WO2016190176A1 - 貫通穴付き積層断熱体および断熱構造 - Google Patents

貫通穴付き積層断熱体および断熱構造 Download PDF

Info

Publication number
WO2016190176A1
WO2016190176A1 PCT/JP2016/064685 JP2016064685W WO2016190176A1 WO 2016190176 A1 WO2016190176 A1 WO 2016190176A1 JP 2016064685 W JP2016064685 W JP 2016064685W WO 2016190176 A1 WO2016190176 A1 WO 2016190176A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
heat
insulating material
laminated
material layer
Prior art date
Application number
PCT/JP2016/064685
Other languages
English (en)
French (fr)
Inventor
準一 齋藤
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2017520642A priority Critical patent/JPWO2016190176A1/ja
Publication of WO2016190176A1 publication Critical patent/WO2016190176A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls

Definitions

  • the present invention relates to a laminated heat insulator with a through hole and a heat insulating structure, and particularly relates to a laminated heat insulator with a through hole having high heat insulation and good workability and a heat insulating structure using the laminated heat insulator.
  • heat insulating materials such as resin foam have been used in houses, buildings, vehicles, thermal insulation containers, refrigerators, water heaters and the like in order to reduce energy consumption by heat insulation.
  • vacuum heat insulating materials having higher heat insulating properties have been used instead of such heat insulating materials.
  • a vacuum heat insulating material for example, a core material composed of powder or fiber is loaded into a gas barrier outer shell material having a heat-welded layer on the inner surface, and the core material of the outer jacket material does not exist under reduced pressure. It is known that a portion, that is, a heat-sealed layer on the outer portion of the outer periphery of the core material is heat-sealed to perform heat sealing or the like and sealed under reduced pressure.
  • the vacuum heat insulating material has excellent heat insulating properties as described above, it cannot be said that it is sufficient in terms of workability such as attachment to a heat-insulated surface. For example, holes are often drilled when attaching to a surface to be insulated for heat insulating materials, but vacuum insulating materials need to keep the inside at a reduced pressure. ) And high heat insulation performance was lost, so drilling could not be performed. Then, the technique made into the structure which can punch a vacuum heat insulating material for the purpose of improving the workability to a to-be-insulated surface is developed (for example, refer patent document 1).
  • Patent Document 1 a fixing member is passed through the through hole of the vacuum heat insulating material having a through hole to fix the vacuum heat insulating material in a predetermined space, and then the foam heat insulating material is filled so as to embed the vacuum heat insulating material.
  • the technology is described.
  • Patent Document 2 describes a technique for heat insulation of a low temperature tank by laminating a heat insulating panel in which a vacuum heat insulating material is wrapped with a heat insulating material such as urethane foam.
  • Patent Document 2 has a description that fixing of a heat insulating panel or the like to a low-temperature tank is performed by a stud bolt or the like, and the fixing portion is considered to be a portion not including a vacuum heat insulating material in the heat insulating panel or the like. That is, in the heat insulating structure described in Patent Document 2, the location of the vacuum heat insulating material is limited, and an additional heat insulating panel is required above the seam of the heat insulating panel to cover the entire surface of the heat insulating surface. Yes.
  • the present invention relates to a heat insulator that combines a heat insulating material and a vacuum heat insulating material, can be easily applied to a surface to be insulated, and can sufficiently exhibit the high heat insulating property of the vacuum heat insulating material. It aims at providing the heat insulation structure which has the high heat insulation effect used.
  • the present invention has the following configuration.
  • a laminated heat insulating material in which a vacuum heat insulating material layer covered with a gas barrier outer covering material and sealed under reduced pressure and a heat insulating material layer made of a heat insulating material are laminated so as to be in contact with each other, the laminated heat insulating material Has a through-hole penetrating the vacuum heat insulating material layer and the heat insulating material layer in the laminating direction.
  • the material constituting the core material is one or more selected from glass wool, resin fiber, inorganic powder, organic powder, and a composite of powder and fiber, [1] to [3] Laminated insulator with any through hole.
  • the laminated heat insulator with through-holes according to any one of [1] to [4] is disposed so that the heat-insulating material layer is in contact with the surface to be heat-insulated, and a fixture is passed through the through-hole.
  • the heat insulating structure wherein the heat insulating surface and the laminated heat insulating body with through holes are integrated.
  • the heat insulating structure according to [7] in which the end surfaces of the vacuum heat insulating material layers do not contact each other at the adjacent end surfaces of the plurality of laminated heat insulators with through holes.
  • the resin foam is at least one selected from phenol foam, rigid urethane foam, and styrene foam.
  • a stress absorbing material is disposed between the end surfaces of the adjacent laminated heat insulators with through holes.
  • the heat insulating body that combines a heat insulating material and a vacuum heat insulating material, the heat insulating body that can be easily applied to the surface to be insulated and that can sufficiently exhibit the high heat insulating properties of the vacuum heat insulating material, and the heat insulating material.
  • a heat insulating structure having a high heat insulating effect using a body can be provided.
  • FIG. 2 is a cross-sectional view taken along line AA of the plan view of the laminated heat insulator with through holes shown in FIG. It is sectional drawing of the vacuum heat insulating material layer in the laminated heat insulating body with a through-hole shown in FIG. It is sectional drawing which shows an example of embodiment of the heat insulation structure of this invention. It is a top view which shows another example of embodiment of the heat insulation structure of this invention. It is sectional drawing in the BB line of the top view of the heat insulation structure shown to FIG. 5A. It is sectional drawing which shows another example of embodiment of the heat insulation structure of this invention.
  • an abbreviation such as “substantially the same size” means a range that can be seen by visual observation.
  • FIG. 1 shows a plan view of an example of an embodiment of a laminated heat insulator with through holes of the present invention
  • FIG. 2 is a cross-sectional view taken along the line AA of the plan view of the laminated heat insulator with through holes.
  • the laminated heat insulator with through holes is also simply referred to as a laminated heat insulator.
  • the main surface of the vacuum heat insulating material layer 3 and the main surface of the heat insulating material layer 2 have substantially the same shape and the same size, and are laminated so that their outer peripheries coincide.
  • the through hole 4 penetrates from the substantially central part of one main surface of the laminated heat insulating body 1 to the substantially central part of the other main surface, that is, two layers of the laminated vacuum heat insulating material layer 3 and the heat insulating material layer 2. It is a rectangular parallelepiped through-hole formed so as to penetrate through.
  • a vacuum heat insulating material that can be drilled as described below is used as the vacuum heat insulating material constituting the vacuum heat insulating material layer, so that the vacuum heat insulating material layer 3 and the heat insulating material layer 2 are penetrated.
  • the through hole 4 can be formed.
  • the laminated heat insulator of the present invention has a configuration in which a vacuum heat insulating material layer and a heat insulating material layer are laminated, so that the installation area of the vacuum heat insulating material layer can be freely set with respect to the surface to be insulated. If the laminated heat insulating body 1 in which the vacuum heat insulating material layer 3 and the heat insulating material layer 2 having substantially the same shape and the same size are used is used, it is possible to secure the maximum installation area of the vacuum heat insulating material layer on the surface to be insulated. .
  • the laminated heat insulating body of this invention may differ in the magnitude
  • the through-hole 4 is provided, it is easy to fix the laminated heat insulator 1 by arranging a fixing tool, for example, a screw or a nail, in the through-hole 4 when the laminated heat insulator 1 is fixed to the surface to be insulated.
  • a fixing tool for example, a screw or a nail
  • the through holes 4 can be used for applications in which wiring and / or piping is passed.
  • the laminated heat insulator of the present invention has a very good workability by having a through hole that penetrates the vacuum heat insulating material layer and the heat insulating material layer in the laminating direction.
  • the size, shape, position, and number of through holes of the laminated heat insulator are not particularly limited, and are appropriately selected according to the surface to be insulated to which the laminated heat insulator is applied.
  • the shape of the through hole 4 shown in the laminated heat insulator 1 shown in FIGS. 1 and 2 is a square in the plan view.
  • the through hole 4 has a triangular shape, a rectangular shape, a polygonal shape, a substantially circular shape, a substantially oval shape, an L shape, , Any shape formed by a combination of these can be used.
  • the side surface of the through hole 4, that is, the inner side surface of the laminated thermal insulator 1 is formed to be perpendicular to the main surface of the laminated thermal insulator 1, in the laminated thermal insulator of the embodiment of the present invention, It does not necessarily need to be vertical, and may be tapered, stepped, or the like as necessary.
  • the shape of the opening of the through hole is preferably a polygon, and more preferably a quadrangle, from the viewpoint of workability, for example, easy positioning.
  • the side surface of the through hole is preferably formed to be perpendicular to the main surface portion of the laminated heat insulator.
  • the size and number of the openings of the through holes are set to the minimum necessary for the use from the viewpoint of maintaining high heat insulation. For example, it is preferable to design so that the ratio of the area of the opening of the through hole to the total area including the opening of the through hole on the main surface of the laminated heat insulator is 5% or less.
  • the laminated heat insulator 1 shown in FIGS. 1 and 2 is a laminated heat insulator having a structure in which the number of layers is the smallest in the laminated heat insulator of the present invention, in which each one of a vacuum heat insulating material layer and a heat insulating material layer is laminated. .
  • the number of laminated layers and the total number of laminated layers are not particularly limited.
  • each heat insulating material layer may be composed of a single layer or a multilayer of two or more layers.
  • the heat insulating material layer is defined as one layer.
  • the number of laminated layers of the vacuum heat insulating material layer and the heat insulating material layer in the laminated heat insulating material is appropriately selected according to the heat insulating surface to which the laminated heat insulating material is applied.
  • the laminated heat insulator preferably has a configuration in which the heat insulating material layer sandwiches the vacuum heat insulating material layer. That is, when the number of vacuum heat insulating material layers is n, a configuration in which the number of heat insulating material layers is n + 1 is preferable.
  • the number of vacuum heat insulating material layers is preferably 2 or more, and the number of heat insulating material layers is also preferably 2 or more.
  • the number of the heat insulating material layers is one more than the number of the vacuum heat insulating material layers. Since both the vacuum heat insulating material layer and the heat insulating material layer have a preferable thickness range from the viewpoint of production, it is desirable to laminate both layers in order to exhibit excellent heat insulating properties.
  • the thickness of the vacuum heat insulating material layer and the heat insulating material layer constituting the laminated heat insulating material is appropriately set depending on the heat insulating performance of the vacuum heat insulating material layer and the heat insulating material layer and the heat insulating performance required for the surface to be insulated.
  • the thickness of the vacuum heat insulating material layer depends on the type of the vacuum heat insulating material layer to be used, but from the viewpoint of production, 3 to 50 mm is preferable per layer, and 20 to 40 mm is more preferable. Further, the thickness of the heat insulating material layer depends on the kind of the heat insulating material layer used, but from the viewpoint of production, it is preferably 100 to 500 mm, more preferably 150 to 400 mm per layer.
  • the shape and size of the main surface of the laminated heat insulator are appropriately selected according to the surface to be insulated to which the laminated heat insulator is applied.
  • the laminated heat insulator is usually installed such that its main surface is in contact with the surface to be insulated. Therefore, the size and shape of the main surface of the laminated heat insulator are manufactured so as to substantially match the size and shape of the surface to be insulated.
  • the heat-insulated surface has a large area, from the viewpoint of workability, prepare a plurality of laminated heat insulators, and arrange the laminated heat insulators so that their end faces are adjacent to each other, so that the entire heat-insulated surface is It is preferable to construct so that it covers.
  • the through-hole which a laminated heat insulator has may be formed for every heat insulating material layer and vacuum heat insulating material layer laminated before lamination, and may be formed after lamination.
  • the through hole may be formed before part of the layers are stacked, and the remaining part may be formed after stacking.
  • both the vacuum heat insulating material layer and the heat insulating material layer are prepared as having the through holes in advance.
  • one may be provided with a through hole and the other may be prepared without a through hole, and after lamination, a layer that does not have a through hole may be provided in accordance with a layer with a through hole.
  • the heat insulating material layer is formed by layering a heat insulating material.
  • a heat insulating material a known heat insulating material that can be formed into a layer can be used. Specifically, a material obtained by processing a porous body having a gas phase ratio of around 90% as a material and processing it in a layered form can be given. Examples of the porous body that can be used industrially include foams, fiber bodies, composites of fiber bodies and powders, and the like. These can use a well-known material according to the use use and required characteristic.
  • an open-cell body such as a resin foam, specifically, a hard urethane foam, a styrene foam, a phenol foam or the like can be used.
  • inorganic, organic, and mixtures thereof can be used as the fibrous body, but inorganic fibers are advantageous from the viewpoint of cost and heat insulation performance.
  • inorganic fibers known materials such as glass wool, alumina fiber, silica alumina fiber, silica fiber, rock wool, and carbon wool can be used.
  • inorganic, organic, and mixtures thereof can be used, but industrially, porous materials mainly composed of dry silica, wet silica, pearlite, etc. Powder can be used.
  • porous materials mainly composed of dry silica, wet silica, pearlite, etc. Powder can be used.
  • the composite of the porous powder and the fiber body include an airgel blanket.
  • the heat insulating material layer may be molded so as to have a through hole in a portion that becomes a through hole when laminated at the time of molding, and the through hole may be formed by a known method after molding. Or you may prepare in the state which does not have a through-hole, and may form a through-hole after laminating
  • the vacuum heat insulating material layer is formed using a vacuum heat insulating material that can be punched.
  • a vacuum heat insulating material that can be drilled for example, a vacuum heat insulating material known in Patent Document 1 or the following vacuum heat insulating material described in JP 2011-153715 A can be used.
  • a bag-shaped gas barrier jacket material having a heat-welded layer on the inner surface is filled with a plate-shaped core material having through-holes formed at predetermined positions, and the through-holes together with the outer peripheral portion of the core material
  • the vacuum heat insulating material which heat-welded the heat welding layers of the jacket material about the part can be used.
  • a through hole can be formed in a portion corresponding to the through hole of the core material where the outer cover material is thermally welded.
  • a predetermined penetrating portion of a plate-shaped core material is made of a resin that has a gas barrier property and can be heat-welded with a heat-welded layer of a jacket material.
  • the heat insulation layer of the outer cover material on the outer part of the outer periphery of the core material is welded together, and the vacuum heat insulating material with both surfaces of the replacement material and the heat weld layer of the cover material are used.
  • the surface of the replacement material refers to a surface corresponding to the main surface of the replaced portion of the plate-like core material.
  • a jacket material formed by arranging a gas barrier film having a heat-welded layer on one side so that the heat-welded layers face each other, and a plate-shaped core material having a penetrating portion penetrating in the plate thickness direction, A replacement material made of a gas barrier resin member having a pair of surfaces substantially parallel to the main surface of the core material, which is disposed in the through portion so as to close the through portion, and the jacket material A core material in which the replacement material is disposed is housed inside, and a region extending outside the outer periphery of the core material and extending over the entire periphery of the core material is closely attached by heat welding of the heat welding layers.
  • a through hole can be formed in a portion where the core material is replaced with a replacement material.
  • FIG. 1 and 2 is an example in which such a vacuum heat insulating material is used as the vacuum heat insulating material layer 3 to form a through hole, and FIG. It is sectional drawing.
  • the vacuum heat insulating material layer 3 shown in FIG. 3 has a gas barrier film 32 having a heat welding layer 31 on one side, and an outer covering material 33 formed by arranging the film 32 so that the heat welding layers 31 face each other.
  • a plate-like core member 35 having a penetrating portion penetrating in the plate thickness direction, and an outer peripheral surface 36c and a core member that are disposed in the penetrating portion so as to be fitted to the penetrating portion and are in contact with the inner surface of the penetrating portion of the core member 35
  • the vacuum heat insulating material layer 3 before the through hole 4 is formed will be described.
  • a core material 35 in which a replacement material 36 is disposed is accommodated in an outer cover material 33 where the heat-welding layers 31 face each other, and is positioned outside the outer periphery of the core material 35.
  • a region Y extending over the entire periphery of the core material 35 is brought into close contact with each other by heat welding between the heat welding layers 31, and the inside of the jacket material 33 is in a reduced pressure state.
  • the heat-welded area Y is also referred to as a seal area Y.
  • the width of the seal region Y indicated by Yw in FIG. 3 is not particularly limited as long as it can seal the inside of the jacket material 33 in a reduced pressure state. Specifically, the width Yw of the seal region Y is preferably about 5 to 20 mm.
  • the heat-welded layer 31 and the surfaces 36a and 36b of the replacement material 36 can be joined by a known method. Specifically, joining by an adhesive and joining by heat welding are mentioned. When an adhesive is used for joining, an adhesive layer is interposed between the heat-welded layer and the surface of the replacement material, and both are joined by the adhesive force of the adhesive. Therefore, in this case, the surface of the replacement material does not necessarily need to be made of a material that can be thermally welded to the heat welding layer. Further, the type of the adhesive is not particularly limited as long as the heat-welded layer and the surface of the replacement material are bonded with gas barrier properties.
  • the heat-welded layer 31 and the surfaces 36a and 36b of the replacement material 36 are joined by heat-welding.
  • the replacement material surfaces 36 a and 36 b are made of a material that can be heat welded to the heat welding layer 31.
  • the heating method is not particularly limited. Known heating methods such as ultrasonic welding, high frequency welding, and thermal welding by contact with a heat medium can be mentioned.
  • the vacuum heat insulating material layer 3 shown in FIG. 3 is an example of a vacuum heat insulating material layer in which the above-described joining is performed by heat welding.
  • the replacement material 36 is made of a material that forms the heat welding layer 31 and a resin that can be heat welded, and the replacement material 36 has a pair of surfaces 36 a and 36 b and the heat welding layer 31 of the covering material 33. And is heat-welded. Note that the interface between the replacement material 36 and the heat welding layer 31 does not actually exist clearly due to heat welding.
  • the interface between the replacement material 36 and the heat welding layer 31 is indicated by a broken line as the interface before the heat welding.
  • the interface corresponds to a pair of surfaces 36 a and 36 b included in the replacement material 36.
  • the thickness of the replacement material 36 is substantially the same as the thickness of the core material 35. Therefore, the main surface of the member in which the replacement member 36 is fitted into the penetrating portion of the core member 35 is a flat surface as a whole.
  • the thickness of the core material 35 is not particularly limited, but the thickness of the core material in a normal vacuum heat insulating material is about 3 to 50 mm.
  • the thicknesses of the core material 35 and the replacement material 36 are not necessarily the same. As long as the heat welding with the heat welding layer 31 of the jacket material 33 is sufficiently performed on the pair of surfaces 36a and 36b of the replacement material 36, the thickness of the replacement material is thin even if it is thicker than the thickness of the core material. May be.
  • the thickness of the replacement material 36 is appropriately selected in consideration of the flatness required of the vacuum heat insulating material in addition to the above-described heat weldability. Specifically, the thickness of the replacement material 36 is preferably 0.8 to 1.2 times the thickness of the core material 35.
  • the thickness of the replacement material 36 is more than 1.0 and 1.2 times the thickness of the core material 35, the position of the replacement material 36 is positioned even after the core material 35 is sealed in the outer cover material 33 under reduced pressure. This is preferable because it can be easily confirmed from the outside of the material 33.
  • the arrangement position of the replacement material 36 in the core material 35 is the formation position of the through hole 4 in the laminated heat insulator 1.
  • the size of the surface of the replacement material 36 is designed to be larger than the size of the opening of the through hole 4 provided. That is, when the through hole 4 is formed in the replacement material 36, the through hole 4 is provided in a region excluding the peripheral portion of the replacement material 36 as shown in FIG. 3. If the through hole 4 is present in the peripheral region of the replacement material 36, there is a possibility that the adhesion at the heat-welded portion between the resin constituting the replacement material 36 and the heat-welded layer 31 of the jacket material 33 may not be ensured.
  • the width w1 of the peripheral edge portion is preferably 5 mm or more.
  • the shape of the surface of the replacement material 36 and the shape of the opening of the through hole 4 provided may not necessarily match as long as the width w1 of the peripheral edge is secured to 5 mm or more.
  • the through hole 4 can be easily formed by replacing the portion corresponding to the through hole 4 of the replacement material 36 with another removable member.
  • the material of the resin member constituting the replacement material 36 is not particularly limited as long as it is a resin having a gas barrier property.
  • the specific resin depends on the material constituting the heat welding layer 31 included in the jacket material 33.
  • the material constituting the heat welding layer 31 include low density polyethylene, chain low density polyethylene, high density polyethylene, polypropylene, polyacrylonitrile, unstretched polyethylene terephthalate, ethylene-vinyl alcohol copolymer, ETFE (ethylene-tetrafluoroethylene). Copolymer) and the like.
  • the resin that can be thermally welded to these resins include the same resins as these resins.
  • the material constituting the heat-welding layer 31 included in the jacket material 33 and the resin constituting the replacement material 36 are the same resin.
  • the covering material 33 is, for example, a structure in which two gas barrier films 32 having the same shape and the same size having the heat welding layer 31 on one side are overlapped with the heat welding layers 1 of the films 32 facing each other. can do.
  • the size and shape of the jacket material 33 is such that the core material 35 into which the replacement material 36 is fitted is accommodated between the two gas barrier films 32 and the seal region Y is located outside the outer periphery of the core material 35. If it is the magnitude
  • the degree of vacuum inside the jacket material 33 inside the seal region Y of the jacket material 33 is preferably 1 ⁇ 10 3 Pa or less from the viewpoint of obtaining excellent heat insulation performance and extending the life of the vacuum heat insulator. 1 ⁇ 10 2 Pa or less is more preferable.
  • the material of the jacket material 33 a known material used for a vacuum heat insulating material can be used without limitation.
  • the gas barrier film 32 having the heat welding layer 31 used as the material of the covering material 33 include a laminate film having a gas barrier layer and a surface protective layer.
  • the laminate film for example, a laminate film having a metal foil or a metal vapor deposition layer as a gas barrier layer on one surface of the surface protective layer can be applied.
  • the outer cover material has a heat welding layer on the innermost side, a metal foil or a metal vapor deposition layer as an intermediate layer, and a surface protective layer as an outermost layer.
  • the laminate film may be applied by combining two types of laminate films, ie, a laminate film having a metal foil and a laminate film having a metal vapor-deposited layer.
  • a heat welding layer you may consist of the composite material which combined the film which consists of the material which comprises the heat welding layer demonstrated above, and these films.
  • the surface protective layer known materials such as nylon film, polyethylene terephthalate film, and stretched polypropylene film can be used.
  • a known core material used for a vacuum heat insulating material can be used.
  • a core material obtained by processing a porous body having a gas phase ratio of about 90% into a plate shape is used.
  • the porous body that can be used industrially include foams, powders, and fiber bodies.
  • the core material is preferably at least one selected from glass wool, resin fiber, inorganic powder, organic powder, and a composite of powder and fiber. These can use a well-known material according to the use use and required characteristic.
  • the foam open-cell bodies such as urethane foam, styrene foam, and phenol foam can be used.
  • inorganic, organic, and mixtures thereof can be used as the powder, but industrially, powders mainly composed of dry silica, wet silica, pearlite, and the like can be used.
  • inorganic, organic, and mixtures thereof can be used as the fibrous body, but inorganic fibers are advantageous from the viewpoint of cost and heat insulation performance.
  • inorganic fibers a known material such as glass wool, alumina fiber, silica alumina fiber, silica fiber, rock wool, or the like can be used.
  • foams, powders, and fiber bodies can also be applied to the core material.
  • a core material include a composite of a porous powder and a fibrous body, for example, an airgel blanket.
  • the core material in which the heat insulating material containing powder is formed into a plate shape will be described below.
  • the heat insulating material of the core material containing powder it is preferable that either or both of fibers and binders are contained in addition to the powder from the viewpoint of easily obtaining a high-strength core material.
  • ⁇ Powder The case of a core material containing powder will be described below as an example.
  • the well-known powder normally used for the core material of a vacuum heat insulating material can be used. Specific examples include fumed silica, porous silica, and a radiation suppressing material.
  • the powder preferably contains fumed silica from the viewpoint of easily obtaining a core material having sufficient strength. Only one type of powder may be used, or two or more types may be used in combination.
  • a specific surface area is usually used as an index representing the particle size.
  • the specific surface area is measured by a nitrogen adsorption method (BET method).
  • the specific surface area of the fumed silica is preferably 50 ⁇ 400m 2 / g, more preferably 100 ⁇ 350m 2 / g, particularly preferably 200 ⁇ 300m 2 / g. If the specific surface area of fumed silica is not less than the lower limit of the above range, excellent heat insulating performance can be easily obtained. If the specific surface area of fumed silica is not more than the upper limit of the above range, it is easy to attach a binder to the surface of the particles.
  • fumed silica examples include Aerosil 200 (specific surface area 200 m 2 / g, manufactured by Nippon Aerosil Co., Ltd.), Aerosil 300 (specific surface area 300 m 2 / g, manufactured by Nippon Aerosil Co., Ltd.), CAB-O-SIL. M-5 (specific surface area 200 m 2 / g, manufactured by Cabot Japan KK), CAB-O-SIL H-300 (specific surface area 300 m 2 / g, manufactured by Cabot Japan KK), Leoroseal QS30 (specific surface area 300 m 2 / g) , Manufactured by Tokuyama Corporation). Fumed silica may use only 1 type and may use 2 or more types together.
  • the specific surface area of porous silica is preferably 100 ⁇ 800m 2 / g, more preferably 200 ⁇ 750m 2 / g, particularly preferably 300 ⁇ 700m 2 / g. If the specific surface area of the porous silica is not less than the lower limit of the above range, excellent heat insulating performance can be easily obtained. When the specific surface area of the porous silica is not more than the upper limit of the above range, the amount of the binder absorbed by the porous silica can be reduced when the binder is used. Therefore, the core material can be molded with a lower pressure even if the amount of the binder to be added is small. As a result, the density of the core material can be lowered, and excellent heat insulation performance can be easily obtained.
  • the porosity of the porous silica is preferably 60 to 90%, more preferably 65 to 85%, and particularly preferably 70 to 80%. If the porosity of the porous silica is equal to or higher than the lower limit of the above range, the heat conduction of the solid can be reduced, so that excellent heat insulation performance is easily obtained. When the porosity of the porous silica is not more than the upper limit of the above range, the porous silica particles are hardly crushed at the time of molding, and excellent heat insulating performance is easily obtained because the porosity is maintained.
  • the porosity is measured by a nitrogen adsorption method (BJH method).
  • the average particle diameter of the porous silica is preferably 1 to 300 ⁇ m, more preferably 2 to 150 ⁇ m, and particularly preferably 3 to 100 ⁇ m, when measured on a volume basis by the Coulter counter method. If the average particle diameter of the porous silica is not less than the lower limit of the above range, porous silica having a high porosity can be easily obtained, and excellent heat insulation performance can be easily obtained. If the average particle diameter of the porous silica is not more than the upper limit of the above range, the density of the core material does not become too high, and excellent heat insulation performance is easily obtained.
  • porous silica examples include M.I. S. GEL and sunsphere (both manufactured by AGC S-Tech Co., Ltd.) are included.
  • the radiation suppressing material examples include metal particles (aluminum particles, silver particles, gold particles, etc.), inorganic particles (graphite, carbon black, silicon carbide, titanium oxide, tin oxide, iron oxide, potassium titanate, etc.). It is done.
  • the heat insulating material can contain a binder in order to maintain the shape of the core material from the viewpoint that sufficient strength can be easily obtained even if the core material has a low density.
  • a fumed silica with a binder can be obtained by previously applying a binder to the surface of the fumed silica.
  • Binder applied to the surface of fumed silica allows fumed silica with binder or fumed silica with binder and other materials (porous silica, fibers, etc.) to adhere to each other even when the pressure during molding is low. The Even if the binder is applied to the porous silica, the binder is absorbed by the porous silica, so that it is difficult to obtain the effect of the binder.
  • the binder may be an organic binder or an inorganic binder.
  • an inorganic binder is preferable from the point that heat conductivity is low and the outstanding heat insulation performance is easy to be obtained.
  • the inorganic binder include sodium silicate, aluminum phosphate, magnesium sulfate, magnesium chloride and the like. Among these, sodium silicate is particularly preferable because it is easy to obtain excellent heat insulation performance.
  • the binder is preferably dissolved in a solvent and used as a binder liquid, and more preferably an aqueous solution.
  • a high-strength core material is easily obtained.
  • the fiber normally used for a vacuum heat insulating material can be used, for example, a resin fiber and an inorganic fiber are mentioned. Of these, inorganic fibers are preferred because they have less outgas in a vacuum, can easily suppress a decrease in heat insulation performance due to a decrease in the degree of vacuum, and are excellent in heat resistance.
  • inorganic fibers include alumina fibers, mullite fibers, silica fibers, glass wool, rock wool, slag wool, silicon carbide fibers, carbon fibers, silica alumina fibers, silica alumina magnesia fibers, silica alumina zirconia fibers, silica magnesia calcia fibers, and the like. Is mentioned.
  • the fiber length D30 of the fiber to be used is preferably 100 ⁇ m or more, and more preferably 200 ⁇ m or more. If fiber length D30 is more than the said lower limit, it will be easy to suppress that a core material will generate a crack.
  • the fiber length D90 of the fiber used is preferably 20 mm or less, and more preferably 10 mm or less. If the fiber length D90 is equal to or less than the above upper limit value, the fibers are not easily entangled with each other, so that they are easily mixed with the powder and the effect of the fibers is easily obtained.
  • the thickness (diameter) of the fiber is preferably 10 ⁇ m or less from the viewpoint of suppressing an increase in solid heat transfer due to the fiber. Moreover, the thickness (diameter) of the fiber is preferably 1 ⁇ m or more from the viewpoint of easily preventing the core material from cracking.
  • fiber length D30 means the fiber length at 30% in the cumulative number distribution curve where the total number of fiber length distributions obtained on the basis of the number is 100%.
  • Fiber length D90 means a fiber length at a point of 90% in a cumulative number distribution curve where the total number of fiber length distributions obtained on the basis of the number is 100%. The fiber length distribution is obtained from a frequency distribution and a cumulative number distribution curve obtained by randomly measuring the length of 50 or more fibers in a photograph observed with an optical microscope.
  • the proportion of fumed silica in the powder (100% by mass) is preferably 50 to 100% by mass, more preferably 70 to 100% by mass, and particularly preferably 80 to 100% by mass. If the ratio of fumed silica is not less than the lower limit of the above range, a core material with high strength can be easily obtained.
  • the proportion of porous silica in the powder (100% by mass) is preferably 0 to 50% by mass, more preferably 0 to 30% by mass, and particularly preferably 0 to 20% by mass.
  • the larger the proportion of porous silica the easier it is to obtain a vacuum heat insulating material with excellent heat insulating performance. If the ratio of the porous silica is not more than the upper limit of the above range, a core material with high strength can be easily obtained.
  • the ratio M A / M B of the mass M B of the mass M A and the porous silica fumed silica before the binder imparting Is preferably 50/50 or more, more preferably 70/30 or more, and particularly preferably 80/20 or more. If the ratio M A / M B is more than the lower limit, it has excellent thermal insulation performance at lower density, and tends core material is obtained having a sufficient strength.
  • the proportion of the radiation suppressing material in the powder (100% by mass) is preferably 3 to 30% by mass, more preferably 5 to 25% by mass, and particularly 10 to 20% by mass. preferable. If the ratio of the radiation suppressing material is equal to or higher than the lower limit of the above range, the effect of the radiation suppressing material is easily obtained. If the ratio of a radiation suppression material is below the upper limit of the said range, since the increase in the solid heat transfer by a radiation suppression material can be suppressed, the outstanding heat insulation performance is easy to be obtained.
  • the binder ratio is preferably 0.1 to 15 parts by mass with respect to 100 parts by mass of the fumed silica before applying the binder, 10 parts by mass is more preferable, and 1 to 4 parts by mass is particularly preferable.
  • the ratio of the binder is equal to or higher than the lower limit of the above range, a core material having a lower density and sufficient strength can be easily obtained, and excellent heat insulation performance can be easily obtained. If the ratio of the said binder is below the upper limit of the said range, since the increase in the solid heat transfer by a binder can be suppressed, it is easy to suppress the fall of heat insulation performance. If the shape maintaining property of the core material can be ensured, the binder ratio is preferably small in order to obtain better heat insulation performance, and may not be added.
  • the amount is preferably 0.1 to 15 parts by mass, more preferably 0.5 to 10 parts by mass, and particularly preferably 1 to 4 parts by mass with respect to 100 parts by mass of the body. If the binder ratio is at least the lower limit of the above range, a core material having a lower density and sufficient strength can be easily obtained, and excellent heat insulation performance can be easily obtained. If the ratio of a binder is below the upper limit of the said range, since the increase in the solid heat transfer by a binder can be suppressed, it is easy to suppress the fall of heat insulation performance.
  • the ratio of the binder is small in order to obtain better heat insulating performance, and no additive may be added.
  • the composition of the powder is preferably in a mass ratio, and fumed silica: porous silica: radiation suppression material is preferably 70 to 90: 0 to 20:10 to 20.
  • the fiber ratio is preferably 1 to 30 parts by mass, more preferably 2 to 20 parts by mass, and particularly preferably 4 to 10 parts by mass with respect to 100 parts by mass of the powder.
  • the fiber ratio is equal to or higher than the lower limit of the above range, a high-strength core material is easily obtained. If the ratio of the fiber is equal to or less than the upper limit of the above range, an increase in solid heat transfer due to the fiber can be suppressed, so that it is easy to suppress a decrease in heat insulation performance.
  • the vacuum heat insulating material (however, it does not have the through-hole 4) which comprises the vacuum heat insulating material layer 3 shown in FIG. 3, for example, (1)
  • board thickness direction is formed in a plate-shaped core material.
  • a replacement material comprising a gas barrier resin member having an outer peripheral surface in contact with the inner surface of the penetrating portion of the core material and a pair of surfaces parallel to both main surfaces of the core material with the penetrating portion.
  • a gas barrier film having a heat-welded layer on one side thereof, and the replacement material is placed inside an outer cover material in which the heat-welded layers are opposed to each other.
  • the inside of the jacket material is in a reduced pressure state, and the region extending outside the outer periphery of the core material and covering the entire periphery of the core material is (5)
  • the resin member is bonded to the pair of surfaces by heat welding between the welding layers. It can be produced by the thermal welding layer and the heat welding of the covering material.
  • stacking of the vacuum heat insulating material layer 3 and the heat insulating material layer 2 in the laminated heat insulating body 1 can be performed through a well-known adhesive agent, for example. Or it can laminate
  • the vacuum heat insulating material layer 3 and the heat insulating material are insulated. It is preferable that the material layers 2 are not bonded to each other on the entire surface. In that case, it is only necessary that at least the peripheral region of the through-hole 4 on the laminated surface is bonded.
  • the order of stacking the vacuum heat insulating material layer 3 and the heat insulating material layer 2 and forming the through holes 4 in the laminated heat insulating body 1 is as described above.
  • what is necessary is just to process by the well-known method about the outer peripheral part which consists only of the jacket material which is not filled with the core material 35 of the vacuum heat insulating material layer 3 shown in FIG.
  • the outer peripheral portion may be folded.
  • the laminated heat insulator having the minimum number of layers in the laminated heat insulator of the present invention in which each of the vacuum heat insulating material layer and the heat insulating material layer is laminated has been described with reference to FIGS.
  • the same can be said for the laminated heat insulator having a structure in which the vacuum heat insulating material layer is sandwiched between the heat insulating material layers, and the heat insulating material layer and the vacuum heat insulating material layer of the laminated heat insulating material each having a plurality of heat insulating material layers and vacuum heat insulating material layers.
  • the laminated heat insulator of the present invention may have an arbitrary layer as required in addition to the vacuum heat insulating material layer and the heat insulating material layer.
  • a protective layer provided on the main surface opposite to the side in contact with the surface to be heat-insulated of the laminated heat insulator can be cited.
  • the laminated heat insulator 1 shown in FIGS. 1 and 2 is used in such a manner that the main surface on the vacuum heat insulating material layer 3 side or the main surface on the heat insulating material layer 2 side is in contact with the surface to be heat-insulated.
  • the protective layer is preferably provided on the main surface on the vacuum heat insulating material layer 3 side.
  • the protective layer may be provided on any main surface, and the main surface on the heat insulating material layer side where the protective layer is not provided is the surface to be insulated. Used in contact with
  • a laminated heat insulator has a protective layer, a laminated heat insulator is provided in a to-be-insulated surface so that a protective layer may become an outermost layer.
  • the protective layer usually has a main surface and a through hole that are substantially the same shape and the same size as the vacuum heat insulating material layer or the heat insulating material layer.
  • the material constituting the protective layer include resins such as polyethylene, polypropylene, polyvinyl chloride, nylon, and polyester.
  • the thickness of the protective layer is not particularly limited as long as it can protect the vacuum heat insulating material layer or the heat insulating material layer. Although depending on the use of the laminated heat insulator, for example, a thickness of about 50 to 200 ⁇ m can be mentioned.
  • the protective layer may be a laminated sheet of a resin sheet and a metal foil, such as an aluminum foil. In that case, it arrange
  • the heat insulation structure of this invention is related with the heat insulation structure which insulates a to-be-insulated body through a to-be-insulated surface using the laminated heat insulating body with a through-hole of the said invention.
  • the laminated heat insulating body with through holes of the present invention is disposed on the surface to be heat-insulated so that the heat insulating material layer is in contact with the surface to be heat-insulated, and a fixture is passed through the through-hole.
  • the surface and the laminated heat insulator with through holes are integrated.
  • the heat insulating structure of the present invention can be applied to any heat-insulated surface of a heat-insulated body that requires heat insulation, cold insulation, and heat insulation, which requires energy saving.
  • a heat-insulated body that requires heat insulation, cold insulation, and heat insulation, which requires energy saving.
  • residential and building walls / roofs / floors / piping, solar / heat facilities, etc . constant temperature baths, water heaters, hot water tanks, rice cookers, refrigerators, freezers, cold storage / cold storage tanks, Refrigerated gas tanks, vending machines, cooler boxes, cold covers, heat insulation and other cold insulation fields
  • notebook and liquid crystal projectors, photocopiers, batteries, fuel cells and other electrical and electronic equipment, and industrial equipment fields such as semiconductor manufacturing equipment
  • Mobile fields such as automobiles, buses, trucks, cold trucks, trains, freight cars, ships, etc .; can be applied to plant piping, etc.
  • the heat insulating structure of the present invention can exhibit a sufficient effect particularly in heat insulating applications for cryogenic temperatures.
  • the heat insulating performance is such that the temperature difference between the heat-insulated surface and the outermost layer surface of the heat insulating structure can be 100 ° C. or more.
  • the surface thereof is a heat-insulated surface, and the heat-insulated surface often becomes ⁇ 100 ° C. or lower.
  • the temperature of the outermost layer surface of the heat-insulating structure is a temperature that is 100 ° C. higher than the temperature of the heat-insulated surface, that is, a temperature close to the atmospheric temperature. Is possible.
  • the outermost layer surface of the heat insulating structure is the main surface opposite to the heat-insulated surface side of the laminated heat insulator with a through-hole disposed farthest from the heat-insulated surface among the laminated heat insulators with through-holes of the heat insulating structure Say.
  • a heat insulating structure in which the temperature difference between the heat-insulated surface and the outermost layer surface of the heat insulating structure is 100 ° C. or more is required, specifically, a liquefied gas tank for storing and transferring a cryogenic material
  • a heat insulating structure in which the surface of a liquefied gas transport pipe or the like is a heat insulating surface.
  • FIG. 4 is an example in which one of the laminated heat insulators is independently arranged on the heat-insulated surface of the heat-insulated body
  • FIGS. 5A and 5B are end surfaces of the plurality of laminated heat insulators on the heat-insulated surface of the heat-insulated body
  • FIG. 6 shows an example in which a plurality of laminated heat insulators are arranged and laminated so that their end faces are adjacent to each other on the heat-insulated surface of the heat-insulated body.
  • FIG. 4 shows a laminated heat insulator 1 in which a heat insulating material layer 2, a vacuum heat insulating material layer 3 and a protective layer 5 are laminated in that order, and the laminated heat insulating material 1 having through holes 4 in the laminating direction is an object to be insulated.
  • the heat insulating material layer 2 side main surface is arranged on the heat insulating surface 10a of the heat insulating material 10 so that the heat insulating surface 10a is in contact with the heat insulating surface 10a, and the laminated heat insulating material 1 and the heat insulating surface 10a are integrated into the through hole 4 through the fixture 6.
  • An insulation structure is shown.
  • the to-be-insulated surface 10a of the to-be-insulated body 10 and the main surface on the heat insulating material layer 2 side of the laminated insulator 1 may or may not be bonded.
  • the laminated heat insulating member 1 is preferably fixed to the heat insulating member 10 only by the fixture 6.
  • it is preferable that the to-be-insulated surface 10a of the to-be-insulated body 10 and the main surface of the laminated insulator 1 on the heat insulating material layer 2 side are sufficiently adhered.
  • the size of the main surface of the laminated heat insulating member 1 is substantially the same as the heat insulating surface 10 a of the heat insulating member 10. It is the structure covered with.
  • the laminated heat insulator 1 in the heat insulation structure shown in FIG. 4 has a structure having a protective layer 5 on the main surface on the vacuum heat insulating material layer 3 side of the laminated heat insulator 1 shown in FIGS. The method is as described above.
  • the size of the through hole 4 of the laminated heat insulating body 1 and the size of the fixture 6 are substantially the same. If the size of the through hole 4 is larger than the size of the fixture 6, a space is generated between the inner surface of the laminated thermal insulator 1 and the fixture 6, which may reduce the heat insulation performance. Therefore, it is preferable that the fixture 6 is attached so as to fill the through hole 4 of the laminated heat insulator 1.
  • the fixture 6 a fixture generally attached to a surface to be insulated of a body to be insulated can be used without any particular limitation.
  • Specific examples of the fixture 6 include a combination of a stud bolt and a nut.
  • Examples of the material constituting the fixture 6 include resin and FRP. FRP is preferred from the viewpoint of avoiding heat bridge and the viewpoint of strength.
  • FIGS. 5A and 5B show an example of a heat insulating structure in which a plurality of laminated heat insulating bodies with through holes are arranged on the heat insulating surface of the heat insulating body so that their end faces are adjacent to each other.
  • FIG. 5A is a plan view of an example thereof
  • FIG. 5B is a cross-sectional view taken along the line BB.
  • the heat insulating structure formed by arranging a plurality of laminated heat insulators with through holes so that their end faces are adjacent to each other is mainly a heat insulating structure used when the area of the heat insulating surface in the heat insulating body is relatively large. It is.
  • the size of the main surface of the laminated heat insulator of the present invention is defined by the size of the manufacturing limit of the vacuum heat insulating material layer that is included as an essential layer.
  • heat insulation is performed so as to cover the entire surface to be heat-insulated using a plurality of laminated heat-insulating bodies with through holes.
  • the size and thickness of the main surface are substantially the same, but using two laminated heat insulators 1A and laminated heat insulators 1B having different laminated structures,
  • the heat insulation structure which insulates the whole surface of the to-be-insulated surface 10a is shown.
  • the laminated heat insulator 1A and the laminated heat insulator 1B have a square main surface and are arranged on the heat-insulated surface 10a of the heat-insulated body 10 so that the end surfaces are in contact with each other on one side. By doing so, the entire surface of the heat-insulated surface 10a is covered. That is, the shape of the heat-insulated surface 10a is a rectangular shape in which the main surface of the laminated heat insulator 1A and the main surface of the laminated heat insulator 1B are adjacent to each other.
  • the shape of the main surfaces of the laminated heat insulator 1A and the laminated heat insulator 1B is a shape that can insulate the entire surface of the heat-insulated surface 10a
  • the shape of the heat-insulated surface 10a may be a shape other than a rectangle such as a rectangle.
  • a square shape is preferable.
  • a heat insulating material layer 21 composed of two layers of a heat insulating material layer 21a and a heat insulating material layer 21b, a vacuum heat insulating material layer 3, a heat insulating material layer 22 and a protective layer 5 are laminated in that order and penetrate in the laminating direction. It is a laminated heat insulator having a hole 4, and is arranged so that the main surface on the heat insulating material layer 21a side is in contact with the heat-insulated surface 10a, and the laminated heat insulator 1A is fixed to the heat-insulated surface 10a through the fixing tool 6A in the through hole 4. ing.
  • the laminated heat insulator 1B is a laminated heat insulator in which the heat insulating material layer 21, the vacuum heat insulating material layer 3, the heat insulating material layer 22, and the protective layer 5 are laminated in that order, and has the through holes 4 in the laminating direction.
  • the main surface on the layer 21 side is arranged so as to be in contact with the heat-insulated surface 10a, and the laminated heat-insulating body 1B is fixed to the heat-insulated surface 10a through the fixing holes 6B through the through holes 4.
  • the laminated heat insulator 1A and the laminated heat insulator 1B have thicknesses of the respective layers so that the end surfaces of the vacuum heat insulating material layer 3 do not contact each other at the adjacent end surfaces,
  • it is a laminated heat insulator in which the thickness of the heat insulating material layer is adjusted and laminated.
  • the vacuum heat insulating material layer 3 included in the laminated heat insulator 1A can be pushed into the heat insulating material layer 22 side of the laminated heat insulating material 1B, and the vacuum heat insulating material layer 3 included in the laminated heat insulating material 1B is laminated. It can be pushed into the heat insulating material layer 21b side of the heat insulating body 1A.
  • the vacuum heat insulating material layers 3 included in the laminated heat insulating body 1A and the laminated heat insulating body 1B are respectively pushed into the heat insulating material layers, the overlap of the vacuum heat insulating material layers 3 on the adjacent end faces of the laminated heat insulating body 1A and the laminated heat insulating body 1B.
  • the heat-insulated surface 10a can be thermally insulated by the vacuum heat insulating material layer 3 without a gap.
  • a stress absorbing material such as a flexible polyurethane foam may be installed between the end surfaces adjacent to each other of the laminated heat insulating body 1A and the laminated heat insulating body 1B.
  • the installation amount of the stress absorbing material is an amount that does not hinder the overlap of the vacuum heat insulating material layer 3 on the adjacent end surfaces of the laminated heat insulating material 1A and the laminated heat insulating material 1B.
  • the same material as the heat insulating material layer can be used for the stress absorbing material.
  • the thickness of 1 A of laminated heat insulators and the laminated heat insulator 1B are designed so that it may correspond substantially, when combining several laminated heat insulators, the thickness does not necessarily need to be the same. However, from the viewpoint of workability and the like when performing further processing and processing to equalize heat insulation, in the heat insulation structure of the present invention, when using a plurality of laminated heat insulators with their end faces adjacent to each other. The thickness of the plurality of laminated heat insulators used is preferably the same.
  • each of the laminated heat insulating body 1 ⁇ / b> A and the laminated heat insulating body 1 ⁇ / b> B has the configuration of each layer and the laminating method are as described above.
  • the vacuum heat insulating material layer 3 and the protective layer 5 in the laminated heat insulator 1A and the laminated heat insulator 1B may be the same as or different from each other.
  • the heat insulating material included in each heat insulating material layer of each of the heat insulating materials 1A and 1B is a resin foam. It is preferable that The resin foam is preferably at least one selected from phenol foam, rigid urethane foam, and styrene foam.
  • each heat insulating material layer in each heat insulating material layer, the heat insulating material layer that is positioned closest to the heat-insulated surface 10a, that is, in the heat insulating material layer 21a in the heat insulating material layer 1A, the heat insulating material in the heat insulating material layer 1B.
  • the layer 21 is preferably composed of phenol foam for reasons such as heat insulation properties and low temperature strength.
  • FIG. 6 a plurality of laminated heat insulators are arranged on the heat-insulated surface of the heat-insulated body so that the end surfaces of the laminated heat insulators are adjacent to each other, and another plurality of laminated heat insulators are arranged on each other.
  • An example in which the end faces are arranged and stacked so as to be adjacent to each other is shown.
  • the shape of the main surface is square and substantially the same size on the heat insulating surface 10 a of the heat insulating body 10 as shown in FIGS. 5A and 5B.
  • Two laminated heat insulators 1A and 1B having different structures and thicknesses are arranged on the heat-insulated surface 10a of the heat-insulated body 10 so that the end surfaces are in contact with each other on one side. The structure which covers the whole surface of 10a is taken.
  • the shape and size of the main surface of the laminated heat insulating body 1A and the laminated heat insulating body 1B are substantially the same as the laminated heat insulating body 1A and the laminated heat insulating body 1B.
  • Two laminated heat insulators 1C and laminated heat insulators 1D having different thicknesses are further laminated.
  • the laminated heat insulators 1A to 1D are arranged as described above, and the laminated heat insulators are stacked with the same thickness as a whole.
  • the laminated heat insulators 1A, 1B, 1C, and 1D are all laminated with the heat insulating material layer 21, the vacuum heat insulating material layer 3, the heat insulating material layer 22, and the protective layer 5 in that order, and have a through hole in the laminating direction. It is.
  • the laminated heat insulators 1A, 1B, 1C, and 1D are different laminated heat insulators, particularly because the heat insulating material layer 21 and the heat insulating material layer 22 have different thicknesses. .
  • the laminated heat insulators 1A and 1B are arranged such that the main surface on the heat insulating material layer 21 side is in contact with the heat-insulated surface 10a, and are fixed to the through holes of the laminated heat insulators 1A and 1B. It is fixed to the heat-insulated surface 10a through 6A and 6B.
  • the laminated heat insulator 1 ⁇ / b> A and the laminated heat insulator 1 ⁇ / b> B are arranged so that the adjacent end faces are in contact with each other, but the end faces of the vacuum heat insulating material layer 3 are not in contact with each other.
  • the thicknesses of the respective layers in particular, the thicknesses of the heat insulating material layer 21 and the heat insulating material layer 22 are adjusted and laminated.
  • the laminated heat insulators 1A and 1B in the heat insulation structure shown in FIG. 6 can be made in the same manner except that the thickness of the heat insulation material layer 21 and the heat insulation material layer 22 in the heat insulation structure shown in FIGS. 5A and 5B is different.
  • the laminated heat insulators 1C and 1D are laminated on the laminated heat insulators 1A and 1B, respectively.
  • the laminated heat insulator 1C and the laminated heat insulator 1D are arranged so that adjacent end faces are in contact with each other, the thicknesses of the respective layers in each of the end faces of the vacuum heat insulating material layer 3 are not in contact with each other.
  • the heat insulating material layer 21 and the heat insulating material layer 22 are laminated heat insulators that are laminated with their thicknesses adjusted.
  • the laminated heat insulators 1C and 1D are arranged such that the main surface on the heat insulating material layer 21 side is in contact with the protective layer 5 of the laminated heat insulators 1A and 1B, respectively.
  • 1D is fixed to the protective layer 5 of the laminated heat insulators 1A and 1B through the fixtures 6C and 6D in the through-holes of the 1D.
  • the fixing of the laminated heat insulators 1C and 1D onto the protective layer 5 of the laminated heat insulators 1A and 1B by the fixtures 6C and 6D can be performed, for example, by the following method.
  • the fixtures 6C and 6D are prepared under the protective layer 5 of the laminated heat insulators 1A and 1B, and fixed to the through holes of the laminated heat insulators 1C and 1D.
  • it is performed such as fixing the laminated heat insulators 1C and 1D on the protective layer 5 of the laminated heat insulators 1A and 1B through the tools 6C and 6D, it is not limited to this.
  • the relationship between the heat-insulated surface 10a in the heat insulating structure shown in FIG. 6 and the main surface on the heat insulating material layer 21 side of the laminated heat insulators 1A and 1B, the fixture 6A, the fixture 6B, the fixture 6A, the fixture 6B, and the through hole 4 The relationship can be the same as in the heat insulating structure shown in FIG. Note that the fixture 6A to which the laminated thermal insulator 1A is fixed and the fixture 6C to which the laminated thermal insulator 1C is fixed on the laminated thermal insulator 1A are provided so as not to contact from the viewpoint of avoiding a heat bridge.
  • the fixture 6B to which the laminated heat insulator 1B is fixed and the fixture 6D to which the laminated heat insulator 1D is fixed on the laminated heat insulator 1B are provided so as not to contact from the viewpoint of avoiding a heat bridge. .
  • each of the laminated heat insulators 1 ⁇ / b> A, 1 ⁇ / b> B, 1 ⁇ / b> C, and 1 ⁇ / b> D has, the configuration of each layer and the method of laminating are as described above.
  • the vacuum heat insulating material layer 3 and the protective layer 5 in the laminated heat insulators 1A, 1B, 1C, and 1D may be the same as or different from each other.
  • the heat insulating structure shown in FIG. 6 has the above-described configuration.
  • the heat insulating surface 10a of the heat insulating body 10 contracts or expands in the surface direction
  • the vacuum heat insulating material layer 3 that is difficult to deform is adjacent to the heat insulating surface 10a. It becomes possible to be pushed into the heat insulating material layer of the laminated heat insulator, and damage to the laminated heat insulators 1A, 1B, 1C, 1D due to stress can be suppressed.
  • the vacuum heat insulating material layer 3 included in the laminated heat insulator 1A can be pushed into the heat insulating material layer 22 side of the laminated heat insulating material 1B, and the vacuum heat insulating material layer 3 included in the laminated heat insulating material 1B is laminated. It can be pushed into the heat insulating material layer 21 side of the heat insulating body 1A.
  • the vacuum heat insulating material layer 3 included in the laminated heat insulating body 1C can be pushed into the heat insulating material layer 22 side of the laminated heat insulating material 1D, and the vacuum heat insulating material layer 3 included in the laminated heat insulating material 1D is formed of the laminated heat insulating material 1C. It can be pushed into the heat insulating material layer 21 side.
  • FIG. 5A, FIG. 5B, and FIG. 6 have a structure in which the two or four laminated heat insulators are arranged as described above in the heat insulating structure in which the plurality of laminated heat insulators are arranged on the heat insulating surface of the heat insulating body.
  • the unit By repeatedly laying the unit in the two-dimensional direction while adjoining the unit, the unit can be applied to heat insulation of a continuous heat-insulated surface having a large area.
  • the heat-insulated surface may be a flat surface or a curved surface, or a continuous surface such as the outer wall surface of the liquefied gas tank.
  • the laminated heat insulator 1 according to the embodiment of the present invention is taken as an example of the laminated heat insulator 1 shown in FIG. 1 to FIG. 3, and the heat insulation according to the embodiment of the present invention is taken as an example of the heat insulation structure shown in FIG.
  • the structure has been described, in the laminated heat insulating body of the present invention and the heat insulating structure using the same, the shape, material, and the like of each constituent member can be appropriately changed without departing from the spirit of the present invention. Moreover, you may provide structural members other than having demonstrated above as needed.

Abstract

断熱材と真空断熱材を組み合わせた断熱体において、被断熱面への施工が容易であり、かつ真空断熱材の有する高い断熱性を十分に発揮可能な断熱体および該断熱体を用いた高い断熱効果を有する断熱構造を提供する。芯材をガスバリア性の外被材で覆い減圧密封した真空断熱材層と、断熱材料からなる断熱材層とが互いに接するように積層された積層断熱体であって、前記積層断熱体は、前記真空断熱材層と前記断熱材層を積層方向に貫通する貫通穴を有することを特徴とする貫通穴付き積層断熱体、および被断熱面上に、該貫通穴付き積層断熱体を前記断熱材層が前記被断熱面と接するように配置され、前記貫通穴に固定具を通して、前記被断熱面と前記貫通穴付き積層断熱体とを一体化したことを特徴とする断熱構造。

Description

貫通穴付き積層断熱体および断熱構造
 本発明は、貫通穴付き積層断熱体および断熱構造に関し、特には、高い断熱性と良好な施工性を有する貫通穴付き積層断熱体および該積層断熱体を用いた断熱構造に関する。
 従来から、住宅、ビル、車輌、保温保冷容器、冷蔵庫、給湯器等においては、断熱によってエネルギー消費を低減するために樹脂フォーム等の断熱材が使用されてきた。また、近年では、このような断熱材に代わってより高い断熱性を有する真空断熱材が使用されるようになった。真空断熱材としては、例えば、粉体や繊維で構成される芯材を、内面に熱溶着層を有するガスバリア性の外被材中に装填し、減圧下で外被材の芯材が存在しない部分、すなわち芯材の外周の外側部分の熱溶着層同士を熱溶着することで熱シール等を施して減圧密封したものが知られている。
 真空断熱材は、上記のとおり優れた断熱性を有するものの、一方で被断熱面への取り付け等の施工性の点で十分とは言えなかった。例えば、断熱材に対しては被断熱面への取り付けに際して穴開け加工を施すことがよく行われるが、真空断熱材は内部を減圧に保つ必要があるために、穴が開くとリーク(真空破壊)を起こし、高い断熱性能が失われるため穴開け加工を施すことができなかった。そこで、被断熱面への施工性を向上させることを目的として、真空断熱材を穴開け可能な構成とする技術が開発されている(例えば、特許文献1参照)。特許文献1においては、貫通孔を有する真空断熱材の該貫通孔に固定用部材を通過させ真空断熱材を所定の空間内に固定した後に、真空断熱材を埋め込むように発泡断熱材を充填する技術が記載されている。
 また、特許文献2には真空断熱材をウレタンフォーム等の断熱材で包んだ断熱パネルを積層して低温タンクの断熱を図る技術が記載されている。特許文献2には、低温タンクへの断熱パネル等の固定はスタッドボルト等で行う旨の記載があり、その固定部分は断熱パネル等における真空断熱材を内包しない部分と考えられる。すなわち、特許文献2に記載された断熱構造では真空断熱材の配置箇所が制限され、また被断熱面の全面を覆うためには、断熱パネルの継ぎ目の上部に追加の断熱パネルが必要とされている。
特開2010-065711号公報 特開2010-249174号公報
 本発明は、断熱材と真空断熱材を組み合わせた断熱体において、被断熱面への施工が容易であり、かつ真空断熱材の有する高い断熱性を十分に発揮可能な断熱体および該断熱体を用いた高い断熱効果を有する断熱構造を提供することを目的とする。
 本発明は、以下の構成を有する。
 [1]芯材をガスバリア性の外被材で覆い減圧密封した真空断熱材層と、断熱材料からなる断熱材層とが互いに接するように積層された積層断熱体であって、前記積層断熱体は、前記真空断熱材層と前記断熱材層を積層方向に貫通する貫通穴を有することを特徴とする貫通穴付き積層断熱体。
 [2]前記真空断熱材層は前記断熱材層に挟持された[1]の貫通穴付き積層断熱体。
 [3]前記真空断熱材層と前記断熱材層とをそれぞれ2以上有する[1]または[2]の貫通穴付き積層断熱体。
 [4]前記芯材を構成する材料が、グラスウール、樹脂繊維、無機粉体、有機粉体、および粉体と繊維の複合体から選ばれる1種以上である、[1]~[3]のいずれかの貫通穴付き積層断熱体。
 [5]被断熱面上に、[1]~[4]のいずれかの貫通穴付き積層断熱体を前記断熱材層が前記被断熱面と接するように配置し、前記貫通穴に固定具を通して、前記被断熱面と前記貫通穴付き積層断熱体とを一体化したことを特徴とする断熱構造。
 [6]前記貫通穴付き積層断熱体は前記被断熱面と反対側の最外層として保護層を有する[5]の断熱構造。
 [7]前記被断熱面上に複数の前記貫通穴付き積層断熱体を互いの端面が隣接するように配置してなる[5]または[6]の断熱構造。
 [8]前記複数の前記貫通穴付き積層断熱体の、前記隣接する端面において前記真空断熱材層の端面同士は面で接することがない[7]の断熱構造。
 [9]前記断熱材層を構成する断熱材料が、樹脂フォームである[7]または[8]の断熱構造。
 [10]前記樹脂フォームがフェノールフォーム、硬質ウレタンフォームおよびスチレンフォームから選ばれる1種以上である、[9]の断熱構造。
 [11]前記複数の前記貫通穴付き積層断熱体の厚みが略同一である、[7]~[10]のいずれかの断熱構造。
 [12]前記断熱構造において、隣接する前記貫通穴付き積層断熱体の端面の間に応力吸収材が配置されてなる、[7]~[11]のいずれかの断熱構造。
 [13]前記被断熱面と前記断熱構造の最外層面との温度差が100℃以上となる、[5]~[12]のいずれかの断熱構造。
 本発明によれば、断熱材と真空断熱材を組み合わせた断熱体において、被断熱面への施工が容易であり、かつ真空断熱材の有する高い断熱性を十分に発揮可能な断熱体および該断熱体を用いた高い断熱効果を有する断熱構造が提供できる。
本発明の貫通穴付き積層断熱体の実施形態の一例を示す平面図である。 図1に示す貫通穴付き積層断熱体の平面図のA-A線における断面図である。 図2に示す貫通穴付き積層断熱体における真空断熱材層の断面図である。 本発明の断熱構造の実施形態の一例を示す断面図である。 本発明の断熱構造の実施形態の別の一例を示す平面図である。 図5Aに示す断熱構造の平面図のB-B線における断面図である。 本発明の断熱構造の実施形態のさらに別の一例を示す断面図である。
 以下、本発明の実施の形態について図面を参照しながら説明する。本発明はこれに限定されない。以下の説明において、「略同寸」等における略は目視で見た際にそう見える範囲を意味する。
 図1は、本発明の貫通穴付き積層断熱体の実施形態の一例の平面図を示し、図2は、該貫通穴付き積層断熱体の平面図のA-A線における断面図である。以下、貫通穴付き積層断熱体を単に積層断熱体ともいう。
 図1および図2に示す積層断熱体1は、芯材35をガスバリア性の外被材33で覆い減圧密封した真空断熱材層3と、断熱材料からなる断熱材層2とが互いに接するように積層されてなり、真空断熱材層3と断熱材層2を積層方向に貫通する貫通穴4を有する。
 積層断熱体1において、真空断熱材層3の主面と断熱材層2の主面は、略同形、同寸であり、それぞれの外周が一致するように積層されている。貫通穴4は積層断熱体1の一方の主面の略中心部から他方の主面の略中心部までを貫くように、すなわち、積層された真空断熱材層3と断熱材層2の2層を貫くように形成された直方体形状の貫通穴である。本発明においては、真空断熱材層を構成する真空断熱材として以下に説明するような穴開け加工可能な真空断熱材を用いることで、真空断熱材層3と断熱材層2の2層を貫く貫通穴4の形成を可能としている。
 本発明の積層断熱体は真空断熱材層と断熱材層を積層した構成とすることで、被断熱面に対して真空断熱材層の設置面積を自由に設定可能であり、例えば、主面が略同形、同寸の真空断熱材層3と断熱材層2が積層された積層断熱体1を用いれば、被断熱面に対する真空断熱材層の設置面積を最大限に確保することが可能となる。
 なお、本発明の積層断熱体は2つの主面の大きさが異なっていてもよい。すなわち、図2に示した積層断熱体1の断面図が台形であってもよい。ただし真空断熱材層と断熱材層とが積層される主面どうしは略同形、同寸であり、それぞれの外周が一致するように積層されている。
 また、貫通穴4を有することで、積層断熱体1を被断熱面に固定する際に貫通穴4に固定具、例えば、ネジや釘を配して、固定することが容易である。積層断熱体1を被断熱面に固定する際に、貫通穴4は配線および/または配管を通す用途に用いることも可能である。このように、本発明の積層断熱体は、真空断熱材層と断熱材層を積層方向に貫通する貫通穴を有することで、非常に良好な施工性を有する。
 本発明において、積層断熱体が有する貫通穴の大きさ、形状、位置、個数は特に制限されず、積層断熱体が適用される被断熱面に応じて適宜選択される。図1、2に示す積層断熱体1に示す貫通穴4の形状は平面図において正方形であるが、例えば、これを三角形、四角形、多角形、略円形、略楕円形、L型等の形状や、これらの組み合わせからなる任意形状とすることができる。また、貫通穴4の側面、すなわち積層断熱体1の内側面は、積層断熱体1の主面に対して垂直となるように形成されているが、本発明の実施形態の積層断熱体において、必ずしも垂直である必要はなく、必要に応じてテーパー状、階段状等であってもよい。
 貫通穴の開口部の形状は作業性の観点、例えば位置決めがしやすい等の観点からは、多角形が好ましく、四角形がより好ましい。また、貫通穴の側面は積層断熱体の主面部に対して垂直となるように形成されることが好ましい。貫通穴の開口部の大きさや個数は、断熱性を高く維持する観点から、その用途において必要最低限とする。例えば、積層断熱体の主面の貫通穴の開口部を含む全面積に対する貫通穴の開口部の面積の割合が5%以下となるように設計することが好ましい。
 図1、2に示される積層断熱体1は、真空断熱材層と断熱材層の各1層が積層された、本発明の積層断熱体において積層数が最小の構成を有する積層断熱体である。本発明の積層断熱体においては、真空断熱材層と断熱材層が互いに接するように積層される限り、各層の積層数およびそれらの合計の積層数は特に制限されない。ここで、各断熱材層は、それぞれ単層で構成されても2層以上の多層で構成されてもよい。積層断熱体における断熱材層の層数をいう場合、断熱材層が断熱材からなる層のみの多層構成であれば、該断熱材層を1層とする。積層断熱体における真空断熱材層と断熱材層の積層数は、積層断熱体が適用される被断熱面に応じて適宜選択される。施工性の観点から、積層断熱体は断熱材層が真空断熱材層を挟持する構成であるのが好ましい。すなわち、真空断熱材層の層数をnとした場合、断熱材層の層数がn+1である構成が好ましい。
 また、真空断熱材層の層数は2以上が好ましく、断熱材層の層数も同様に2以上が好ましい。ただし、断熱材層が真空断熱材層を挟持する構成の場合、断熱材層の層数は真空断熱材層の層数より1多い数となる。真空断熱材層および断熱材層のいずれも製造上の観点から厚さの好ましい範囲があるため、優れた断熱性を発揮するためにはどちらも複数層積層することが望ましい。
 積層断熱体を構成する真空断熱材層および断熱材層の厚さは、真空断熱材層および断熱材層が有する断熱性能と、被断熱面に求められる断熱性能により適宜設定される。真空断熱材層の層厚は、用いる真空断熱材層の種類によるが、製造上の観点から、1層あたり、3~50mmが好ましく、20~40mmがより好ましい。また、断熱材層の厚さは、用いる断熱材層の種類によるが、製造上の観点から、1層あたり、100~500mmが好ましく、150~400mmがより好ましい。
 積層断熱体の主面の形状および大きさは、積層断熱体が適用される被断熱面に応じて適宜選択される。積層断熱体は、通常、被断熱面に対してその主面が接するようにして設置される。したがって、積層断熱体の主面の大きさおよび形状は、被断熱面の大きさおよび形状と略一致するように製造される。また、被断熱面が大面積の場合には、施工性の観点から、複数の積層断熱体を準備し、積層断熱体をその端面同士が隣接するように配置することで、被断熱面全体を覆うように施工することが好ましい。
 以下、積層断熱体を構成する断熱材層および真空断熱材層について説明する。積層断熱体が有する貫通穴は、積層される前に積層される断熱材層および真空断熱材層毎に形成されてもよく、積層後に形成されてもよい。貫通穴は、一部が積層される前に形成され、残りの部分が積層後に形成されてもよい。貫通穴の全部を積層後に形成する場合、断熱材層および真空断熱材層としては、それぞれ貫通穴のないものが準備される。一方、断熱材層および真空断熱材層への貫通穴の穴開け加工を異なる方法で行うことが好ましい場合は、真空断熱材層および断熱材層の両方が予め貫通穴を有するものとして準備される。あるいは、一方が貫通穴付きで、他方が貫通穴なしで準備され、積層後、貫通穴を有しない層について貫通穴付きの層に合わせて貫通穴が設けられてもよい。
(断熱材層)
 断熱材層は断熱材料が層状に成形されたものである。断熱材料としては、層状に成形可能な公知の断熱材料が使用できる。具体的には、気相比率90%前後の多孔体を材料として、これを層状に加工した材料が挙げられる。工業的に利用できる多孔体として、発泡体、繊維体、繊維体と粉体の複合体等がある。これらは、その使用用途や必要特性に応じて公知の材料を使用することができる。
 このうち、発泡体としては、樹脂フォーム、具体的には、硬質ウレタンフォーム、スチレンフォーム、フェノールフォーム等の連続気泡体が利用できる。
 また、繊維体としては、無機系、有機系、およびこれらの混合物が利用できるが、コストと断熱性能の観点から無機繊維が有利である。無機繊維の一例としては、グラスウール、アルミナ繊維、シリカアルミナ繊維、シリカ繊維、ロックウール、カーボンウール等、公知の材料を使用することができる。
 繊維体と粉体の複合体に用いる粉体としては、無機系、有機系、およびこれらの混合物を利用できるが、工業的には、乾式シリカ、湿式シリカ、パーライト等を主成分とする多孔質粉体が使用できる。多孔質粉体と繊維体の複合体としては、エアロゲルブランケットが挙げられる。
 断熱材層は成形時に積層した際に貫通穴となる部分に貫通穴を有するように成形されてもよく、成形後に公知の方法で貫通穴を形成してもよい。あるいは、貫通穴を有しない状態で準備し、真空断熱材層と積層後、貫通穴を形成してもよい。
(真空断熱材層)
 真空断熱材層は穴開け加工可能な真空断熱材を用いて形成される。穴開け加工可能な真空断熱材としては、例えば、特許文献1等に公知の真空断熱材や、特開2011-153715号公報に記載の以下の真空断熱材が使用できる。
 すなわち、内面に熱溶着層を有する袋状のガスバリア性の外被材中に、所定の位置に貫通孔が形成された板状の芯材を充填し、芯材の外周の外側部分とともに貫通孔部分について外被材の熱溶着層同士を熱溶着させた真空断熱材が使用できる。この真空断熱材においては、芯材の貫通孔に対応する部分で外被材が熱溶着した部分に貫通穴が形成可能である。
 また、さらに別の構成の穴開け加工可能な真空断熱材として、例えば、板状の芯材の所定の貫通部分を、ガスバリア性でありかつ外被材の熱溶着層と熱溶着可能な樹脂製置換材で置き換えて、芯材の外周の外側部分の外被材の熱溶着層同士を熱溶着させるとともに置換材の両表面と外被材の熱溶着層を熱溶着させた真空断熱材が使用できる。なお、置換材の表面とは、板状の芯材の置換された部分の主面に相当する面をいう。
 すなわち、片面に熱溶着層を有するガスバリア性のフィルムを前記熱溶着層同士が対向するように配置してなる外被材と、板厚方向に貫通する貫通部を有する板状の芯材と、前記貫通部を閉塞するように前記貫通部に配設される、前記芯材の主面に略平行する一対の表面を有するガスバリア性の樹脂部材からなる置換材と、を備え、前記外被材の内部に前記置換材が配設された芯材が収納されており、前記芯材の外周よりも外側に位置し前記芯材の周囲全体に亘る領域が前記熱溶着層同士の熱溶着により密着された、前記外被材の内部が減圧状態である真空断熱材であって、前記樹脂部材はガスバリア性が保持されるように前記外被材と接合された真空断熱材が使用できる。この真空断熱材においては、芯材を置換材で置き換えた部分に貫通穴が形成可能である。
 図1、2に示す貫通穴4付き積層断熱体1は、このような真空断熱材を真空断熱材層3として用いて貫通穴を形成した例であり、図3は該真空断熱材層3の断面図である。
 図3に示す真空断熱材層3は、片面に熱溶着層31を有するガスバリア性のフィルム32を有し、フィルム32を熱溶着層31同士が対向するように配置してなる外被材33と、板厚方向に貫通する貫通部を有する板状の芯材35と、貫通部と嵌合するように貫通部に配設される、芯材35の貫通部内面に接する外周面36cおよび芯材35の両主面35a、35bに平行する一対の表面36a、36bを有するガスバリア性の樹脂部材からなる置換材36とを備え、置換材36の略中央部に相当する位置に貫通穴4が形成されている。以下、貫通穴4が形成される前の真空断熱材層3について説明する。
 真空断熱材層3においては、熱溶着層31同士が対向する外被材33の内部に、置換材36が配設された芯材35が収納され、芯材35の外周よりも外側に位置し芯材35の周囲全体に亘る領域Yが熱溶着層31同士の熱溶着により密着され、外被材33の内部は減圧状態とされている。以下、熱溶着された上記の領域Yをシール領域Yともいう。図3においてYwで示すシール領域Yの幅は、外被材33内部を減圧状態に密封可能な幅であれば特に制限されない。シール領域Yの幅Ywは、具体的には5~20mm程度が好ましい。
 熱溶着層31と置換材36の表面36a、36bは公知の手法によって接合することができる。具体的には、接着剤による接合や熱溶着による接合が挙げられる。接合に接着剤を使用する場合には、熱溶着層と置換材の表面の間に接着剤層が介在し、接着剤の接着力により両者が接合される。したがって、この場合には、置換材の表面は必ずしも熱溶着層と熱溶着できる材料から構成されなくてもよい。また、熱溶着層と置換材の表面がガスバリア性をもって接合される限り接着剤の種類は特に制限されない。
 熱溶着層31と置換材36の表面36a、36bは、作業性の観点から、熱溶着により接合されることが好ましい。熱溶着を行う場合、少なくとも置換材表面36a、36bは熱溶着層31と熱溶着できる材料から構成されていることが好ましい。接合が熱溶着により行われる場合、加熱の方法は特に制限されない。公知の加熱方法、例えば超音波溶着、高周波溶着、熱媒体の接触による熱溶着等が挙げられる。
 ここで、図3に示す真空断熱材層3は、上記接合が熱溶着で行われた真空断熱材層の例である。真空断熱材層3においては、置換材36は熱溶着層31を構成する材料と熱溶着可能な樹脂で構成され、置換材36は一対の表面36a、36bにおいて外被材33の熱溶着層31と熱溶着されている。なお、置換材36と熱溶着層31との界面は、実際には熱溶着により明確に存在するものではない。図3では、置換材36と熱溶着層31との界面を熱溶着の前における界面として破線で示す。ここで、該界面は、置換材36が有する一対の表面36a、36bに相当する。
 置換材36の厚みは芯材35の厚みと略同じである。したがって、芯材35の貫通部に置換材36が嵌め込まれた部材において主面は全体として平坦な面となる。なお、芯材35の厚みについては、特に制限されないが、通常の真空断熱材における芯材の厚みとして3~50mm程度が挙げられる。
 また、芯材35と置換材36の厚みについても必ずしも同じでなくてもよい。置換材36が有する一対の表面36a、36bにおいて外被材33が有する熱溶着層31との熱溶着が十分に行われる限りは、置換材の厚みは芯材の厚みよりも厚くても、薄くてもよい。置換材36の厚みは、上記熱溶着性の観点に加えて、真空断熱材に求められる平坦性を考慮に入れて適宜選択される。具体的には、置換材36の厚みは、芯材35の厚みの0.8~1.2倍が好ましい。なお、置換材36の厚みが芯材35の厚みの1.0超1.2倍であると、芯材35を外被材33の中に減圧密封した後でも置換材36の位置が外被材33の外から確認しやすいため好ましい。
 ここで、芯材35における置換材36の配置位置は、積層断熱体1における貫通穴4の形成位置とする。また、貫通穴4は置換材36内に形成されるため、置換材36の表面の大きさは設けられる貫通穴4の開口部の大きさより大きく設計される。すなわち、置換材36に貫通穴4を形成する場合、図3に示されるとおり、該貫通穴4は置換材36の周縁部を除く領域に設けられる。置換材36の周縁部領域に貫通穴4が存在すると、置換材36を構成する樹脂と外被材33の熱溶着層31との熱溶着部における密着性が確保できなくなるおそれがある。このような観点から、上記周縁部の幅w1は5mm以上とすることが好ましい。このようにして真空断熱材層3に貫通穴4を形成すれば、貫通穴4を有しているにも関わらずその内部を安定した減圧状態に維持できる。
 なお、置換材36の表面の形状と設けられる貫通穴4の開口部の形状は上記周縁部の幅w1が5mm以上に確保されていれば必ずしも一致しなくてもよい。しかしながら、真空断熱材層3全体としての断熱性を高く確保する観点から、貫通穴4形成後の置換材の体積ができるだけ小さくなるように、置換材36を設定することが好ましい。また、貫通穴4の形成を考慮して、置換材36の貫通穴4に相当する部分をさらに取り外し可能な別の部材に置き換える設計としておけば、貫通穴4の形成が容易である。
 置換材36を構成する樹脂部材の材質はガスバリア性を有する樹脂であれば特に制限されない。
 図3に示す真空断熱材層3のように熱溶着層31と置換材36を熱溶着で接合する場合、具体的な樹脂としては、外被材33が有する熱溶着層31を構成する材料による。熱溶着層31を構成する材料としては、低密度ポリエチレン、鎖状低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリアクリロニトリル、無延伸ポリエチレンテレフタレート、エチレン-ビニルアルコール共重合体、ETFE(エチレン-テトラフルオロエチレン共重合体)等が挙げられる。これらの樹脂と熱溶着可能な樹脂としては、これらの樹脂と同様の樹脂が挙げられる。好ましくは、外被材33が有する熱溶着層31を構成する材料と、置換材36を構成する樹脂は同じ樹脂である。
 外被材33は、例えば、片面に熱溶着層31を有する同形、同寸の2枚のガスバリア性のフィルム32を、各フィルム32が有する熱溶着層1を互いに対向させて重ね合わせた構成とすることができる。
 外被材33の大きさおよび形状は、置換材36が嵌め込まれた芯材35を上記2枚のガスバリア性のフィルム32の間に収納し、かつ芯材35の外周よりも外側にシール領域Yが設けられる大きさおよび形状であれば特に限定されない。芯材35の大きさおよび形状に合わせて適宜選択可能である。外被材33のシール領域Yの内側における外被材33内部の真空度は、優れた断熱性能が得られ、また真空断熱材の寿命が長くなる点から、1×10Pa以下が好ましく、1×10Pa以下がより好ましい。
 外被材33の材料としては、真空断熱材に使用される公知のものを制限なく使用できる。外被材33の材料として用いる熱溶着層31を有するガスバリア性のフィルム32としては、ガスバリア層と表面保護層を有するラミネートフィルムが挙げられる。前記ラミネートフィルムとしては、例えば、ガスバリア層としての金属箔または金属蒸着層を表面保護層の片面上に有するラミネートフィルムが適用できる。
 この場合、外被材は、最も内側に熱溶着層を有し、中間層として金属箔または金属蒸着層を有し、最外層として表面保護層を有する構成となる。また、ラミネートフィルムは、金属箔を有するラミネートフィルムと金属蒸着層を有するラミネートフィルムの2種類のラミネートフィルムを組み合わせて適用してもよい。熱溶着層としては、上に説明した熱溶着層を構成する材料からなるフィルムやこれらのフィルムを組み合わせた複合体からなってもよい。表面保護層としては、ナイロンフィルム、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルムの延伸加工品など、公知の材料が利用できる。
 芯材としては、真空断熱材に用いられる公知の芯材を使用できる。具体的には、気相比率90%前後の多孔体を材料として、これを板状に加工した芯材が挙げられる。工業的に利用できる多孔体として、発泡体、粉体、および繊維体等がある。芯材としては、グラスウール、樹脂繊維、無機粉体、有機粉体、および粉体と繊維の複合体から選ばれる1種以上が好ましい。これらは、その使用用途や必要特性に応じて公知の材料を使用することができる。
 このうち、発泡体としては、ウレタンフォーム、スチレンフォーム、フェノールフォーム等の連続気泡体が利用できる。また、粉体としては、無機系、有機系、およびこれらの混合物を利用できるが、工業的には、乾式シリカ、湿式シリカ、パーライト等を主成分とするものが使用できる。
 また、繊維体としては、無機系、有機系、およびこれらの混合物が利用できるが、コストと断熱性能の観点から無機繊維が有利である。無機繊維の一例としては、グラスウール、アルミナ繊維、シリカアルミナ繊維、シリカ繊維、ロックウール等、公知の材料を使用することができる。
 さらに、これらの発泡体、粉体、および繊維体等の混合物や複合体も芯材に適用することができる。このような芯材として、具体的には、多孔質粉体と繊維体の複合体、例えば、エアロゲルブランケットが挙げられる。
 これらのうち、粉体を含む断熱材材料が板状に成形された芯材について以下に説明する。粉体を含む芯材の断熱材材料としては、高強度な芯材を得やすい点から、粉体に加えて繊維およびバインダのいずれか一方もしくは両方が含まれていることが好ましい。
≪粉体≫
 以下に粉体を含む芯材の場合を例にとって説明する。
 粉体としては、真空断熱材の芯材に通常用いられる公知の粉体を使用できる。具体的には、ヒュームドシリカ、多孔質シリカ、輻射抑制材等が挙げられる。粉体としては、充分な強度を有する芯材が得られやすい点から、ヒュームドシリカを含むことが好ましい。粉体は、1種のみを使用してもよく、2種以上を併用してもよい。
 ヒュームドシリカは極めて微細な粉末であるため、粒の大きさを表す指標としては通常、比表面積が用いられる。比表面積は、窒素吸着法(BET法)により測定される。
 ヒュームドシリカの比表面積は、50~400m/gが好ましく、100~350m/gがより好ましく、200~300m/gが特に好ましい。ヒュームドシリカの比表面積が前記範囲の下限値以上であれば、優れた断熱性能が得られやすい。ヒュームドシリカの比表面積が前記範囲の上限値以下であれば、粒子の表面にバインダを付けやすい。
 ヒュームドシリカの具体例としては、例えば、アエロジル200(比表面積200m/g、日本アエロジル株式会社製)、アエロジル300(比表面積300m/g、日本アエロジル株式会社製)、CAB-O-SIL M-5(比表面積200m/g、キャボットジャパン株式会社製)、CAB-O-SIL H-300(比表面積300m/g、キャボットジャパン株式会社製)、レオロシールQS30(比表面積300m/g、株式会社トクヤマ製)等が挙げられる。ヒュームドシリカは、1種のみを使用してもよく、2種以上を併用してもよい。
 多孔質シリカを併用する場合、多孔質シリカの比表面積は、100~800m/gが好ましく、200~750m/gがより好ましく、300~700m/gが特に好ましい。多孔質シリカの比表面積が前記範囲の下限値以上であれば、優れた断熱性能が得られやすい。多孔質シリカの比表面積が前記範囲の上限値以下であれば、バインダを用いた場合に多孔質シリカに吸収されるバインダ量を少なくできる。そのため、添加するバインダ量が少なくてもより低い圧力で芯材を成形できる。その結果、芯材の密度を低くでき、優れた断熱性能が得られやすくなる。
 多孔質シリカの気孔率は、60~90%が好ましく、65~85%がより好ましく、70~80%が特に好ましい。多孔質シリカの気孔率が前記範囲の下限値以上であれば、固体の熱伝導を少なくできるため、優れた断熱性能が得られやすい。多孔質シリカの気孔率が前記範囲の上限値以下であれば、成形時に多孔質シリカ粒子がつぶれにくく、多孔性が維持されるために優れた断熱性能が得られやすい。気孔率は、窒素吸着法(BJH法)により測定される。
 多孔質シリカの平均粒子径は、コールターカウンター法により、体積基準で測定された場合において、1~300μmが好ましく、2~150μmがより好ましく、3~100μmが特に好ましい。多孔質シリカの平均粒子径が前記範囲の下限値以上であれば、高い気孔率を有する多孔質シリカが得られやすく、優れた断熱性能が得られやすい。多孔質シリカの平均粒子径が前記範囲の上限値以下であれば、芯材の密度が高くなりすぎず、優れた断熱性能が得られやすい。
 多孔質シリカの具体例としては、例えば、M.S.GELやサンスフェア(いずれもAGCエスアイテック株式会社製)等が挙げられる。
 輻射抑制材としては、例えば、金属粒子(アルミニウム粒子、銀粒子、金粒子等)、無機粒子(グラファイト、カーボンブラック、炭化ケイ素、酸化チタン、酸化スズ、酸化鉄、チタン酸カリウム等)等が挙げられる。
≪バインダ≫
 芯材を低密度にしても充分な強度が得られやすい点から、芯材の形状を維持するために断熱材材料はバインダを含むことができる。例えば粉体としてヒュームドシリカを使用し、予め該ヒュームドシリカの表面にバインダを付与してバインダ付きヒュームドシリカとすることができる。ヒュームドシリカの表面に付与されたバインダによって、成形時の圧力が低くても、バインダ付きヒュームドシリカ同士、またはバインダ付きヒュームドシリカと他の材料(多孔質シリカ、繊維等)が互いに接着される。多孔質シリカにバインダを付与しても、バインダが多孔質シリカに吸収されてしまうためにバインダによる効果は得られにくい。
 バインダとしては、有機バインダであってもよく、無機バインダであってもよい。なかでも、バインダとしては、熱伝導性が低く、優れた断熱性能が得られやすい点から、無機バインダが好ましい。無機バインダとしては、例えば、ケイ酸ナトリウム、リン酸アルミニウム、硫酸マグネシウム、塩化マグネシウム等が挙げられる。なかでも、優れた断熱性能が得られやすい点から、ケイ酸ナトリウムが特に好ましい。
 バインダは溶媒に溶解してバインダ液として用いることが好ましく、水溶液がより好ましい。
≪繊維≫
 断熱材材料に繊維が含まれると、高強度な芯材が得られやすい。
 繊維としては、真空断熱材に通常使用される繊維が使用でき、例えば、樹脂繊維、無機繊維が挙げられる。なかでも、真空下でのアウトガスが少なく、真空度の低下による断熱性能の低下を抑制しやすい点、および耐熱性に優れる点から、無機繊維が好ましい。
 無機繊維としては、例えば、アルミナ繊維、ムライト繊維、シリカ繊維、グラスウール、ロックウール、スラグウール、炭化ケイ素繊維、カーボン繊維、シリカアルミナ繊維、シリカアルミナマグネシア繊維、シリカアルミナジルコニア繊維、シリカマグネシアカルシア繊維等が挙げられる。
 使用する繊維の繊維長D30は、100μm以上が好ましく、200μm以上がより好ましい。繊維長D30が前記下限値以上であれば、芯材に割れが生じることを抑制しやすい。使用する繊維の繊維長D90は、20mm以下が好ましく、10mm以下がより好ましい。繊維長D90が前記上限値以下であれば、繊維同士が過度に絡まりにくいために粉体と均一に混合しやすく、繊維による効果が得られやすい。
 繊維の太さ(直径)は、繊維による固体伝熱の増大を抑制できる点から、10μm以下が好ましい。また、繊維の太さ(直径)は、芯材に割れが生じることを抑制しやすい点から、1μm以上が好ましい。
 なお、本明細書において「繊維長D30」とは、個数基準で求めた繊維長分布の全個数を100%とした累積個数分布曲線において30%となる点の繊維長を意味する。また、「繊維長D90」とは、個数基準で求めた繊維長分布の全個数を100%とした累積個数分布曲線において90%となる点の繊維長を意味する。繊維長分布は、光学顕微鏡で観察した写真において無作為に50本以上の繊維の長さを測定して得られる頻度分布および累積個数分布曲線で求められる。
≪粉体、バインダ、繊維の割合≫
 粉体(100質量%)中のヒュームドシリカの割合は、50~100質量%が好ましく、70~100質量%がより好ましく、80~100質量%が特に好ましい。ヒュームドシリカの割合が前記範囲の下限値以上であれば、強度の高い芯材が得られやすい。
 粉体(100質量%)中の多孔質シリカの割合は、0~50質量%が好ましく、0~30質量%がより好ましく、0~20質量%が特に好ましい。多孔質シリカの割合が多いほど、断熱性能に優れた真空断熱材が得られやすい。多孔質シリカの割合が前記範囲の上限値以下であれば、強度の高い芯材が得られやすい。
 粉体が予め表面にバインダを付与したバインダ付きヒュームドシリカと多孔質シリカを含む場合、バインダ付与前のヒュームドシリカの質量Mと多孔質シリカの質量Mとの比M/Mは、50/50以上が好ましく、70/30以上がより好ましく、80/20以上が特に好ましい。前記比M/Mが前記下限値以上であれば、より低密度で優れた断熱性能を有し、かつ充分な強度を有する芯材が得られやすい。
 粉体が輻射抑制材を含む場合、粉体(100質量%)中の輻射抑制材の割合は、3~30質量%が好ましく、5~25質量%がより好ましく、10~20質量%が特に好ましい。輻射抑制材の割合が前記範囲の下限値以上であれば、輻射抑制材の効果が得られやすい。輻射抑制材の割合が前記範囲の上限値以下であれば、輻射抑制材による固体伝熱の増大を抑制できるため、優れた断熱性能が得られやすい。
 バインダの割合は、予め表面にバインダを付与したバインダ付きヒュームドシリカを使用する場合、バインダ付与前のヒュームドシリカ100質量部に対して、0.1~15質量部が好ましく、0.5~10質量部がより好ましく、1~4質量部が特に好ましい。前記バインダの割合が前記範囲の下限値以上であれば、より低密度で充分な強度を有する芯材が得られやすく、また優れた断熱性能が得られやすい。前記バインダの割合が前記範囲の上限値以下であれば、バインダによる固体伝熱の増大を抑制できるため、断熱性能の低下を抑制しやすい。芯材の形状維持性が確保できれば、より良い断熱性能を得るためバインダの割合は少ないことが好ましく、無添加でもよい。
 また、ヒュームドシリカ、バインダおよびそれ以外の成分(多孔質シリカ、繊維等)を同時に混合する場合等、予め表面にバインダを付与したバインダ付きヒュームドシリカを使用しない場合のバインダの割合は、粉体100質量部に対して、0.1~15質量部が好ましく、0.5~10質量部がより好ましく、1~4質量部が特に好ましい。バインダの割合が前記範囲の下限値以上であれば、より低密度で充分な強度を有する芯材が得られやすく、また優れた断熱性能が得られやすい。バインダの割合が前記範囲の上限値以下であれば、バインダによる固体伝熱の増大を抑制できるため、断熱性能の低下を抑制しやすい。
 芯材の形状維持性が確保できれば、より良い断熱性能を得るためバインダの割合は少ないことが好ましく、無添加でもよい。芯材として粉体を用いる場合の、粉体の好ましい組成は質量比で、ヒュームドシリカ:多孔質シリカ:輻射抑制材が、70~90:0~20:10~20であるのが好ましい。
 繊維の割合は、粉体100質量部に対して、1~30質量部が好ましく、2~20質量部がより好ましく、4~10質量部が特に好ましい。繊維の割合が前記範囲の下限値以上であれば、高強度な芯材が得られやすい。繊維の割合が前記範囲の上限値以下であれば、繊維による固体伝熱の増大を抑制できるため、断熱性能の低下を抑制しやすい。
 なお、図3に示す真空断熱材層3を構成する真空断熱材(ただし、貫通穴4を有しない)は、例えば、(1)板状の芯材に、板厚方向に貫通する貫通部を形成し、(2)前記芯材の貫通部内面に接する外周面および前記芯材の両主面に平行する一対の表面を有するガスバリア性の樹脂部材からなる置換材を、前記貫通部と嵌合するように前記貫通部に配設し、(3)片面に熱溶着層を有するガスバリア性のフィルムを前記熱溶着層同士が対向するように配置してなる外被材の内部に、前記置換材が配設された芯材を収納し、(4)前記外被材の内部を減圧状態とするとともに、前記芯材の外周よりも外側に位置し前記芯材の周囲全体に亘る領域を前記熱溶着層同士の熱溶着により密着し、(5)前記樹脂部材を前記一対の表面において前記外被材の前記熱溶着層と熱溶着することで製造できる。
 積層断熱体1における真空断熱材層3と断熱材層2の積層は、例えば、公知の接着剤を介して行うことができる。または、予め作製した真空断熱材層3の一方の主面上に断熱材層2を公知の方法で成形することで積層できる。このような方法によれば、積層断熱体1における真空断熱材層3と断熱材層2の積層面が全面において強固に接着できる。なお、積層断熱体1が適用される用途に応じて、例えば、被断熱面の温度変化が大きく、それにより被断熱面の膨張、収縮が生じるような用途においては、真空断熱材層3と断熱材層2は互いの積層面が全面において接着していない方がよい。その場合は、互いの積層面の少なくとも貫通穴4の周辺領域が接着されていればよい。
 積層断熱体1における真空断熱材層3と断熱材層2の積層と貫通穴4の形成の順番については上記のとおりである。なお、積層に際して、図3に示す真空断熱材層3の芯材35が充填されていない外被材のみからなる外周部については、公知の方法により処理すればよい。例えば外周部を折り返してもよい。
 以上、図1~3を用いて、真空断熱材層と断熱材層の各1層が積層された、本発明の積層断熱体において積層数が最小の構成を有する積層断熱体について説明した。断熱材層に真空断熱材層が挟持された構成の積層断熱体や、断熱材層と真空断熱材層をそれぞれ複数有する積層断熱体の断熱材層および真空断熱材層についても、上記同様にできる。
 本発明の積層断熱体は、真空断熱材層および断熱材層以外に必要に応じて任意の層を有してもよい。このような任意の層として積層断熱体の被断熱面に接する側と反対側の主面上に設けられる保護層が挙げられる。例えば、図1、2に示される積層断熱体1は、被断熱面に対して、真空断熱材層3側の主面または断熱材層2側の主面が接する形で使用される。密閉性を高める観点、およびヒートブリッジを回避する観点から断熱材層2側の主面が被断熱面に接するように用いられることが好ましい。したがって、この場合には保護層は真空断熱材層3側の主面に設けられることが好ましい。積層断熱体の表層が両側とも断熱材層で構成されている場合、保護層はいずれの主面に設けられてもよく、保護層が設けられていない断熱材層側の主面が被断熱面に接する形で使用される。このように積層断熱体が保護層を有する場合、積層断熱体は保護層が最外層となるように被断熱面に設けられる。
 保護層は、通常、真空断熱材層または断熱材層と略同形、同寸の主面および貫通穴を有する。保護層を構成する材料としては、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ナイロン、ポリエステル等の樹脂が挙げられる。保護層の厚さは、真空断熱材層または断熱材層を保護できる厚さであれば特に制限されない。積層断熱体の用途にもよるが、例えば、50~200μm程度の厚さが挙げられる。なお、積層断熱体における保護層の積層および貫通穴の形成については、真空断熱材層3と断熱材層2の積層および貫通穴の形成における断熱材層2の場合と同様にできる。保護層は樹脂シートと金属箔、例えばアルミニウムフォイルとの積層シートであってもよい。その場合、金属箔側が真空断熱材層の主面または断熱材層の主面と接するように配置される。
[断熱構造]
 本発明の断熱構造は、上記本発明の貫通穴付き積層断熱体を用いて被断熱面を介して被断熱体の断熱を行う断熱構造に関する。本発明の断熱構造は、被断熱面上に、本発明の貫通穴付き積層断熱体を前記断熱材層が前記被断熱面と接するように配置し、前記貫通穴に固定具を通して、前記被断熱面と前記貫通穴付き積層断熱体とを一体化したことを特徴とする。
 本発明の断熱構造は、省エネルギー化が求められる、保温や保冷、断熱が必要な被断熱体の被断熱面に特に制限なく適用できる。具体的には、例えば住宅およびビルの壁・屋根・床・配管、太陽光・熱設備等の住設分野;恒温槽、湯沸かし器、温水タンク、炊飯器、冷蔵庫、冷凍庫、保冷庫・保冷タンク、液化ガスタンク、自動販売機、クーラーボックス、保冷カバー、防寒服等の保温・保冷分野;ノートパソコン、液晶プロジェクター、コピー機、バッテリー、燃料電池等の電気・電子機器、半導体製造装置等の産業機器分野;自動車、バス、トラック、保冷車、列車、貨物車、船舶等の移動体分野;プラントの配管等に適用が可能である。
 このような適用の中でも本発明の断熱構造は、特に、極低温用の断熱用途において十分な効果を発揮できる。具体的には、本発明の断熱構造によれば、被断熱面と断熱構造の最外層面との温度差を100℃以上とできる断熱性能を有する。例えば、極低温物を貯蔵、移送するための容器等ではその表面が被断熱面であり、該被断熱面は-100℃以下となる場合が多い。該容器の表面である被断熱面に本発明の断熱構造を適用すれば、断熱構造の最外層面の温度を、上記被断熱面の温度より100℃以上高い温度、すなわち大気温と近い温度とすることが可能である。なお、断熱構造の最外層面とは、断熱構造が有する貫通穴付き積層断熱体のうち最も被断熱面から離れて配置された貫通穴付き積層断熱体の被断熱面側と反対側の主面をいう。このような、被断熱面と断熱構造の最外層面との温度差が100℃以上となる断熱構造が求められる用途として、具体的には、極低温物を貯蔵、移送するための液化ガスタンク、液化ガス搬送用パイプ等の表面を被断熱面とする断熱構造が挙げられる。
 以下、図面を参照しながら本発明の断熱構造を説明する。図4、図5A、5B、および図6は本発明の断熱構造の実施形態の一例、別の一例、およびさらに別の一例をそれぞれ示す平面図および断面図である。図4は被断熱体の被断熱面上に積層断熱体の1つが単独で配置された例であり、図5A、5Bは被断熱体の被断熱面上に複数の積層断熱体が互いの端面を隣接するように配置された例であり、図6は被断熱体の被断熱面上に複数の積層断熱体が互いの端面を隣接するように配置され、かつ積層された例である。
 図4は、断熱材層2、真空断熱材層3および保護層5がその順に積層された積層断熱体1であって、その積層方向に貫通穴4を有する積層断熱体1が、被断熱体10の被断熱面10a上に断熱材層2側の主面が被断熱面10aと接するように配置され、貫通穴4に固定具6を通して積層断熱体1と被断熱面10aが一体化された断熱構造を示す。
 なお、被断熱体10の被断熱面10aと積層断熱体1の断熱材層2側の主面は接着されていても、いなくともよい。本発明の断熱構造において積層断熱体1は、固定具6のみで被断熱体10に固定されていることが好ましい。また、それにより、被断熱体10の被断熱面10aと積層断熱体1の断熱材層2側の主面が十分に密着されていることが好ましい。そのような構成とすれば、例えば、被断熱体10の被断熱面10aが面方向に収縮または膨張した際に、被断熱体10と積層断熱体1の界面は固定具6で固定された箇所を除いて面方向に動きやすく、応力による積層断熱体1の破損等を抑制できる。
 図4に示す断熱構造において、積層断熱体1の主面の大きさは、被断熱体10の被断熱面10aと略一致し、被断熱体10は被断熱面10aの全面が積層断熱体1で覆われた構成である。図4に示す断熱構造における積層断熱体1については、図1、2に示す積層断熱体1の真空断熱材層3側の主面に保護層5を有する構成であり、各層の構成およびその積層方法については上記に説明したとおりである。
 図4に示す断熱構造において、積層断熱体1が有する貫通穴4の大きさと固定具6の大きさは略一致している。固定具6の大きさに対して貫通穴4の大きさが大きいと積層断熱体1の内側面と固定具6の間に空間が生じ、断熱性能を下げる可能性がある。よって、固定具6は積層断熱体1が有する貫通穴4を充填するように取り付けられることが好ましい。
 ここで、固定具6としては、一般的に被断熱体の被断熱面に取り付けられる固定具が特に制限なく使用可能である。固定具6として、具体的には、スタッドボルトとナットの組み合わせ等が挙げられる。これら固定具6を構成する材質としては、樹脂、FRP等が挙げられる。ヒートブリッジを回避する観点および強度の観点からFRPが好ましい。
 図5A、5Bに、被断熱体の被断熱面上に複数の貫通穴付き積層断熱体を互いの端面が隣接するように配置してなる断熱構造の一例を示す。図5Aはその一例の平面図であり、図5BはそのB-B線における断面図である。このような複数の貫通穴付き積層断熱体を互いの端面が隣接するように配置してなる断熱構造は、主として、被断熱体における被断熱面の面積が、比較的大きい場合に用いられる断熱構造である。本発明の積層断熱体は、必須の層として有する真空断熱材層の製造限界の大きさにより、その主面の大きさが規定される。特に、被断熱体における被断熱面の面積が、これより大きい場合には、複数の貫通穴付き積層断熱体を用いて、被断熱面の全体を覆うように断熱を行う。
 図5A、5Bに示す断熱構造においては、主面の大きさおよび厚さは略同じであるが、積層構造の異なる2枚の積層断熱体1Aおよび積層断熱体1Bを用いて、被断熱体10の被断熱面10aの全面を断熱する断熱構造を示す。図5A、5Bに示すとおり、積層断熱体1Aおよび積層断熱体1Bは主面が正方形であり、互いの1辺において端面同士が接するようにして、被断熱体10の被断熱面10a上に配置することで被断熱面10aの全面を覆う構成である。すなわち、被断熱面10aの形状は、積層断熱体1Aの主面と積層断熱体1Bの主面を隣接させた長方形の形状である。
 なお、積層断熱体1Aおよび積層断熱体1Bの主面の形状は、被断熱面10aの全面を断熱できるような形状であれば、長方形等の正方形以外の形状としてもよいが、被断熱面10aの寸法変化による収縮量を各積層断熱体においても同等とするため正方形であることが好ましい。
 積層断熱体1Aは、断熱材層21a、断熱材層21bの2層からなる断熱材層21、真空断熱材層3、断熱材層22および保護層5がその順に積層され、その積層方向に貫通穴4を有する積層断熱体であり、断熱材層21a側の主面が被断熱面10aと接するように配置され、貫通穴4に固定具6Aを通して積層断熱体1Aが被断熱面10aに固定されている。
 一方、積層断熱体1Bは、断熱材層21、真空断熱材層3、断熱材層22および保護層5がその順に積層され、その積層方向に貫通穴4を有する積層断熱体であり、断熱材層21側の主面が被断熱面10aと接するように配置され、貫通穴4に固定具6Bを通して積層断熱体1Bが被断熱面10aに固定されている。
 ここで、図5Bに示すとおり、積層断熱体1Aと積層断熱体1Bは、隣接する端面において真空断熱材層3の端面同士が面で接することがないように、それぞれにおいて上記各層の厚さ、特には断熱材層の厚さが調整されて積層された積層断熱体である。このような構成とすることで、例えば、被断熱体10の被断熱面10aが面方向に収縮した際に、変形が困難な真空断熱材層3が、隣接する積層断熱体の断熱材層に押し込まれることが可能となり、応力による積層断熱体1A、1B、および真空断熱材層3の破損等を抑制できる。より、具体的には、積層断熱体1Aが有する真空断熱材層3は、積層断熱体1Bの断熱材層22側に押し込み可能であり、積層断熱体1Bが有する真空断熱材層3は、積層断熱体1Aの断熱材層21b側に押し込み可能である。
 また積層断熱体1Aおよび積層断熱体1Bが有する真空断熱材層3がそれぞれ互いの断熱材層に押し込まれるので、積層断熱体1Aと積層断熱体1Bの隣接する端面において真空断熱材層3の重なりができ、被断熱面10aを真空断熱材層3で隙間なく断熱することができる。なお、真空断熱材層3に加わる押し込み応力を調節するため、積層断熱体1Aと積層断熱体1Bが互いに隣接する端面の間に軟質ポリウレタンフォーム等の応力吸収材を設置してもよい。ただし、応力吸収材の設置量は積層断熱体1Aと積層断熱体1Bの隣接する端面における真空断熱材層3の重なりを妨げない量とする。応力吸収材は断熱材層と同じ材料を用いることができる。
 なお、積層断熱体1Aと積層断熱体1Bの厚さは略一致するように設計されているが、複数の積層断熱体を組み合わせる場合、必ずしも厚さが同一である必要はない。ただし、断熱性を均等にする、さらに別の加工、処理を施す際の作業性等の観点から、本発明の断熱構造において、複数の積層断熱体をその端面同士を隣接させて用いる場合には、用いる複数の積層断熱体の厚さは同一であることが好ましい。
 図5A、5Bに示す断熱構造における被断熱面10aと積層断熱体1Aの断熱材層21a側の主面および積層断熱体1Bの断熱材層21側の主面との関係、固定具6A、固定具6Bおよび固定具6A、固定具6Bと貫通穴4との関係は、上記図4に示す断熱構造におけるのと同様にできる。
 積層断熱体1Aおよび積層断熱体1Bがそれぞれ有する断熱材層21、22、真空断熱材層3、保護層5については、各層の構成およびその積層方法は上記に説明したとおりである。積層断熱体1Aおよび積層断熱体1Bにおける、真空断熱材層3および保護層5は互いに同じであっても異なってもよい。
 図5A、5Bに示す断熱構造において、積層断熱体1Aおよび積層断熱体1Bの各積層断熱体が有する断熱材層は、いずれの断熱材層であっても、それを構成する断熱材料は樹脂フォームであることが好ましい。樹脂フォームとしては、フェノールフォーム、硬質ウレタンフォームおよびスチレンフォームから選ばれる1種以上であることが好ましい。断熱材層を構成する断熱材料を樹脂フォームとすることで、上に説明した積層断熱体1Aが有する真空断熱材層3の積層断熱体1Bの断熱材層22側への押し込みや、積層断熱体1Bが有する真空断熱材層3の積層断熱体1Aの断熱材層21b側への押し込みが容易に行えるようになる。
 なお、図5A、5Bに示す断熱構造において、各積層断熱体が最も被断熱面10a側に位置する断熱材層、すなわち積層断熱体1Aにおいては断熱材層21a、積層断熱体1Bにおいて、断熱材層21は断熱特性、低温強度等の理由からフェノールフォームで構成されることが好ましい。
 図6には、被断熱体の被断熱面上に複数の積層断熱体が互いの端面を隣接するように配置され、かつそれらの積層断熱体上にさらに別の複数の積層断熱体が互いの端面を隣接するように配置、積層された例を示す。
 図6に示す断熱構造においては、図5A、5Bに示すのと同様の、被断熱体10の被断熱面10a上に、主面の形状が正方形であり大きさが略同じであるが、積層構造および厚さの異なる2枚の積層断熱体1Aおよび積層断熱体1Bが、互いの1辺において端面同士が接するようにして、被断熱体10の被断熱面10a上に配置されて被断熱面10aの全面を覆う構成がとられている。図6に示す断熱構造においては、積層断熱体1Aおよび積層断熱体1Bの上に、積層断熱体1Aおよび積層断熱体1Bと主面の形状、大きさが略同じであるが、積層構造および厚さの異なる2枚の積層断熱体1Cおよび積層断熱体1Dがさらに積層された構成である。図6に示す断熱構造においては、積層断熱体1A~積層断熱体1Dが上記のように配置され、全体として同じ厚さに積層断熱体が積み重なっている。
 積層断熱体1A、1B、1C、1Dは、いずれも断熱材層21、真空断熱材層3、断熱材層22および保護層5がその順に積層され、その積層方向に貫通穴を有する積層断熱体である。積層断熱体1A、1B、1C、1Dにおいて、特に、断熱材層21および断熱材層22の厚さがそれぞれ異なることで、積層断熱体1A、1B、1C、1Dはそれぞれ異なる積層断熱体である。
 図6に示す断熱構造においては、積層断熱体1A、1Bは断熱材層21側の主面が被断熱面10aと接するように配置され、積層断熱体1A、1Bがそれぞれ有する貫通穴に固定具6A、6Bを通して被断熱面10aに固定されている。ここで、図6に示すとおり、積層断熱体1Aと積層断熱体1Bは、隣接する端面同士が接するように配置されるが、真空断熱材層3の端面同士が面で接することがないように、それぞれにおいて上記各層の厚さ、特には断熱材層21および断熱材層22の厚さが調整されて積層された積層断熱体である。
 図6に示す断熱構造における積層断熱体1A、1Bは、図5A、5Bに示す断熱構造における積層断熱体1Bと断熱材層21および断熱材層22の厚さが異なる以外は、同様にできる。図6に示す断熱構造においてはこのような積層断熱体1A、1Bの上にそれぞれ積層断熱体1C、1Dが積層されている。なお、積層断熱体1Cと積層断熱体1Dは、隣接する端面同士が接するように配置されるが、真空断熱材層3の端面同士が面で接することがないように、それぞれにおいて上記各層の厚さ、特には断熱材層21および断熱材層22の厚さが調整されて積層された積層断熱体である。
 また、図6に示す断熱構造においては、積層断熱体1C、1Dは断熱材層21側の主面がそれぞれ積層断熱体1A、1Bの保護層5と接するように配置され、積層断熱体1C、1Dがそれぞれ有する貫通穴に固定具6C、6Dを通して積層断熱体1A、1Bの保護層5に固定されている。固定具6C、6Dによる積層断熱体1A、1Bの保護層5上への積層断熱体1C、1Dの固定は、例えば、以下の方法で行うことができる。積層断熱体1A、1Bの被断熱面10aへの固定に際して、積層断熱体1A、1Bが有する保護層5の下に固定具6C、6Dを仕込み、積層断熱体1C、1Dの有する貫通穴に固定具6C、6Dを通して積層断熱体1A、1Bの保護層5上に積層断熱体1C、1Dを固定するなどのように行われるが、これに限定されない。
 図6に示す断熱構造における被断熱面10aと積層断熱体1A、1Bの断熱材層21側の主面との関係、固定具6A、固定具6Bおよび固定具6A、固定具6Bと貫通穴4との関係は、上記図4に示す断熱構造におけるのと同様にできる。なお、積層断熱体1Aが固定される固定具6Aと、積層断熱体1A上に積層断熱体1Cが固定される固定具6Cとはヒートブリッジを回避する観点から接することがないように設けられる。同様に、積層断熱体1Bが固定される固定具6Bと、積層断熱体1B上に積層断熱体1Dが固定される固定具6Dとはヒートブリッジを回避する観点から接することがないように設けられる。
 積層断熱体1A、1B、1C、1Dがそれぞれ有する断熱材層21、22、真空断熱材層3、保護層5については、各層の構成およびその積層方法は上記に説明したとおりである。積層断熱体1A、1B、1C、1Dにおける、真空断熱材層3および保護層5は互いに同じであっても異なってもよい。
 図6に示す断熱構造は、上記の構成とすることで、例えば、被断熱体10の被断熱面10aが面方向に収縮または膨張した際に、変形が困難な真空断熱材層3が、隣接する積層断熱体の断熱材層に押し込まれることが可能となり、応力による積層断熱体1A、1B、1C、1Dの破損等を抑制できる。より、具体的には、積層断熱体1Aが有する真空断熱材層3は、積層断熱体1Bの断熱材層22側に押し込み可能であり、積層断熱体1Bが有する真空断熱材層3は、積層断熱体1Aの断熱材層21側に押し込み可能である。同様に、積層断熱体1Cが有する真空断熱材層3は、積層断熱体1Dの断熱材層22側に押し込み可能であり、積層断熱体1Dが有する真空断熱材層3は、積層断熱体1Cの断熱材層21側に押し込み可能である。
 図5A、図5Bおよび図6に示す複数の積層断熱体が被断熱体の被断熱面に配置される断熱構造は、上記2枚または4枚の積層断熱体を上記のように配置した構成を単位として、この単位を隣接させながら2次元方向に繰り返して敷設することで、連続した広い面積の被断熱面の断熱にも適用できる。この場合、被断熱面は平面であっても、曲面であってもよく、液化ガスタンクの外壁面ように連続面であってもよい。
 以上、図1~図3に示す積層断熱体1を例にして本発明の実施の形態の積層断熱体を、図4~図6に示す断熱構造を例にして本発明の実施の形態の断熱構造を説明したが、本発明の積層断熱体およびこれを用いた断熱構造においては、本発明の趣旨に反しない限度において各構成部材の形状や材料等の設計を適宜変更できる。また、必要に応じて上に説明した以外の構成部材を設けてもよい。
1,1A~1D…積層断熱体、2…断熱材層、3…真空断熱材層、4…貫通穴、5…保護層、6…固定具、31…熱溶着層、32…ガスバリア性フィルム、33…外被材、35…芯材、36…置換材、Y…シール領域、10…被断熱体、10a…被断熱面。

Claims (13)

  1.  芯材をガスバリア性の外被材で覆い減圧密封した真空断熱材層と、断熱材料からなる断熱材層とが互いに接するように積層された積層断熱体であって、前記積層断熱体は、前記真空断熱材層と前記断熱材層を積層方向に貫通する貫通穴を有することを特徴とする貫通穴付き積層断熱体。
  2.  前記真空断熱材層は前記断熱材層に挟持された請求項1に記載の貫通穴付き積層断熱体。
  3.  前記真空断熱材層と前記断熱材層とをそれぞれ2以上有する請求項1または2に記載の貫通穴付き積層断熱体。
  4.  前記芯材を構成する材料が、グラスウール、樹脂繊維、無機粉体、有機粉体、および粉体と繊維の複合体から選ばれる1種以上である、請求項1~3のいずれか1項に記載の貫通穴付き積層断熱体。
  5.  被断熱面上に、請求項1~4のいずれか1項に記載の貫通穴付き積層断熱体を前記断熱材層が前記被断熱面と接するように配置し、前記貫通穴に固定具を通して、前記被断熱面と前記貫通穴付き積層断熱体とを一体化したことを特徴とする断熱構造。
  6.  前記貫通穴付き積層断熱体は前記被断熱面と反対側の最外層として保護層を有する請求項5記載の断熱構造。
  7.  前記被断熱面上に複数の前記貫通穴付き積層断熱体を互いの端面が隣接するように配置してなる請求項5または6記載の断熱構造。
  8.  前記複数の前記貫通穴付き積層断熱体の、前記隣接する端面において前記真空断熱材層の端面同士は面で接することがない請求項7に記載の断熱構造。
  9.  前記断熱材層を構成する断熱材料が、樹脂フォームである請求項7または8に記載の断熱構造。
  10.  前記樹脂フォームがフェノールフォーム、硬質ウレタンフォームおよびスチレンフォームから選ばれる1種以上である、請求項9に記載の断熱構造。
  11.  前記複数の前記貫通穴付き積層断熱体の厚みが略同一である、請求項7~10のいずれか一項に記載の断熱構造。
  12.  前記断熱構造において、隣接する前記貫通穴付き積層断熱体の端面の間に応力吸収材が配置されてなる、請求項7~11のいずれか一項に記載の断熱構造。
  13.  前記被断熱面と前記断熱構造の最外層面との温度差が100℃以上となる、請求項5~12のいずれか1項に記載の断熱構造。
PCT/JP2016/064685 2015-05-22 2016-05-18 貫通穴付き積層断熱体および断熱構造 WO2016190176A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017520642A JPWO2016190176A1 (ja) 2015-05-22 2016-05-18 貫通穴付き積層断熱体および断熱構造

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-104467 2015-05-22
JP2015104467 2015-05-22

Publications (1)

Publication Number Publication Date
WO2016190176A1 true WO2016190176A1 (ja) 2016-12-01

Family

ID=57393248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064685 WO2016190176A1 (ja) 2015-05-22 2016-05-18 貫通穴付き積層断熱体および断熱構造

Country Status (2)

Country Link
JP (1) JPWO2016190176A1 (ja)
WO (1) WO2016190176A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167666A1 (ja) * 2018-02-27 2019-09-06 パナソニックIpマネジメント株式会社 真空断熱材、それを用いた断熱構造体、ならびに、それらを用いた家電製品、住宅壁および輸送機器
CN113785431A (zh) * 2021-02-05 2021-12-10 气凝胶研发私人有限公司 用于电池的隔热装置
CN115809515A (zh) * 2023-02-09 2023-03-17 中国空气动力研究与发展中心空天技术研究所 一种高速飞行器多层隔热结构优化设计方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51594B2 (ja) * 1971-05-31 1976-01-09
JPH11270778A (ja) * 1998-03-20 1999-10-05 Isuzu Motors Ltd 断熱部材、および断熱壁構造
JP2000356296A (ja) * 1999-04-12 2000-12-26 Isuzu Motors Ltd 断熱壁部材、およびその製造方法
JP2002081595A (ja) * 2000-06-19 2002-03-22 Isuzu Motors Ltd 断熱パネル
JP2004340197A (ja) * 2003-05-14 2004-12-02 Inoac Corp 貫通孔を有する真空断熱材
WO2015037247A1 (ja) * 2013-09-12 2015-03-19 パナソニックIpマネジメント株式会社 真空断熱材を備える断熱容器
WO2016027460A1 (ja) * 2014-08-21 2016-02-25 パナソニックIpマネジメント株式会社 断熱容器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51594B2 (ja) * 1971-05-31 1976-01-09
JPH11270778A (ja) * 1998-03-20 1999-10-05 Isuzu Motors Ltd 断熱部材、および断熱壁構造
JP2000356296A (ja) * 1999-04-12 2000-12-26 Isuzu Motors Ltd 断熱壁部材、およびその製造方法
JP2002081595A (ja) * 2000-06-19 2002-03-22 Isuzu Motors Ltd 断熱パネル
JP2004340197A (ja) * 2003-05-14 2004-12-02 Inoac Corp 貫通孔を有する真空断熱材
WO2015037247A1 (ja) * 2013-09-12 2015-03-19 パナソニックIpマネジメント株式会社 真空断熱材を備える断熱容器
WO2016027460A1 (ja) * 2014-08-21 2016-02-25 パナソニックIpマネジメント株式会社 断熱容器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167666A1 (ja) * 2018-02-27 2019-09-06 パナソニックIpマネジメント株式会社 真空断熱材、それを用いた断熱構造体、ならびに、それらを用いた家電製品、住宅壁および輸送機器
JPWO2019167666A1 (ja) * 2018-02-27 2020-12-10 パナソニックIpマネジメント株式会社 真空断熱材、それを用いた断熱構造体、ならびに、それらを用いた家電製品、住宅壁および輸送機器
CN113785431A (zh) * 2021-02-05 2021-12-10 气凝胶研发私人有限公司 用于电池的隔热装置
CN113785431B (zh) * 2021-02-05 2024-02-06 气凝胶研发私人有限公司 用于电池的隔热装置
CN115809515A (zh) * 2023-02-09 2023-03-17 中国空气动力研究与发展中心空天技术研究所 一种高速飞行器多层隔热结构优化设计方法

Also Published As

Publication number Publication date
JPWO2016190176A1 (ja) 2018-03-08

Similar Documents

Publication Publication Date Title
JP6390009B2 (ja) 断熱容器
US9404663B2 (en) High temperature vacuum insulation panel
KR20120024665A (ko) 진공 단열재를 구비한 냉장고
WO2006077599A2 (en) Evacuated thermal insulation panel
JP2017172724A (ja) 断熱パネルおよび断熱構造
WO2016190176A1 (ja) 貫通穴付き積層断熱体および断熱構造
WO2016084763A1 (ja) 真空断熱材およびその製造方法
US20200407149A1 (en) Thermally Insulated Air Cargo Container
JP2007147277A (ja) 貯湯タンク
JP5907204B2 (ja) 真空断熱材の製造方法
CN111295327A (zh) 热绝缘结构材料以及使用其的低温和超低温液化气载体
JP2011089740A (ja) 袋体、および真空断熱材
JP2010138956A (ja) 真空断熱材
JP2007138976A (ja) 真空断熱材及びその製造方法
JP6589148B2 (ja) 真空断熱材を用いた断熱構造体、および、これを有する断熱容器
WO2018230343A1 (ja) 断熱シートおよびこれを用いた積層断熱シート
JP2011196412A (ja) 低温タンクの防熱構造および防熱施工方法
WO2016157931A1 (ja) 真空断熱材用外包材、真空断熱材、および真空断熱材付き機器
JP4878891B2 (ja) 屋根用断熱パネル及び屋根構造
JP6422713B2 (ja) 袋体及び当該袋体を用いた真空断熱材
JP2011208763A (ja) 真空断熱材
JP2009138918A (ja) 断熱部材
JP4617752B2 (ja) 真空断熱材の製造方法
JP2010024673A (ja) 複合断熱材
JP2012149729A (ja) 真空断熱材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799882

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017520642

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799882

Country of ref document: EP

Kind code of ref document: A1