WO2016194524A1 - 慣性センサ - Google Patents

慣性センサ Download PDF

Info

Publication number
WO2016194524A1
WO2016194524A1 PCT/JP2016/063035 JP2016063035W WO2016194524A1 WO 2016194524 A1 WO2016194524 A1 WO 2016194524A1 JP 2016063035 W JP2016063035 W JP 2016063035W WO 2016194524 A1 WO2016194524 A1 WO 2016194524A1
Authority
WO
WIPO (PCT)
Prior art keywords
angular velocity
velocity detection
inertial sensor
detection element
frequency
Prior art date
Application number
PCT/JP2016/063035
Other languages
English (en)
French (fr)
Inventor
前田 大輔
和夫 小埜
雅秀 林
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US15/576,037 priority Critical patent/US10955243B2/en
Priority to CN201680022907.5A priority patent/CN107532904B/zh
Priority to EP16802961.9A priority patent/EP3306269B1/en
Publication of WO2016194524A1 publication Critical patent/WO2016194524A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5776Signal processing not specific to any of the devices covered by groups G01C19/5607 - G01C19/5719
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/166Mechanical, construction or arrangement details of inertial navigation systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/183Compensation of inertial measurements, e.g. for temperature effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass

Definitions

  • the present invention relates to an inertial sensor, that is, an angular velocity sensor, an acceleration sensor, and a sensor that calculates an angle by its signal processing.
  • An inertial sensor is one of application examples of a device manufactured by using a semiconductor microfabrication technology called MEMS (Micro Electro Mechanical Systems). Since the MEMS inertial sensor is manufactured using a semiconductor process, a large number of detection elements can be manufactured in parallel. This brings about a reduction in the price of an inertial sensor, which has been expensive in the past, and realizes an in-vehicle inertial sensor.
  • MEMS Micro Electro Mechanical Systems
  • an inertial sensor that detects the tilt of the vehicle body. That is, the present invention is applied to a safety device that detects a roll inclination or pitch inclination of a vehicle body, controls this, or activates a safety device to protect an occupant from injury.
  • the first is a method of obtaining an inclination by calculating an inverse trigonometric function from the output of the acceleration sensor because gravity is always 1 g (9.8 m / s 2 ) in the vertical direction.
  • This can be realized if there is at least a single-axis acceleration sensor, but the inverse trigonometric function has a large sensitivity difference caused by the angle of inclination (for example, the Sin function has a large inclination with respect to an angle change near an angle of 0 degrees, but ⁇ 90 In the vicinity of degrees, the inclination with respect to the angle change is small), so the inclination is often obtained from the ratio of the biaxial acceleration sensor.
  • Patent Document 1 is a background art in this technical field.
  • posture angle measurement is performed by obtaining a posture angle by time-integrating a signal with higher reliability.
  • Patent Document 2 As an example of the configuration of the angular velocity detection element for detecting the angular velocity and the detection circuit, there is one disclosed in Patent Document 2.
  • a module that is a module separate from the sensor and that periodically acquires the output of the angular velocity sensor and integrates the angular velocity by a microcomputer having a high-accuracy clock source such as a crystal resonator. .
  • a microcomputer having a high-accuracy clock source such as a crystal resonator.
  • the error remains semi-permanently.
  • frequent communication between the sensor and the microcomputer is required.
  • a sensor and a microcomputer are connected by a communication method other than one-to-one communication such as a CAN (Controller Area Network) bus, communication congestion or the like may affect other systems.
  • CAN Controller Area Network
  • the present invention is an inertial sensor having an angular velocity detection circuit that is configured to synchronize with the resonance frequency of the angular velocity detection element, and has been made for the purpose of realizing a highly accurate angle output with little integration error in the integration circuit for angle detection. It is.
  • An inertial sensor in one embodiment includes an angular velocity detection element having a mechanical structure for angular velocity detection, and an angular velocity detection circuit for detecting an angular velocity from the angular velocity detection element.
  • the angular velocity detection circuit calculates an inclination angle by sampling a signal obtained from the angular velocity detection element at a discrete time synchronized with a driving frequency of the angular velocity detection element.
  • an inertial sensor having an angular velocity detection circuit configured to synchronize with the resonance frequency of the angular velocity detection element, a highly accurate angular output with little integration error in the integration circuit for angle detection is realized. Can do.
  • FIG. 1 It is sectional drawing which shows an example of the structure of an inertial sensor in Embodiment 1 of this invention. It is a block diagram which shows an example of a structure of the inertial sensor in Embodiment 1 of this invention. It is a figure which shows an example of the relationship between the vibration frequency of a vibrator
  • the constituent elements are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
  • the shapes, positional relationships, etc. of the components, etc. when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
  • an inertial sensor includes an angular velocity detection element (angular velocity detection element chips C1, C5, and C6) having a mechanical structure for angular velocity detection, and an angular velocity detection circuit (signal) for detecting the angular velocity from the angular velocity detection element.
  • angular velocity detection element chips C1, C5, and C6 having a mechanical structure for angular velocity detection
  • angular velocity detection circuit signal for detecting the angular velocity from the angular velocity detection element.
  • Processing LSI chips C2, C4, C7, C8, C9.
  • the angular velocity detection circuit calculates an inclination angle by sampling a signal obtained from the angular velocity detection element at a discrete time synchronized with a driving frequency of the angular velocity detection element.
  • hatching may be omitted even in a cross-sectional view for easy understanding of the drawings. Further, even a plan view may be hatched to make the drawing easy to see.
  • FIG. 1 is a cross-sectional view showing an example of the structure of the inertial sensor.
  • the inertial sensor according to the first embodiment has an angular velocity detection element chip C1 (hereinafter also referred to as an angular velocity detection element) and a signal processing LSI chip C2 in the sensor so that the angular velocity can be detected.
  • the angular velocity detection element chip C ⁇ b> 1 is provided with a pad 306 on the main surface and is connected through the pad 306.
  • the signal processing LSI chip C ⁇ b> 2 is provided with a pad 304 on the main surface and is connected through the pad 304.
  • the signal processing LSI chip C2 is installed on the sensor package 302, and the angular velocity detection element chip C1 is mounted on the signal processing LSI chip C2.
  • the signal processing LSI chip C2 and the angular velocity detection element chip C1 are electrically connected through a bonding wire W1 provided between the pad 304 of the signal processing LSI chip C2 and the pad 306 of the angular velocity detection element chip C1.
  • the signal processing LSI chip C2 is electrically connected to the external electrode 303 by connecting the bonding wire W1 to the electrode 305 provided in the sensor package unit 302.
  • the cap portion 301 serves as a “lid” of the sensor package portion 302, and constitutes a sensor module (one unit of sensor).
  • the inertia sensor packaging method is irrelevant to the contents disclosed in the present application. That is, the disclosure of the present application can be realized by various packaging methods such as a resin package by transfer molding and a pre-mold package for fixing a chip on a substrate such as ceramics.
  • FIG. 2 is a configuration diagram showing an example of the configuration of this inertial sensor.
  • the inertial sensor includes an angular velocity detection element 401 in the angular velocity detection element chip C1 and a detection circuit in the signal processing LSI chip C2.
  • the angular velocity detection element chip C1 is an angular velocity detection element having a mechanical structure for angular velocity detection.
  • the signal processing LSI chip C2 is an angular velocity detection circuit for detecting an angular velocity from the angular velocity detection element.
  • the angular velocity detection element 401 includes a drive electrode 401a, a monitor electrode 401b, and a detection electrode 401c.
  • the detection circuit includes a drive side CV (Capacitor to Voltage) conversion unit 402, a drive side ADC (Analog to Digital Converter) unit 403, a drive side synchronous detection unit 404, a frequency control unit 405, and an amplitude control unit 406. .
  • the detection circuit includes a detection side CV conversion unit 407, a detection side ADC unit 408, a detection side synchronous detection unit 409, an LPF 410, an integration / angle calculation circuit 411, a memory 412, and a digital communication circuit 413.
  • the detection circuit includes a common clock source 414, a frequency divider 415, a variable amplifier 416, an amplifier 417, a phase inverter 418, and a temperature sensor 419.
  • CV conversion units 402 and 407, ADC units 403 and 408, synchronous detection units 404 and 409, frequency control unit 405, amplitude control unit 406, LPF 410, integration / angle calculation circuit 411, memory 412, and digital communication circuit 413, the frequency divider 415, and the temperature sensor 419 constitute a digital part D1.
  • the angular velocity detection element 401 is a so-called vibrating angular velocity detection element, and is generated in a detection direction orthogonal to the drive vibration direction when an angular velocity is applied to a vibrator that vibrates in a predetermined drive direction.
  • a new vibration component based on Coriolis force is detected, and angular velocity information is output based on the detected vibration component.
  • the Coriolis force Fc is expressed by the following Equation 1.
  • Fc 2 ⁇ m ⁇ ⁇ ⁇ X ⁇ ⁇ d ⁇ cos ( ⁇ d ⁇ t) (Formula 1)
  • Fc is the Coriolis force
  • m is the mass of the movable part
  • is the applied angular velocity
  • X is the vibration amplitude in the driving direction
  • ⁇ d / 2 ⁇ is the driving frequency
  • t is time.
  • Equation 1 it can be seen that in order to improve sensitivity, that is, to obtain a large amount of Coriolis force, it is necessary to increase the mass of the movable part, the vibration amplitude in the driving direction, or the driving frequency.
  • the maximum amplitude in the driving direction is expressed by Equation 2.
  • Equation 2 X is a vibration amplitude in the driving direction, ⁇ d / 2 ⁇ is a driving frequency, ⁇ r is a natural frequency in the driving direction, Q d is a mechanical quality factor in the driving direction, and k d is a support beam constituting the vibrator. spring constant of, F d indicates a driving force.
  • the vibration type angular velocity detection element maintains vibration at the natural frequency (resonance frequency) in the driving direction so that the efficiency of the driving voltage versus sensitivity is the best, and the amplitude gain that is double the mechanical quality factor.
  • the structure which obtains the largest SNR (Signal-to-Noise-Ratio, signal-to-noise ratio) with respect to the applied angular velocity is taken. The same applies to the first embodiment.
  • the clock of the signal processing LSI chip is synchronized with the resonance frequency of the angular velocity detection element, similar to that shown in Patent Document 2 described above. That is, the frequency generated by the common clock source 414, or the frequency division or multiplication thereof, matches the resonance frequency in the driving direction of the angular velocity detection element 401 in the steady state of the circuit.
  • the number of sampling points for synchronous detection of signals is reduced, and it becomes easy to perform synchronous detection in the digital signal region. This leads to a reduction in chip area, that is, a cost, particularly in an LSI chip using a thin wire process.
  • the angular velocity detection element 401 includes a drive electrode 401a for providing a driving force that generates vibration in the driving direction by electrostatic force, and a monitor electrode 401b for reading the vibration displacement in the driving direction as a change in capacitance.
  • the clock generated by the common clock source 414 is frequency-divided to an appropriate frequency by the frequency divider 415, and the carrier signal converted into an appropriate voltage level is supplied to the movable part of the angular velocity detection element 401 through the amplifier 417.
  • the capacitance formed by the monitor electrode 401b changes due to the displacement of the movable portion of the angular velocity detection element 401. Therefore, the alternating current according to the capacitance formed by the monitor electrode 401b to which the carrier signal is applied, that is, the angular velocity. A current corresponding to the displacement of the movable part of the detection element 401 is generated.
  • the CV conversion unit 402 is a switched capacitor type CV conversion circuit or a continuous time type CV conversion circuit, regardless of its configuration, but the CV conversion unit 402 performs synchronous detection of a carrier signal. It is desirable to do. In the continuous time type CV conversion circuit, an additional synchronous detection circuit is required. However, for the sake of simplicity, a switched capacitor type CV conversion circuit that can also serve as the synchronous detection circuit is assumed here.
  • the ADC may be of any type such as the ⁇ method or the successive approximation method.
  • the signal converted into the digital domain is subjected to synchronous detection using a reference signal having the same frequency as the drive signal and a phase matched with the displacement signal in the drive side synchronous detection unit 404 in the digital signal domain, and the displacement vibration is detected.
  • Synchronous detection is performed using a synchronous detection process for extracting an amplitude component, and a reference signal having the same frequency as the drive signal and a phase advanced by 90 degrees from the displacement signal, and the resonance frequency and the drive frequency of the angular velocity detection element 401 in the drive direction are Two processes, a synchronous detection process for extracting the difference, are performed.
  • the resonance frequency of the angular velocity detection element 401 varies due to variations of the signal processing LSI chip C2. Even so, there is a feature that the number of samplings in one period (the number of divisions of the sine wave signal) can always be kept constant.
  • the amplitude information obtained by the former synchronous detection processing is controlled by the amplitude control unit 406 so that the vibration in the driving direction of the angular velocity detection element 401 reaches a predetermined desired amplitude, and the control output thereof is the variable amplifier 416.
  • the drive signal that has undergone the gain adjustment (here, the drive signal is a frequency division of the common clock source 414, and the frequency division is realized by the frequency divider 415) is an electrode facing the drive electrode 401 a of the angular velocity detection element 401.
  • a drive signal is applied to one drive electrode directly and the other drive electrode via a phase inverter 418 so that the phases are opposite to each other.
  • the angular velocity detection element 401 is maintained to vibrate with a predetermined amplitude.
  • the difference between the resonance frequency in the driving direction of the angular velocity detection element 401 and the driving frequency obtained by the latter synchronous detection processing is given to the frequency control unit 405, the control output is given to the common clock source 414, and angular velocity detection is performed.
  • the frequency control loop is configured so that the difference between the resonance frequency in the driving direction of the element 401 and the driving frequency is reduced.
  • the resonance frequency in the driving direction of the angular velocity detection element 401 matches the driving frequency. Further, the resonance frequency in the driving direction of the angular velocity detection element 401 varies depending on the accuracy of semiconductor processing and the like, but it is automatically common to the resonance frequency within a certain resonance frequency range by the function of the frequency control unit 405. Since the clock source 414 is synchronized and the clock of the signal processing LSI chip C2 is synchronized with the resonance frequency of the angular velocity detection element 401 in the synchronous detection process, the resonance of the angular velocity detection element 401 is caused by variations of the signal processing LSI chip C2. Even if the frequency varies, the number of samples in one period is always constant.
  • the clock of the digital part D1 of the circuit is based on the common clock source 414 in all other circuit elements as well as the synchronous detection part 404.
  • the fact that it is based on the common clock source 414 means that the clock of the digital part D1 is also synchronized with the resonance frequency in the driving direction of the angular velocity detection element 401.
  • Synchronizing the clock of the digital unit D1 with the resonance frequency in the driving direction of the angular velocity detection element 401 is not a necessary condition for detecting the angular velocity with the vibration type angular velocity sensor. It is not necessary to separately prepare a reference clock for D1, and frequency stability using a high mechanical quality factor of the angular velocity detection element 401 can be obtained. Therefore, the clock of the digital unit D1 is used as a resonance frequency in the driving direction of the angular velocity detection element 401. There is an advantage from the viewpoint of simplifying the system configuration.
  • the angular velocity detection element 401 includes a detection electrode 401c that reads vibration displacement in the detection direction as a change in capacitance. As described above, when the angular velocity detection element 401 vibrates in a predetermined driving direction, when the angular velocity is applied, a Coriolis force is generated in a detection direction orthogonal to the driving vibration direction. The capacitance of the detection electrode 401c changes due to the displacement due to the Coriolis force.
  • This capacitance change is converted into a current by the carrier signal converted to an appropriate voltage level through the amplifier 417, converted into a voltage by the detection side CV conversion unit 407, and further converted into a digital value by the detection side ADC unit 408, and the detection direction
  • the detection-side synchronous detection unit 409 that performs synchronous detection at a phase that matches the vibration of the detection direction obtains the amplitude of the vibration in the detection direction, that is, the angular velocity.
  • the angular velocity component obtained here drops unnecessary high frequency components through the LPF 410 and is output as a signal S1 from the digital communication circuit 413 to a higher system.
  • FIG. 3 shows an image of sampling the angular velocity for time integration in the signal processing circuit of the angular velocity sensor using the circuit configuration in which the resonance frequency in the driving direction of the angular velocity detecting element 401 matches the driving frequency.
  • FIG. 3 is a diagram illustrating an example of the relationship between the vibration frequency of the vibrator (the horizontal axis is time, the vertical axis is the displacement of the vibrator) and the angular velocity sampling timing (the horizontal axis is time, and the vertical axis is angular velocity).
  • FIG. 3 shows an image of sampling the angular velocity for time integration in the signal processing circuit of the angular velocity sensor using the circuit configuration in which the resonance frequency in the driving direction of the angular velocity detecting element 401 matches the driving frequency.
  • FIG. 3 is a diagram illustrating an example of the relationship between the vibration frequency of the vibrator (the horizontal axis is time, the vertical axis is the displacement of the vibrator) and the angular velocity sampling timing (the horizontal axis is time,
  • FIG. 3A shows a time series displacement of vibration, an angular velocity signal obtained therefrom, and a sampling interval in a sensor having a relatively higher resonance frequency in the driving direction of the angular velocity detection element 401 than in FIG. Ts is shown.
  • FIG. 3B shows a time series displacement of vibration, an angular velocity signal obtained therefrom, and a sampling interval in a sensor whose resonance frequency in the driving direction of the angular velocity detecting element 401 is relatively lower than that in FIG. Ts is shown.
  • Equation 3 of the angle obtained by discrete time integration is shown.
  • Equation 3 ⁇ is an angle obtained as a result of integration, ⁇ is an applied angular velocity, and Ts is a sampling interval.
  • the memory 412 is provided in the integration / angle calculation circuit 411, and prober inspection is performed in advance.
  • a circuit for storing the drive-side resonance frequency of the angular velocity detection element 401 measured at the wafer level or the like or a value corresponding thereto (described later) is added.
  • the integration / angle calculation circuit 411 performs integration calculation (inclination angle calculation) according to Equation 3, and the sampling interval in the integration / angle calculation circuit 411 is an angular velocity detection element 401 stored in the memory 412. Is the resonance frequency in the driving direction, or its multiplication / division.
  • Ts is obtained by dividing Y from the reciprocal of the resonance frequency in the driving direction of the angular velocity detection element 401.
  • the detection circuit itself can recognize whether the common clock source 414 is synchronized with the resonance frequency in the driving direction of the angular velocity detection element 401. I do not know the absolute frequency of what frequency is actually synchronized.
  • the drive side resonance frequency of the angular velocity detection element 401 is stored in the memory 412 by the method shown in the first embodiment, the sampling interval in the integration / angle calculation circuit 411 is recorded in the memory 412. Therefore, without adding measures to increase costs and failure risks, such as adding an external clock source such as a crystal resonator, applying an external clock signal, and inputting a sampling trigger from a host system, A highly accurate angle calculation of the tilt angle can be performed.
  • the memory 412 can be realized by any non-volatile memory such as a mask ROM and a flash ROM regardless of the mounting method. Even if the volatile memory is used, a desired function can be maintained if the digital communication circuit 413 gives a resonance frequency from the host system at the time of startup.
  • the drive-side resonance frequency of the angular velocity detection element 401 stored in the memory 412 does not necessarily have to be the resonance frequency itself.
  • the drive of the angular velocity detection element 401 such as a multiplied / divided value of the resonance frequency or the reciprocal thereof, can be used. It is clear that the first embodiment can be realized if the value is based on the side resonance frequency (this is defined as the drive side resonance frequency of the angular velocity detection element 401 or a value corresponding thereto).
  • the drive-side resonance frequency of the angular velocity detection element 401 is not necessarily the value of the resonance frequency obtained by directly measuring each detection element, but may be a desired result such as a result complemented from a trend obtained by measuring several chips on the wafer.
  • the degree of strictness can be selected according to the accuracy of the. If the wafer variation, lot variation, and photomask level variation satisfy the specifications of the sensor, one device in the wafer, one device in the lot, and one device from the wafer fabricated with the photomask, respectively. , The value to be stored in the memory 412 can be determined.
  • FIG. 4 is a diagram illustrating an example of the configuration of the drive frequency measurement system.
  • the measuring device 202 measures the frequency of a drive signal obtained from the inertial sensor 201 and returns it to the inertial sensor 201 as frequency information.
  • the drive-side resonance frequency of the angular velocity detection element 401 may be recorded in the memory 412.
  • the inertial sensor 201 has a function of outputting a drive signal and its digital value, and the drive side resonance frequency of the angular velocity detection element 401 is recorded in the memory 412.
  • the function as a sensor can be satisfied without necessarily releasing the function of outputting the drive signal from the inertial sensor 201.
  • the signal supplied to the integration / angle calculation circuit 411 is output immediately after the detection-side synchronous detection unit 409, but this may be input from the latter stage of the LPF 410. Since the former can be integrated including up to high frequency components, in general, more accurate angle calculation can be expected than using the signal after passing through the LPF 410, while high-frequency noise is also integrated. Depending on the noise profile, the configuration is not suitable. On the other hand, with the latter configuration, only a signal in a band in which wide-area noise is reduced can be obtained. Therefore, when measuring a signal whose response to be measured is not high, the signal that has passed through the LPF 410 like the latter is integrated. There is a possibility that a configuration for inputting to the angle calculation circuit 411 is preferable.
  • FIG. 5 is a diagram showing an example of the change rate of the resonance frequency with respect to the temperature of the resonator.
  • the graph of FIG. 5 shows the change rate (%) of the resonance frequency with respect to the temperature (° C.) of a vibrator manufactured using single crystal silicon. Since the Young's modulus of silicon varies depending on the temperature, it is known that the resonance frequency of the vibrator also varies as shown in FIG. 5 depending on the temperature.
  • the resonance frequency change rate changes from about 0.25% to about ⁇ 0.45% with respect to the change in temperature from ⁇ 50 ° C. to 150 ° C.
  • the integration / angle calculation circuit 411 may have a function of receiving the output of the temperature sensor 419 and correcting the sampling interval Ts from the temperature and resonance frequency profile as shown in FIG.
  • the graph of FIG. 5 is written by Expression 4. For example, by correcting according to Expression 4, an error due to the temperature characteristic of the Young's modulus can be improved.
  • T is the temperature
  • E is the Young's modulus at the temperature T
  • E 0 is the longitudinal elastic modulus at 0 K
  • B is the temperature coefficient
  • T 0 is the approximation coefficient.
  • FIG. 6 is a diagram illustrating an example of the concept of waiting for the rising of the angular velocity detection element and the effect of the output mask and the reset request function.
  • FIG. 6 shows an example of the driving amplitude of the angular velocity detection element (note that since it is not a displacement but an amplitude, an envelope of displacement is shown). If the angular velocity sensor does not rise enough to drive the angular velocity detecting element, it is not appropriate to calculate the angle as well as the angular velocity sensor. Therefore, in the first embodiment, when the drive amplitude of the angular velocity detection element 401 is not within the predetermined threshold range, the angle output output from the digital communication circuit 413 is masked or the angle output is performed. A function is added to output a flag indicating that cannot be used. By adopting such a configuration, it is possible to eliminate the possibility that the higher-level system is originally not correct and uses an incorrect angle output for the control of the higher-level system.
  • the first embodiment has a function of resetting the angle output in response to a reset request (pulse H) from the host system.
  • the reset is a function for setting the integration value of the integrator to 0.
  • the host system is a vehicle speed pulse, GPS positioning information, an acceleration sensor, etc. It is desirable to recognize that the vehicle or the airplane is in a stopped state based on the other sensor information and reset at that time.
  • the internal circuit of the angular velocity sensor (inertial sensor) calculates the angle by integrating the angular velocity, so the integration is reset by using a reset signal from a host system that can determine whether the stationary state is present.
  • the idea of having a communication function that can be used is completely different from the conventional configuration in which the angular velocity is integrated on the host system side and the integrated value is reset in the host system.
  • FIG. 7 shows the minimum configuration of the first embodiment.
  • FIG. 7 is a diagram showing the minimum necessary components constituting the inertial sensor.
  • there is a common clock source 414 and this frequency is controlled by the frequency control unit 405, and the resonance frequency in the driving direction of the angular velocity detection element chip C1 is the same as the driving frequency.
  • the integration / angle calculation circuit 411 that performs integration / angle calculation from the angular velocity is synchronized with the clock of the common clock source 414, and the sampling interval used for the integration calculation is stored in the memory 412. Is a circuit for performing angular velocity integration.
  • the drive frequency does not necessarily match the resonance frequency, and the machine quality factor is a constant amount. Any frequency can be used. Further, depending on the frequency control, it may not be possible to determine whether the drive frequency matches the resonance frequency. In that case, all “resonance frequencies” in the text are replaced with “drive frequencies”.
  • the inertial sensor has an angular velocity detection element chip C1 having a mechanical structure for angular velocity detection, and a signal processing LSI chip C2 that is an angular velocity detection circuit for detecting the angular velocity from the angular velocity detection element chip C1.
  • the signal processing LSI chip C2 can calculate the tilt angle by sampling the signal obtained from the angular velocity detection element chip C1 at discrete times synchronized with the drive frequency of the angular velocity detection element chip C1.
  • a signal obtained by the signal processing LSI chip C2 from the angular velocity detection element chip C1 can be an angular velocity.
  • the operation clock of the signal processing LSI chip C2 can be synchronized with the driving frequency of the angular velocity detection element chip C1.
  • the signal processing by which the LSI chip C2 calculates the tilt angle can be time integration.
  • the driving frequency of the angular velocity detection element chip C1 can be the resonance frequency of the angular velocity detection element chip C1.
  • the driving frequency of the angular velocity detection element chip C1 can be a frequency at which a gain based on the mechanical quality factor of the angular velocity detection element chip C1 can be obtained.
  • the driving frequency of the angular velocity detection element chip C1 or a value obtained by multiplication or division thereof is stored in advance in the memory 412 which is a storage area in the signal processing LSI chip C2, and the signal processing LSI chip C2
  • the tilt angle can be calculated using the value stored in the memory 412.
  • the angular velocity used for integration calculation by the signal processing LSI chip C2 can be a signal before passing through the LPF 410 that outputs the angular velocity.
  • the integration calculation of the signal processing LSI chip C2 can reset the integration value by an external reset signal.
  • the signal processing LSI chip C2 includes a memory 412 and an integration / angle calculation circuit 411.
  • the memory 412 can store in advance the drive frequency of the angular velocity detection element chip C1 or a value obtained from multiplication or division thereof.
  • the integration / angle calculation circuit 411 calculates the inclination angle by sampling the signal obtained from the angular velocity detection element chip C1 at a discrete time synchronized with the drive frequency of the angular velocity detection element chip C1, and calculates the inclination angle.
  • the tilt angle can be calculated using the value stored in the memory 412 during the calculation.
  • FIG. 8 is a cross-sectional view showing an example of the structure of the inertial sensor in the second embodiment.
  • an angular velocity detection element chip C1 an acceleration detection element chip C3 (hereinafter also referred to as an acceleration detection element), and a signal processing LSI chip C4 are provided in the sensor so that angular velocity and acceleration can be detected.
  • the angular velocity detection element chip C ⁇ b> 1 is provided with a pad 307 on the main surface, and is connected through the pad 307.
  • the acceleration detection element chip C3 is provided with a pad 308 on the main surface, and is connected through the pad 308.
  • the signal processing LSI chip C4 is provided with a pad 304 on the main surface, and is connected through the pad 304.
  • the signal processing LSI chip C4 is installed on the sensor package unit 302, and the angular velocity detection element chip C1 and the acceleration detection element chip C3 are mounted on the signal processing LSI chip C4. Yes.
  • the signal processing LSI chip C4, the angular velocity detection element chip C1, and the acceleration detection element chip C3 are the pad 304 of the signal processing LSI chip C4, the pad 307 of the angular velocity detection element chip C1, and the pad 308 of the acceleration detection element chip C3. They are electrically connected through bonding wires W1 provided therebetween.
  • the signal processing LSI chip C4 is electrically connected to the external electrode 303 by connecting the bonding wire W1 to the electrode 305 provided in the sensor package unit 302.
  • the cap portion 301 serves as a lid of the sensor package portion 302 and constitutes a sensor module.
  • FIG. 9 is a configuration diagram showing an example of the configuration of the inertial sensor.
  • the inertial sensor according to the second embodiment includes an angular velocity detection element 401 in the angular velocity detection element chip C1, a detection circuit in the acceleration detection elements 1001a and 1001b in the acceleration detection element chip C3, and a detection circuit in the signal processing LSI chip C4. And have.
  • 1001a is a Y-direction acceleration detection element
  • 1001b is an X-direction acceleration detection element.
  • the angular velocity detection element 401 is the same as that in the first embodiment.
  • the acceleration detection elements 1001a and 1001b have electrodes 1001c and 1001d.
  • the detection circuit includes a Y-side CV conversion unit 1002, a Y-side ADC unit 1003, a Y-side LPF 1004, an X-side CV conversion unit 1005, an X-side ADC unit 1006, and an X-side LPF 1007. Further, the integration / angle calculation circuit 411 is replaced with an integration / angle calculation / diagnosis circuit 1000.
  • each of the acceleration detection elements 1001a and 1001b is a capacitance type element that detects static acceleration, and when an acceleration is applied in a predetermined displacement direction, the movable portion is displaced, thereby the electrodes.
  • Capacitance changes that occur in 1001c and 1001d are converted from current to voltage by CV converters 1002 and 1005, converted to the digital domain by ADCs 1003 and 1006, and unnecessary band components are removed by LPFs 1004 and 1007.
  • the digital communication circuit 413 outputs an acceleration to the host system.
  • the carrier signal generated from the common clock source 414 included in the signal processing LSI chip C4 via the frequency divider 415 and the amplifier 417 is also applied to the acceleration detection elements 1001a and 1001b.
  • the carrier signal used for detecting the acceleration is synchronized with the common clock source 414 used for detecting the angular velocity.
  • the common clock source 414 used for detecting the angular velocity can be realized at a low cost with one signal processing LSI chip C4 without adding an external clock source such as a crystal resonator.
  • FIG. 10 is a diagram illustrating an example of the relationship between tilt, gravity, and centrifugal force.
  • FIG. 10 shows the sensor 100, the gravity 101, the gravity Cos component 102, the gravity Sin component 103, the centrifugal force 104, and the total force 105 in the presence of an inclination ( ⁇ ).
  • (a) shows a case where tilt detection is performed in the absence of centrifugal force, and the tilt can be obtained according to Equation 5 using the principle that gravity 101 is 1 g.
  • Equation 5 ⁇ represents the inclination, x represents the acceleration in the x direction, and y represents the acceleration in the y direction.
  • the output signal of the angular velocity detection side synchronous detection unit 409 and the output signals of the acceleration detection ADC units 1003 and 1006 are input to the integration / angle calculation / diagnosis circuit 1000,
  • the inclination detection based on Equation 5 is compared with the inclination detection based on the angular velocity integration, and if the comparison result is within a predetermined threshold value, no failure is determined, and if the comparison result is equal to or greater than the threshold value, a failure determination is performed.
  • the memory 412 stores values based on the drive-side resonance frequency of the angular velocity detection element 401, such as the drive-side resonance frequency of the angular velocity detection element 401, the multiplication / division value of the resonance frequency, and the reciprocal thereof. Based on this, time integration is performed.
  • the temperature sensor 419 performs temperature characteristic correction (offset, sensitivity or scale factor) in the calculation for obtaining the inclination from the acceleration as well as the temperature characteristic correction of the angular velocity integration.
  • the means for recognizing that the measurement object is stationary is integrated like a communication device that gives a vehicle speed pulse, GPS positioning information, or a reset signal from the host system.
  • the angle calculation / diagnosis circuit 1000 may be input. For example, when the measurement target is stationary, the integrated value by angular velocity integration is reset, and there is a contradiction between the angular detection amount by angular velocity integration and the angular detection amount by acceleration even though the stationary state continues. If so, you can recognize the failure.
  • the sensor may be configured so that the user can select whether to obtain an angle obtained from angular velocity integration or an angle obtained from acceleration (not shown). For example, such an approach is useful when using an angle based on angular velocity integration during traveling, and using an angle from an acceleration that can be used to detect the hill when the vehicle is stationary. is there.
  • the inertial sensor further includes an acceleration detection element chip C3 having a mechanical structure for acceleration detection, and a signal processing LSI chip C4 including an acceleration detection circuit for detecting acceleration from the acceleration detection element chip C3.
  • the signal processing LSI chip C4 allows any sensor to detect when the difference between the tilt angle result obtained from the inverse trigonometric function of acceleration and the tilt angle result obtained from the time integral of the angular velocity exceeds a certain value. It can be determined that a failure has occurred.
  • FIGS. 3 An inertial sensor according to the third embodiment will be described with reference to FIGS. In the following third embodiment, the details not particularly mentioned are the same as those in the first embodiment.
  • an example of an inertial sensor that outputs the angular velocity of the other axis in addition to the angular velocity of the one axis described above will be described.
  • the angular velocity of the roll and the pitch is detected here.
  • the mechanical structure for detecting the angular velocity may be three or more axes.
  • FIG. 11 is a cross-sectional view showing an example of the structure of the inertial sensor according to the third embodiment.
  • the inertial sensor according to the third embodiment includes angular velocity detection element chips C5 and C6 and a signal processing LSI chip C7 in the sensor so that the biaxial angular velocity can be detected.
  • the angular velocity detection element chips C5 and C6 are provided with a pad 307 on the main surface and are connected through the pad 307.
  • the signal processing LSI chip C7 is provided with a pad 304 on the main surface, and is connected through the pad 304.
  • the signal processing LSI chip C7 is installed on the sensor package 302, and the angular velocity detection element chips C5 and C6 are mounted on the signal processing LSI chip C7.
  • the signal processing LSI chip C7 and the angular velocity detection element chips C5 and C6 are electrically connected through bonding wires W1 provided between the pads 304 of the signal processing LSI chip C7 and the pads 307 of the angular velocity detection element chips C5 and C6.
  • the signal processing LSI chip C7 is electrically connected to the external electrode 303 by connecting the bonding wire W1 to the electrode 305 provided in the sensor package unit 302.
  • the cap portion 301 serves as a lid of the sensor package portion 302 and constitutes a sensor module.
  • FIG. 12 is a configuration diagram showing an example of the configuration of the inertial sensor.
  • the inertial sensor according to the third embodiment includes angular velocity detection elements 1200 and 1201 in the angular velocity detection element chips C5 and C6, and a detection circuit in the signal processing LSI chip C7.
  • 1200 is a roll angular velocity detection element
  • 1201 is a pitch angular velocity detection element.
  • the angular velocity detection elements 1200 and 1201 include drive electrodes 1200a and 1201a, monitor electrodes 1200b and 1201b, and detection electrodes 1200c and 1201c.
  • the detection circuit includes CV conversion units 1202 and 1207, ADC units 1203 and 1208, synchronous detection units 1204 and 1209, a frequency control unit 1205, an amplitude control unit 1206, and an LPF 1210.
  • the detection circuit includes CV conversion units 1219 and 1223, ADC units 1220 and 1224, synchronous detection units 1221 and 1225, an amplitude control unit 1222, and an LPF 1226.
  • the detection circuit includes an integration / angle calculation circuit 1211, a memory 1212, a digital communication circuit 1213, a common clock source 1214, frequency dividers 1215 and 1227, variable amplifiers 1216 and 1229, amplifiers 1217 and 1230, and phase inverters 1218 and 1231. , And a temperature sensor 1228.
  • the roll angular velocity detecting element 1200 has a driving electrode 1200a for causing a driving force that generates vibration in the driving direction by an electrostatic force, and a monitor electrode 1200b for reading the vibration displacement in the driving direction as a change in capacitance. is doing.
  • the pitch angular velocity detection element 1201 has a driving electrode 1201a for causing a driving force that generates vibration in the driving direction by an electrostatic force, and a monitor electrode 1201b for reading the vibration displacement in the driving direction as a change in capacitance. is doing.
  • FIG. 13 is a diagram illustrating an example of a drive-side frequency response and a detection-side frequency response of two angular velocity detection elements.
  • f1 is a resonance frequency in the driving direction of the roll angular velocity detection element 1200
  • Q1 is a gain at the resonance frequency
  • f2 is a resonance frequency in the driving direction of the pitch angular velocity detection element 1201
  • Q2 is a gain at the resonance frequency
  • f3 is a roll.
  • the resonance frequency in the detection direction of the pitch angular velocity detection elements 1200 and 1201, Q3 is a gain at the resonance frequency.
  • the roll angular velocity detection element 1200 and the pitch angular velocity detection element 1201 are configured to have the same detection-side frequency response, but they do not necessarily have to be matched.
  • one common clock source 1214 controls all clocks of the signal processing LSI chip C7, which can contribute to simplification of the circuit configuration. For example, if the common clock source 1214 is configured to synchronize with a detection axis having a narrow range (a large scale factor), the range difference of the voltage signal transition is reduced, and restrictions on circuit design can be further reduced.
  • the roll angular velocity detection element 1200 includes a drive electrode 1200a for causing a drive force that generates vibration in the drive direction by an electrostatic force, and a monitor electrode 1200b that reads a vibration displacement in the drive direction as a change in capacitance.
  • the clock generated by the common clock source 1214 is frequency-divided by the frequency divider 1215 to an appropriate frequency, and the carrier signal converted into an appropriate voltage level is supplied to the movable portion of the roll angular velocity detection element 1200 through the amplifier 1217.
  • the pitch angular velocity detection element 1201 has a driving electrode 1201a for causing a driving force that generates vibration in the driving direction by an electrostatic force, and a monitor electrode 1201b for reading the vibration displacement in the driving direction as a change in capacitance.
  • the clock generated by the common clock source 1214 is frequency-divided to an appropriate frequency by the frequency divider 1227, and the carrier signal converted into an appropriate voltage level is supplied to the movable portion of the pitch angular velocity detection element 1201 through the amplifier 1230.
  • the displacement information of the roll angular velocity detection element 1200 represented by this current is converted into a voltage component through a roll drive side CV conversion unit 1202 in the signal processing LSI chip C7, and the roll drive side ADC unit 1203 is further converted into a voltage. A digital value is obtained after that.
  • the signal converted into the digital domain is subjected to synchronous detection using a reference signal having the same frequency as the drive signal and a phase matching the displacement signal in the roll drive side synchronous detection unit 1204 in the digital signal domain, and the displacement vibration amplitude Synchronous detection is performed using synchronous detection processing for extracting components, and a reference signal having the same frequency as the drive signal and a phase advanced by 90 degrees from the displacement signal, and the resonance frequency and drive frequency of the roll angular velocity detection element 1200 in the drive direction are determined. Two synchronous detection processes are performed to extract the difference.
  • the displacement information of the pitch angular velocity detection element 1201 represented by the current is converted into a voltage component through the pitch drive side CV conversion unit 1219 in the signal processing LSI chip C7, and further through the pitch drive side ADC unit 1220. Get a digital value.
  • the signal converted into the digital domain is subjected to synchronous detection using a reference signal having the same frequency as the drive signal and a phase matched with the displacement signal in the pitch drive side synchronous detection unit 1221 in the digital signal domain, and the displacement vibration amplitude Performs synchronous detection to extract components.
  • synchronous detection using a reference signal having the same frequency as the drive signal and a phase advanced by 90 degrees from the displacement signal is not performed.
  • the amplitude information obtained by the synchronous detection processing is controlled so that the vibration in the driving direction of the roll / pitch angular velocity detection elements 1200 and 1201 reaches a predetermined desired amplitude, and the control output thereof is variable amplifiers 1216 and 1229. Used for gain adjustment.
  • the drive signal that has undergone the gain adjustment is applied to each of the roll / pitch angular velocity detecting elements 1200 and 1201 so that the electrodes facing each other are in opposite phases, and the other electrode is directly connected to the phase inverters 1218 and 1231. Then, a driving signal is applied to each.
  • the roll / pitch angular velocity detecting elements 1200 and 1201 maintain vibrations with a predetermined amplitude determined in advance by the control loop for maintaining the constant amplitude.
  • the difference between the resonance frequency in the drive direction of the roll angular velocity detection element 1200 and the drive frequency obtained by the roll side synchronous detection processing is given to the roll frequency control unit 1205, and the control output is given to the common clock source 1214.
  • the frequency control loop is configured so that the difference between the resonance frequency in the driving direction of the roll angular velocity detection element 1200 and the driving frequency is reduced.
  • the resonance frequency in the driving direction of the roll angular velocity detection element 1200 matches the driving frequency.
  • the clocks of the digital part D1 of the circuit are all based on the common clock source 1214. With this configuration, there is no need to separately prepare a reference clock for the digital unit D1, and frequency stability using the high mechanical quality factor of the roll angular velocity detection element 1200 can be obtained. Synchronizing with the resonance frequency in the driving direction of the roll angular velocity detection element 1200 is advantageous from the viewpoint of simplifying the system configuration.
  • the roll / pitch angular velocity detection elements 1200 and 1201 have detection electrodes 1200c and 1201c that read out vibration displacement in the detection direction as a change in capacitance, respectively.
  • the roll / pitch angular velocity detection elements 1200 and 1201 vibrate in a predetermined driving direction, when the angular velocity is applied, a Coriolis force is generated in a detection direction orthogonal to the driving vibration direction. Due to the displacement due to the Coriolis force, the capacitances of the detection electrodes 1200c and 1201c change.
  • This capacitance change is converted into a current by a carrier signal converted to an appropriate voltage level through the amplifiers 1217 and 1230, converted into a voltage by the detection side CV conversion units 1207 and 1223, and further converted into a digital value by the detection side ADC units 1208 and 1224.
  • the detection-side vibration amplitude that is, the angular velocity is obtained by the detection-side synchronous detection units 1209 and 1225 that perform synchronous detection at a phase that matches the vibration in the detection direction.
  • the angular velocity component obtained here drops unnecessary high-frequency components through LPFs 1210 and 1226, and is output as a signal S1 from the digital communication circuit 1213 to each higher system.
  • Both the angular velocity obtained from the roll angular velocity detection element 1200 and the angular velocity obtained from the pitch angular velocity detection element 1201 are input to the integration / angle calculation circuit 1211.
  • a memory 1212 is provided, and the roll angular velocity detection element 1200 previously measured at the wafer level such as prober inspection, that is, the driving side of the angular velocity detection element synchronized with the common clock source 1214 is driven.
  • the resonance frequency or a value corresponding to the resonance frequency (as defined in the first embodiment) is stored.
  • the problem of an integration error caused by variations in the resonance frequency in the driving direction of the roll angular velocity detection element 1200 is solved, and the roll angle can be calculated with high accuracy, and the pitch angular velocity can also be detected in the pitch direction.
  • the pitch angle can be calculated with high accuracy regardless of the drive-side resonance frequency variation of the element 1201 and without storing the drive-side resonance frequency of the pitch angular velocity detection element 1201 in the memory 1212. This is because the sampling according to the resonance frequency in the driving direction of the roll angular velocity detection element 1200 is also used in the pitch angle calculation, and the clock of the digital unit D1 is common, so that the detection axis is compared with the first embodiment. Even if one is increased, the common clock source 1214, the memory 1212, and the integration / angle calculation circuit 1211 can be shared. This is the same even if the number of detection axes is further increased.
  • the correction by using the temperature sensor 1228 is the same as that in the first embodiment, and thus the description thereof is omitted.
  • FIG. 14 is a configuration diagram showing an example of the configuration of another inertial sensor.
  • FIG. 15 is a diagram illustrating an example of another drive side frequency response and a detection side frequency response of two angular velocity detection elements.
  • the angular velocity detection element that is not synchronized with the common clock source 1214 that is, the pitch angular velocity detection element 1201
  • the pitch angular velocity detection element 1201 has the same frequency as the drive signal and advances 90 degrees from the displacement signal.
  • Synchronous detection using a reference signal having an approximate phase is performed by the synchronous detection unit 1403.
  • the resonance frequency f2 in the driving direction of the pitch angular velocity detection element 1201 is lowered by the electrostatic spring effect through the pitch frequency control unit 1401 and the variable DC voltage generation circuit 1402, and the resonance frequency in the driving direction of the roll angular velocity detection element 1200 is reduced.
  • the dynamic ranges are equivalent, the dynamic ranges of the angle calculation calculated by the integration / angle calculation circuit 1211 are also equivalent on a plurality of axes.
  • the configuration as shown in FIG. 14 allows the common clock source 1214 to be used even when a plurality of axes require the same dynamic range, or when the same element is tilted 90 degrees and used for multi-axis detection.
  • the memory 1212 and the integration / angle calculation circuit 1211 can be made common to simplify the circuit configuration.
  • the inertial sensor includes signal processing including angular velocity detection element chips C5 and C6 having a mechanical structure for detecting biaxial angular velocity, and an angular velocity detection circuit for detecting an angle from these angular velocity detection element chips C5 and C6.
  • LSI chip C7 As a result, the signal processing LSI chip C7 is synchronized with one of the angular velocity detection element chips C5 and C6, and the driving frequency of the angular velocity detection element chip C5 synchronized with this driving frequency or its multiplication or division.
  • Values obtained from the circumference are stored in advance in the memory 1212 as a storage area, and the inclination angles of all axes can be calculated using the values stored in the memory 1212.
  • FIGS. 4 An inertial sensor according to the fourth embodiment will be described with reference to FIGS. In the following fourth embodiment, details not particularly mentioned are the same as those in the first embodiment.
  • an example of an inertial sensor that outputs the angular velocity of the other axis in addition to the angular velocity of the one axis described above will be described.
  • the angular velocity of the roll and the pitch is detected here.
  • the mechanical structure for detecting the angular velocity may be three or more axes.
  • FIG. 16 is a cross-sectional view showing an example of the structure of the inertial sensor according to the fourth embodiment.
  • the inertial sensor according to the fourth embodiment has angular velocity detection element chips C5 and C6 and two signal processing LSI chips C8 and C9 in the sensor so that the biaxial angular velocity can be detected.
  • the angular velocity detection element chips C5 and C6 are provided with a pad 307 on the main surface and are connected through the pad 307.
  • the signal processing LSI chips C8 and C9 are provided with pads 304 on the main surface, and are connected through the pads 304.
  • two signal processing LSI chips C8 and C9 are installed on the sensor package 302, and further, angular velocity detection element chips C5 and C6 are mounted on the signal processing LSI chips C8 and C9.
  • the signal processing LSI chips C8 and C9 and the angular velocity detection element chips C5 and C6 are bonded between the pads 304 of the signal processing LSI chips C8 and C9 and the pads 307 of the angular velocity detection element chips C5 and C6, respectively. It is electrically connected through the wire W1.
  • the signal processing LSI chips C8 and C9 are electrically connected to the external electrode 303 by connecting the bonding wire W1 to the electrode 305 provided in the sensor package unit 302.
  • the cap portion 301 serves as a lid of the sensor package portion 302 and constitutes a sensor module. Further, the two signal processing LSI chips C8 and C9 are electrically connected by the wiring 1602 in the sensor package unit 302, and perform mutual communication. However, the merit of this embodiment can be enjoyed regardless of the electrical connection method.
  • FIG. 17 is a configuration diagram showing an example of the configuration of the inertial sensor.
  • the inertial sensor according to the fourth embodiment includes angular velocity detection elements 401 in the angular velocity detection element chips C5 and C6 and detection circuits in the signal processing LSI chips C8 and C9. Since the two angular velocity detection element chips C5 and C6 are the same, the same reference numerals are given to the angular velocity detection element and each electrode. Also, since the two signal processing LSI chips C8 and C9 are the same, each part is given the same reference numeral.
  • the two signal processing LSI chips C8 and C9 are basically the same, but in the fourth embodiment, the digital communication circuit 1713 of one signal processing LSI chip C8 is connected to the communication wiring 1602. Connected.
  • the memory 412 in the two signal processing LSI chips C8 and C9 records the drive-side resonance frequency of each angular velocity detection element 401 and a value corresponding thereto, so that the integral calculation can be performed with high accuracy.
  • the digital communication circuit 1713 of one signal processing LSI chip C8 by integrating communication paths to the host system in the digital communication circuit 1713 of one signal processing LSI chip C8, the result of performing the integral calculation of the multi-axis angle with high accuracy is less.
  • the host system can be notified by the number of communication lines.
  • when outputting the angles of multiple axes when converting the final posture of the measurement object into a result obtained by a predetermined procedure such as “ZXY Euler angle” or “rotation matrix” There is. Even when such an output is performed, the digital communication circuit 1713 of one of the signal processing LSI chips C8 can be provided with an output arithmetic unit to cope with the fourth embodiment.
  • FIG. 18 is a configuration diagram illustrating an example of a configuration of a sensor module.
  • the inertial sensors 1801 and 1802 that detect the angular velocity and output the angle according to the first embodiment are combined by a microcomputer 1803 and are combined as a sensor module 1806 including a transceiver IC 1804, and a CAN bus 1805 is collected. It is also possible to notify the host system via a communication method such as
  • the inertial sensor includes signal processing including angular velocity detection element chips C5 and C6 having a mechanical structure for detecting biaxial angular velocity, and an angular velocity detection circuit for detecting an angle from these angular velocity detection element chips C5 and C6.
  • the signal processing LSI chips C8 and C9 can calculate a value obtained from the calculation results of a plurality of angles, which uniquely obtains the posture of the measurement target, and output the calculated value.
  • the present invention is useful for realizing an angle and a posture of a measurement object at low cost and with high accuracy in an environment where inertial force such as centrifugal force exists.
  • inertial force such as centrifugal force exists.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Signal Processing (AREA)
  • Gyroscopes (AREA)
  • Navigation (AREA)

Abstract

角速度検出エレメントの共振周波数に同期する構成を有する角速度検出回路を有する慣性センサにおいて、角度検知のための積分回路における積分誤差の少ない高精度な角度出力の実現を目的とする。慣性センサは、角速度検出のための機械構造を有する角速度検出エレメントチップC1と、この角速度検出エレメントチップC1から角速度を検出するための角速度検出回路である信号処理LSIチップC2と、を有する。信号処理LSIチップC2は、角速度検出エレメントチップC1から得られる信号を、この角速度検出エレメントチップC1の駆動周波数に同期した離散時間でサンプリングすることで傾斜角を計算する。

Description

慣性センサ
 本発明は、慣性センサ、すなわち角速度センサ、加速度センサ、およびその信号処理によって角度を計算するセンサに関するものである。
 MEMS(Micro Electro Mechanical Systems)と呼ばれる、半導体の微細加工技術を用いて作製するデバイスの応用例の1つに慣性センサがある。MEMS慣性センサは、半導体プロセスを用いて作製するため、大量の数の検出エレメントを並列に作ることができる。このことは、従来高価格であった慣性センサの低価格化をもたらし、車載の慣性センサを実現している。
 この中でも、車体の傾きを検知する慣性センサの応用がある。すなわち、車体のロール傾きやピッチ傾きを検知し、これを制御したり安全装置を作動させたりして、乗員を怪我から守る安全装置への応用である。
 一般に、傾きの検出方法は2つある。1つ目は、重力が垂直方向に常に1g(9.8m/s)であることから、加速度センサの出力から逆三角関数を計算し、傾きを得る方法である。最低1軸の加速度センサがあればこれを実現できるが、逆三角関数は、傾きの角度によって生じる感度差が大きい(例えば、Sin関数は角度0度近傍では角度変化に対する傾きが大きいが、±90度近傍では角度変化に対する傾きが小さくなる)ため、2軸の加速度センサの比から傾きを得る場合が多い。
 しかし、前述の方法を車載の傾き検知センサとして用いることには課題がある。すなわち、車体がカーブ走行をしていたり、加速をしていたりすると、遠心力が発生するため、重力以外の加速度がセンサにかかる。この場合は、センサにかかる加速度が各軸の総和が1gであることを仮定している逆三角関数による計算手法では、正確な傾きを得ることができない。
 一方、もう1つの手法としては、角速度を時間積分する方法がある。角速度の単位は度/秒であるので、角速度センサの出力を時間積分することで、センサが傾いている角度(方向)を検知することができる。
 本技術分野の背景技術として、例えば特許文献1がある。特許文献1では、前述の角速度センサの出力と、加速度センサの出力を信号処理することで得る角速度推定結果のうち、信頼度の高い方の信号を時間積分して姿勢角を得るという姿勢角計測装置が開示されている。
 また、角速度を検出するための角速度検出エレメントと、検出回路の構成例としては、特許文献2に開示されているものが存在する。
特開2008-256381号公報 特開2011-64515号公報
 前記特許文献1に示されるような、角速度の積分によって角度を得る構成を用いる場合について検討した結果、以下の課題が明らかとなった。
 デジタル信号処理によって積分を行う場合は、基本的には、サンプリング間隔に角速度出力をかけたものを積分する。このため、積分に用いるサンプリング間隔の値と、実際のサンプリング間隔との誤差は角度計算の誤差に直結する。
 ところが、前記特許文献2に開示されるように、センサの角速度検出回路の動作クロックが、角速度検出エレメントの共振周波数に同期する構成を採っている場合は、角速度検出エレメントの共振周波数に存在するばらつきのため、角速度検出回路の動作クロックもそれに準じてばらつき、さらにデジタル信号処理のためのサンプリング間隔にも同様のばらつきが発生する。言い換えると、前述の「センサの角速度検出回路が、角速度検出エレメントの共振周波数に同期する構成」を有する角速度センサでは、検出回路自身は、検出エレメントに同期しているかどうかについては認識できるが、どのような周波数で同期しているかは認識できないという、回路構成上の本質的な課題が存在する。結果的に、積分のために必要なサンプリング間隔が不明であるという事実は、センサ組上げ後の個別補正など、時間や装置面の負担を強いることになり、センサのコスト上昇が生じる。
 また、センサとは別のモジュールであって、水晶振動子のように高精度なクロック源を有するマイコンによって、定期的に角速度センサの出力を取得し、角速度を積分する方法を用いることも考えられる。この場合は、(1)通信エラーや信号飽和が生じると、そのエラーが積分誤差に半永久的に残る、(2)積分の高精度化のためにセンサとマイコン間の通信を頻繁に行う必要がある、(3)センサのLPF(Low Pass Filter、低域通過フィルタ)があるため、LPFを超える周波数を有する角速度成分を積分に反映できない、等の問題が生じる。特に、CAN(Controller Area Network)バスのように1対1通信でない通信方法によってセンサとマイコンを接続している場合は、通信の輻輳等が他のシステムにまで影響を与えるおそれがある。
 本発明は、角速度検出エレメントの共振周波数に同期する構成を有する角速度検出回路を有する慣性センサにおいて、角度検知のための積分回路における積分誤差の少ない高精度な角度出力の実現を目的としてなされたものである。
 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
 一実施の形態における慣性センサは、角速度検出のための機械構造を有する角速度検出エレメントと、前記角速度検出エレメントから角速度を検出するための角速度検出回路と、を有する。前記角速度検出回路は、前記角速度検出エレメントから得られる信号を、前記角速度検出エレメントの駆動周波数に同期した離散時間でサンプリングすることで傾斜角を計算する。
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下の通りである。
 一実施の形態によれば、角速度検出エレメントの共振周波数に同期する構成を有する角速度検出回路を有する慣性センサにおいて、角度検知のための積分回路における積分誤差の少ない高精度な角度出力を実現することができる。
本発明の実施の形態1における、慣性センサの構造の一例を示す断面図である。 本発明の実施の形態1における、慣性センサの構成の一例を示す構成図である。 本発明の実施の形態1から4における、振動子の振動周波数と角速度のサンプリングタイミングとの関係の一例を示す図である。 本発明の実施の形態1における、駆動周波数測定系の構成の一例を示す図である。 本発明の実施の形態1から4における、共振子の温度に対する共振周波数の変化率の一例を示す図である。 本発明の実施の形態1における、角速度検出エレメントの立ち上がり待ちの概念と、出力マスクやリセット要求機能の効果との一例を示す図である。 本発明の実施の形態1における、慣性センサを構成する最低限必要な構成要素を示す図である。 本発明の実施の形態2における、慣性センサの構造の一例を示す断面図である。 本発明の実施の形態2における、慣性センサの構成の一例を示す構成図である。 本発明の実施の形態2における、傾き、重力、遠心力の関係の一例を示す図である。 本発明の実施の形態3における、慣性センサの構造の一例を示す断面図である。 本発明の実施の形態3における、慣性センサの構成の一例を示す構成図である。 本発明の実施の形態3における、2つの角速度検出エレメントの、駆動側周波数応答と検出側周波数応答の一例を示す図である。 本発明の実施の形態3における、別の慣性センサの構成の一例を示す構成図である。 本発明の実施の形態3における、2つの角速度検出エレメントの、別の駆動側周波数応答と検出側周波数応答の一例を示す図である。 本発明の実施の形態4における、慣性センサの構造の一例を示す断面図である。 本発明の実施の形態4における、慣性センサの構成の一例を示す構成図である。 本発明の実施の形態4における、センサモジュールの構成の一例を示す構成図である。
 以下の実施の形態においては、便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらは互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。
 さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
 [実施の形態の概要]
 まず、実施の形態の概要について説明する。本実施の形態の概要では、一例として、括弧内に実施の形態の対応する構成要素、符号等を付して説明する。
 一実施の形態における慣性センサは、角速度検出のための機械構造を有する角速度検出エレメント(角速度検出エレメントチップC1、C5、C6)と、前記角速度検出エレメントから角速度を検出するための角速度検出回路(信号処理LSIチップC2、C4、C7、C8、C9)と、を有する。前記角速度検出回路は、前記角速度検出エレメントから得られる信号を、前記角速度検出エレメントの駆動周波数に同期した離散時間でサンプリングすることで傾斜角を計算する。
 以下、上述した実施の形態の概要に基づいた各実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号または関連する符号を付し、その繰り返しの説明は省略する。また、以下の実施の形態では、特に必要なとき以外は同一または同様な部分の説明を原則として繰り返さない。
 また、実施の形態で用いる図面においては、断面図であっても図面を見易くするためにハッチングを省略する場合もある。また、平面図であっても図面を見易くするためにハッチングを付す場合もある。
 [実施の形態1]
 本実施の形態1における慣性センサについて、図1~図7を用いて説明する。本実施の形態1では、角速度の出力に加え、角度を外部に出力する慣性センサの例について説明する。
 <慣性センサの構造>
 まず、図1を用いて、本実施の形態1における慣性センサの構造について説明する。図1は、この慣性センサの構造の一例を示す断面図である。
 本実施の形態1における慣性センサでは、角速度が検知できるように、角速度検出エレメントチップC1(以下、角速度検出エレメントとも記す)と、信号処理LSIチップC2とを、センサ内に有している。角速度検出エレメントチップC1は、主面上にパッド306が設けられ、このパッド306を通じて接続される。信号処理LSIチップC2は、主面上にパッド304が設けられ、このパッド304を通じて接続される。
 本実施の形態1に示す慣性センサでは、センサパッケージ部302上に信号処理LSIチップC2が設置され、さらに、信号処理LSIチップC2上に角速度検出エレメントチップC1が搭載されている。信号処理LSIチップC2と角速度検出エレメントチップC1とは、信号処理LSIチップC2のパッド304と、角速度検出エレメントチップC1のパッド306との間に設けられたボンディングワイヤW1を通じて電気的に接続されている。また、信号処理LSIチップC2は、センサパッケージ部302に設けられた電極305へのボンディングワイヤW1の接続によって、外部電極303との電気的接続を行う。また、キャップ部301が、センサパッケージ部302の「ふた」となり、センサモジュール(センサの1単位)を構成している。
 なお、ここで、慣性センサのパッケージング方法は本願で開示する内容に無関係である。すなわち、トランスファーモールドによる樹脂パッケージや、セラミクス等の基板上にチップを固定するプレモールドパッケージなど、様々なパッケージング方法で本願の開示内容は実現可能である。
 <慣性センサの構成および動作>
 図2を用いて、本実施の形態1における慣性センサの構成について説明する。図2は、この慣性センサの構成の一例を示す構成図である。
 本実施の形態1における慣性センサは、角速度検出エレメントチップC1の部分の角速度検出エレメント401と、信号処理LSIチップC2の部分の検出回路とを、有している。角速度検出エレメントチップC1は、角速度検出のための機械構造を有する角速度検出エレメントである。信号処理LSIチップC2は、角速度検出エレメントから角速度を検出するための角速度検出回路である。
 角速度検出エレメント401は、駆動電極401a、モニタ電極401b、および検出電極401cを有している。検出回路は、駆動側CV(Capacitor to Voltage)変換部402、駆動側ADC(Analog to Digital Convertor)部403、駆動側同期検波部404、周波数制御部405、および振幅制御部406を有している。また、検出回路は、検出側CV変換部407、検出側ADC部408、検出側同期検波部409、LPF410、積分・角度計算回路411、メモリ412、およびデジタル通信回路413を有している。さらに、検出回路は、共通クロック源414、分周器415、可変アンプ416、アンプ417、位相反転器418、および温度センサ419を有している。この検出回路において、CV変換部402、407、ADC部403、408、同期検波部404、409、周波数制御部405、振幅制御部406、LPF410、積分・角度計算回路411、メモリ412、デジタル通信回路413、分周器415、および温度センサ419は、デジタル部D1を構成している。
 ここで、角速度検出エレメント401は、いわゆる振動式角速度検出エレメントであり、予め定められた駆動方向に振動する振動子に対して、角速度が印加されたとき、駆動振動方向と直交する検出方向に生じる、コリオリ力に基づく新たな振動成分を検出し、これに基づいて角速度情報を出力するものである。ここで、コリオリ力Fcは、以下の式1によって示される。
  Fc=2・m・Ω・X・ωd・cos(ωd・t) (式1)
 式1において、Fcはコリオリ力、mは可動部の質量、Ωは印加される角速度、Xは駆動方向の振動振幅、ωd/2πは駆動周波数、tは時間を示す。
 式1によれば、感度の向上、すなわちコリオリ力を多く得るためには、可動部の質量、駆動方向の振動振幅、ないしは駆動周波数を増やす必要があることがわかる。一方、駆動方向の最大振幅は、式2で示される。
Figure JPOXMLDOC01-appb-M000001
 式2において、Xは駆動方向の振動振幅、ω/2πは駆動周波数、ωは駆動方向の固有振動数、Qは駆動方向の機械品質係数、kは振動子を構成する支持梁のばね定数、Fは駆動力を示す。
 このため、一般に、振動式角速度検出エレメントは、駆動電圧対感度の効率が最良となるように、駆動方向の固有振動数(共振周波数)にて振動を維持し、機械品質係数倍の振幅ゲインを得ることで、印加される角速度に対して最も大きなSNR(Signal to Noise Ratio、信号対雑音比)を得る構成を採る。これは、本実施の形態1においても同様である。
 本実施の形態1では、前述した特許文献2に示されているものと同じように、角速度検出エレメントの共振周波数に信号処理LSIチップのクロックが同期する。すなわち、共通クロック源414が生成する周波数、または、その分周や逓倍は、回路の定常状態において、角速度検出エレメント401の駆動方向の共振周波数に一致する。このような構成を採ることで、信号の同期検波のサンプリング点数を減らし、同期検波をデジタル信号領域で行うことが容易となる。これは、特に細線プロセスを用いるLSIチップにおいて、チップ面積の低減、すなわちコストの低減をもたらす。
 角速度検出エレメント401は、駆動方向に振動を生じさせる駆動力を、静電力によってもたらすための駆動電極401a、駆動方向の振動変位を静電容量の変化として読み出すモニタ電極401bを有している。共通クロック源414が生成したクロックを分周器415で適切な周波数に分周し、アンプ417を通じて適切な電圧レベルに変換したキャリア信号を角速度検出エレメント401の可動部に与える。モニタ電極401bが構成する静電容量は、角速度検出エレメント401の可動部の変位によって変化が発生するので、キャリア信号が印加されたモニタ電極401bが構成する静電容量に準じた交流電流、すなわち角速度検出エレメント401の可動部の変位に準じた電流が発生することになる。
 次に、この電流によって表される角速度検出エレメント401の変位情報を、信号処理LSIチップC2内の駆動側CV変換部402を通じて容量成分を電圧に変換し、さらに駆動側ADC部403を経てデジタル値を得る。なお、このCV変換部402は、スイッチトキャパシタ型のCV変換回路であったり、連続時間型のCV変換回路であったりとその構成にはよらないが、CV変換部402でキャリア信号の同期検波を行うことが望ましい。連続時間型のCV変換回路では、追加の同期検波回路が必要になるが、ここでは簡単のため同期検波回路を兼ねることができるスイッチトキャパシタ型のCV変換回路を想定している。また、ADCの形式はΣΔ方式や逐次比較方式など、方式は問わない。
 さて、デジタル領域に変換された信号は、デジタル信号領域の駆動側同期検波部404において、駆動信号と同じ周波数かつ、変位信号とマッチした位相をもつ基準信号を用いて同期検波を行い、変位振動振幅成分を取り出す同期検波処理と、駆動信号と同じ周波数かつ、変位信号より90度進んだ位相をもつ基準信号を用いて同期検波を行い、角速度検出エレメント401の駆動方向の共振周波数と駆動周波数の差を取り出す同期検波処理との2つを行う。
 この同期検波部404では、前述の通り角速度検出エレメント401の共振周波数に信号処理LSIチップC2のクロックが同期しているので、信号処理LSIチップC2がもつばらつきによって角速度検出エレメント401の共振周波数がばらついても、1周期のサンプリング数(正弦波信号の分割数)は常に一定の値を保てるという特徴がある。
 前者の同期検波処理によって得られた振幅情報は、角速度検出エレメント401の駆動方向の振動が予め定められた所望の振幅に達するように振幅制御部406で制御がなされ、その制御出力は可変アンプ416のゲイン調整に用いられる。ゲイン調整を経た駆動信号(ここで駆動信号は共通クロック源414の分周であり、分周器415によってその分周が実現されている)は、角速度検出エレメント401の駆動電極401aに、向かい合う電極同士で逆位相になるように、一方の駆動電極は直接、もう一方の駆動電極は位相反転器418を経て、それぞれ駆動信号が印加される。これらの制御のループによって、角速度検出エレメント401は、予め定められた所定の振幅での振動が維持される。一方、後者の同期検波処理によって得られた角速度検出エレメント401の駆動方向の共振周波数と駆動周波数の差は、周波数制御部405に与えられ、制御出力は共通クロック源414へと与えられ、角速度検出エレメント401の駆動方向の共振周波数と駆動周波数の差が縮まる方向に向かうように周波数制御ループが構成される。
 以上に示した構成によって、角速度検出エレメント401の駆動方向の共振周波数と駆動周波数が一致する。また、角速度検出エレメント401の駆動方向の共振周波数は、半導体加工の精度などによってばらつきを示すが、周波数制御部405の働きによって、ある程度の共振周波数の範囲にあれば自動的にその共振周波数に共通クロック源414が同期し、また、同期検波処理も角速度検出エレメント401の共振周波数に信号処理LSIチップC2のクロックが同期しているので、信号処理LSIチップC2がもつばらつきによって角速度検出エレメント401の共振周波数がばらついても、1周期のサンプリング数が常に一定になる。
 ここで、回路のデジタル部D1のクロックは、同期検波部404はもちろん、それ以外の回路要素すべてで共通クロック源414を基にしている。共通クロック源414を基にしているということは、デジタル部D1のクロックも角速度検出エレメント401の駆動方向の共振周波数に同期しているということを意味している。デジタル部D1のクロックを角速度検出エレメント401の駆動方向の共振周波数に同期させるということは、振動型角速度センサで角速度検出を行う上での必要条件ではないが、かかる構成とすることによって、デジタル部D1の基準クロックを別途準備する必要がなく、また、角速度検出エレメント401の高い機械品質係数を用いた周波数安定性が得られるため、デジタル部D1のクロックを角速度検出エレメント401の駆動方向の共振周波数に同期させることにはシステム構成の簡易化の観点で利点がある。
 次に、角速度を検出する手順について説明する。角速度検出エレメント401は、検出方向への振動変位を静電容量の変化として読み出す検出電極401cを有する。前述したように、角速度検出エレメント401が予め定められた駆動方向に振動していると、角速度が印加されたとき、駆動振動方向と直交する検出方向にコリオリ力が生じる。このコリオリ力による変位によって検出電極401cの容量が変化する。この容量変化を、アンプ417を通じて適切な電圧レベルに変換したキャリア信号によって電流化し、これを検出側CV変換部407で電圧に変換し、さらに検出側ADC部408でデジタル値に変換し、検出方向の振動とマッチした位相での同期検波を行う検出側同期検波部409によって、検出方向振動の振幅、すなわち角速度が得られる。ここで得た角速度成分は、LPF410を経て不要な高周波成分を落とし、デジタル通信回路413より信号S1として、上位のシステムに出力される。
 次に、本実施の形態1における角速度出力の積分に関する回路構成についての説明を行う。図3は、角速度検出エレメント401の駆動方向の共振周波数と駆動周波数が一致する回路構成を用いた角速度センサの信号処理回路内において、時間積分のために角速度をサンプリングする際のイメージである。図3は、振動子の振動周波数(横軸は時間、縦軸は振動子の変位)と角速度のサンプリングタイミング(横軸は時間、縦軸は角速度)との関係の一例を示す図である。図3(a)は、図3(b)よりも角速度検出エレメント401の駆動方向の共振周波数が相対的に高いセンサにおける、振動の時系列変位と、そこから得られた角速度信号、およびサンプリング間隔Tsを示す。図3(b)は、相対的に図3(a)よりも角速度検出エレメント401の駆動方向の共振周波数が低いセンサにおける、振動の時系列変位と、そこから得られた角速度信号、およびサンプリング間隔Tsを示す。
 図3(a)(b)に示すように、角速度検出エレメント401の駆動方向の共振周波数が異なると、すべてのクロックが角速度検出エレメント401の駆動方向の共振周波数に同期しているので、サンプリング間隔もそれに準じて異なるものになる。以下に、離散時間積分によって得られる角度の式3を示す。
Figure JPOXMLDOC01-appb-M000002
 式3において、θは積分の結果得られる角度、Ωは印加される角速度、Tsはサンプリング間隔を示す。
 式3から示されるように、例えば、角速度検出エレメント401の駆動方向の共振周波数が10%異なる2つのサンプルがある場合、サンプリング間隔Tsを固定とすると、それらのサンプルの角度計算に生じる誤差は10%となる。より具体的な例では、共振周波数の中央値が10kHzの設計で、Tsを0.1msと見積もって一括設定した場合、加工ばらつきによってそれぞれ9.5kHzと10.5kHzの角速度検出エレメント401の駆動方向の共振周波数をもつ2つのサンプル間に生じる誤差が約10%である。
 このように、角速度検出エレメント401の駆動方向の共振周波数のばらつきによって積分の誤差が生じる問題を解決するため、本実施の形態1では、積分・角度計算回路411にメモリ412を設け、予めプローバ検査等のウエハレベルで計測した角速度検出エレメント401の駆動側共振周波数ないしはそれに準じた値(後述)を保存する回路を追加している。積分・角度計算回路411は、式3に準じた積分計算(傾斜角の角度計算)を行うが、この積分・角度計算回路411でのサンプリング間隔は、メモリ412に保存されている角速度検出エレメント401の駆動方向の共振周波数、またはその逓倍・分周である。例えば、積分・角度計算回路411のサンプリング周波数が角速度検出エレメント401の駆動方向の共振周波数のY分周であるとすると、Tsは角速度検出エレメント401の駆動方向の共振周波数の逆数からYを割った値になる。
 前述のように、本実施の形態1のような検出回路の構成においては、検出回路自身では共通クロック源414が角速度検出エレメント401の駆動方向の共振周波数に同期しているかどうかは認識できるが、実際にどのような周波数で同期しているかという周波数絶対値がわからない。一方、本実施の形態1に示す方法によって、メモリ412に、角速度検出エレメント401の駆動側共振周波数を保存しておけば、積分・角度計算回路411におけるサンプリング間隔が、メモリ412に記録された情報から明らかになるので、水晶振動子のような外付けクロック源の追加や、外部からのクロック信号印加、上位システムからのサンプリングトリガの入力といったコスト上昇や故障リスク増の対策を追加することなく、高精度な傾斜角の角度計算を行うことができる。
 ここでメモリ412は、実装方法によらず、マスクROM、フラッシュROM等のあらゆる不揮発メモリによって実現可能である。また、揮発メモリであっても、起動時に上位システムから共振周波数をデジタル通信回路413によって与えられれば、所望の機能は維持可能である。
 また、メモリ412に保存する角速度検出エレメント401の駆動側共振周波数に関しては、必ずしも共振周波数そのものである必要はなく、共振周波数の逓倍・分周値や、それらの逆数など、角速度検出エレメント401の駆動側共振周波数に基づく値であれば、本実施の形態1を実現できることは明らかである(これを、角速度検出エレメント401の駆動側共振周波数ないしはそれに準じた値と定義する)。
 また、角速度検出エレメント401の駆動側共振周波数は、必ずしも各検出エレメントを直接測った共振周波数の値である必要はなく、ウエハ上の数チップを測った結果得られるトレンドから補完した結果など、所望の精度に応じて厳密さの度合いを選択することができる。ウエハ内でのばらつきやロットのばらつき、フォトマスクレベルのばらつきがセンサとしての仕様を満たすのであれば、それぞれウエハ内の1デバイス、ロット内の1デバイス、当該フォトマスクで作製したウエハからの1デバイスを測れば、メモリ412に保存すべき値を決定できる。
 さらに、別の方法として、図4を用いて説明する。図4は、駆動周波数測定系の構成の一例を示す図である。図4に示すように、慣性センサ201、計測装置202からなる出荷前検査システムにおいて、慣性センサ201から得る駆動信号を計測装置202がその周波数を計測し、周波数情報として慣性センサ201に返すようにして、角速度検出エレメント401の駆動側共振周波数をメモリ412に記録する構成としても良い。この場合、慣性センサ201があって、駆動信号やそのデジタル値を出力する機能を有し、メモリ412に角速度検出エレメント401の駆動側共振周波数を記録することが特徴となる。また、例えば慣性センサ201にテストモード(TEST=H)の選択ができるようになっていて、慣性センサ201から得る駆動信号は出荷前検査時だけ出すような形となっていても良い。一般に、センサを利用する際には駆動信号をモニタする必要がないため、慣性センサ201から駆動信号を出す機能を必ずしも開放しなくとも、センサとしての機能は満たせる。
 また、図2では、積分・角度計算回路411へ与える信号は検出側同期検波部409の直後から出ているが、これはLPF410の後段からの入力であっても良い。前者は、高い周波数成分までを含めて積分ができるため、一般にはLPF410を経た後の信号を用いるよりも高精度な角度計算が期待できる一方、高域のノイズも積分してしまうため、回路のノイズプロファイルによっては好適な構成とならない。一方、後者の構成であれば、広域ノイズを落とした帯域の信号だけが得られるので、測定対象の応答性が高くないものを測定する場合においては、後者のようなLPF410を経た信号を積分・角度計算回路411に入力する構成が好適になる可能性がある。
 また、図示していないが、LPF410の前後段で信号のゲインを調整する場合は、ゲイン調整前の信号や、積分計算用にゲインを調整した信号を積分・角度計算回路411へ与えることで、信号飽和による積分誤差の発生を防ぐことができる。これは、単にセンサモジュールとマイコンのように別のIC(Integrated Circuit)単位からなるシステムでは実現できない信号処理と言える。
 図5は、共振子の温度に対する共振周波数の変化率の一例を示す図である。図5のグラフでは、単結晶シリコンを用いて作製する振動子の温度(℃)に対する共振周波数の変化率(%)を示している。シリコンのヤング率が温度に応じて変動するので、振動子の共振周波数も温度に応じて図5に示すように変化することが知られている。図5の例では、温度が-50℃から150℃までの変化に対して、共振周波数変化率は約0.25%から約-0.45%まで変化する。このため、積分・角度計算回路411では、温度センサ419の出力を受け、図5に示したような温度と共振周波数のプロファイルから、サンプリング間隔Tsを補正する機能を有していても良い。図5のグラフは、式4で書かれており、例えば式4にしたがって補正を行うことで、ヤング率の温度特性による誤差を改善することできる。
Figure JPOXMLDOC01-appb-M000003
 式4において、Tは温度、Eは温度Tにおけるヤング率、Eは0Kでの縦弾性係数、Bは温度係数、Tは近似係数を示す。
 ところで、式2に示したように、一般に、振動型角速度センサでは、機械品質係数で示される振動ゲインを活用することで、駆動側の駆動電圧対振動比を大きくとり、SNRを向上させている。一方、機械品質係数値を活用するためには、一定の周波数で当該周波数の振動エネルギーを貯める時間がかかる。最も単純に、ステップ応答的に、一定の振幅の周波数を与え続けることを考えると、最大振幅の63.2%に達するまでの時間である“時定数”は機械品質係数の2倍の数を固有振動数で割った値になる。すなわち、通電して直ちに角速度センサとして正常な出力が出る駆動振幅に到達するまでには、エネルギーを貯め込むための時間が必要となる。
 図6は、角速度検出エレメントの立ち上がり待ちの概念と、出力マスクやリセット要求機能の効果との一例を示す図である。図6では、角速度検出エレメントの駆動振幅の一例を示している(ここで、変位ではなく振幅なので、変位の包絡線を示していることに注意されたい)。角速度センサの立ち上がりが、角速度検出エレメントの駆動振幅が十分に立ち上がらなければ、角速度センサとしてはもちろんのこと、角度計算を行うことも適切でない。そこで、本実施の形態1においては、角速度検出エレメント401の駆動振幅が、予め定めたしきい値の範囲内にないときは、デジタル通信回路413より出力する角度出力にマスクをかけるか、角度出力が利用できないことを示すフラグを出力するという機能を付加している。このような構成を採ることによって、上位システムが本来正しくない、誤った角度出力を上位システムの制御に使ってしまうおそれを排除することができる。
 また、本実施の形態1においては、上位システムからのリセット要求(パルスH)に応じて、角度出力をリセットする機能が備わっている。リセットとは、すなわち積分器の積分値を0にする機能であり、例えば車載用途やいわゆるドローン(無人飛行機)のような飛行物体であれば、上位システムが車速パルス、GPS測位情報や加速度センサ等の別のセンサ情報を元に車両や飛行機が停止状態にあることを認識し、その時点でリセットすることが望ましい。本実施の形態1においては、角速度センサ(慣性センサ)の内部の回路が角速度を積分して角度を計算しているので、静止の判断を行える上位システムからのリセット信号を用いて、積分をリセットできる通信機能を備えるという発想は、従来の上位システム側で角速度を積分し、上位システム内で積分値をリセットするという一般構成とは全く異なるものである。
 本実施の形態1の最低限の構成を図7に示す。図7は、慣性センサを構成する最低限必要な構成要素を示す図である。図7では、共通クロック源414があり、この周波数を周波数制御部405が制御し、角速度検出エレメントチップC1が持つ駆動方向の共振周波数と駆動周波数が一致する回路構成である。ここで、角速度から積分・角度計算を行う積分・角度計算回路411が、共通クロック源414のクロックに同期していて、積分計算に用いるサンプリング間隔をメモリ412に保存している構成によって、高精度に角速度積分を実施する回路である。
 なお、本文中では角速度検出エレメントの共振周波数に信号処理LSIチップのクロックが同期している、と記述しているが、必ずしも駆動周波数が共振周波数に一致する必要はなく、機械品質係数が一定量得られる周波数であれば良い。また、周波数制御によっては、駆動周波数が共振周波数に一致しているかどうかは判断しかねる場合もある。その場合は、本文中の「共振周波数」はすべて「駆動周波数」に置き換えられる。
 <実施の形態1の効果>
 以上説明した本実施の形態1によれば、角速度検出エレメント401の共振周波数に同期する構成を有する角速度検出回路を有する慣性センサにおいて、角度検知のための積分回路における積分誤差の少ない高精度な角度出力を実現することができる。すなわち、角度検知のための積分回路に正確な積分時間を与え、積分誤差の少ない高精度な角度出力の実現が可能となる。言い換えれば、慣性センサ組上げ後の調整を行うことなく、精度の高い角度検知を行うことができる。より詳細には、以下の通りである。
 (1)慣性センサは、角速度検出のための機械構造を有する角速度検出エレメントチップC1と、この角速度検出エレメントチップC1から角速度を検出するための角速度検出回路である信号処理LSIチップC2と、を有する。これにより、信号処理LSIチップC2は、角速度検出エレメントチップC1から得られる信号を、この角速度検出エレメントチップC1の駆動周波数に同期した離散時間でサンプリングすることで傾斜角を計算することができる。
 (2)信号処理LSIチップC2が角速度検出エレメントチップC1から得る信号は、角速度とすることができる。
 (3)信号処理LSIチップC2の動作クロックは、角速度検出エレメントチップC1の駆動周波数に同期させることができる。
 (4)信号処理LSIチップC2が傾斜角を計算する信号処理は、時間積分とすることができる。
 (5)角速度検出エレメントチップC1の駆動周波数は、この角速度検出エレメントチップC1の共振周波数とすることができる。
 (6)角速度検出エレメントチップC1の駆動周波数は、この角速度検出エレメントチップC1の機械品質係数によるゲインを得られる周波数とすることができる。
 (7)角速度検出エレメントチップC1の駆動周波数ないしはその逓倍または分周から得られる値が、予め信号処理LSIチップC2内の記憶領域であるメモリ412に保存されており、信号処理LSIチップC2は、このメモリ412に保存されている値を利用して傾斜角を計算することができる。
 (8)信号処理LSIチップC2が積分計算に用いる角速度は、角速度として出力するLPF410を経る前の信号とすることができる。
 (9)信号処理LSIチップC2の積分計算は、温度センサ419によって補正を行うことができる。
 (10)信号処理LSIチップC2の積分計算は、外部からのリセット信号によって積分値をリセットすることができる。
 (11)信号処理LSIチップC2の積分計算は、外部からの、測定対象の運動状態を示す信号から、この測定対象の移動が発生していない、またはこの測定対象に重力以外の加速度がかかっていないことを検知し、この検知のタイミングで積分値をリセットすることができる。
 (12)信号処理LSIチップC2は、メモリ412と、積分・角度計算回路411と、を有する。これにより、メモリ412は、角速度検出エレメントチップC1の駆動周波数ないしはその逓倍または分周から得られる値を予め保存することができる。そして、積分・角度計算回路411は、角速度検出エレメントチップC1から得られる信号を、この角速度検出エレメントチップC1の駆動周波数に同期した離散時間でサンプリングすることで傾斜角を計算し、この傾斜角の計算の際にメモリ412に保存されている値を利用して傾斜角を計算することができる。
 [実施の形態2]
 本実施の形態2における慣性センサについて、図8~図10を用いて説明する。以下の実施の形態2で、特に詳細が触れられていないものについては、前記実施の形態1と同様である。本実施の形態2では、前述の角速度、角度に加え、加速度を外部に出力する慣性センサの例について説明する。
 図8は、本実施の形態2における慣性センサの構造の一例を示す断面図である。本実施の形態2における慣性センサでは、角速度と加速度が検知できるように、角速度検出エレメントチップC1、加速度検出エレメントチップC3(以下、加速度検出エレメントとも記す)、および信号処理LSIチップC4を、センサ内に有している。角速度検出エレメントチップC1は、主面上にパッド307が設けられ、このパッド307を通じて接続される。加速度検出エレメントチップC3は、主面上にパッド308が設けられ、このパッド308を通じて接続される。信号処理LSIチップC4は、主面上にパッド304が設けられ、このパッド304を通じて接続される。
 本実施の形態2に示す慣性センサでは、センサパッケージ部302上に信号処理LSIチップC4が設置され、さらに、信号処理LSIチップC4上に角速度検出エレメントチップC1および加速度検出エレメントチップC3が搭載されている。信号処理LSIチップC4と、角速度検出エレメントチップC1および加速度検出エレメントチップC3とは、信号処理LSIチップC4のパッド304と、角速度検出エレメントチップC1のパッド307および加速度検出エレメントチップC3のパッド308との間にそれぞれ設けられたボンディングワイヤW1を通じて電気的に接続されている。また、信号処理LSIチップC4は、センサパッケージ部302に設けられた電極305へのボンディングワイヤW1の接続によって、外部電極303との電気的接続を行う。また、キャップ部301が、センサパッケージ部302のふたとなり、センサモジュールを構成している。
 図9は、慣性センサの構成の一例を示す構成図である。本実施の形態2における慣性センサは、角速度検出エレメントチップC1の部分の角速度検出エレメント401と、加速度検出エレメントチップC3の部分の加速度検出エレメント1001a、1001bと、信号処理LSIチップC4の部分の検出回路とを、有している。加速度検出エレメント1001a、1001bにおいて、1001aはY方向加速度検出エレメントであり、1001bはX方向加速度検出エレメントである。角速度検出エレメント401は、前記実施の形態1と同様である。加速度検出エレメント1001a、1001bは、電極1001c、1001dを有している。検出回路は、前記実施の形態1の構成に加えて、Y側CV変換部1002、Y側ADC部1003、Y側LPF1004、X側CV変換部1005、X側ADC部1006、およびX側LPF1007が追加され、また、積分・角度計算回路411が積分・角度計算・診断回路1000に置き換えられている。
 ここで、加速度検出エレメント1001aおよび1001bは、それぞれ静的な加速度を検出する静電容量型エレメントであり、予め定められた変位方向に加速度が印加されたとき、可動部が変位し、これによって電極1001c、1001dに生じる静電容量の変化を、CV変換部1002、1005でそれぞれ電流から電圧に変換し、ADC部1003、1006によってデジタル領域に変換し、LPF1004、1007で不要な帯域の成分を除去した後、デジタル通信回路413より上位システムへの加速度出力を行う。ここで、信号処理LSIチップC4が有する共通クロック源414から、分周器415、アンプ417を経て生成されたキャリア信号が加速度検出エレメント1001aおよび1001bにも印加される。すなわち、加速度の検出に用いるキャリア信号は、角速度検出のために用いられる共通クロック源414に同期している。このような構成とすることで、水晶振動子のような外付けクロック源の追加を行うことなく、低コストに角速度と加速度の両方の検出を1つの信号処理LSIチップC4で実現できる。
 次に、本実施の形態2において、傾きを検知する手順を述べる。図10は、傾き、重力、遠心力の関係の一例を示す図である。図10では、傾き(θ)がある中でのセンサ100、重力101、重力のCos成分102、重力のSin成分103、さらに遠心力104、力の総和105を示している。図10において、(a)は遠心力がない状態での傾き検知を行うケースを示しており、重力101が1gである原則を使用して、式5にしたがって、傾きを求めることができる。
Figure JPOXMLDOC01-appb-M000004
 式5において、θは傾き、xはx方向の加速度、yはy方向の加速度を示す。
 一方、図10において、(b)では遠心力104が存在するため、センサ100にかかる加速度の総和が1gであるという原則がくずれ、式5による角度計算では誤差が生じる。そこで、本実施の形態2では、式5による加速度を用いた角度計算と、前記実施の形態1に示した角速度の積分による角度計算の両方を用いて、角度計算の信頼性を向上する検出回路構成とした。この回路構成が、図9に示した構成である。
 図9に示すように当該実施の形態2では、積分・角度計算・診断回路1000に、角速度検出側同期検波部409の出力信号と、加速度検出のADC部1003、1006の出力信号が入力され、式5に基づく傾き検知と、角速度積分による傾き検知を比較し、比較結果が所定のしきい値以内であれば故障なし、しきい値以上であれば故障ありの判定を行う。また、このとき、メモリ412には角速度検出エレメント401の駆動側共振周波数や、共振周波数の逓倍・分周値や、それらの逆数など、角速度検出エレメント401の駆動側共振周波数に基づく値が保存されており、これに基づいた時間積分を行っている。
 さらに、温度センサ419によって、角速度積分の温度特性補正を行うことはもちろん、加速度から傾きを求める計算における温度特性補正(オフセット、感度ないしスケールファクター)を行う。
 また、前記実施の形態1に示したように、車速パルス、GPS測位情報、または上位システムからのリセット信号を与える通信装置のように測定対象が静止していることを認識するための手段を積分・角度計算・診断回路1000に入力しても良い。例えば、測定対象が静止しているときに角速度積分による積分値をリセットし、静止状態が継続しているにも関わらず、角速度積分による角度検知量と、加速度による角度検知量に矛盾が生じているようであれば故障を認識できる。
 ユーザーが角速度積分による角度と、加速度から得る角度のいずれの値を得るかを選択できるようにセンサが構成されていても良い(図示なし)。例えば、走行中は遠心力が入る可能性があるので角速度積分による角度を、静止中は坂道検知のために絶対的な角度がわかる加速度からの角度を用いる場合に、このようなアプローチは有益である。
 以上説明した本実施の形態2によれば、前記実施の形態1と同様の効果に加えて、以下の異なる効果を得ることができる。例えば、慣性センサは、加速度検出のための機械構造を有する加速度検出エレメントチップC3と、この加速度検出エレメントチップC3から加速度を検出するための加速度検出回路を含む信号処理LSIチップC4と、をさらに有する。これにより、信号処理LSIチップC4は、加速度の逆三角関数から得る傾斜角の結果と、角速度の時間積分から得る傾斜角の結果との差が、一定値を越えた場合に何れかのセンサが故障していると判断することができる。
 [実施の形態3]
 本実施の形態3における慣性センサについて、図11~図15を用いて説明する。以下の実施の形態3で、特に詳細が触れられていないものについては、前記実施の形態1と同様である。本実施の形態3では、前述の1軸の角速度に加え、もう1軸の角速度を外部に出力する慣性センサの例について説明する。特に、ここでは、ロールとピッチの角速度を検出するものとする。なお、角速度を検出するための機械構造は、3軸以上でも良い。
 図11は、本実施の形態3における慣性センサの構造の一例を示す断面図である。本実施の形態3における慣性センサでは、2軸の角速度が検知できるように、角速度検出エレメントチップC5とC6、および信号処理LSIチップC7を、センサ内に有している。角速度検出エレメントチップC5、C6は、主面上にパッド307が設けられ、このパッド307を通じて接続される。信号処理LSIチップC7は、主面上にパッド304が設けられ、このパッド304を通じて接続される。
 本実施の形態3に示す慣性センサでは、センサパッケージ部302上に信号処理LSIチップC7が設置され、さらに、信号処理LSIチップC7上に角速度検出エレメントチップC5、C6が搭載されている。信号処理LSIチップC7と、角速度検出エレメントチップC5、C6とは、信号処理LSIチップC7のパッド304と、角速度検出エレメントチップC5、C6のパッド307との間にそれぞれ設けられたボンディングワイヤW1を通じて電気的に接続されている。また、信号処理LSIチップC7は、センサパッケージ部302に設けられた電極305へのボンディングワイヤW1の接続によって、外部電極303との電気的接続を行う。また、キャップ部301が、センサパッケージ部302のふたとなり、センサモジュールを構成している。
 図12は、慣性センサの構成の一例を示す構成図である。本実施の形態3における慣性センサは、角速度検出エレメントチップC5、C6の部分の角速度検出エレメント1200、1201と、信号処理LSIチップC7の部分の検出回路とを、有している。角速度検出エレメント1200、1201において、1200はロール角速度検出エレメントであり、1201はピッチ角速度検出エレメントである。角速度検出エレメント1200、1201は、駆動電極1200a、1201a、モニタ電極1200b、1201b、および検出電極1200c、1201cを有している。検出回路は、CV変換部1202、1207、ADC部1203、1208、同期検波部1204、1209、周波数制御部1205、振幅制御部1206、およびLPF1210を有している。また、検出回路は、CV変換部1219、1223、ADC部1220、1224、同期検波部1221、1225、振幅制御部1222、およびLPF1226を有している。さらに、検出回路は、積分・角度計算回路1211、メモリ1212、デジタル通信回路1213、共通クロック源1214、分周器1215、1227、可変アンプ1216、1229、アンプ1217、1230、位相反転器1218、1231、および温度センサ1228を有している。
 ここで、ロール角速度検出エレメント1200には、駆動方向に振動を生じさせる駆動力を、静電力によってもらすための駆動電極1200a、駆動方向の振動変位を静電容量の変化として読み出すモニタ電極1200bを有している。一方で、ピッチ角速度検出エレメント1201には、駆動方向に振動を生じさせる駆動力を、静電力によってもらすための駆動電極1201a、駆動方向の振動変位を静電容量の変化として読み出すモニタ電極1201bを有している。
 これら2つの角速度検出エレメント1200、1201の周波数応答を、図13を用いて説明する。図13は、2つの角速度検出エレメントの、駆動側周波数応答と検出側周波数応答の一例を示す図である。ここで、f1はロール角速度検出エレメント1200の駆動方向の共振周波数、Q1は同共振周波数におけるゲイン、f2はピッチ角速度検出エレメント1201の駆動方向の共振周波数、Q2は同共振周波数におけるゲイン、f3はロールおよびピッチ角速度検出エレメント1200、1201の検出方向の共振周波数、Q3は同共振周波数におけるゲインである。なおここで、この図13では、ロール角速度検出エレメント1200とピッチ角速度検出エレメント1201の検出側周波数応答が同一となるように構成しているが、必ずしも一致させる必要はない。
 今、f1とf2が離れているので、ロール角速度検出エレメント1200の駆動方向の共振周波数に、検出回路の共通クロック源1214を同期させた場合、ロール角速度検出エレメント1200の駆動方向は図13のG1=Q1であるのに対し、ピッチ角速度検出エレメント1201の駆動方向ゲインは図13のG2<Q2となるため、本来の共振による機械品質係数で表されるゲインを生かしきることはできない。しかしながら、かかる構成によって、1つの共通クロック源1214が信号処理LSIチップC7のすべてのクロックを司るので、回路構成の単純化に貢献できる。例えば、レンジの狭い(スケールファクターの大きい)検出軸に共通クロック源1214が同期するように構成すれば、電圧信号移行のレンジ差が縮小し、より回路の設計上の制約を削減できる。
 この前提を用いて、当該回路の構成を図12で説明する。ロール角速度検出エレメント1200は、駆動方向に振動を生じさせる駆動力を、静電力によってもらすための駆動電極1200a、駆動方向の振動変位を静電容量の変化として読み出すモニタ電極1200bを有している。共通クロック源1214が生成したクロックを分周器1215で適切な周波数に分周し、アンプ1217を通じて適切な電圧レベルに変換したキャリア信号をロール角速度検出エレメント1200の可動部に与える。モニタ電極1200bが構成する静電容量は、ロール角速度検出エレメント1200の可動部の変位によって変化が発生するので、キャリア信号が印加されたモニタ電極1200bが構成する静電容量に準じた交流電流が発生することになる。
 ピッチ角速度検出エレメント1201は、駆動方向に振動を生じさせる駆動力を、静電力によってもらすための駆動電極1201a、駆動方向の振動変位を静電容量の変化として読み出すモニタ電極1201bを有している。共通クロック源1214が生成したクロックを分周器1227で適切な周波数に分周し、アンプ1230を通じて適切な電圧レベルに変換したキャリア信号をピッチ角速度検出エレメント1201の可動部に与える。モニタ電極1201bが構成する静電容量は、ピッチ角速度検出エレメント1201の可動部の変位によって変化が発生するので、キャリア信号が印加されたモニタ電極1201bが構成する静電容量の変化、すなわち可動部の変位に準じた交流電流が発生する。
 次に、この電流によって表されるロール角速度検出エレメント1200の変位情報を、信号処理LSIチップC7内のロール駆動側CV変換部1202を通じて容量成分を電圧に変換し、さらにロール駆動側ADC部1203を経てデジタル値を得る。デジタル領域に変換された信号は、デジタル信号領域のロール駆動側同期検波部1204において、駆動信号と同じ周波数かつ、変位信号とマッチした位相をもつ基準信号を用いて同期検波を行い、変位振動振幅成分を取り出す同期検波処理と、駆動信号と同じ周波数かつ、変位信号より90度進んだ位相をもつ基準信号を用いて同期検波を行い、ロール角速度検出エレメント1200の駆動方向の共振周波数と駆動周波数の差を取り出す同期検波処理の2つを行う。
 同様に、電流によって表されるピッチ角速度検出エレメント1201の変位情報を、信号処理LSIチップC7内のピッチ駆動側CV変換部1219を通じて容量成分を電圧に変換し、さらにピッチ駆動側ADC部1220を経てデジタル値を得る。デジタル領域に変換された信号は、デジタル信号領域のピッチ駆動側同期検波部1221において、駆動信号と同じ周波数かつ、変位信号とマッチした位相をもつ基準信号を用いて同期検波を行い、変位振動振幅成分を取り出す同期検波処理を行う。一方、ピッチ角速度検出エレメント1201側では、駆動信号と同じ周波数かつ、変位信号より90度進んだ位相をもつ基準信号を用いる同期検波は実施しない。
 同期検波処理によって得られた振幅情報は、ロール・ピッチ角速度検出エレメント1200、1201の駆動方向の振動が予め定められた所望の振幅に達するように制御がなされ、その制御出力は可変アンプ1216、1229のゲイン調整に用いられる。ゲイン調整を経た駆動信号は、ロール・ピッチ角速度検出エレメント1200、1201のそれぞれに、向かい合う電極同士で逆位相になるように、一方の電極は直接、もう一方の電極は位相反転器1218、1231を経て、それぞれ駆動信号が印加される。この一定振幅を維持する制御のループによって、ロール・ピッチ角速度検出エレメント1200、1201は、予め定められた所定の振幅での振動が維持される。一方、ロール側同期検波処理によって得られた、ロール角速度検出エレメント1200の駆動方向の共振周波数と駆動周波数の差は、ロール周波数制御部1205に与えられ、制御出力は共通クロック源1214へと与えられ、ロール角速度検出エレメント1200の駆動方向の共振周波数と駆動周波数の差が縮まる方向に向かうように周波数制御ループが構成される。
 以上に示した構成によって、ロール角速度検出エレメント1200の駆動方向の共振周波数と駆動周波数が一致する。また、回路のデジタル部D1のクロックはすべて共通クロック源1214を基にしている。かかる構成とすることによって、デジタル部D1の基準クロックを別途準備する必要がなく、また、ロール角速度検出エレメント1200の高い機械品質係数を用いた周波数安定性が得られるため、デジタル部D1のクロックをロール角速度検出エレメント1200の駆動方向の共振周波数に同期させることにはシステム構成の簡易化の観点で利点がある。
 次に、角速度を検出する手順については、前記実施の形態1と同様である。ロール・ピッチ角速度検出エレメント1200、1201は、検出方向への振動変位を静電容量の変化として読み出す検出電極1200c、1201cをそれぞれ有する。ロール・ピッチ角速度検出エレメント1200、1201が予め定められた駆動方向に振動していると、角速度が印加されたとき、駆動振動方向と直交する検出方向にコリオリ力が生じる。このコリオリ力による変位によって検出電極1200c、1201cの容量が変化する。この容量変化を、アンプ1217、1230を通じて適切な電圧レベルに変換したキャリア信号によって電流化し、これを検出側CV変換部1207、1223で電圧に変換し、さらに検出側ADC部1208、1224でデジタル値に変換し、検出方向の振動とマッチした位相での同期検波を行う検出側同期検波部1209、1225によって、検出方向振動の振幅、すなわち角速度が得られる。ここで得た角速度成分は、LPF1210、1226を経て不要な高周波成分を落とし、デジタル通信回路1213より信号S1として、それぞれ上位のシステムに出力される。
 次に、本実施の形態3における角速度出力の積分に関する回路構成についての説明を行う。積分・角度計算回路1211には、ロール角速度検出エレメント1200から得た角速度と、ピッチ角速度検出エレメント1201から得た角速度の両方が入力されている。ここで、積分・角度計算回路1211では、メモリ1212を設け、予めプローバ検査等のウエハレベルで計測したロール角速度検出エレメント1200、すなわち共通クロック源1214に同期している方の角速度検出エレメントの駆動側共振周波数ないしはそれに準じた値(前記実施の形態1で定義した通り)を保存する。
 このような構成を採ることによって、ロール角速度検出エレメント1200の駆動方向の共振周波数のばらつきによって積分の誤差が生じる問題は解決され、ロール角度が精度よく計算できる他、ピッチ方向に関しても、ピッチ角速度検出エレメント1201の駆動側共振周波数ばらつきによらず、また、メモリ1212にピッチ角速度検出エレメント1201の駆動側共振周波数を保存することなく、精度良くピッチ角度が計算できる。これは、ピッチ角度計算においても、ロール角速度検出エレメント1200の駆動方向の共振周波数に応じたサンプリングが用いられ、デジタル部D1のクロックが共通であるため、前記実施の形態1に比較して検出軸を1つ増やしても、共通クロック源1214、メモリ1212、積分・角度計算回路1211は共通化できる。また、これはさらに検出軸を増やしても同様である。
 温度センサ1228の活用による補正については、前記実施の形態1と同様であるので説明を省略する。
 なお、本実施の形態3においては、図14、図15に示すような変形も可能である。図14は、別の慣性センサの構成の一例を示す構成図である。図15は、2つの角速度検出エレメントの、別の駆動側周波数応答と検出側周波数応答の一例を示す図である。図14に示すように、本実施の形態3において、共通クロック源1214に同期していない方の角速度検出エレメント、すなわちピッチ角速度検出エレメント1201で、駆動信号と同じ周波数かつ、変位信号より90度進んだ位相をもつ基準信号を用いる同期検波を、同期検波部1403で実施する。さらに、ピッチ周波数制御部1401と、可変DC電圧生成回路1402を通じて、ピッチ角速度検出エレメント1201の、駆動方向の共振周波数f2を静電ばね効果によって下げ、ロール角速度検出エレメント1200の、駆動方向の共振周波数f1に一致させる制御を行う場合、図15に示すようにピッチ角速度検出エレメント1201の、機械品質係数を活かしきることができるので、駆動電圧対感度の効率が最良となる(G1=Q1=G2=Q2)。この他、ダイナミックレンジが同等になるため、積分・角度計算回路1211によって計算される角度計算のダイナミックレンジも複数の軸で同等となる。
 以上、図14に示すような構成とすることで、複数の軸が同様のダイナミックレンジを要求する場合や、同一のエレメントを90度傾けて多軸検出に利用する場合にも、共通クロック源1214、メモリ1212、積分・角度計算回路1211を共通化し、回路構成を単純化できる。
 以上説明した本実施の形態3によれば、前記実施の形態1と同様の効果に加えて、以下の異なる効果を得ることができる。例えば、慣性センサは、2軸の角速度検出のための機械構造を有する角速度検出エレメントチップC5、C6と、これらの角速度検出エレメントチップC5、C6から角度を検出するための角速度検出回路を含む信号処理LSIチップC7と、を有する。これにより、信号処理LSIチップC7は、角速度検出エレメントチップC5、C6のうちの、1つの駆動周波数に同期し、この駆動周波数に同期している角速度検出エレメントチップC5の駆動周波数ないしはその逓倍または分周から得られる値が、予め記憶領域であるメモリ1212に保存されており、このメモリ1212に保存されている値を利用してすべての軸の傾斜角を計算することができる。
 [実施の形態4]
 本実施の形態4における慣性センサについて、図16~図18を用いて説明する。以下の実施の形態4で、特に詳細が触れられていないものについては、前記実施の形態1と同様である。本実施の形態4では、前述の1軸の角速度に加え、もう1軸の角速度を外部に出力する慣性センサの例について説明する。特に、ここでは、ロールとピッチの角速度を検出するものとする。なお、角速度を検出するための機械構造は、3軸以上でも良い。
 図16は、本実施の形態4における慣性センサの構造の一例を示す断面図である。本実施の形態4における慣性センサでは、2軸の角速度が検知できるように、角速度検出エレメントチップC5とC6、および2つの信号処理LSIチップC8とC9を、センサ内に有している。角速度検出エレメントチップC5、C6は、主面上にパッド307が設けられ、このパッド307を通じて接続される。信号処理LSIチップC8、C9は、主面上にパッド304が設けられ、このパッド304を通じて接続される。
 本実施の形態4に示す慣性センサでは、センサパッケージ部302上に2つの信号処理LSIチップC8、C9が設置され、さらに、信号処理LSIチップC8、C9上に角速度検出エレメントチップC5、C6が搭載されている。信号処理LSIチップC8、C9と、角速度検出エレメントチップC5、C6とは、信号処理LSIチップC8、C9のパッド304と、角速度検出エレメントチップC5、C6のパッド307との間にそれぞれ設けられたボンディングワイヤW1を通じて電気的に接続されている。また、信号処理LSIチップC8、C9は、センサパッケージ部302に設けられた電極305へのボンディングワイヤW1の接続によって、外部電極303との電気的接続を行う。また、キャップ部301が、センサパッケージ部302のふたとなり、センサモジュールを構成している。また、センサパッケージ部302内の配線1602によって、2つの信号処理LSIチップC8、C9は電気的に接続されており、相互通信を行う。ただし、電気的接続方法によらず、本実施の形態によるメリットは享受可能である。
 図17は、慣性センサの構成の一例を示す構成図である。本実施の形態4における慣性センサは、角速度検出エレメントチップC5、C6の部分の角速度検出エレメント401と、信号処理LSIチップC8、C9の部分の検出回路とを、有している。2つの角速度検出エレメントチップC5、C6は、同一のものであるので、角速度検出エレメントおよび各電極には同一の符号を付している。また、2つの信号処理LSIチップC8、C9も、同一のものであるので、各部には同一の符号を付している。2つの信号処理LSIチップC8、C9は、基本的に同一のものであるが、本実施の形態4は、片方の信号処理LSIチップC8のデジタル通信回路1713に、通信のための配線1602を経由して接続されている。また、2つの信号処理LSIチップC8、C9内のメモリ412には、それぞれの角速度検出エレメント401の駆動側共振周波数や、それに準じる値が記録されており、積分計算を高精度に実施可能となっている。
 本実施の形態4のように、片方の信号処理LSIチップC8のデジタル通信回路1713に上位システムへの通信経路をまとめることによって、複数軸角度の積分計算を高精度に実施した結果を、より少ない通信線の数で上位システムに通知することができる。また、複数軸の角度を出力する場合は、最終的な測定対象物の姿勢を「ZXYのオイラー角」や「回転行列」など、予め決められた手順で得られる結果に変換して出力する場合がある。このような出力を行う場合も、片方の信号処理LSIチップC8のデジタル通信回路1713に出力演算装置を備えることで、本実施の形態4での対応が可能である。
 また、この構成は、図18に示すようなセンサモジュールとしてまとめることができる。図18は、センサモジュールの構成の一例を示す構成図である。図18に示すように、前記実施の形態1の角速度を検知して角度を出力する慣性センサ1801、1802を、マイコン1803でまとめ、そして、トランシーバIC1804を含むセンサモジュール1806としてまとめて、CANバス1805等の通信方式を経て上位システムに通知する形としても良い。
 なお、一般に、トレーラー(牽引自動車)のように、運転席と荷台が分離可能な車両においては、運転席と荷台の運動エネルギー伝達において遅延や遊びがあるため、センサモジュールの取り付け位置によって、検出される角速度・加速度が異なる。このような場合は、センサの取り付け位置を荷台の後端に取り付けるなど、最も傾きに対して敏感な箇所に取り付けることが望ましい。前記のように多軸の角度計算結果をまとめて出力できる構成であれば、制御ユニットから離れた位置にセンサを取り付けても、通信線の数や通信量の削減、およびビットエラーに対する耐性が得られる。
 以上説明した本実施の形態4によれば、前記実施の形態1と同様の効果に加えて、以下の異なる効果を得ることができる。例えば、慣性センサは、2軸の角速度検出のための機械構造を有する角速度検出エレメントチップC5、C6と、これらの角速度検出エレメントチップC5、C6から角度を検出するための角速度検出回路を含む信号処理LSIチップC8、C9と、を有する。これにより、信号処理LSIチップC8、C9は、複数の角度の計算結果から得られる、一意に測定対象の姿勢が得られる値を計算し、この計算した値を出力することができる。
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
 例えば、本発明は、遠心力のような慣性力の存在する環境において、測定対象の角度や姿勢を安価かつ高精度に実現する上で有益である。また、故障診断において、故障の検出可能性が高いため、車載応用など、信頼性が求められるアプリケーションへの適用も好適である。
 また、上記した実施の形態は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
C1、C5、C6 角速度検出エレメントチップ
C2、C4、C7、C8、C9 信号処理LSIチップ
C3 加速度検出エレメントチップ
401、1200、1201 角速度検出エレメント
402、407、1202、1207、1219、1223 CV変換部
403、408、1203、1208、1220、1224 ADC部
404、409、1204、1209、1221、1225、1403 同期検波部
405、1205、1401 周波数制御部
406、1206、1222 振幅制御部
410、1210、1226 LPF
411、1211 積分・角度計算回路
412、1212 メモリ
413、1213 デジタル通信回路
414、1214 共通クロック源
415、1215、1227 分周器
416、1216、1229 可変アンプ
417、1217、1230 アンプ
418、1218、1231 位相反転器
419、1228 温度センサ
1000 積分・角度計算・診断回路
1001a、1001b 加速度検出エレメント
1402 可変DC電圧生成回路

Claims (15)

  1.  角速度検出のための機械構造を有する角速度検出エレメントと、
     前記角速度検出エレメントから角速度を検出するための角速度検出回路と、
     を有し、
     前記角速度検出回路は、前記角速度検出エレメントから得られる信号を、前記角速度検出エレメントの駆動周波数に同期した離散時間でサンプリングすることで傾斜角を計算する、慣性センサ。
  2.  請求項1に記載の慣性センサにおいて、
     前記角速度検出回路が前記角速度検出エレメントから得る信号は、角速度である、慣性センサ。
  3.  請求項2に記載の慣性センサにおいて、
     前記角速度検出回路の動作クロックは、前記角速度検出エレメントの駆動周波数に同期している、慣性センサ。
  4.  請求項3に記載の慣性センサにおいて、
     前記角速度検出回路が傾斜角を計算する信号処理は、時間積分である、慣性センサ。
  5.  請求項4に記載の慣性センサにおいて、
     前記角速度検出エレメントの駆動周波数は、前記角速度検出エレメントの共振周波数である、慣性センサ。
  6.  請求項4に記載の慣性センサにおいて、
     前記角速度検出エレメントの駆動周波数は、前記角速度検出エレメントの機械品質係数によるゲインを得られる周波数である、慣性センサ。
  7.  請求項5に記載の慣性センサにおいて、
     前記角速度検出エレメントの駆動周波数ないしはその逓倍または分周から得られる値が、予め前記角速度検出回路内の記憶領域に保存されており、
     前記角速度検出回路は、前記記憶領域に保存されている値を利用して傾斜角を計算する、慣性センサ。
  8.  請求項7に記載の慣性センサにおいて、
     前記角速度検出回路が積分計算に用いる角速度は、角速度として出力するLPFを経る前の信号である、慣性センサ。
  9.  請求項7に記載の慣性センサにおいて、
     前記角速度検出回路の積分計算は、温度センサによって補正が行われる、慣性センサ。
  10.  請求項7に記載の慣性センサにおいて、
     前記角速度検出回路の積分計算は、外部からのリセット信号によって積分値をリセットする、慣性センサ。
  11.  請求項7に記載の慣性センサにおいて、
     前記角速度検出回路の積分計算は、外部からの、測定対象の運動状態を示す信号から、この測定対象の移動が発生していない、またはこの測定対象に重力以外の加速度がかかっていないことを検知し、この検知のタイミングで積分値をリセットする、慣性センサ。
  12.  請求項7に記載の慣性センサにおいて、
     加速度検出のための機械構造を有する加速度検出エレメントと、
     前記加速度検出エレメントから加速度を検出するための加速度検出回路と、
     をさらに有し、
     前記加速度検出回路は、加速度の逆三角関数から得る傾斜角の結果と、角速度の時間積分から得る傾斜角の結果との差が、一定値を越えた場合に何れかのセンサが故障していると判断する、慣性センサ。
  13.  請求項7に記載の慣性センサにおいて、
     少なくとも2軸以上の角速度検出のための機械構造を有する複数の前記角速度検出エレメントと、
     前記複数の角速度検出エレメントから角度を検出するための前記角速度検出回路と、
     を有し、
     前記角速度検出回路は、前記複数の角速度検出エレメントのうちの、1つの駆動周波数に同期し、
     前記駆動周波数に同期している角速度検出エレメントの駆動周波数ないしはその逓倍または分周から得られる値が、予め前記記憶領域に保存されており、
     前記角速度検出回路は、前記記憶領域に保存されている値を利用してすべての軸の傾斜角を計算する、慣性センサ。
  14.  請求項7に記載の慣性センサにおいて、
     少なくとも2軸以上の角速度検出のための機械構造を有する複数の前記角速度検出エレメントと、
     前記複数の角速度検出エレメントから角度を検出するための前記角速度検出回路と、
     を有し、
     前記角速度検出回路は、複数の角度の計算結果から得られる、一意に測定対象の姿勢が得られる値を計算し、この計算した値を出力する、慣性センサ。
  15.  請求項7に記載の慣性センサにおいて、
     前記角速度検出回路は、
     前記角速度検出エレメントの駆動周波数ないしはその逓倍または分周から得られる値を予め保存する記憶領域と、
     前記角速度検出エレメントから得られる信号を、前記角速度検出エレメントの駆動周波数に同期した離散時間でサンプリングすることで傾斜角を計算し、この傾斜角の計算の際に前記記憶領域に保存されている値を利用して傾斜角を計算する計算回路と、
     を有する、慣性センサ。
PCT/JP2016/063035 2015-05-29 2016-04-26 慣性センサ WO2016194524A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/576,037 US10955243B2 (en) 2015-05-29 2016-04-26 Inertial sensor
CN201680022907.5A CN107532904B (zh) 2015-05-29 2016-04-26 惯性传感器
EP16802961.9A EP3306269B1 (en) 2015-05-29 2016-04-26 Inertial sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-110442 2015-05-29
JP2015110442A JP6429199B2 (ja) 2015-05-29 2015-05-29 慣性センサ

Publications (1)

Publication Number Publication Date
WO2016194524A1 true WO2016194524A1 (ja) 2016-12-08

Family

ID=57440646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063035 WO2016194524A1 (ja) 2015-05-29 2016-04-26 慣性センサ

Country Status (5)

Country Link
US (1) US10955243B2 (ja)
EP (1) EP3306269B1 (ja)
JP (1) JP6429199B2 (ja)
CN (1) CN107532904B (ja)
WO (1) WO2016194524A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018209485A1 (de) * 2018-06-14 2019-12-19 Robert Bosch Gmbh Verfahren zum Abgleich eines Drehratensensors und einer Auswerteeinheit des Drehratensensors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06191790A (ja) * 1992-12-28 1994-07-12 Nippon Steel Corp 吊荷の振れ角度及び振れ角速度検出装置
JPH0771964A (ja) * 1993-09-06 1995-03-17 Clarion Co Ltd ジャイロのドリフト補正方法及びその補正回路
JP2011047921A (ja) * 2009-06-03 2011-03-10 Stmicroelectronics Srl 位置制御駆動を備えるマイクロエレクトロメカニカルジャイロスコープ及びマイクロエレクトロメカニカルジャイロスコープの制御方法
JP2011064515A (ja) * 2009-09-16 2011-03-31 Hitachi Automotive Systems Ltd 角速度および加速度検出装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010105316A (ko) * 1998-12-17 2001-11-28 도낀 가부시끼가이샤 방향각 검출기
SE0300303D0 (sv) * 2003-02-06 2003-02-06 Nordnav Technologies Ab A navigation Method and Apparatus
KR100620118B1 (ko) * 2004-03-31 2006-09-13 학교법인 대양학원 관성센서를 이용한 보행패턴 분석장치 및 그 방법
US8239162B2 (en) 2006-04-13 2012-08-07 Tanenhaus & Associates, Inc. Miniaturized inertial measurement unit and associated methods
US20160047675A1 (en) * 2005-04-19 2016-02-18 Tanenhaus & Associates, Inc. Inertial Measurement and Navigation System And Method Having Low Drift MEMS Gyroscopes And Accelerometers Operable In GPS Denied Environments
JP5301767B2 (ja) * 2006-06-13 2013-09-25 日立オートモティブシステムズ株式会社 慣性センサ
JP5622347B2 (ja) * 2006-08-09 2014-11-12 セイコーエプソン株式会社 慣性センサ装置
JP4807301B2 (ja) 2007-03-30 2011-11-02 日本電気株式会社 姿勢角計測装置及び該姿勢角計測装置に用いられる姿勢角計測方法
CN201293646Y (zh) * 2008-12-02 2009-08-19 西安中星测控有限公司 多组合角速率陀螺仪
DE112010005045T5 (de) * 2010-02-17 2012-10-25 Asahi Kasei Microdevices Corp. Oszillationstyp-Trägheitskraftsensor
JP2011203028A (ja) * 2010-03-25 2011-10-13 Hitachi Automotive Systems Ltd 角速度および加速度の検出装置
CN101915588B (zh) * 2010-07-14 2011-11-09 北京航空航天大学 一种惯性器件的温度误差补偿方法
US20130068017A1 (en) * 2011-09-20 2013-03-21 Noel Perkins Apparatus and method for analyzing the motion of a body
JP5963567B2 (ja) 2012-06-26 2016-08-03 日立オートモティブシステムズ株式会社 慣性センサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06191790A (ja) * 1992-12-28 1994-07-12 Nippon Steel Corp 吊荷の振れ角度及び振れ角速度検出装置
JPH0771964A (ja) * 1993-09-06 1995-03-17 Clarion Co Ltd ジャイロのドリフト補正方法及びその補正回路
JP2011047921A (ja) * 2009-06-03 2011-03-10 Stmicroelectronics Srl 位置制御駆動を備えるマイクロエレクトロメカニカルジャイロスコープ及びマイクロエレクトロメカニカルジャイロスコープの制御方法
JP2011064515A (ja) * 2009-09-16 2011-03-31 Hitachi Automotive Systems Ltd 角速度および加速度検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3306269A4 *

Also Published As

Publication number Publication date
EP3306269A1 (en) 2018-04-11
EP3306269B1 (en) 2021-02-24
US20180156615A1 (en) 2018-06-07
CN107532904A (zh) 2018-01-02
CN107532904B (zh) 2021-06-01
JP2016223910A (ja) 2016-12-28
US10955243B2 (en) 2021-03-23
EP3306269A4 (en) 2019-03-06
JP6429199B2 (ja) 2018-11-28

Similar Documents

Publication Publication Date Title
US10256832B2 (en) Failure determination circuit, physical quantity measurement device, electronic apparatus, vehicle, and failure determination method
JP6641712B2 (ja) 回路装置、電子機器及び移動体
US10794776B2 (en) Failure determination circuit, physical quantity measurement device, electronic apparatus, and vehicle
JP6972845B2 (ja) 物理量測定装置、電子機器及び移動体
US20090150029A1 (en) Capacitive integrated mems multi-sensor
US10055975B2 (en) Circuit device, physical quantity detection device, electronic apparatus, and moving object
JP6629691B2 (ja) センサパッケージおよび自動運転車両
US11014571B2 (en) Physical quantity measurement device, electronic apparatus, and vehicle
JP6429199B2 (ja) 慣性センサ
JP5889396B2 (ja) 角速度センサ
US10677610B2 (en) Circuit device, physical quantity detection device, electronic apparatus, and vehicle
Vigna It makes sense: How extreme analog and sensing will change the world
JP6848299B2 (ja) 回路装置、物理量検出装置、発振器、電子機器及び移動体
KR101289138B1 (ko) 관성센서 제어모듈 및 그 제어방법
US9987662B2 (en) Drive circuit, vibrator device, electronic apparatus, and moving object
JP2018179614A (ja) 角速度検出装置
JP7323015B2 (ja) 物理量処理回路、物理量検出装置、電子機器、及び移動体
US11879906B2 (en) Inertial sensor sensing of vibration frequency
JP7375420B2 (ja) 回路装置、物理量測定装置、電子機器及び移動体
JP2019174368A (ja) 回路装置、物理量測定装置、電子機器、移動体及び位相調整方法
JP6478034B2 (ja) 角速度検出装置の評価方法、信号処理回路、角速度検出装置、電子機器及び移動体
JP2018165640A (ja) 回路装置、物理量測定装置、電子機器及び移動体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16802961

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15576037

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE