CN107532904B - 惯性传感器 - Google Patents

惯性传感器 Download PDF

Info

Publication number
CN107532904B
CN107532904B CN201680022907.5A CN201680022907A CN107532904B CN 107532904 B CN107532904 B CN 107532904B CN 201680022907 A CN201680022907 A CN 201680022907A CN 107532904 B CN107532904 B CN 107532904B
Authority
CN
China
Prior art keywords
angular velocity
velocity detection
detection element
inertial sensor
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680022907.5A
Other languages
English (en)
Other versions
CN107532904A (zh
Inventor
前田大辅
小埜和夫
林雅秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Publication of CN107532904A publication Critical patent/CN107532904A/zh
Application granted granted Critical
Publication of CN107532904B publication Critical patent/CN107532904B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5776Signal processing not specific to any of the devices covered by groups G01C19/5607 - G01C19/5719
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/166Mechanical, construction or arrangement details of inertial navigation systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/183Compensation of inertial measurements, e.g. for temperature effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Signal Processing (AREA)
  • Gyroscopes (AREA)
  • Navigation (AREA)

Abstract

目的在于,在具备具有与角速度检测元件的共振频率同步的结构的角速度检测电路的惯性传感器中,实现用于角度检测的积分电路中的累计误差小的高精度角度输出。惯性传感器具有:角速度检测元件芯片(C1),其具有用于角速度检测的机械结构;信号处理LSI芯片(C2),其是用于从该角速度检测元件芯片(C1)检测角速度的角速度检测电路。信号处理LSI芯片(C2)通过在与所述角速度检测元件芯片(C1)的驱动频率同步的离散时间对从角速度检测元件芯片(C1)得到的信号进行采样,来计算倾斜角。

Description

惯性传感器
技术领域
本发明涉及惯性传感器,即角速度传感器、加速度传感器、以及通过其信号处理来计算角度的传感器。
背景技术
作为使用被称为MEMS(Micro Electro Mechanical Systems,微电子机械系统)的半导体的细微加工技术进行制作的装置的应用例之一,有惯性传感器。由于使用半导体工艺来制作MEMS惯性传感器,因此能够并列制作大数量的检测元件。这种情况带来以前为高价格的惯性传感器的低价格化,并实现车载的惯性传感器。
其中也具有检测车体的倾斜(倾斜度)的惯性传感器的应用。即,是检测车体的滚转倾斜和俯仰倾斜,并控制它们或运行安全装置来防止乘客受到伤害的安全装置的应用。
一般来说,倾斜的检测方法有两种。第一个是根据重力在垂直方向始终为1g(9.8m/s2),从加速度传感器的输出来计算反三角函数,并得到倾斜的方法。如果具有最低1轴的加速度传感器则能够实现该方法,由于反三角函数因倾斜的角度不同而产生的灵敏度差大(例如,对于Sin函数,在角度0度附近与角度变化相对的斜率较大,在±90度附近与角度变化相对的斜率变小),所以,大多根据2轴的加速度传感器的比得到倾斜(斜率)。
但是,在将上述方法作为车载的倾斜检测传感器来使用时存在问题。即,在车体进行曲线行驶,或者进行加速时,因为产生离心力,所以重力以外的加速度施加到传感器。在这种情况下,在假设施加到传感器的加速度为各轴的总和为1g的反三角函数的计算方法中,无法得到正确的倾斜。
另一方面,作为另一个方法,是对角速度进行时间累计的方法。因为角速度的单位是度/秒,所以通过对角速度传感器的输出进行时间累计,能够检测传感器倾斜的角度(方向)。
作为本技术领域的背景技术,例如具有专利文献1。在专利文献1中公开了,对通过对上述的角速度传感器的输出、加速度传感器的输出进行信号处理而得到的角速度推定结果中的、可靠性高的一方的信号进行时间累计,来得到姿态角这样的姿态角测量装置。
另外,作为用于检测角速度的角速度检测元件、以及检测电路的结构例,还存在专利文献2所公开的内容。
现有技术文献
专利文献
专利文献1:日本特开2008-256381号公报
专利文献2:日本特开2011-64515号公报
发明内容
发明所要解决的课题
如上述专利文献1所示,作为对于使用由角速度的累计而获得角度的结构的情况进行了探讨的结果,明确了以下的课题。
在通过数字信号处理来进行累计时,基本上,在采样间隔中对施加角速度输出的情况进行累计。为此,在累计中所使用的采样间隔的值与实际的采样间隔之间的误差,直接关系到角度计算的误差。
如所述专利文献2所公开的那样,在传感器的角速度检测电路的动作时钟采用与角速度检测元件的共振频率同步的结构时,由于在角速度检测元件的共振频率中存在的偏差,因此角速度检测电路的动作时钟也以此为基准产生偏差,进一步地用于数字信号处理的采样间隔也产生同样的偏差。换句话说,在具有上述的“传感器的角速度检测电路与角速度检测元件的共振频率同步的结构”的角速度传感器中,检测电路自身能够识别是否与检测元件同步,但是存在无法识别在什么样的频率同步这样的、电路结构上的本质性课题。其结果是,累计所需要的采样间隔不明确这样的事实增加了传感器组装后的个别修正等时间、装置方面的负担,并造成传感器的成本上升。
另外,还考虑了使用如下方法,即传感器为别的模块,通过具有水晶振子这样的高精度时钟源的个人计算机,定期地取得角速度传感器的输出,并对角速度进行累计的方法。在这种情况下,会产生如下等的问题:(1)当产生通信错误或信号饱和时,该错误在累计误差中半永久地残留、(2)为了累计的高精度化而需要频繁地进行传感器与个人计算机之间的通信、(3)由于具有传感器的LPF(Low Pass Filter,低通滤波器),因此具有超过LPF的频率的角速度成分无法反应到累计中。特别是,在通过如CAN(Controller Area Network,控制器区域网络)总线那样不是1对1通信的通信方法来连接传感器和个人计算机时,通信的拥堵等有可能对其他的系统造成影响。
本发明的目的在于,在具有与角速度检测元件的共振频率同步的结构的角速度检测电路的惯性传感器中,实现用于角度检测的积分电路中的累计误差小的高精度角度输出。
根据本说明书的叙述以及附图,能够明确本发明的上述以及其他的目的和新的特征。
用于解决课题的手段
如下所述,简单地说明在本申请中公开的发明中的代表性内容的概要。
一个实施方式中的惯性传感器具有:角速度检测元件,其具有用于角速度检测的机械结构;以及角速度检测电路,其用于从所述角速度检测元件检测角速度。所述角速度检测电路通过在与所述角速度检测元件的驱动频率同步的离散时间对从所述角速度检测元件得到的信号进行采样,来计算倾斜角。
发明的效果
如下所述,简单地说明根据在本申请中公开的发明中的代表性内容得到的效果。
根据一个实施方式,在具备具有与角速度检测元件的共振频率同步的结构的角速度检测电路的惯性传感器中,能够实现用于角度检测的积分电路中的累计误差小的高精度角度输出。
附图说明
图1是表示本发明实施方式1中的惯性传感器的构造的一个例子的截面图。
图2是表示本发明实施方式1中的惯性传感器的结构的一个例子的结构图。
图3表示本发明实施方式1至4中的振子的振动频率与角速度的采样定时之间的关系的一个例子。
图4表示本发明实施方式1中的驱动频率测定系统的结构的一个例子。
图5表示本发明实施方式1至4中的与共振子的温度相对的共振频率的变化率的一个例子。
图6表示本发明实施方式1中的角速度检测元件的上升(启动)等待的概念、输出屏蔽(output mask)和复位请求功能的效果的一个例子。
图7表示构成本发明实施方式1中的惯性传感器的最低限度必要的结构要素。
图8是表示本发明实施方式2中的惯性传感器的结构的一个例子的截面图。
图9是表示本发明实施方式2中的惯性传感器的结构的一个例子的结构图。
图10表示本发明实施方式2中的倾斜、重力、离心力的关系的一个例子。
图11是表示本发明实施方式3中的惯性传感器的构造的一个例子的截面图。
图12是表示本发明实施方式3中的惯性传感器的结构的一个例子的结构图。
图13表示本发明实施方式3中的、两个角速度检测元件的驱动侧频率响应和检测侧频率响应的一个例子的图。
图14是表示本发明实施方式3中的另一个惯性传感器的结构的一个例子的结构图。
图15表示本发明实施方式3中的、两个角速度检测元件的另一种驱动侧频率响应和检测侧频率响应的一个例子的图。
图16是表示本发明实施方式4中的惯性传感器的构造的一个例子的截面图。
图17是表示本发明实施方式4中的惯性传感器的结构的一个例子的结构图。
图18是表示本发明实施方式4中的传感器模块的结构的一个例子的结构图。
具体实施方式
在以下的实施方式中,为了方便,在必要的时候分割为多个部分或实施方式来进行说明,除了特别指明的情况,它们不是相互无关系,而是一方是另一方的一部分或全部的变形例、详细、补充说明等的关系。另外,在以下的实施方式中,当提到要素的数量等(包含个数、数值、量、范围等)时,除了特别指明的情况以及原理性明确地被限定为特定的数量的情况等,并不限定于该特定的数量,也可以是特定的数量以上或以下。
并且,在以下的实施方式中,该结构要素(还包含要素步骤等)除了特别指明的情况以及原理性明确地认为必须的情况等,当然不一定是必须的。同样地,在以下的实施方式中,当提到结构要素等形状、位置关系等时,除了特别指明的情况以及原理性明确地认为不是那样的情况等,实质上包含与其形状等相似或类似的内容等。这种情况与上述数值以及范围也相同。
[实施方式的概要]
首先,对于实施方式的概要进行说明。在本实施方式的概要中,作为一例,在括弧内附带与实施方式对应的结构要素、符号等来进行说明。
一个实施方式的惯性传感器具有:角速度检测元件(角速度检测元件芯片C1、C5、C6),其具有用于角速度检测的机械结构;以及角速度检测电路(信号处理LSI芯片C2、C4、C7、C8、C9),其用于从所述角速度检测元件检测角速度。所述角速度检测电路按照与所述角速度检测元件的驱动频率同步的离散时间,对从所述角速度检测元件得到的信号进行采样,由此来计算倾斜角。
以下,基于附图来详细地说明基于上述的实施方式概要的各实施方式。此外,在用于说明实施方式的全部附图中,对于相同的部件原则上赋予相同的符号或关联的符号,并省略其重复的说明。另外,在以下的实施方式中,除了特别必要时以外,原则上不重复相同或同样部分的说明。
另外,在实施方式所使用的附图中,即使是截面图也有为了容易看见附图而省略剖面线的情况。另外,即使是平面图也有为了容易看见附图而附加剖面线的情况。
[实施方式1]
使用图1~图7来说明本实施方式1中的惯性传感器。在本实施方式1中,说明了除了角速度的输出以外,还向外部输出角度的惯性传感器的例子。
<惯性传感器的结构>
首先,使用图1来说明本实施方式1中的惯性传感器的结构。图1是表示该惯性传感器的结构的一个例子的截面图。
在本实施方式1的惯性传感器中,在传感器内具有角速度检测元件芯片C1(以下,也记为角速度检测元件)、以及信号处理LSI芯片C2,以便能够检测角速度。角速度检测元件芯片C1在主表面上设置衬垫306,通过该衬垫306来连接。信号处理LSI芯片C2在主表面上设置衬垫304,通过该衬垫304来连接。
在本实施方式1所示的惯性传感器中,在传感器封装部302上设置信号处理LSI芯片C2,并且,在信号处理LSI芯片C2上装载有角速度检测元件芯片C1。信号处理LSI芯片C2和角速度检测元件芯片C1通过设置在信号处理LSI芯片C2的衬垫304与角速度检测元件芯片C1的衬垫306之间的焊接线W1而电连接。另外,信号处理LSI芯片C2通过向设置在传感器封装部302上的电极305的焊接线W1的连接,进行与外部电极303的电连接。另外,盖部301是传感器封装部302的“盖子”,构成传感器模块(传感器的一个单位)。
此外,在这里,惯性传感器的封装方法与本申请公开的内容无关。即,通过压铸模塑法的树脂封装、在陶瓷等基板上固定芯片的模板封装等各种封装方法能够实现本申请的公开内容。
<惯性传感器的结构以及动作>
使用图2来说明本实施方式1中的惯性传感器的结构。图2是表示该惯性传感器的结构的一个例子的结构图。
本实施方式1中的惯性传感器具有角速度检测元件芯片C1的部分的角速度检测元件401、以及信号处理LSI芯片C2的部分的检测电路。角速度检测元件芯片C1是具有用于角速度检测的机械构造的角速度检测元件。信号处理LSI芯片C2是用于从角速度检测元件检测角速度的角速度检测电路。
角速度检测元件401具有驱动电极401a、监控电极401b、以及检测电极401c。检测电路具有驱动侧CV(Capacitor to Voltage,电容电压)变换部402、驱动侧ADC(Analog toDigital Convertor,模数转换器)部403、驱动侧同步检波部404、频率控制部405、以及振幅控制部406。另外,检测电路具有检测侧CV变换部407、检测侧ADC部408、检测侧同步检波部409、LPF410、积分/角度计算电路411、存储器412、以及数字通信电路413。并且,检测电路具有通用时钟源414、分频器415、可变放大器416、放大器417、相位反转器418、以及温度传感器419。在该检测电路中,CV变换部402、407、ADC部403、408、同步检波部404、409、频率控制部405、振幅控制部406、LPF410、积分/角度计算电路411、存储器412、数字通信电路413、分频器415、以及温度传感器419构成数字部D1。
这里,角速度检测元件401是所谓的振动式角速度检测元件,当针对在预先决定的驱动方向振动的振子施加了角速度时,检测在与驱动振动方向垂直(正交)的检测方向上产生的、基于科里奥利力的新的振动成分,并基于此来输出角速度信息。在这里,科里奥利力Fc如以下的式1所示。
Fc=2·m·Ω·X·ωd·cos(ωd·t) (式1)
在式1中,Fc表示科里奥利力,m表示可动部的质量,Ω表示被施加的角速度,X表示驱动方向的振动振幅,ωd/2π表示驱动频率,t表示时间。
通过式1可知,为了提高灵敏度,即得到更多科里奥利力,需要增加可动部的质量、驱动方向的振动振幅、或驱动频率。另一方面,驱动方向的最大振幅如式2所示。
[数学式1]
Figure BDA0001438872300000071
在式2中,X表示驱动方向的振动振幅,ωd/2π表示驱动频率,ωr表示驱动方向的固有振动频率,Qd表示驱动方向的机械品质系数,kd表示构成振子的支撑梁的弹簧常数,Fd表示驱动力。
为此,一般来说,振动式角速度检测元件采用通过驱动方向的固有振动频率(共振频率)维持振动,并获得机械品质系数倍的振幅增益,由此来获得相对于被施加的角速度最大的SNR(Signal to Noise Ratio,信噪比)的结构,以使得驱动电压对灵敏度的效率为最佳。这在本实施方式1中也一样。
在本实施方式1中,与上述的专利文献2所示的内容相同地,信号处理LSI芯片的时钟与角速度检测元件的共振频率同步。即,通用时钟源414生成的频率、或者其分频和倍增在电路的恒定状态中与角速度检测元件401的驱动方向的共振频率相一致。通过采用这样的结构,能够减少信号的同步检波的采样个数,并易于在数字信号区域进行同步检波。这可实现特别在使用细线工艺的LSI芯片中能够减少芯片面积,即减少成本。
角速度检测元件401具有用于通过静电力实现在驱动方向产生振动的驱动力的驱动电极401a、将驱动方向的振动位移作为静电容量的变化而读出的监控电极401b。将通用时钟源414生成的时钟由分频器415分频为适当的频率,并通过放大器417变换为适当的电压水平而得的载波信号给予到角速度检测元件401的可动部。监控电极401b构成的静电容量因角速度检测元件401的可动部的位移而发生变化,所以产生以被施加了载波信号的监控电极401b所构成的静电容量为基准的交流电流,即以角速度检测元件401的可动部的位移为基准的电流。
接着,对于通过该电流表示的角速度检测元件401的位移信息,通过信号处理LSI芯片C2内的驱动侧CV变换部402将容量成分变换为电压,并进一步经由驱动侧ADC部403得到数字值。此外,在该CV变换部402是开关电容型的CV变换电路、或者连续时间型的CV变换电路时,不依据该结构,但是优选在CV变换部402中进行载波信号的同步检波。在连续时间型的CV变换电路中需要追加的同步检波电路,在这里,为了简单,假定能够兼做同步检波电路的开关电容型的CV变换电路。另外,ADC的形式不限于∑Δ方式或依次比较方式等的方式。
此外,被变换到数字区域的信号在数字信号区域的驱动侧同步检波部404中进行下述两个同步检波处理:使用具有与驱动信号相同的频率,且与位移信号相匹配的相位的基准信号来进行同步检波,并取出位移振动振幅成分的同步检波处理;以及使用具有与驱动信号相同的频率,且相比位移信号前进了90度相位的基准信号来进行同步检波,并取出角速度检测元件401的驱动方向的共振频率与驱动频率的差的同步检波处理。
该同步检波部404具有如下特征:由于如上所述信号处理LSI芯片C2的时钟与角速度检测元件401的共振频率同步,因此即使因信号处理LSI芯片C2具有的偏差而导致角速度检测元件401的共振频率偏移,一个周期的采样数(正弦波信号的分割数)也始终保持为固定值。
通过前者同步检波处理得到的振幅信息由振幅控制部406进行控制,以便角速度检测元件401的驱动方向的振动达到预先决定的期望振幅,该控制输出用于可变放大器416的增益调整。经过了增益调整的驱动信号(在这里,驱动信号是通用时钟源414的分频,由分频器415来实现该分频)针对角速度检测元件401的驱动电极401a,以彼此相向的电极之间成为反相位的方式,一方的驱动电极直接施加驱动信号,另一方的驱动电极经由相位反转器418施加驱动信号。通过这些控制环,角速度检测元件401维持预先决定的预定振幅的振动。另一方面,通过后者同步检波处理得到的角速度检测元件401的驱动方向的共振频率与驱动频率的差被给予到频率控制部405,控制输出被给予到通用时钟源414,以朝向由角速度检测元件401的驱动方向的共振频率与驱动频率的差缩小的方向的方式构成频率控制环。
通过以上所示的结构,角速度检测元件401的驱动方向的共振频率与驱动频率一致。另外,角速度检测元件401的驱动方向的共振频率通过半导体加工的精度等表示偏差,通过频率控制部405的动作,如果位于某程度的共振频率的范围内则通用时钟源414自动地与该共振频率同步,另外,由于对于同步检波处理也是信号处理LSI芯片C2的时钟与角速度检测元件401的共振频率同步,所以即使因信号处理LSI芯片C2具有的偏差导致角速度检测元件401的共振频率偏移,一个周期的采样数也始终为固定。
在这里,对于电路的数字部D1的时钟,同步检波部404自不必说,除此以外的全部电路要素也以通用时钟源414为基础。以通用时钟源414为基础意味着,数字部D1的时钟也与角速度检测元件401的驱动方向的共振频率同步。将数字部D1的时钟与角速度检测元件401的驱动方向的共振频率同步是指,虽然在通过振动型角速度传感器进行角速度检测方面不是必要条件,但是通过设为这种结构,不需要另外准备数字部D1的基准时钟,另外,由于得到使用了角速度检测元件401的高机械品质系数的频率稳定性,因此从系统结构的简易化的观点来看,将数字部D1的时钟与角速度检测元件401的驱动方向的共振频率同步具有优点。
接着,对于检测角速度的步骤进行说明。角速度检测元件401具有将向检测方向的振动位移读出为静电容量的变化的检测电极401c。如上所述,如果角速度检测元件401在预先决定的驱动方向上振动,则在施加了角速度时,在与驱动振动方向垂直的检测方向产生科里奥利力。通过因该科里奥利力导致的位移使检测电极401c的容量发生变化。根据通过放大器417变换为适当的电压水平而得的载波信号,将该容量变化进行电流化,将其通过检测侧CV变换部407变换为电压,并进一步地通过检测侧ADC部408变换为数字值,通过进行以与检测方向的振动相匹配的相位的同步检波的检测侧同步检波部409,获得检测方向振动的振幅,即角速度。在这里,得到的角速度成分经由LPF410除去不需要的高频成分,并通过数字通信电路413作为信号S1输出到上位的系统。
接着,对于本实施方式1中的角速度输出的累计相关的电路结构进行说明。图3是在使用了角速度检测元件401的驱动方向的共振频率与驱动频率一致的电路结构的角速度传感器的信号处理电路内,为了时间累计而对角速度进行采样时的图像。图3表示振子的振动频率(横轴为时间、纵轴为振子的位移)与角速度的采样定时(横轴为时间、纵轴为角速度)之间关系的一个例子。图3(a)表示相比图3(b)角速度检测元件401的驱动方向的共振频率相对高的传感器的振动的时间序列位移、由此得到的角速度信号、以及采样间隔Ts。图3(b)表示比图3(a)的角速度检测元件401的振动方向的共振频率相对地低的传感器的振动的时间序列位移、由此得到的角速度信号、以及采样间隔Ts。
如图3(a)、(b)所示,当角速度检测元件401的驱动方向的共振频率不同时,因为全部时钟与角速度检测元件401的驱动方向的共振频率同步,所以采样间隔也以此为基准成为不同。以下,表示由离散时间累计得到角度的式3。
[数学式2]
θ=∑Ω·Ts (式3)
在式3中,θ表示累计的结果得到的角度,Ω表示被施加的角速度,Ts表示采样间隔。
如式3所示,例如,在角速度检测元件401的驱动方向的共振频率具有10%不同的两个样本时,如果将采样间隔Ts设为固定,则在这些样本的角度计算中产生的误差为10%。在更具体的例子中,在共振频率的中间值为10kHz的设计中,将Ts估算为0.1ms来一起设定时,在根据加工偏差分别具有9.5kHz和10.5kHz的角速度检测元件401的驱动方向的共振频率的两个样本间产生的误差约为10%。
这样,为了解决根据角速度检测元件401的驱动方向的共振频率的偏差产生累计的误差的问题,在本实施方式1中,对积分/角度计算电路411设置存储器412,并追加预先保存由探针检查等的晶圆等级检测到的角速度检测元件401的驱动侧共振频率或以此为基准的值(后述)的电路。积分/角度计算电路411进行以式3为基准的累计计算(倾斜角的角度计算),该积分/角度计算电路411的采样间隔是存储器412中保存的角速度检测元件401的驱动方向的共振频率、或其倍增/分频。例如,当积分/角度计算电路411的采样频率是角速度检测元件401的驱动方向的共振频率的Y分频时,Ts成为从角速度检测元件401的驱动方向的共振频率的倒数减去Y而得的值。
如上所述,在本实施方式1这样的检测电路的结构中,能够通过检测电路自身来识别通用时钟源414是否与角速度检测元件401的驱动方向的共振频率同步,但是实际上以什么样的频率来进行同步这样的频率绝对值是未知的。另一方面,通过本实施方式1所示的方法,如果在存储器412中保存角速度检测元件401的驱动侧共振频率,则因为根据记录于存储器412上的信息使积分/角度计算电路411中的采样间隔变得明确,所以能够不追加水晶振子这样的外加时钟源,或不追加来自外部的时钟信号施加、不追加来自上位系统的采样触发的输入这样的成本上升或故障风险增加的对策,而进行高精度的倾斜角的角度计算。
在这里,存储器412不限定安装方法,能够通过掩码ROM、闪存ROM等所有非易失存储器来实现。另外,即使是易失存储器,如果在启动时从上位系统通过数字通信电路413给予共振频率,也能够维持期望的功能。
另外,对于存储器412所保存的角速度检测元件401的驱动侧共振频率,不一定必须是共振频率自身,如果是共振频率的倍增/分频值、或它们的倒数等基于角速度检测元件401的驱动侧共振频率的值,则确定能够实现本实施方式1(将其定义为角速度检测元件401的驱动侧共振频率或以此为基准的值)。
另外,角速度检测元件401的驱动侧共振频率不一定必须是对各检测元件直接测量到的共振频率的值,也能够选择从检测了晶圆上的多个芯片的结果得到的趋势而修正得出的结果等,与期望的精度相应的严密度。如果晶圆内的偏差或一组(lot)的偏差、光掩模等级的偏差满足作为传感器的标准,则通过分别测量晶圆内的一个装置、一组内的一个装置、来自由该光掩模制作出的晶圆的一个装置,能够决定应保存于存储器412的值。
并且,作为其他方法,使用图4来进行说明。图4表示驱动频率测定系统的结构的一个例子。如图4所示,在由惯性传感器201、测量装置202组成的出货前检查系统中,也可以针对从惯性传感器201得到的驱动信号通过测量装置202测量其频率,并作为频率信息返回到惯性传感器201,将角速度检测元件401的驱动侧共振频率记录到存储器412中。在这种情况下,惯性传感器201的特征是,具有输出驱动信号或其数字值的功能,并在存储器412中记录角速度检测元件401的驱动侧共振频率。另外,例如也可以做到能够对惯性传感器201选择测试模式(TEST=H),从惯性传感器201得到的驱动信号只在出货前检查时出现。一般来说,因为在利用传感器时不需要监控(监测)驱动信号,因而即使不一定开放(开启)从惯性传感器201发出驱动信号的功能,也能够满足作为传感器的功能。
另外,在图2中,向积分/角度计算电路411给予的信号从紧挨着检测侧检波部409的后方发出,也可以是来自LPF410的后段的输入。前者由于能够包含甚至是高频率成分的累计,因此,相比使用经过了LPF410后的信号,一般能够期待高精度的角度计算。另一方面,由于高频噪声也进行了累计,因此因电路的噪声分布导致不成为优选的结构。另一方面,如果是后者的结构,则因为得到了除去了广域噪声的频带的信号,所以在对测定对象的响应性不高的部分进行测定时,后者这样的向积分/角度计算电路411输入经过了LPF410的信号有可能是优选的。
另外,虽然没有图示,但是在LPF410的前后段调整信号的增益时,通过向积分/角度计算电路411给予增益调整前的信号、在累计计算用中调整了增益的信号,能够防止由于信号饱和导致的累计误差的发生。这被称为在仅仅如传感器模块和个人电脑那样的由其他IC(Integrated Circuit,集成电路)单位组成的系统中无法实现的信号处理。
图5是表示与共振子的温度相对的共振频率的变化率的一个例子的图。在图5的图表中表示与使用单晶体硅制作的振子的温度(℃)相对的共振频率的变化率(%)。已知因为硅的杨氏模量根据温度而发生变动,所以振子的共振频率也根据温度如图5所示发生变化。在图5的例子中,针对温度从-50℃到150℃的变化,共振频率变化率从约0.25%到约-0.45%发生变化。为此,积分/角度计算电路411也可以具有接收温度传感器419的输出,并根据图5所示的温度和共振频率的曲线,修正采样间隔Ts的功能。图5的图表利用式4描绘,例如能够通过基于式4进行修正,来改善杨氏模量的温度特性所导致的误差。
[数学式3]
E=E0-B·T·e(-T0/T) (式4)
在式4中,T表示温度,E表示温度T的杨氏模量、E0表示OK的纵向弹性系数,B表示温度系数,T0表示近似系数。
因此,如式2所示,一般,在振动型角速度传感器中,通过活用(利用)由机械品质系数表示的振动增益来取得大的驱动侧的驱动电压对振动比,并提高SNR。另一方面,为了活用机械品质系数值,要花费在固定频率下储存该频率的振动能量的时间。最简单地,在考虑以步骤响应的方式持续给予固定振幅的频率时,达到最大振幅的63.2%的时间即“时间常数”是机械品质系数的2倍的数除以固有振动频率而得的值。即,在达到通电后马上作为角速度传感器发出正常的输出的驱动振幅之前,需要用于存储能量的时间。
图6表示角速度检测元件的上升(启动)等待的概念、以及输出屏蔽(output mask)和复位请求功能的效果的一个例子。在图6中,表示角速度检测元件的驱动振幅的一个例子(在这里,因为不是位移而是振幅,所以希望注意到表示位移的包络线)。对于角速度传感器的上升,如果角速度检测元件的驱动振幅并未充分上升,则不适合作为角速度传感器,也不适合进行角度计算。因此,在本实施方式1中,当角速度检测元件401的驱动振幅不在预先决定的阈值范围内时,附加对从数字通信电路413输出的角度输出施加屏蔽,或者输出表示角度输出无法利用的表这样的功能。通过采用这样的结构,能够排除上位系统原本不正确、在上位系统的控制中使用了错误的角度输出的担忧。
另外,在本实施方式1中,具备基于来自上位系统的重置请求(脉冲H)重置角度输出的功能。重置是将积分器的累计值(积分值)设为0的功能,例如,如果是车载用途或所谓无人驾驶飞机(无人飞机)这样的飞行物体,则上位系统优选基于车速脉冲、GPS定位信息、加速度传感器等的其他传感器信息识别车辆或飞机为停止状态,并在该时间点进行重置。在本实施方式1中,因为角速度传感器(惯性传感器)的内部电路累计角速度来计算角度,所以具备能够使用来自进行静止判断的上位系统的重置信号对累计进行重置的通信功能这样的想法,与以前在上位系统侧累计角速度,并在上位系统内重置累计值这样的一般结构完全不同。
本实施方式1的最低限度的结构如图7所示。图7表示构成惯性传感器的最低限度必要的结构要素。图7是具有通用时钟源414,频率控制部405控制该频率,角速度检测元件芯片C1具有的驱动方向的共振频率与驱动频率一致的电路结构。在这里,根据角速度进行积分/角度计算的积分/角度计算电路411是与通用时钟源414的时钟同步,并通过在存储器412中保存用于累计计算(积分计算)的采样间隔,来高精度地实施角速度累计的电路。
此外,在本文中记述为信号处理LSI芯片的时钟与角速度检测元件的共振频率同步,但是不一定需要驱动频率与共振频率一致,也可以是得到固定量的机械品质系数的频率。另外,也有难以通过频率控制判断驱动频率是否与共振频率一致的情况。在这种情况下,本文中的“共振频率”全部被替换为“驱动频率”。
<实施方式1的效果>
根据以上说明的本实施方式1,能够在具备具有与角速度检测元件401的共振频率同步的结构的角速度检测电路的惯性传感器中,实现用于角度检测的积分电路中的累计误差小的高精度的角度输出。即,能够对用于角度检测的积分电路给予正确的累计时间,并实现累计误差小的高精度角度输出。换句话说,能够不进行惯性传感器安装后的调整地,进行高精度的角度检测。更详细的内容如下所述。
(1)惯性传感器具有:角速度检测元件芯片C1,其具有用于角速度检测的机械构造;信号处理LSI芯片C2,其是用于从角速度检测元件芯片C1检测角速度的角速度检测电路。由此,信号处理LSI芯片C2能够通过在与该角速度检测元件芯片C1的驱动频率同步的离散时间,采样从角速度检测元件芯片C1得到的信号,来计算倾斜角。
(2)信号处理LSI芯片C2能够将从角速度检测元件芯片C1得到的信号设为角速度。
(3)信号处理LSI芯片C2的动作时钟能够与角速度检测元件芯片C1的驱动频率同步。
(4)信号处理LSI芯片C2计算倾斜角的信号处理能够设为时间累计。
(5)角速度检测元件芯片C1的驱动频率能够设为该角速度检测元件芯片C1的共振频率。
(6)角速度检测元件芯片C1的驱动频率能够设为得到基于该角速度检测元件芯片C1的机械品质系数的增益的频率。
(7)从角速度检测元件芯片C1的驱动频率或者其倍增或分频得到的值被预先保存到信号处理LSI芯片C2内的存储区域即存储器412,信号处理LSI芯片C2能够利用被保存到该存储器412的值来计算倾斜角。
(8)信号处理LSI芯片C2在累计计算中使用的角速度能够设为输出为角速度的、经过LPF410前的信号。
(9)信号处理LSI芯片C2的累计计算,能够通过温度传感器419来进行修正。
(10)信号处理LSI芯片C2的累计计算,能够通过来自外部的重置信号来重置累计值。
(11)信号处理LSI芯片C2的累计计算能够根据来自外部的、表示测定对象的运动状态的信号,检测该测定对象的移动没有发生、或者没有对该测定对象施加重力以外的加速度的情况,并在该检测的定时重置累计值。
(12)信号处理LSI芯片C2具有存储器412和积分/角度计算电路411。由此,存储器412能够预先保存从角速度检测元件芯片C1的驱动频率或者其倍增或分频得到的值。然后,积分/角度计算电路411能够通过在与该角速度检测元件芯片C1的驱动频率同步的离散时间采样从角速度检测元件芯片C1得到的信号,来计算倾斜角,并在该倾斜角的计算时利用被保存到存储器412的值来计算倾斜角。
[实施方式2]
使用图8~图10来说明本实施方式2中的惯性传感器。在以下的实施方式2中,对于没有特别详细说明的内容与上述实施方式1相同。在本实施方式2中,对于除了上述的角速度、角度以外,还向外部输出加速度的惯性传感器的例子进行说明。
图8是表示本实施方式2中的惯性传感器的结构的一个例子的截面图。在本实施方式2的惯性传感器中,在传感器内具有角速度检测元件芯片C1、加速度检测元件芯片C3(以下,也记为加速度检测元件)、以及信号处理LSI芯片C4,以便能够检测角速度和加速度。角速度检测元件芯片C1在主表面上设置衬垫307,并通过该衬垫307来连接。加速度检测元件芯片C3在主表面上设置衬垫308,并通过该衬垫308来连接。信号处理LSI芯片C4在主表面上设置衬垫304,并通过该衬垫304来连接。
在本实施方式2所示的惯性传感器中,在传感器封装部302上设置信号处理LSI芯片C4,并且,在信号处理LSI芯片C4上装载角速度检测元件芯片C1以及加速度检测元件芯片C3。信号处理LSI芯片C4与角速度检测元件芯片C1和加速度检测元件芯片C3通过设置在信号处理LSI芯片C4的衬垫304、角速度检测元件芯片C1的衬垫307以及加速度检测元件芯片C3的衬垫308之间的焊接线W1而电连接。另外,信号处理LSI芯片C4通过向设置在传感器封装部302上的电极305的焊接线W1的连接,进行与外部电极303的电连接。另外,盖部301是传感器封装部302的盖子,构成传感器模块。
图9是表示惯性传感器的结构的一个例子的结构图。本实施方式2中的惯性传感器具有角速度检测元件芯片C1的部分的角速度检测元件401、加速度检测元件芯片C3的部分的加速度检测元件1001a、1001b、以及信号处理LSI芯片C4的部分的检测电路。在加速度检测元件1001a、1001b中,1001a是Y方向加速度检测元件,1001b是X方向加速度检测元件。角速度检测元件401与上述的实施方式1相同。加速度检测元件1001a、1001b具有电极1001c、1001d。检测电路除了上述实施方式1的结构以外,还追加了Y侧CV变换部1002、Y侧ADC部1003、Y侧LPF1004、X侧CV变换部1005、X侧ADC部1006、以及X侧LPF1007,另外,积分/角度计算电路411被替换为积分/角度计算/诊断电路1000。
在这里,加速度检测元件1001a以及1001b分别是检测静态加速度的静电容量型元件,在向预定决定的位移方向施加了加速度时,可动部位移,由此将电极1001c、1001d所产生的静电容量的变化通过CV变换部1002、1005分别从电流变换为电压,通过ADC部1003、1006变换为数字区域,并在通过LPF1004、1007消除了不需要的频带成分后,通过数字通信电路413进行向上位系统的加速度输出。在这里,还从信号处理LSI芯片C4具有的通用时钟源414向加速度检测元件1001a以及1001b施加经由分频器415、放大器417而生成的载波信号。即,用于加速度检测的载波信号与用于角速度检测的通用时钟源414同步。通过这样的结构,能够不追加水晶振子这样的外加时钟源,而低成本地通过一个信号处理LSI芯片C4来实现检测角速度和加速度这两者。
接着,描述在本实施方式2中检测倾斜的步骤。图10表示倾斜、重力、离心力的关系的一个例子。在图10中表示存在倾斜(θ)的情况下的传感器100、重力101、重力的Cos成分102、重力的Sin成分103、以及离心力104、力的总和105。在图10中,(a)表示进行没有离心力的状态下的倾斜检测的情况,原则上使用重力101为1g,并能够根据式5求出倾斜。
[数学式4]
θ=tan-1(x/y) (式5)
在式5中,θ表示倾斜(倾斜角),x表示x方向的加速度,y表示y方向的加速度。
另一方面,在图10中,(b)中存在离心力104,因而施加到传感器100的加速度的总和为1g这样的原则被破坏,在基于式5的角度计算中产生误差。因此,在本实施方式2中,利用基于式5的使用了加速度的角度计算、以及所述实施方式1所示的基于角速度的累计的角度计算这两者,作为提高角度计算可靠性的检测电路结构。该电路结构为图9所示的结构。
在图9所示的该实施方式2中,向积分/角度计算/诊断电路1000输入角速度检测侧同步检波部409的输出信号、以及加速度检测的ADC部1003、1006的输出信号,比较基于式5的倾斜检测和基于角速度累计的倾斜检测,在比较结果为预定的阈值以内时判定为无故障,在阈值以上时判定为有故障。另外,此时,在存储器412中保存基于角速度检测元件401的驱动侧共振频率、共振频率的倍增/分频值、它们的倒数等基于角速度检测元件401的驱动侧共振频率的值,并进行基于它们的时间累计。
进一步地,通过温度传感器419进行角速度累计的温度特性修正,并且进行从加速度求出倾斜的计算中的温度特性修正(偏移、灵敏度或比例因子)。
另外,如上述实施方式1所示,也可以向积分/角度计算/诊断电路1000输入用于识别如给予车速脉冲、GPS定位信息、或来自上位系统的重置信号的通信装置那样测定对象为静止的情况的方法。例如,在测定对象静止时重置角速度累计的累计值,虽然静止状态继续,但是如果基于角速度累计的角度检测量与基于加速度的角度检测量之间产生矛盾,则能够识别故障。
传感器也可以构成为,用户能够选择得到基于角速度累计的角度和从加速度得到的角度中某个的值(未图示)。例如,因在行驶中有可能进入离心力因而使用基于角速度累计的角度,在静止中为了坡道检测而使用来自可知绝对角度的加速度的角度的情况下,这样的方法是有益的。
通过以上说明的本实施方式2,除了能够得到与上述实施方式1相同的效果以外,还能够得到以下不同的效果。例如,惯性传感器还具有:加速度检测元件芯片C3,其具有用于加速度检测的机械构造;信号处理LSI芯片C4,其包含用于从该加速度检测元件芯片C3检测加速度的加速度检测电路。由此,信号处理LSI芯片C4能够在从加速度的反三角函数得到的倾斜角的结果与从角速度的时间累计得到的倾斜角的结果之间的差超过了固定值时,判断为某个传感器发生了故障。
[实施方式3]
使用图11~图15来说明本实施方式3中的惯性传感器。在以下的实施方式3中,对于没有特别详细涉及的内容与上述实施方式1相同。在本实施方式3中,对于除了上述的1轴的角速度以外,还向外部输出另1轴的角速度的惯性传感器的例子进行说明。特别是在这里检测滚转(roll)和俯仰(pitch)的角速度。此外,用于检测角速度的机械结构也可以为3轴以上。
图11是表示本实施方式3中的惯性传感器的结构的一个例子的断面图。在本实施方式3的惯性传感器中,在传感器内具有角速度检测元件芯片C5和C6、以及信号处理LSI芯片C7,以便能够检测2轴的角速度。角速度检测元件芯片C5、C6在主表面上设置衬垫307,并通过该衬垫307来连接。信号处理LSI芯片C7在主表面上设置衬垫304,并通过该衬垫304来连接。
在本实施方式3所示的惯性传感器中,在传感器封装部302上设置信号处理LSI芯片C7,并且,在信号处理LSI芯片C7上装载角速度检测元件芯片C5、C6。信号处理LSI芯片C7与角速度检测元件芯片C5、C6通过分别设置在信号处理LSI芯片C7的衬垫304、角速度检测元件芯片C5、C6的衬垫307之间的焊接线W1电连接。另外,信号处理LSI芯片C7通过向设置在传感器封装部302上的电极305的焊接线W1的连接进行与外部电极303的电连接。另外,盖部301是传感器封装部302的盖子,构成传感器模块。
图12是表示惯性传感器的结构的一个例子的结构图。本实施方式3中的惯性传感器具有角速度检测元件芯片C5、C6的部分的角速度检测元件1200、1201、以及信号处理LSI芯片C7的部分的检测电路。在角速度检测元件1200、1201中,1200是滚转角速度检测元件,1201是俯仰角速度检测元件。角速度检测元件1200、1201具有驱动电极1200a、1201a、监控电极1200b、1201b、以及检测电极1200c、1201c。检测电路具有CV变换部1202、1207、ADC部1203、1208、同步检波部1204、1209、频率控制部1205、振幅控制部1206、以及LPF1210。另外,检测电路具有CV变换部1219、1223、ADC部1220、1224、同步检波部1221、1225、振幅控制部1222、以及LPF1226。进一步地,检测电路具有积分/角度计算电路1211、存储器1212、数字通信电路1213、通用时钟源1214、分频器1215、1227、可变放大器1216、1229、放大器1217、1230、相位反转器1218、1231、以及温度传感器1228。
在这里,在滚转角速度检测元件1200中,具有用于通过静电力得到在驱动方向产生振动的驱动力的驱动电极1200a、读出驱动方向的振动位移作为静电容量的变化的监控电极1200b。另一方面,在俯仰角速度检测元件1201中,具有用于通过静电力得到在驱动方向产生振动的驱动力的驱动电极1201a、读出驱动方向的振动位移作为静电容量的变化的监控电极1201b。
使用图13来说明这两个角速度检测元件1200、1201的频率响应。图13表示两个角速度检测元件的驱动侧频率响应和检测侧频率响应的一个例子。在这里,f1是滚转角速度检测元件1200的驱动方向的共振频率,Q1是该共振频率的增益,f2是俯仰角速度检测元件1201的驱动方向的共振频率,Q2是该共振频率的增益,f3是滚转以及俯仰角速度检测元件1200、1201的检测方向的共振频率,Q3是该共振频率的增益。此外在该图13中构成为滚转角速度检测元件1200和俯仰角速度检测元件1201的检测侧频率响应相同,但是不一定需要一致。
现在,因为f1和f2被分离,所以在使检测电路的通用时钟源1214与滚转角速度检测元件1200的驱动方向的共振频率同步时,滚转角速度检测元件1200的驱动方向是图13的G1=Q1,相比之下,俯仰角速度检测元件1201的驱动方向增益为图13的G2<Q2,因此,无法活用(生かしきる)由基于本来的共振的机械品质系数表示的增益。然而,通过该结构,因为一个通用时钟源1214管理信号处理LSI芯片C7的全部时钟,所以能够对电路结构的简单化做出贡献。例如,如果构成为,通用时钟源1214与范围狭小(比例因子大)的检测轴同步,则能够缩小电压信号移动的范围差,并进一步削减电路设计上的制约。
使用该前提,通过图12来说明该电路的结构。滚转角速度检测元件1200具有用于通过静电力得到在驱动方向产生振动的驱动力的驱动电极1200a、读出驱动方向的振动位移作为静电容量的变化的监控电极1200b。将通用时钟源1214生成的时钟通过分频器1215分频为适当的频率,并将通过放大器1217变换为适当的电压水平的载波信号给予到滚转角速度检测元件1200的可动部。监控电极1200b构成的静电容量因滚转角速度检测元件1200的可动部的位移而发生变化,所以产生以被施加了载波信号的监控电极1200b构成的静电容量为基准的交流电流。
俯仰角速度检测元件1201具有用于通过静电力得到在驱动方向产生振动的驱动力的驱动电极1201a、读出驱动方向的振动位移作为静电容量的变化的监控电极1201b。将通用时钟源1214生成的时钟通过分频器1227分频为适当的频率,并将通过放大器1230变换为适当的电压水平的载波信号给予到俯仰角速度检测元件1201的可动部。监控电极1201b构成的静电容量因俯仰角速度检测元件1201的可动部的位移而发生变化,所以产生以被施加了载波信号的监控电极1201b构成的静电容量的变化,即以可动部的位移为基准的交流电流。
接着,对于通过该电流表示的滚转角速度检测元件1200的位移信息,通过信号处理LSI芯片C7内的滚转驱动侧CV变换部1202将容量成分变换为电压,并进一步经由滚转驱动侧ADC部1203得到数字值。被变换到数字区域的信号在数字信号区域的滚转驱动侧同步检波部1204中进行下述两个同步检波处理:使用具有与驱动信号相同的频率、且与位移信号相匹配的相位的基准信号来进行同步检波,并取出位移振动振幅成分的同步检波处理;使用具有与驱动信号相同的频率、且相比位移信号前进了90度的相位的基准信号来进行同步检波,并取出滚转角速度检测元件1200的驱动方向的共振频率与驱动频率的差的同步检波处理。
同样地,对于通过该电流表示的俯仰角速度检测元件1201的位移信息,通过信号处理LSI芯片C7内的俯仰驱动侧CV变换部1219将容量成分变换为电压,并进一步经由俯仰驱动侧ADC部1220得到数字值。变换到数字区域的信号在数字信号区域的俯仰驱动侧同步检波部1221中,进行如下的同步检波处理,即使用具有与驱动信号相同的频率、且与位移信号相匹配的相位的基准信号来进行同步检波,并取出位移振动振幅成分的同步检波处理。另一方面,在俯仰角速度检测元件1201侧,不实施使用具有与驱动信号相同的频率、且相比位移信号前进了90度的相位的基准信号的同步检波。
通过同步检波处理得到的振幅信息被控制为滚转/俯仰角速度检测元件1200、1201的驱动方向的振动达到预先决定的期望振幅,该控制输出用于可变放大器1216、1229的增益调整。经过了增益调整的驱动信号分别针对滚转/俯仰角速度检测元件1200、1201的驱动电极401a,以彼此相对的电极之间为反相位的方式,一方的驱动电极直接施加驱动信号,另一方的驱动电极经由相位反转器1218、1231施加驱动信号。通过维持该固定振幅的控制环,滚转/俯仰角速度检测元件1200、1201维持预先决定的预定振幅的振动。另一方面,通过滚转侧同步检波处理得到的滚转角速度检测元件1200的驱动方向的共振频率与驱动频率的差被给予到滚转频率控制部1205,控制输出被给予到通用时钟源1214,以朝向由滚转角速度检测元件1200的驱动方向的共振频率与驱动频率的差缩小的方向的方式,构成频率控制环。
通过以上所示的结构,滚转角速度检测元件1200的驱动方向的共振频率与驱动频率一致。另外,电路的数字部D1的时钟全部基于通用时钟源1214。通过设为该结构,不需要另外准备数字部D1的基准时钟,另外,因为得到使用了滚转角速度检测元件1200的高机械品质系数的频率稳定性,因此从系统结构的简易化的观点来看,将数字部D1的时钟与滚转角速度检测元件1200的驱动方向的共振频率同步具有优点。
接着,对于检测角速度的步骤,与上述实施方式1相同。滚转/俯仰角速度检测元件1200、1201分别具有将向检测方向的振动位移读出为静电容量的变化的检测电极1200c、1201c。如果滚转/俯仰角速度检测元件1200、1201向预先决定的驱动方向振动,则在施加了角速度时,在与驱动振动方向垂直的检测方向产生科里奥利力。通过因该科里奥利力导致的位移使检测电极1200c、1201c的容量发生变化。根据通过放大器1217、1230变换为适当的电压水平的载波信号,将该容量变化进行电流化,将其通过检测侧CV变换部1207、1223变换为电压,并进一步地通过检测侧ADC部1208、1224变换为数字值,通过进行与检测方向的振动相配的相位的同步检波的检测侧同步检波部1209、1225,获得检测方向振动的振幅,即角速度。在这里得到的角速度成分经由LPF1210、1226去掉不需要的高频成分,并从数字通信电路1213作为信号S1分别输出到上位的系统。
接着,对于与本实施方式3的角速度输出的累计相关的电路结构进行说明。在积分/角度计算电路1211中,输入从滚转角速度检测元件1200得到的角速度、从俯仰角速度检测元件1201得到的角速度这两者。在这里,在积分/角度计算电路1211中设置存储器1212,并保存预先通过探针检查等的以晶圆等级测量到的滚转角速度检测元件1200即与通用时钟源1214同步的一方的角速度检测元件的驱动侧共振频率或以其为基准的值(如所述实施方式1所定义的那样)。
通过采用这样的结构,除了能够解决由于滚转角速度检测元件1200的驱动方向的共振频率的偏差而导致产生累计的误差的问题,并能够高精度地计算滚转角度,此外,对于俯仰方向,与俯仰角速度检测元件1201的驱动侧共振频率偏差无关,另外,在存储器1212中不保存俯仰角速度检测元件1201的驱动侧共振频率,都能够高精度地计算俯仰角度。这是由于,在俯仰角度计算中也使用俯仰角速度检测元件1201的驱动方向的共振频率相应的采样,并且数字部D1的时钟为通用,因此即使相比上述实施方式1增加了一个检测轴,也能够使通用时钟源1214、存储器1212、累计/角度计算电路1211通用化。另外,在进一步增加检测轴时也一样。
对于基于温度传感器1228的活用(利用)的修正,因为与上述实施方式1相同所以省略说明。
此外,在本实施方式3中,也能够是图14、图15所示的变形。图14是表示另一种惯性传感器的结构的一个例子的结构图。图15表示两个角速度检测元件的另一个驱动侧频率响应和检测侧频率响应的一个例子。如图14所示,在本实施方式3中,在不与通用时钟源1214同步的一方的角速度检测元件即俯仰角速度检测元件1201中,通过同步检波部1403实施使用具有与驱动信号为同频率且相比位移信号前进了90度的相位的基准信号的同步检波。并且,在进行通过俯仰频率控制部1401、可变DC电压生成电路1402,因静电弹簧效应而使俯仰角速度检测元件1201的驱动方向的共振频率f2下降,与滚转角速度检测元件1200的驱动方向共振频率f1一致的控制时,因为能够图15所示的有效利用俯仰角速度检测元件1201的机械品质系数,所以驱动电压对灵敏度的效率变为最佳(G1=Q1=G2=Q2)。除此之外,由于动态范围相同,因此由积分/角度计算电路1211计算的角度计算的动态范围在多个轴中相同。
以上,通过图14所示的结构,在多个轴请求同样的动态范围时,或利用于将同一元件倾斜90度的多轴检测时,均能够将通用时钟源1214、存储器1212、积分/角度计算电路1211通用化,并使电路结构简单化。
通过以上说明的本实施方式3,除了得到与上述实施方式1相同的效果以外,还能够得到以下不同的效果。例如,惯性传感器具有:角速度检测元件芯片C5、C6,其具有用于2轴角速度检测的机械结构;信号处理LSI芯片C7,其包含用于从角速度检测元件芯片C5、C6检测角度的角速度检测电路。由此,信号处理LSI芯片C7能够与角速度检测元件芯片C5、C6中的一个驱动频率同步,从与该驱动频率同步的角速度检测元件芯片C5的驱动频率或者其倍增或分频得到的值被预先保存在存储区域即存储器1212中,并利用保存于该存储器1212的值来计算全部轴的倾斜角。
[实施方式4]
使用图16~图18来说明本实施方式4的惯性传感器。在以下的实施方式4中,对于没有特别详细涉及的内容与上述实施方式1相同。在本实施方式4中,对于除了上述1轴的角速度以外,还向外部输出另1轴的角速度的惯性传感器的例子进行说明。特别是,在这里,检测滚转和俯仰的角速度。此外,用于检测角速度的机械结构也可以为3轴以上。
图16是表示本实施方式4的惯性传感器的结构的一个例子的断面图。在本实施方式4的惯性传感器中,在传感器内具有角速度检测元件芯片C5和C6、以及两个信号处理LSI芯片C8和C9,以便能够检测2轴的角速度。角速度检测元件芯片C5、C6在主表面上设置衬垫307,并通过该衬垫307来连接。信号处理LSI芯片C8、C9在主表面上设置衬垫304,并通过该衬垫304来连接。
在本实施方式4所示的惯性传感器中,在传感器封装部302上设置信号处理LSI芯片C8、C9,并且,在信号处理LSI芯片C8、C9上装载角速度检测元件芯片C5、C6。信号处理LSI芯片C8、C9与角速度检测元件芯片C5、C6通过分别设置在信号处理LSI芯片C8、C9的衬垫304和角速度检测元件芯片C5、C6的衬垫307之间的焊接线W1电连接。另外,信号处理LSI芯片C8、C9通过向设置在传感器封装部302上的电极305的焊接线W1的连接进行与外部电极303的电连接。另外,盖部301是传感器封装部302的盖子,构成传感器模块。另外,通过传感器封装部302内的配线1602,两个信号处理LSI芯片C8、C9电连接,并相互进行通信。但是,无论是何种电连接方法,都能够实现本实施方式的优点。
图17是表示惯性传感器的结构的一个例子的结构图。本实施方式4的惯性传感器具有角速度检测元件芯片C5、C6的部分的角速度检测元件401、信号处理LSI芯片C8、C9的部分的检测电路。因为两个角速度检测元件芯片C5、C6相同,所以对于角速度检测元件以及各电极赋予相同的符号。另外,因为两个信号处理LSI芯片C8、C9相同,所以对于各部位赋予相同的符号。两个信号处理LSI芯片C8、C9基本相同,本实施方式4经由用于通信的配线1602连接到一侧的信号处理LSI芯片C8的数字通信电路1713。另外,在两个信号处理LSI芯片C8、C9内的存储器412中,能够记录各自的角速度检测元件401的驱动侧共振频率、或以其为基准的值,并高精度地实施累计计算。
如本实施方式4所示,通过在一侧的信号处理LSI芯片C8的数字通信电路1713中集中(汇总)向上位系统的通信路径,能够使用更少的通信线数量向上位系统通知高精度地实施了多个轴角度的累计计算的结果。另外,在输出多个轴的角度时,具有将最终的测定对象物的姿势变换为通过“ZXY的欧拉角”或“旋转矩阵”等预先决定的步骤而得到的结果来输出的情况。在进行这样的输出时,通过在一侧的信号处理LSI芯片C8的数字通信电路1713中具备输出运算装置,也能够进行本实施方式4的应对。
另外,该结构能够集中(汇总)为图18所示的传感器模块。图18是表示传感器模块的结构的一个例子的结构图。如图18所示,也可以是如下方式:在个人计算机1803中集中对上述实施方式1的角速度进行检测来输出角度的惯性传感器1801、1802,然后,集中为包含收发器IC1804的传感器模块1806,经由CAN总线1805等的通信方式向上位系统进行通知。
此外,一般地,在如拖车(牵引车)那样的驾驶座和货架可分离的车辆中,由于在驾驶座和货架的运动能量传递中具有延迟或间隙,因此根据传感器模块的安装位置,被检测角速度/加速度不同。在这种情况下,优选将传感器的安装位置设置在货架的后端等对于倾斜最敏感的位置。如上所述,如果是能够集中多轴的角度计算结果来输出的结构,即使在远离控制单元的位置安装传感器,也能够削减通信线的数量或通信量,以及获得与比特误差相对的耐受性。
通过以上说明的本实施方式4,除了得到与上述实施方式1相同的效果以外,还能够得到以下不同的效果。例如,惯性传感器具有:角速度检测元件芯片C5、C6,其具有用于2轴角速度检测的机械结构;信号处理LSI芯片C8、C9,其包含用于从角速度检测元件芯片C5、C6检测角度的角速度检测电路。由此,信号处理LSI芯片C8、C9能够计算从多个角度的计算结果得到的获得唯一测定对象的姿势的值,并输出该计算出的值。
以上,基于实施方式具体地说明了本发明者所创造的发明,但是本发明并不限定于上述实施方式,也可以在不脱离其宗旨的范围内进行各种变更。
例如,本发明对于在存在离心力这样的惯性力的环境中,低价且高精度地实现测定对象的角度和姿势是有益的。另外,在故障诊断中,由于故障的检测可能性高,因此也优选适用于车载应用等要求信赖性的应用程序。
另外,上述的实施方式是为了易懂地说明本发明而详细进行的说明,但是并不限定于必须具备说明的全部结构。另外,能够将某个实施方式的结构替换为其他实施方式的结构,另外,也能够在某个实施方式的结构中加入其他实施方式的结构。另外,能够对于各实施方式的结构的一部分进行其他结构的追加、消除、替换。
符号的说明
C1、C5、C6:角速度检测元件芯片、
C2、C4、C7、C8、C9:信号处理LSI芯片、
C3:加速度检测元件芯片、
401、1200、1201:角速度检测元件、
402、407、1202、1207、1219、1223:CV变换部、
403、408、1203、1208、1220、1224:ADC部、
404、409、1204、1209、1221、1225、1403:同步检波部、
405、1205、1401:频率控制部、
406、1206、1222:振幅控制部、
410、1210、1226:LPF、
411、1211:积分/角度计算电路、
412、1212:存储器、
413、1213:数字通信电路、
414、1214:通用时钟源、
415、1215、1227:分频器、
416、1216、1229:可变放大器、
417、1217、1230:放大器、
418、1218、1231:相位反转器、
419、1228:温度传感器、
1000:积分/角度计算/诊断电路、
1001a、1001b:加速度检测元件、
1402:可变DC电压生成电路。

Claims (15)

1.一种惯性传感器,其特征在于,
该惯性传感器具有:
角速度检测元件,其具有用于角速度检测的机械构造;以及
角速度检测电路,其用于从所述角速度检测元件检测角速度,
所述角速度检测电路按照与所述角速度检测元件的驱动频率同步的离散时间对从所述角速度检测元件得到的信号进行采样,由此来计算倾斜角。
2.根据权利要求1所述的惯性传感器,其特征在于,
所述角速度检测电路从所述角速度检测元件得到的信号是角速度。
3.根据权利要求2所述的惯性传感器,其特征在于,
所述角速度检测电路的动作时钟与所述角速度检测元件的驱动频率同步。
4.根据权利要求3所述的惯性传感器,其特征在于,
所述角速度检测电路计算倾斜角的信号处理是时间累计。
5.根据权利要求4所述的惯性传感器,其特征在于,
所述角速度检测元件的驱动频率是所述角速度检测元件的共振频率。
6.根据权利要求4所述的惯性传感器,其特征在于,
所述角速度检测元件的驱动频率是能够得到基于所述角速度检测元件的机械品质系数的增益的频率。
7.根据权利要求5所述的惯性传感器,其特征在于,
从所述角速度检测元件的驱动频率或者其倍增或分频得到的值被预先保存在所述角速度检测电路内的存储区域中,
所述角速度检测电路利用保存于所述存储区域的值来计算倾斜角。
8.根据权利要求7所述的惯性传感器,其特征在于,
所述角速度检测电路在累计计算中所使用的角速度是作为角速度而输出的、经过LPF之前的信号。
9.根据权利要求7所述的惯性传感器,其特征在于,
对于所述角速度检测电路的累计计算,通过温度传感器进行修正。
10.根据权利要求7所述的惯性传感器,其特征在于,
对于所述角速度检测电路的累计计算,通过来自外部的重置信号来重置累计值。
11.根据权利要求7所述的惯性传感器,其特征在于,
对于所述角速度检测电路的累计计算,根据来自外部的表示测定对象的运动状态的信号,检测未发生该测定对象的移动、或者未对该测定对象施加重力以外的加速度的情况,并在该检测的定时重置累计值。
12.根据权利要求7所述的惯性传感器,其特征在于,
该惯性传感器还具有:
加速度检测元件,其具有用于加速度检测的机械构造;以及
加速度检测电路,其用于从所述加速度检测元件检测加速度,
所述加速度检测电路在从加速度的反三角函数得到的倾斜角的结果与从角速度的时间累计得到的倾斜角的结果之间的差超过了固定值的情况下,判断为某个传感器发生了故障。
13.根据权利要求7所述的惯性传感器,其特征在于,
该惯性传感器具有:
多个所述角速度检测元件,其具有用于至少2轴以上的角速度检测的机械构造;以及
所述角速度检测电路,其用于从多个所述角速度检测元件检测角度,
所述角速度检测电路与多个所述角速度检测元件中的一个驱动频率同步,
从与所述驱动频率同步的角速度检测元件的驱动频率或者其倍增或分频得到的值被预先保存在所述存储区域中,
所述角速度检测电路利用保存于所述存储区域的值来计算全部轴的倾斜角。
14.根据权利要求7所述的惯性传感器,其特征在于,
该惯性传感器具有:
多个所述角速度检测元件,其具有用于至少2轴以上的角速度检测的机械构造;以及
所述角速度检测电路,其用于从多个所述角速度检测元件检测角度,
所述角速度检测电路计算从多个角度的计算结果得到的、唯一得到测定对象的姿态的值,并输出该计算出的值。
15.根据权利要求7所述的惯性传感器,其特征在于,
所述角速度检测电路具有:
存储区域,其预先保存从所述角速度检测元件的驱动频率或者其倍增或分频得到的值;以及
计算电路,其通过按照与所述角速度检测元件的驱动频率同步的离散时间对从所述角速度检测元件得到的信号进行采样来计算倾斜角,并在该倾斜角的计算时利用保存于所述存储区域的值来计算倾斜角。
CN201680022907.5A 2015-05-29 2016-04-26 惯性传感器 Active CN107532904B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015-110442 2015-05-29
JP2015110442A JP6429199B2 (ja) 2015-05-29 2015-05-29 慣性センサ
PCT/JP2016/063035 WO2016194524A1 (ja) 2015-05-29 2016-04-26 慣性センサ

Publications (2)

Publication Number Publication Date
CN107532904A CN107532904A (zh) 2018-01-02
CN107532904B true CN107532904B (zh) 2021-06-01

Family

ID=57440646

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680022907.5A Active CN107532904B (zh) 2015-05-29 2016-04-26 惯性传感器

Country Status (5)

Country Link
US (1) US10955243B2 (zh)
EP (1) EP3306269B1 (zh)
JP (1) JP6429199B2 (zh)
CN (1) CN107532904B (zh)
WO (1) WO2016194524A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018209485A1 (de) * 2018-06-14 2019-12-19 Robert Bosch Gmbh Verfahren zum Abgleich eines Drehratensensors und einer Auswerteeinheit des Drehratensensors

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1147373A1 (en) * 1998-12-17 2001-10-24 Tokin Corporation Orientation angle detector
JP2007333467A (ja) * 2006-06-13 2007-12-27 Hitachi Ltd 慣性センサ
CN101126646A (zh) * 2006-08-09 2008-02-20 爱普生拓优科梦株式会社 惯性传感器、惯性传感器装置及其制造方法
CN201293646Y (zh) * 2008-12-02 2009-08-19 西安中星测控有限公司 多组合角速率陀螺仪
CN101915588A (zh) * 2010-07-14 2010-12-15 北京航空航天大学 一种惯性器件的温度误差补偿方法
CN102753937A (zh) * 2010-02-17 2012-10-24 株式会社村田制作所 振动型惯性力传感器
DE102013211983A1 (de) * 2012-06-26 2014-01-02 Hitachi Automotive Systems, Ltd. Trägheitssensor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06191790A (ja) * 1992-12-28 1994-07-12 Nippon Steel Corp 吊荷の振れ角度及び振れ角速度検出装置
JP3431231B2 (ja) * 1993-09-06 2003-07-28 クラリオン株式会社 ジャイロのドリフト補正方法及びその補正回路
SE0300303D0 (sv) * 2003-02-06 2003-02-06 Nordnav Technologies Ab A navigation Method and Apparatus
KR100620118B1 (ko) * 2004-03-31 2006-09-13 학교법인 대양학원 관성센서를 이용한 보행패턴 분석장치 및 그 방법
US8239162B2 (en) 2006-04-13 2012-08-07 Tanenhaus & Associates, Inc. Miniaturized inertial measurement unit and associated methods
US20160047675A1 (en) * 2005-04-19 2016-02-18 Tanenhaus & Associates, Inc. Inertial Measurement and Navigation System And Method Having Low Drift MEMS Gyroscopes And Accelerometers Operable In GPS Denied Environments
JP4807301B2 (ja) 2007-03-30 2011-11-02 日本電気株式会社 姿勢角計測装置及び該姿勢角計測装置に用いられる姿勢角計測方法
IT1394898B1 (it) * 2009-06-03 2012-07-20 St Microelectronics Rousset Giroscopio microelettromeccanico con attuazione a controllo di posizione e metodo per il controllo di un giroscopio microelettromeccanico
JP2011064515A (ja) * 2009-09-16 2011-03-31 Hitachi Automotive Systems Ltd 角速度および加速度検出装置
JP2011203028A (ja) * 2010-03-25 2011-10-13 Hitachi Automotive Systems Ltd 角速度および加速度の検出装置
US20130068017A1 (en) * 2011-09-20 2013-03-21 Noel Perkins Apparatus and method for analyzing the motion of a body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1147373A1 (en) * 1998-12-17 2001-10-24 Tokin Corporation Orientation angle detector
JP2007333467A (ja) * 2006-06-13 2007-12-27 Hitachi Ltd 慣性センサ
CN101126646A (zh) * 2006-08-09 2008-02-20 爱普生拓优科梦株式会社 惯性传感器、惯性传感器装置及其制造方法
CN201293646Y (zh) * 2008-12-02 2009-08-19 西安中星测控有限公司 多组合角速率陀螺仪
CN102753937A (zh) * 2010-02-17 2012-10-24 株式会社村田制作所 振动型惯性力传感器
CN101915588A (zh) * 2010-07-14 2010-12-15 北京航空航天大学 一种惯性器件的温度误差补偿方法
DE102013211983A1 (de) * 2012-06-26 2014-01-02 Hitachi Automotive Systems, Ltd. Trägheitssensor

Also Published As

Publication number Publication date
EP3306269A1 (en) 2018-04-11
JP6429199B2 (ja) 2018-11-28
US10955243B2 (en) 2021-03-23
JP2016223910A (ja) 2016-12-28
WO2016194524A1 (ja) 2016-12-08
CN107532904A (zh) 2018-01-02
EP3306269A4 (en) 2019-03-06
US20180156615A1 (en) 2018-06-07
EP3306269B1 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
US6473713B1 (en) Processing method for motion measurement
US9557345B2 (en) Inertial sensor
US20150247877A1 (en) Electronic device, electronic apparatus, and moving object
CN109579810B (zh) 物理量测量装置、电子设备和移动体
JP2009002735A (ja) 角速度検出装置
US10018468B2 (en) Physical-quantity detection circuit, physical-quantity sensor, and electronic device
US20190360809A1 (en) Signal processing apparatus, inertial sensor, acceleration measurement method, electronic apparatus, and program
US20090150029A1 (en) Capacitive integrated mems multi-sensor
JP2018028473A (ja) 回路装置、物理量検出装置、電子機器及び移動体
JP6629691B2 (ja) センサパッケージおよび自動運転車両
CN107532904B (zh) 惯性传感器
JP2000009475A (ja) 角速度検出装置
RU2344374C1 (ru) Электродная структура для микромеханического гироскопа и микромеханический гироскоп с этой структурой (варианты)
US9568490B2 (en) Angular velocity sensor
Gregory Characterization, Control and Compensation of MEMS Rate and Rate-Integrating Gyroscopes.
JP2018179614A (ja) 角速度検出装置
JP6465294B2 (ja) 駆動回路、振動デバイス、電子機器及び移動体
JP2017181485A (ja) 回路装置、物理量検出装置、発振器、電子機器、移動体及びマスタークロック信号の異常検出方法
Evstifeev et al. Results of MEMS gyro mechanical tests
US9689675B2 (en) Sensor for detecting a rotation rate of an object
Miyazaki et al. Initial Investigation of Physically Tightly-Coupled Single-Chip MEMS IMU for Mutual Compensation of Two Differential Resonant Accelerometers and a Mode-Matched Donut-Mass Gyroscope
CN111721319B (zh) 传感器故障预知系统、传感器故障预知方法、物理量传感器、电子设备以及移动体
JP6478034B2 (ja) 角速度検出装置の評価方法、信号処理回路、角速度検出装置、電子機器及び移動体
Miyazaki et al. Demonstration of Multi-axis Sensitivity and Temperature Compensation for a Physically Tightly-Coupled MEMS IMU Integrating a Mode-Matched Gyroscope and Two Differential Resonant Accelerometers
CN116075687A (zh) 传感器系统,用于补偿旋转速率信号的偏移的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Ibaraki

Patentee after: Hitachi astemo Co.,Ltd.

Address before: Ibaraki

Patentee before: HITACHI AUTOMOTIVE SYSTEMS, Ltd.