WO2016194079A1 - 加工装置 - Google Patents

加工装置 Download PDF

Info

Publication number
WO2016194079A1
WO2016194079A1 PCT/JP2015/065665 JP2015065665W WO2016194079A1 WO 2016194079 A1 WO2016194079 A1 WO 2016194079A1 JP 2015065665 W JP2015065665 W JP 2015065665W WO 2016194079 A1 WO2016194079 A1 WO 2016194079A1
Authority
WO
WIPO (PCT)
Prior art keywords
gripping force
gripping
work material
unit
cutting
Prior art date
Application number
PCT/JP2015/065665
Other languages
English (en)
French (fr)
Inventor
顕二 西川
靖 佐野
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/065665 priority Critical patent/WO2016194079A1/ja
Priority to JP2016563490A priority patent/JP6235167B2/ja
Publication of WO2016194079A1 publication Critical patent/WO2016194079A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form

Definitions

  • the present invention relates to a processing apparatus.
  • Patent Document 1 when calculating the three-dimensional shape data after cutting, by inputting the internal stress generated in the rough material, the deformation of the rough material accompanying the release of the internal stress at the time of cutting is input.
  • a shape prediction device capable of performing shape prediction in consideration is disclosed.
  • a workpiece (hereinafter referred to as a work material) is fixed by a jig, so that the gripping force by the jig deforms the work material.
  • a work material since the work material is gradually removed, the shape of the work material is deformed as needed, and the amount of change of the work material due to the gripping force tends to increase.
  • the shape prediction apparatus of Patent Document 1 is intended for calculation of three-dimensional shape data after the cutting process, in which the internal stress of the work material is released, and the gripping force of the jig applied to the work material is determined. Impact is not considered. For this reason, in the technique of patent document 1, since the influence of the shape change by a gripping force is not considered, there exists a problem that the shape after a process cannot be estimated with high precision.
  • An object of the present invention is to provide a machining apparatus capable of obtaining a desired machining accuracy in consideration of the influence of a gripping force by a jig.
  • a preferred embodiment of the processing apparatus is a processing apparatus for fixing and cutting a work material, a gripping part for gripping the work material, a movable part for moving the gripping part, A driving unit that drives the movable unit to adjust a gripping force by the gripping unit; and a sensor that monitors the gripping force by the gripping unit, and the amount of deformation of the workpiece during cutting is a predetermined amount
  • a calculation unit having a gripping force simulation unit that calculates a gripping force according to a predicted shape during cutting of the work material so as to be maintained within a range, and the gripping force calculated by the gripping force simulation unit
  • a control unit having a gripping force control unit that controls the driving unit based on a set value and controls a gripping force by the gripping unit.
  • FIG. 2 is a diagram showing a part of a cross section taken along line AA for explaining a state in which a work material 27 is fixed to a gripping portion 26 of the processing apparatus shown in FIG. 1.
  • FIG. 2 is a diagram showing a part of a cross section taken along line AA for explaining a state during cutting by the processing apparatus shown in FIG. 1.
  • FIG. 2 is a diagram showing a part of a cross section taken along line AA for explaining a state in which a work material 27 is fixed to a gripping portion 26 of the processing apparatus shown in FIG. 1.
  • It is a functional block diagram of the processing apparatus of Example 1.
  • It is a flowchart which shows the cutting process of the processing apparatus of Example 1.
  • FIG. It is a flowchart explaining step 4 of FIG. 8 in detail.
  • FIG. 6 is a graph showing the relationship between the gripping force and the stress value obtained by the analysis in step 51.
  • It is a flowchart for demonstrating in detail step 5 of FIG.
  • It is a figure which shows an example of the analysis result of the model deformation amount obtained at step 75.
  • FIG. 1 It is a figure which shows the relationship between the processing time obtained based on the analysis data shown in FIG. 13, and a gripping force setting value. It is a flowchart for demonstrating in detail step 8 and step 3 of FIG. It is a perspective view which shows the structure of the processing apparatus of Example 2.
  • FIG. 2 It is a figure which shows the example by which the to-be-cut material 106 is being fixed to the holding part 102 of the processing apparatus shown in FIG.
  • FIG. It is a figure which shows the structure of the processing apparatus of Example 3.
  • FIG. It is a figure explaining the example of the processing by the processing apparatus shown in FIG. It is a figure which shows the deformation
  • FIG. 1 is a perspective view showing a configuration of a processing apparatus according to the first embodiment.
  • FIG. 1 shows an example of processing a hollow disk-shaped work material.
  • the base 21 has a substantially cylindrical shape and is installed inside the machine tool or at a position where a workpiece is installed.
  • a plurality of rails 22 are fixed to the base 21 at equal intervals so that end faces are provided on the outer peripheral surface thereof.
  • FIG. 1 shows an example in which three rails 22 are provided on the base 21.
  • Each of the rails 22 is provided with a guide 23 at a position on the outer peripheral side of the base 21.
  • the guide 23 is a mechanism that can move in the radial direction (workpiece fixing direction) on the rail 22 toward the center of the base 21.
  • the movement of the guide 23 may be adjusted by a chuck handle such as a general-purpose scroll chuck, or may be adjusted by hydraulic pressure.
  • the grip 23 is attached to the guide 23 in the center direction of the base 21, and the grip 26 is moved as the guide 23 moves.
  • the gripping portion 26 has a claw-like protrusion, and is fixed on the base 21 by gripping the hollow portion of the work material 27 with the protrusion.
  • a pressure sensor 24 and an actuator 25 are installed adjacent to each other between the guide 23 and the grip portion 26. That is, the grip part 26 is fixed to the guide 23 via the pressure sensor 24 and the actuator 25.
  • the actuator 25 causes the displacement of the guide 23 in the radial direction of the base 21, and the gripping force by the gripping portion 26 is adjusted by the gripping portion 26 moving in the radial direction due to the displacement of the guide 23.
  • the pressure sensor 24 monitors the grip force by the grip portion 26.
  • a load cell can be used.
  • the actuator 25 for example, a piezo actuator can be used.
  • FIG. 2 shows an example in which the work material 27 is fixed by the gripping portion 26.
  • FIG. 2 shows an example in which a disc-shaped work material 27 having a hollow portion is gripped by the protruding portion of the grip portion 26 from the inner diameter side.
  • the processing apparatus according to the first embodiment is configured to rotate the work material 27 by rotating the base 21 with a rotation drive (not shown).
  • FIG. 3 is a view showing a part of a cross section taken along line AA of the processing apparatus shown in FIG.
  • the guide 23, the pressure sensor 24, the actuator 25, and the gripping portion 26 are arranged in this order from the outer peripheral surface side of the base 21 in this order.
  • the grip portion 26 is provided adjacent to each other.
  • the gripping portion 26 fixes the work material 27.
  • the actuator 25 does not drive the guide 23, and the gripping portion 26 does not fix the work material 27.
  • the state in which the gripping force by the gripping portion 26 is not applied to the work material 27 is shown.
  • FIG. 4 shows a state in which the work material 27 is fixed by the grip portion 26.
  • the grip portion 26 moves in the outer peripheral direction of the base 21 along with the movement of the guide 23 in the outer peripheral direction of the base 21 (the arrow direction in FIG. 5). It is gripped.
  • the gripping force 30 from the gripping portion 26 is applied to the work material 27, the work material 27 is deformed with a deformation amount 31.
  • FIG. 5 is a diagram showing a part of a cross section taken along line AA for explaining a state during cutting by the processing apparatus shown in FIG.
  • the cutting tool 40 cuts the workpiece 27 by moving in the radial direction 41 of the base 21 while being in contact with the machining surface of the workpiece 27.
  • the base 21 (see FIG. 1) is rotationally driven by a rotation driving machine (not shown), so that the work material 27 fixed on the base 21 rotates and the processing surface is cut.
  • a rotation driving machine not shown
  • the shape of the work material 27 changes, and for example, as shown in FIG. Since the rigidity of the work material decreases as the work material becomes thinner, if cutting is continued while the gripping force 42 by the gripping portion 26 is kept constant from the gripping force 30 at the start of cutting, the work material 27 is deformed. The amount becomes a deformation amount 43, which increases from the deformation amount 31 of FIG. In this way, if cutting is continued with the deformation amount increased, the shape and thickness of the work material 27 after the processing is shifted from the planned shape and thickness, and a desired processing accuracy is obtained. I can't.
  • the gripping force with respect to the work material 27 is weakened like the gripping force 44 and cutting is performed.
  • the deformation amount 45 of the work material 27 is smaller than the deformation amount 43 in the state shown in FIG. By performing cutting in this state, it becomes possible to obtain desired processing accuracy.
  • adjustment of the gripping force with respect to the work material 27 can be performed by driving the guide 23 by the actuator 25 and adjusting the position of the gripping portion 26.
  • the processing apparatus includes a calculation unit 141, a control unit 142, a processing apparatus main body 143, a storage unit 144, and an input unit 145.
  • the storage unit 144 stores data 130 indicating the relationship between each machining condition and the amount of deformation of the work material.
  • the calculation unit 141 executes various calculations in accordance with a command input from the input unit 145, and outputs the calculation results to the control unit 142. In addition, the calculation unit 141 reads out data and programs stored in the storage unit 144 and executes calculations using the read data and programs.
  • the calculation unit 141 deforms the work material during cutting.
  • a machining condition simulation unit 131 that calculates a machining condition range in which the amount falls within a predetermined range, and during the cutting of the work material so that the deformation amount of the work material being cut is maintained within the predetermined range.
  • a gripping force simulation unit 132 that calculates a gripping force according to the predicted shape is provided.
  • the calculation unit 141 further refers to the value of the gripping force monitored by the sensor 24, and the amount of movement of the gripping unit 26 so that the gripping force by the gripping unit 26 becomes the set value calculated by the gripping force simulation unit 132. Is provided with a gripper movement amount calculation unit 136 for calculating.
  • the control unit 142 controls each unit of the processing apparatus main body 143 based on the calculation result obtained from the calculation unit 141. Based on the machining condition range calculated by the machining condition simulation unit 131, the control unit 142 controls the machining condition control unit 133 that controls the machining conditions, and based on the gripping force setting value calculated by the gripping force simulation unit 132. A gripping force control unit 134 for controlling the gripping force by the gripping unit 26.
  • the gripping force control unit 134 the value of the movement amount calculated by the gripping unit movement amount calculation unit 136 so that the gripping force by the gripping unit 26 becomes the setting value calculated by the gripping force simulation unit 132. Based on the above, the gripping force by the gripping part 26 is controlled by moving the gripping part 26 by controlling the actuator 25.
  • the processing condition control unit 133 specifically includes a rotary drive control unit that controls the operation of the rotary drive 135 and a processing tool control unit that controls the operation of the cutting tool 40. ing. 18 to 20 described later, the processing condition control unit 133 includes a processing tool control unit that controls the operation of the cutting tool 121.
  • step 1 start the process.
  • step 2 the work material is fixed by the gripping portion 26 and placed on the base 21.
  • Step 2 work material installation stage
  • step 3 the machining process is started in step 3, but before that, in steps 4 to 8, various conditions in the machining process are set, that is, the gripping force and the machining condition range are set.
  • step 4 the calculation unit 145 sets an upper limit value and a lower limit value of the gripping force with which the workpiece can be stably gripped by the gripping force simulation unit 131.
  • step 5 the computing unit 141 sets a machining condition range by the machining condition simulation unit 131.
  • step 5 a machining condition range is set in which the work material can be stably gripped and cut, and the deformation amount of the work material is maintained within a desired range. Steps 4 and 5 will be described in detail later.
  • step 6 machining conditions are set from the machining condition range set in step 5.
  • step 7 the calculation unit 141 sets the value of the gripping force during the machining process by the gripping force simulation unit 132.
  • the gripping force according to the processing stage is calculated and set so that the deformation amount of the work material during the cutting process is maintained within a predetermined range. Step 7 will be described in detail later.
  • step 7 the value of the gripping force is set according to the processing stage so that the deformation amount of the work material during the cutting process is within a range where a predetermined processing accuracy can be obtained.
  • step 8 the calculation unit 141 confirms the gripping force and the processing conditions set by the processing condition simulation unit 131 and the gripping force simulation unit 132. If there is no problem as a result of the confirmation, the set conditions are output to the control unit 142 (processing condition control unit 133, gripping force control unit 134), and the process proceeds to step 3. On the other hand, for example, if there is a problem such as the processing condition set in step 6 does not match the gripping force set in step 7, the process returns to step 4 again to set the gripping force and the processing condition range. Do.
  • step 9 the amount of deformation of the work material fixed by the grip portion 26 is measured.
  • the measurement may be performed by displacement measurement using a laser, or may be performed using a contact-type measuring instrument using a touch probe.
  • the stress generated in the work material after the processing is calculated, and it is confirmed whether or not the calculated stress value is a value that reaches plastic deformation. If the stress value has reached a value at which plastic deformation can occur, the process returns to step 8 to adjust the gripping force.
  • the calculation of the stress value may be performed by analysis software using a finite element method or the like, for example. Moreover, it is not restricted to the calculation by calculation, You may make it measure the stress of a workpiece by X-ray irradiation.
  • step 10 the processing process is confirmed.
  • the process proceeds to the next step 11.
  • the process returns to step 3 to perform the next machining process.
  • step 11 the shape of the work material after processing is measured.
  • the shape measurement may be performed by displacement measurement using a laser, or may be performed using a contact-type measuring instrument using a touch probe.
  • step 14 If the work material after the machining process has obtained the desired machining accuracy, the process proceeds to step 14 and the whole process is completed. On the other hand, when the deformation of the work material after the machining process is large and a desired machining accuracy is not obtained, a correction machining process is performed in step 12. Thereafter, in step 13, the shape is further measured. This routine is repeated until the desired machining accuracy is obtained.
  • Step 4 is a step of setting a gripping force range in which the work material can be stably gripped during cutting.
  • model data shape, size, material
  • the model data of the work material for example, created by CAD is input from the input unit 145.
  • the gripping force simulation unit 132 analyzes the state when the gripping force is applied to the model data input in step 50. Specifically, when a gripping force is applied, a stress value and a deformation amount generated in the work material are calculated.
  • a stress value and a deformation amount generated in the work material are calculated.
  • general-purpose analysis software using a finite element method or the like may be used. Thereby, analysis data of a stress value and a deformation amount with respect to the gripping force applied to the work material can be obtained.
  • step 52 using the analysis data obtained in step 51, a gripping force range (maximum value and minimum value of the gripping force) that enables stable gripping of the workpiece during cutting is set. To do.
  • FIG. 10 shows an example of a graph of analysis data used for setting the gripping force range.
  • the graph in FIG. 10 is a graph of the result obtained by the analysis in step 51, and shows the relationship between the gripping force applied to the work material and the stress value.
  • FIG. 10 when a disc material using material A (stainless steel equivalent) having an outer diameter of 100 mm, an inner diameter of 43 mm, and a thickness of 5 mm is gripped by the gripping portion 26 of the processing apparatus of FIG. Fig. 6 shows the analysis results obtained by analyzing the stress generated in the disk material using the finite element method.
  • material A stainless steel equivalent
  • the gripping force corresponding to the yield point of the material A is about 4200 N.
  • the maximum value of the gripping force can be defined as 4200 N, for example.
  • FIG. 11 is a flowchart for explaining step 5 in FIG. 8 in detail.
  • step 5 (1) it is possible to stably hold the workpiece and perform cutting, and (2) a machining condition range in which the amount of deformation of the workpiece is maintained within a desired range. It is a step to set.
  • step 60 the machining condition simulation unit 131 calculates the cutting force applied to the cutting tool 40 and the work material when cutting is performed under various machining conditions. Based on this calculation result, data indicating the relationship between each machining condition and the cutting force is obtained.
  • the cutting force is a force applied to the cutting tool 40 when the cutting tool is brought into contact with the work material to perform the cutting process.
  • the cutting force can be calculated by various methods. For example, cutting force analysis software may be used.
  • step 61 the machining condition simulation unit 131 sets a machining condition range (first machining condition range) in which the workpiece can be stably gripped and cut.
  • step 61 the gripping force range calculated in step 52 described above is referred to, and a machining condition range corresponding to the cutting force range allowed in this gripping force range is obtained in step 60.
  • the first machining condition range is set by specifying the data (data indicating the relationship between each machining condition and the cutting force).
  • the cutting force range allowed in the predetermined gripping force range can be specified by, for example, storing in advance data related to the cutting force allowed by each gripping force in the storage unit 144 and reading out this data. it can.
  • the machining condition simulation unit 131 has a machining condition range in which the amount of deformation of the work material associated with the cutting is maintained within a desired range in the first machining condition range set in step 61 ( The second machining condition range) is set.
  • the machining stress applied to the work surface of the work material remains in the work material as a residual stress, which becomes a deformation factor after the cutting work.
  • the processing stress generated with the cutting process depends on the processing conditions during the cutting process. For this reason, it accompanies each processing condition, such as above-mentioned feed rate (mm / rev), cutting depth (mm), cutting speed (m / min), and the processing stress given to a work material under this processing condition.
  • Various relations with the deformation amount of the work material are examined, accumulated in advance in the database 130, and stored in the storage unit 144.
  • the deformation amount of the work material is predominantly the deformation in the axial direction of rotation as shown in FIG. It becomes.
  • such an axial deformation amount is set as the deformation amount of the work material.
  • the machining condition simulation unit 131 refers to the database 130 stored in the storage unit 144, and sets the machining condition range in which the deformation amount of the work material being cut is within a desired range in step 61.
  • the second machining condition range is set by searching within the first machining condition range.
  • step 62 the machining condition simulation unit 131 determines whether or not the deformation amount of the workpiece based on the setting of the second machining condition range (step 64) satisfies a desired machining accuracy. In addition to the confirmation, it is confirmed whether or not the second machining condition range set in step 64 satisfies the first machining condition range set in step 61.
  • step 62 the deformation amount of the work material used as a reference when setting the second machining condition range satisfies the desired machining accuracy, and the second machining condition range satisfies the first machining condition range. If so, go to Step 6.
  • step 6 as described above, the machining conditions are selected from the second machining condition range confirmed in step 62, and the machining conditions are determined.
  • the selected setting value is input to the calculation unit 141 from the input unit 145.
  • FIG. 12 is a flowchart for explaining step 7 in FIG. 8 in detail.
  • step 7 is a step of calculating and setting the gripping force according to each processing stage so that the deformation amount of the work material during the cutting process is maintained within a predetermined range.
  • model data shape, size, material
  • model data of a workpiece before cutting is input to the calculation unit 141 from the input unit 145.
  • model data of the work material after the cutting process is input to the calculation unit 141 through the input unit 145.
  • the model data can be input from the input unit 145 before and after cutting, for example, created by CAD or the like.
  • step 72 the gripping force simulation unit 132 calculates the amount of deformation of the model during cutting until the model input in step 70 reaches the model input in step 71.
  • step 72 first, the gripping force simulation unit 132 sets the number of calculation steps, that is, the number of steps for executing the deformation amount calculation based on the information input from the input unit 145 (step 73).
  • the gripping force simulation unit 132 creates a mid-process model during cutting.
  • the mid-machining model is a predicted shape model of the work material at each stage of cutting corresponding to the number of steps set in step 73.
  • the mid-machining model may be created using, for example, a CAM or a cutting simulator. As a result, a mid-processing model at each stage corresponding to the number of steps set in step 73 is obtained.
  • the gripping force simulation unit 132 calculates the deformation amount (for example, the deformation amount 31 shown in FIG. 4) in each predicted shape state for the machining intermediate model at each stage created in step 74.
  • the deformation amount can be calculated using, for example, a finite element method analysis.
  • FIG. 13 shows an example of the analysis result of the model deformation amount obtained in step 75.
  • the analysis result of FIG. 13 shows that a disc material formed of material A (stainless steel equivalent) having an outer diameter of 100 mm and an inner diameter of 43 mm is gripped with a gripping force of 100 N by the gripping portion 26 of the processing apparatus of FIG. It is an analysis result of model deformation amount transition of a work material when it went.
  • the graph shown in FIG. 13 shows the relationship between the thickness of the model (work material) and the amount of deformation. As shown in FIG. 13, the amount of deformation increases as the thickness of the model (work material) decreases.
  • step 76 the gripping force simulation unit 132 sets the gripping force. Specifically, the gripping force simulation unit 132 calculates a gripping force value at which a predetermined deformation amount is maintained from the deformation amount analysis data at each workpiece thickness obtained in step 75.
  • FIG. 14 is a graph showing analysis data obtained by converting the analysis data shown in FIG. 13 and calculating the value of the gripping force at which the amount of deformation of the work material during cutting is within a predetermined range. .
  • FIG. 14 shows the relationship between the processing time and the gripping force.
  • the gripping force value 81 is the gripping force maximum value set in step 4 (see FIG. 8), and the value 82 is the gripping force minimum value set in step 4.
  • the gripping force is adjusted along the values shown in the graph of FIG. 14, and cutting is performed.
  • the thickness of the work material decreases as the process proceeds.
  • FIG. Set so as to weaken the gripping force as the processing proceeds.
  • FIG. 15 is a flowchart for explaining step 8 and step 3 in FIG. 8 in detail.
  • FIG. 15 shows a flow including step 8 shown in FIG. 8 and steps corresponding to the preceding stage and step 3.
  • the flow shown in FIG. 15 is a step in which the gripping portion 26 is adjusted so as to have the gripping force set value set in step 75 and the gripping force is applied to the work material.
  • step 90 the calculation unit 141 calls the set value of the gripping force at each model shape stage set in step 76 (see FIG. 12).
  • step 91 the gripping part movement amount calculation unit 136 calculates the movement amount of the gripping force required to generate the gripping force called in step 90.
  • step 92 the calculation unit 141 confirms the gripping force and the processing conditions immediately before the processing. Note that step 92 corresponds to step 8 in FIG. If it is determined that there is a problem as a result of the confirmation, the process returns to the steps after step 4 (see FIG. 8), and the machining condition range or gripping force is set again. If it is determined that there is no problem as a result of the confirmation, the process proceeds to step 93 to start processing (corresponding to step 3 in FIG. 8).
  • the computing unit 141 instructs the gripping force control unit 134 of the movement amount of the gripping unit 26 calculated in step 91.
  • the gripping force control unit 134 drives the actuator 25 and moves the gripping unit 26 based on an instruction from the calculation unit 141.
  • the gripping force by the gripping part 26 is adjusted by the movement of the gripping part 26.
  • the calculation unit 141 instructs the processing conditions set in step 6 to the processing condition control unit 134 (specifically, the rotary drive machine control unit and the processing tool control unit).
  • the rotation driving machine control unit and the processing tool control unit of the machining condition control unit 134 control operations of the rotation driving machine 135 and the cutting tool 40 based on instructions from the calculation unit 141, respectively.
  • the gripping force by the gripper 26 is monitored by the pressure sensor 24.
  • the gripping force monitored by the pressure sensor 24 is sent to the calculation unit 141, and the amount of movement of the gripping unit 26 in the gripping unit movement amount calculation unit 136 is performed so that cutting is performed with the gripping force corresponding to each processing stage. It is reflected in the adjustment.
  • the process proceeds to step 9 and after in FIG.
  • the cutting force is about 40 kN
  • the cutting speed is 100 m / min
  • the feed speed is 0.1 mm / rev
  • the cutting depth When the end face of the material was turned to a thickness of 5 mm to 3 mm under a machining condition of 0.5 mm, the machining was performed while maintaining the gripping force at the start of cutting without adjusting the gripping force during the cutting process. In this case, the maximum deformation amount of the material was about 0.9 mm.
  • the cutting is performed while adjusting the gripping force by the gripping portion 26, so that the cutting can be performed in a state in which the deformation of the work material is suppressed.
  • the same disk material as described above was subjected to cutting while adjusting the gripping force by the gripping unit 26 based on the set value obtained by the gripping force simulation unit 132 under the same processing conditions.
  • the deformation amount of the material was suppressed by about 90% or more as compared with the case where the gripping force was not adjusted (maximum deformation amount: about 0.9 mm).
  • FIG. 16 is a perspective view illustrating a configuration of a processing apparatus according to the second embodiment.
  • Example 2 shows an example of a processing apparatus that grips a disk-shaped work material from its outer diameter side.
  • the base 100 has a substantially cylindrical shape as in the first embodiment, and the three rails 101 are fixed at equal intervals so that end faces are provided on the outer peripheral surface thereof. Has been.
  • the rails 101 are each provided with a guide 105 at a position on the center side of the base 100.
  • the guide 105 is a mechanism that can move in the radial direction (fixing direction of the work material) on the rail 101 toward the outer peripheral surface side of the base 100. As in the first embodiment, the guide 105 can be moved by using the chuck handle or hydraulic pressure.
  • the grip 105 is attached to the guide 105 in the outer peripheral direction of the base 100, and the grip 102 is moved as the guide 105 moves.
  • Each of the grip portions 102 has a protrusion, and the disc-shaped work material is fixed on the base 100 by gripping the outer diameter end portion of the work material 106 with the protrusion.
  • an actuator 103 and a pressure sensor 104 are installed adjacent to each other. That is, the grip part 102 is fixed to the guide 105 via the actuator 103 and the pressure sensor 104.
  • the functions and types of the actuator 103 and the pressure sensor 104 are the same as those of the actuator 25 and the pressure sensor 24 of the first embodiment, and a description thereof is omitted.
  • the grip portion 102 and the actuator 103 are adjacent to each other, and the guide 105 and the pressure sensor 104 are adjacent to each other.
  • the actuator 103 and the pressure sensor 104 may be located at opposite positions. good.
  • FIG. 17 shows an example in which the work material 106 is fixed by the grip portion 102. Similar to the first embodiment, the machining apparatus according to the second embodiment is configured to rotate the work material 106 by rotating the base 100 using a rotation driving machine (not illustrated).
  • the processing apparatus of the second embodiment also includes a calculation unit 141, a control unit 142, a storage unit 144, and an input unit 145 (see FIG. 7).
  • the setting and control of the machining condition range and the gripping force setting and control are performed. Since these setting process and control process are performed in the same manner as in the first embodiment, description thereof is omitted.
  • the processing apparatus of the second embodiment since it is possible to perform cutting while setting the gripping force according to the processing stage, it is possible to suppress an increase in the amount of deformation of the work material during the processing. Cutting with a desired processing accuracy can be performed.
  • FIG. 18 is a perspective view illustrating a configuration of a processing apparatus according to the third embodiment.
  • Example 3 a description will be given of a rolling process of a block-shaped work material.
  • the base 110 has a substantially rectangular bottom surface and has a recess at the center, and is installed in the machine tool or at a position where a workpiece is installed.
  • the base 110 is provided with a grip portion 113 that grips the work material 115 at the approximate center of the recess.
  • the grip portion 113 is fixed to an end portion of the rod 111 provided to be movable in the fixing direction of the work material 115 and moves on the base 110 as the rod 111 moves.
  • the rod 111 is provided so as to penetrate the side wall 110 a of the base 110, and a driving device 112 is fixed to the end portion on the penetration side of the rod 111.
  • the driving device 112 drives the rod 111 in the x direction in FIG. 17, and when the rod 111 moves, the gripping portion 113 moves on the base 110 in the x axis direction.
  • the grip part 113 presses the work material 115 against the side wall 110b of the base 110 on the side facing the installation area of the driving device 112 so as to sandwich the work material 115 between the grip part 113 and the side wall 110b.
  • the material 115 is fixed on the base 110.
  • the driving device 112 for example, a servo motor that generates a rotational motion can be used, and in this case, the rod 111 can be a ball screw.
  • the contact plate is provided between the work part 115 and the work material 115 and between the work material 115 and the side wall 110b of the base 110, respectively. 114 and 117 may be sandwiched.
  • a pressure sensor 116 is installed between the contact plate 117 and the side wall 110b of the base 110.
  • the pressure sensor 116 monitors the grip force by the grip portion 113.
  • FIG. 19 is a diagram for explaining an example of processing by the processing apparatus shown in FIG. As shown in FIG. 19, the work material 115 is cut by the cutting amount 121 by the cutting tool 121. The deformation amount 123 of the work material 115 at this time is shown in FIG.
  • the shape of the work material 115 gradually changes and the overall thickness decreases.
  • the deformation amount 123 of the work material 115 increases as shown in FIG.
  • cutting is performed while the gripping force of the gripping portion 113 on the work material 115 is adjusted by the driving device 112.
  • the processing apparatus also includes a calculation unit 141, a control unit 142, a storage unit 144, and an input unit 145, thereby setting and controlling the gripping force and setting and controlling the processing conditions. I do.
  • the driving force 112 is controlled by the gripping force control portion 134 according to the processing state in the same manner as in the first embodiment, and the end of the rod 111 And the gripping force by the gripper 113 is adjusted. Further, the machining condition control unit 133 controls the machining conditions of the cutting tool 121 to perform cutting.
  • the processing apparatus of the third embodiment since it is possible to perform cutting while setting the gripping force according to the processing stage, it is possible to suppress an increase in the deformation amount of the work material during the processing. Cutting with a desired processing accuracy can be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Gripping On Spindles (AREA)
  • Numerical Control (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

被削材(27)を固定して切削加工する加工装置であって、被削材(27)を把持する把持部(26)と、把持部(26)を移動させる可動部(23)と、可動部(23)を駆動して、把持部(26)による把持力を調整する駆動部(25)と、把持部(26)による把持力をモニタリングするセンサ(24)と、を有し、切削加工中の被削材の変形量が所定の範囲内に維持されるように、被削材の切削加工中の予測形状に応じた把持力を算出する把持力シミュレーション部(132)を有する演算部(141)と、把持力シミュレーション部(132)で算出された把持力の設定値に基づいて駆動部(25)を制御し、把持部(26)による把持力を制御する把持力制御部(134)を有する制御部(142)と、を有する加工装置である。

Description

加工装置
 本発明は、加工装置に関する。
 切削加工を行う加工装置では、加工処理後に所望の形状の製造物を得るため、所定の切削条件で加工したときに得られる製造物の形状を予測する手法が検討されている。例えば特許文献1には、切削加工後の3次元形状データを算出する際に、粗材に発生している内部応力を入力することで、切削時における内部応力の解放に伴う粗材の変形を考慮した形状予測を行うことが可能な形状予測装置が開示されている。
特許第4582067号公報
 切削加工では治具により、加工対象物(以下、被削材と示す。)が固定されるため、治具による把持力が被削材を変形させる。特に切削加工中は、被削材が徐々に除去されるため、被削材の形状は随時変形し、把持力による被削材の変化量は増大する傾向にある。
 しかしながら、特許文献1の形状予測装置は、被削材の内部応力が解放される、切削加工工程の後の3次元形状データの算出を対象としており、被削材に加わる治具の把持力の影響は考慮されていない。このため、特許文献1の技術では、把持力による形状変化の影響が加味されない分、加工後の形状を高精度に予測できないという問題がある。
 本発明の目的は、治具による把持力の影響を考慮し、所望の加工精度を得られる加工装置を提供することにある。
 本発明に係る加工装置の好ましい実施形態としては、被削材を固定して切削加工する加工装置であって、前記被削材を把持する把持部と、前記把持部を移動させる可動部と、前記可動部を駆動して、前記把持部による把持力を調整する駆動部と、前記把持部による把持力をモニタリングするセンサと、を有し、切削加工中の被削材の変形量が所定の範囲内に維持されるように、被削材の切削加工中の予測形状に応じた把持力を算出する把持力シミュレーション部を有する演算部と、前記把持力シミュレーション部で算出された前記把持力の設定値に基づいて前記駆動部を制御し、前記把持部による把持力を制御する把持力制御部を有する制御部と、を有することを特徴とする。
 本発明によれば、治具による把持力の影響を考慮した切削加工が可能であり、所望の加工精度を得られる加工装置を実現することができる。
実施例1の加工装置の構成を示す斜視図である。 図1に示す加工装置の把持部26に被削材27が固定されている例を示す図である。 図1に示す加工装置のA-A線による断面の一部を示す図である。 図1に示す加工装置の把持部26に被削材27が固定されている状態を説明するための、A-A線による断面の一部を示す図である。 図1に示す加工装置による切削加工中の状態を説明するための、A-A線による断面の一部を示す図である。 図1に示す加工装置の把持部26に被削材27が固定されている状態を説明するための、A-A線による断面の一部を示す図である。 実施例1の加工装置の機能ブロック図である。 実施例1の加工装置の切削加工処理を示すフローチャートである。 図8のステップ4を詳細に説明するフローチャートである。 ステップ51の解析により得られた把持力と応力値との関係をグラフ化した図である。 図8のステップ5を詳細に説明するためのフローチャートである。 図8のステップ7を詳細に説明するためのフローチャートである。 ステップ75で得られたモデル変形量の解析結果の一例を示す図である。 図13に示す解析データに基づいて得られた加工時間と把持力設定値との関係を示す図である。 図8のステップ8及ぶステップ3を詳細に説明するためのフローチャートである。 実施例2の加工装置の構成を示す斜視図である。 図16に示す加工装置の把持部102に被削材106が固定されている例を示す図である。 実施例3の加工装置の構成を示す斜視図である。 図18に示す加工装置による加工処理の例を説明する図である。 図19に示す加工装置で加工処理を継続したときの、被削材115の変形状態を示す図である。
 以下、実施例を図面を用いて説明する。
 図1は、実施例1の加工装置の構成を示す斜視図である。図1では、中空の円盤状の被削材を加工する例を示す。
 ベース21は、略円筒形状を有しており、工作機械の内部、又は加工対象物が設置される位置に据え付けられる。ベース21には、その外周面上に端面が設けられるように、レール22が複数個均等な間隔で固設されている。図1では、3個のレール22がベース21に設けられている例を示す。
 レール22には、それぞれ、ベース21の外周側の位置にガイド23が備え付けられている。ガイド23は、ベース21の中心側に向けて、レール22上を半径方向(被削材の固定方向)に移動可能な機構となっている。ガイド23の移動は、汎用のスクロールチャックのようなチャックハンドルで調整するようにしてもよく、油圧により調整してもよい。
 ガイド23には、ベース21の中心方向に把持部26が附設されており、ガイド23の移動に伴い、把持部26が移動されるように構成されている。把持部26は、爪状の突起部を有しており、この突起部で、被削材27の中空部を把持することで、ベース21上に固定する。
 ガイド23と把持部26との間には、圧力センサ24及びアクチュエータ25が、互いに隣接して設置されている。すなわち、把持部26は、圧力センサ24及びアクチュエータ25を介してガイド23に固定されている。
 アクチュエータ25はベース21半径方向へのガイド23の変位を生じさせるものであり、ガイド23の変位により、把持部26が半径方向に移動することで、把持部26による把持力が調整される。圧力センサ24は、把持部26による把持力をモニタリングする。
 圧力センサ24としては、例えばロードセルを用いることができる。また、アクチュエータ25としては、例えばピエゾアクチュエータを用いることができる。
 図2に、被削材27が把持部26により固定されている例を示す。図2では、中空部を有する円盤状の被削材27を、その内径側から、把持部26の突起部で把持する例を示す。実施例1の加工装置は、不図示の回転駆動機により、ベース21を回転させることで、被削材27を回転させるように構成されている。
 図3は、図1に示す加工装置のA-A線による断面の一部を示す図である。図3に示すように、ガイド23、圧力センサ24、アクチュエータ25、把持部26が、ベース21の外周面側からこの順で、ガイド23と圧力センサ24、圧力センサ24とアクチュエータ25、アクチュエータ25と把持部26とが互いに隣接するように設けられている。
 後述するように、把持部26は被削材27を固定するが、図3では、アクチュエータ25がガイド23を駆動しておらず、把持部26が被削材27を固定していない状態、すなわち、被削材27に把持部26による把持力が加えられていない状態を示している。
 図4に、被削材27が把持部26により固定されている状態を示す。
図4では、ベース21外周方向(図5中矢印方向)へのガイド23の移動に伴い、把持部26がベース21外周方向に移動することで、被削材27の内径部分が把持部26により把持されている。このとき、被削材27には、把持部26からの把持力30が加わることで、被削材27は変形量31をもって変形する。
 図5は、図1に示す加工装置による切削加工中の状態を説明するための、A-A線による断面の一部を示す図である。図5に示すように、切削工具40は、被削材27の加工面に接触しつつベース21の半径方向41に移動することで、被削材27を切削加工する。図5に示す例では、不図示の回転駆動機によりベース21(図1参照。)が回転駆動されることで、ベース21上に固定された被削材27が回転し、加工面が切削加工される例を示す。
 切削加工が進行すると、被削材27の形状が変化し、例えば図5に示すように、その厚さが薄くなる。被削材の厚さが薄くなると、その剛性が低下するため、把持部26による把持力42を、切削開始時点の把持力30から一定としたまま切削加工を継続すると、被削材27の変形量は変形量43となり、図4の変形量31から増加する。このように、変形量が増加した状態で切削加工を継続すると、加工終了後の被削材27の形状や厚さが、予定した形状や厚さからずれた状態となり、所望の加工精度を得られない。
 そこで、図6に示すように、被削材27に対する把持力を、把持力44のように弱めて切削加工を行う。この場合、被削材27の変形量45は、図5に示す状態での変形量43と比較して減少する。この状態で切削加工を行うことで、所望の加工精度を得ることが可能となる。
 被削材27に対する把持力の調整は、具体的には、アクチュエータ25によりガイド23を駆動し、把持部26の位置を調整することで、行うことができる。
 次に、実施形態に係る加工装置について、図7を参照してさらに説明する。図7に示すように、加工装置は、演算部141、制御部142、加工装置本体143、記憶部144及び入力部145を有している。
 記憶部144は、各加工条件と被削材の変形量との関係を示すデータ130を記憶している。
 演算部141は、入力部145から入力される指令に従って、種々の演算を実行し、演算結果を制御部142に出力する。また、演算部141は、記憶部144が記憶しているデータやプログラムを読出し、読みだしたデータやプログラムを利用した演算を実行する。
 演算部141は、各加工条件下で被削材に付与される加工応力と、この加工応力が付与された被削材の変形量との関係に基づいて、切削加工中の被削材の変形量が所定の範囲内となる加工条件範囲を算出する加工条件シミュレーション部131と、切削加工中の被削材の変形量が所定の範囲内に維持されるように、被削材の切削加工中の予測形状に応じた把持力を算出する把持力シミュレーション部132を備えている。演算部141は、さらに、センサ24によりモニタリングされた把持力の値を参照し、把持部26による把持力が把持力シミュレーション部132で算出された設定値となるように、把持部26の移動量を算出する把持部移動量算出部136を備えている。
 制御部142は、演算部141から得られた演算結果に基づき、加工装置本体143の各部を制御する。 
 制御部142は、加工条件シミュレーション部131で算出された加工条件範囲に基づいて、加工条件を制御する加工条件制御部133と、把持力シミュレーション部132で算出された把持力の設定値に基づいて、把持部26による把持力を制御する把持力制御部134と、を備えている。
 把持力制御部134では、具体的には、把持部26による把持力が把持力シミュレーション部132で算出された設定値となるように、把持部移動量算出部136で算出された移動量の値に基づいて、アクチュエータ25を制御して把持部26を移動させることで、把持部26による把持力を制御する。
 図1で示す加工装置においては、加工条件制御部133は、具体的には、回転駆動機135の動作を制御する回転駆動機制御部及び切削工具40の動作を制御する加工具制御部を備えている。なお、後述する図18~20に示す構成の加工装置では、加工条件制御部133は、切削工具121の動作を制御する加工具制御部を備えている。
 以下に、加工装置における加工制御について、図8に示すフローチャートを用いて説明する。
 まず、ステップ1で、プロセスを開始する。次に、ステップ2で、被削材を把持部26で固定して、ベース21上に設置する。加工工程前の被削材の変形を防止するため、ステップ2(被削材の設置段階)では、被削材に対する把持力を加えなくてもよい。
 次に、ステップ3で加工処理が開始されるが、その前に、ステップ4~8で、加工処理における各種条件設定、すなわち、把持力の設定及び加工条件範囲の設定を行う。
 まず、ステップ4では、演算部145は、把持力シミュレーション部131により、切削加工時に被削材を安定して把持できる、把持力の上限値と下限値を設定する。次いで、ステップ5では、演算部141は、加工条件シミュレーション部131により、加工条件範囲を設定する。ステップ5では、被削材を安定的に把持して切削加工を行うことが可能であり、かつ被削材の変形量が所望の範囲内に維持される加工条件範囲を設定する。ステップ4及びステップ5は、後に詳述する。次に、ステップ6では、ステップ5で設定した加工条件範囲から、加工条件を設定する。
 次に、ステップ7では、演算部141は、把持力シミュレーション部132により、加工工程中の把持力の値を設定する。ステップ7では、切削加工中の被削材の変形量が所定の範囲内に維持されるように、加工段階に応じた把持力を算出し、設定する。ステップ7は、後に詳述する。
 すなわち、図3~5で説明したように、切削加工の進行に伴って、被削材の形状が変化するため、切削開始時点から一定の把持力で切削加工を行うと、被削材の形状変化(厚さの低減)に伴い、被削材の変形量が増大し、加工精度が低下する。このため、ステップ7では、切削加工中における被削材の変形量が、所定の加工精度を得られる範囲内となるように、把持力の値を、加工段階に応じて設定する。
 次に、ステップ8では、演算部141は、加工条件シミュレーション部131及び把持力シミュレーション部132で設定した把持力及び加工条件を確認する。確認の結果問題が無ければ、設定した条件を制御部142(加工条件制御部133、把持力制御部134)に出力し、ステップ3の加工処理に進む。一方、例えばステップ6で設定された加工条件が、ステップ7で設定された把持力に適合しない等、問題がある場合には、再度ステップ4に戻り、把持力の設定及び加工条件範囲の設定を行う。
 ステップ3の加工処理が終了すると、ステップ9では、把持部26で固定されている被削材の変形量を測定する。測定は、レーザによる変位測定により行ってもよく、タッチプローブによる接触式計測機を用いて行ってもよい。
 また、変形量の測定と併せて、加工処理後の被削材に生じている応力を計算により算出し、算出された応力値が、塑性変形に達する値か否かを確認する。応力値が、塑性変形が生じ得る値に達していた場合には、ステップ8に戻り、把持力の調整を行う。このとき、応力値の計算は、例えば有限要素法等を用いた解析ソフトにより行ってもよい。また、計算による算出に限られず、X線照射により被削材の応力を測定するようにしてもよい。
 次いで、ステップ10で、加工処理の工程の確認を行う。加工処理の最終工程まで実行されたことが確認された場合には、次のステップ11に進む。一方、まだ実行されていない加工処理がある場合には、ステップ3に戻り、次の加工処理を行う。
 ステップ11では、加工処理後の被削材の形状測定を行う。形状測定は、レーザを用いた変位測定により行ってもよく、タッチプローブによる接触式計測機を用いて行ってもよい。
 加工処理後の被削材が所望の加工精度を得られていれば、ステップ14に進み、全工程が終了する。一方、加工処理後の被削材の変形が大きく、所望の加工精度を得られていない場合には、ステップ12にて、修正加工処理を行う。その後、ステップ13にて、さらに形状測定を行う。所望の加工精度が得られるまで、このルーチンを繰り返す。
 以下に、図8に示すフローのステップ4、ステップ5、ステップ6、ステップ7及びステップ8を詳細に説明する。図9は、図8のステップ4を詳細に説明するフローチャートである。ステップ4は、切削加工時に被削材を安定して把持できる、把持力の範囲を設定するステップである。
 まず初めに、ステップ50では、演算部141には、入力部145により、被削材のモデルデータ(形状、サイズ、材質)が入力される。被削材のモデルデータは、例えばCADで作成したものが、入力部145から入力される。
 次に、ステップ51では、把持力シミュレーション部132は、ステップ50で入力されたモデルデータについて、把持力が付与されたときの状態を解析する。具体的には、把持力が付与されたときに、被削材に生じる応力値や変形量を算出する。解析には、例えば有限要素法等を用いた汎用の解析ソフトを用いて行ってもよい。これにより、被削材に付与される把持力に対する、応力値や変形量の解析データが得られる。
 次に、ステップ52では、ステップ51で得られた解析データを用いて、切削加工時に被削材の安定的な把持が可能となる把持力の範囲(把持力の最大値及び最小値)を設定する。
 図10に、把持力範囲の設定に用いられる解析データのグラフの一例を示す。図10のグラフは、ステップ51の解析により得られた結果をグラフ化したものであり、被削材に対して付与された把持力と応力値との関係を示している。
 図10の例では、外径100mm、内径43mm、厚さ5mmの材料A(ステンレス同等材)を用いた円盤素材を、図1の加工装置の把持部26で把持して把持力を付与したときに、円盤素材に生じる応力を有限要素法を用いて解析した解析結果である。
 切削加工では、加工中に被削材が常に変形し続ける状態となると、安定した切削加工を行えなくなる。このため、所望の加工精度を得るためには、被削材の降伏点以下の把持力で、把持することが必要となる。
 図10に示されるように、材料Aの降伏点に対応する把持力は、約4200Nであり、把持力が4200Nを超えると、円盤素材に生じる応力が材料Aの降伏点を上回り、塑性変形が発生することが予測される。このため、図10に示す例では、ステップ52において、把持力の最大値を例えば4200Nと規定することができる。
最大把持力の設定が終わると、次に、ステップ5(図8参照。)に該当する、加工条件範囲の設定に移る。
 図11は、図8のステップ5を詳細に説明するためのフローチャートである。ステップ5は、(1)被削材を安定的に把持して切削加工を行うことが可能であり、(2)かつ被削材の変形量が所望の範囲内に維持される加工条件範囲を設定するステップである。
 まず、ステップ60では、加工条件シミュレーション部131は、種々の加工条件下で切削加工を行ったときに、切削工具40及び被削材に加わる切削力を算出する。この計算結果に基づいて、各加工条件と切削力との関係を示すデータを得る。
 例えば旋削加工の場合、加工条件のパラメータは、送り速度(mm/rev)、切込み量(mm)、切削速度(m/min)の3種類がある。ここで、切削力とは、被削材に切削工具を接触させて切削加工を行っているときに、切削工具40に加わる力である。
 切削力の計算は種々の方法により行うことができるが、例えば切削加工解析ソフトを用いて行ってもよい。
 次に、ステップ61では、加工条件シミュレーション部131は、被削材を安定的に把持して切削加工を行うことができる加工条件範囲(第1の加工条件範囲)の設定を行う。
 具体的には、ステップ61では、前述のステップ52で算出された、把持力範囲を参照し、この把持力範囲で許容される切削力範囲に対応する加工条件範囲を、ステップ60で得られたデータ(各加工条件と切削力との関係を示すデータ)を用いて特定して、第1の加工条件範囲を設定する。
 なお、所定の把持力範囲で許容される切削力範囲は、例えば、各把持力で許容される切削力に関するデータを予め記憶部144に記憶しておき、このデータを読み出すことで特定することができる。
 次に、ステップ64では、加工条件シミュレーション部131は、ステップ61で設定した第1の加工条件範囲において、切削加工に伴う被削材の変形量が所望の範囲内に維持される加工条件範囲(第2の加工条件範囲)の設定を行う。
 すなわち、切削加工では、被削材の加工面に付与された加工応力が、残留応力として被削材に残ることで、切削加工後の変形要因となる。切削加工に伴って生じる加工応力は、切削加工時の加工条件に依存する。このため、例えば上記した送り速度(mm/rev)、切込み量(mm)、切削速度(m/min)等の各加工条件と、この加工条件下で被削材に付与される加工応力に伴う被削材の変形量との関係を、種々検討して予めデータベース130に蓄積し、記憶部144に記憶させておく。
 例えば実施例1のように、円盤状の被削材を回転させて切削加工する場合には、被削材の変形量は、例えば図4で示すような、回転の軸方向の変形が支配的となる。本実施例では、このような軸方向の変形量を被削材の変形量とする。
 加工条件シミュレーション部131は、記憶部144に記憶されているデータベース130を参照して、切削加工中の被削材の変形量が所望の範囲内となる加工条件範囲を、ステップ61で設定した第1の加工条件範囲内において探索して、第2の加工条件範囲を設定する。
 次に、ステップ62では、加工条件シミュレーション部131は、第2の加工条件範囲の設定時(ステップ64)に基準とした被削材の変形量が、所望の加工精度を満足するか否かを確認するとともに、ステップ64で設定した第2の加工条件範囲が、ステップ61で設定した第1の加工条件範囲を満たすか否かを確認する。
 基準とした被削材の変形量が所望の加工精度を満たしていない場合、又は第2の加工条件範囲が第1の加工条件範囲を満たしていない場合には、ステップ64に戻り、再度第2の加工条件範囲の設定を行う。
 ステップ62で、第2の加工条件範囲の設定時に基準とした被削材の変形量が、所望の加工精度を満足し、かつ第2の加工条件範囲が第1の加工条件範囲を満たすことを確認した場合には、ステップ6に進む。
 ステップ6では、上記したように、ステップ62で確認した第2の加工条件範囲から加工条件が選択され、加工条件が決定される。演算部141には、選択した設定値が、入力部145により入力される。
 図12は、図8のステップ7を詳細に説明するためのフローチャートである。 
 ステップ7は、上記したように、切削加工中の被削材の変形量が所定の範囲内に維持されるように、各加工段階に応じた把持力を算出し、設定するステップである。
 まず、ステップ70では、演算部141には、入力部145により、切削加工前の被削材のモデルデータ(形状、サイズ、材質)が入力される。次いで、ステップ71では、演算部141には、入力部145により、切削加工終了後の被削材のモデルデータが入力される。モデルデータは、切削加工前、切削加工後のいずれについても、例えばCAD等で作成したものを、入力部145から入力することができる。
 次いで、ステップ72では、把持力シミュレーション部132は、ステップ70で入力したモデルが、ステップ71で入力したモデルに至るまでの、切削加工中のモデルの変形量を算出する。
 ステップ72では、まず、把持力シミュレーション部132は、入力部145から入力された情報に基づき、計算ステップ数、すなわち、変形量算出の計算を実行するステップ数を設定する(ステップ73)。
 次いで、ステップ74では、把持力シミュレーション部132は、切削加工中の加工途中モデルを作成する。加工途中モデルは、ステップ73で設定したステップ数に対応する、切削加工の各段階における被削材の予測形状モデルである。加工途中モデルの作成は、例えばCAMや切削シミュレータ等を用いて行ってもよい。これにより、ステップ73で設定したステップ数に対応する各段階での加工途中モデルが得られる。
 次いで、ステップ75では、把持力シミュレーション部132は、ステップ74で作成した各段階の加工途中モデルについて、それぞれの予測形状状態での変形量(例えば図4に示す変形量31)を算出する。変形量の算出は、例えば有限要素法解析を用いて行うことができる。
 図13は、ステップ75で得られたモデル変形量の解析結果の一例を示す。図13の解析結果は、外径100mm、内径43mmの材料A(ステンレス同等材)で形成した円盤素材を、図1の加工装置の把持部26により、100Nの把持力で把持して切削加工を行ったときの、被削材のモデル変形量推移の解析結果である。
 図13に示すグラフでは、モデル(被削材)の厚さと変形量との関係を示している。図13に示されるように、モデル(被削材)の厚さが薄くなるに従い、その変形量は増加している。
 次いで、ステップ76では、把持力シミュレーション部132は、把持力の設定を行う。具体的には、把持力シミュレーション部132は、ステップ75で得られた各被削材厚さでの変形量の解析データから、所定の変形量が維持される把持力の値を算出する。
 図14は、図13において示す解析データを換算して、切削加工中の被削材の変形量が所定の範囲内となる把持力の値を算出して得られた解析データを示すグラフである。図14では、加工処理時間と把持力との関係を示している。
 図14において、把持力の値81は、ステップ4(図8参照。)で設定した把持力最大値であり、値82は、ステップ4で設定した把持力最小値である。ステップ3では、図14のグラフに示される値に沿って把持力を調整し、切削加工を行う。
 すなわち、切削加工では、加工が進行するに伴い被削材の厚さが薄くなるため、例えば本実施例の円盤状素材の切削加工では、図13に対応させて、図14に示すように、加工の進行に伴い把持力を弱めるように設定する。このように設定することで、切削加工中の被削材は、その変形量が、図6に示すように抑制される。このため、所望の加工精度で切削加工を行うことができる。
 図15は、図8のステップ8及ぶステップ3を詳細に説明するためのフローチャートである。図15では、図8に示すステップ8及びその前段階に該当するステップと、ステップ3とを含めたフローを示している。図15に示すフローは、ステップ75で設定した把持力の設定値となるよう把持部26を調整し、被削材に把持力を付与するステップである。
 まず初めに、ステップ90では、演算部141は、ステップ76(図12参照。)で設定した、各モデル形状段階での把持力の設定値を呼び出す。次いで、ステップ91では、把持部移動量算出部136は、ステップ90で呼び出した把持力を発生させるために必要とされる把持力の移動量を算出する。
 次いで、ステップ92では、演算部141は、加工直前における把持力と加工条件の確認を行う。なお、ステップ92は、図8のステップ8に該当する。確認の結果、問題有りと判断した場合には、ステップ4以降のステップ(図8参照。)に戻り、再度加工条件範囲の設定又は把持力の設定を行う。確認の結果、問題無しと判断した場合には、ステップ93に進み、加工処理を開始する(図8のステップ3に該当。)。
 具体的には、演算部141は、ステップ91で算出された把持部26の移動量を、把持力制御部134に指示する。把持力制御部134は、演算部141からの指示に基づき、アクチュエータ25を駆動し、把持部26を移動させる。把持部26の移動により、把持部26による把持力が調整される。
 また、演算部141は、ステップ6で設定した加工条件を、加工条件制御部134(具体的には、回転駆動機制御部、加工具制御部)に指示する。加工条件制御部134の回転駆動機制御部及び加工具制御部は、それぞれ、演算部141からの指示に基づき、回転駆動機135、切削工具40の動作を制御する。
 加工処理が開始されると、把持部26による把持力は、圧力センサ24によりモニタリングされる。圧力センサ24でモニタリングされた把持力は、演算部141に送られ、各加工段階に応じた把持力で切削加工が行われるように、把持部移動量算出部136での把持部26の移動量の調整に反映される。加工処理が終了すると、図8のステップ9以降に進む。
 図13の解析で採用した円盤素材(外径100mm、内径43mmの材料A(ステンレス同等材))について、把持力を約40kNとして、切削速度100m/min、送り速度0.1mm/rev、切込み量0.5mmの加工条件で、素材端面を厚さ5mmから3mmに旋盤加工したところ、切削加工中に把持力の調整を行うことなく、切削開始時点での把持力を維持したまま加工を行った場合には、素材の最大変形量は、約0.9mmとなった。
 本実施例では、把持部26による把持力を調整しながら切削加工を行うため、被削材の変形を抑制した状態で、切削加工することができる。このため、上記と同じ円盤素材を切削加工対象として、同一の加工条件下で、把持力シミュレーション部132で得られた設定値に基づき把持部26による把持力を調整しながら切削加工を行ったところ、把持力の調整を行わなかった場合(最大変形量約0.9mm)と比較して、素材の変形量が約90%以上抑制されることが、有限要素法による解析の結果確認できた。
 次に、図16及び図17を用いて、実施例2について説明する。図16は、実施例2の加工装置の構成を示す斜視図である。実施例2では、円盤状の被削材を、その外径側から把持する加工装置の例を示す。
 図16に示すように、ベース100は、実施例1と同様、略円筒形状を有しており、その外周面上に端面が設けられるように、3個のレール101が均等な間隔で固設されている。
 レール101には、それぞれベース100の中心側の位置にガイド105が備え付けられている。ガイド105は、ベース100の外周面側に向けて、レール101上を半径方向(被削材の固定方向)に移動可能な機構となっている。ガイド105の移動方法は、実施例1と同様、チャックハンドルによる調整や、油圧による調整を採用することができる。
 ガイド105には、ベース100の外周方向に把持部102が附設されており、ガイド105の移動に伴い、把持部102が移動されるように構成されている。把持部102は、それぞれ突起部を有しており、この突起部により被削材106の外径端部を把持することで、円盤状の被削材をベース100上に固定する。
 把持部102とガイド105との間には、アクチュエータ103及び圧力センサ104が、互いに隣接して設置されている。すなわち、把持部102は、アクチュエータ103及び圧力センサ104を介してガイド105に固定されている。アクチュエータ103及び圧力センサ104の機能及び種類は、実施例1のアクチュエータ25及び圧力センサ24と同様であり、その説明を省略する。
 実施例2では、把持部102とアクチュエータ103とが隣接しており、ガイド105と圧力センサ104とが隣接している形態を示しているが、アクチュエータ103と圧力センサ104は、その位置が反対でも良い。
 図17に、被削材106が把持部102により固定されている例を示す。実施例2の加工装置は、実施例1と同様、不図示の回転駆動機により、ベース100を回転させることで、被削材106を回転させるように構成されている。
 実施例2の加工装置も、実施例1の加工装置と同様、演算部141、制御部142、記憶部144、入力部145(図7参照。)を有しており、実施例1で説明したのと同様にして、加工条件範囲の設定及び制御並びに把持力設定及び制御が行われる。これらの設定プロセス及び制御プロセスは、実施例1と同様に行われるため、その説明は省略する。
 実施例2の加工装置によれば、加工段階に応じた把持力の設定を行いながら、切削加工を行うことができるため、加工処理中の被削材の変形量の増大を抑制することができ、所望の加工精度での切削加工を行うことができる。
 次に、図18~20を用いて、実施例3について説明する。図18は、実施例3の加工装置の構成を示す斜視図である。実施例3では、ブロック状の被削材の転削加工について説明する。
 ベース110は、略矩形の底面を有しかつ中央に凹部を有して構成されており、工作機械の内部、又は加工対象物が設置される位置に据え付けられる。ベース110には、凹部の略中央に、被削材115を把持する把持部113が設けられている。
 把持部113は、被削材115の固定方向に移動可能に設けられたロッド111の端部に固定されており、ロッド111の移動に伴い、ベース110上を移動する。
 ロッド111は、ベース110の側壁110aを貫通するように設けられており、ロッド111の貫通側端部に、駆動装置112が固定されている。
 駆動装置112は、ロッド111を図17中x方向に駆動するものであり、ロッド111が移動することで、把持部113がベース110上をx軸方向に移動する。把持部113は、被削材115を、駆動装置112の設置領域と対向する側のベース110の側壁110bに押し付けるようにして、把持部113と側壁110bとの間で挟持することで、被削材115を、ベース110上に固定する。
 駆動装置112としては、例えば回転運動を生じさせるサーボモータを用いることができ、その場合には、ロッド111は、ボールねじを用いることができる。把持部113だけでは、被削材115を確実に固定できない場合には、把持部113と被削材115との間、及び被削材115とベース110の側壁110bとの間に、それぞれ当て板114、117を挟むようにしてもよい。
 図18において、当て板117とベース110の側壁110bとの間には、圧力センサ116が設置されている。圧力センサ116は、把持部113による把持力をモニタリングする。
 図19は、図18に示す加工装置による加工処理の例を説明する図である。図19に示すように、被削材115は、切削工具121により切込み量122の分だけ切削される。このときの被削材115の変形量123を図20に示す。
 切削加工の進行に伴い、被削材115は、徐々にその形状が変化し、全体の厚さが薄くなる。このとき、切削開始時点での把持力を維持したまま、一定の把持力で切削加工を継続した場合、図20に示すように、被削材115の変形量123が増加する。このように、変形量が増加した状態のまま、さらに切削加工を継続すると、所望の加工精度を得られない場合がある。このため、把持部113による被削材115に対する把持力を、駆動装置112により調整しながら、切削加工を行う。
 実施例3の加工装置も、実施例1と同様、演算部141、制御部142、記憶部144、入力部145を備えており、これにより、把持力の設定及び制御並びに加工条件の設定及び制御を行う。
 すなわち、圧力センサ116により、把持部113による把持力をモニタリングしつつ、実施例1と同様にして、把持力制御部134により、加工状態に応じて駆動装置112を制御して、ロッド111端部の位置を移動させ、把持部113による把持力を調整する。また、加工条件制御部133により、切削工具121の加工条件を制御して、切削加工を行う。
 実施例3の加工装置によれば、加工段階に応じた把持力の設定を行いながら、切削加工を行うことができるため、加工処理中の被削材の変形量の増大を抑制することができ、所望の加工精度での切削加工を行うことができる。
ベース…21、100、110、側壁…110a、110b、レール…22、101、ガイド…23、105、圧力センサ…24、104、116、アクチュエータ…25、103、把持部…26、102、113、被削材…27、106、115、ロッド…111、駆動装置…112、当て板…114、117、切込み量…122、把持力…30、42、44、変形量…31、43、45、123、半径方向…41、切削工具…40、121、130…各加工条件と被削材の変形量との関係を示すデータ、131…加工条件シミュレーション部、132…把持力シミュレーション部、133…加工条件制御部、134…把持力制御部、135…回転駆動機、136…把持部移動量算出部、演算部…141、制御部…142、加工装置本体…143、記憶部…144、入力部…145

Claims (8)

  1.  被削材を固定して切削加工する加工装置であって、
     前記被削材を把持する把持部と、
     前記把持部を移動させる可動部と、
     前記可動部を駆動して、前記把持部による把持力を調整する駆動部と、
     前記把持部による把持力をモニタリングするセンサと、を有し、
     切削加工中の被削材の変形量が所定の範囲内に維持されるように、被削材の切削加工中の予測形状に応じた把持力を算出する把持力シミュレーション部を有する演算部と、
     前記把持力シミュレーション部で算出された前記把持力の設定値に基づいて前記駆動部を制御し、前記把持部による把持力を制御する把持力制御部を有する制御部と、
    を有することを特徴とする加工装置。
  2.  前記演算部は、前記センサによりモニタリングされた前記把持力の測定値を参照して、前記把持部による把持力が前記把持力シミュレーション部で算出された設定値となるように、前記把持部を移動させる量を算出する把持部移動量算出部を有することを特徴とする請求項1に記載の加工装置。
  3.  前記演算部は、各加工条件下で前記被削材に付与される加工応力と、該加工応力が付与された前記被削材の変形量との関係に基づいて、切削加工中の前記被削材の変形量が所定の範囲内となる加工条件範囲を算出する加工条件シミュレーション部を有し、
     前記制御部は、前記加工条件シミュレーション部で算出された前記加工条件範囲に基づいて、加工条件を制御する加工条件制御部を有することを特徴とする請求項1に記載の加工装置。
  4.  前記加工装置は、さらに前記被削材に接触させて切削加工を行う切削工具を有しており、
     前記加工条件制御部は、前記加工条件範囲に従って前記切削工具を制御する加工具制御部を有することを特徴とする請求項3に記載の加工装置。
  5.  前記加工装置は、さらに前記可動部を支持するベースを回転駆動させる回転駆動機を有しており、
     前記加工条件制御部は、前記加工条件範囲に従って、前記回転駆動機を制御する回転駆動機制御部を有することを特徴とする請求項4に記載の加工装置。
  6.  前記把持力シミュレーション部は、
     切削加工が進展する各段階における前記被削材の予測形状を算出した後、
     前記各段階での前記被削材の予測形状についての変形量を算出し、
     算出された前記変形量のデータに基づいて、切削加工中の前記被削材の変形量が所定の範囲内に維持される把持力を算出することを特徴とする請求項1に記載の加工装置。
  7.  前記加工条件シミュレーション部は、
     各加工条件下での切削力を算出し、算出された切削力のデータに基づき、前記把持部による安定した把持状態が維持される第1の加工条件範囲を設定するとともに、
     切削加工時に前記被削材に付与する加工条件と、該加工条件下で前記被削材に付与される加工応力に伴う該被削材の変形量との関係を蓄積したデータベースを参照して、前記変形量が所定の範囲内に維持される加工条件範囲を探索して第2の加工条件範囲を設定することを特徴とする請求項3に記載の加工装置。
  8.  前記把持力シミュレーション部は、前記被削材に付与される把持力と、該把持力が付与された前記被削材の状態変化との関係を解析し、
     前記前記加工条件シミュレーション部は、前記把持力シミュレーション部での解析により得られた解析データに基づき設定された把持力範囲で許容される加工条件の範囲を特定して、前記第1の加工条件範囲を設定することを特徴とする請求項7に記載の加工装置。
PCT/JP2015/065665 2015-05-29 2015-05-29 加工装置 WO2016194079A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/065665 WO2016194079A1 (ja) 2015-05-29 2015-05-29 加工装置
JP2016563490A JP6235167B2 (ja) 2015-05-29 2015-05-29 加工装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/065665 WO2016194079A1 (ja) 2015-05-29 2015-05-29 加工装置

Publications (1)

Publication Number Publication Date
WO2016194079A1 true WO2016194079A1 (ja) 2016-12-08

Family

ID=57440259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065665 WO2016194079A1 (ja) 2015-05-29 2015-05-29 加工装置

Country Status (2)

Country Link
JP (1) JP6235167B2 (ja)
WO (1) WO2016194079A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3081549A1 (fr) * 2018-05-25 2019-11-29 Safran Aircraft Engines Mexico Dispositif de positionnement et de maintien d'un element annulaire de turbomachine
US12030148B2 (en) 2019-07-24 2024-07-09 Hitachi, Ltd. NC program generation system and NC program generation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158530A1 (ja) 2019-01-30 2020-08-06 東レ株式会社 撥水性織編物、その製造方法および衣料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5682144A (en) * 1979-12-10 1981-07-04 Hitachi Ltd Clamping apparatus of workpiece for machine tool
JPS6248409A (ja) * 1985-08-27 1987-03-03 パウル・フオルカルト・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフトウング・ウント・コンパニ・コマンデイ−トゲゼルシヤフト 工作機械の回転する締付け装置の締付け力調整装置
JPH11267901A (ja) * 1998-03-20 1999-10-05 Star Micronics Co Ltd Nc自動旋盤のガイドブッシュ把持力調整装置とnc自動旋盤のガイドブッシュ把持力調整方法
JP2000296440A (ja) * 1999-04-13 2000-10-24 Nissan Motor Co Ltd 研削加工装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005262326A (ja) * 2004-03-16 2005-09-29 Toyoda Mach Works Ltd 心押し台
JP4582067B2 (ja) * 2006-08-02 2010-11-17 トヨタ自動車株式会社 形状予測装置と形状予測方法とそのためのコンピュータプログラム
JP5423411B2 (ja) * 2010-01-13 2014-02-19 トヨタ自動車株式会社 旋削装置および旋削方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5682144A (en) * 1979-12-10 1981-07-04 Hitachi Ltd Clamping apparatus of workpiece for machine tool
JPS6248409A (ja) * 1985-08-27 1987-03-03 パウル・フオルカルト・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフトウング・ウント・コンパニ・コマンデイ−トゲゼルシヤフト 工作機械の回転する締付け装置の締付け力調整装置
JPH11267901A (ja) * 1998-03-20 1999-10-05 Star Micronics Co Ltd Nc自動旋盤のガイドブッシュ把持力調整装置とnc自動旋盤のガイドブッシュ把持力調整方法
JP2000296440A (ja) * 1999-04-13 2000-10-24 Nissan Motor Co Ltd 研削加工装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3081549A1 (fr) * 2018-05-25 2019-11-29 Safran Aircraft Engines Mexico Dispositif de positionnement et de maintien d'un element annulaire de turbomachine
US12030148B2 (en) 2019-07-24 2024-07-09 Hitachi, Ltd. NC program generation system and NC program generation method

Also Published As

Publication number Publication date
JP6235167B2 (ja) 2017-11-22
JPWO2016194079A1 (ja) 2017-06-15

Similar Documents

Publication Publication Date Title
JP4098761B2 (ja) 仕上げ加工方法
JP4942839B2 (ja) びびり振動検出方法及びびびり振動回避方法、並びに工作機械
JP5435135B2 (ja) 材料試験機
JP6481350B2 (ja) ボールねじ測定装置
US9599979B2 (en) Machining error calculation apparatus, machining error calculation method, machining control apparatus and machining control method thereof
JP4809488B1 (ja) 任意区間で速度変更が可能な揺動動作機能を有する数値制御装置
US20200215710A1 (en) Vibration cutting apparatus and non-transitory computer-readable recording medium
JP6888375B2 (ja) 振動解析システムおよび加工機
EP1650620A2 (en) Method and apparatus for correcting thermal displacement of machine tool
WO2002003155A1 (fr) Dispositif et procede de simulation d'operations d'usinage pour machines a commande numerique
JP6235167B2 (ja) 加工装置
US20180307200A1 (en) Method for compensating milling cutter deflection
JP6719678B2 (ja) 数値制御装置
JP2013215809A (ja) 切削加工システム及び方法
EP2600217A1 (en) Numerical control apparatus
JP2019003646A (ja) 電動機の制御装置
JP2007226836A (ja) 数値制御工作機械の制御方法及び数値制御工作機械
JP6990134B2 (ja) 切削装置及びその制御方法
EP1536302B1 (en) Method and apparatus for controlling a machine tool
Ferry et al. Virtual five-axis flank milling of jet engine impellers—part II: feed rate optimization of five-axis flank milling
JP6168396B2 (ja) 工作機械
JP2018118362A (ja) 工作機械および振動抑制方法
JP2020042347A (ja) 工作機械および工具異常判定方法
JP4940904B2 (ja) かつぎ量計測装置
JP2022042825A (ja) 工作機械の制御装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016563490

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15894114

Country of ref document: EP

Kind code of ref document: A1