適用されたハイブリッド車両に搭載された多段歯車変速機において3つの係合クラッチの切り替え位置による変速段を示す締結表である。 実施例1のハイブリッドコントロールモジュールで実行される発電制御処理の流れを示すフローチャートである。 実施例1のハイブリッド車両においてMG1アイドル発電を実行するときのICE,MG1,MG2回転数・ICE,MG1,MG2トルク・レンジ・係合クラッチC1,C2,C3・バッテリSOCの各特性を示すタイムチャートである。 MG1アイドル発電において変速段「EV- ICEgen」が選択されたときの多段歯車変速機におけるICEトルクの伝達経路を示すトルクフロー図である。 実施例1のハイブリッド車両においてMG2アイドル発電を実行するときのICE,MG1,MG2回転数・ICE,MG1,MG2トルク・レンジ・係合クラッチC1,C2,C3・バッテリSOCの各特性を示すタイムチャートである。 MG2アイドル発電において変速段「EV1st ICE-」が選択されたときの多段歯車変速機におけるICEトルクの伝達経路を示すトルクフロー図である。 実施例1のハイブリッド車両においてダブルアイドル発電を実行するときのICE,MG1,MG2回転数・ICE,MG1,MG2トルク・レンジ・係合クラッチC1,C2,C3・バッテリSOCの各特性を示すタイムチャートである。 ダブルアイドル発電において変速段「EV- ICEgen」が選択されたときの多段歯車変速機におけるICEトルクの伝達経路を示すトルクフロー図である。 実施例1のハイブリッド車両においてダブルアイドル制限発電を実行するときのICE,MG1,MG2回転数・ICE,MG1,MG2トルク・レンジ・係合クラッチC1,C2,C3・バッテリSOCの各特性を示すタイムチャートである。 ダブルアイドル制限発電において変速段「EV- ICEgen」が選択されたときの多段歯車変速機におけるICEトルクの伝達経路を示すトルクフロー図である。 実施例1のハイブリッドコントロールモジュールで実行される発電制御処理の流れを示し、第1の特徴構成を示すフローチャートである。 実施例1のハイブリッドコントロールモジュールで実行される発電制御処理の流れを示し、第2の特徴構成を示すフローチャートである。 実施例1のハイブリッドコントロールモジュールで実行される発電制御処理の流れを示し、第3の特徴構成を示すフローチャートである。 実施例1のハイブリッドコントロールモジュールで実行される発電制御処理の流れを示し、第4の特徴構成を示すフローチャートである。 実施例1のハイブリッドコントロールモジュールで実行される発電制御処理の流れを示し、第5の特徴構成を示すフローチャートである。 実施例1のハイブリッドコントロールモジュールで実行される発電制御処理の流れを示し、第6の特徴構成を示すフローチャートである。
 以下、本発明のハイブリッド車両の発電制御装置を実現する最良の形態を、図面に示す実施例1に基づいて説明する。
 まず、構成を説明する。
実施例1の発電制御装置は、駆動系構成要素として、1つのエンジンと、2つのモータジェネレータと、3つの係合クラッチを有する多段歯車変速機と、を備えたハイブリッド車両(ハイブリッド車両の一例)に適用したものである。以下、実施例1におけるハイブリッド車両の発電制御装置の構成を、「全体システム構成」、「変速制御系構成」、「変速段構成」、「発電制御処理構成」に分けて説明する。
 [全体システム構成]
  図1は、実施例1の発電制御装置が適用されたハイブリッド車両の駆動系及び制御系を示す。以下、図1に基づき、全体システム構成を説明する。
 ハイブリッド車両の駆動系は、図1に示すように、内燃機関ICEと、第1モータジェネレータMG1と、第2モータジェネレータMG2と、3つの係合クラッチC1,C2,C3を有する多段歯車変速機1と、を備えている。なお、「ICE」は「Internal-Combustion Engine」の略称である。
 前記内燃機関ICEは、例えば、クランク軸方向を車幅方向として車両のフロントルームに配置したガソリンエンジンやディーゼルエンジン等である。この内燃機関ICEは、多段歯車変速機1の変速機ケース10に連結されると共に、内燃機関出力軸が、多段歯車変速機1の第1軸11に接続される。なお、内燃機関ICEは、基本的に、第2モータジェネレータMG2をスタータモータとしてMG2始動する。但し、極低温時などのように強電バッテリ3を用いたMG2始動が確保できない場合に備えてスタータモータ2を残している。
 前記第1モータジェネレータMG1及び第2モータジェネレータMG2は、いずれも強電バッテリ3を共通の電源とする三相交流の永久磁石型同期モータである。第1モータジェネレータMG1のステータは、第1モータジェネレータMG1のケースに固定され、そのケースが多段歯車変速機1の変速機ケース10に固定される。そして、第1モータジェネレータMG1のロータに一体の第1モータ軸が、多段歯車変速機1の第2軸12に接続される。第2モータジェネレータMG2のステータは、第2モータジェネレータMG2のケースに固定され、そのケースが多段歯車変速機1の変速機ケース10に固定される。そして、第2モータジェネレータMG2のロータに一体の第2モータ軸が、多段歯車変速機1の第6軸16に接続される。第1モータジェネレータMG1のステータコイルには、力行時に直流を三相交流に変換し、回生時に三相交流を直流に変換する第1インバータ4が、第1ACハーネス5を介して接続される。第2モータジェネレータMG2のステータコイルには、力行時に直流を三相交流に変換し、回生時に三相交流を直流に変換する第2インバータ6が、第2ACハーネス7を介して接続される。強電バッテリ3と第1インバータ4及び第2インバータ6は、ジャンクションボックス9を介してDCハーネス8により接続される。
 前記多段歯車変速機1は、変速比が異なる複数の歯車対を有する常時噛み合い式変速機であり、変速機ケース10内に互いに平行に配置され、歯車が設けられる6つの歯車軸11~16と、歯車対を選択する3つの係合クラッチC1,C2,C3と、を備える。歯車軸としては、第1軸11と、第2軸12と、第3軸13と、第4軸14と、第5軸15と、第6軸16が設けられる。係合クラッチとしては、第1係合クラッチC1と、第2係合クラッチC2と、第3係合クラッチC3が設けられる。なお、変速機ケース10には、ケース内の軸受け部分や歯車の噛み合い部分に潤滑オイルを供給する電動オイルポンプ20が付設される。
 前記第1軸11は、内燃機関ICEが連結される軸であり、第1軸11には、図1の右側から順に、第1歯車101、第2歯車102、第3歯車103が配置される。第1歯車101は、第1軸11に対して一体(一体化固定を含む)に設けられる。第2歯車102と第3歯車103は、軸方向に突出するボス部が第1軸11の外周に挿入される遊転歯車であり、第2係合クラッチC2を介し第1軸11に対して駆動連結可能に設けられる。
 前記第2軸12は、第1モータジェネレータMG1が連結され、第1軸11の外側位置に軸心を一致させて同軸配置された円筒軸であり、第2軸12には、図1の右側から順に、第4歯車104、第5歯車105が配置される。第4歯車104と第5歯車105は、第2軸12に対して一体(一体化固定を含む)に設けられる。
 前記第3軸13は、多段歯車変速機1の出力側に配置された軸であり、第3軸13には、図1の右側から順に、第6歯車106、第7歯車107、第8歯車108、第9歯車109、第10歯車110が配置される。第6歯車106と第7歯車107と第8歯車108は、第3軸13に対して一体(一体化固定を含む)に設けられる。第9歯車109と第10歯車110は、軸方向に突出するボス部が第3軸13の外周に挿入される遊転歯車であり、第3係合クラッチC3を介し第3軸13に対して駆動連結可能に設けられる。そして、第6歯車106は第1軸11の第2歯車102に噛み合い、第7歯車107はデファレンシャル歯車17の第16歯車116と噛み合い、第8歯車108は第1軸11の第3歯車103に噛み合う。第9歯車109は第2軸12の第4歯車104に噛み合い、第10歯車110は第2軸12の第5歯車105に噛み合う。
 前記第4軸14は、変速機ケース10に両端が支持された軸であり、第4軸14には、図1の右側から順に、第11歯車111、第12歯車112、第13歯車113が配置される。第11歯車111は、第4軸14に対して一体(一体化固定を含む)に設けられる。第12歯車112と第13歯車113は、軸方向に突出するボス部が第4軸14の外周に挿入される遊転歯車であり、第1係合クラッチC1を介し第4軸14に対して駆動連結可能に設けられる。そして、第11歯車111は第1軸11の第1歯車101に噛み合い、第12歯車112は第1軸11の第2歯車102と噛み合い、第13歯車113は第2軸12の第4歯車104と噛み合う。
 前記第5軸15は、変速機ケース10に両端が支持された軸であり、第4軸14の第11歯車111と噛み合う第14歯車114が一体(一体化固定を含む)に設けられる。
 前記第6軸16は、第2モータジェネレータMG2が連結される軸であり、第5軸15の第14歯車114と噛み合う第15歯車115が一体(一体化固定を含む)に設けられる。
 前記第2モータジェネレータMG2と内燃機関ICEは、互いに噛み合う第15歯車115、第14歯車114、第11歯車111、第1歯車101により構成されるギヤ列により機械的に連結されている。このギヤ列は、第2モータジェネレータMG2による内燃機関ICEのMG2始動時、MG2回転数を減速する減速ギヤ列となり、内燃機関ICEの駆動で第2モータジェネレータMG2を発電するMG2発電時、機関回転数を増速する増速ギヤ列となる。
 前記第1係合クラッチC1は、第4軸14のうち、第12歯車112と第13歯車113の間に介装され、同期機構を持たないことで、回転同期状態での噛み合いストロークにより締結されるドグクラッチである。第1係合クラッチC1が左側締結位置(Left)のとき、第4軸14と第13歯車113を駆動連結する。第1係合クラッチC1が中立位置(N)のとき、第4軸14と第12歯車112を解放すると共に、第4軸14と第13歯車113を解放する。第1係合クラッチC1が右側締結位置(Right)のとき、第4軸14と第12歯車112を駆動連結する。
 前記第2係合クラッチC2は、第1軸11のうち、第2歯車102と第3歯車103の間に介装され、同期機構を持たないことで、回転同期状態での噛み合いストロークにより締結されるドグクラッチである。第2係合クラッチC2が左側締結位置(Left)のとき、第1軸11と第3歯車103を駆動連結する。第2係合クラッチC2が中立位置(N)のとき、第1軸11と第2歯車102を解放すると共に、第1軸11と第3歯車103を解放する。第2係合クラッチC2が右側締結位置(Right)のとき、第1軸11と第2歯車102を駆動連結する。
 前記第3係合クラッチC3は、第3軸13のうち、第9歯車109と第10歯車110の間に介装され、同期機構を持たないことで、回転同期状態での噛み合いストロークにより締結されるドグクラッチである。第3係合クラッチC3が左側締結位置(Left)のとき、第3軸13と第10歯車110を駆動連結する。第3係合クラッチC3が中立位置(N)のとき、第3軸13と第9歯車109を解放すると共に、第3軸13と第10歯車110を解放する。第3係合クラッチC3が右側締結位置(Right)のとき、第3軸13と第9歯車109を駆動連結する。そして、多段歯車変速機1の第3軸13に一体(一体化固定を含む)に設けられた第7歯車107に噛み合う第16歯車116は、デファレンシャル歯車17及び左右のドライブ軸18を介して左右の駆動輪19に接続されている。
 ハイブリッド車両の制御系は、図1に示すように、ハイブリッドコントロールモジュール21と、モータコントロールユニット22と、変速機コントロールユニット23と、エンジンコントロールユニット24と、を備えている。
 前記ハイブリッドコントロールモジュール21(略称:「HCM」)は、車両全体の消費エネルギーを適切に管理する機能を担う統合制御手段である。このハイブリッドコントロールモジュール21は、他のコントロールユニット(モータコントロールユニット22、変速機コントロールユニット23、エンジンコントロールユニット24など)とCAN通信線25により双方向情報交換可能に接続されている。なお、CAN通信線25の「CAN」とは、「Controller Area Network」の略称である。
 前記モータコントロールユニット22(略称:「MCU」)は、第1インバータ4と第2インバータ6に対する制御指令により第1モータジェネレータMG1と第2モータジェネレータMG2の力行制御や回生制御などを行う。第1モータジェネレータMG1及び第2モータジェネレータMG2に対する制御モードとしては、「トルク制御」と「回転数FB制御」がある。「トルク制御」は、目標トルクに対して分担する目標モータトルクが決まると、実モータトルクを目標モータトルクに追従させる制御を行う。「回転数FB制御」は、走行中に係合クラッチC1,C2,C3の何れかを噛み合い締結する変速要求があると、クラッチ入出力回転数を回転同期させる目標モータ回転数を決め、実モータ回転数を目標モータ回転数に収束させるようにFBトルクを出力する制御を行う。
 前記変速機コントロールユニット23(略称:「TMCU」)は、所定の入力情報に基づいて電動アクチュエータ31,32,33(図2参照)へ電流指令を出力することにより、多段歯車変速機1の変速段を切り替える変速制御を行う。この変速制御では、係合クラッチC1,C2,C3を選択的に噛み合い締結/解放させ、複数対の歯車対から動力伝達に関与する歯車対を選択する。ここで、解放されている係合クラッチC1,C2,C3の何れかを締結する変速要求時には、クラッチ入出力の差回転数を抑えて噛み合い締結を確保するために、第1モータジェネレータMG1又は第2モータジェネレータMG2の回転数FB制御(回転同期制御)を併用する。
 前記エンジンコントロールユニット24(略称:「ECU」)は、所定の入力情報に基づいてモータコントロールユニット22や点火プラグや燃料噴射アクチュエータなどへ制御指令を出力することにより、内燃機関ICEの始動制御や内燃機関ICEの停止制御や燃料カット制御などを行う。
 [変速制御系構成]
  実施例1の多段歯車変速機1は、変速要素として、噛み合い締結による係合クラッチC1,C2,C3(ドグクラッチ)を採用することにより引き摺りを低減することで効率化を図った点を特徴とする。そして、係合クラッチC1,C2,C3のいずれかを噛み合い締結させる変速要求があると、クラッチ入出力の差回転数を、第1モータジェネレータMG1(係合クラッチC3の締結時)又は第2モータジェネレータMG2(係合クラッチC1,C2の締結時)により回転同期させ、同期判定回転数範囲内になると噛み合いストロークを開始することで実現している。又、締結されている係合クラッチC1,C2,C3のいずれかを解放させる変速要求があると、解放クラッチのクラッチ伝達トルクを低下させ、解放トルク判定値以下になると解放ストロークを開始することで実現している。以下、図2に基づき、多段歯車変速機1の変速制御系構成を説明する。
 変速制御系は、図2に示すように、係合クラッチとして、第1係合クラッチC1と第2係合クラッチC2と第3係合クラッチC3を備えている。アクチュエータとして、C2,C3シフト動作用の第1電動アクチュエータ31と、C2,C3セレクト動作用の第2電動アクチュエータ32と、C3シフト動作用の第3電動アクチュエータ33を備えている。そして、アクチュエータ動作をクラッチ係合/解放動作に変換するシフト機構として、C1/C2セレクト動作機構40と、C1シフト動作機構41と、C2シフト動作機構42と、C3シフト動作機構43を備えている。さらに、第1電動アクチュエータ31と第2電動アクチュエータ32と第3電動アクチュエータ33の制御手段として、変速機コントロールユニット23を備えている。
 前記第1係合クラッチC1と第2係合クラッチC2と第3係合クラッチC3は、ニュートラル位置(N:解放位置)と、左側締結位置(Left:左側クラッチ噛み合い締結位置)と、右側締結位置(Right:右側クラッチ噛み合い締結位置)と、を切り替えるドグクラッチである。各係合クラッチC1,C2,C3は何れも同じ構成であり、カップリングスリーブ51,52,53と、左側ドグクラッチリング54,55,56と、右側ドグクラッチリング57,58,59と、を備える。カップリングスリーブ51,52,53は、第4軸14,第1軸11,第3軸13に固定された図外のハブを介してスプライン結合により軸方向にストローク可能に設けられたもので、両側に平らな頂面によるドグ歯51a,51b,52a,52b,53a,53bを有する。さらに、カップリングスリーブ51,52,53の周方向中央部にフォーク溝51c,52c,53cを有する。左側ドグクラッチリング54,55,56は、各係合クラッチC1,C2,C3の左側遊転歯車である各歯車113,103,110のボス部に固定され、ドグ歯51a,52a,53aに対向する平らな頂面によるドグ歯54a,55a,56aを有する。右側ドグクラッチリング57,58,59は、各係合クラッチC1,C2,C3の右側遊転歯車である各歯車112,102,109のボス部に固定され、ドグ歯51b,52b,53bに対向する平らな頂面によるドグ歯57b,58b,59bを有する。
 前記C1/C2セレクト動作機構40は、第1電動アクチュエータ31とC1シフト動作機構41の連結を選択する第1位置と、第1電動アクチュエータ31とC2シフト動作機構42の連結を選択する第2位置と、を選択する機構である。第1位置の選択時には、シフトロッド62と第1係合クラッチC1のシフトロッド64を連結すると共に、第2係合クラッチC2のシフトロッド65をニュートラル位置にロックする。第2位置の選択時には、シフトロッド62と第2係合クラッチC2のシフトロッド65を連結すると共に、第1係合クラッチC1のシフトロッド64をニュートラル位置にロックする。つまり、第1位置と第2位置のうち、一方の係合クラッチをシフト動作する位置を選択すると、他方の係合クラッチはニュートラル位置でロック固定する機構としている。
 前記C1シフト動作機構41とC2シフト動作機構42とC3シフト動作機構43は、電動アクチュエータ31,33の回動動作を、カップリングスリーブ51,52,53の軸方向ストローク動作に変換する機構である。各シフト動作機構41,42,43は何れも同じ構成であり、回動リンク61,63と、シフトロッド62,64,65,66と、シフトフォーク67,68,69と、を備える。回動リンク61,63は、一端が電動アクチュエータ31,33のアクチュエータ軸に設けられ、他端がシフトロッド64(又はシフトロッド65),66に相対変位可能に連結される。シフトロッド64,65,66は、ロッド分割位置にスプリング64a,65a,66aが介装され、ロッド伝達力の大きさと方向に応じて伸縮可能とされている。シフトフォーク67,68,69は、一端がシフトロッド64,65,66に固定され、他端がカップリングスリーブ51,52,53のフォーク溝51c,52c,53cに配置される。
 前記変速機コントロールユニット23は、車速センサ71、アクセル開度センサ72、変速機出力軸回転数センサ73、エンジン回転数センサ74、MG1回転数センサ75、MG2回転数センサ76、インヒビタースイッチ77、バッテリSOCセンサ78、路面勾配センサ79、ブレーキスイッチ80、第2モータジェネレータMG2のMG2温度センサ81などからのセンサ信号やスイッチ信号を入力する。なお、変速機出力軸回転数センサ73は、第3軸13の軸端部に設けられ、第3軸13の軸回転数を検出する。そして、カップリングスリーブ51,52,53の位置によって決まる係合クラッチC1,C2,C3の噛み合い締結と解放を制御する位置サーボ制御部(例えば、PID制御による位置サーボ系)を備えている。この位置サーボ制御部は、第1スリーブ位置センサ81、第2スリーブ位置センサ82、第3スリーブ位置センサ83からのセンサ信号を入力する。そして、各スリーブ位置センサ81,82,83のセンサ値を読み込み、カップリングスリーブ51,52,53の位置が噛み合いストロークによる締結位置又は解放位置になるように、電動アクチュエータ31,32,33に電流を与える。即ち、カップリングスリーブ51,52,53に溶接されたドグ歯と遊転歯車に溶接されたドグ歯との双方が噛合した噛み合い位置にある締結状態にすることで、遊転歯車を第4軸14,第1軸11,第3軸13に駆動連結する。一方、カップリングスリーブ51,52,53が、軸線方向へ変位することでカップリングスリーブ51,52,53に溶接されたドグ歯と遊転歯車に溶接されたドグ歯が非噛み合い位置にある解放状態にすることで、遊転歯車を第4軸14,第1軸11,第3軸13から切り離す。
 [変速段構成]
  実施例1の多段歯車変速機1は、流体継手などの回転差吸収要素を持たないことで動力伝達損失を低減すると共に、内燃機関ICEをモータアシストすることでICE変速段を減らし、コンパクト化(EV変速段:1-2速、ICE変速段:1-4速)を図った点を特徴とする。以下、図3及び図4に基づき、多段歯車変速機1の変速段構成を説明する。
 変速段の考え方は、図3に示すように、車速VSPが所定車速VSP0以下の発進領域においては、多段歯車変速機1が発進要素(滑り要素)を持たないため、「EVモード」でモータ駆動力のみによるモータ発進(EV発進)とする。そして、走行領域においては、図3に示すように、駆動力の要求が大きいとき、エンジン駆動力をモータ駆動力によりアシストする「パラレルHEVモード」により対応するという変速段の考え方を採る。つまり、車速VSPの上昇に従って、ICE変速段は、(ICE1st→)ICE2nd→ICE3rd→ICE4thへと変速段が移行し、EV変速段は、EV1st→EV2ndへと変速段が移行する。よって、図3に示す変速段の考え方に基づき、変速段を切り替える変速要求を出すための変速マップを作成する。
 係合クラッチC1,C2,C3を有する多段歯車変速機1により理論的に実現可能な全変速段は図4に示す通りである。なお、図4中の「Lock」は、変速段として成立しないインターロック変速段を表し、「EV-」は、第1モータジェネレータMG1が駆動輪19に駆動連結されていない状態を表し、「ICE-」は、内燃機関ICEが駆動輪19に駆動連結されていない状態を表す。以下、各変速段について説明する。
 第2係合クラッチC2が「N」で、第3係合クラッチC3が「N」のとき、第1係合クラッチC1の位置により次の変速段となる。第1係合クラッチC1が「Left」であれば「EV- ICEgen」、第1係合クラッチC1が「N」であれば「Neutral」、第1係合クラッチC1が「Right」であれば「EV- ICE3rd」である。
ここで、「EV- ICEgen」の変速段は、停車中、内燃機関ICEにより第1モータジェネレータMG1で発電するMG1アイドル発電時、又は、MG1発電にMG2発電を加えたダブルアイドル発電時に選択される変速段である。「Neutral」の変速段は、停車中、内燃機関ICEにより第2モータジェネレータMG2で発電するMG2アイドル発電時に選択される変速段である。
 第2係合クラッチC2が「N」で、第3係合クラッチC3が「Left」のとき、第1係合クラッチC1の位置により次の変速段となる。第1係合クラッチC1が「Left」であれば「EV1st ICE1st」、第1係合クラッチC1が「N」であれば「EV1st ICE-」、第1係合クラッチC1が「Right」であれば「EV1st ICE3rd」である。
ここで、「EV1st ICE-」の変速段は、内燃機関ICEを停止して第1モータジェネレータMG1で走行する「EVモード」のとき、又は、内燃機関ICEにより第2モータジェネレータMG2で発電しながら、第1モータジェネレータMG1で1速EV走行を行う「シリーズHEVモード」のときに選択される変速段である。また、「EV1st ICE-」の変速段は、停車中、内燃機関ICEにより第2モータジェネレータMG2で発電するMG2アイドル発電時に選択され、第1モータジェネレータMG1を駆動輪19に機械的に結合したままとする変速段である。
 第2係合クラッチC2が「Left」で、第3係合クラッチC3が「Left」のとき、第1係合クラッチC1の位置が「N」であれば「EV1st ICE2nd」である。第2係合クラッチC2が「Left」で、第3係合クラッチC3が「N」のとき、第1係合クラッチC1の位置により次の変速段となる。第1係合クラッチC1が「Left」であれば「EV1.5 ICE2nd」、第1係合クラッチC1が「N」であれば「EV- ICE2nd」である。第2係合クラッチC2が「Left」で、第3係合クラッチC3が「Right」のとき、第1係合クラッチC1の位置が「N」であれば「EV2nd ICE2nd」である。
 第2係合クラッチC2が「N」で、第3係合クラッチC3が「Right」のとき、第1係合クラッチC1の位置により次の変速段となる。第1係合クラッチC1が「Left」であれば「EV2nd ICE3rd’」、第1係合クラッチC1が「N」であれば「EV2nd ICE-」、第1係合クラッチC1が「Right」であれば「EV2nd ICE3rd」である。
ここで、「EV2nd ICE-」の変速段は、内燃機関ICEを停止して第1モータジェネレータMG1で走行する「EVモード」のとき、又は、内燃機関ICEにより第2モータジェネレータMG2で発電しながら、第1モータジェネレータMG1で2速EV走行を行う「シリーズHEVモード」のときに選択される変速段である。
 第2係合クラッチC2が「Right」で、第3係合クラッチC3が「Right」のとき、第1係合クラッチC1の位置が「N」であれば「EV2nd ICE4th」である。第2係合クラッチC2が「Right」で、第3係合クラッチC3が「N」のとき、第1係合クラッチC1の位置により次の変速段となる。第1係合クラッチC1が「Left」であれば「EV2.5 ICE4th」、第1係合クラッチC1が「N」であれば「EV- ICE4th」である。第2係合クラッチC2が「Right」で、第3係合クラッチC3が「Left」のとき、第1係合クラッチC1の位置が「N」であれば「EV1st ICE4th」である。
 次に、係合クラッチC1,C2,C3の締結組み合わせによる上記全変速段から「通常時使用変速段」を分ける手法について説明する。
まず、全変速段から「インターロック変速段(図4のクロスハッチング)」と「シフト機構により選択できない変速段(図4の右上がりハッチング)」を除いた変速段を、多段歯車変速機1により実現可能な複数の変速段とする。ここで、シフト機構により選択できない変速段とは、第1係合クラッチC1が「Left」で、かつ、第2係合クラッチC2が「Left」である「EV1.5 ICE2nd」と、第1係合クラッチC1が「Left」で、かつ、第2係合クラッチC2が「Right」である「EV2.5 ICE4th」と、をいう。シフト機構により選択できない理由は、1つの第1電動アクチュエータ31が、2つの係合クラッチC1,C2に対して兼用するシフトアクチュエータであり、かつ、C1/C2セレクト動作機構40により片方の係合クラッチはニュートラルロックされることによる。
 そして、多段歯車変速機1により実現可能な複数の変速段の中から「通常使わない変速段(図4の右下がりハッチング)」と「低SOC等で使う変速段(図4の破線枠)」を除いた変速段を、「通常時使用変速段(図4の太線枠)」とする。ここで、「通常使わない変速段」とは、「EV2nd ICE3rd’」と「EV1st ICE4th」であり、「低SOC等で使う変速段」とは、「EV- ICEgen」と「EV1st ICE1st」である。
 よって、「通常時使用変速段」は、EV変速段(EV1st ICE-、EV2nd ICE-)と、ICE変速段(EV- ICE2nd、EV- ICE3rd、EV- ICE4th)と、組み合わせ変速段(EV1st ICE2nd、EV1st ICE3rd、EV2nd ICE2nd、EV2nd ICE3rd、EV2nd ICE4th)に、「Neutral」を加えることによって構成される。
 [発電制御処理構成]
  図5は、実施例1のハイブリッドコントロールモジュール21で実行される発電制御処理の流れを示す(発電コントローラ)。以下、発電制御処理構成をあらわす図5の各ステップについて説明する。なお、この処理は、イグニッション・オンにより「START」し、車両起動中、所定の処理時間毎(例えば、10ms)に繰り返し実行される。
 ステップS1では、ハイブリッド車両が停車中か否かを判定する。YES(車両停車中)の場合はステップS2へ進み、NO(車両走行中等)の場合はステップS1を繰り返す。
  ここで、「停車中」か否かは、車速センサ71からの車速VSP情報等、複数の情報から判定される。
 ステップS2では、ステップS1での「車両停車中」との判定に続き、ドライバからの発電要求が有るか否かを判定する。YES(発電要求有り)の場合はステップS3へ進み、NO(発電要求無し)の場合はステップS4へ進む。
  ここで、「ドライバからの発電要求」とは、例えば、車内のインストルメントパネル等に設けられた「発電要求スイッチ」を、ドライバが操作して、そのスイッチをONにした場合である。この情報は、例えば、ハイブリッドコントロールモジュール21に入力される。
 ステップS3では、ステップS2での「発電要求有り」との判定に続き、ドライバからの要求発電電力が所定値よりも大きいか否かを判定する。YES(要求発電電力>所定値)の場合はステップS12へ進み、NO(要求発電電力≦所定値)の場合はステップS13へ進む。
  ここで、「ドライバからの要求発電電力」とは、例えば、上記の「発電要求スイッチ」と共に設けられているダイヤルを、ドライバが操作して、そのダイヤルの位置により要求発電電力が設定される。この情報は、例えば、ハイブリッドコントロールモジュール21に入力される。なお、そのダイヤルの他、「大」や「小」等の複数段の切り替えによるものであっても良い。要するに、要求発電電力を設定できるものであれば良い。
  また、「所定値」とは、後述するステップS10の「所定値」と同様である。
 ステップS4では、ステップS2での「発電要求無し」との判定に続き、セレクトレバーに対するドライバのセレクト操作により、PレンジからDレンジに切り替えられたか否かを判定する。YES(P→Dセレクトである)の場合はステップS18へ進み、NO(P→Dセレクトではない)の場合はステップS5へ進む。
  ここで、PレンジやDレンジ等は、セレクトレバーの位置を検出するインヒビタースイッチ77からの情報(Pレンジ、Dレンジ、Nレンジ、Rレンジ等)を取得する。例えば、今回の処理でPレンジであり、次回の処理でDレンジに切り替えられた場合に、「P→Dセレクトである」と判定される。
 ステップS5では、ステップS4での「P→Dセレクトではない」との判定に続き、バッテリSOCが第1容量閾値未満か否かを判定する。YES(バッテリSOC<第1容量閾値、バッテリ容量(バッテリSOC)不足時)の場合はステップS6へ進み、NO(バッテリSOC≧第1容量閾値、バッテリ容量(バッテリSOC)充足時)の場合はステップS18へ進む。
  ここで、「バッテリSOC」とは、強電バッテリ3のバッテリ容量(充電容量)であり、バッテリSOCセンサ78によりバッテリSOC情報を取得する。
  また、「第1容量閾値」とは、EV発進に必要な電力を確保する強電バッテリ3の管理上、バッテリSOC要求(充電要求)の有無を切り分ける閾値である。また、この「第1容量閾値」は、強電バッテリ3の寿命に悪影響を与えるほど低いバッテリSOC領域を使用しないことも考慮して、バッテリSOC要求(充電要求)の有無を切り分けても良い。なお、この「第1容量閾値」は、例えば、バッテリSOCが50%である。
 ステップS6では、ステップS5での「バッテリSOC<第1容量閾値」との判定に続き、路面勾配を検知したか否かを判定する。YES(路面勾配を検知した(勾配路である))の場合はステップS13へ進み、NO(路面勾配を検知しない(勾配路ではない))の場合はステップS7へ進む。
  ここで、「路面勾配」とは、ハイブリッド車両が停車している道路の勾配である前後勾配θ[rad]であり、例えば、路面勾配センサ79により検知される。なお、路面勾配センサ79ではなく、前後Gセンサから路面勾配を推定しても良い。
 ステップS7では、ステップS6での「路面勾配を検知しない」との判定に続き、ブレーキスイッチ80がONかOFFかを判定する。YES(ブレーキスイッチON)の場合はステップS9へ進み、NO(ブレーキスイッチOFF)の場合はステップS8へ進む。
 ステップS8では、ステップS7での「ブレーキスイッチOFF」との判定に続き、セレクトレバーに対するドライバのセレクト操作により、Pレンジ(パーキングレンジ)が選択されているか否かを判定する。YES(Pレンジ)の場合はステップS9へ進み、NO(N,Dレンジ等)の場合はステップS13へ進む。
  ここで、「Pレンジ」か否かは、インヒビタースイッチ77からの情報(Pレンジ、Dレンジ、Nレンジ、Rレンジ等)を取得する。
 ステップS9では、ステップS7での「ブレーキスイッチON」との判定、或いは、ステップS8での「Pレンジ」との判定に続き、バッテリSOCが第2容量閾値未満か否かを判定する。YES(バッテリSOC<第2容量閾値)の場合はステップS10へ進み、NO(バッテリSOC≧第2容量閾値)の場合はステップS11へ進む。
  ここで、「バッテリSOC」は、上述したとおりである。
  また、「第2容量閾値」とは、バッテリSOC要求が有り、この要求レベルが高いのか低いのかを切り分ける閾値である。言い換えれば、要求レベルが急速充電か否かを切り分ける閾値である。なお、この「第2容量閾値」は、例えば、バッテリSOCが45%である。
 ステップS10では、ステップS9での「バッテリSOC<第2容量閾値」との判定に続き、第2モータジェネレータMG2のMG2発電可能電力が所定値より大きいか否かを判定する。YESの場合(MG2発電可能電力>所定値)にはステップS14へ進み、NOの場合(MG2発電可能電力≦所定値)にはステップS15へ進む。
  ここで、「MG2発電可能電力」とは、第2モータジェネレータMG2の発電可能電力である。このMG2発電可能電力は、例えば、第2モータジェネレータMG2のMG2温度センサ81によりMG2温度情報を取得し、このMG2温度から決定される。すなわち、MG2温度が高いほど、MG2発電可能電力が小さくなり、MG2温度が低いほどMG2発電可能電力が大きくなる。
  また、「所定値」とは、第2モータジェネレータMG2が、連続して所定時間、発電を行うことが可能な値に設定されるものである。この値は、第2モータジェネレータMG2の性能によって設定されるが、例えば、15kWである。
 ステップS11では、ステップS9での「バッテリSOC≧第2容量閾値」との判定に続き、第2モータジェネレータMG2のMG2発電可能電力が所定値より大きいか否かを判定する。YESの場合(MG2発電可能電力>所定値)にはステップS16へ進み、NOの場合(MG2発電可能電力≦所定値)にはステップS17へ進む。
  ここで、「MG2発電可能電力」及び「所定値」は、上述したとおりである。
 ステップS12では、ステップS3での「要求発電電力>所定値」との判定に続き、停車中、内燃機関ICEにより第1モータジェネレータMG1で発電するMG1アイドル発電を実行し、エンドへ進む。なお、「EV- ICEgen」の変速段へ切り替えられた後に、ドライバからの要求発電電力に応じたMG1アイドル発電(MG1発電)を実行する。
  ここで、MG1アイドル発電時の内燃機関ICEの運転点は、発電電力、発電効率、音振を考慮して決定する。しかし、発電効率を優先してエンジン回転数を決定すると、音振が大きくなりドライバに違和感を与える場合がある。このため、このような場合には、発電効率よりも音振を優先し、ICE回転数(エンジン回転数)を下げてICEトルクを上げる。
 ステップS13では、ステップS3での「要求発電電力≦所定値」との判定、或いは、ステップS6での「路面勾配を検知した」との判定、若しくは、ステップS8での「N,Dレンジ等」との判定に続き、停車中、内燃機関ICEにより第2モータジェネレータMG2で発電するMG2アイドル発電を実行し、エンドへ進む。なお、「EV1st ICE-」の変速段へ切り替えられた後に、MG2アイドル発電(MG2発電)を実行する。
 ステップS14では、ステップS10での「MG2発電可能電力>所定値」との判定に続き、停車中、MG1アイドル発電にMG2アイドル発電(例えば、15kWで発電)を加えたダブルアイドル発電(ダブル発電(制限なし))を実行し、エンドへ進む。なお、「EV- ICEgen」の変速段へ切り替えられた後に、ダブルアイドル発電を実行する。
 ステップS15では、ステップS10での「MG2発電可能電力≦所定値」との判定に続き、MG1アイドル発電にMG2アイドル発電を制限したMG2アイドル制限発電(例えば、5kWで発電)を加えたダブルアイドル制限発電(ダブル発電(制限あり))を実行し、エンドへ進む。すなわち、ステップS10での「MG2発電可能電力≦所定値」との判定により、MG2アイドル発電が制限される。なお、「EV- ICEgen」の変速段へ切り替えられた後に、ダブルアイドル制限発電を実行する。
 ステップS16では、ステップS11での「MG2発電可能電力>所定値」との判定に続き、ステップS13と同様に、停車中、MG2アイドル発電を実行し、エンドへ進む。なお、「EV1st ICE-」の変速段へ切り替えられた後に、MG2アイドル発電を実行する。
 ステップS17では、ステップS11での「MG2発電可能電力≦所定値」との判定に続き、ステップS12と同様に、停車中、MG1アイドル発電を実行し、エンドへ進む。すなわち、ステップS11での「MG2発電可能電力≦所定値」との判定により、MG2アイドル発電が制限されるため、第2モータジェネレータMG2を発電に用いない。なお、「EV- ICEgen」の変速段へ切り替えられた後に、MG1アイドル発電を実行する。
 ステップS18では、ステップS4での「P→Dセレクトである」との判定、或いは、ステップS5での「バッテリSOC≧第1容量閾値」との判定に続き、第1モータジェネレータMG1でも第2モータジェネレータMG2でも発電を実行せず、エンドへ進む。また、ステップS18では、第1モータジェネレータMG1が駆動輪19に機械的に結合した状態であれば、結合したままとする。一方、第1モータジェネレータMG1が駆動輪19に機械的に結合していなければ、結合するように第3係合クラッチC3を締結するクラッチ架け替えを実施する。これは、EV発進(モータ発進)要求に備えるためである。
 次に、作用を説明する。
実施例1のハイブリッド車両の発電制御装置における作用を、「発電制御処理作用」、「発電制御の特徴作用」、に分けて説明する。
 [発電制御処理作用]
  以下、図5に示すフローチャートに基づき、発電制御処理作用を、「MG1アイドル発電を実行するときの発電制御処理作用」と、「MG2アイドル発電を実行するときの発電制御処理作用」と、「ダブルアイドル発電を実行するときの発電制御処理作用」と、「ダブルアイドル制限発電を実行するときの発電制御処理作用」と、に分けて説明する。なお、いずれの制御処理作用においても、ハイブリッド車両が停車中と判定されるまでは、図5のフローチャートにおいて、ステップS1が繰り返される。そして、いずれの制御処理作用においても、ステップS1において車両停車中と判定されると、ステップS1からステップS2へ進む流れは同様である。
 (MG1アイドル発電を実行するときの発電制御処理作用)
  まず、図5のフローチャートに基づき、MG1アイドル発電を実行するときの発電制御処理作用を説明し、次に、図6のタイムチャートの動作例に基づき、MG1アイドル発電を実行するときの発電制御処理構成の各ステップについて説明する。
 車両が停車中であって、「ドライバからの発電要求有り」と判定されると、図5のフローチャートにおいて、START→ステップS1→ステップS2→ステップS3へと進む。ステップS3では、ドライバからの要求発電電力が所定値よりも大きい(要求発電電力>所定値)か否かが判定される。ステップS3において「要求発電電力>所定値」と判定されると、ステップS3からステップS12へと進む。そして、ステップS12では、ドライバからの要求発電電力に応じたMG1アイドル発電が実行される。すなわち、MG1アイドル発電を実行するときの発電制御は、図5のフローチャートにおいて、START→ステップS1→ステップS2→ステップS3→ステップS12→エンドへと進む流れである。
 次に、車両が停車中であって、「ドライバからの発電要求無し」と判定されると、図5のフローチャートにおいて、START→ステップS1→ステップS2→ステップS4へと進む。ステップS4では、ドライバのセレクト操作により、PレンジからDレンジに切り替えられたか否かが判定される。ステップS4において「P→Dセレクトではない」と判定されると、ステップS5へ進む。ステップS5では、バッテリSOCが第1容量閾値未満(バッテリSOC<第1容量閾値)か否かが判定される。ステップS5において「バッテリSOC<第1容量閾値」と判定されると、ステップS6へ進む。
 また、ステップS6では、路面勾配を検知したか否かが判定される。ステップS6において「路面勾配を検知しない」と判定されると、ステップS6からステップS7へ進む。ステップS7では、ブレーキスイッチがONかOFFかが判定される。ステップS7において「ブレーキスイッチON」と判定されると、ステップS7からステップS9へ進む。
  一方、ステップS7において「ブレーキスイッチOFF」と判定されると、ステップS7からステップS8へ進む。ステップS8では、レンジがPレンジか否かが判定される。ステップS8において「Pレンジ」と判定されると、ステップS8からステップS9へ進む。すなわち、ステップS7において「ブレーキスイッチON」と判定される又はステップS8において「Pレンジ」と判例されると、ステップS7又はステップS8からステップS9へ進む。
 さらに、ステップS9では、バッテリSOCが第2容量閾値未満(バッテリSOC<第2容量閾値)か否かが判定される。ステップS9において「バッテリSOC≧第2容量閾値」と判定されると、ステップS11へ進む。ステップS11では、MG2発電可能電力が所定値より大きい(MG2発電可能電力>所定値)か否かが判定される。ステップS11において「MG2発電可能電力≦所定値」と判定されると、ステップS11からステップS17へ進む。そして、ステップS17では、MG1アイドル発電が実行される。すなわち、MG1アイドル発電を実行するときの発電制御は、図5のフローチャートにおいて、START→ステップS1→ステップS2→ステップS4→ステップS5→ステップS6→ステップS7→(ステップS8→)ステップS9→ステップS11→ステップS17→エンドへと進む流れである。
 次に、図6のタイムチャートに示す動作例に基づき、各時刻について説明する。以下、図6のタイムチャートに基づき、「ドライバからの発電要求無し」と判定される場合におけるMG1アイドル発電を実行するときの発電制御処理構成の各ステップについて説明する。なお、図6の前提条件として、「路面勾配を検知しない」と判定され、「ブレーキスイッチOFF」と判定され、「MG2発電可能電力≦所定値」と判定されるもの、とする。
 時刻t1より前において、図6に示すように、ハイブリッド車両は減速中であり、時刻t1のとき、図6に示すように、回転数がゼロになる。次いで、時刻t1から時刻t2までの間に、車両が停車中か否かが判定される。次いで、時刻t2のとき、車両が停車中であると判定される。すなわち、時刻t2になるまでは、図5のフローチャートにおいて、ステップS1の繰り返しに相当する。
 また、時刻t2のとき、図6に示すように、「第2容量閾値≦バッテリSOC<第1容量閾値」であり、「Dレンジ」から「Pレンジ」に切り替えられている。すなわち、時刻t2のときは、図5のフローチャートにおいて、START→ステップS1→ステップS2→ステップS4→ステップS5→ステップS6→ステップS7→ステップS8→ステップS9→ステップS11→ステップS17に相当する。なお、「ブレーキスイッチON」と判定される場合、図5のフローチャートにおいて、ステップS7→ステップS9に相当する。
 そして、時刻t2のときから、MG1アイドル発電を実行するために、時刻t2より前の変速段「EV1st ICE-」から図7に示す「EV- ICEgen」へ切り替えられる。すなわち、変速段「EV- ICEgen」の場合、図7に示すように、内燃機関ICEから第1モータジェネレータMG1へ向かう動力伝達経路上に1つの第1係合クラッチC1(Left)が存在する。このため、最初に、時刻t2のとき、図6に示すように、内燃機関ICE等のトルクがゼロで第3係合クラッチC3を解放(「Left」→「N」)するクラッチ架け替えが実施される。次いで、時刻t2から時刻t3までの間では、時刻t2から第2モータジェネレータMG2をスタータモータとして内燃機関ICEがMG2始動される。次いで、内燃機関ICEが始動された後、第1モータジェネレータMG1を駆動させ、第1係合クラッチC1を回転同期状態にする。次いで、時刻t3のとき、図6に示すように、回転同期状態で第1係合クラッチC1を締結(「N」→「Left」)するクラッチ架け替えが実施される。
  これにより、図6に示すように、「EV- ICEgen」の変速段にて、時刻t3より僅かに遅れて、MG1アイドル発電が実行(開始)される。
 このときの「EV- ICEgen」の変速段が選択されたときの多段歯車変速機1における内燃機関ICEのICEトルク(内燃機関ICEのトルク)の流れを、図7に基づき説明する。「EV- ICEgen」の変速段では、第1係合クラッチC1が「Left」位置であり、第2係合クラッチC2が「N」位置であり、第3係合クラッチC3が「N」位置である。従って、ICEトルクは、内燃機関ICEから第1軸11→第1歯車101→第11歯車111→第4軸14→第13歯車113→第4歯車104→第2軸12→第1モータジェネレータMG1へと流れる。すなわち、停車中に第1モータジェネレータMG1と駆動輪19とを切り離し、第1モータジェネレータMG1と内燃機関ICEとを結合し、ICEトルクによりMG1アイドル発電が実行される。
 時刻t3から時刻t4までの間、MG1アイドル発電により、バッテリSOCが徐々に増加される。
 時刻t4のとき、図6に示すように、「Pレンジ」から「Dレンジ」に切り替えられ、MG1アイドル発電が終了される。すなわち、時刻t2のときから時刻t4の直前までの間、図5のフローチャートにおいて、START→ステップS1→ステップS2→ステップS4→ステップS5→ステップS6→ステップS7→ステップS8→ステップS9→ステップS11→ステップS17→エンドの繰り返しに相当する。また、時刻t4のときが、図5のフローチャートにおいて、ステップS1→ステップS2→ステップS4→ステップS18に相当する。
 また、時刻t4のとき、再発進(EV発進)に備えるために係合クラッチC1,C3の架け替えが実施され、「EV- ICEgen」から「EV1st ICE-」へ切り替えられる。まず、図6に示すように、ICEトルク(クラッチ伝達トルク)を低下させ、ICEトルクがゼロのとき、第1係合クラッチC1を解放(「Left」→「N」)するクラッチ架け替えが実施される。次いで、時刻t4から時刻t5までの間、内燃機関ICEを停止させると共に、第1モータジェネレータMG1の回転数を駆動輪19の回転数に同期させる。つまり、第1モータジェネレータMG1を停止させる。次いで、時刻t5のとき、回転同期状態で、第3係合クラッチC3を締結(「N」→「Left」)するクラッチ架け替えが実施される。つまり、第3係合クラッチC3を発進用の位置とし、発進要求に備える。そして、時刻t6において、変速段「EV1st ICE-」において、ハイブリッド車両がEV発進する。なお、時刻t2~時刻t5において、第2モータジェネレータMG2は回転しているが、これは内燃機関ICEの回転によるものであり、「MG2発電可能電力≦所定値」により、MG2アイドル発電が制限されるため、第2モータジェネレータMG2を発電に用いない。
 (MG2アイドル発電を実行するときの制御処理作用)
  まず、図5のフローチャートに基づき、MG2アイドル発電を実行するときの発電制御処理作用を説明し、次に、図8のタイムチャートの動作例に基づき、MG2アイドル発電を実行するときの発電制御処理構成の各ステップについて説明する。
 車両が停車中であって、「ドライバからの発電要求有り」と判定されると、図5のフローチャートにおいて、START→ステップS1→ステップS2→ステップS3へと進む。ステップS3では、ドライバからの要求発電電力が所定値よりも大きい(要求発電電力>所定値)か否かが判定される。ステップS3において「要求発電電力≦所定値」と判定されると、ステップS3からステップS13へ進む。そして、ステップS13では、MG2アイドル発電が実行される。すなわち、MG2アイドル発電を実行するときの発電制御は、図5のフローチャートにおいて、START→ステップS1→ステップS2→ステップS3→ステップS13→エンドへと進む流れである。
 次に、車両が停車中であって、「ドライバからの発電要求無し」と判定されると、図5のフローチャートにおいて、START→ステップS1→ステップS2→ステップS4へと進む。ここで、ステップS4からステップS6へ進む流れは、「MG1アイドル発電を実行するときの発電制御処理作用」と同様であるから説明を省略する。
 また、ステップS6では、路面勾配を検知したか否かが判定される。ステップS6において「路面勾配を検知した」と判定されると、ステップS6からステップS13へ進む。すなわち、MG2アイドル発電を実行するときの発電制御は、図5のフローチャートにおいて、START→ステップS1→ステップS2→ステップS4→ステップS5→ステップS6→ステップS13→エンドへと進む流れである。
 一方、ステップS6において「路面勾配を検知しない」と判定されると、ステップS6からステップS7へ進む。ステップS7では、ブレーキスイッチがONかOFFかが判定される。ステップS7において「ブレーキスイッチOFF」と判定されると、ステップS7からステップS8へ進む。ステップS8では、レンジがPレンジか否かが判定される。ステップS8において「N,Dレンジ等」と判定されると、ステップS8からステップS13へ進む。すなわち、ステップS7において「ブレーキスイッチOFF」と判定されると共に、ステップS8において「N,Dレンジ等」と判例されると、ステップS8からステップS13へ進む。このため、MG2アイドル発電を実行するときの発電制御は、図5のフローチャートにおいて、START→ステップS1→ステップS2→ステップS4→ステップS5→ステップS6→ステップS7→ステップS8→ステップS13→エンドへと進む流れである。
 続いて、ステップS7において「ブレーキスイッチON」と判定される又はステップS8において「Pレンジ」と判例されると、ステップS7又はステップS8からステップS9へ進む。ここで、ステップS7又はステップS8からステップS11までに進む流れは、「MG1アイドル発電を実行するときの発電制御処理作用」と同様であるから説明を省略する。
 また、ステップS11では、MG2発電可能電力が所定値より大きい(MG2発電可能電力>所定値)か否かが判定される。ステップS11において「MG2発電可能電力>所定値」と判定されると、ステップS11からステップS16へ進む。そして、ステップS16では、MG2アイドル発電が実行される。すなわち、MG2アイドル発電を実行するときの発電制御は、図5のフローチャートにおいて、START→ステップS1→ステップS2→ステップS4→ステップS5→ステップS6→ステップS7→(ステップS8→)ステップS9→ステップS11→ステップS16→エンドへと進む流れである。
 次に、図8のタイムチャートに示す動作例に基づき、各時刻について説明する。以下、図8のタイムチャートに基づき、「ドライバからの発電要求無し」と判定される場合におけるMG2アイドル発電制御処理構成の各ステップについて説明する。なお、図8の前提条件として、「路面勾配を検知した」と判定されるもの、とする。
 まず、時刻t12になるまでは、図6のタイムチャートの時刻t2になるまでの説明と同様であるから説明を省略する。
 時刻t12のとき、図8に示すように、「バッテリSOC<第1容量閾値」である。すなわち、時刻t12は、図5のフローチャートにおいて、START→ステップS1→ステップS2→ステップS4→ステップS5→ステップS6→ステップS13に相当する。なお、図8に示すように、「Dレンジ」との判定が継続されているため、「ブレーキスイッチOFF」との判定が継続されると共に、「路面勾配を検知しない」と判定される場合には、図5のフローチャートにおいて、ステップS6→ステップS7→ステップS8→ステップS13に相当する。
 そして、時刻t12のときから、MG2アイドル発電を実行するために、時刻t12から時刻t13までの間では、第2モータジェネレータMG2をスタータモータとして内燃機関ICEがMG2始動される。なお、停車中と判定されたときには、変速段「EV1st ICE-」であるから、変速段は切り替えられず、同じ変速段が維持される。
  これにより、図8及び図9に示すように、「EV1st ICE-」の変速段にて、時刻t13より僅かに遅れて、MG2アイドル発電が実行(開始)される。
 このときの「EV1st ICE-」の変速段が選択されたときの多段歯車変速機1における内燃機関ICEのICEトルクの流れを、図9に基づき説明する。「EV1st ICE-」の変速段では、第1係合クラッチC1が「N」位置であり、第2係合クラッチC2が「N」位置であり、第3係合クラッチC3が「Left」位置である。従って、ICEトルクは、内燃機関ICEから第1軸11→第1歯車101→第11歯車111→第14歯車114→第15歯車115→第6軸16→第2モータジェネレータMG2へと流れる。すなわち、第1モータジェネレータMG1が駆動輪19に機械的に結合したままである。
 時刻t13から時刻t14までの間、MG2アイドル発電により、バッテリSOCが徐々に増加される。
 時刻t14のとき、図8に示すように、バッテリSOCが第1容量閾値以上(バッテリSOC≧第1容量閾値)になり、MG2アイドル発電が終了される。すなわち、時刻t12のときから「バッテリSOC≧第1容量閾値」になる時刻t14の直前までの間、図5のフローチャートにおいて、START→ステップS1→ステップS2→ステップS4→ステップS5→ステップS6→ステップS13→エンドの繰り返しに相当する。また、時刻t14のときが、図5のフローチャートにおいて、ステップS1→ステップS2→ステップS4→ステップS5→ステップS18に相当する。
  なお、時刻t14のとき、及び、時刻t14から時刻t15までの間は、既に再発進(EV発進)するための変速段「EV1st ICE-」であるから、変速段は切り替えられず、同じ変速段が維持される。そして、時刻t16において、変速段「EV1st ICE-」にて、ハイブリッド車両がEV発進する。
 (ダブルアイドル発電を実行するときの発電制御処理作用)
  まず、図5のフローチャートに基づき、ダブルアイドル発電を実行するときの発電制御処理作用を説明し、次に、図10のタイムチャートの動作例に基づき、ダブルアイドル発電を実行するときの発電制御処理構成の各ステップについて説明する。
 車両が停車中であって、「ドライバからの発電要求無し」と判定されると、図5のフローチャートにおいて、START→ステップS1→ステップS2→ステップS4へと進む。ここで、ステップS4からステップS9までに進む流れは、「MG1アイドル発電を実行するときの発電制御処理作用」と同様であるから説明を省略する。
 また、ステップS9では、バッテリSOCが第2容量閾値未満(バッテリSOC<第2容量閾値)か否かが判定される。ステップS9において「バッテリSOC<第2容量閾値」と判定されると、ステップS10へ進む。ステップS10では、MG2発電可能電力が所定値より大きい(MG2発電可能電力>所定値)か否かが判定される。ステップS10において、「MG2発電可能電力>所定値」と判定されると、ステップS10からステップS14へ進む。そして、ステップS14では、ダブルアイドル発電が実行される。すなわち、ダブルアイドル発電を実行するときの発電制御は、図5のフローチャートにおいて、START→ステップS1→ステップS2→ステップS4→ステップS5→ステップS6→ステップS7→(ステップS8→)ステップS9→ステップS10→ステップS14→エンドへと進む流れである。
 次に、図10のタイムチャートに示す動作例に基づき、各時刻について説明する。以下、図10のタイムチャートに基づき、「ドライバからの発電要求無し」と判定される場合におけるダブルアイドル発電を実行するときの発電制御処理構成の各ステップについて説明する。なお、図10の前提条件として、「路面勾配を検知しない」と判定され、「ブレーキスイッチOFF」と判定され、「MG2発電可能電力>所定値」と判定されるもの、とする。
 まず、時刻t22になるまでは、図6のタイムチャートの時刻t2になるまでの説明と同様であるから説明を省略する。
 時刻t22のとき、図10に示すように、「バッテリSOC<第1容量閾値」であり、「バッテリSOC<第2容量閾値」であり、「Dレンジ」から「Pレンジ」に切り替えられている。すなわち、時刻t22は、図5のフローチャートにおいて、START→ステップS1→ステップS2→ステップS4→ステップS5→ステップS6→ステップS7→ステップS8→ステップS9→ステップS10→ステップS14に相当する。なお、「ブレーキスイッチON」と判定される場合、図5のフローチャートにおいて、ステップS7→ステップS9に相当する。
 そして、時刻t22のときから、ダブルアイドル発電を実行するために、時刻t22より前の変速段「EV1st ICE-」から図11に示す「EV- ICEgen」へ切り替える。すなわち、変速段「EV- ICEgen」の場合、図11に示すように、内燃機関ICEから第1モータジェネレータMG1へ向かう動力伝達経路上に1つの第1係合クラッチC1(Left)が存在する(図7と同様)。ここで、この変速段に切り替えに関する説明は、「MG1アイドル発電を実行するときの発電制御処理作用」と同様であり、図10の時刻t22のときから時刻t23のときまでは、図6のタイムチャートの時刻t2のときから時刻t3のときまでの説明と同様であるから説明を省略する。なお、ダブルアイドル発電のため、MG1アイドル発電時よりも回転同期の回転数が大きくなっている。
  これにより、図10及び図11に示すように、「EV- ICEgen」の変速段にて、時刻t23より僅かに遅れて、MG1アイドル発電にMG2アイドル発電を加えたダブルアイドル発電が実行(開始)される。
 このときの「EV- ICEgen」の変速段が選択されたときの多段歯車変速機1における内燃機関ICEのICEトルクの流れを、図11に基づき説明する。「EV- ICEgen」の変速段では、第1係合クラッチC1が「Left」位置であり、第2係合クラッチC2が「N」位置であり、第3係合クラッチC3が「N」位置である。従って、ICEトルクの一部は、内燃機関ICEから第1軸11→第1歯車101→第11歯車111→第4軸14→第13歯車113→第4歯車104→第2軸12→第1モータジェネレータMG1へと流れる。すなわち、停車中に第1モータジェネレータMG1と駆動輪19とを切り離し、第1モータジェネレータMG1と内燃機関ICEとを結合し、ICEトルクによりMG1アイドル発電が実行される。また、ICEトルクの一部は、内燃機関ICEから第1軸11→第1歯車101→第11歯車111→第14歯車114→第15歯車115→第6軸16→第2モータジェネレータMG2へと流れる。
 時刻t23から時刻t24までの間、ダブルアイドル発電により、バッテリSOCが徐々に増加される。なお、ダブルアイドル発電のため、MG1アイドル発電時よりも内燃機関ICEのトルクが大きくなっている。
 時刻t24のとき、図10に示すように、「Pレンジ」から「Dレンジ」に切り替えられ、ダブルアイドル発電が終了される。すなわち、時刻t22のときから時刻t24の直前までの間、図5のフローチャートにおいて、START→ステップS1→ステップS2→ステップS4→ステップS5→ステップS6→ステップS7→ステップS8→ステップS9→ステップS10→ステップS14→エンドの繰り返しに相当する。また、時刻t24のときが、図5のフローチャートにおいて、ステップS1→ステップS2→ステップS4→ステップS18に相当する。
 また、時刻t24のとき、再発進(EV発進)に備えるために係合クラッチC1,C3の架け替えが実施され、「EV- ICEgen」から「EV1st ICE-」へ切り替えられる。ここで、この変速段の切り替えに関する説明は、「MG1アイドル発電を実行するときの発電制御処理作用」と同様であり、図10の時刻t24から時刻t26までは、図6のタイムチャートの時刻t4から時刻t6までの説明と同様であるから説明を省略する。
 (ダブルアイドル制限発電を実行するときの発電制御処理作用)
  まず、図5のフローチャートに基づき、ダブルアイドル制限発電を実行するときの発電制御処理作用を説明し、次に、図12のタイムチャートの動作例に基づき、ダブルアイドル制限発電を実行するときの発電制御処理構成の各ステップについて説明する。
 車両が停車中であって、「ドライバからの発電要求無し」と判定されると、図5のフローチャートにおいて、START→ステップS1→ステップS2→ステップS4へと進む。ここで、ステップS4からステップS10までに進む流れは、「ダブルアイドル発電を実行するときの発電制御処理作用」と同様であるから説明を省略する。
 また、ステップS10では、MG2発電可能電力が所定値より大きい(MG2発電可能電力>所定値)か否かが判定される。ステップS10において、「MG2発電可能電力≦所定値」と判定されると、ステップS10からステップS15へ進む。そして、ステップS15では、ダブルアイドル制限発電が実行される。すなわち、ダブルアイドル制限発電を実行するときの発電制御は、図5のフローチャートにおいて、START→ステップS1→ステップS2→ステップS4→ステップS5→ステップS6→ステップS7→(ステップS8→)ステップS9→ステップS10→ステップS15→エンドへと進む流れである。
 次に、図12のタイムチャートに示す動作例に基づき、各時刻について説明する。以下、図12のタイムチャートに基づき、「ドライバからの発電要求無し」と判定される場合におけるダブルアイドル制限発電を実行するときの発電制御処理構成の各ステップについて説明する。なお、図12の前提条件として、「路面勾配を検知しない」と判定され、「ブレーキスイッチOFF」と判定され、「MG2発電可能電力≦所定値」と判定されるもの、とする。
 まず、時刻t32になるまでは、図6のタイムチャートの時刻t2になるまでの説明と同様であるから説明を省略する。
 時刻t32のとき、図12に示すように、「バッテリSOC<第1容量閾値」であり、「バッテリSOC<第2容量閾値」であり、「Dレンジ」から「Pレンジ」に切り替えられている。すなわち、時刻t32は、図5のフローチャートにおいて、START→ステップS1→ステップS2→ステップS4→ステップS5→ステップS6→ステップS7→ステップS8→ステップS9→ステップS10→ステップS15に相当する。なお、「ブレーキスイッチON」と判定される場合、図5のフローチャートにおいて、ステップS7→ステップS9に相当する。
 そして、時刻t32のときから、ダブルアイドル制限発電を実行するために、時刻t32より前の変速段「EV1st ICE-」から図13に示す「EV- ICEgen」へ切り替えられる。すなわち、変速段「EV- ICEgen」の場合、図13に示すように、内燃機関ICEから第1モータジェネレータMG1へ向かう動力伝達経路上に1つの第1係合クラッチC1(Left)が存在する(図7、図11と同様)。ここで、この変速段に切り替えに関する説明は、「MG1アイドル発電を実行するときの発電制御処理作用」と同様であり、図12の時刻t32のときから時刻t33のときまでは、図6のタイムチャートの時刻t2のときから時刻t3のときまでの説明と同様であるから説明を省略する。なお、ダブルアイドル制限発電のため、MG1アイドル発電時よりも回転同期の回転数が大きくなっている。
  これにより、図12及び図13に示すように、「EV- ICEgen」の変速段にて、時刻t33より僅かに遅れて、MG1アイドル発電に、「MG2発電可能電力≦所定値」によりMG2アイドル発電よりも発電を制限したMG2アイドル制限発電を加えたダブルアイドル制限発電が実行(開始)される。
 このときの「EV- ICEgen」の変速段が選択されたときの多段歯車変速機1における内燃機関ICEのICEトルクの流れを、図13に基づき説明する。「EV- ICEgen」の変速段では、第1係合クラッチC1が「Left」位置であり、第2係合クラッチC2が「N」位置であり、第3係合クラッチC3が「N」位置である。従って、ICEトルクの一部は、内燃機関ICEから第1軸11→第1歯車101→第11歯車111→第4軸14→第13歯車113→第4歯車104→第2軸12→第1モータジェネレータMG1へと流れる。すなわち、停車中に第1モータジェネレータMG1と駆動輪19とを切り離し、第1モータジェネレータMG1と内燃機関ICEとを結合し、ICEトルクによりMG1アイドル発電が実行される。また、ICEトルクの一部は、内燃機関ICEから第1軸11→第1歯車101→第11歯車111→第14歯車114→第15歯車115→第6軸16→第2モータジェネレータMG2へと流れる。なお、第2モータジェネレータMG2は、MG2アイドル制限発電のため、ICEトルクは、第2モータジェネレータMG2へ流れる量よりも、第1モータジェネレータMG1へ流れる量の方が大きくなっている。
 時刻t33から時刻t34までの間、ダブルアイドル制限発電により、バッテリSOCが徐々に増加される。なお、ダブルアイドル制限発電のため、MG1アイドル発電時よりも内燃機関ICEのトルクが大きく、ダブルアイドル発電時よりも内燃機関ICEのトルクが小さくなっている。
 時刻t34のとき、図12に示すように、「Pレンジ」から「Dレンジ」に切り替えられ、ダブルアイドル制限発電が終了される。すなわち、時刻t32のときから時刻t34の直前までの間、図5のフローチャートにおいて、START→ステップS1→ステップS2→ステップS4→ステップS5→ステップS6→ステップS7→ステップS8→ステップS9→ステップS10→ステップS15→エンドの繰り返しに相当する。また、時刻t34のときが、図5のフローチャートにおいて、ステップS1→ステップS2→ステップS4→ステップS18に相当する。
 また、時刻t34のとき、再発進(EV発進)に備えるために係合クラッチC1,C3の架け替えが実施され、「EV- ICEgen」から「EV1st ICE-」へ切り替えられる。ここで、この変速段の切り替えに関する説明は、「MG1アイドル発電を実行するときの発電制御処理作用」と同様であり、図12の時刻t34から時刻t36までは、図6のタイムチャートの時刻t4から時刻t6までの説明と同様であるから説明を省略する。
 [発電制御の特徴作用]
  例えば、従来、車両発進時、第2電動機で発電した電力とバッテリ電力が供給される第1電動機を駆動源とするEV発進を行うハイブリッド車両の発電制御装置を比較例とする。この比較例のハイブリッド車両の発電制御装置によれば、バッテリの充電状態に応じてエンジンを始動し、発電機よりバッテリに充電する(シリーズハイブリッド車両)。
 しかし、比較例のハイブリッド車両の発電制御装置にあっては、発進時は発進用モータのトルクのみを用い、発進用モータへはバッテリ電力とシリーズ発電電力によって必要な電力を供給する構成になっていた。このため、バッテリSOCが少ない場合などバッテリ電力とシリーズ発電電力で必要電力を賄いきれない場合、発進できない、という課題がある。
 これに対し、実施例1では、ハイブリッドコントロールモジュール21(発電コントローラ)により、停車中、第2モータジェネレータMG2よりも発電可能電力が大きい第1モータジェネレータMG1を駆動輪19から切り離すと共に内燃機関ICEと結合し、内燃機関ICEからのトルクを受けて第1モータジェネレータMG1により発電するMG1アイドル発電が行われる構成とした(図14)。なお、図14の各ステップについては、図5と同一のステップ番号を付し、説明を省略する。以下、図15~図19についても同様である。
即ち、停車中、第1モータジェネレータMG1により発電するMG1アイドル発電が行われるため、停車時間が同じときに第2モータジェネレータMG2により発電するMG2アイドル発電に比べ、より多くの発電電力を得ることができ、バッテリSOCの低下が防止される。
従って、停車中、発進に必要な電力を確保することができる。
 実施例1では、ハイブリッドコントロールモジュール21により、停車中、バッテリSOCが第1容量閾値未満であるバッテリSOC(バッテリ容量)不足時、MG1アイドル発電が行われる構成とした(図15)。また、停車中、バッテリSOCが第1容量閾値以上であるバッテリSOC(バッテリ容量)充足時、MG1アイドル発電を行わず第1モータジェネレータMG1が駆動輪19に機械的に結合したままとされる構成とした(図15)。
即ち、バッテリSOC充足時には、MG1アイドル発電が行われず、第1モータジェネレータMG1が駆動輪19に機械的に結合したままとされるため、発進要求に備えられる。
従って、停車中、バッテリSOC充足時には、発進要求に対して速やかに発進することができる。
  加えて、バッテリSOC不足時には、MG1アイドル発電が行われるため、バッテリSOCの低下が防止される。従って、停車中、バッテリSOC不足時には、発進に必要な電力を確保することができる。
 実施例1では、ハイブリッドコントロールモジュール21により、停車中、バッテリSOC不足時、第2モータジェネレータMG2の発電可能電力が所定値より大きいと、第2モータジェネレータMG2により発電するMG2アイドル発電が行われると共にMG1アイドル発電を行わず第1モータジェネレータMG1が駆動輪19に機械的に結合したままとされる構成とした(図16)。また、停車中、バッテリSOC不足時、第2モータジェネレータMG2の発電可能電力が所定値以下であると、MG1アイドル発電が行われる構成とした(図16)。
即ち、第2モータジェネレータMG2の発電可能電力が所定値より大きいと、MG2アイドル発電が行われるため、バッテリSOCの低下が防止される。また、このとき、MG1アイドル発電を行わず第1モータジェネレータMG1が駆動輪19に機械的に結合したままとされるため、発進要求に備えられる。
従って、停車中、バッテリSOC不足時、第2モータジェネレータMG2の発電可能電力が所定値より大きいと、発進に必要な電力を確保すると共に発進要求に対して速やかに発進することができる。
  加えて、第2モータジェネレータMG2の発電可能電力が所定値以下であると、MG2アイドル発電が制限されるため、第2モータジェネレータMG2を発電に用いない。しかし、MG1アイドル発電が行われるため、バッテリSOCの低下が防止される。従って、停車中、バッテリSOC不足時、第2モータジェネレータMG2の発電可能電力が所定値以下であると、発進に必要な電力を確保することができる。すなわち、バッテリSOC不足時、MG1アイドル発電又はMG2アイドル発電が行われるため、バッテリSOCの低下が防止される。従って、停車中、バッテリSOC不足時、発進に必要な電力を確保することができる。
  しかも、第2モータジェネレータMG2の発電可能電力が所定値以下であると、第2モータジェネレータMG2を発電に用いないため、第2モータジェネレータMG2の破損を防止することができる。
 実施例1では、ハイブリッドコントロールモジュール21により、停車中、バッテリSOC不足時、MG1アイドル発電に、MG2アイドル発電を加えたダブルアイドル発電が行われる構成とした(図17)。また、停車中、バッテリSOC充足時、MG1アイドル発電が行われず第1モータジェネレータMG1を駆動輪19に機械的に結合したままとされる構成とした(図17)。
即ち、バッテリSOC不足時、MG1アイドル発電にMG2アイドル発電を加えたダブルアイドル発電が行われるため、停車時間が同じとき、MG1アイドル発電又はMG2アイドル発電で発電する場合に比べ、より短い時間で多くの発電電力を得ることができ、バッテリSOCの低下が防止される。
従って、停車中、バッテリSOC不足時、MG1アイドル発電又はMG2アイドル発電で発電する場合に比べ、短時間で発進に必要な電力を確保することができる。
  加えて、バッテリSOC充足時には、MG1アイドル発電が行われず、第1モータジェネレータMG1が駆動輪19に機械的に結合したままとされるため、発進要求に備えられる。従って、停車中、バッテリSOC充足時には、発進要求に対して速やかに発進することができる。
 実施例1では、ハイブリッドコントロールモジュール21により、停車中、バッテリSOC不足時、バッテリSOCが第1容量閾値より小さい第2容量閾値以上であると、MG2アイドル発電が行われると共にMG1アイドル発電を行わず第1モータジェネレータMG1が駆動輪19に機械的に結合したままとされる構成とした(図18)。また、停車中、バッテリSOC不足時、バッテリSOCが第2容量閾値未満であると、ダブルアイドル発電が行われる構成とした(図18)。
即ち、バッテリSOCが第2容量閾値以上であり第1容量閾値未満である時(「第2容量閾値≦バッテリSOC<第1容量閾値」の時)、MG1アイドル発電が行われず、第1モータジェネレータMG1が駆動輪19に機械的に結合したままとされるため、発進要求に備えられる。また、バッテリSOCが第2容量閾値未満である時(「バッテリSOC<第2容量閾値」の時)、ダブルアイドル発電が行われるため、停車時間が同じとき、MG1アイドル発電又はMG2アイドル発電で発電する場合に比べ、より短い時間で多くの発電電力を得ることができ、バッテリSOCの低下が防止される。
従って、停車中、バッテリSOC不足時、バッテリSOCが第2容量閾値以上であると、発進要求に対して速やかに発進することができ、バッテリSOCが第2容量閾値未満であると、MG1アイドル発電又はMG2アイドル発電で発電する場合に比べ、短時間で発進に必要な電力を確保することができる。
 実施例1では、ハイブリッドコントロールモジュール21により、停車中、バッテリSOC不足時、バッテリSOCが第2容量閾値以上であり、かつ、第2モータジェネレータMG2の発電可能電力が所定値より大きいと、MG2アイドル発電が行われると共にMG1アイドル発電を行わず第1モータジェネレータMG1が駆動輪19に機械的に結合したままとされる構成とした(図19)。また、停車中、バッテリSOC不足時、バッテリSOCが第2容量閾値以上であり、かつ、第2モータジェネレータMG2の発電可能電力が所定値以下であると、MG1アイドル発電が行われる構成とした(図19)。
即ち、第2モータジェネレータMG2の発電可能電力が所定値より大きいと、MG1アイドル発電が行われず、第1モータジェネレータMG1が駆動輪19に機械的に結合したままとされるため、発進要求に備えられる。また、第2モータジェネレータMG2の発電可能電力が所定値以下であると、MG2アイドル発電が制限されるため、第2モータジェネレータMG2を発電に用いない。
従って、停車中、バッテリSOC不足時、バッテリSOCが第2容量閾値以上であり、かつ、第2モータジェネレータMG2の発電可能電力が所定値より大きいと、発進要求に対して速やかに発進することができ、バッテリSOCが第2容量閾値以上であり、かつ、第2モータジェネレータMG2の発電可能電力が所定値以下であると、第2モータジェネレータMG2の破損を防止することができる。
  加えて、第2モータジェネレータMG2の発電可能電力が所定値より大きいと、MG2アイドル発電が行われるため、バッテリSOCの低下が防止される。従って、停車中、バッテリSOC不足時、バッテリSOCが第2容量閾値以上であり、かつ、第2モータジェネレータMG2の発電可能電力が所定値より大きいと、発進に必要な電力を確保することができる。また、第2モータジェネレータMG2の発電可能電力が所定値以下であると、MG2アイドル発電が制限されるがMG1アイドル発電が行われるため、バッテリSOCの低下が防止される。従って、停車中、バッテリSOC不足時、バッテリSOCが第2容量閾値以上であり、かつ、第2モータジェネレータMG2の発電可能電力が所定値以下であると、発進に必要な電力を確保することができる。すなわち、バッテリSOCが「第2容量閾値≦バッテリSOC<第1容量閾値」の時、MG1アイドル発電又はMG2アイドル発電が行われるため、バッテリSOCの低下が防止される。従って、停車中、バッテリSOC不足時、バッテリSOCが第2容量閾値以上あると、発進に必要な電力を確保することができる。
 実施例1では、ハイブリッドコントロールモジュール21により、停車中、バッテリSOC不足時、バッテリSOCが第2容量閾値未満であり、かつ、第2モータジェネレータMG2の発電可能電力が所定値より大きいと、ダブルアイドル発電が行われる構成とした(図19)。また、停車中、バッテリSOC不足時、バッテリSOCが第2容量閾値未満であり、かつ、第2モータジェネレータMG2の発電可能電力が所定値以下であると、MG1アイドル発電に、MG2アイドル発電よりも発電を制限したMG2アイドル制限発電を加えたダブルアイドル制限発電が行われる構成とした(図19)。
即ち、第2モータジェネレータMG2の発電可能電力が所定値以下であると、MG2アイドル発電が制限される。しかし、MG1アイドル発電に、MG2アイドル制限発電を加えたダブルアイドル制限発電が行われるため、停車時間が同じとき、MG1アイドル発電又はMG2アイドル発電で発電する場合に比べ、より短い時間で多くの発電電力を得ることができ、バッテリSOCの低下が防止される。
従って、停車中、バッテリSOC不足時、バッテリSOCが第2容量閾値未満であり、かつ、第2モータジェネレータMG2の発電可能電力が所定値以下であると、MG1アイドル発電又はMG2アイドル発電で発電する場合に比べ、短時間で発進に必要な電力を確保することができる。
  加えて、第2モータジェネレータMG2の発電可能電力が所定値より大きいと、MG2アイドル発電は制限されない。このため、ダブルアイドル発電が行われるため、停車時間が同じとき、ダブルアイドル制限発電で発電する場合に比べ、より短い時間で多くの発電電力を得ることができ、バッテリSOCの低下が防止される。従って、停車中、バッテリSOC不足時、バッテリSOCが第2容量閾値未満であり、かつ、第2モータジェネレータMG2の発電可能電力が所定値より大きいと、ダブルアイドル制限発電で発電する場合に比べ、短時間で発進に必要な電力を確保することができる。
 実施例1では、ハイブリッドコントロールモジュール21により、停車中、ドライバからの発電要求に基づいて発電を行うとき、ドライバからの要求発電電力が所定値より大きいと、MG1アイドル発電が行われる構成とした(図5のステップS12)。また、停車中、ドライバからの発電要求に基づいて発電を行うとき、ドライバからの要求発電電力が所定値以下であると、MG2アイドル発電を行うと共にMG1アイドル発電を行わず第1モータジェネレータMG1を駆動輪19に機械的に結合したままとされる構成とした(図5のステップS13)。
即ち、ドライバからの要求発電電力が所定値より大きいと、MG1アイドル発電が行われるため、ドライバからの要求発電電力に応じたMG1アイドル発電が行われる。また、ドライバからの要求発電電力が所定値以下であると、MG1アイドル発電が行われず、第1モータジェネレータMG1が駆動輪19に機械的に結合したままとされるため、発進要求に備えられる。
従って、停車中、ドライバからの発電要求に基づいて発電を行うとき、ドライバからの要求発電電力が所定値より大きいと、ドライバからの要求発電電力に応じることができ、ドライバからの要求発電電力が所定値以下であると、発進要求に対して速やかに発進することができる。
  加えて、ドライバからの要求発電電力が所定値以下であると、MG2アイドル発電が行われるため、バッテリSOCの低下が防止される。従って、停車中、ドライバからの発電要求に基づいて発電を行うとき、ドライバからの要求発電電力が所定値以下であると、発進に必要な電力を確保することができる。
 実施例1では、ハイブリッドコントロールモジュール21により、路面勾配が検知された場合、MG1アイドル発電が禁止される(図5のステップS6→ステップS13)。
例えば、停車中、駆動用モータを駆動輪から切り離された状態で、発電から再発進をするとき、ドライバがブレーキから足を離してから、駆動用モータが駆動輪に接続されるまでの間は駆動用モータのトルクが駆動輪に伝達されないため、勾配路において車両がずり下がってしまう。
これに対し、実施例1では、路面勾配が検知された場合、MG1アイドル発電が禁止されるので、第1モータジェネレータMG1が駆動輪19に機械的に結合したままとされる。このため、停車中、発電から再発進するとき、ドライバがブレーキから足を離しても第1モータジェネレータMG1のトルクが駆動輪19に伝達される。
従って、停車中、発電から再発進するとき、路面勾配が検知された場合、勾配路において車両がずり下がることを防止できる。
  加えて、MG1アイドル発電が禁止されても、MG2アイドル発電が行われるため、バッテリSOCの低下が防止される。従って、停車中、路面勾配が検知された場合でも、発進に必要な電力を確保することができる。
 実施例1では、ハイブリッドコントロールモジュール21により、駆動輪19に対して制動力が発生している場合、MG1アイドル発電が許可される(図5のステップS7の「YES」)。
例えば、駆動用モータを駆動輪と接続するクラッチが誤作動し、駆動用モータによる発電中に駆動用モータが駆動輪と接続された場合、車両が急発進してしまう。
これに対し、実施例1では、駆動輪19に対して制動力が発生している場合、MG1アイドル発電が許可されるので、第1モータジェネレータMG1と駆動輪19を接続する第3係合クラッチC3が誤作動しても、車両が急発進しない。
従って、制動力が発生している場合、MG1アイドル発電中に、車両が急発進することを防止できる。
 実施例1では、ハイブリッドコントロールモジュール21により、Pレンジが選択されているとき、MG1アイドル発電が許可される(図5のステップS8の「YES」)。
例えば、駆動用モータを駆動輪と接続するクラッチが誤作動し、駆動用モータによる発電中に駆動用モータが駆動輪と接続された場合、車両が急発進してしまう。
これに対し、実施例1では、Pレンジが選択されているとき、MG1アイドル発電が許可されるので、第1モータジェネレータMG1と駆動輪19を接続する第3係合クラッチC3が誤作動しても、車両が急発進しない。
従って、Pレンジが選択されているとき、MG1アイドル発電中に、車両が急発進することを防止できる。
 次に、効果を説明する。
実施例1のハイブリッド車両の発電制御装置にあっては、下記に列挙する効果が得られる。
 (1)駆動輪19に機械的に結合され、主に走行駆動に用いられる第1電動機(第1モータジェネレータMG1)と、
  内燃機関ICEに機械的に結合され、発電可能電力が第1電動機(第1モータジェネレータMG1)よりも小さい第2電動機(第2モータジェネレータMG2)と、
  第1電動機(第1モータジェネレータMG1)と第2電動機(第2モータジェネレータMG2)に電気的に結合されるバッテリ(強電バッテリ3)と、を備え、
  車両発進時、第2電動機(第2モータジェネレータMG2)で発電した電力とバッテリ電力が供給される第1電動機(第1モータジェネレータMG1)を駆動源とするEV発進を行うハイブリッド車両において、
  内燃機関ICEのトルク(ICEトルク)を用いて第1電動機(第1モータジェネレータMG1)と第2電動機(第2モータジェネレータMG2)の少なくとも一方を発電する発電コントローラ(ハイブリッドコントロールモジュール21)を設け、
  発電コントローラ(ハイブリッドコントロールモジュール21)は、停車中、第2電動機(第2モータジェネレータMG2)よりも発電可能電力が大きい第1電動機(第1モータジェネレータMG1)を、駆動輪19から切り離すと共に内燃機関ICEと結合し、内燃機関ICEからのトルク(ICEトルク)を受けて第1電動機(第1モータジェネレータMG1)により発電するMG1アイドル発電を行う(図14)。
  このため、停車中、発進に必要な電力を確保することができる。
 (2)発電コントローラ(ハイブリッドコントロールモジュール21)は、停車中、バッテリの充電容量(バッテリSOC)が第1容量閾値未満であるバッテリ容量(バッテリSOC)不足時、MG1アイドル発電を行い、バッテリの充電容量(バッテリSOC)が第1容量閾値以上であるバッテリ容量(バッテリSOC)充足時、MG1アイドル発電を行わず第1電動機(第1モータジェネレータMG1)を駆動輪19に機械的に結合したままとする(図15)。
  このため、(1)の効果に加え、停車中、バッテリ容量(バッテリSOC)充足時には、発進要求に対して速やかに発進することができる。
 (3)発電コントローラ(ハイブリッドコントロールモジュール21)は、停車中、バッテリ容量(バッテリSOC)不足時、第2電動機(第2モータジェネレータMG2)の発電可能電力が所定値より大きいと、第2電動機(第2モータジェネレータMG2)により発電するMG2アイドル発電を行うと共にMG1アイドル発電を行わず第1電動機(第1モータジェネレータMG1)を駆動輪19に機械的に結合したままとし、第2電動機(第2モータジェネレータMG2)の発電可能電力が所定値以下であると、MG1アイドル発電を行う(図16)。
  このため、(2)の効果に加え、停車中、バッテリ容量(バッテリSOC)不足時、第2モータジェネレータMG2の発電可能電力が所定値より大きいと、発進に必要な電力を確保すると共に発進要求に対して速やかに発進することができる。
 (4)発電コントローラ(ハイブリッドコントロールモジュール21)は、停車中、バッテリの充電容量(バッテリSOC)が第1容量閾値未満であるバッテリ容量(バッテリSOC)不足時、MG1アイドル発電に、第2電動機(第2モータジェネレータMG2)により発電するMG2アイドル発電を加えたダブルアイドル発電を行い、バッテリの充電容量(バッテリSOC)が第1容量閾値以上であるバッテリ容量(バッテリSOC)充足時、MG1アイドル発電を行わず第1電動機(第1モータジェネレータMG1)を駆動輪19に機械的に結合したままとする(図17)。
  このため、(1)の効果に加え、停車中、バッテリ容量(バッテリSOC)不足時、MG1アイドル発電又はMG2アイドル発電で発電する場合に比べ、短時間で発進に必要な電力を確保することができる。
 (5)発電コントローラ(ハイブリッドコントロールモジュール21)は、停車中、バッテリ容量(バッテリSOC)不足時、バッテリの充電容量(バッテリSOC)が第1容量閾値より小さい第2容量閾値以上であると、MG2アイドル発電を行うと共にMG1アイドル発電を行わず第1電動機(第1モータジェネレータMG1)を駆動輪19に機械的に結合したままとし、バッテリの充電容量(バッテリSOC)が第2容量閾値未満であると、ダブルアイドル発電を行う(図18)。
  このため、(4)の効果に加え、停車中、バッテリ容量(バッテリSOC)不足時、バッテリの充電容量(バッテリSOC)が第2容量閾値以上であると、発進要求に対して速やかに発進することができ、バッテリの充電容量(バッテリSOC)が第2容量閾値未満であると、MG1アイドル発電又はMG2アイドル発電で発電する場合に比べ、短時間で発進に必要な電力を確保することができる。
 (6)発電コントローラ(ハイブリッドコントロールモジュール21)は、停車中、バッテリ容量(バッテリSOC)不足時、バッテリの充電容量(バッテリSOC)が第2容量閾値以上であり、かつ、第2電動機(第2モータジェネレータMG2)の発電可能電力が所定値より大きいと、MG2アイドル発電を行うと共にMG1アイドル発電を行わず第1電動機(第1モータジェネレータMG1)を駆動輪19に機械的に結合したままとし、バッテリの充電容量(バッテリSOC)が第2容量閾値以上であり、かつ、第2電動機(第2モータジェネレータMG2)の発電可能電力が所定値以下であると、MG1アイドル発電を行う(図19)。
  このため、(5)の効果に加え、停車中、バッテリ容量(バッテリSOC)不足時、バッテリの充電容量(バッテリSOC)が第2容量閾値以上であり、かつ、第2モータジェネレータMG2の発電可能電力が所定値より大きいと、発進要求に対して速やかに発進することができ、バッテリの充電容量(バッテリSOC)が第2容量閾値以上であり、かつ、第2モータジェネレータMG2の発電可能電力が所定値以下であると、第2モータジェネレータMG2の破損を防止することができる。
 (7)発電コントローラ(ハイブリッドコントロールモジュール21)は、停車中、バッテリ容量(バッテリSOC)不足時、バッテリの充電容量(バッテリSOC)が第2容量閾値未満であり、かつ、第2電動機(第2モータジェネレータMG2)の発電可能電力が所定値より大きいと、ダブルアイドル発電を行い、バッテリの充電容量(バッテリSOC)が第2容量閾値未満であり、かつ、第2電動機(第2モータジェネレータMG2)の発電可能電力が所定値以下であると、MG1アイドル発電に、MG2アイドル発電よりも発電を制限したMG2アイドル制限発電を加えたダブルアイドル制限発電を行う(図19)。
  このため、(5)又は(6)の効果に加え、停車中、バッテリ容量(バッテリSOC)不足時、バッテリの充電容量(バッテリSOC)が第2容量閾値未満であり、かつ、第2モータジェネレータMG2の発電可能電力が所定値以下であると、MG1アイドル発電又はMG2アイドル発電で発電する場合に比べ、短時間で発進に必要な電力を確保することができる。
 (8)発電コントローラ(ハイブリッドコントロールモジュール21)は、停車中、ドライバからの発電要求に基づいて発電を行うとき、ドライバからの要求発電電力が所定値より大きいと、MG1アイドル発電を行い、ドライバからの要求発電電力が所定値以下であると、第2電動機(第2モータジェネレータMG2)により発電するMG2アイドル発電を行うと共にMG1アイドル発電を行わず第1電動機(第1モータジェネレータMG1)を駆動輪19に機械的に結合したままとする(図5のステップS12とステップS13)。
  このため、(1)~(7)の効果に加え、停車中、ドライバからの発電要求に基づいて発電を行うとき、ドライバからの要求発電電力が所定値より大きいと、ドライバからの要求発電電力に応じることができ、ドライバからの要求発電電力が所定値以下であると、発進要求に対して速やかに発進することができる。
 (9)発電コントローラ(ハイブリッドコントロールモジュール21)は、路面勾配を検知した場合、MG1アイドル発電を禁止する(図5のステップS6→ステップS13)。
  このため、(1)~(8)の効果に加え、停車中、発電から再発進するとき、路面勾配が検知された場合、勾配路において車両がずり下がることを防止できる。
 (10)発電コントローラ(ハイブリッドコントロールモジュール21)は、駆動輪19に対して制動力が発生している場合、MG1アイドル発電を許可する(図5のステップS7の「YES」)。
  このため、(1)~(9)の効果に加え、制動力が発生している場合、MG1アイドル発電中に、車両が急発進することを防止できる。
 (11)発電コントローラ(ハイブリッドコントロールモジュール21)は、パーキングレンジが選択されているとき、MG1アイドル発電を許可する(図5のステップS8の「YES」)。
  このため、(1)~(10)の効果に加え、Pレンジが選択されているとき、MG1アイドル発電中に、車両が急発進することを防止できる。
 以上、本発明のハイブリッド車両の発電制御装置を実施例1に基づき説明してきたが、具体的な構成については、この実施例1に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加などは許容される。
 実施例1では、MG2アイドル発電を行うと共にMG1アイドル発電を行わず第1モータジェネレータMG1を駆動輪19に機械的に結合したままとする例を示した。しかし、第1モータジェネレータMG1を駆動輪19に機械的に結合したままにしなくても良い。すなわち、MG1アイドル発電を行わずMG2アイドル発電を行うとき(MG2アイドル発電制御処理のとき)、「EV1st ICE-」から「Neutral」の変速段へ切り替えても良い。このため、ステップS16において、「Neutral」の変速段へ切り替えられた後に、MG2アイドル発電を実行しても良い。また、ステップS16において、「Neutral」の変速段へ切り替えた場合、MG2アイドル発電の終了後、再発進(EV発進)に備えるために係合クラッチC1,C3の架け替えが実施され、「Neutral」から「EV1st ICE-」の変速段へ切り替える。
 実施例1では、変速コントローラとして、複数の係合クラッチC1,C2,C3の締結組み合わせによる全変速段から、インターロック変速段とシフト機構により選択できない変速段を除いた変速段を、多段歯車変速機1により実現可能な複数の変速段とする例を示した。しかし、変速コントローラとしては、複数の係合クラッチの締結組み合わせによる全変速段から、インターロック変速段を除いた変速段を、変速機により実現可能な複数の変速段とする例としても良い。例えば、シフト機構を、係合クラッチC1,C2,C3のそれぞれを独立にストローク動作させる機構にすると、「シフト機構により選択できない変速段」は無くなる。この場合、故障時変速段として使用する変速段が増加する。
 実施例1では、内燃機関ICEのエンジン駆動力をモータ駆動力によりアシストする「パラレルHEVモード」等で走行する例を示した。しかし、内燃機関ICEを発電のみに用いても良い。すなわち、本発明のハイブリッド車両の発電制御装置を、シリーズハイブリッド車両に対して適用しても良い。

Claims (11)

  1.  駆動輪に機械的に結合され、主に走行駆動に用いられる第1電動機と、
     内燃機関に機械的に結合され、発電可能電力が前記第1電動機よりも小さい第2電動機と、
     前記第1電動機と前記第2電動機に電気的に結合されるバッテリと、を備え、
     車両発進時、前記第2電動機で発電した電力とバッテリ電力が供給される前記第1電動機を駆動源とするEV発進を行うハイブリッド車両において、
     前記内燃機関のトルクを用いて前記第1電動機と前記第2電動機の少なくとも一方を発電する発電コントローラを設け、
     前記発電コントローラは、停車中、前記第2電動機よりも発電可能電力が大きい前記第1電動機を、前記駆動輪から切り離すと共に前記内燃機関と結合し、前記内燃機関からのトルクを受けて前記第1電動機により発電するMG1アイドル発電を行う
     ことを特徴とするハイブリッド車両の発電制御装置。
  2.  請求項1に記載されたハイブリッド車両の発電制御装置において、
     前記発電コントローラは、停車中、前記バッテリの充電容量が第1容量閾値未満であるバッテリ容量不足時、前記MG1アイドル発電を行い、前記バッテリの充電容量が前記第1容量閾値以上であるバッテリ容量充足時、前記MG1アイドル発電を行わず前記第1電動機を駆動輪に機械的に結合したままとする
     ことを特徴とするハイブリッド車両の発電制御装置。
  3.  請求項2に記載されたハイブリッド車両の発電制御装置において、
     前記発電コントローラは、停車中、前記バッテリ容量不足時、前記第2電動機の発電可能電力が所定値より大きいと、前記第2電動機により発電するMG2アイドル発電を行うと共に前記MG1アイドル発電を行わず前記第1電動機を駆動輪に機械的に結合したままとし、前記第2電動機の発電可能電力が前記所定値以下であると、前記MG1アイドル発電を行う
     ことを特徴とするハイブリッド車両の発電制御装置。
  4.  請求項1に記載されたハイブリッド車両の発電制御装置において、
     前記発電コントローラは、停車中、前記バッテリの充電容量が第1容量閾値未満であるバッテリ容量不足時、前記MG1アイドル発電に、前記第2電動機により発電するMG2アイドル発電を加えたダブルアイドル発電を行い、前記バッテリの充電容量が前記第1容量閾値以上であるバッテリ容量充足時、前記MG1アイドル発電を行わず前記第1電動機を駆動輪に機械的に結合したままとする
     ことを特徴とするハイブリッド車両の発電制御装置。
  5.  請求項4に記載されたハイブリッド車両の発電制御装置において、
     前記発電コントローラは、停車中、前記バッテリ容量不足時、前記バッテリの充電容量が前記第1容量閾値より小さい第2容量閾値以上であると、前記MG2アイドル発電を行うと共に前記MG1アイドル発電を行わず前記第1電動機を駆動輪に機械的に結合したままとし、前記バッテリの充電容量が前記第2容量閾値未満であると、前記ダブルアイドル発電を行う
     ことを特徴とするハイブリッド車両の発電制御装置。
  6.  請求項5に記載されたハイブリッド車両の発電制御装置において、
     前記発電コントローラは、停車中、前記バッテリ容量不足時、前記バッテリの充電容量が前記第2容量閾値以上であり、かつ、前記第2電動機の発電可能電力が所定値より大きいと、前記MG2アイドル発電を行うと共に前記MG1アイドル発電を行わず前記第1電動機を駆動輪に機械的に結合したままとし、前記バッテリの充電容量が前記第2容量閾値以上であり、かつ、前記第2電動機の発電可能電力が前記所定値以下であると、前記MG1アイドル発電を行う
     ことを特徴とするハイブリッド車両の発電制御装置。
  7.  請求項5または請求項6に記載されたハイブリッド車両の発電制御装置において、
     前記発電コントローラは、停車中、前記バッテリ容量不足時、前記バッテリの充電容量が前記第2容量閾値未満であり、かつ、前記第2電動機の発電可能電力が所定値より大きいと、前記ダブルアイドル発電を行い、
    前記バッテリの充電容量が前記第2容量閾値未満であり、かつ、前記第2電動機の発電可能電力が所定値以下であると、前記MG1アイドル発電に、前記MG2アイドル発電よりも発電を制限したMG2アイドル制限発電を加えたダブルアイドル制限発電を行う
     ことを特徴とするハイブリッド車両の発電制御装置。
  8.  請求項1から請求項7までの何れか一項に記載されたハイブリッド車両の発電制御装置において、
     前記発電コントローラは、停車中、ドライバからの発電要求に基づいて発電を行うとき、ドライバからの要求発電電力が所定値より大きいと、前記MG1アイドル発電を行い、ドライバからの要求発電電力が前記所定値以下であると、前記第2電動機により発電するMG2アイドル発電を行うと共に前記MG1アイドル発電を行わず前記第1電動機を駆動輪に機械的に結合したままとする
     ことを特徴とするハイブリッド車両の発電制御装置。
  9.  請求項1から請求項8までの何れか一項に記載されたハイブリッド車両の発電制御装置において、
     前記発電コントローラは、路面勾配を検知した場合、前記MG1アイドル発電を禁止する
     ことを特徴とするハイブリッド車両の発電制御装置。
  10.  請求項1から請求項9までの何れか一項に記載されたハイブリッド車両の発電制御装置において、
     前記発電コントローラは、駆動輪に対して制動力が発生している場合、前記MG1アイドル発電を許可する
     ことを特徴とするハイブリッド車両の発電制御装置。
  11.  請求項1から請求項10までの何れか一項に記載されたハイブリッド車両の発電制御装置において、
     前記発電コントローラは、パーキングレンジが選択されているとき、前記MG1アイドル発電を許可する
     ことを特徴とするハイブリッド車両の発電制御装置。
PCT/JP2015/066492 2015-06-08 2015-06-08 ハイブリッド車両の発電制御装置 WO2016199194A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
MYPI2017704626A MY167707A (en) 2015-06-08 2015-06-08 Power generation control device for a hybrid vehicle
US15/578,272 US10093166B2 (en) 2015-06-08 2015-06-08 Power generation control system for hybrid vehicle
JP2017522767A JP6384606B2 (ja) 2015-06-08 2015-06-08 ハイブリッド車両の発電制御装置
BR112017026235-5A BR112017026235B1 (pt) 2015-06-08 2015-06-08 Dispositivo de controle de geração de potência para um veículo híbrido
CN201580080793.5A CN107709117B (zh) 2015-06-08 2015-06-08 混合动力车辆的发电控制装置
CA2988622A CA2988622C (en) 2015-06-08 2015-06-08 Power generation control device for a hybrid vehicle
RU2017144544A RU2670557C1 (ru) 2015-06-08 2015-06-08 Устройство управления генерированием мощности для гибридного транспортного средства
EP15894880.2A EP3305614B1 (en) 2015-06-08 2015-06-08 Power generation control system for hybrid vehicle
KR1020177036672A KR101849898B1 (ko) 2015-06-08 2015-06-08 하이브리드 차량의 발전 제어 장치
MX2017015642A MX2017015642A (es) 2015-06-08 2015-06-08 Sistema de control de generacion de energia para vehículo hibrido.
PCT/JP2015/066492 WO2016199194A1 (ja) 2015-06-08 2015-06-08 ハイブリッド車両の発電制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/066492 WO2016199194A1 (ja) 2015-06-08 2015-06-08 ハイブリッド車両の発電制御装置

Publications (1)

Publication Number Publication Date
WO2016199194A1 true WO2016199194A1 (ja) 2016-12-15

Family

ID=57504651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066492 WO2016199194A1 (ja) 2015-06-08 2015-06-08 ハイブリッド車両の発電制御装置

Country Status (11)

Country Link
US (1) US10093166B2 (ja)
EP (1) EP3305614B1 (ja)
JP (1) JP6384606B2 (ja)
KR (1) KR101849898B1 (ja)
CN (1) CN107709117B (ja)
BR (1) BR112017026235B1 (ja)
CA (1) CA2988622C (ja)
MX (1) MX2017015642A (ja)
MY (1) MY167707A (ja)
RU (1) RU2670557C1 (ja)
WO (1) WO2016199194A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111301182A (zh) * 2018-12-12 2020-06-19 上海汽车集团股份有限公司 一种充电控制方法、装置及电子设备

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10880624B2 (en) * 2017-09-13 2020-12-29 Regal Beloit America, Inc. Systems and methods for wirelessly communicating within electric motor systems
JP2019182276A (ja) * 2018-04-12 2019-10-24 本田技研工業株式会社 車両用駆動装置の制御装置
CN110539745B (zh) * 2018-05-28 2020-11-13 广州汽车集团股份有限公司 一种机电耦合变速箱的模式选择控制方法及装置
WO2019232472A1 (en) 2018-05-31 2019-12-05 Joby Aero Inc. Electric power system architecture and fault tolerant vtol aircraft using same
JP7010174B2 (ja) * 2018-08-29 2022-01-26 トヨタ自動車株式会社 ハイブリッド車両の制御装置
CN110254434B (zh) * 2019-05-30 2020-12-22 上海汽车集团股份有限公司 混合动力车怠速充电防溜坡的控制方法
KR20220007773A (ko) * 2020-07-09 2022-01-19 현대자동차주식회사 하이브리드 자동차 및 그 제어 방법
CN114248769B (zh) * 2020-09-23 2023-07-07 长城汽车股份有限公司 车辆起步方法、装置、存储介质、系统及柴油车
WO2022115132A1 (en) * 2020-11-25 2022-06-02 Joby Aero, Inc. Electric power system architecture and fault tolerant vtol aircraft using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000220734A (ja) * 1999-02-03 2000-08-08 Mazda Motor Corp ハイブリッド車両
JP2000224710A (ja) * 1999-01-27 2000-08-11 Mitsubishi Motors Corp ハイブリッド車
JP2003079005A (ja) * 2001-06-19 2003-03-14 Hitachi Ltd 自動車の動力伝達装置
JP2015013503A (ja) * 2013-07-03 2015-01-22 本田技研工業株式会社 車両用動力伝達装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157901A (en) 1979-05-24 1980-12-09 Enshu Ltd Self-charging electric motor automobile
JP3094745B2 (ja) * 1993-09-24 2000-10-03 トヨタ自動車株式会社 ハイブリッド車の発電制御装置
EP1219751B1 (en) * 1999-06-25 2008-01-09 Kobelco Construction Machinery Co., Ltd. Hybrid construction machinery and control device of the construction machinery
JP3880752B2 (ja) * 1999-08-06 2007-02-14 本田技研工業株式会社 エンジン自動始動停止制御装置
JP2001055941A (ja) * 1999-08-16 2001-02-27 Honda Motor Co Ltd エンジン自動始動停止制御装置
WO2001021431A1 (fr) * 1999-09-20 2001-03-29 Hitachi, Ltd. Dynamoteur de vehicule hybride et procede de commande dudit moteur
JP2001099039A (ja) * 1999-09-30 2001-04-10 Suzuki Motor Corp エンジン結合型モータの制御装置
JP3496654B2 (ja) * 2001-04-24 2004-02-16 日産自動車株式会社 ハイブリッド車両
RU2457959C2 (ru) 2010-07-08 2012-08-10 Государственное образовательное учреждение высшего профессионального образования Московский государственный технический университет "МАМИ" Комбинированная энергетическая установка гибридного автомобиля
BR112013001751B1 (pt) * 2010-07-23 2020-09-29 Nissan Motor Co., Ltd Dispositivo de parada automática e método de parada automática para motor de combustão interna
GB2486709B (en) * 2010-12-23 2017-10-11 Jaguar Land Rover Ltd Hybrid electric vehicle controller and method of controlling a hybrid electric vehicle
DE102011005451A1 (de) 2011-03-11 2012-09-13 Zf Friedrichshafen Ag Hybridantrieb eines Kraftfahrzeugs und Verfahren zur Steuerung eines Hybridantriebs
JP5899666B2 (ja) 2011-06-07 2016-04-06 日産自動車株式会社 ハイブリッド車両のエンジン始動制御装置
CN102358283B (zh) 2011-08-19 2013-12-18 奇瑞汽车股份有限公司 一种混合动力车驱动轴扭矩解析控制方法
JP5897885B2 (ja) 2011-11-25 2016-04-06 トヨタ自動車株式会社 ハイブリッド車両
KR101360500B1 (ko) 2011-12-14 2014-02-10 기아자동차주식회사 하이브리드 전기 자동차의 배터리 충전 방법
DE102011089710A1 (de) * 2011-12-23 2013-06-27 Zf Friedrichshafen Ag Hybridantrieb eines Kraftfahrzeugs
WO2013154207A1 (en) * 2012-04-11 2013-10-17 Honda Motor Co., Ltd. Electric power generation control system for hybrid automobile
CN102658771A (zh) * 2012-04-16 2012-09-12 中国汽车技术研究中心 一种基于混合动力系统的汽车发电车系统
GB2508670A (en) * 2012-12-10 2014-06-11 Jaguar Land Rover Ltd Hybrid vehicle and boost control for gradients
CN103072461B (zh) * 2013-01-22 2015-11-18 郑州宇通客车股份有限公司 双电机多模式混合动力驱动系统及其控制方法
US9428173B2 (en) * 2013-10-29 2016-08-30 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle battery pre-charge feature

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000224710A (ja) * 1999-01-27 2000-08-11 Mitsubishi Motors Corp ハイブリッド車
JP2000220734A (ja) * 1999-02-03 2000-08-08 Mazda Motor Corp ハイブリッド車両
JP2003079005A (ja) * 2001-06-19 2003-03-14 Hitachi Ltd 自動車の動力伝達装置
JP2015013503A (ja) * 2013-07-03 2015-01-22 本田技研工業株式会社 車両用動力伝達装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3305614A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111301182A (zh) * 2018-12-12 2020-06-19 上海汽车集团股份有限公司 一种充电控制方法、装置及电子设备

Also Published As

Publication number Publication date
US20180141428A1 (en) 2018-05-24
MX2017015642A (es) 2018-06-11
MY167707A (en) 2018-09-21
BR112017026235A2 (ja) 2018-09-11
CA2988622C (en) 2018-04-24
CN107709117B (zh) 2019-01-01
EP3305614B1 (en) 2020-06-03
EP3305614A4 (en) 2018-08-15
BR112017026235B1 (pt) 2022-10-04
CN107709117A (zh) 2018-02-16
JP6384606B2 (ja) 2018-09-12
JPWO2016199194A1 (ja) 2018-04-12
EP3305614A1 (en) 2018-04-11
RU2670557C1 (ru) 2018-10-23
CA2988622A1 (en) 2016-12-15
US10093166B2 (en) 2018-10-09
KR20180009353A (ko) 2018-01-26
KR101849898B1 (ko) 2018-04-17

Similar Documents

Publication Publication Date Title
JP6384606B2 (ja) ハイブリッド車両の発電制御装置
JP6399222B2 (ja) ハイブリッド車両の発電制御装置
JP6493517B2 (ja) 電動車両の発進制御装置
CA2988532C (en) Mode transition control device for hybrid vehicle
JP6327402B2 (ja) ハイブリッド車両の駆動力制御装置
KR101866718B1 (ko) 하이브리드 차량의 에너지 관리 제어 장치
JP6477874B2 (ja) ハイブリッド車両のモード遷移制御装置
JP6657614B2 (ja) 電動車両の制動力制御装置
JP6421699B2 (ja) ハイブリッド車両の回生/変速協調制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894880

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017522767

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15578272

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/015642

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2988622

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177036672

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2015894880

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2017144544

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017026235

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017026235

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171205