WO2016192229A1 - 导电性弹簧板的制造方法 - Google Patents

导电性弹簧板的制造方法 Download PDF

Info

Publication number
WO2016192229A1
WO2016192229A1 PCT/CN2015/089092 CN2015089092W WO2016192229A1 WO 2016192229 A1 WO2016192229 A1 WO 2016192229A1 CN 2015089092 W CN2015089092 W CN 2015089092W WO 2016192229 A1 WO2016192229 A1 WO 2016192229A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
iron
spring plate
conductive spring
iron alloy
Prior art date
Application number
PCT/CN2015/089092
Other languages
English (en)
French (fr)
Inventor
平口稔
野村宽夫
森本幸一
高东晓
朴在锋
Original Assignee
苏州晓锋知识产权运营管理有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54446743&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016192229(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 苏州晓锋知识产权运营管理有限公司 filed Critical 苏州晓锋知识产权运营管理有限公司
Publication of WO2016192229A1 publication Critical patent/WO2016192229A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • the invention relates to a conductive spring plate, and to a method for manufacturing a conductive spring, belonging to the field of metallurgy.
  • the invention provides a method for preparing a conductive spring plate, which comprises the following steps:
  • Step one pre-treating, taking a block-shaped copper-iron alloy for calendering treatment, forming a copper-iron alloy into a strip shape, the copper-iron alloy containing 10-50 parts of iron, and 50-90 parts of copper by weight;
  • Step 2 heating the material obtained in the first step to the solution temperature, and then performing rapid cooling, and adding plastic deformation to the copper-iron alloy during the temperature period of cooling until the iron component is not precipitated;
  • Step 3 cold rolling process: adding a plastically deformed copper alloy to the normal temperature rolling process in the age hardening temperature stage analyzed by iron;
  • Step 4 age hardening process: maintaining a predetermined time at the age hardening temperature
  • Step 5 Test the product obtained in the fourth step. When the 0.2% endurance of the product is less than 850 MPa, repeat steps 3 and 4 until the 0.2% endurance of the product is greater than 850 MPa.
  • the method for preparing the conductive spring plate of the present invention may further have the feature that the thickness of the conductive spring plate prepared in the fifth step is 0.05-0.5 mm.
  • the method for producing a conductive spring plate of the present invention may further include a feature in which the solid solution temperature ranges from 850 ° C to 1000 ° C.
  • the method for producing a conductive spring plate of the present invention may further have a feature that the rapid cooling rate is -50 to -200 °C ⁇ s -1 .
  • the method for producing a conductive spring plate of the present invention may have such a feature that the amount of plastic deformation added to the copper-iron alloy during the cold-rolling step in the third step is 5% or more, and the cold rolling process is repeated. At the time, the cumulative amount of plastic deformation added to the copper-iron alloy is 30% or more.
  • the method for producing a conductive spring plate of the present invention may further include a temperature range of from 400 ° C to 530 ° C in the age hardening step.
  • the method for producing a conductive spring plate of the present invention may further have a feature in which the age hardening time is between 3 minutes and 24 hours.
  • the conductive spring plate made by the manufacturing method of the present invention has high performance and high performance conductivity.
  • 1 is a flow chart of a conductive spring plate of a copper-iron alloy.
  • Step a Dissolve high quality copper in an electric furnace. Copper having a purity greater than 99.9% is generally referred to as high quality copper. The broken copper pieces are placed in an electric furnace for stirring, and the temperature is raised to the melting point of copper (810.24 k) or more, and then deoxidized after being melted.
  • the partial pressure of oxygen is kept at a high level, and the range of oxygen partial pressure is 1.5 atm to 3 atm.
  • the temperature is adjusted to 50 ° C to 100 ° C above the melting point, so that the oxygen element on the molten copper is increased, and the hydrogen gas is separated by a phase, thereby performing a dehydrogenation process.
  • the phase law here refers to the phase (equilibrium) law, and English is the phase rule. Specifically, once the oxygen content is increased, the hydrogen content is automatically reduced.
  • a deoxidizer having strong binding ability to oxygen is used.
  • the deoxidizing agent for example, a monomer or a composite of Ca, Si, Mn, P, Al, Ti, Li, or the like, or a complexing agent with other various metals can be used.
  • a large amount of inert gas is poured into the soup surface of the dissolution furnace.
  • the dross of the substance which is oxidized by the dross-removing aid is collected and separated from the dissolved soup.
  • a low melting point compound of a mineral of Ca or Mg is used.
  • Step b a process of dissolving high quality iron on an electric furnace.
  • high-quality iron refers to iron with a purity greater than 99.9%, stir in an electric furnace, raise the temperature to the melting point of iron (1261.84k), melt, and combine with oxygen when deoxidizing A strong composite deoxidizer.
  • a strong composite deoxidizer for example: a monomer or a composite of Ca, Si, Mn, P, Al, Ti, Li, or a composite agent with a polymetal.
  • a large amount of inert gas is poured into the soup noodle.
  • a dross removing agent is simultaneously used to collect the oxide residue and separate it from the soup.
  • a low melting point compound of a mineral of Ca or Mg is used.
  • the oil content of the impure substance of the metal is determined in advance by machine analysis and an appropriate furnace material is selected. That is, high quality furnace materials should be used.
  • Step c mixing process of high quality copper and high quality iron dissolved soup
  • the high-quality copper and high-quality iron in the respective furnaces are injected into the mixed electric furnace in accordance with the required mixing ratio of the ingots while preventing the air from being caught.
  • the content of each component in the ingot is as follows: the content of iron is 10 to 50 parts by weight based on the weight of copper.
  • the injected metal liquid is heated at a temperature based on the melting temperature of the high-quality iron to promote the crystallization reaction.
  • the solubility of iron in copper is about 2% from the binary state diagram, so the mixed metal liquid will become a supersaturated component state, forming an intermetallic compound, the concentration is similar to that of copper liquid, so the liquid in copper Produces a small piece of shape. This shape has a granular shape and a flat shape. If the dispersion concentration is high, the viscosity is increased and the viscosity is increased.
  • Step d a process of injecting a mold
  • step c the state in which the viscosity rises is regarded as the reference for the end of the reaction, and is injected into the mold. opportunity.
  • the crystal grain and the mixed grain can be controlled by three kinds of cooling methods such as room temperature cooling, forced rapid cooling, and heating temperature controlled cooling.
  • room temperature cooling forced rapid cooling
  • heating temperature controlled cooling When the temperature is lowered rapidly, the crystal grains and the mixed particles are small, and when the temperature is lowered slowly, the crystal grains and the mixed particles are large. Therefore, the crystal grain size for rapid cooling is small, the crystal grain size for cooling at room temperature is moderate, and the particle size for heating and cooling is large.
  • the crystal size can be used for the stretch material.
  • the crystal grain size suitable for other types of materials is crystal grains obtained by cooling at room temperature.
  • the soup temperature is based on the dissolution temperature of high quality iron of 1261.84k.
  • the rapid cooling and heating cooling rates referred to in the present invention are relative speeds obtained in comparison with the normal temperature cooling rate.
  • Rapid cooling rapid cooling temperature drop rate ⁇ normal temperature cooling temperature drop speed *2
  • Heating and cooling temperature drop rate of heating and cooling ⁇ temperature drop rate of normal temperature cooling / 2
  • the cooling time for rapid cooling should be less than 25 seconds, and the heating and cooling time should be 100 seconds or longer.
  • the metal mold is cooled by a controlled heating temperature method, and the operating conditions are: heating the metal mold by electricity or natural gas.
  • the inside of the heating furnace between 700 and 800 ° C is uniformly heated and then pressure bonded by a forge.
  • the ingot is cast between 700-800 degrees and made into round bars and squares.
  • the manufacturing method has the characteristics of a complete degassing process, which removes excess gas and thus increases the value of the material.
  • the copper-iron alloy as a raw material is preferably produced by the production method provided in the above steps. It is also possible to manufacture an existing copper-iron alloy.
  • the manufacturing process of the conductive spring plate of copper-iron alloy includes the following steps:
  • Step S100 dissolution casting treatment: melting the copper-iron alloy in a high-frequency melting furnace, casting the molten copper-iron alloy into a small block shape, and the initial size of the small-piece shape in the embodiment is 50 mm ⁇ 50 mm ⁇ 300 mm, according to the final product The size is divided again on this basis Cut.
  • the copper-iron alloy in this step contains 10-50% of iron.
  • Step S110 heat-intercalation treatment: The copper-iron alloy small pieces cast in the step S100 are calendered by a calendering apparatus in a heated state.
  • Step S120 cold rolling process: The copper-iron alloy rolled in the heated state in step S110 is further rolled by a rolling device in a cooled state.
  • the strip-shaped copper-iron alloy is formed by two steps of step S110 and step S120.
  • Step S130 softening heat treatment: heating the strip-shaped copper-iron alloy to above the aging temperature.
  • Step S140 cold rolling process: the alloy in step S130 is subjected to cold rolling treatment.
  • the strip-shaped copper-iron alloy is passed through the rolling process of S130 and S140 to form a thinner strip-shaped copper-iron alloy. If the copper-iron alloys produced in the stages S110 and S120 do not need to be further thinned, the softening heat treatment of step S130 and the cold rolling treatment of S140 may not be performed.
  • step S150 a solution heat treatment is performed to heat the copper-iron alloy which is formed by rolling at a normal temperature of S140 to a solution temperature range, and then the copper-iron alloy is rapidly cooled at a predetermined cooling rate.
  • the rolled copper-iron alloy is heated to a temperature in the range of 850 ° C to 1000 ° C, and then heated to a solution temperature range, and then the copper-iron alloy is cooled at a predetermined cooling rate of about -100 ° C ⁇ s -1 .
  • rapid cooling is performed.
  • the cooling rate may be appropriately selected in the range of -50 ° C ⁇ s -1 to -200 ° C ⁇ s -1 depending on the specific requirements for the precipitation of iron crystal grains.
  • Step S160 cold rolling treatment:
  • a plasticity variable is added to the copper-iron alloy in a temperature range (cold) in which copper solid-solution iron does not precipitate.
  • copper and iron Plasticity variables in the range of about 0.05-0.4 can be added to the gold.
  • the amount of plastic deformation is represented by ⁇
  • the thickness before rolling is represented by L
  • Step S170 Age Hardening Treatment:
  • the age hardening time of the copper-iron alloy which is rolled in s160 is usually maintained.
  • the iron is dissolved in the copper, and after cooling, the iron precipitates in a certain temperature range, and solid crystals gradually start to appear in the liquid.
  • the copper-iron alloy hardens slowly over time in the age hardening range of 400 ° C to 530 ° C, that is, it hardens gradually.
  • the meaning of age hardening the alloy hardens over time.
  • the copper-iron alloy rolled in the step S160 can be maintained in the range of 400 ° C to 530 ° C for 3 minutes to 24 hours.
  • the step S180 it is determined whether or not the number of repeated processing returns reached in S160 and S170 is repeated, and the higher the required hardness, the more the number of repeated processes.
  • the predetermined requirement refers to a parameter value of 0.2% of the endurance of the product, and in the present embodiment, the 0.2% proof stress should be greater than 850 MPa.
  • the parameters in Table 1 may also be selected as the specified requirements.
  • the amount of plastic deformation applied to the copper-iron alloy is larger than the amount of plastic deformation applied to the step S160 after the subsequent recirculation to the step S160.
  • the reason is as follows: Specifically, the copper-iron alloy in which the plastic deformation amount is added during the S160 treatment of two or more times is hardened in the first S160 and S170 treatments, so that the S160 treatment is performed twice or more than the initial treatment process. There is no more plastic deformation.
  • the plasticity added to the copper-iron alloy is cumulatively 0.3 or more. That is, the copper-iron alloy is repeatedly subjected to the S160 process, and the rolling ratio is cumulatively 30% or more.
  • a copper-iron alloy spring plate having a thickness of 0.05-0.5 mm can be produced as needed.
  • the physical properties of the spring plate can be improved and the conductivity of the copper-iron alloy (IACS) can be improved.
  • the electrical conductivity of the copper-iron alloy spring plate material can be improved.
  • the amount of plastic deformation applied to the copper alloy is larger than the amount of plastic deformation applied when the normal temperature rolling step is performed twice or more.
  • Table 1 shows the product properties of the conductive spring plates of the present invention.
  • SSAA50 refers to copper 50% + iron 50% in the alloy
  • SSA90 refers to copper 90% + iron 10% in the alloy.
  • the conductive spring plate of this embodiment has a 0.2% proof force of 850 MPa or more and a conductivity of 50% IACS.
  • the difference between the tensile strength (tension resistance) and the 0.2% proof strength of the conductive spring plate of the present embodiment is 40 MPa or more.
  • SSA80 Cu 80%, Fe 20%
  • SSA 70 Cu 70%, Fe 30%
  • SSA 60 Cu 60%, Fe 40%
  • 0.2% proof stress, electrical conductivity and tensile strength are also satisfied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

一种导电性弹簧板的制备方法,包括以下步骤:步骤一、预处理,取块状的铜铁合金进行压延处理,使铜铁合金形成带状;步骤二、将步骤一所得材料加热到固溶温度,然后进行急速冷却;步骤三、冷间压延工序:在冷却到铁成分不析出的温度阶段内,在铜铁合金上添加塑性变形;步骤四、时效硬化工序:在铁成分析出的时效硬化温度阶段,让冷间压延工序中添加塑性变形的铜合金在时效硬化温度下保持预定的时间;步骤五、重复进行步骤三和步骤四,直至产品的0.2%耐力大于850MPa时结束。

Description

导电性弹簧板的制造方法 技术领域
本发明涉及一种导电性弹簧板,本发明还涉及一种导电性弹簧的制造方法,属于冶金领域。
背景技术
作为导电性和强度机械性共有材料,以前主要使用含0.5%-3%铍成分的铜合金。这种铍化合物里含有毒性。虽然在制造成最终产品之后没有毒性。但是在机械加工或者焊接的过程中一旦吸入排出的含有铍的粉尘,会对肺产生严重的影响,有危险性。另外,根据IARC(国际临床麻醉学科)调查,铍化合物会引发癌症。
发明内容
本发明的目的在于提供一种导电性弹簧板及其制造方法,以解决上述问题。
本发明提供一种导电性弹簧板的制备方法,其特征在于,包括以下步骤:
步骤一,预处理,取块状的铜铁合金进行压延处理,使铜铁合金形成带状,以重量份计,铜铁合金含有10-50份的铁,以及50-90份的铜;
步骤二、将步骤一所得材料加热到固溶温度,然后进行急速冷却,在冷却到铁成分不析出的温度阶段内,在铜铁合金上添加塑性变形;
步骤三、冷间压延工序:在铁成分析出的时效硬化温度阶段,让常温压延工序中添加塑性变形的铜合金;
步骤四、时效硬化工序:在时效硬化温度下保持预定的时间,
步骤五、对步骤四中得到的产品进行检测,当产品的0.2%耐力小于850MPa时,重复进行步骤三和步骤四,直至产品的0.2%耐力大于850MPa时结束。
另外,本发明的导电性弹簧板的制备方法,还可以具有这样的特征:其中,步骤五制备得到的导电性弹簧板的厚度为0.05-0.5mm。
另外,本发明的导电性弹簧板的制备方法,还可以具有这样的特征:其中,述固溶温度的范围是850℃~1000℃。
另外,本发明的导电性弹簧板的制备方法,还可以具有这样的特征:其中,急速冷却的速度为-50~-200℃·s-1
另外,本发明的导电性弹簧板的制备方法,还可以具有这样的特征:步骤三中的冷间压延工序时在铜铁合金上添加的塑性变形量是5%以上,当重复进行冷间压延工序时,在铜铁合金上添加的塑性变形累计量在30%以上。
另外,本发明的导电性弹簧板的制备方法,还可以具有这样的特征:其中,时效硬化工序的温度范围是400℃~530℃。
另外,本发明的导电性弹簧板的制备方法,还可以具有这样的特征:其中,时效硬化时间是3分钟~24小时之间。
发明的有益效果
使用本发明制作方法做出的导电性弹簧板,具有高性能的强度和高性能的导电率。
附图说明
图1是铜铁合金的导电性弹簧板的流程图。
具体实施方式
以下说明本发明的具体实施方式。
首先介绍本发明的导电性弹簧板所采用的铜铁合金的制造方法,制造过程如下:
步骤a、将高质量的铜在电气炉里进行溶解。一般将纯度大于99.9%的铜称之为高质量的铜。将碎铜片放入电器炉里进行搅拌,把温度提升到铜的熔点(810.24k)以上,熔化后进行脱氧操作。
(1)为了脱氢,氧气分压保持在高位,氧气分压的范围:1.5atm~3atm。同时保持温度调整到熔点以上50℃~100℃,使溶融铜上的氧气元素增加,相律的分离氢气,以此进行脱氢工艺。此处的相律指相(平衡)律,英语为phase rule。在此处具体来说就是一旦氧气的含量增加的话氢气的含有量会自动减少。
(2)在脱氢步骤完成之后,需要进行脱氧,脱氧时使用与氧气结合力强的脱氧剂。脱氧剂可使用例如:Ca、Si、Mn、P、Al、Ti、Li等单体或复合体,或者与其它多种金属的复合剂。期间,为了防止氢气和氧气返回原有状态,在溶解炉汤面灌入大量的惰性气体。在使用脱氧剂的同时,使用除渣滓助剂集合发生氧化的物质的渣滓,并从溶汤中分离。除渣滓助剂采用Ca、Mg系的矿物的低熔点化合物。
(3)高质量铁溶解时,为了防止因炉材元素混入造成熔点变动或者出现混合变化,应事先分析制造金属的不纯物含油量及选择杂质元素含有量少的炉材。
步骤b、高质量铁在电气炉上溶解的工序。
取高质量金属粉碎的铁片,高质量的铁指纯度大于99.9%的铁,在电气炉里进行搅拌,把温度提升到铁的熔点(1261.84k)以上,熔化后,脱氧时使用与氧气结合力强的复合型脱氧剂。例如:Ca、Si、Mn、P、Al、Ti,、Li等单体或复合体,或者与多金属的复合剂。期间,为了防止氧气返回原有状态,在炉汤面灌入大量的惰性气体。
在使用脱氧剂的时候,同时使用除渣滓助剂,来集合发生氧化物的渣滓,并从汤中分离。除渣滓助剂采用Ca、Mg系的矿物的低熔点化合物。
还有,高质量铁熔化时,为了防止因炉材元素混入造成熔点变动或者出现混合变化,会提前使用机器分析制造金属的不纯物含油量及选择适当的炉材。即、应选用高品质的炉材。
步骤c、高质量铜和高质量铁的溶汤的混合工艺
为了混合各自炉中的高质量铜和高质量铁,按照铸块所需混合比率,在防止空气被卷入情况下,注入到混合电气炉里。铸块中各组分的含量范围如下:以铜的重量作为100份计,铁的含量为10-50份。
被注入的金属液以高质量铁的熔融温度为基准来升温,促进晶化反应。铜里放入铁的溶解度,从二元状态图来看,约为2%,所以混合金属液会变成过饱和的成分状态,形成金属间化合物,浓度与铜液相似,所以在铜的液体里产生小块儿形状。这个形状有粒状也有扁平状的,如分散浓度高的话,成黏糊状,粘度上升。
步骤d、注入铸模的工艺
将步骤c中,粘度上升的状况视作反应结束的基准,和注入模具的 时机。
铸模具里的溶液凝固时,为了控制凝固时间,通常使用常温冷却,强制急速冷却,加热温度控制冷却等方法。同时,通过常温冷却、强制急冷却、加热温度控制冷却3种冷却方法还能够对结晶粒和混合粒进行控制。温度下降的速度快的话,结晶粒、混合粒就小;温度下降的速度慢的话,结晶粒、混合粒就大。因此急速冷却的结晶粒度小,常温冷却的结晶粒度适中,加热冷却的粒度大。从而作成适合展伸材的结晶粒度及助长树胶状晶。结晶粒度大小都可以用于伸展材。结晶粒度大的话,材料较易于伸展;结晶粒度小的话,材料的屏蔽效果更大。适应于其他类型的材料的结晶粒度是通过常温冷却得到的结晶粒。注汤温度以高质量铁的溶解温度1261.84k为基准。
本发明所说的急速冷却和加热冷却的速度,是与常温冷却速度相比较之下而得到的相对速度。
急速冷却:急速冷却的温度下降速度≧常温冷却的温度下降速度*2
加热冷却:加热冷却的温度下降速度≧常温冷却的温度下降速度/2
即、假设从1500℃冷却到常温,常温冷却所用的时间为50秒,则急速冷却的冷却时间应小于25秒,加热冷却的时间应在100秒以上。
以下是使用的模具以及可采用的冷却方式:
用砂模的常温冷却,操作条件:使用带有冷却性能的沙子制作而成的铸模。
用金属模具的常温冷却或者冷水强制急冷。操作条件:使用金属制作而成的金属模具。
金属模具用控制加热温度方法冷却,操作条件:通过电或者天然气对金属模具进行加热。
铸块的锻接工艺
在制造好的铸块上内外均匀加热后,处于半溶融锻接状态,从而使结晶粒产生方向性,适合展伸性材料的用途。另外作为目的之一,是把内部的气泡挤出和压力粘合。
在700~800℃之间的加热炉上内部均匀加热后用锻造器压力粘合。
铸块的展伸工序
制造好的铸块在700-800℃之间或者在常温展伸后,做出二次,三次产品的例子如下:
铸块在700-800度之间铸造,作成圆棒材,方材。
溶汤中如果气体成分在凝固过程中以气泡状态存在的话,作为展伸材料会降低其价值。本制造方法有着完全脱气工序的特征,去除了多余的气体,因此提高的材料的价值。
制造本发明的导电性弹簧板时,作为原料的铜铁合金优选上述步骤中所提供的制造方法进行制造。也可以选择已有的铜铁合金进行制造。
铜铁合金制造完成后,再进行如下步骤:
如图1所示,铜铁合金的导电性弹簧板的制造过程包含以下步骤:
步骤S100、溶解铸造处理:把铜铁合金在高周波熔解炉里熔解,将熔解的铜铁合金铸造成小块形状,本实施方式中的小块形状的初始尺寸是50mm×50mm×300mm,根据最终产品的大小在此基础上进行再次分 割。此步骤中的铜铁合金中含有10-50%的铁。
步骤S110、热间压延处理:对于在步骤S100中铸造出的铜铁合金小块在加热的状态下用压延装置进行压延。
步骤S120、冷间压延处理:对于在步骤S110中加热状态下压延的铜铁合金在冷却状态下用压延装置再进行压延。
这样,通过步骤S110及步骤S120两步压延后做成带状的铜铁合金。
步骤S130、软化热处理:把带状铜铁合金加热到时效温度以上。
步骤S140、冷间压延处理:将步骤S130中的合金进行冷间压延处理。
这样,把带状铜铁合金通过S130及S140的压延工序,做成更薄的带状铜铁合金。如果在S110及S120阶段做出的铜铁合金没必要再继续减薄的话,不进行步骤S130的软化热处理及S140的冷间压延处理也可以。
步骤S150,固溶热处理,把在S140常温下压延做成的铜铁合金加热到固溶温度范围后,让铜铁合金按照规定的冷却速度进行急速冷却。具体而言,在S140工序中压延冷却的铜铁合金加热到850℃~1000℃范围内后,继续加热到固溶温度范围内,然后让铜铁合金按照规定冷却速度,約-100℃·s-1以上,进行急速冷却。在其它的实施方式中,根据对铁晶粒析出的具体要求,冷却速度可以在-50℃·s-1~-200℃·s-1中进行适当的选择。
步骤S160,冷间压延处理:在S160工序中,在铜固溶铁不析出的温度范围(冷间)内,给铜铁合金增加塑性变量。具体而言,在铜铁合 金上可以添加约0.05-0.4范围内的塑性变量。
塑性变形量用ε表示,压延前厚度用L来表示,亚延后厚度用I来表示,公式:ε=(L-I)/L。
步骤S170,时效硬化处理:S170工序中,通常可保持在s160中压延做成的铜铁合金的时效硬化时间内。在铜中溶解铁,进行冷却后铁会在一定温度域内析出,渐渐地在液体中开始出现固体结晶。此处,在400℃~530℃的时效硬化范围内铜铁合金会随着时间的推移慢慢地硬化,即慢慢变硬。时效硬化的含义:合金随着时间的推移而产生硬化现象。具体说,在S160工序中压延的铜铁合金在400℃~530℃范围内,可保持3分-24小时。
步骤S180工序中,判定在S160及S170反复处理有无达到预定的反复处理回数,所需的硬度越高则反复处理的次数越多。S160及S170中反复处理回数达到规定要求则制造结束,反之回到S160工序。在本实施方式中,规定要求是指产品的0.2%耐力的参数值,本实施方式中0.2%耐力应大于850MPa。在其它的实施方式中,也可以选择表1中的参数作为规定要求。
在S150固溶热处理处理后初次进行的S160常温压延处理处理中,对铜铁合金上施加的塑性变形量,较后续再次循环到步骤S160处理时,施加的塑性变形量大。原因如下:具体说,在2次以上的S160处理时加上塑性变形量的铜铁合金,在最初进行的S160及S170处理中已经硬化,所以在2次以上的S160处理时比起最初的处理工序,没有更多的塑性变形。
另外,在S160工序中(常温压延处理)给铜铁合金加上的塑性变量累计在0.3以上。即,铜铁合金根据反复进行S160工序,压延率累计在30%以上。根据需要可制造出0.05-0.5mm厚度的铜铁合金弹簧板材。
因含有铁成分,可以提高弹簧板材的物理性质,及提高铜铁合金的导电率(IACS)。
另外,降低铁成分的含量,可以提高铜铁合金弹簧板材的导电率。
通过反复(一次以上)进行常温压延工序及时效硬化工序降低了铁的重量比,从而可提高铜铁合金弹簧板材的强度(0.2%耐力)。
固溶热工序时铜合金急速冷却后最初进行的常温压延工序,铜合金被施加的塑性变形量相较进行2次以上的常温压延工序时被施加的塑性变形量要大。
表1显示了本发明的导电性弹簧板的产品性质。
表1 产品性质表
Figure PCTCN2015089092-appb-000001
表1中SSAA50指合金中铜50%+铁50%;SSA90指合金中铜90%+铁10%。本实施例的导电性弹簧板有着850MPa以上的0.2%耐力及50%IACS的导电率。
本实施例的导电性弹簧板的拉伸强度(抗张力)和0.2%耐力的差值为40MPa以上。
同样的,由本发明所提供的方法制得的在表1中未给出的SSA80(Cu80%,Fe20%),SSA70(Cu70%,Fe30%),SSA60(Cu60%,Fe40%)。亦满足上述的0.2%耐力、导电率以及抗张力的参数范围。

Claims (7)

  1. 一种导电性弹簧板的制备方法,其特征在于,包括以下步骤:
    步骤一,预处理,取块状的铜铁合金进行压延处理,使铜铁合金形成带状,以重量份计,所述铜铁合金含有10-50份的铁,以及50-90份的铜;
    步骤二、将步骤一所得材料加热到固溶温度,然后进行急速冷却,在冷却到铁成分不析出的温度阶段内,在铜铁合金上添加塑性变形;
    步骤三、冷间压延工序:在铁成分析出的时效硬化温度阶段,让常温压延工序中添加塑性变形的铜合金;
    步骤四、时效硬化工序:在时效硬化温度下保持预定的时间,
    步骤五、对步骤四中得到的产品进行检测,当产品的0.2%耐力小于850MPa时,重复进行步骤三和步骤四,直至产品的0.2%耐力大于850MPa时结束。
  2. 根据权利要求1所述的导电性弹簧板的制备方法,其特征在于:
    其中,所述步骤五制备得到的导电性弹簧板的厚度为0.05-0.5mm。
  3. 如权利要求1所述的导电性弹簧板的制备方法,其特征在于:
    其中,所述述固溶温度的范围是850℃~1000℃。
  4. 如权利要求1所述的导电性弹簧板的制备方法,其特征在于:
    其中,所述急速冷却的速度为-50~-200℃·s- 1
  5. 如权利要求1所述的导电性弹簧板的制备方法,其特征在于:
    所述步骤三中的冷间压延工序时在铜铁合金上添加的塑性变形量是5%以上,当重复进行所述冷间压延工序时,在所述铜铁合金上添加的塑性变形累计量在30%以上。
  6. 如权利要求1所述的导电性弹簧板的制备方法,其特征在于:
    其中,所述时效硬化工序的温度范围是400℃~530℃。
  7. 如权利要求1所述的导电性弹簧板的制备方法,其特征在于:
    其中,所述时效硬化时间是3分钟~24小时之间。
PCT/CN2015/089092 2015-06-02 2015-09-07 导电性弹簧板的制造方法 WO2016192229A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510296093.1A CN105039775B (zh) 2015-06-02 2015-06-02 导电性弹簧板的制造方法
CN201510296093.1 2015-06-02

Publications (1)

Publication Number Publication Date
WO2016192229A1 true WO2016192229A1 (zh) 2016-12-08

Family

ID=54446743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089092 WO2016192229A1 (zh) 2015-06-02 2015-09-07 导电性弹簧板的制造方法

Country Status (2)

Country Link
CN (1) CN105039775B (zh)
WO (1) WO2016192229A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017092401A (ja) * 2015-11-17 2017-05-25 星和電機株式会社 熱伝導部品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125468A (ja) * 1991-11-06 1993-05-21 Toshiba Corp ばね材
JP2005344166A (ja) * 2004-06-03 2005-12-15 Nikko Metal Manufacturing Co Ltd 高強度高導電性電子機器用銅合金
JP2006299287A (ja) * 2005-04-15 2006-11-02 Nikko Kinzoku Kk 複相銅合金、ばね材及び箔体、並びに複相銅合金の製造方法
JP2009079281A (ja) * 2007-09-27 2009-04-16 Nikko Kinzoku Kk 高強度高導電性二相銅合金
CN104039994A (zh) * 2012-01-11 2014-09-10 住友电气工业株式会社 铜合金和铜合金线

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4210239B2 (ja) * 2004-06-01 2009-01-14 日鉱金属株式会社 強度、導電性及び曲げ加工性に優れるチタン銅及びその製造方法
JP4566020B2 (ja) * 2005-02-14 2010-10-20 株式会社神戸製鋼所 異方性の小さい電気電子部品用銅合金板
JP4566048B2 (ja) * 2005-03-31 2010-10-20 株式会社神戸製鋼所 曲げ加工性に優れた高強度銅合金板及びその製造方法
CN102294462A (zh) * 2011-09-26 2011-12-28 重庆理工大学 一种铜铁合金材料的快速凝固制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125468A (ja) * 1991-11-06 1993-05-21 Toshiba Corp ばね材
JP2005344166A (ja) * 2004-06-03 2005-12-15 Nikko Metal Manufacturing Co Ltd 高強度高導電性電子機器用銅合金
JP2006299287A (ja) * 2005-04-15 2006-11-02 Nikko Kinzoku Kk 複相銅合金、ばね材及び箔体、並びに複相銅合金の製造方法
JP2009079281A (ja) * 2007-09-27 2009-04-16 Nikko Kinzoku Kk 高強度高導電性二相銅合金
CN104039994A (zh) * 2012-01-11 2014-09-10 住友电气工业株式会社 铜合金和铜合金线

Also Published As

Publication number Publication date
CN105039775A (zh) 2015-11-11
CN105039775B (zh) 2017-04-05

Similar Documents

Publication Publication Date Title
JP7345868B2 (ja) 高強度高伝導率銅合金の高効率製造方法
US20160273075A1 (en) Aluminium alloy refiner and preparation method and application thereof
CN104178660B (zh) 一种高强度Cu-Ni-Si合金及其制备方法
JP5555135B2 (ja) 熱間及び冷間加工性を向上させた銅合金とその製造方法及び該銅合金から得られる銅合金条又は合金箔
JP5376604B2 (ja) 鉛フリー黄銅合金粉末、鉛フリー黄銅合金押出材およびその製造方法
JP2010126783A (ja) 電子材料用銅合金板又は条
EP1882753A1 (en) Aluminium alloy
JP5611773B2 (ja) 銅合金及びこれを用いた伸銅品、電子部品及びコネクタ及び銅合金の製造方法
CN112831692B (zh) 一种铝锰合金带材及其制备方法
JP2008163361A (ja) 均一微細な結晶粒を有するマグネシウム合金薄板の製造方法
JP4834781B1 (ja) 電子材料用Cu−Co−Si系合金
CN115287503B (zh) 一种铝铍中间合金及其制备方法
JP4313135B2 (ja) 曲げ加工性に優れた高強度銅合金
EP3375897B1 (en) Copper alloy material
CN110885937A (zh) 一种Cu-Ti-Ge-Ni-X铜合金材料及其制备方法
JP5555154B2 (ja) 電気・電子部品用銅合金およびその製造方法
WO2016192229A1 (zh) 导电性弹簧板的制造方法
CN115747564B (zh) 一种铜镍硅磷系合金及其制备方法
CN114540664B (zh) 一种铜合金及其制备方法和应用
KR101571665B1 (ko) 다이캐스팅용 알루미늄 합금 조성물 및 이를 이용하여 제조한 알루미늄 합금의 열처리 방법
TWI593814B (zh) Copper alloy with excellent heat resistance
JP5252722B2 (ja) 高強度・高導電性銅合金及びその製造方法
JP2013104123A (ja) ボルト用アルミニウム合金線及びボルト並びにそれらの製造方法
JPH09176808A (ja) 析出硬化形の銅合金の製造方法
JP5929251B2 (ja) 鉄合金

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15893885

Country of ref document: EP

Kind code of ref document: A1