WO2016194764A1 - 異方性散乱フィルム - Google Patents

異方性散乱フィルム Download PDF

Info

Publication number
WO2016194764A1
WO2016194764A1 PCT/JP2016/065570 JP2016065570W WO2016194764A1 WO 2016194764 A1 WO2016194764 A1 WO 2016194764A1 JP 2016065570 W JP2016065570 W JP 2016065570W WO 2016194764 A1 WO2016194764 A1 WO 2016194764A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
scattering film
oco
coo
anisotropic scattering
Prior art date
Application number
PCT/JP2016/065570
Other languages
English (en)
French (fr)
Inventor
長谷部 浩史
秀俊 中田
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2016558228A priority Critical patent/JP6237929B2/ja
Priority to CN201680030491.1A priority patent/CN107615106A/zh
Publication of WO2016194764A1 publication Critical patent/WO2016194764A1/ja
Priority to US15/829,578 priority patent/US20180100105A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3833Polymers with mesogenic groups in the side chain
    • C09K19/3838Polyesters; Polyester derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • C09K19/2014Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups containing additionally a linking group other than -COO- or -OCO-, e.g. -CH2-CH2-, -CH=CH-, -C=C-; containing at least one additional carbon atom in the chain containing -COO- or -OCO- groups, e.g. -(CH2)m-COO-(CH2)n-
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3833Polymers with mesogenic groups in the side chain
    • C09K19/3842Polyvinyl derivatives
    • C09K19/3852Poly(meth)acrylate derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0257Diffusing elements; Afocal elements characterised by the diffusing properties creating an anisotropic diffusion characteristic, i.e. distributing output differently in two perpendicular axes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0268Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/122Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2219/00Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used
    • C09K2219/03Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used in the form of films, e.g. films after polymerisation of LC precursor

Definitions

  • the present invention relates to an anisotropic scattering film having different scattering ability depending on the vibration direction of light.
  • anisotropic scatterers having different scattering abilities depending on the vibration direction of light can be applied to the brightness improvement of projection screens (Patent Document 1) and liquid crystal displays (Patent Documents 2 and 3).
  • Such an anisotropic scatterer is a state in which transparent materials having an anisotropic shape and a refractive index different from that of the transparent matrix are uniformly dispersed in a positional relationship in which they are regularly translated.
  • Patent Document 1 scattering particles with an aspect ratio of 1 or more dispersed in a support medium having a different refractive index
  • Patent Document 2 formed from droplets made of liquid crystal embedded in a polymer matrix Uniaxially aligned PDLC formed from liquid crystal droplets that are aligned in a common direction by applying an electric field
  • Patent Document 3 It can be produced by forming a structure (Patent Document 3), or forming a structure having small-diameter fibers embedded in a matrix (Patent Document 3).
  • a substance that is incompatible with the support medium is dispersed in the support medium with directionality (anisotropy).
  • An object of the present invention is to provide an anisotropic scattering film having excellent uniformity of light scattering ability in the film plane.
  • an anisotropic scattering film may be produced using a material system that is uniformly compatible, and the present invention has been completed.
  • the present invention provides an anisotropic scattering film characterized in that there are a plurality of regions in which a liquid crystal material is uniaxially horizontally aligned and a plurality of regions in which the liquid crystal material is vertically aligned.
  • the anisotropic scattering film of the present invention is manufactured using a material system that is uniformly compatible, the in-plane uniformity of the light scattering ability is good.
  • the anisotropic scattering film of the present invention is characterized in that there are a plurality of regions in which the liquid crystal material is uniaxially horizontally aligned and a plurality of regions in which the liquid crystal material is vertically aligned.
  • Light that oscillates in parallel with the slow axis (long axis direction of the liquid crystal molecules) of the uniaxial horizontal alignment region at the boundary between the uniaxial horizontal alignment region and the vertical alignment region is scattered by the mismatch in refractive index, and uniaxial horizontal alignment Light that vibrates perpendicular to the slow axis of the region does not scatter because there is no mismatch in refractive index.
  • the anisotropic scattering film of the present invention exhibits a function as an anisotropic scattering film by such an action.
  • the most common anisotropic scattering film scatters light most with respect to polarized light oscillating in a fixed direction with respect to the entire film surface, and light scattering with respect to polarized light oscillating in a direction perpendicular thereto. Is the smallest.
  • the orientation direction of a plurality of regions that are uniaxially horizontally oriented may be determined in a certain direction over the entire surface of the film.
  • the size per uniaxially horizontally aligned region (here, the size represents the average outer diameter) and the size per vertically aligned region (here, the size) Is an average outer diameter) is preferably 100 ⁇ m or less, more preferably 10 ⁇ m or less, and particularly preferably 1 ⁇ m or less.
  • the ratio of the total area (A) of the uniaxially oriented multiple areas to the total area (B) of the vertically oriented multiple areas is preferably set to 3: 7 to 7: 3, and 4: 6 It is more preferable to set to 6: 4.
  • a polymerizable liquid crystal composition containing a polymerizable liquid crystal compound is used as the liquid crystal material, and the above-described alignment state is fixed by irradiation with active energy rays. Handling can be facilitated by polymerizing by irradiation of active energy rays.
  • the liquid crystal material is spontaneously applied after the liquid crystal material is applied to the substrate subjected to the alignment treatment.
  • a method of forming a vertical alignment region and a horizontal alignment region can be given.
  • the alignment treatment include a method of forming a polymer thin film such as polyimide on a substrate and rubbing the polymer film, and a method of directly rubbing when the substrate is a polymer film.
  • liquid crystal material In order for the liquid crystal material to spontaneously form a vertical alignment region and a horizontal alignment region, it is preferable to select a liquid crystal material that exhibits a smectic A phase when applied. If the smectic A phase is not selected, a vertical alignment region can be obtained, but a uniaxial horizontal alignment region cannot be obtained, resulting in a hybrid alignment, or a uniaxial horizontal alignment region can be obtained, but a vertical alignment region cannot be obtained.
  • Tends to be hybrid orientation This is because the elastic strain energy at the “discontinuous surface” at the boundary between the vertical alignment region and the uniaxial horizontal alignment region is large, so either region changes to hybrid alignment in order to reduce the energy. It is thought that this is because such a force works.
  • the smectic A phase When the smectic A phase is selected, the smectic A phase has a layer structure inside, so it is difficult to obtain a hybrid alignment, so the change to the hybrid alignment is suppressed, and the vertical alignment region and the uniaxial horizontal alignment region coexist. Presumed to be easier.
  • the substrate examples include organic materials such as a glass substrate, a metal substrate, a ceramic substrate, and a plastic substrate.
  • organic materials such as a glass substrate, a metal substrate, a ceramic substrate, and a plastic substrate.
  • the substrate is an organic material
  • cellulose derivatives, polyolefins, polyesters, polyolefins, polycarbonates, polyacrylates, polyarylates, polyether sulfones, polyimides, polyphenylene sulfides, polyphenylene ethers, nylons, polystyrenes, and the like can be given.
  • plastic substrates such as polyester, polystyrene, polyolefin, cellulose derivatives, polyarylate, and polycarbonate are preferable.
  • polymerizable liquid crystal composition exhibiting a smectic A phase
  • polymerizable functional groups in the molecule.
  • Particularly preferred compounds include those of the general formula (I)
  • W 1 and W 2 each independently represent a single bond, —O—, —COO— or —OCO—
  • Y 1 and Y 2 each independently represent —COO— or —OCO—
  • P and q each independently represents an integer of 2 to 18, and the 1,4-phenylene group present in the formula is an alkyl group, alkoxy group, alkanoyl group, cyano group or halogen having 1 to 7 carbon atoms.
  • a compound represented by the formula (1) may be substituted with one or more atoms.
  • W 1 and W 2 represent —O—
  • Y 1 represents —COO—
  • Y 2 represents —OCO—
  • p and q are each independently an integer of 3 to 12
  • Specific examples of the compound represented by general formula (I) include compounds represented by general formula (I-1) to general formula (I-8).
  • the compound represented by the general formula (I) is preferably contained in two or more kinds for the purpose of stably developing a liquid crystal phase and avoiding the precipitation of the crystal phase.
  • the concentration of the compound represented by the general formula (I) in the polymerizable liquid crystal composition is preferably 20% by mass or more, more preferably 40% by mass or more, and more preferably 60% by mass or more from the viewpoint of heat resistance and liquid crystal temperature range. Is particularly preferred.
  • W 3 and W 4 each independently represent a single bond, —O—, —COO— or —OCO—
  • Y 3 represents —COO— or —OCO—
  • r and s are each independently In general, it represents an integer of 2 to 18, but the 1,4-phenylene group present in the formula is substituted by one or more alkyl groups, alkoxy groups, alkanoyl groups, cyano groups or halogen atoms having 1 to 7 carbon atoms. It is also preferable to contain the compound represented by this.
  • a bifunctional liquid crystalline acrylate such as the general formula (II)
  • Specific examples of the compound represented by general formula (II) include compounds represented by general formula (II-1) to general formula (II-10).
  • the concentration of the compound represented by the general formula (II) in the polymerizable liquid crystal composition is preferably 5 to 50% by mass, more preferably 7 to 40% by mass from the viewpoint of heat resistance and the liquid crystal temperature range, 30% by mass is particularly preferred.
  • the polymerizable liquid crystal composition it is also preferable to add a monofunctional liquid crystal acrylate having a cyano group because it tends to exhibit a smectic A phase.
  • a monofunctional liquid crystal acrylate having a cyano group because it tends to exhibit a smectic A phase.
  • W 5 represents a single bond, —O—, —COO— or —OCO—
  • the 1,4-phenylene group
  • Y 4 and Y 5 are preferably each independently represented by a single bond, —COO— or —OCO—. More specifically, compounds represented by general formula (III-1) to general formula (III-4) can be given.
  • t has the same meaning as in general formula (III).
  • the compounds of (III-1) and (III-3) are preferred from the viewpoint of setting the lower limit temperature of the smectic A phase to 40 ° C. or less.
  • a compound of formula (III-1) is particularly preferred.
  • t is preferably 3 to 18, preferably 4 to 16, and more preferably 6 to 12. If it is smaller than 3, it tends to be difficult to obtain a smectic A phase, and if it is larger than 12, the heat resistance of the polymer obtained by photopolymerization tends to deteriorate.
  • the concentration of the compound represented by the general formula (III) in the polymerizable liquid crystal composition is preferably 20% by mass or less, and more preferably 15% by mass from the viewpoints of heat resistance and a liquid crystal temperature range.
  • the polymerizable liquid crystal composition can contain compounds represented by general formulas (a-1) to (a-10) as the bifunctional liquid crystalline acrylate. .
  • u and v are preferably 3 to 18, preferably 4 to 16, and more preferably 6 to 12. If it is smaller than 3, it tends to be difficult to obtain a smectic A phase, and if it is larger than 12, the heat resistance of the polymer obtained by photopolymerization tends to deteriorate.
  • a compound having a polymerizable functional group and not showing liquid crystallinity can be added.
  • a compound can be used without particular limitation as long as it is generally recognized as a polymer-forming monomer or polymer-forming oligomer in this technical field, but the amount added is smectic as a composition. It is necessary to adjust to present A phase.
  • the viscosity of the polymerizable liquid crystal composition is preferably adjusted to 2000 mPa ⁇ s or more, more preferably 3500 cps or more, and particularly preferably 5000 mPa ⁇ s or more at room temperature (25 ° C.) in order to ensure applicability.
  • a photopolymerization initiator can be added to the polymerizable liquid crystal composition for the purpose of improving the polymerization reactivity.
  • the photopolymerization initiator include benzoin ethers, benzophenones, acetophenones, benzyl ketals, and acylphosphine oxides.
  • the addition amount is preferably 0.01 to 5% by mass, more preferably 0.02 to 1% by mass, and particularly preferably 0.03 to 1% by mass with respect to the liquid crystal composition.
  • a stabilizer can be added to the polymerizable liquid crystal composition in order to improve its storage stability.
  • the stabilizer examples include hydroquinone, hydroquinone monoalkyl ethers, tert-butylcatechols, pyrogallols, thiophenols, nitro compounds, ⁇ -naphthylamines, ⁇ -naphthols, nitroso compounds, and the like.
  • the amount added is preferably in the range of 0.005 to 1% by mass, more preferably 0.02 to 0.5% by mass, and 0.03 to 0.1% by mass with respect to the liquid crystal composition. % Is particularly preferred.
  • additives for horizontal alignment are important. Since the material exhibiting smectic A phase has a strong vertical alignment property, if an additive for horizontal alignment is not added, the polymerizable liquid crystal composition will be vertically aligned over the entire surface even if it is applied to the substrate, resulting in uniaxial horizontal alignment. There is a tendency that it is difficult to obtain an area to do. Therefore, it is preferable to add an additive for horizontally aligning the liquid crystal material to obtain a region that is uniaxially horizontally aligned.
  • additives include those of the general formula (IV)
  • R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom, a halogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and one hydrocarbon atom in the hydrocarbon group
  • a compound having a repeating unit represented by the above-mentioned halogen atom may be used.
  • Examples of the compound represented by the general formula (IV) include polyethylene, polypropylene, polyisobutylene, paraffin, liquid paraffin, chlorinated polypropylene, chlorinated paraffin, and chlorinated liquid paraffin.
  • the concentration of such a compound in the polymerizable liquid crystal composition is preferably adjusted to 0.001 to 0.05% by weight, more preferably 0.002 to 0.04% by weight, and more preferably 0.003 to 0.03% by weight. Particularly preferred.
  • the addition amount is small, the total area of the uniaxial horizontal alignment region tends to be small, and when the addition amount is large, the total area of the horizontal alignment region tends to be small.
  • the alignment treatment of the coated substrate is also important. Rubbing is a typical example of the alignment treatment, but the so-called “rubbing strength” (for example, the higher the pressure applied to the substrate of the rubbing cloth, the higher the rotational speed of the rubbing roller, the stronger the rubbing strength).
  • rubbing strength for example, the higher the pressure applied to the substrate of the rubbing cloth, the higher the rotational speed of the rubbing roller, the stronger the rubbing strength.
  • surfactants that can be included include alkyl carboxylates, alkyl phosphates, alkyl sulfonates, fluoroalkyl carboxylates, fluoroalkyl phosphates, fluoroalkyl sulfonates, polyoxyethylene derivatives, fluoro Examples thereof include alkylethylene oxide derivatives, polyethylene glycol derivatives, alkylammonium salts, fluoroalkylammonium salts, silicone derivatives and the like, and fluorine-containing surfactants and silicone derivatives are particularly preferable.
  • MEGAFAC F-110 “MEGAFACCF-113”, “MEGAFAC F-120”, “MEGAFAC F-812”, “MEGAFAC F-142D”, “MEGAFAC F-144D”, “MEGAFAC F-” 150 “,” MEGAFAC F-171 “,” MEGAFACF-173 “,” MEGAFAC F-177 “,” MEGAFAC F-183 “,” MEGAFAC F-195 “,” MEGAFAC F-824 “,” MEGAFAC F-833 “ , “MEGAFAC F-114”, “MEGAFAC F-410”, “MEGAFAC F-493”, “MEGAFAC F-494”, “MEGAFAC F-443”, “MEGAFAC F-444”, “MEGAFAC F-445”, “ME “GAFAC F-446”, “MEGAFAC F-470”, “MEGAFAC F-471”, “MEGAFAC F-474”, “MEGAFAC F-475”, “MEGAFAC F-477”, “MEGAFAC F-110
  • the preferred addition amount of the surfactant varies depending on components other than the surfactant contained in the polymerizable liquid crystal composition, the use temperature, etc., but is contained in the polymerizable liquid crystal composition in an amount of 0.01 to 1% by mass.
  • the content is preferably 0.02 to 0.5% by mass, more preferably 0.03 to 0.1% by mass. When the content is lower than 0.01% by mass, it is difficult to obtain the effect of reducing film thickness unevenness.
  • Known methods for applying the polymerizable liquid crystal composition to the substrate include applicator method, bar coating method, spin coating method, gravure printing method, flexographic printing method, ink jet method, die coating method, cap coating method, dipping, etc. Conventional methods can be performed. It is preferable to apply a polymerizable liquid crystal composition diluted with a solvent.
  • the solvent to be used may be any solvent that does not dissolve the substrate or the alignment film formed on the substrate when applied onto the substrate.
  • a solvent that can dissolve the polymerizable liquid crystal composition satisfactorily is preferable.
  • solvents examples include aromatic hydrocarbons such as toluene, xylene, cumene, and mesitylene, ester solvents such as methyl acetate, ethyl acetate, propyl acetate, and butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • aromatic hydrocarbons such as toluene, xylene, cumene, and mesitylene
  • ester solvents such as methyl acetate, ethyl acetate, propyl acetate, and butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • Ketone solvents such as tetrahydrofuran, ether solvents such as tetrahydrofuran, 1,2-dimethoxyethane, anisole, amide solvents such as N, N-dimethylformamide, N-methyl-2-pyrrolidone, propylene glycol monomethyl ether acetate, diethylene glycol Examples include monomethyl ether acetate, ⁇ -butyrolactone, chlorobenzene and the like. These can be used alone or in combination of two or more.
  • the ratio of the solvent is not particularly limited as long as the polymerizable liquid crystal composition is usually applied, so long as the applied state is not significantly impaired, but the ratio of the solid content of the polymerizable liquid crystal composition to the solvent is 0.1. : 99.9 to 80:20 is preferable, and in consideration of coatability, 1:99 to 60:40 is more preferable.
  • the solvent is heated at 60 to 100 ° C, more preferably 80 to 90 ° C. Is preferably volatilized. The heating time is preferably 5 seconds to 3 minutes.
  • the polymerization operation of the polymerizable liquid crystal composition is preferably performed by generally irradiating active energy rays in a state of being oriented in a desired state after removing the solvent in the polymerizable liquid crystal composition by drying or the like.
  • active energy rays include ultraviolet rays and electron beams. From the simplicity of the apparatus, it is preferable to use ultraviolet rays as the active energy ray.
  • ultraviolet light irradiation specifically, it is preferable to irradiate ultraviolet light having a wavelength of 390 nm or less, and most preferable to irradiate light having a wavelength of 250 to 370 nm.
  • the polymerizable liquid crystal composition causes decomposition or the like due to ultraviolet light of 390 nm or less, it may be preferable to perform polymerization treatment with ultraviolet light of 390 nm or more.
  • This light is preferably diffused light and unpolarized light.
  • the intensity of the ultraviolet light is preferably 1 ⁇ 100mW / cm 2, more preferably 2 ⁇ 50mW / cm 2, particularly preferably 5 ⁇ 30mW / cm 2.
  • Example 1 A polymerizable liquid crystal composition (A) having the following composition was prepared.
  • composition (A) When the polymerizable liquid crystal composition (A) was once heated to an isotropic liquid phase and then cooled, it changed to a nematic phase at 70 ° C. and changed to a smectic A phase at 35 ° C. This smectic A phase was maintained even at room temperature.
  • To this composition (A) is added 3% of photopolymerization initiator Irgacure 907 (manufactured by Ciba Specialty Chemicals), 0.01% of polypropylene with a weight average molecular weight of 1650 as a horizontal alignment additive, and composition (A-1) is added. Prepared. Further, the composition (A-1) was dissolved in propylene glycol monomethyl ether acetate so as to have a concentration of 30% to prepare a coating composition (A-2).
  • a TAC film (thickness: 50 ⁇ m) having a width of 15 cm and a length of 15 cm was prepared, and a rubbing treatment was performed in a direction parallel to the length direction.
  • the composition (A-2) was dropped onto the rubbed substrate and applied to the entire surface using a # 5 wire bar. This was dried at 80 ° C. for 3 minutes, held at room temperature for 3 minutes, and then irradiated with UV light at an intensity of 15 mW / cm 2 for 10 seconds to polymerize the polymerizable liquid crystal composition to obtain a film. When the thickness was measured, it was 1.1 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

本願発明は、液晶材料が一軸水平配向している複数領域と垂直配向している複数領域が存在することにより、フィルム面内における光散乱能の均一性に優れる異方性散乱フィルムを提供する。一軸水平配向している領域と垂直配向領域の境界において、一軸水平配向領域の遅相軸(液晶分子の長軸方向)と平行に振動する光は屈折率の不一致によって光散乱し、一軸水平配向領域の遅相軸と垂直に振動する光は屈折率の不一致が無いので、光散乱しない。本発明の異方性散乱フィルムは、このような作用によって、異方性散乱フィルムとして機能を発現する。

Description

異方性散乱フィルム
 本願発明は、光の振動方向によって散乱能が異なる異方性散乱フィルムに関するものである。
 光の振動方向によって散乱能が異なる異方性散乱体は、プロジェクションスクリーン(特許文献1)や液晶ディスプレイの輝度向上(特許文献2、3)に応用できることが知られている。このような異方性散乱体は、透明マトリックス中に、異方的形状を有し、かつ透明マトリックスと異なる屈折率の透明物質が、秩序良く互いに平行移動した位置関係で均質に分散させた状態にすること(特許文献1)、アスペクト比が1以上の散乱粒子を屈折率の異なる支持媒質中に分散配列させること(特許文献2)、ポリマーマトリックスに埋め込んだ液晶からできている小滴から形成した一軸均一配向構造であり、小滴を共通軸に沿って物理的に引き延ばすこと(特許文献3)、電界を印加して共通の方向に配列させた液晶小滴から形成された一軸均一配向PDLC構造にすること(特許文献3)、マトリクス中に配列させ、埋め込んだ小径の繊維を有する構造にすること(特許文献3)等によって作製することができる。上述のような公知の製造方法においては、支持媒質中に支持媒質と相溶しない物質を方向性(異方性)を持って分散させている。このような製造方法では、互いに相溶しない物質を均一に分散させた状態で製膜する必要があるが、分散状態を均一に保持するのが難しいため、得られるフィルムの光散乱能の面内均一性が良好でないという問題があった。
特開平4-73637号公報 特開平9-274108号公報 特表平11-502036号公報
 本願発明の目的は、フィルム面内における光散乱能の均一性に優れる異方性散乱フィルムを提供することにある。
 上記目的を達成するために鋭意検討した結果、均一に相溶している材料系を用いて異方性散乱フィルムを製造すれば良いことを見出し本願発明の完成に至った。
 本願発明は、液晶材料が一軸水平配向している複数領域と垂直配向している複数領域が存在することを特徴とする異方性散乱フィルムを提供する。
 本願発明の異方性散乱フィルムは、均一に相溶している材料系を用いて製造されるものであるので、光散乱能の面内均一性が良好である。
 本発明の異方性散乱フィルムは、液晶材料が一軸水平配向している複数領域と垂直配向している複数領域が存在してなることを特徴とする。一軸水平配向している領域と垂直配向領域の境界において、一軸水平配向領域の遅相軸(液晶分子の長軸方向)と平行に振動する光は屈折率の不一致によって光散乱し、一軸水平配向領域の遅相軸と垂直に振動する光は屈折率の不一致が無いので、光散乱しない。本発明の異方性散乱フィルムは、このような作用によって、異方性散乱フィルムとして機能を発現する。
 最も一般的な異方性散乱フィルムは、フィルム面全体に対して、一定方向に定まった方向に振動する偏光に対して最も大きく光散乱し、これに対して垂直方向に振動する偏光に対する光散乱が最も小さくなる。このような異方性散乱フィルムにおいては、一軸水平配向している複数領域の配向方向は、フィルム面内全面にわたって一定方向に定めればよい。 光散乱能を確保するためには、液晶材料の複屈折率を大きくするか、一軸水平配向している領域と垂直配向している領域の境界面積を増やすことが好ましい。このような観点から、一軸水平配向している領域一つあたりの大きさ(ここでの大きさは平均外径を表す)及び垂直配向している領域一つあたりの大きさ(ここでの大きさは平均外径を表す)が100μm以下であることが好ましく、10μm以下であることが更に好ましく、1μm以下であることが特に好ましい。更に、一軸配向している複数領域の面積合計(A)と垂直配向している複数領域の面積合計(B)の比が、3:7~7:3に設定することが好ましく、4:6~6:4に設定するのが更に好ましい。
 液晶材料として、重合性液晶化合物を含有してなる重合性液晶組成物を使用し、上述の配向状態が活性エネルギー線の照射により固定化された状態であることが好ましい。活性エネルギー線の照射によって高分子化することによって取扱いを容易にすることができる。
 液晶材料を、一軸水平配向している複数領域と垂直配向している複数領域が存在するように配向させる方法としては、配向処理をした基板に液晶材料を塗布した後に、液晶材料が自発的に垂直配向領域と水平配向領域が形成させる方法を挙げることができる。配向処理としては、基板上にポリイミドなどの高分子薄膜を形成し、該高分子膜をラビング処理する方法や、基板が高分子フィルムの場合には直接ラビングする方法が挙げられる。液晶材料が自発的に垂直配向領域と水平配向領域を形成させるようにするには、塗布した際にスメクチックA相を示す液晶材料を選択することが好ましい。スメクチックA相を選択しない場合、垂直配向領域は得られるものの、一軸水平配向領域が得られずにハイブリッド配向となってしまったり、もしくは一軸水平配向領域は得られるものの、垂直配向領域が得られずにハイブリッド配向となってしまう傾向がある。これは、垂直配向領域と一軸水平配向領域の境界にある「配向が不連続な面」における弾性歪エネルギーが大きいため、そのエネルギーを緩和するために、どちらか一方の領域がハイブリッド配向に変化するような力が働くためだと考えられる。スメクチックA相を選択すると、スメクチックA相は内部に層構造を有していることからハイブリッド配向を取りづらいので、ハイブリッド配向に変化することが抑制され、垂直配向領域と一軸水平配向領域が共存しやすくなると推測される。
 基板としては、ガラス基材、金属基材、セラミックス基材やプラスチック基材等の有機材料が挙げられる。特に基板が有機材料の場合、セルロース誘導体、ポリオレフィン、ポリエステル、ポリオレフィン、ポリカーボネート、ポリアクリレート、ポリアリレート、ポリエーテルサルホン、ポリイミド、ポリフェニレンスルフィド、ポリフェニレンエーテル、ナイロン、又はポリスチレン等が挙げられる。中でもポリエステル、ポリスチレン、ポリオレフィン、セルロース誘導体、ポリアリレート、ポリカーボネート等のプラスチック基板が好ましい。
 スメクチックA相を呈する重合性液晶組成物としては、重合性の官能基を分子中に少なくとも2つ以上有するものを使用することが好ましい。特に好ましい化合物としては、一般式(I)
Figure JPOXMLDOC01-appb-C000004
(式中、W及びWはそれぞれ独立的に単結合、-O-、-COO-又は-OCO-を表し、Y及びYはそれぞれ独立的に-COO-又は-OCO-を表し、p及びqはそれぞれ独立的に2~18の整数を表すが、式中に存在する1,4-フェニレン基は炭素原子数1~7のアルキル基、アルコキシ基、アルカノイル基、シアノ基又はハロゲン原子で一つ以上置換されていても良い。)で表される化合物が好ましい。
 一般式(I)において、W及びWは-O-を表し、Yは-COO-を表し、Yは-OCO-を表し、p及びqはそれぞれ独立的に3~12の整数である化合物がより好ましく、p=q=6又はp=q=3である化合物が好ましい。
 一般式(I)で表される化合物はさらに具体的には、一般式(I-1)~一般式(I―8)で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000005
(式中、p及びqは一般式(I)における意味と同じ。)
一般式(I-1)~一般式(I―8)において、p及びqはそれぞれ独立的に3~12の整数であることが好ましい。
 一般式(I)で表される化合物は、安定に液晶相を発現させる目的と結晶相の析出を避ける目的から、2種以上含有させることが好ましく、一般式(I-1)~一般式(I―8)において、p=q=6又はp=q=3の化合物を2種以上含有することが特に好ましい。
 一般式(I)で表される化合物の重合性液晶組成物中での濃度は、耐熱性や液晶温度範囲の観点から20質量%以上が好ましく、40質量%以上がさらに好ましく、60質量%以上が特に好ましい。
 重合性液晶組成物としては、一般式(II)
Figure JPOXMLDOC01-appb-C000006
(式中、W及びWはそれぞれ独立的に単結合、-O-、-COO-又は-OCO-を表し、Yは-COO-又は-OCO-を表し、r及びsはそれぞれ独立的に2~18の整数を表すが、式中に存在する1,4-フェニレン基は炭素原子数1~7のアルキル基、アルコキシ基、アルカノイル基、シアノ基又はハロゲン原子で一つ以上置換されていても良い。)で表される化合物を含有させることも好ましい。一般式(II)のような2官能液晶性アクリレートを用いると、室温でスメクチックA相を呈する組成物を容易に得ることができる。一般式(II)で表される化合物は、さらに具体的には、一般式(II-1)~一般式(II―10)で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000007
(式中、r及びsは一般式(II)における意味と同じ。)
 一般式(II)で表される化合物の重合性液晶組成物中での濃度は、耐熱性や液晶温度範囲の観点から5~50質量%が好ましく、7~40質量%がさらに好ましく、10~30質量%が特に好ましい。
 重合性液晶組成物としては、シアノ基を有する単官能液晶性アクリレートを含有させることも、スメクチックA相を呈する傾向があるため好ましい。具体的には、一般式(III)
Figure JPOXMLDOC01-appb-C000008
(式中、Wは単結合、-O-、-COO-又は-OCO-を表し、Y及びYはそれぞれ独立に単結合、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-、-CH2CH2-、-CH2O-、-OCH2-、-COO-、-OCO-、-C≡C-、-CH=CH-、-CF=CF-、-(CH2)4-、-CH2CH2CH2O-、-OCH2CH2CH2-、-CH=CH-CH2CH2-、-CH2CH2-CH=CH-、-CH=CH-COO-又は-OCO-CH=CH-を表し、tは2~18の整数を表し、nは0または1を表すが、式中に存在する1,4-フェニレン基は炭素原子数1~7のアルキル基、アルコキシ基、アルカノイル基、シアノ基又はハロゲン原子で一つ以上置換されていても良い。)で表される化合物が好ましい。一般式(III)で表される化合物の中でも、Y及びYはそれぞれ独立に単結合、-COO-又は-OCO-で表されるものが好ましい。さらに具体的には、一般式(III-1)~一般式(III―4)で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000009
(式中、tは一般式(III)における意味と同じ。)
 一般式(III-1)~一般式(III―4)の中でも、スメクチックA相の下限温度を40℃以下にする観点から、(III-1)及び(III-3)の化合物が好ましく、一般式(III-1)の化合物が特に好ましい。tは3~18が好ましく、4~16が好ましく、6~12がさらに好ましい。3より小さいとスメクチックA相を得るのが難しくなる傾向があり、12より大きいと光重合して得られる重合体の耐熱性が劣化する傾向がある。一般式(III)で表される化合物の重合性液晶組成物中の濃度は、耐熱性や液晶温度範囲の観点から20質量%以下が好ましく、15質量%がさらに好ましい。
 以上あげた化合物の他にも重合性液晶組成物に、2官能液晶性アクリレートとしては、一般式(a-1)~一般式(a―10)で表される化化合物を含有させることができる。
Figure JPOXMLDOC01-appb-C000010
(式中、u及びvはそれぞれ独立的に2~18の整数を表す。)
 u及びvは3~18が好ましく、4~16が好ましく、6~12がさらに好ましい。3より小さいとスメクチックA相を得るのが難しくなる傾向があり、12より大きいと光重合して得られる重合体の耐熱性が劣化する傾向がある。
 重合性液晶組成物中には、重合性官能基を有する化合物であって、液晶性を示さない化合物を添加することもできる。このような化合物としては、通常、この技術分野で高分子形成性モノマーあるいは高分子形成性オリゴマーとして認識されるものであれば特に制限なく使用することができるが、その添加量は組成物としてスメクチックA相を呈するように調整する必要がある。
 重合性液晶組成物の粘度は、塗布性を確保するために室温(25℃)において、2000mPa・s以上、さらに好ましくは3500cps以上、特に好ましくは5000mPa・s以上に調節することが好ましい。
 また、重合性液晶組成物中には、その重合反応性を向上させることを目的として、光重合開始剤を添加することができる。光重合開始剤としては、ベンゾインエーテル類、ベンゾフェノン類、アセトフェノン類、ベンジルケタール類、アシルフォスフィンオキサイド等が挙げられる。その添加量は、液晶組成物に対して0.01~5質量%が好ましく、0.02~1質量%がさらに好ましく、0.03~1質量%の範囲が特に好ましい。
 また、重合性液晶組成物には、その保存安定性を向上させるために、安定剤を添加することもできる。使用できる安定剤としては、例えば、ヒドロキノン、ヒドロキノンモノアルキルエーテル類、第三ブチルカテコール類、ピロガロール類、チオフェノール類、ニトロ化合物類、β-ナフチルアミン類、β-ナフトール類、ニトロソ化合物等が挙げられる。安定剤を使用する場合の添加量は、液晶組成物に対して0.005~1質量%の範囲が好ましく、0.02~0.5質量%がさらに好ましく、0.03~0.1質量%が特に好ましい。
 重合性液晶組成物への添加剤として、水平配向させるための添加剤の選択と濃度は重要である。スメクチックA相を示す材料は垂直配向する性質が強いので、水平配向させるための添加剤を添加しないと、重合性液晶組成物を基板に塗布しても全面にわたって垂直配向してしまい、一軸水平配向する領域が得にくい傾向がある。そこで、液晶材料を水平配向させる添加剤を添加して、一軸水平配向する領域を得ることが好ましい。このような添加剤としては、一般式(IV)
Figure JPOXMLDOC01-appb-C000011
(式中、R1、R2、R3及びR4はそれぞれ独立的に水素原子、ハロゲン原子又は炭素原子数1~20の炭化水素基を表し、該炭化水素基中の水素原子は1つ以上のハロゲン原子で置換されていても良い。)で表される繰り返し単位を有する化合物をあげることができる。一般式(IV)で表される化合物としては、例えばポリエチレン、ポリプロピレン、ポリイソブチレン、パラフィン、流動パラフィン、塩素化ポリプロピレン、塩素化パラフィン、又は塩素化流動パラフィンが挙げられる。このような化合物の重合性液晶組成物中における濃度は、0.001~0.05重量%に調整するのが好ましく、0.002~0.04重量%に調整するのが更に好ましく、0.003~0.03重量%に調整するのが特に好ましい。添加量が少ないと、一軸水平配向する領域の面積合計が小さくなり、添加量が多いと水平配向する領域の面積合計が小さくなる傾向がある。
 一軸水平配向領域と垂直配向領域の面積制御の観点からは上記の添加剤濃度の調整に加えて、塗布基板の配向処理も重要である。配向処理として代表的なものとしてラビングが挙げられるが、所謂「ラビング強度」(例えば、ラビング布の基板への押しつけ圧力を高めるほど、ラビングローラーの回転速度を速めるほど、ラビング強度は強くなる)を強くすると、一軸水平配向領域の合計面積が大きくなる傾向がある。したがって、上記添加剤の濃度調整はラビング強度も勘案して行う必要がある。
 重合性液晶組成物中には、塗膜のレベリング性を確保する目的で界面活性剤を添加することが好ましい。含有することができる界面活性剤としては、アルキルカルボン酸塩、アルキルリン酸塩、アルキルスルホン酸塩、フルオロアルキルカルボン酸塩、フルオロアルキルリン酸塩、フルオロアルキルスルホン酸塩、ポリオキシエチレン誘導体、フルオロアルキルエチレンオキシド誘導体、ポリエチレングリコール誘導体、アルキルアンモニウム塩、フルオロアルキルアンモニウム塩類、シリコーン誘導体等をあげることができ、特に含フッ素界面活性剤、シリコーン誘導体が好ましい。更に具体的には「MEGAFAC F-110」、「MEGAFACF-113」、「MEGAFAC F-120」、「MEGAFAC F-812」、「MEGAFAC F-142D」、「MEGAFAC F-144D」、「MEGAFAC F-150」、「MEGAFAC F-171」、「MEGAFACF-173」、「MEGAFAC F-177」、「MEGAFAC F-183」、「MEGAFAC F-195」、「MEGAFAC F-824」、「MEGAFAC F-833」、「MEGAFAC F-114」、「MEGAFAC F-410」、「MEGAFAC F-493」、「MEGAFAC F-494」、「MEGAFAC F-443」、「MEGAFAC F-444」、「MEGAFAC F-445」、「MEGAFAC F-446」、「MEGAFAC F-470」、「MEGAFAC F-471」、「MEGAFAC F-474」、「MEGAFAC F-475」、「MEGAFAC F-477」、「MEGAFAC F-478」、「MEGAFAC F-479」、「MEGAFAC F-480SF」、「MEGAFAC F-482」、「MEGAFAC F-483」、「MEGAFAC F-484」、「MEGAFAC F-486」、「MEGAFAC F-487」、「MEGAFAC F-489」、「MEGAFAC F-172D」、「MEGAFAC F-178K」、「MEGAFAC F-178RM」、「MEGAFAC R-08」、「MEGAFAC R-30」、「MEGAFAC F-472SF」、「MEGAFAC BL-20」、「MEGAFAC R-61」、「MEGAFAC R-90」、「MEGAFAC ESM-1」、「MEGAFAC MCF-350SF」(以上、DIC株式会社製)、
「フタージェント100」、「フタージェント100C」、「フタージェント110」、「フタージェント150」、「フタージェント150CH」、「フタージェントA」、「フタージェント100A-K」、「フタージェント501」、「フタージェント300」、「フタージェント310」、「フタージェント320」、「フタージェント400SW」、「FTX-400P」、「フタージェント251」、「フタージェント215M」、「フタージェント212MH」、「フタージェント250」、「フタージェント222F」、「フタージェント212D」、「FTX-218」、「FTX-209F」、「FTX-213F」、「FTX-233F」、「フタージェント245F」、「FTX-208G」、「FTX-240G」、「FTX-206D」、「FTX-220D」、「FTX-230D」、「FTX-240D」、「FTX-207S」、「FTX-211S」、「FTX-220S」、「FTX-230S」、「FTX-750FM」、「FTX-730FM」、「FTX-730FL」、「FTX-710FS」、「FTX-710FM」、「FTX-710FL」、「FTX-750LL」、「FTX-730LS」、「FTX-730LM」、「FTX-730LL」、「FTX-710LL」(以上、ネオス社製)、
「BYK-300」、「BYK-302」、「BYK-306」、「BYK-307」、「BYK-310」、「BYK-315」、「BYK-320」、「BYK-322」、「BYK-323」、「BYK-325」、「BYK-330」、「BYK-331」、「BYK-333」、「BYK-337」、「BYK-340」、「BYK-344」、「BYK-370」、「BYK-375」、「BYK-377」、「BYK-350」、「BYK-352」、「BYK-354」、「BYK-355」、「BYK-356」、「BYK-358N」、「BYK-361N」、「BYK-357」、「BYK-390」、「BYK-392」、「BYK-UV3500」、「BYK-UV3510」、「BYK-UV3570」、「BYK-Silclean3700」(以上、ビックケミー・ジャパン社製)、
「TEGO Rad2100」、「TEGO Rad2200N」、「TEGO Rad2250」、「TEGO Rad2300」、「TEGO Rad2500」、「TEGO Rad2600」、「TEGO Rad2700」(以上、テゴ社製)等の例をあげることができる。界面活性剤の好ましい添加量は、重合性液晶組成物中に含有される界面活性剤以外の成分や、使用温度等によって異なるが、重合性液晶組成物中に0.01~1質量%含有することが好ましく、0.02~0.5質量%含有することがさらに好ましく、0.03~0.1質量%含有することが特に好ましい。含有量が0.01質量%より低いときは膜厚ムラ低減効果が得にくい。
 重合性液晶組成物を基板に塗布するための法としては、アプリケーター法、バーコーティング法、スピンコーティング法、グラビア印刷法、フレキソ印刷法、インクジェット法、ダイコーティング法、キャップコーティング法、ディッピング等、公知慣用の方法を行うことができる。溶剤で希釈した重合性液晶組成物を塗布することが好ましい。使用する溶剤は、基板上に塗布した際に基板、あるいは、基板上に形成されている配向膜を溶解させないものであれば良い。また、使用する溶剤としては重合性液晶組成物を良好に溶解性させるものが好ましい。使用することができる溶剤としては、例えば、トルエン、キシレン、クメン、メシチレン等の芳香族系炭化水素、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル系溶剤、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤、テトラヒドロフラン、1,2-ジメトキシエタン、アニソール等のエーテル系溶剤、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、等のアミド系溶剤、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、γ-ブチロラクトン、クロロベンゼン等が挙げられる。これらは、単独で使用することもできるし、2種類以上混合して使用することもできる。
 溶剤の比率は、重合性液晶組成物が通常塗布により行われることから、塗布した状態を著しく損なわない限りは特に制限はないが、重合性液晶組成物の固形分と溶剤の比率が0.1:99.9~80:20が好ましく、塗布性を考慮すると、1:99~60:40がさらに好ましい
 溶剤を使用した場合、60~100℃、さらに好ましくは80~90℃で加熱して溶剤を揮発させることが好ましい。加熱時間は5秒~3分が好ましい。
 重合性液晶組成物の重合操作については、重合性液晶組成物中の溶剤を乾燥等で除去した後、所望状態に配向した状態で一般に活性エネルギー線を照射することによって行うのが好ましい。活性エネルギー線としては紫外線、電子線を挙げることができる。装置の簡易さから、活性エネルギー線として紫外線を使用することが好ましい。重合を紫外光照射で行う場合は、具体的には390nm以下の紫外光を照射することが好ましく、250~370nmの波長の光を照射することが最も好ましい。但し、390nm以下の紫外光により重合性液晶組成物が分解などを引き起こす場合は、390nm以上の紫外光で重合処理を行ったほうが好ましい場合もある。この光は、拡散光で、かつ偏光していない光であることが好ましい。紫外光の強度としては、1~100mW/cm2が好ましく、2~50mW/cm2が更に好ましく、5~30mW/cm2が特に好ましい。照射エネルギーとしては5~200mJ/cm2が好ましく、10~150mJ/cm2が更に好ましく、20~120mJ/cm2が特に好ましい。
(実施例)
 以下に示す組成の重合性液晶組成物(A)を調製した。
Figure JPOXMLDOC01-appb-C000012
重合性液晶組成物(A)は、一度、等方性液体相まで加熱してから冷却すると、70℃でネマチック相に相転移し、35℃でスメクチックA相に相転移した。このスメクチックA相は室温においても保たれた。本組成物(A)に光重合開始剤イルガキュアー907(チバスペシャリティケミカルズ製)3%、水平配向添加剤として質量平均分子量1650のポリプロピレンを0.01%を添加して、組成物(A-1)を調製した。さらに、組成物(A-1)を濃度が30%となるようにプロピレングリコールモノメチルエーテルアセテートに溶解させ、塗布組成物(A-2)を調整した。
 次に、幅15cm、長さ15cmのTACフィルム(厚さ50μm)を用意し、長さ方向と平行方向にラビング処理を行った。このラビング処理した基板に、組成物(A-2)を滴下し、#5のワイヤーバーを使用して全面に塗布した。これを80℃で3分乾燥後、室温で3分保持してから15mW/cmの強度で10秒間UV光を照射して、重合性液晶組成物を高分子化させ、フィルムを得た。厚みを測定したところ、1.1μmであった。得られたフィルムを偏光フィルムと組み合わせて確認したところ、ラビング方向に対して平行方向に振動する偏光が散乱され、垂直方向に振動する偏光は散乱されずに透過し、異方性散乱板として機能することが確かめられた。目視状態において散乱能はフィルム面内で均一であり、ムラは無かった。フィルムの4隅及び中央のヘイズを測定したところ、ヘイズは44±1%の範囲に収まっており、均一性に優れていることが定量的にも確かめられた。

Claims (9)

  1. 液晶材料が一軸水平配向している複数領域と垂直配向している複数領域が存在することを特徴とする異方性散乱フィルム。
  2. 一軸水平配向している複数領域における配向方向は一定方向に定まっていることを特徴とする請求項1記載の異方性散乱フィルム。
  3. 一軸水平配向している領域一つあたりの大きさ及び垂直配向している領域一つあたりの大きさが100μm以下であることを特徴する請求項1または2記載の異方性散乱フィルム。
  4. 一軸水平配向している領域の面積合計(A)と垂直配向している領域の面積合計(B)の比が3:7~7:3である請求項1から3のいずれかに記載の異方性散乱フィルム。
  5. 液晶材料が重合性液晶組成物であり、配向状態が活性エネルギー線の照射によって固定化されたものであることを特徴とする請求項1から4のいずれかに記載の異方性散乱フィルム。
  6. 液晶材料がスメクチックA相状態であることを特徴とする請求項1から5のいずれかに記載の異方性散乱フィルム。
  7. 重合性液晶組成物が一般式(I)
    Figure JPOXMLDOC01-appb-C000001
    (式中、W及びWはそれぞれ独立的に単結合、-O-、-COO-又は-OCO-を表し、Y及びYはそれぞれ独立的に-COO-又は-OCO-を表し、p及びqはそれぞれ独立的に2~18の整数を表すが、式中に存在する1,4-フェニレン基は炭素原子数1~7のアルキル基、アルコキシ基、アルカノイル基、シアノ基又はハロゲン原子で一つ以上置換されていても良い。)で表される化合物を含有する請求項1から6のいずれかに記載の異方性散乱フィルム。
  8. 重合性液晶組成物が一般式(II)
    Figure JPOXMLDOC01-appb-C000002
    (式中、W及びWはそれぞれ独立的に単結合、-O-、-COO-又は-OCO-を表し、Yは-COO-又は-OCO-を表し、r及びsはそれぞれ独立的に2~18の整数を表すが、式中に存在する1,4-フェニレン基は炭素原子数1~7のアルキル基、アルコキシ基、アルカノイル基、シアノ基又はハロゲン原子で一つ以上置換されていても良い。)で表される化合物を含有する請求項1から7のいずれかに記載の光学異方体の製造方法。
  9. 重合性液晶組成物が一般式(III)
    Figure JPOXMLDOC01-appb-C000003
    (式中、Wは単結合、-O-、-COO-又は-OCO-を表し、Y及びYはそれぞれ独立に単結合、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-、-CH2CH2-、-CH2O-、-OCH2-、-COO-、-OCO-、-C≡C-、-CH=CH-、-CF=CF-、-(CH2)4-、-CH2CH2CH2O-、-OCH2CH2CH2-、-CH=CH-CH2CH2-、-CH2CH2-CH=CH-、-CH=CH-COO-又は-OCO-CH=CH-を表し、tは2~18の整数を表し、nは0または1を表すが、式中に存在する1,4-フェニレン基は炭素原子数1~7のアルキル基、アルコキシ基、アルカノイル基、シアノ基又はハロゲン原子で一つ以上置換されていても良い。)で表される化合物を含有する請求項1から8のいずれかに記載の異方性散乱フィルム。
PCT/JP2016/065570 2015-06-03 2016-05-26 異方性散乱フィルム WO2016194764A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016558228A JP6237929B2 (ja) 2015-06-03 2016-05-26 異方性散乱フィルム
CN201680030491.1A CN107615106A (zh) 2015-06-03 2016-05-26 各向异性散射膜
US15/829,578 US20180100105A1 (en) 2015-06-03 2017-12-01 Anisotropic scattering film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-113095 2015-06-03
JP2015113095 2015-06-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/829,578 Continuation US20180100105A1 (en) 2015-06-03 2017-12-01 Anisotropic scattering film

Publications (1)

Publication Number Publication Date
WO2016194764A1 true WO2016194764A1 (ja) 2016-12-08

Family

ID=57440470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065570 WO2016194764A1 (ja) 2015-06-03 2016-05-26 異方性散乱フィルム

Country Status (4)

Country Link
US (1) US20180100105A1 (ja)
JP (1) JP6237929B2 (ja)
CN (1) CN107615106A (ja)
WO (1) WO2016194764A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018155907A (ja) * 2017-03-17 2018-10-04 大日本印刷株式会社 光学フィルム、画像表示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333432A (ja) * 1994-06-07 1995-12-22 Matsushita Electric Ind Co Ltd 光機能素子及び液晶表示装置
JPH07333657A (ja) * 1994-06-10 1995-12-22 Fujitsu Ltd 液晶表示素子
JPH10100247A (ja) * 1996-09-13 1998-04-21 Jsr Corp 異方性高分子フィルムおよびその製造方法
JP2007225765A (ja) * 2006-02-22 2007-09-06 Dainippon Ink & Chem Inc 光学異方体の製造方法
JP2009086260A (ja) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd 位相差フィルム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02251821A (ja) * 1989-03-24 1990-10-09 Canon Inc 拡散装置
KR100447017B1 (ko) * 1996-01-23 2004-10-15 아사히 가라스 가부시키가이샤 광헤드장치및그제조방법그리고그에적합한회절소자
JP3936434B2 (ja) * 1997-07-07 2007-06-27 積水化学工業株式会社 光学素子の製造方法
JP2001042122A (ja) * 1999-07-30 2001-02-16 Nippon Mitsubishi Oil Corp 光学補償素子
KR100720887B1 (ko) * 2002-04-26 2007-05-22 닛토덴코 가부시키가이샤 복굴절성 필름의 제조방법
JP2005274909A (ja) * 2004-03-24 2005-10-06 Nitto Denko Corp 位相差板の製造方法およびそれにより製造される位相差板
JP5098355B2 (ja) * 2006-02-17 2012-12-12 Dic株式会社 重合性液晶組成物
JP2006293393A (ja) * 2006-07-05 2006-10-26 Seiko Epson Corp 反射板、反射板の製造方法、液晶装置、電子機器
JP5604773B2 (ja) * 2008-03-31 2014-10-15 Dic株式会社 重合性液晶組成物
JP5211844B2 (ja) * 2008-05-16 2013-06-12 Dic株式会社 パターン化位相差フィルム
GB2484067B (en) * 2010-09-22 2012-12-05 Au Optronics Corp Graded index birefringent component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333432A (ja) * 1994-06-07 1995-12-22 Matsushita Electric Ind Co Ltd 光機能素子及び液晶表示装置
JPH07333657A (ja) * 1994-06-10 1995-12-22 Fujitsu Ltd 液晶表示素子
JPH10100247A (ja) * 1996-09-13 1998-04-21 Jsr Corp 異方性高分子フィルムおよびその製造方法
JP2007225765A (ja) * 2006-02-22 2007-09-06 Dainippon Ink & Chem Inc 光学異方体の製造方法
JP2009086260A (ja) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd 位相差フィルム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018155907A (ja) * 2017-03-17 2018-10-04 大日本印刷株式会社 光学フィルム、画像表示装置

Also Published As

Publication number Publication date
JPWO2016194764A1 (ja) 2017-06-15
US20180100105A1 (en) 2018-04-12
CN107615106A (zh) 2018-01-19
JP6237929B2 (ja) 2017-11-29

Similar Documents

Publication Publication Date Title
TWI477588B (zh) 高分子安定化液晶組成物、液晶顯示元件、液晶顯示元件之製法
JP4528645B2 (ja) 液晶表示素子
KR102154219B1 (ko) 중합성 조성물, 및 그것을 이용한 필름
JP5387807B1 (ja) 重合性液晶組成物、及びそれを用いた薄膜
TW200417597A (en) Process of preparing films comprising polymerised liguid crystal material
JP5885049B2 (ja) 重合性液晶組成物の製造方法
JPWO2018047806A1 (ja) 重合性液晶組成物、及び、それを用いた光学フィルム
TW201627483A (zh) 聚合性組成物、及使用其之膜
JP5685806B2 (ja) 重合性液晶組成物
JP4802451B2 (ja) 重合性液晶組成物及びこれの重合物
TWI676676B (zh) 聚合性組成物、及使用其之膜
JP5211844B2 (ja) パターン化位相差フィルム
JP6414367B2 (ja) 重合性液晶組成物
JP6237929B2 (ja) 異方性散乱フィルム
JP2011002556A (ja) 二軸性位相差フィルムの製造方法
JP6036027B2 (ja) 光学部材とその製造方法、及び該光学部材を用いた有機エレクトロルミネッセンス(el)素子
JP2005272560A (ja) 重合性液晶組成物、及びこれの重合物
JP2005258429A (ja) 液晶表示素子
JP4509856B2 (ja) 液晶表示素子および液晶表示素子の製造方法
JP6414368B2 (ja) 重合性液晶組成物
CN113166651A (zh) 可聚合液晶油墨配制物
JP2007225765A (ja) 光学異方体の製造方法
JP4862870B2 (ja) 液晶表示素子および液晶表示素子の製造方法
JP4862281B2 (ja) 液晶表示素子
JP6075604B2 (ja) 光学部材及びこれを用いた有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016558228

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803199

Country of ref document: EP

Kind code of ref document: A1