WO2016190150A1 - 厚鋼板及び溶接継手 - Google Patents
厚鋼板及び溶接継手 Download PDFInfo
- Publication number
- WO2016190150A1 WO2016190150A1 PCT/JP2016/064444 JP2016064444W WO2016190150A1 WO 2016190150 A1 WO2016190150 A1 WO 2016190150A1 JP 2016064444 W JP2016064444 W JP 2016064444W WO 2016190150 A1 WO2016190150 A1 WO 2016190150A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- amount
- steel plate
- thick steel
- rem
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
Definitions
- the present invention relates to a thick steel plate and a welded joint, and more particularly to a thick steel plate suitable as a material steel plate for energy structural materials such as for line pipes and marine structures, and a welded joint using the thick steel plate. is there.
- This steel material for energy does not perform its function, and once an accident occurs, the damage is enormous, so high safety is required.
- One of the energy steels is steel for line pipes, which is used for the transportation of oil and natural gas.
- This steel has not only characteristics such as strength and toughness as a structural material, but also the inside of the pipe. Resistance to passing oil and natural gas is required.
- oil and gas wells of oil and natural gas have deteriorated in quality of oil and gas produced, and a lot of H 2 S has been mixed.
- hydrogen-induced cracking resistance There has been a strong demand for sour resistance typified by HIC resistance.
- line pipe steel is required to be thinned from the viewpoint of cost reduction during transportation and construction.
- it is necessary to improve the strength of the steel material, but the improvement of the steel material strength has the disadvantage of deteriorating the hydrogen-induced cracking resistance.
- T-cross welds that receive two thermal histories, seam welding when processing thick steel plates into pipes, that is, seam welding, and circumferential welding when joining pipes, have a complex thermal history of rapid heating and rapid cooling. Therefore, in the weld heat affected zone: HAZ, the strength, that is, the hardness increases, and cracks called sulfide stress corrosion cracking are likely to occur.
- the sulfide stress corrosion cracking is also referred to as SSCC: sulfide stress corrosion cracking. Therefore, in order to realize high-strength line pipe steel, the SSCC resistance of the T-cross welded part is also one of the problems.
- Patent Document 1 discloses an API that reduces the block-like bainite structure, which is considered to have poor HIC resistance, and develops a uniform upper bainite or acicular ferrite structure, while ensuring the HIC resistance of the base material.
- a technology for realizing a standard X70 grade high strength thick steel sheet is described.
- Patent Document 2 describes a technology that can achieve high strength of 56 kgf / mm 2 or more in tensile strength by utilizing precipitation strengthening by fine Nb and V carbonitrides.
- this document does not describe the HIC resistance of the base material, and only the seam-welded HAZ is considered for the SSCC resistance.
- the test conditions described in the examples are not sufficiently severe so that the immersion time in a solution simulating a sour environment, that is, an environment containing a large amount of H 2 S, is 21 days.
- Patent Document 3 describes a component system that suppresses an increase in hardness, which is supposed to deteriorate the SSCC resistance of a T-cross weld.
- the technology described in this document does not evaluate SSCC resistance itself, and does not describe the HIC resistance of the base material.
- the present invention has been made as a solution to the above-mentioned conventional problems, and an object thereof is to provide a thick steel plate excellent in sour resistance, particularly HIC resistance. Another object of the present invention is to provide a thick steel plate capable of realizing a welded joint excellent in SSCC resistance of a T-cross welded part and a welded joint excellent in SSCC resistance of a T-cross welded part.
- the thick steel plate of the present invention is in mass%, C: 0.01 to 0.12%, Si: 0.02 to 0.50%, Mn: 0.6 to 2.0%, P: more than 0% 0 0.03% or less, S: more than 0% to 0.004% or less, Al: 0.010 to 0.080%, Cr: 0.10 to 1.50%, Nb: 0.002 to 0.050%, REM : 0.0002-0.05%, Zr: 0.0003-0.01%, Ca: 0.0003-0.006%, N: more than 0% and not more than 0.010%, O: more than 0%.
- the REM content is 5 to 50%
- the Al content is 3 to 30%
- the Ca content is 5 to 60%.
- the amount of S in the inclusions is preferably more than 0% and 20% or less.
- the thick steel plate of the present invention preferably has [Cr] / [Nb] of 10 or more.
- [] indicates mass%.
- the thick steel plate of the present invention is further in terms of mass%, Mg: more than 0% and 0.005% or less, Ti: 0.003 to 0.030%, Ni: 0.01 to 1.50%, Cu: One or more of 0.01 to 1.50%, Mo: 0.01 to 1.50%, V: 0.003 to 0.08%, and B: 0.0002 to 0.0032% It is preferable that [Cr] + [Mo] + [Ni] + [Cu] is 2.1 or less. However, in the above formula, [] indicates mass%.
- the thick steel plate of the present invention contains, by mass%, Ni: 0.01 to 1.50%, and 0.25 ⁇ [Cr] + [Ni] is 0.10 to 1.50. preferable. However, in the above formula, [] indicates mass%.
- the welded joint of the present invention is characterized by including any of the above-described thick steel plates and peripheral weld metals.
- the immersion potential difference ⁇ E between the thick steel plate and the circumferential weld metal which is obtained by the following formula, is preferably 25 mV or less.
- ⁇ E Immersion potential after 1 hour of circumferential weld metal (mV)
- mV thickness of the thick steel plate
- a thick steel plate having excellent sour resistance can be provided.
- the welded joint excellent in the SSCC resistance of a T cross weld part can be provided using the thick steel plate of this invention.
- the present inventors have earnestly studied from the viewpoint of inclusion control in steel, in addition to the composition of steel, which is fundamental for exhibiting the characteristics of thick steel plates. , Repeated examination. As a result, it was found that a thick steel plate excellent in sour resistance can be obtained by maintaining coarse inclusions having a width of 1 ⁇ m or more in a specific component composition, and the present invention has been completed.
- the inclusions in the present invention mean coarse precipitate grains generated in molten steel or at the time of solidification, and specifically, particles due to oxides, carbides, sulfides, nitrides, etc. of alloy components in steel. means.
- the intergranular bainite transformation is promoted by dispersing a large number of inclusions that are the starting points of transformation, and the [Cr] / [Nb] is made 10 or more, so that the grain boundary It has been confirmed that Nb segregation to the grain boundaries that increase the nucleation driving force in the steel is reduced, bainite production from the grain boundaries is promoted, and as a result, the amount of martensite produced in the vicinity of the weld metal can be reduced.
- [] indicates mass%.
- the strength of the base metal can be improved by adding Cr and Nb to ensure hardenability.
- % which is a unit for displaying the composition means “% by mass”.
- C Component composition of thick steel plate
- C is an indispensable element for ensuring the strength of the thick steel plate and needs to be contained in an amount of 0.01% or more.
- it is 0.02% or more, More preferably, it is 0.03% or more.
- the C amount needs to be 0.12% or less.
- it is 0.10% or less, More preferably, it is 0.08% or less.
- Si 0.02 to 0.50%
- Si is effective for deoxidation.
- the Si content is set to 0.02% or more.
- it is 0.04% or more, More preferably, it is 0.06% or more.
- the amount of Si needs to be suppressed to 0.50% or less.
- it is 0.45% or less, More preferably, it is 0.35% or less.
- Mn is an element indispensable for securing the strength of the thick steel plate, and it is necessary to contain 0.6% or more. Preferably it is 0.8% or more, More preferably, it is 1.0% or more. However, if the amount of Mn is excessive, MnS is generated and the HIC resistance deteriorates, so the upper limit of the amount of Mn is set to 2.0%. Preferably it is 1.9% or less, more preferably 1.8% or less.
- P is an element inevitably contained in the steel material, and if its content exceeds 0.030%, it adversely affects HIC resistance and SSCC resistance. Therefore, in the present invention, the amount of P is suppressed to 0.030% or less. Preferably it is 0.020% or less, More preferably, it is 0.010% or less.
- the upper limit of the amount of S is made 0.004%.
- it is 0.003% or less, More preferably, it is 0.0025% or less, More preferably, it is 0.0020% or less.
- Al 0.010 to 0.080%
- Al is effective in reducing voids with the steel matrix by reducing the thermal expansion coefficient of inclusions and improving the HIC resistance.
- the inclusion containing an appropriate amount of Al promotes the formation of intragranular bainite, good SSCC resistance can be obtained.
- it is necessary to contain at least 0.010% or more.
- the amount of Al is preferably 0.020% or more, and more preferably 0.025% or more.
- the Al amount needs to be 0.080% or less.
- the amount of Al is preferably 0.060% or less, more preferably 0.050% or less.
- Cr 0.10 to 1.50%
- Cr is an element indispensable for ensuring the strength, and contributes to the improvement of SSCC resistance by suppressing soft ferrite in the T-cross weld. In order to exhibit these effects, it is necessary to contain at least 0.10% or more.
- the amount of Cr is preferably 0.15% or more, more preferably 0.17% or more, and further preferably 0.20% or more. However, if the amount of Cr is excessive, the hard martensite of the T-cross welded portion is increased and the SSCC resistance is lowered, so the content is made 1.50% or less.
- the amount of Cr is preferably 1.00% or less, and more preferably 0.80% or less.
- Nb is an element indispensable for ensuring strength, and also contributes to improvement of SSCC resistance by suppressing soft ferrite in the T-cross weld. In order to exhibit these effects, it is necessary to contain at least 0.002% or more.
- the Nb amount is preferably 0.005% or more, and more preferably 0.010% or more. However, if the amount of Nb is excessive, the hard martensite of the T-cross welded portion is increased and the SSCC resistance is lowered, so the content is made 0.050% or less.
- the amount of Nb is preferably 0.033% or less, and more preferably 0.030% or less.
- REM 0.0002 to 0.05%
- REM rare earth element
- the amount of REM is preferably 0.0005% or more, more preferably 0.0010% or more.
- the upper limit of the REM amount is set to 0.05%.
- the content is preferably 0.03% or less, more preferably 0.01% or less, and still more preferably 0.005% or less.
- REM means 15 elements from La to Lu in the periodic table, that is, lanthanoid elements, and Sc and Y.
- Zr 0.0003 to 0.01%
- Zr reduces voids with the steel matrix by reducing the thermal expansion coefficient of inclusions, and improves HIC resistance. Moreover, since the inclusion containing an appropriate amount of Zr promotes the formation of intragranular bainite, good SSCC resistance can be obtained. In order to exert these effects, it is necessary to contain 0.0003% or more of Zr.
- the amount of Zr is preferably 0.0005% or more, more preferably 0.0010% or more.
- the upper limit of the Zr amount is set to 0.01%.
- the amount of Zr is preferably 0.007% or less, more preferably 0.005% or less.
- Ca 0.0003 to 0.006%
- Ca improves the SSCC resistance by forming CaS, fixing S, and reducing the amount of MnS produced. Moreover, since the inclusion containing an appropriate amount of Ca promotes the formation of intragranular bainite, good SSCC resistance can be obtained. In order to exert these effects, it is necessary to contain 0.0003% or more of Ca.
- the Ca content is preferably 0.0005% or more, more preferably 0.0010% or more.
- the upper limit of the Ca content is set to 0.006%.
- the amount of Ca is preferably 0.005% or less, and more preferably 0.004% or less.
- N is an unavoidable impurity, but segregates at the grain boundary to lower the grain boundary strength and degrade the SSCC resistance. Therefore, the upper limit of the N amount is 0.010%.
- the N amount is preferably 0.008% or less, and more preferably 0.006% or less.
- O oxygen
- oxygen is an element that forms inclusions, and excessive addition generates a large amount of coarse oxide, which causes hydrogen-induced cracking. Therefore, the upper limit of the O amount is set to 0.0040%.
- the amount of O is preferably 0.0030% or less, and more preferably 0.0020% or less.
- the thick steel plate of the present invention preferably satisfies the above component composition and has [Cr] / [Nb] of 10 or more.
- [] indicates mass%.
- Nb segregation to the grain boundary that increases the nucleation driving force at the grain boundary is reduced in the T-cross welded portion, and bainite production from the grain boundary is promoted.
- [Cr] / [Nb] is preferably 10 or more. More preferably, it is 12 or more, More preferably, it is 15 or more.
- the component composition of the steel material of the steel plate of the present invention is as described above, and the balance is iron and inevitable impurities. Further, in addition to the above elements, by adding at least one or more selected from the group consisting of Mg, Ti, Ni, Cu, Mo, V and B in the following amounts, HIC resistance and resistance The SSCC property can be improved. Hereinafter, these elements will be described.
- Mg has the effect of improving the SSCC resistance of the base material by forming MgS and finely dispersing sulfides.
- the upper limit of Mg content is preferably 0.005%. More preferably, it is 0.004% or less, More preferably, it is 0.003% or less.
- Ti is an element that contributes to improving the strength of the thick steel plate by precipitation strengthening. In order to exhibit this effect, it is preferable to contain 0.003% or more. More preferably it is 0.004% or more, and still more preferably 0.005% or more. On the other hand, if the Ti content is excessive, the hard martensite in the T-cross welded portion is increased and the SSCC resistance is lowered. Therefore, the content is preferably 0.030% or less. More preferably, it is 0.025% or less, More preferably, it is 0.020% or less.
- Ni is an element that contributes to improving the strength of the thick steel plate. In order to exhibit this effect, it is preferable to contain 0.01% or more. More preferably, it is 0.05% or more, More preferably, it is 0.10% or more. On the other hand, when the Ni content is excessive, the hard martensite in the T-cross welded portion is increased and the SSCC resistance is lowered. Therefore, the Ni content is preferably 1.50% or less. More preferably, it is 1.00% or less, More preferably, it is 0.50% or less.
- Cu is an element that contributes to improving the strength of the thick steel plate. In order to exhibit this effect, it is preferable to contain 0.01% or more. More preferably, it is 0.05% or more, More preferably, it is 0.10% or more. On the other hand, if the Cu content is excessive, it causes an increase in hard martensite in the T-cross welded portion and lowers the SSCC resistance, so it is preferably made 1.50% or less. More preferably, it is 1.00% or less, More preferably, it is 0.50% or less.
- Mo is an element that contributes to improving the strength of the thick steel plate. In order to exhibit this effect, it is preferable to contain 0.01% or more. More preferably, it is 0.05% or more, More preferably, it is 0.10% or more. On the other hand, if the Mo content is excessive, hard martensite in the T-cross welded portion is increased and SSCC resistance is lowered. Therefore, the Mo content is preferably 1.50% or less. More preferably, it is 1.00% or less, More preferably, it is 0.50% or less.
- V is an element that contributes to improving the strength of the thick steel plate. In order to exhibit this effect, it is preferable to contain 0.003% or more. More preferably it is 0.005% or more, and still more preferably 0.010% or more. On the other hand, if the V content is excessive, the hard martensite in the T-cross welded portion is increased and the SSCC resistance is lowered. Therefore, the V content is preferably 0.08% or less. More preferably, it is 0.07% or less, More preferably, it is 0.05% or less.
- B is an element that contributes to improving the strength of the thick steel plate. In order to exhibit this effect, it is preferable to contain 0.0002% or more. More preferably, it is 0.0005% or more, More preferably, it is 0.0010% or more. On the other hand, if the B content is excessive, the hard martensite in the T-cross welded portion is increased and the SSCC resistance is lowered, so 0.0032% or less is preferable. More preferably, it is 0.0030% or less, More preferably, it is 0.0025% or less.
- [[Cr] + [Mo] + [Ni] + [Cu] is 2.1 or less]
- [Cr] + [Mo] + [Ni] + [Cu] is preferably 2.1 or less after satisfying the above component composition.
- [] indicates mass%.
- [Cr] + [Mo] + [Ni] + [Cu] is 2.1 or less. More preferably, it is 1.9 or less, More preferably, it is 1.7 or less.
- the immersion potential difference ⁇ E after 1 hour when immersed in the solution of the thick steel plate and the peripheral weld metal, obtained by the following formula is 25 mV or less. More preferably, it is 20 mV or less, More preferably, it is 15 mV or less.
- ⁇ E Immersion potential after 1 hour of circumferential weld metal (mV)
- mV circumferential weld metal
- mV thick steel plate
- the electrode potential that appears when a metal is immersed in a solution may be defined as a corrosion potential or a hybrid potential. In the present invention, this is referred to as an “immersion potential”.
- the thick steel plate of the present invention satisfies the above-described component composition, particularly the condition that the Ni content is 0.10 to 1.50%, and 0.25 ⁇ [Cr] + [Ni] is 0.10. It is preferably ⁇ 1.50.
- [] indicates mass%. The addition of these elements contributes to the improvement of the SSCC resistance of the T-cross welded portion by improving the potential of the steel plate as a base material and suppressing hydrogen intrusion at the T-cross welded portion due to the dissimilar metal contact effect.
- the value obtained from 0.25 ⁇ [Cr] + [Ni] is preferably 0.10 or more, more preferably 0.15 or more, and further preferably 0.20 or more.
- the value obtained from 0.25 ⁇ [Cr] + [Ni] is excessive, the potential of the steel plate is significantly increased from the potential of the weld metal, and the selective corrosion of the weld metal by galvanic corrosion proceeds. SSCC resistance decreases. Therefore, the upper limit of the value obtained from 0.25 ⁇ [Cr] + [Ni] is set to 1.50. The upper limit is more preferably 1.00 or less, and still more preferably 0.70 or less.
- the metal used for circumferential welding preferably has the following component composition in order to ensure the strength and toughness of the weld metal and improve corrosion resistance. That is, by mass, C: 0.02 to 0.10%, Si: 0.10 to 0.60%, Mn: 0.90 to 2.50%, Ni: 0.20 to 1.00% It is preferable to contain. In addition to the above components, P: 0.015% or less, S: 0.010% or less, Cu: 1.0% or less, Mo: 1.0% or less, Nb: 0.5% or less, V: It is allowable to contain 0.3% or less, Ti: 0.05% or less, and Al: 0.1% or less. Components other than these are desirably iron and inevitable impurities. Hereinafter, the reason for limiting the component composition of the weld metal will be described.
- C is an element necessary for ensuring the strength of the weld metal.
- the C content is less than 0.02%, a predetermined strength cannot be obtained.
- the C content is excessive, coarsening of the grain boundary carbides causes a reduction in toughness, so the content is made 0.10% or less.
- Si 0.10 to 0.60%
- Si is an element necessary for ensuring the strength of the weld metal.
- the Si content is less than 0.10%, a predetermined strength cannot be obtained.
- the Si content is excessive, it causes a decrease in toughness, so the content is made 0.60% or less.
- Mn is an element necessary for ensuring the balance between the strength and toughness of the weld metal. In order to obtain such an effect, the Mn content needs to be 0.90% or more. However, if the Mn content is too large, segregation is promoted and the toughness is reduced, so it is necessary to make it 2.50% or less.
- Ni 0.20 to 1.00%
- Ni increases the electric potential of the weld metal and exhibits an effect of improving the corrosion resistance. It is also an element effective in enhancing hardenability to ensure strength and improving low temperature toughness. In order to obtain such an effect, the Ni content needs to be 0.20% or more. On the other hand, if the Ni content is excessive, hot cracking may occur, and the potential of the weld metal is excessively increased, causing selective corrosion of the base metal. 00% or less.
- Zr in inclusions having a width of 1 ⁇ m or more exists mainly as an oxide. Since this Zr oxide has a smaller coefficient of thermal expansion than steel, if the amount of Zr in the inclusion is ensured, voids with the surrounding steel matrix can be reduced and the HIC resistance is improved. Moreover, since the oxide containing an appropriate amount of Zr promotes the formation of intragranular bainite, it can obtain good SSCC resistance. In order to exert such an effect, the amount of Zr in the inclusion is set to 1 to 40%. If the amount of Zr is less than 1% or more than 40%, the HIC resistance of the base material or the SSCC resistance of the T-cross weld becomes insufficient.
- REM in inclusions having a width of 1 ⁇ m or more exists as oxides or oxysulfides.
- REM oxide has a smaller coefficient of thermal expansion than steel. Therefore, if the amount of REM in the inclusion is ensured, voids with the surrounding steel matrix can be reduced, and HIC resistance is improved.
- S can be fixed and the production
- these REM inclusions promote the formation of intragranular bainite, good SSCC resistance can be obtained.
- the amount of REM in the inclusion is set to 5 to 50%.
- the REM amount is less than 5% or more than 50%, the HIC resistance of the base material or the SSCC resistance of the T-cross welded portion becomes insufficient.
- Al content is 3-30%
- Al in inclusions having a width of 1 ⁇ m or more exists mainly as Al oxide. Since this Al oxide has a smaller coefficient of thermal expansion than steel, if the amount of Zr in the inclusion is ensured, voids with the surrounding steel matrix can be reduced, which is effective in improving the HIC resistance. Moreover, since the oxide containing an appropriate amount of Al promotes the formation of intragranular bainite, good SSCC resistance can be obtained. In order to exert such an effect, the amount of Al in the inclusion is made 3 to 30%. When the Al content is less than 3% or more than 30%, the HIC resistance of the base material or the SSCC resistance of the T-cross welded portion becomes insufficient.
- Ca content is 5-60%
- Ca in inclusions having a width of 1 ⁇ m or more contributes to the refinement of the steel structure in the T-cross weld during welding and promotes the formation of an intragranular bainite structure starting from the inclusions.
- the steel structure of the T-cross welded portion after welding becomes fine, and good SSCC resistance can be obtained.
- the Ca content in the inclusion is set to 5 to 60%. If the Ca content is less than 5% or exceeds 60%, the SSCC resistance of the T-cross weld cannot be improved.
- the amount of S in the inclusions having a width of 1 ⁇ m or more is limited to the above-described component composition with respect to the content of S in the steel sheet and the content of alloy components such as Zr and REM for refining and dispersing sulfide inclusions. Furthermore, it can be reduced by controlling the inclusion composition as described above. If the component composition and the inclusion composition are not properly controlled, the amount of S in the inclusion exceeds 20%, and the coarse sulfide becomes excessive. As a result, the HIC resistance or T-cross of the base material is increased. The SSCC resistance of the welded portion becomes insufficient.
- the total number of inclusions is not particularly limited as long as the effects of the present invention are not significantly impaired. However, it is preferable that the inclusions are dispersed in an amount of about 500 to 5,000 / cm 2 in the steel sheet. If it is less than 500 pieces / cm 2 , the starting point of intragranular bainite is insufficient, and it is considered that sufficient microstructure refining action cannot be obtained and SSCC resistance is lowered. On the other hand, if it exceeds 5000 / cm 2 , it will act as a starting point of destruction, and both HIC resistance and SSCC resistance may deteriorate.
- molten steel treatment process In obtaining the thick steel sheet of the present invention having the above structure, in the molten steel treatment step, (A) a desulfurization step in which S is 0.004% or less using slag satisfying Fe: 0.1 to 10%, (B) molten steel Deoxygenation step in which the dissolved oxygen concentration Of of the molten steel is 10 or less in the ratio of S to the molten steel, (C) Al, Zr, REM and Ca are added in the order of Al, Zr, REM and Ca.
- (A) Desulfurization process In order to ensure HIC resistance, it is important to reduce coarse sulfides, and to achieve this, it is important to control the amount of S.
- slag satisfying Fe For molten steel melted in a converter or electric furnace so that the molten steel temperature becomes 1550 ° C. or higher, slag satisfying Fe: 0.1 to 10% is used, and S is made 0.004% or lower.
- the Fe concentration in the slag is set to 0.1% or more.
- the Fe concentration in the slag is preferably 0.5% or more, more preferably 1.0% or more.
- the Fe concentration in the slag exceeds 10%, a large amount of oxide is generated, and the oxide becomes a starting point of hydrogen-induced cracking. Therefore, the Fe concentration in the slag is set to 10% or less. Preferably it is 8% or less, More preferably, it is 5% or less.
- the Fe concentration in the slag is set to 10% or less. Preferably it is 8% or less, More preferably, it is 5% or less.
- Ca when Ca is added, by sufficiently performing desulfurization with slag to suppress S to 0.004% or less, a large amount of CaS is formed when Ca is added after REM addition, and the composition of inclusions Can be prevented from deviating from a predetermined range, and HIC resistance and SSCC resistance can be secured.
- the CaO concentration in the slag may be 10% or more.
- CaO in the slag reacts with the dissolved S in the molten steel and changes to CaS, thereby sufficiently reducing S in the molten steel, that is, desulfurization.
- the CaO concentration in the slag is preferably 15% or more, more preferably 20% or more.
- the upper limit is about 80%.
- (B) Deoxidation process In order to improve the SSCC resistance, oxide control is important. To achieve this, it is important to control the amount of O. In this step, since the amount of S that has an influence on the HIC resistance slightly increases, so-called recovery S occurs, it is important to control the O amount and the S amount simultaneously.
- the dissolved oxygen concentration Of of the molten steel is set to 10 or less in the ratio of the S concentration of the molten steel: Of / S.
- REM is added to molten steel, it forms its sulfide and at the same time forms an oxide.
- the Of / S exceeds 10
- most of the added REM forms an oxide, and the composition of inclusions deviates from a predetermined range.
- Of / S is set to 10 or less as described above.
- Of / S is preferably 5 or less, more preferably 3.5 or less, and even more preferably 2 or less.
- the lower limit value of Of / S is about 0.1.
- the Of / S can be reduced to 10 or less by performing at least one of deoxidation using an RH degassing apparatus and deoxidation using a deoxidizing element such as Mn, Si, or Ti. .
- the order of addition of Al, Zr, REM, and Ca must be Al ⁇ Zr and REM ⁇ Ca.
- the time from REM addition to Ca addition needs to be 4 minutes or longer.
- the time from REM addition to Ca addition is preferably 5 minutes or more, more preferably 8 minutes or more. From the viewpoint of productivity, the upper limit of the time from REM addition to Ca addition is about 60 minutes.
- the deoxidizing power is generally strongest in Ca, Ca>REM> Zr, and Zr is the weakest. Therefore, in order to contain Zr in inclusions, that is, to form ZrO 2 as oxide inclusions, Zr must be added prior to the addition of Ca or REM, which has stronger deoxidizing power than Zr. Don't be. Therefore, the order of addition of Al, Zr, REM and Ca needs to be Al ⁇ Zr ⁇ REM ⁇ Ca. However, since REM has a smaller deoxidizing ability than Ca, Zr can be contained in inclusions even if it is added simultaneously with Zr. Therefore, the order of addition is Al ⁇ Zr and REM ⁇ Ca. It is good.
- each element added it is sufficient that a steel plate having a desired amount of each element is obtained.
- Zr is added to a concentration of 3 to 100 ppm in the molten steel, and thereafter or simultaneously, REM is added to the concentration in the molten steel. After 4 minutes or more have passed since the addition of 2 to 500 ppm, Ca is added to a concentration of 3 to 60 ppm in the molten steel.
- the time from the addition of Ca to the completion of solidification is set within 200 minutes. It is preferably within 180 minutes, more preferably within 160 minutes. The lower limit of the time is about 4 minutes from the viewpoint of homogenizing Ca.
- the cooling time is important to set the cooling time at the 1300 ° C. to 1200 ° C. slab t / 4 position during casting to 270 to 460 seconds. If the cooling time exceeds the upper limit, composite formation of sulfide-based secondary inclusions on the inclusions is promoted, and the SSCC resistance is deteriorated by the inclusion composition deviating from a predetermined range. End up. On the other hand, if the cooling time falls below the lower limit, the cooling load increases greatly, which is not preferable in practice.
- the steel plate can be manufactured by hot rolling according to a conventional method.
- the steel pipe for line pipes can be manufactured by the method generally performed using this steel plate.
- the process after rolling is not particularly limited.
- the cast slab is heated to 1100 ° C. or higher and hot-rolled at a reduction rate of 40% or more in the recrystallization temperature range, and this is performed at 780.
- Accelerated cooling is preferably performed at a cooling rate of 10 to 20 ° C./s from 0 ° C. Subsequent tempering is unnecessary.
- a welded joint using the thick steel plate of the present invention is provided.
- the welded joint is made of a thick steel plate and a circumferential weld metal, and is obtained by welding the end of the thick steel plate with the circumferential weld metal.
- the immersion potential difference ⁇ E between the thick steel plate and the peripheral weld metal which is obtained by the following formula, is preferably 25 mV or less.
- ⁇ E Immersion potential after 1 hour of circumferential weld metal (mV) ⁇ Immersion potential after 1 hour of thick steel plate (mV)
- the immersion potential difference ⁇ E becomes 25 mV or less, and a decrease in SSCC resistance in the welded portion can be suppressed.
- the immersion potential difference ⁇ E is more preferably 20 mV or less, and further preferably 15 mV or less.
- the above-described weld metal is preferably used.
- the welding method for forming the welded joint is not particularly limited, and can be performed by a conventionally known method. Examples thereof include arc welding, laser welding, and electron beam welding.
- the analysis target elements were Al, Mn, Si, Mg, Ca, Ti, Zr, S, REM, and Nb.
- REM shown here refers to La, Ce, Nd, Dy, and Y.
- the relationship between the X-ray intensity of each element and the element concentration is obtained in advance using a known substance as a calibration curve, and then the element concentration of the inclusion is determined from the X-ray intensity obtained from the inclusion and the calibration curve. did. And the average value of content of each said element of the inclusion whose width
- the surface of the welded portion of the welded pipe assembly was subjected to a grinder process, and the excess portion of the bead weld was removed.
- a test piece of 115 L ⁇ 15 W ⁇ 5 t was sampled from just below the bead welded portion of this pipe assembly so that the longitudinal direction was parallel to the bead weld line.
- an SSCC resistance evaluation test using a four-point bending test piece was performed based on ASTM G39, NACE TM0177-2005 B method.
- NACE solution A which gave a deflection corresponding to a load stress of 388 MPa and 437 MPa and was saturated with hydrogen sulfide of 1 atm: after immersion in 720 hours in 5% by mass NaCl-0.5% by mass CH 3 COOH, Presence / absence was determined by observation with an optical microscope at a magnification of 10 times.
- the sample was immersed in a NACE solution A (5 mass% NaCl-0.5 mass% CH 3 COOH) saturated with 1 atm of hydrogen sulfide, and the potential after 1 hour was measured.
- a saturated calomel electrode was used as the reference electrode, and a value obtained by subtracting the immersion potential of the thick steel plate from the immersion potential of the peripheral weld metal was calculated as the immersion potential difference ⁇ E.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
本発明は、耐サワー性に優れた厚鋼板を提供することを目的とする。本発明は、質量%で、C:0.01~0.12%、Si:0.02~0.50%、Mn:0.6~2.0%、P:0%超0.030%以下、S:0%超0.004%以下、Al:0.010~0.080%、Cr:0.10~1.50%、Nb:0.002~0.050%、REM:0.0002~0.05%、Zr:0.0003~0.01%、Ca:0.0003~0.006%、N:0%超0.010%以下、O:0%超0.0040%以下を含有し、残部が鉄及び不可避的不純物でなる厚鋼板であって、鋼中に含有される幅が1μm以上の介在物の組成において、介在物中のZr量が1~40%、REM量が5~50%、Al量が3~30%、Ca量が5~60%を満足する。
Description
本発明は厚鋼板及び溶接継手に関するものであり、より詳しくは、ラインパイプ用、海洋構造物用などエネルギー用構造材の素材鋼板として好適な厚鋼板及び該厚鋼板を用いた溶接継手に関するものである。
近年、世界的なエネルギー需要の増加に伴い、再生可能エネルギーを含めて様々なエネルギーの開発、実用化が進められている。一方で、化石燃料である石油、天然ガス、石炭はエネルギー資源の大部分を占めており、この化石エネルギーを如何にして安全に効率良く、生産、輸送および貯蔵するかについてもエネルギー確保の上で重要な問題であり、特に前記化石エネルギーの生産、輸送などに際しては高機能のエネルギー用鋼材が必要不可欠となる。
このエネルギー用鋼材は、その機能を果たせず、一度事故を起こした場合は被害が甚大となるため、高い安全性が要求される。
エネルギー用鋼材の一つにラインパイプ用鋼があるが、これは石油・天然ガスの輸送に用いられており、同鋼には、構造材としての強度、靭性といった特性のみならず、パイプ内を通過する石油・天然ガスに対する耐性が求められる。近年、石油・天然ガスの油井・ガス井では、産出される油、ガスの質が劣化し、H2Sが多く混入してきており、これまでの仕様に加えて、耐水素誘起割れ性、即ち耐HIC性に代表される耐サワー性が強く求められてきている。
また、ラインパイプ用鋼では、輸送や施工時のコスト低減の観点から、パイプの薄肉化が求められている。そのためには、鋼材の強度を向上させる必要があるが、鋼材強度の向上は耐水素誘起割れ性を悪化させるという欠点を併せ持っている。特に、厚鋼板をパイプに加工する際の継目溶接、即ちシーム溶接と、パイプ同士を接合する際の周溶接の2つの熱履歴を受けるTクロス溶接部は、急熱、急冷の複雑な熱履歴を受けるため、溶接熱影響部:HAZにおいて、強度、つまり硬度が上昇し、硫化物応力腐食割れと呼ばれる割れが発生しやすくなる。以下、硫化物応力腐食割れについては、SSCC:sulfide stress corrosion crackingとも述べる。よって、高強度ラインパイプ鋼を実現するためには、Tクロス溶接部の耐SSCC性も、また課題の一つである。
母材の耐HIC性、或いはTクロス溶接部の耐SSCC性を達成することを目的とした従来技術には、特許文献1に記載された技術等がある。特許文献1には、耐HIC性に悪いとされるブロック状のベイナイト組織を低減し、均一な上部ベイナイトあるいはアシキュラーフェライト組織を発達させることで、母材の耐HIC性を確保しつつ、API規格のX70級高強度厚鋼板を実現した技術が記載されている。
一方、特許文献2には、微細Nb,V炭窒化物による析出強化を利用し、引張り強度56kgf/mm2以上の高強度を達成できるとした技術が記載されている。しかしながら、この文献には母材の耐HIC性については記載されておらず、また、耐SSCC性については、シーム溶接のHAZのみしか考慮されていない。加えて、実施例に記載された試験条件は、サワー環境、即ちH2Sが多く含まれる環境を模擬した溶液中への浸漬時間が21日と十分に厳しい条件ではない。
また、特許文献3には、Tクロス溶接部の耐SSCC性を劣化させるとされる硬度上昇を抑制するような成分系が記載されている。しかしながら、この文献に記載された技術では耐SSCC性そのものは評価されておらず、また、母材の耐HIC性については記載されていない。
本発明は、上記従来の問題を解決せんとしてなされたもので、その目的は、耐サワー性、特に耐HIC性に優れた厚鋼板を提供することである。また、本発明の他の目的は、Tクロス溶接部の耐SSCC性に優れた溶接継手を実現できる厚鋼板及びTクロス溶接部の耐SSCC性に優れた溶接継手を提供することである。
本発明の厚鋼板は、質量%で、C:0.01~0.12%、Si:0.02~0.50%、Mn:0.6~2.0%、P:0%超0.030%以下、S:0%超0.004%以下、Al:0.010~0.080%、Cr:0.10~1.50%、Nb:0.002~0.050%、REM:0.0002~0.05%、Zr:0.0003~0.01%、Ca:0.0003~0.006%、N:0%超0.010%以下、O:0%超0.0040%以下を含有し、残部が鉄および不可避的不純物でなる厚鋼板であって、鋼中に含有される幅が1μm以上の介在物の組成において、介在物中のZr量が1~40%、REM量が5~50%、Al量が3~30%、Ca量が5~60%を満足することを特徴とする。
また、本発明の厚鋼板は、前記介在物中のS量が0%超20%以下であることが好ましい。
また、本発明の厚鋼板は、[Cr]/[Nb]が10以上であることが好ましい。但し、前記した式中、[ ]は質量%を示す。
また、本発明の厚鋼板は、更に、質量%で、Mg:0%超0.005%以下、Ti:0.003~0.030%、Ni:0.01~1.50%、Cu:0.01~1.50%、Mo:0.01~1.50%、V:0.003~0.08%、及び、B:0.0002~0.0032%の1種または2種以上を含有し、[Cr]+[Mo]+[Ni]+[Cu]が2.1以下であることが好ましい。但し、前記した式中、[ ]は質量%を示す。
また、本発明の厚鋼板は、質量%で、Ni:0.01~1.50%を含有し、0.25×[Cr]+[Ni]が0.10~1.50であることが好ましい。但し、前記した式中、[ ]は質量%を示す。
また、本発明の溶接継手は、上記いずれかの本発明の厚鋼板と周溶接金属を含むことを特徴とする。
本発明の溶接継手は、下記式で求められる、前記厚鋼板と前記周溶接金属の浸漬電位差ΔEが25mV以下であることが好ましい。
ΔE=周溶接金属の1時間後の浸漬電位(mV)-厚鋼板の1時間後の浸漬電位(mV)
ΔE=周溶接金属の1時間後の浸漬電位(mV)-厚鋼板の1時間後の浸漬電位(mV)
本発明において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
本発明の一実施の形態によれば、耐サワー性に優れた厚鋼板を提供することができる。また、本発明の厚鋼板を用いてTクロス溶接部の耐SSCC性に優れた溶接継手を提供することができる。
本発明者らは、前記した本発明の課題を達成するために、厚鋼板の特性を発揮する上で基本となる鋼の成分組成に加えて、鋼中の介在物制御の観点から鋭意、研究、検討を重ねた。その結果、幅が1μm以上の粗大な介在物を特定の成分組成に保持することによって、耐サワー性に優れた厚鋼板が得られることを見出し、本発明を完成するに至った。ここで、本発明における介在物とは、溶鋼中や凝固時に生じる粗大な析出粒を意味し、具体的には、鋼中の合金成分の酸化物、炭化物、硫化物、窒化物などによる粒子を意味する。
まず、母材の耐HIC性の観点で検討したところ、サワー環境では鋼中に水素が侵入した場合、MnSなどの粗大で鋼よりも熱膨張率が大きい介在物はその周囲に粗大なボイドを形成するため、侵入した水素はこのボイドに集中的に滞積して、それらが気化する圧力で鋼に割れ、即ち水素誘起割れが発生・進展するものと推定される。従って、この水素誘起割れの原因となる1μm以上の粗大な介在物を、鋼よりも熱膨張率の大きい介在物から鋼よりも熱膨張率の小さい介在物に転換して造り込むことによって、鋼の耐HIC性を向上、確保できることを確認した。尚、鋼よりも熱膨張率の小さい介在物として具体的にはZr、Al、REMの酸化物などが有効である。
一方、Tクロス溶接部の耐SSCC性の観点で検討したところ、Tクロス溶接部において、溶接金属の近傍から母材にかけて急激に硬度が変化すると、耐SSCC性が低下することが分かった。これは、硬度変化により該当部位に急激な応力集中が生じるためと考えられる。この溶接金属の近傍から母材にかけて急激な硬度変化は、溶接金属の近傍で硬質のマルテンサイトが生成するのに対し、溶接金属から母材側にある程度離れた部位では軟質のフェライトが生成するためと考えられる。
この急激な硬度変化を抑制するため、軟質フェライトの低減、硬質マルテンサイトの低減の、両側面から検討を行うこととした。その結果、軟質フェライトの低減については、厚鋼板に合金元素を添加し、焼入れ性を向上させることでフェライト生成が抑制できることを確認した。
また、硬質マルテンサイトの低減については、変態の起点となる介在物を、多数分散させることで粒内ベイナイト変態を促進すると共に、[Cr]/[Nb]を10以上とすることで、粒界における核生成駆動力を上昇させる粒界へのNb偏析が低減されて、粒界からのベイナイト生成が促進され、その結果、溶接金属近傍におけるマルテンサイト生成量を減少できることを確認した。但し、前記した式中、[ ]は質量%を示す。
また、CrとNbを添加して焼入れ性を確保することで、母材強度を改善できることも確認した。
以下、本発明に係る厚鋼板の成分組成、組織、介在物組成に加え、Tクロス溶接部に用いる溶接金属について、その規定理由を含めて詳細に説明する。以下、組成の表示単位である%は全て質量%を意味する。
(厚鋼板の成分組成)
[C:0.01~0.12%]
Cは、厚鋼板の強度確保のために必要不可欠な元素であり、0.01%以上含有させる必要がある。好ましくは0.02%以上であり、より好ましくは0.03%以上である。しかし、C量が過剰であると母材に島状マルテンサイトが生成されやすくなり、これが水素誘起割れの起点となって母材の耐HIC性が劣化する。よって、C量は0.12%以下とする必要がある。好ましくは0.10%以下、より好ましくは0.08%以下である。
[C:0.01~0.12%]
Cは、厚鋼板の強度確保のために必要不可欠な元素であり、0.01%以上含有させる必要がある。好ましくは0.02%以上であり、より好ましくは0.03%以上である。しかし、C量が過剰であると母材に島状マルテンサイトが生成されやすくなり、これが水素誘起割れの起点となって母材の耐HIC性が劣化する。よって、C量は0.12%以下とする必要がある。好ましくは0.10%以下、より好ましくは0.08%以下である。
[Si:0.02~0.50%]
Siは、脱酸に有効である。これらの効果を得るためSi量を0.02%以上とする。好ましくは0.04%以上であり、より好ましくは0.06%以上である。しかし、Si量が過剰であると母材に島状マルテンサイトが生成されやすくなり、これが水素誘起割れの起点となって母材の耐HIC性が劣化する。よって、Si量は0.50%以下に抑える必要がある。好ましくは0.45%以下、より好ましくは0.35%以下である。
Siは、脱酸に有効である。これらの効果を得るためSi量を0.02%以上とする。好ましくは0.04%以上であり、より好ましくは0.06%以上である。しかし、Si量が過剰であると母材に島状マルテンサイトが生成されやすくなり、これが水素誘起割れの起点となって母材の耐HIC性が劣化する。よって、Si量は0.50%以下に抑える必要がある。好ましくは0.45%以下、より好ましくは0.35%以下である。
[Mn:0.6~2.0%]
Mnは、厚鋼板の強度確保のために必要不可欠な元素であり、0.6%以上含有させる必要がある。好ましくは0.8%以上であり、より好ましくは1.0%以上である。しかし、Mn量が過剰であるとMnSを生成し耐HIC性が劣化するため、Mn量の上限を2.0%とする。好ましくは1.9%以下であり、より好ましくは1.8%以下である。
Mnは、厚鋼板の強度確保のために必要不可欠な元素であり、0.6%以上含有させる必要がある。好ましくは0.8%以上であり、より好ましくは1.0%以上である。しかし、Mn量が過剰であるとMnSを生成し耐HIC性が劣化するため、Mn量の上限を2.0%とする。好ましくは1.9%以下であり、より好ましくは1.8%以下である。
[P:0%超0.030%以下]
Pは、鋼材中に不可避的に含まれる元素であり、その含有量が0.030%を超えると、耐HIC性、耐SSCC性に悪影響を及ぼす。よって、本発明ではP量を0.030%以下に抑える。好ましくは0.020%以下、より好ましくは0.010%以下である。
Pは、鋼材中に不可避的に含まれる元素であり、その含有量が0.030%を超えると、耐HIC性、耐SSCC性に悪影響を及ぼす。よって、本発明ではP量を0.030%以下に抑える。好ましくは0.020%以下、より好ましくは0.010%以下である。
[S:0%超0.004%以下]
Sは、多すぎるとMnSを多量に生成して耐HIC性を著しく劣化させるため、本発明ではS量の上限を0.004%とする。好ましくは0.003%以下であり、より好ましくは0.0025%以下、更に好ましくは0.0020%以下である。
Sは、多すぎるとMnSを多量に生成して耐HIC性を著しく劣化させるため、本発明ではS量の上限を0.004%とする。好ましくは0.003%以下であり、より好ましくは0.0025%以下、更に好ましくは0.0020%以下である。
[Al:0.010~0.080%]
Alは、介在物の熱膨張率を小さくすることで鋼母相とのボイドを低減し、耐HIC性を改善するのに有効である。また、適正量のAlを含む介在物は、粒内ベイナイトの生成を促進するため、良好な耐SSCC性が得られる。これらの効果を発現させるためには少なくとも0.010%以上含有させる必要がある。Al量は、好ましくは0.020%以上であり、より好ましくは0.025%以上である。しかし、Al量が過剰であるとAl酸化物がクラスター状に生成し水素誘起割れの起点となる。よって、Al量は0.080%以下とする必要がある。Al量は、好ましくは0.060%以下であり、より好ましくは0.050%以下である。
Alは、介在物の熱膨張率を小さくすることで鋼母相とのボイドを低減し、耐HIC性を改善するのに有効である。また、適正量のAlを含む介在物は、粒内ベイナイトの生成を促進するため、良好な耐SSCC性が得られる。これらの効果を発現させるためには少なくとも0.010%以上含有させる必要がある。Al量は、好ましくは0.020%以上であり、より好ましくは0.025%以上である。しかし、Al量が過剰であるとAl酸化物がクラスター状に生成し水素誘起割れの起点となる。よって、Al量は0.080%以下とする必要がある。Al量は、好ましくは0.060%以下であり、より好ましくは0.050%以下である。
[Cr:0.10~1.50%]
Crは、強度確保に必要不可欠な元素であり、また、Tクロス溶接部の軟質フェライトを抑制することで、耐SSCC性の改善にも寄与する。これらの効果を発現させるためには少なくとも0.10%以上含有させる必要がある。Cr量は、好ましくは0.15%以上であり、より好ましくは0.17%以上、更に好ましくは0.20%以上である。しかし、Cr量が過剰であるとTクロス溶接部の硬質マルテンサイトの増加をもたらし耐SSCC性が低下するので、1.50%以下とする。Cr量は、好ましくは1.00%以下であり、より好ましくは0.80%以下である。
Crは、強度確保に必要不可欠な元素であり、また、Tクロス溶接部の軟質フェライトを抑制することで、耐SSCC性の改善にも寄与する。これらの効果を発現させるためには少なくとも0.10%以上含有させる必要がある。Cr量は、好ましくは0.15%以上であり、より好ましくは0.17%以上、更に好ましくは0.20%以上である。しかし、Cr量が過剰であるとTクロス溶接部の硬質マルテンサイトの増加をもたらし耐SSCC性が低下するので、1.50%以下とする。Cr量は、好ましくは1.00%以下であり、より好ましくは0.80%以下である。
[Nb:0.002~0.050%]
Nbは、強度確保に必要不可欠な元素であり、また、Tクロス溶接部の軟質フェライトを抑制することで、耐SSCC性の改善にも寄与する。これらの効果を発揮させるには少なくとも0.002%以上含有させる必要がある。Nb量は、好ましくは0.005%以上であり、より好ましくは0.010%以上である。しかし、Nb量が過剰であるとTクロス溶接部の硬質マルテンサイトの増加をもたらし耐SSCC性が低下するので、0.050%以下とする。Nb量は、好ましくは0.033%以下であり、より好ましくは0.030%以下である。
Nbは、強度確保に必要不可欠な元素であり、また、Tクロス溶接部の軟質フェライトを抑制することで、耐SSCC性の改善にも寄与する。これらの効果を発揮させるには少なくとも0.002%以上含有させる必要がある。Nb量は、好ましくは0.005%以上であり、より好ましくは0.010%以上である。しかし、Nb量が過剰であるとTクロス溶接部の硬質マルテンサイトの増加をもたらし耐SSCC性が低下するので、0.050%以下とする。Nb量は、好ましくは0.033%以下であり、より好ましくは0.030%以下である。
[REM:0.0002~0.05%]
REM(希土類元素)は、介在物の熱膨張率を小さくすることで鋼母相とのボイドを低減し、耐HIC性を確保するのに有効である。また、適正量のREMを含む介在物は、粒内ベイナイトの生成を促進するため、良好な耐SSCC性を得ることができる。これらの効果を発揮させるには、REMを0.0002%以上含有させる必要がある。REM量は、好ましくは0.0005%以上、より好ましくは0.0010%以上である。一方、REMを過剰に含有させると、固溶REMが粒界に偏析することで粒界強度を低下させ、耐SSCC性を劣化させる。よって、REM量の上限を0.05%とする。鋳造時の浸漬ノズルの閉塞をおさえて生産性を高める観点からは、0.03%以下とすることが好ましく、より好ましくは0.01%以下、更に好ましくは0.005%以下である。尚、本発明において、REMとは、周期律表におけるLaからLuまでの15元素、即ちランタノイド元素と、ScおよびYを意味する。
REM(希土類元素)は、介在物の熱膨張率を小さくすることで鋼母相とのボイドを低減し、耐HIC性を確保するのに有効である。また、適正量のREMを含む介在物は、粒内ベイナイトの生成を促進するため、良好な耐SSCC性を得ることができる。これらの効果を発揮させるには、REMを0.0002%以上含有させる必要がある。REM量は、好ましくは0.0005%以上、より好ましくは0.0010%以上である。一方、REMを過剰に含有させると、固溶REMが粒界に偏析することで粒界強度を低下させ、耐SSCC性を劣化させる。よって、REM量の上限を0.05%とする。鋳造時の浸漬ノズルの閉塞をおさえて生産性を高める観点からは、0.03%以下とすることが好ましく、より好ましくは0.01%以下、更に好ましくは0.005%以下である。尚、本発明において、REMとは、周期律表におけるLaからLuまでの15元素、即ちランタノイド元素と、ScおよびYを意味する。
[Zr:0.0003~0.01%]
Zrは、介在物の熱膨張率を小さくすることで鋼母相とのボイドを低減し、耐HIC性を改善させる。また、適正量のZrを含む介在物は、粒内ベイナイトの生成を促進するため、良好な耐SSCC性を得ることができる。これらの効果を発揮させるには、Zrを0.0003%以上含有させる必要がある。Zr量は、好ましくは0.0005%以上、より好ましくは0.0010%以上である。一方、Zrを過剰に含有させると、溶鋼中の固溶Zrが増加して鋳造中に、酸・硫化物を取り巻くように晶出し、耐HIC性を劣化させる。よって、Zr量の上限を0.01%とする。Zr量は、好ましくは0.007%以下、より好ましくは0.005%以下である。
Zrは、介在物の熱膨張率を小さくすることで鋼母相とのボイドを低減し、耐HIC性を改善させる。また、適正量のZrを含む介在物は、粒内ベイナイトの生成を促進するため、良好な耐SSCC性を得ることができる。これらの効果を発揮させるには、Zrを0.0003%以上含有させる必要がある。Zr量は、好ましくは0.0005%以上、より好ましくは0.0010%以上である。一方、Zrを過剰に含有させると、溶鋼中の固溶Zrが増加して鋳造中に、酸・硫化物を取り巻くように晶出し、耐HIC性を劣化させる。よって、Zr量の上限を0.01%とする。Zr量は、好ましくは0.007%以下、より好ましくは0.005%以下である。
[Ca:0.0003~0.006%]
Caは、CaSを形成してSを固定し、MnS生成量を低減させる作用を有することで耐SSCC性を改善させる。また、適正量のCaを含む介在物は、粒内ベイナイトの生成を促進するため、良好な耐SSCC性を得ることができる。これらの効果を発揮させるには、Caを0.0003%以上含有させる必要がある。Ca量は、好ましくは0.0005%以上、より好ましくは0.0010%以上である。一方、Caを過剰に含有させると、CaSが多量に生成し、それらが凝集し耐HIC性を劣化させる。よって、Ca量の上限を0.006%とする。Ca量は、好ましくは0.005%以下であり、より好ましくは0.004%以下である。
Caは、CaSを形成してSを固定し、MnS生成量を低減させる作用を有することで耐SSCC性を改善させる。また、適正量のCaを含む介在物は、粒内ベイナイトの生成を促進するため、良好な耐SSCC性を得ることができる。これらの効果を発揮させるには、Caを0.0003%以上含有させる必要がある。Ca量は、好ましくは0.0005%以上、より好ましくは0.0010%以上である。一方、Caを過剰に含有させると、CaSが多量に生成し、それらが凝集し耐HIC性を劣化させる。よって、Ca量の上限を0.006%とする。Ca量は、好ましくは0.005%以下であり、より好ましくは0.004%以下である。
[N:0%超0.010%以下]
Nは、不可避的不純物であるが、粒界に偏析することで粒界強度を低下させ、耐SSCC性を劣化させる。よって、N量の上限を0.010%とする。N量は、好ましくは0.008%以下であり、より好ましくは0.006%以下である。
Nは、不可避的不純物であるが、粒界に偏析することで粒界強度を低下させ、耐SSCC性を劣化させる。よって、N量の上限を0.010%とする。N量は、好ましくは0.008%以下であり、より好ましくは0.006%以下である。
[O:0%超0.0040%以下]
O(酸素)は、介在物を形成する元素であり、過剰添加により、粗大酸化物が多量に生成し、それらを起点に水素誘起割れが発生する。よって、O量の上限を0.0040%とする。O量は、好ましくは0.0030%以下であり、より好ましくは0.0020%以下である。
O(酸素)は、介在物を形成する元素であり、過剰添加により、粗大酸化物が多量に生成し、それらを起点に水素誘起割れが発生する。よって、O量の上限を0.0040%とする。O量は、好ましくは0.0030%以下であり、より好ましくは0.0020%以下である。
[[Cr]/[Nb]が10以上]
また、本発明の厚鋼板は、前記成分組成を満足すると共に、[Cr]/[Nb]が10以上であることが好ましい。但し、式中、[ ]は質量%を示す。厚鋼板がこの条件を満足することで、Tクロス溶接部において、粒界における核生成駆動力を上昇させる粒界へのNb偏析が低減され、粒界からのベイナイト生成が促進される。それによって、溶接金属近傍におけるマルテンサイト生成量が減少し、耐SSCC性を改善させる。よって、[Cr]/[Nb]が10以上であることが好ましい。より好ましくは12以上、更に好ましくは15以上である。
また、本発明の厚鋼板は、前記成分組成を満足すると共に、[Cr]/[Nb]が10以上であることが好ましい。但し、式中、[ ]は質量%を示す。厚鋼板がこの条件を満足することで、Tクロス溶接部において、粒界における核生成駆動力を上昇させる粒界へのNb偏析が低減され、粒界からのベイナイト生成が促進される。それによって、溶接金属近傍におけるマルテンサイト生成量が減少し、耐SSCC性を改善させる。よって、[Cr]/[Nb]が10以上であることが好ましい。より好ましくは12以上、更に好ましくは15以上である。
また、本発明厚鋼板の必須元素ではないが、成分組成としてNiを含む場合には、0.25×[Cr]+[Ni]が0.10~1.50となるように調整し、この条件を満足させることによっても耐SSCC性を改善させることができる。但し、式中、[ ]は質量%を示す。尚、0.25×[Cr]+[Ni]が0.10~1.50という条件を満足した場合は、必ずしも、[Cr]/[Nb]が10以上という条件を満足する必要はない。詳しくは後述する。
本発明厚鋼板の鋼材の成分組成は、上記の通りであり、残部は鉄及び不可避不純物である。また、上記元素に加えて更に、下記量のMg、Ti、Ni、Cu、Mo、V及びBからなる群から選択される少なくとも1種または2種以上を含有させることにより、耐HIC性や耐SSCC性の向上等を図ることができる。以下、これらの元素について説明する。
[Mg:0%超0.005%以下]
Mgは、MgSを形成し硫化物を微細分散させることで、母材の耐SSCC性を改善させる作用がある。しかし、Mgを、0.005%を超えて含有しても効果が飽和するため、Mg量の上限は0.005%とすることが好ましい。より好ましくは0.004%以下、更に好ましくは0.003%以下である。
Mgは、MgSを形成し硫化物を微細分散させることで、母材の耐SSCC性を改善させる作用がある。しかし、Mgを、0.005%を超えて含有しても効果が飽和するため、Mg量の上限は0.005%とすることが好ましい。より好ましくは0.004%以下、更に好ましくは0.003%以下である。
[Ti:0.003~0.030%]
Tiは、析出強化により厚鋼板の強度向上に寄与する元素である。この作用を発揮させるためには0.003%以上含有させることが好ましい。より好ましくは0.004%以上、更に好ましくは0.005%以上である。一方、Ti含有量が過多になると、Tクロス溶接部の硬質マルテンサイトの増加をもたらし、耐SSCC性を低下させるので、0.030%以下とすることが好ましい。より好ましくは0.025%以下、更に好ましくは0.020%以下である。
Tiは、析出強化により厚鋼板の強度向上に寄与する元素である。この作用を発揮させるためには0.003%以上含有させることが好ましい。より好ましくは0.004%以上、更に好ましくは0.005%以上である。一方、Ti含有量が過多になると、Tクロス溶接部の硬質マルテンサイトの増加をもたらし、耐SSCC性を低下させるので、0.030%以下とすることが好ましい。より好ましくは0.025%以下、更に好ましくは0.020%以下である。
[Ni:0.01~1.50%]
Niは、厚鋼板の強度向上に寄与する元素である。この作用を発揮させるためには0.01%以上含有させることが好ましい。より好ましくは0.05%以上、更に好ましくは0.10%以上である。一方、Ni含有量が過多になると、Tクロス溶接部の硬質マルテンサイトの増加をもたらし、耐SSCC性を低下させるので、1.50%以下とすることが好ましい。より好ましくは1.00%以下、更に好ましくは0.50%以下である。
Niは、厚鋼板の強度向上に寄与する元素である。この作用を発揮させるためには0.01%以上含有させることが好ましい。より好ましくは0.05%以上、更に好ましくは0.10%以上である。一方、Ni含有量が過多になると、Tクロス溶接部の硬質マルテンサイトの増加をもたらし、耐SSCC性を低下させるので、1.50%以下とすることが好ましい。より好ましくは1.00%以下、更に好ましくは0.50%以下である。
[Cu:0.01~1.50%]
Cuは、厚鋼板の強度向上に寄与する元素である。この作用を発揮させるためには0.01%以上含有させることが好ましい。より好ましくは0.05%以上、更に好ましくは0.10%以上である。一方、Cu含有量が過多になると、Tクロス溶接部の硬質マルテンサイトの増加をもたらし、耐SSCC性を低下させるので、1.50%以下とすることが好ましい。より好ましくは1.00%以下、更に好ましくは0.50%以下である。
Cuは、厚鋼板の強度向上に寄与する元素である。この作用を発揮させるためには0.01%以上含有させることが好ましい。より好ましくは0.05%以上、更に好ましくは0.10%以上である。一方、Cu含有量が過多になると、Tクロス溶接部の硬質マルテンサイトの増加をもたらし、耐SSCC性を低下させるので、1.50%以下とすることが好ましい。より好ましくは1.00%以下、更に好ましくは0.50%以下である。
[Mo:0.01~1.50%]
Moは、厚鋼板の強度向上に寄与する元素である。この作用を発揮させるためには0.01%以上含有させることが好ましい。より好ましくは0.05%以上、更に好ましくは0.10%以上である。一方、Mo含有量が過多になると、Tクロス溶接部の硬質マルテンサイトの増加をもたらし、耐SSCC性を低下させるので、1.50%以下とすることが好ましい。より好ましくは1.00%以下、更に好ましくは0.50%以下である。
Moは、厚鋼板の強度向上に寄与する元素である。この作用を発揮させるためには0.01%以上含有させることが好ましい。より好ましくは0.05%以上、更に好ましくは0.10%以上である。一方、Mo含有量が過多になると、Tクロス溶接部の硬質マルテンサイトの増加をもたらし、耐SSCC性を低下させるので、1.50%以下とすることが好ましい。より好ましくは1.00%以下、更に好ましくは0.50%以下である。
[V:0.003~0.08%]
Vは、厚鋼板の強度向上に寄与する元素である。この作用を発揮させるためには0.003%以上含有させることが好ましい。より好ましくは0.005%以上、更に好ましくは0.010%以上である。一方、V含有量が過多になると、Tクロス溶接部の硬質マルテンサイトの増加をもたらし、耐SSCC性を低下させるので、0.08%以下とすることが好ましい。より好ましくは0.07%以下、更に好ましくは0.05%以下である。
Vは、厚鋼板の強度向上に寄与する元素である。この作用を発揮させるためには0.003%以上含有させることが好ましい。より好ましくは0.005%以上、更に好ましくは0.010%以上である。一方、V含有量が過多になると、Tクロス溶接部の硬質マルテンサイトの増加をもたらし、耐SSCC性を低下させるので、0.08%以下とすることが好ましい。より好ましくは0.07%以下、更に好ましくは0.05%以下である。
[B:0.0002~0.0032%]
Bは、厚鋼板の強度向上に寄与する元素である。この作用を発揮させるためには0.0002%以上含有させることが好ましい。より好ましくは0.0005%以上、更に好ましくは0.0010%以上である。一方、B含有量が過多になると、Tクロス溶接部の硬質マルテンサイトの増加をもたらし、耐SSCC性を低下させるので、0.0032%以下とすることが好ましい。より好ましくは0.0030%以下、更に好ましくは0.0025%以下である。
Bは、厚鋼板の強度向上に寄与する元素である。この作用を発揮させるためには0.0002%以上含有させることが好ましい。より好ましくは0.0005%以上、更に好ましくは0.0010%以上である。一方、B含有量が過多になると、Tクロス溶接部の硬質マルテンサイトの増加をもたらし、耐SSCC性を低下させるので、0.0032%以下とすることが好ましい。より好ましくは0.0030%以下、更に好ましくは0.0025%以下である。
[[Cr]+[Mo]+[Ni]+[Cu]が2.1以下]
また、本発明の厚鋼板は、前記成分組成を満足した上で、[Cr]+[Mo]+[Ni]+[Cu]が2.1以下であることが好ましい。但し、式中、[ ]は質量%を示す。これらの元素の添加量が2.1を超えるとTクロス溶接部の硬質マルテンサイト増加をもたらし、耐SSCC性を低下させる。よって、[Cr]+[Mo]+[Ni]+[Cu]が2.1以下であることが好ましい。より好ましくは1.9以下、更に好ましくは1.7以下である。
また、本発明の厚鋼板は、前記成分組成を満足した上で、[Cr]+[Mo]+[Ni]+[Cu]が2.1以下であることが好ましい。但し、式中、[ ]は質量%を示す。これらの元素の添加量が2.1を超えるとTクロス溶接部の硬質マルテンサイト増加をもたらし、耐SSCC性を低下させる。よって、[Cr]+[Mo]+[Ni]+[Cu]が2.1以下であることが好ましい。より好ましくは1.9以下、更に好ましくは1.7以下である。
[浸漬電位差ΔE(周溶接金属の浸漬電位-厚鋼板の浸漬電位)が25mV以下]
Tクロス溶接部において、母材と周溶接金属の電位差が大きい場合、異種金属接触効果によって母材の選択腐食および周溶接金属での水素侵入が促進されるため、耐SSCC性が低下する。特に浸漬から1時間以内では安定かつ均一な硫化物被膜が形成されておらず、周溶接金属と厚鋼板の電位差に起因する水素侵入が顕著となる。よって、下記式で求められる、厚鋼板と周溶接金属の溶液中に浸漬したときの1時間後の浸漬電位差ΔEが25mV以下であることが好ましい。より好ましくは20mV以下、更に好ましくは15mV以下である。
ΔE=周溶接金属の1時間後の浸漬電位(mV)-厚鋼板の1時間後の浸漬電位(mV)
なお、溶液中に金属を浸漬したときに現れる電極電位は腐食電位、混成電位と定義される場合があるが、本発明ではこれを「浸漬電位」としている。
Tクロス溶接部において、母材と周溶接金属の電位差が大きい場合、異種金属接触効果によって母材の選択腐食および周溶接金属での水素侵入が促進されるため、耐SSCC性が低下する。特に浸漬から1時間以内では安定かつ均一な硫化物被膜が形成されておらず、周溶接金属と厚鋼板の電位差に起因する水素侵入が顕著となる。よって、下記式で求められる、厚鋼板と周溶接金属の溶液中に浸漬したときの1時間後の浸漬電位差ΔEが25mV以下であることが好ましい。より好ましくは20mV以下、更に好ましくは15mV以下である。
ΔE=周溶接金属の1時間後の浸漬電位(mV)-厚鋼板の1時間後の浸漬電位(mV)
なお、溶液中に金属を浸漬したときに現れる電極電位は腐食電位、混成電位と定義される場合があるが、本発明ではこれを「浸漬電位」としている。
[0.25×[Cr]+[Ni]が0.10~1.50]
Tクロス溶接部において、母材と周溶接金属の電位差が大きい場合、異種金属接触効果によって母材または周溶接金属での水素侵入が促進されるため、耐SSCC性が低下する。そのため、本発明の厚鋼板は、前記成分組成、特にNiの含有量が0.10~1.50%という条件を満足した上で、0.25×[Cr]+[Ni]が0.10~1.50であることが好ましい。但し、式中、[ ]は質量%を示す。これらの元素の添加は、母材である鋼板の電位を向上させ、異種金属接触効果によるTクロス溶接部における水素侵入を抑制することで、Tクロス溶接部の耐SSCC性の改善に寄与する。
Tクロス溶接部において、母材と周溶接金属の電位差が大きい場合、異種金属接触効果によって母材または周溶接金属での水素侵入が促進されるため、耐SSCC性が低下する。そのため、本発明の厚鋼板は、前記成分組成、特にNiの含有量が0.10~1.50%という条件を満足した上で、0.25×[Cr]+[Ni]が0.10~1.50であることが好ましい。但し、式中、[ ]は質量%を示す。これらの元素の添加は、母材である鋼板の電位を向上させ、異種金属接触効果によるTクロス溶接部における水素侵入を抑制することで、Tクロス溶接部の耐SSCC性の改善に寄与する。
よって、0.25×[Cr]+[Ni]から求められる値は0.10以上であることが好ましく、より好ましくは0.15以上、更に好ましくは0.20以上である。一方、0.25×[Cr]+[Ni]から求められる値が過剰であると、鋼板の電位を溶接金属の電位より大幅に高めてしまい、ガルバニック腐食による溶接金属の選択腐食が進行し、耐SSCC性が低下する。よって、0.25×[Cr]+[Ni]から求められる値の上限を1.50とする。上限は、より好ましくは1.00以下であり、更に好ましくは0.70以下である。
(溶接金属)
周溶接に用いる金属は、溶接金属の強度と靭性の確保、および耐食性向上のため、以下の成分組成とすることが好ましい。即ち、質量%で、C:0.02~0.10%、Si:0.10~0.60%、Mn:0.90~2.50%、Ni:0.20~1.00%を含有することが好ましい。また、上記以外の成分として、P:0.015%以下、S:0.010%以下 、Cu:1.0%以下、Mo:1.0%以下、Nb:0.5%以下、V:0.3%以下、Ti:0.05%以下、Al:0.1%以下の含有を許容することができる。これら以外の成分は、鉄および不可避的不純物であることが望ましい。以下、溶接金属の成分組成の限定理由について述べる。
周溶接に用いる金属は、溶接金属の強度と靭性の確保、および耐食性向上のため、以下の成分組成とすることが好ましい。即ち、質量%で、C:0.02~0.10%、Si:0.10~0.60%、Mn:0.90~2.50%、Ni:0.20~1.00%を含有することが好ましい。また、上記以外の成分として、P:0.015%以下、S:0.010%以下 、Cu:1.0%以下、Mo:1.0%以下、Nb:0.5%以下、V:0.3%以下、Ti:0.05%以下、Al:0.1%以下の含有を許容することができる。これら以外の成分は、鉄および不可避的不純物であることが望ましい。以下、溶接金属の成分組成の限定理由について述べる。
[C:0.02~0.10%]
Cは、溶接金属が強度を確保する上で必要な元素である。C含有量が0.02%よりも少なくなると、所定の強度が得られない。しかしながら、C含有量が過剰になると、粒界炭化物の粗大化を招くことで靭性低下の原因となるので、0.10%以下とする。
Cは、溶接金属が強度を確保する上で必要な元素である。C含有量が0.02%よりも少なくなると、所定の強度が得られない。しかしながら、C含有量が過剰になると、粒界炭化物の粗大化を招くことで靭性低下の原因となるので、0.10%以下とする。
[Si:0.10~0.60%]
Siは、溶接金属が強度を確保する上で必要な元素である。Si含有量が0.10%よりも少なくなると、所定の強度が得られない。しかしながら、Si含有量が過剰になると、靭性低下の原因となるので、0.60%以下とする。
Siは、溶接金属が強度を確保する上で必要な元素である。Si含有量が0.10%よりも少なくなると、所定の強度が得られない。しかしながら、Si含有量が過剰になると、靭性低下の原因となるので、0.60%以下とする。
[Mn:0.90~2.50%]
Mnは、溶接金属の強度、靭性のバランスを確保する上で必要な元素である。こうした効果を得るため、Mnの含有量は0.90%以上とする必要がある。しかし、Mn含有量が多すぎると偏析が助長され、靭性低下の原因となるので、2.50%以下とする必要がある。
Mnは、溶接金属の強度、靭性のバランスを確保する上で必要な元素である。こうした効果を得るため、Mnの含有量は0.90%以上とする必要がある。しかし、Mn含有量が多すぎると偏析が助長され、靭性低下の原因となるので、2.50%以下とする必要がある。
[Ni:0.20~1.00%]
Niは、溶接金属の電位を高め、耐食性の向上に効果を発揮する。また、焼き入れ性を高めて強度を確保し、低温靭性を向上する上でも有効な元素である。こうした効果を得るためには、Niの含有量は0.20%以上とする必要がある。一方、Ni含有量が過剰になると、高温割れを引き起こす可能性があること、また溶接金属の電位を過剰に高めてしまい、母材の選択腐食を引き起こす原因となることから、その上限は1.00%以下とする。
Niは、溶接金属の電位を高め、耐食性の向上に効果を発揮する。また、焼き入れ性を高めて強度を確保し、低温靭性を向上する上でも有効な元素である。こうした効果を得るためには、Niの含有量は0.20%以上とする必要がある。一方、Ni含有量が過剰になると、高温割れを引き起こす可能性があること、また溶接金属の電位を過剰に高めてしまい、母材の選択腐食を引き起こす原因となることから、その上限は1.00%以下とする。
(厚鋼板中の介在物組成)
[鋼中に含有される幅が1μm以上の介在物の組成]
[Zr量が1~40%]
本発明において、幅が1μm以上の介在物中のZrは、主に酸化物として存在する。このZr酸化物は鋼よりも熱膨張率が小さいため、介在物中のZr量が確保されると周囲の鋼母相とのボイドを低減でき、耐HIC性を改善させる。また、適量のZrを含有する酸化物は、粒内ベイナイトの生成を促進するようになるため、良好な耐SSCC性を得ることができる。このような効果を発揮させるには、介在物中のZr量を1~40%とする。Zr量が1%未満または40%超となると、母材の耐HIC性またはTクロス溶接部の耐SSCC性が不十分となる。
[鋼中に含有される幅が1μm以上の介在物の組成]
[Zr量が1~40%]
本発明において、幅が1μm以上の介在物中のZrは、主に酸化物として存在する。このZr酸化物は鋼よりも熱膨張率が小さいため、介在物中のZr量が確保されると周囲の鋼母相とのボイドを低減でき、耐HIC性を改善させる。また、適量のZrを含有する酸化物は、粒内ベイナイトの生成を促進するようになるため、良好な耐SSCC性を得ることができる。このような効果を発揮させるには、介在物中のZr量を1~40%とする。Zr量が1%未満または40%超となると、母材の耐HIC性またはTクロス溶接部の耐SSCC性が不十分となる。
[REM量が5~50%]
本発明において、幅が1μm以上の介在物中のREMは、酸化物や酸硫化物などとして存在する。このうち、REM酸化物は鋼よりも熱膨張率が小さいため、介在物中のREM量が確保されると周囲の鋼母相とのボイドを低減でき、耐HIC性を改善させる。また、酸硫化物として存在する場合は、Sを固定し、MnSなど耐HIC性に悪影響を及ぼす硫化物の生成を抑制することができる。更に、これらのREM系介在物は、粒内ベイナイトの生成を促進するため、良好な耐SSCC性を得ることができる。このような効果を発揮させるには、介在物中のREM量を5~50%とする。REM量が5%未満または50%超となると、母材の耐HIC性またはTクロス溶接部の耐SSCC性が不十分となる。
本発明において、幅が1μm以上の介在物中のREMは、酸化物や酸硫化物などとして存在する。このうち、REM酸化物は鋼よりも熱膨張率が小さいため、介在物中のREM量が確保されると周囲の鋼母相とのボイドを低減でき、耐HIC性を改善させる。また、酸硫化物として存在する場合は、Sを固定し、MnSなど耐HIC性に悪影響を及ぼす硫化物の生成を抑制することができる。更に、これらのREM系介在物は、粒内ベイナイトの生成を促進するため、良好な耐SSCC性を得ることができる。このような効果を発揮させるには、介在物中のREM量を5~50%とする。REM量が5%未満または50%超となると、母材の耐HIC性またはTクロス溶接部の耐SSCC性が不十分となる。
[Al量が3~30%]
本発明において、幅が1μm以上の介在物中のAlは、主にAl酸化物として存在する。このAl酸化物は鋼よりも熱膨張率が小さいため、介在物中のZr量が確保されると周囲の鋼母相とのボイドを低減でき、耐HIC性を改善するのに有効である。また、適量のAlを含有する酸化物は、粒内ベイナイトの生成を促進するため、良好な耐SSCC性が得られる。このような効果を発揮させるには、介在物中のAl量を3~30%とする。Al量が3%未満または30%超となると、母材の耐HIC性またはTクロス溶接部の耐SSCC性が不十分となる。
本発明において、幅が1μm以上の介在物中のAlは、主にAl酸化物として存在する。このAl酸化物は鋼よりも熱膨張率が小さいため、介在物中のZr量が確保されると周囲の鋼母相とのボイドを低減でき、耐HIC性を改善するのに有効である。また、適量のAlを含有する酸化物は、粒内ベイナイトの生成を促進するため、良好な耐SSCC性が得られる。このような効果を発揮させるには、介在物中のAl量を3~30%とする。Al量が3%未満または30%超となると、母材の耐HIC性またはTクロス溶接部の耐SSCC性が不十分となる。
[Ca量が5~60%]
本発明において、幅が1μm以上の介在物中のCaは、溶接時にTクロス溶接部において、鋼組織の微細化に寄与し、介在物を起点とする粒内ベイナイト組織の生成を促進する。これによって溶接後のTクロス溶接部の鋼組織が微細となり、良好な耐SSCC性を得ることができる。このような効果を発揮させるには、介在物中のCa量を5~60%とする。Ca量が5%未満或いは60%を超える場合は、Tクロス溶接部の耐SSCC性を改善することができない。
本発明において、幅が1μm以上の介在物中のCaは、溶接時にTクロス溶接部において、鋼組織の微細化に寄与し、介在物を起点とする粒内ベイナイト組織の生成を促進する。これによって溶接後のTクロス溶接部の鋼組織が微細となり、良好な耐SSCC性を得ることができる。このような効果を発揮させるには、介在物中のCa量を5~60%とする。Ca量が5%未満或いは60%を超える場合は、Tクロス溶接部の耐SSCC性を改善することができない。
[S量が0%超20%以下]
幅が1μm以上の介在物中のS量は、鋼板中のSの含有量、および硫化物系介在物を微細化し分散させるZrやREMなどの合金成分の含有量を、前記した成分組成に限定し、更に介在物組成を前記のように制御することで、低減できる。前記成分組成、および前記介在物組成が適切に制御されていないと、前記介在物中のS量が20%を超え、粗大硫化物が過剰となり、その結果、母材の耐HIC性またはTクロス溶接部の耐SSCC性が不十分となる。一方で、前記介在物中のS量が20%以下に制御された鋼板では、良好な耐HIC性、および耐SSCC性が得られる。前記介在物中のS量は少なければ少ないほど好ましいが、0%の場合は、Sが介在物により全く固定できず、母材の耐HIC性またはTクロス溶接部の耐SSCC性が不十分となると考えられる。
幅が1μm以上の介在物中のS量は、鋼板中のSの含有量、および硫化物系介在物を微細化し分散させるZrやREMなどの合金成分の含有量を、前記した成分組成に限定し、更に介在物組成を前記のように制御することで、低減できる。前記成分組成、および前記介在物組成が適切に制御されていないと、前記介在物中のS量が20%を超え、粗大硫化物が過剰となり、その結果、母材の耐HIC性またはTクロス溶接部の耐SSCC性が不十分となる。一方で、前記介在物中のS量が20%以下に制御された鋼板では、良好な耐HIC性、および耐SSCC性が得られる。前記介在物中のS量は少なければ少ないほど好ましいが、0%の場合は、Sが介在物により全く固定できず、母材の耐HIC性またはTクロス溶接部の耐SSCC性が不十分となると考えられる。
前記介在物の総個数は、本発明の効果を著しく損なわない限り、特に制限はないが、鋼板中において500~5000個/cm2程度分散していることが好ましい。500個/cm2を下回ると、粒内ベイナイトの起点が不足し、十分な組織微細化作用が得られなくなって耐SSCC性が低下することが考えられる。また、5000個/cm2を上回ると、破壊の起点として作用するようになり、耐HIC性、耐SSCC性ともに劣化する可能性がある。
(製造方法)
次に、本発明に係る厚鋼板の製造方法について以下詳細に説明する。
次に、本発明に係る厚鋼板の製造方法について以下詳細に説明する。
[溶鋼処理工程]
前記組織の本発明厚鋼板を得るにあたっては、溶鋼処理工程において、(A)Fe:0.1~10%を満たすスラグを用いてSを0.004%以下にする脱硫工程、(B)溶鋼の溶存酸素濃度Ofを、溶鋼のS濃度との比:Of/Sで10以下にする脱酸工程、(C)Al、Zr、REM及びCaを、Al、Zr、REM、Caの順に添加するか、又はAlを添加し、次いでZrとREMを同時に添加し、次いでCaの順に添加する工程、をこの順で含み、CaはREMの添加から4分以上空けて添加し、且つ、Ca添加から凝固完了までの時間を200分以内とし、鋳造時1300℃~1200℃のスラブt/4位置の冷却時間を460秒以内とする必要がある。更には、鋳造時1500~1450℃のスラブt/4位置の冷却時間を300秒以内とする。尚、前記のtは板厚を示す。各工程について、以下、順に説明する。
前記組織の本発明厚鋼板を得るにあたっては、溶鋼処理工程において、(A)Fe:0.1~10%を満たすスラグを用いてSを0.004%以下にする脱硫工程、(B)溶鋼の溶存酸素濃度Ofを、溶鋼のS濃度との比:Of/Sで10以下にする脱酸工程、(C)Al、Zr、REM及びCaを、Al、Zr、REM、Caの順に添加するか、又はAlを添加し、次いでZrとREMを同時に添加し、次いでCaの順に添加する工程、をこの順で含み、CaはREMの添加から4分以上空けて添加し、且つ、Ca添加から凝固完了までの時間を200分以内とし、鋳造時1300℃~1200℃のスラブt/4位置の冷却時間を460秒以内とする必要がある。更には、鋳造時1500~1450℃のスラブt/4位置の冷却時間を300秒以内とする。尚、前記のtは板厚を示す。各工程について、以下、順に説明する。
(A)脱硫工程
耐HIC性を確保するには粗大硫化物の低減が重要であり、これを達成するにはS量を制御することが重要である。転炉又は電気炉にて、溶鋼温度が1550℃以上となるよう溶製した溶鋼に対し、Fe:0.1~10%を満たすスラグを用い、Sを0.004%以下にする。スラグ中のFe濃度を高めることによって、脱硫・脱酸後に添加するREM、Zrが、溶鋼に固溶することなく優先的に酸化物を形成することができる。この効果を得るため、上記スラグ中のFe濃度を0.1%以上とする。スラグ中のFe濃度は、好ましくは0.5%以上、より好ましくは1.0%以上である。一方、スラグ中のFe濃度が10%を超えると、酸化物が多量に生成し、酸化物が水素誘起割れの起点となる。よって、スラグ中のFe濃度は10%以下とする。好ましくは8%以下、より好ましくは5%以下である。また、Caを添加するに際しては、スラグでの脱硫を十分に行ってSを0.004%以下に抑えることによって、REM添加後にCaを添加した際にCaSが多量に形成され、介在物の組成が所定の範囲を逸脱することを防止でき、耐HIC性、耐SSCC性を確保することができる。
耐HIC性を確保するには粗大硫化物の低減が重要であり、これを達成するにはS量を制御することが重要である。転炉又は電気炉にて、溶鋼温度が1550℃以上となるよう溶製した溶鋼に対し、Fe:0.1~10%を満たすスラグを用い、Sを0.004%以下にする。スラグ中のFe濃度を高めることによって、脱硫・脱酸後に添加するREM、Zrが、溶鋼に固溶することなく優先的に酸化物を形成することができる。この効果を得るため、上記スラグ中のFe濃度を0.1%以上とする。スラグ中のFe濃度は、好ましくは0.5%以上、より好ましくは1.0%以上である。一方、スラグ中のFe濃度が10%を超えると、酸化物が多量に生成し、酸化物が水素誘起割れの起点となる。よって、スラグ中のFe濃度は10%以下とする。好ましくは8%以下、より好ましくは5%以下である。また、Caを添加するに際しては、スラグでの脱硫を十分に行ってSを0.004%以下に抑えることによって、REM添加後にCaを添加した際にCaSが多量に形成され、介在物の組成が所定の範囲を逸脱することを防止でき、耐HIC性、耐SSCC性を確保することができる。
前記Sを0.004%以下にするためには、スラグ中のCaO濃度を10%以上とすればよい。Caの添加により、スラグ中のCaOが溶鋼中の溶存Sと反応し、CaSに変化することによって溶鋼中のSの低減、即ち、脱硫を十分に行うことができる。そして、このときスラグ中のCaO濃度を10%以上とすれば、Sを0.004%以下にすることが可能となる。スラグ中のCaO濃度は、好ましくは15%以上、より好ましくは20%以上である。一方、スラグ中のCaOが多過ぎても脱硫が困難となるため、上限は80%程度である。
(B)脱酸工程
耐SSCC性を向上させるには、酸化物制御が重要であり、これを達成するにはO量を制御することが肝要となる。この工程では、耐HIC性にとって影響的なS量がやや増える、いわゆる復Sが起こるために、O量とS量を同時に制御することが重要である。この工程では、後述するREM添加の前に、溶鋼の溶存酸素濃度Ofを、溶鋼のS濃度との比:Of/Sで10以下にする。REMは溶鋼中に添加された際に、その硫化物を形成すると同時に酸化物も形成する。前記Of/Sが10を超える場合、添加されたREMの多くが酸化物を形成し、介在物の組成が所定の範囲を逸脱する。その結果、耐HIC性、耐SSCC性が劣化する。よって本発明では、前記の通りOf/Sを10以下とする。Of/Sは、好ましくは5以下、より好ましくは3.5以下、更に好ましくは2以下である。尚、Of/Sの下限値はおおよそ0.1程度である。前記Of/Sを10以下にするには、RH脱ガス装置による脱酸、Mn、Si、Ti等の脱酸元素の投入による脱酸のうち、少なくとも一方の脱酸を実施することによって達成できる。
耐SSCC性を向上させるには、酸化物制御が重要であり、これを達成するにはO量を制御することが肝要となる。この工程では、耐HIC性にとって影響的なS量がやや増える、いわゆる復Sが起こるために、O量とS量を同時に制御することが重要である。この工程では、後述するREM添加の前に、溶鋼の溶存酸素濃度Ofを、溶鋼のS濃度との比:Of/Sで10以下にする。REMは溶鋼中に添加された際に、その硫化物を形成すると同時に酸化物も形成する。前記Of/Sが10を超える場合、添加されたREMの多くが酸化物を形成し、介在物の組成が所定の範囲を逸脱する。その結果、耐HIC性、耐SSCC性が劣化する。よって本発明では、前記の通りOf/Sを10以下とする。Of/Sは、好ましくは5以下、より好ましくは3.5以下、更に好ましくは2以下である。尚、Of/Sの下限値はおおよそ0.1程度である。前記Of/Sを10以下にするには、RH脱ガス装置による脱酸、Mn、Si、Ti等の脱酸元素の投入による脱酸のうち、少なくとも一方の脱酸を実施することによって達成できる。
(C)Al、Zr、REMの添加工程
Al、Zr、REMの溶鋼への添加は、先にAlを添加し、次いで、Zr、REMを添加するものとする。これは、Alと、ZrおよびREMの脱酸能を比較すると、ZrおよびREMの脱酸力はAlよりも強いため、Alに先んじて、ZrおよびREMを添加すると、介在物中のAl量を所望の値とできない。そのため、Alを、ZrおよびREMより先に添加する必要がある。
Al、Zr、REMの溶鋼への添加は、先にAlを添加し、次いで、Zr、REMを添加するものとする。これは、Alと、ZrおよびREMの脱酸能を比較すると、ZrおよびREMの脱酸力はAlよりも強いため、Alに先んじて、ZrおよびREMを添加すると、介在物中のAl量を所望の値とできない。そのため、Alを、ZrおよびREMより先に添加する必要がある。
更に、Caを添加するに際しては、以下に述べる各添加元素の脱硫力及び脱酸力を考慮すると、最初にAlを添加し、次いでZrを添加し、その次にREMを添加し、最後にCaを添加するか、あるいは最初にAlを添加し、次いでZrとREMを同時に添加し、最後にCaを添加する方法の何れかを採用するものとする。但し、何れの場合もREM添加からCa添加までの時間を4分以上とする。
この理由について説明する。先ず、REMとCaの脱硫能を比較すると、REMの脱硫力はCaよりも弱いため、REM添加前にCaを添加すると、多量のCaSが生成してしまい介在物の組成が所定の範囲を逸脱することで耐HIC性、耐SSCC性を劣化させてしまう。よって、Ca添加前にREMを添加する必要があり、そのため、Al、Zr、REM及びCaの添加順はAl→ZrおよびREM→Caとしなければならない。また、介在物の組成を所定の範囲に制御するためにはREM添加からCa添加までの時間を4分以上空ける必要がある。REM添加からCa添加までの時間は、好ましくは5分以上、より好ましくは8分以上である。尚、生産性の観点から、REM添加からCa添加までの時間の上限は、おおよそ60分程度となる。
次に、Zr,REM,Caの脱酸能を比較すると、一般的に脱酸力はCaが最も強く、Ca>REM>Zrの順と考えられ、Zrが最も弱い。従って、介在物中にZrを含有させる、即ち、酸化物系介在物としてZrO2を形成するには、Zrよりも脱酸力の強いCaやREMやの添加に先立ち、Zrを添加しなければならない。そのため、Al、Zr、REM及びCaの添加順はAl→Zr→REM→Caとする必要がある。但し、REMはCaと比較して脱酸能が小さいため、Zrと同時に添加しても介在物中にZrを含有させることが可能であるため、これらの添加順はAl→ZrおよびREM→Caとしてもよい。
前記各元素の添加量については、所望の各元素量の鋼板が得られればよく、例えば、Zrを溶鋼中の濃度で3~100ppmになるよう添加し、その後もしくは同時に、REMを溶鋼中の濃度で2~500ppmになるよう添加してから4分以上経過した後、Caを溶鋼中の濃度で3~60ppmになるよう添加することが挙げられる。
〔鋳造工程〕
前記Ca添加後は、例えば80分以内に、速やかに鋳造を開始し、Ca添加から凝固が完了するまでの時間が200分以内となるよう鋳造する。その理由は次の通りである。即ち、Caは、脱硫能、脱酸能ともに高い元素であるため、Ca添加後の時間経過に伴い酸化物や硫化物の組成が安定的なCaSやCaOとなりやすく、介在物の組成を所定範囲とすることができなくなる。よって本発明では、Ca添加から凝固完了までの時間を200分以内とする。好ましくは180分以内であり、より好ましくは160分以内である。尚、前記時間の下限は、Caを均質化する観点から4分程度となる。
前記Ca添加後は、例えば80分以内に、速やかに鋳造を開始し、Ca添加から凝固が完了するまでの時間が200分以内となるよう鋳造する。その理由は次の通りである。即ち、Caは、脱硫能、脱酸能ともに高い元素であるため、Ca添加後の時間経過に伴い酸化物や硫化物の組成が安定的なCaSやCaOとなりやすく、介在物の組成を所定範囲とすることができなくなる。よって本発明では、Ca添加から凝固完了までの時間を200分以内とする。好ましくは180分以内であり、より好ましくは160分以内である。尚、前記時間の下限は、Caを均質化する観点から4分程度となる。
また、鋳造時の1500~1450℃スラブt/4位置の冷却時間が300秒を超えると、介在物上への酸化物系の二次介在物の複合生成が助長され、介在物の組成が所定の範囲を逸脱することで耐SSCC性を劣化させてしまう。
また、鋳造時の1300℃~1200℃スラブt/4位置の冷却時間を270~460秒とすることが重要である。同冷却時間が上限を上回ると、介在物上への主に硫化物系の二次介在物の複合生成が助長され、介在物の組成が所定の範囲を逸脱することで耐SSCC性を劣化させてしまう。一方で、同冷却時間がその下限を下回ると、冷却負荷が大きく増加するため、実用上は好ましくない。
[圧延以下の工程]
前記凝固後は、常法に従って熱間圧延を行い、厚鋼板を製造することができる。また、該鋼板を用い、一般的に行われている方法でラインパイプ用鋼管を製造することができる。圧延以下の工程については、特に限定するものではないが、例えば、鋳造されたスラブを1100℃以上に加熱し、再結晶温度域で40%以上の圧下率で熱間圧延を施し、これを780℃から冷却速度10~20℃/sで加速冷却することが好ましい。尚、その後の調質は不要である。
前記凝固後は、常法に従って熱間圧延を行い、厚鋼板を製造することができる。また、該鋼板を用い、一般的に行われている方法でラインパイプ用鋼管を製造することができる。圧延以下の工程については、特に限定するものではないが、例えば、鋳造されたスラブを1100℃以上に加熱し、再結晶温度域で40%以上の圧下率で熱間圧延を施し、これを780℃から冷却速度10~20℃/sで加速冷却することが好ましい。尚、その後の調質は不要である。
[溶接継手]
本発明では、本発明厚鋼板を用いた溶接継手を提供する。溶接継手は、厚鋼板と周溶接金属からなり、厚鋼板の端部を周溶接金属で溶接して得るものである。本発明の溶接継手は、下記式で求められる、厚鋼板と周溶接金属の浸漬電位差ΔEが25mV以下であることが好ましい。
ΔE=周溶接金属の1時間後の浸漬電位(mV)-厚鋼板の1時間後の浸漬電位(mV)
本発明では、本発明厚鋼板を用いた溶接継手を提供する。溶接継手は、厚鋼板と周溶接金属からなり、厚鋼板の端部を周溶接金属で溶接して得るものである。本発明の溶接継手は、下記式で求められる、厚鋼板と周溶接金属の浸漬電位差ΔEが25mV以下であることが好ましい。
ΔE=周溶接金属の1時間後の浸漬電位(mV)-厚鋼板の1時間後の浸漬電位(mV)
上記したように、Tクロス溶接部において、母材と周溶接金属の電位差が大きい場合、異種金属接触効果によって母材の選択腐食および周溶接金属での水素侵入が促進されるため、耐SSCC性が低下する。本発明厚鋼板を用いることで浸漬電位差ΔEが25mV以下となり、溶接部における耐SSCC性の低下を抑制することができる。浸漬電位差ΔEは、より好ましくは20mV以下、更に好ましくは15mV以下である。
また、周溶接に用いる金属としては、上記した溶接金属が好適に用いられる。
溶接継手を形成するための溶接方法は特に限定されず、従来公知の方法により行うことができる。例えば、アーク溶接、レーザー溶接、電子ビーム溶接等が挙げられる。
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。
(実施例1~33、比較例1~19)
常法により240t転炉で精錬された溶鋼を、LF炉を用いて、脱硫、脱酸、成分調整、介在物制御などの処理を行い、表1~4に示す鋼組成及び鋼中介在物組成を有する各種の溶鋼を連続鋳造法によりスラブとして、これらを熱間圧延後加速冷却して厚み40mm、幅3500mmの厚鋼板を製造した。得られた厚鋼板と周溶接金属を用いて後述する溶接継手を作製した。表5,6は前記溶鋼処理、連続鋳造及び加速冷却における主要なプロセス条件を示したものである。表7,8はこうして得られた各鋼板の諸特性を示したものである。表3,4に示した介在物の組成の分析方法および表7,8の各特性の測定方法及び評価の仕方について以下に説明する。
常法により240t転炉で精錬された溶鋼を、LF炉を用いて、脱硫、脱酸、成分調整、介在物制御などの処理を行い、表1~4に示す鋼組成及び鋼中介在物組成を有する各種の溶鋼を連続鋳造法によりスラブとして、これらを熱間圧延後加速冷却して厚み40mm、幅3500mmの厚鋼板を製造した。得られた厚鋼板と周溶接金属を用いて後述する溶接継手を作製した。表5,6は前記溶鋼処理、連続鋳造及び加速冷却における主要なプロセス条件を示したものである。表7,8はこうして得られた各鋼板の諸特性を示したものである。表3,4に示した介在物の組成の分析方法および表7,8の各特性の測定方法及び評価の仕方について以下に説明する。
〔介在物の組成の分析〕
介在物の組成の分析は次のようにして行った。即ち、圧延材の板厚方向断面において、板厚中央部を中心に、株式会社島津製作所製EPMA-8705で観察した。詳細には、観察倍率400倍、観察視野約50mm2で3断面観察し、幅が1μm以上の介在物を対象に、特性X線の波長分散分光により介在物中央部での成分組成を定量分析した。尚、観察視野は、板厚中心部が中央となるようにして板厚方向に7mm、板幅方向に7mmの範囲とした。分析対象元素は、Al、Mn、Si、Mg、Ca、Ti、Zr、S、REM、Nbとした。ここで示すREMとは、La、Ce、Nd、Dy、Yのことである。既知物質を用いて各元素のX線強度と元素濃度の関係を予め検量線として求めておき、次いで、前記介在物から得られたX線強度と前記検量線からその介在物の元素濃度を定量した。そして、前記3断面における幅が1μm以上の介在物の前記各元素の含有量の平均値を求め、介在物の組成とした。
介在物の組成の分析は次のようにして行った。即ち、圧延材の板厚方向断面において、板厚中央部を中心に、株式会社島津製作所製EPMA-8705で観察した。詳細には、観察倍率400倍、観察視野約50mm2で3断面観察し、幅が1μm以上の介在物を対象に、特性X線の波長分散分光により介在物中央部での成分組成を定量分析した。尚、観察視野は、板厚中心部が中央となるようにして板厚方向に7mm、板幅方向に7mmの範囲とした。分析対象元素は、Al、Mn、Si、Mg、Ca、Ti、Zr、S、REM、Nbとした。ここで示すREMとは、La、Ce、Nd、Dy、Yのことである。既知物質を用いて各元素のX線強度と元素濃度の関係を予め検量線として求めておき、次いで、前記介在物から得られたX線強度と前記検量線からその介在物の元素濃度を定量した。そして、前記3断面における幅が1μm以上の介在物の前記各元素の含有量の平均値を求め、介在物の組成とした。
〔母材の降伏強度YSの測定、評価〕
各厚鋼板のt/4位置から、C方向に平行にJIS Z2241の4号試験片を採取し、JIS Z2241に記載の方法で引張り試験を行って降伏強度YSを測定し、各厚鋼板の強度を確認した。
各厚鋼板のt/4位置から、C方向に平行にJIS Z2241の4号試験片を採取し、JIS Z2241に記載の方法で引張り試験を行って降伏強度YSを測定し、各厚鋼板の強度を確認した。
〔耐HIC性の試験、評価〕
NACE standard TM0284-2003に規定される方法に従って試験、評価した。具体的には、試験片を、1atmの硫化水素を飽和させた25℃の、5質量%NaCl+0.5質量%CH3COOH水溶液中に96時間浸漬した。HIC試験の評価は、各試験片の長手方向を10mmピッチで切断し、その切断面について研磨後、光学顕微鏡を用い100倍の倍率で全断面を観察し、HICの割れ長さが1mm以上の割れの有無を確認した。
NACE standard TM0284-2003に規定される方法に従って試験、評価した。具体的には、試験片を、1atmの硫化水素を飽和させた25℃の、5質量%NaCl+0.5質量%CH3COOH水溶液中に96時間浸漬した。HIC試験の評価は、各試験片の長手方向を10mmピッチで切断し、その切断面について研磨後、光学顕微鏡を用い100倍の倍率で全断面を観察し、HICの割れ長さが1mm以上の割れの有無を確認した。
〔Tクロス溶接部の耐SSCC性の試験、評価〕
シーム溶接を模擬するため、表1、2に示す鋼組成を有する厚鋼板を75°のX開先に加工し、2パスのサブマージアーク溶接法により溶接を行い、パイプを作製した。溶接時の入熱は、1パス目:3.7kJ/mm、2パス目:5.4kJ/mmとした。また、パイプ同士を接合する際の周溶接を模擬するため、「耐SSCC特性に優れたUOE鋼管の実用化、松山ら、溶接技術、1988年9月号、P.58」を参考にし、シーム溶接線に直交するように、ガスシールドアーク溶接による1パスのビードオンプレート溶接を実施し、溶接継手を作成した。溶接時の入熱は、1.0kJ/mmとした。シーム溶接時の溶接金属にはLincolnweld LA-81(Lincoln社製)を、周溶接時の溶接金属にはMX-A55Ni1((株)神戸製鋼所製)を用いた。
シーム溶接を模擬するため、表1、2に示す鋼組成を有する厚鋼板を75°のX開先に加工し、2パスのサブマージアーク溶接法により溶接を行い、パイプを作製した。溶接時の入熱は、1パス目:3.7kJ/mm、2パス目:5.4kJ/mmとした。また、パイプ同士を接合する際の周溶接を模擬するため、「耐SSCC特性に優れたUOE鋼管の実用化、松山ら、溶接技術、1988年9月号、P.58」を参考にし、シーム溶接線に直交するように、ガスシールドアーク溶接による1パスのビードオンプレート溶接を実施し、溶接継手を作成した。溶接時の入熱は、1.0kJ/mmとした。シーム溶接時の溶接金属にはLincolnweld LA-81(Lincoln社製)を、周溶接時の溶接金属にはMX-A55Ni1((株)神戸製鋼所製)を用いた。
溶接後のパイプ接合体の溶接部表面のグラインダ処理を行い、ビード溶接の余盛り部の除去を行った。このパイプ接合体のビード溶接部直下より、長手方向がビード溶接線に並行になるように、115L×15W×5tの試験片を採取した。この試験片を用い、ASTM G39、NACE TM0177-2005 B法に基づき、4点曲げ試験片での耐SSCC性評価試験を実施した。負荷応力388MPa、437MPaに相当するたわみを与え、1atmの硫化水素を飽和させたNACE溶液A:5質量%NaCl-0.5質量%CH3COOH中に720時間浸漬後、試験片表面における割れの有無を、倍率10倍での光学顕微鏡観察により実施した。
〔浸漬電位差ΔE(周溶接金属の浸漬電位-厚鋼板の浸漬電位)の評価〕
表1、2に示す鋼組成を有する厚鋼板および前述の周溶接金属の一部を採取した腐食試験片(縦横20mm×厚さ2mm)をSiC#600研磨紙で湿式研磨し、超音波洗浄した後、スポット溶接で試料に導線の取り付けを行った。厚鋼板または周溶接金属の試験面以外をエポキシ樹脂で被覆した。その試料を、1atmの硫化水素を飽和させたNACE溶液A(5質量%NaCl-0.5質量%CH3COOH)中に浸漬し、浸漬後1時間後の電位を測定した。参照電極には飽和カロメル電極を使用し、周溶接金属の浸漬電位から厚鋼板の浸漬電位を差し引いた値を浸漬電位差ΔEとして算出した。
表1、2に示す鋼組成を有する厚鋼板および前述の周溶接金属の一部を採取した腐食試験片(縦横20mm×厚さ2mm)をSiC#600研磨紙で湿式研磨し、超音波洗浄した後、スポット溶接で試料に導線の取り付けを行った。厚鋼板または周溶接金属の試験面以外をエポキシ樹脂で被覆した。その試料を、1atmの硫化水素を飽和させたNACE溶液A(5質量%NaCl-0.5質量%CH3COOH)中に浸漬し、浸漬後1時間後の電位を測定した。参照電極には飽和カロメル電極を使用し、周溶接金属の浸漬電位から厚鋼板の浸漬電位を差し引いた値を浸漬電位差ΔEとして算出した。
これらの結果を示す表7の実施例と表8の比較例の各特性の対比から明らかなように、本発明で規定する成分組成及び鋼中の幅が1μm以上の粗大介在物の組成を満足する実施例の厚鋼板は、高い機械的強度が得られていると共に、HIC試験による割れが発生せず、耐HIC性に優れていた。また、実施例では、負荷応力388MPaに相当するたわみを与えたSSCC試験において、割れが発生していないことが確認された。更に、実施例4~33では、負荷応力438MPaに相当するたわみを与えた耐SSCC評価試験においても割れが発生せず、優れた耐SSCC性を有することが確認された。
一方、本発明が規定する成分組成又は粗大介在物の組成を満足しない比較例の厚鋼板は、耐HIC試験或いは負荷応力388MPaに相当するたわみを与えた耐SSCC試験において割れの発生が確認された。
本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2015年5月22日出願の日本特許出願(特願2015-104617)及び2016年3月28日出願の日本特許出願(特願2016-064064)に基づくものであり、その内容はここに参照として取り込まれる。
Claims (7)
- 質量%で、C:0.01~0.12%、Si:0.02~0.50%、Mn:0.6~2.0%、P:0%超0.030%以下、S:0%超0.004%以下、Al:0.010~0.080%、Cr:0.10~1.50%、Nb:0.002~0.050%、REM:0.0002~0.05%、Zr:0.0003~0.01%、Ca:0.0003~0.006%、N:0%超0.010%以下、O:0%超0.0040%以下を含有し、残部が鉄および不可避的不純物でなる厚鋼板であって、
鋼中に含有される幅が1μm以上の介在物の組成において、介在物中のZr量が1~40%、REM量が5~50%、Al量が3~30%、Ca量が5~60%を満足することを特徴とする厚鋼板。 - 前記介在物中のS量が0%超20%以下である請求項1に記載の厚鋼板。
- [Cr]/[Nb]が10以上である請求項1に記載の厚鋼板。
但し、前記した式中、[ ]は質量%を示す。 - 更に、質量%で、Mg:0%超0.005%以下、Ti:0.003~0.030%、Ni:0.01~1.50%、Cu:0.01~1.50%、Mo:0.01~1.50%、V:0.003~0.08%、及び、B:0.0002~0.0032%の1種または2種以上を含有し、
[Cr]+[Mo]+[Ni]+[Cu]が2.1以下である請求項1に記載の厚鋼板。
但し、前記した式中、[ ]は質量%を示す。 - 質量%で、Ni:0.01~1.50%を含有し、
0.25×[Cr]+[Ni]が0.10~1.50である請求項4記載の厚鋼板。
但し、前記した式中、[ ]は質量%を示す。 - 請求項1~5のいずれか1項に記載の厚鋼板と周溶接金属を含むことを特徴とする溶接継手。
- 下記式で求められる、前記厚鋼板と前記周溶接金属の浸漬電位差ΔEが25mV以下である請求項6に記載の溶接継手。
ΔE=周溶接金属の1時間後の浸漬電位(mV)-厚鋼板の1時間後の浸漬電位(mV)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680028437.3A CN107614724A (zh) | 2015-05-22 | 2016-05-16 | 厚钢板和焊接接头 |
EP16799856.6A EP3299486A4 (en) | 2015-05-22 | 2016-05-16 | Thick steel sheet and welded joint |
KR1020177033268A KR20170138505A (ko) | 2015-05-22 | 2016-05-16 | 후강판 및 용접 이음 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-104617 | 2015-05-22 | ||
JP2015104617 | 2015-05-22 | ||
JP2016064064A JP2016216819A (ja) | 2015-05-22 | 2016-03-28 | 厚鋼板及び溶接継手 |
JP2016-064064 | 2016-03-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016190150A1 true WO2016190150A1 (ja) | 2016-12-01 |
Family
ID=57394071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/064444 WO2016190150A1 (ja) | 2015-05-22 | 2016-05-16 | 厚鋼板及び溶接継手 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016190150A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018193595A (ja) * | 2017-05-19 | 2018-12-06 | 新日鐵住金株式会社 | 炭素鋼鋳片及び炭素鋼鋳片の製造方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0941083A (ja) * | 1995-07-28 | 1997-02-10 | Nkk Corp | 耐hic及び耐sscc特性に優れた電縫管及びその製造方法 |
JPH09165648A (ja) * | 1995-12-14 | 1997-06-24 | Nkk Corp | 耐溝状腐食性に優れた電縫溶接鋼管およびその製造方法 |
JP2011117057A (ja) * | 2009-12-07 | 2011-06-16 | Kobe Steel Ltd | 溶接熱影響部の靭性および強度の均一性に優れた厚鋼板 |
JP2011219797A (ja) * | 2010-04-07 | 2011-11-04 | Kobe Steel Ltd | 溶接熱影響部の靭性に優れた厚鋼板 |
JP2013049896A (ja) * | 2011-08-31 | 2013-03-14 | Jfe Steel Corp | 高一様伸び特性を備えかつ溶接部靱性に優れた高強度溶接鋼管、およびその製造方法 |
JP2013127108A (ja) * | 2011-11-14 | 2013-06-27 | Kobe Steel Ltd | 溶接熱影響部の靭性に優れた厚鋼板 |
JP2014214371A (ja) * | 2013-04-30 | 2014-11-17 | 株式会社神戸製鋼所 | 耐サワー性とhaz靭性に優れた鋼板 |
-
2016
- 2016-05-16 WO PCT/JP2016/064444 patent/WO2016190150A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0941083A (ja) * | 1995-07-28 | 1997-02-10 | Nkk Corp | 耐hic及び耐sscc特性に優れた電縫管及びその製造方法 |
JPH09165648A (ja) * | 1995-12-14 | 1997-06-24 | Nkk Corp | 耐溝状腐食性に優れた電縫溶接鋼管およびその製造方法 |
JP2011117057A (ja) * | 2009-12-07 | 2011-06-16 | Kobe Steel Ltd | 溶接熱影響部の靭性および強度の均一性に優れた厚鋼板 |
JP2011219797A (ja) * | 2010-04-07 | 2011-11-04 | Kobe Steel Ltd | 溶接熱影響部の靭性に優れた厚鋼板 |
JP2013049896A (ja) * | 2011-08-31 | 2013-03-14 | Jfe Steel Corp | 高一様伸び特性を備えかつ溶接部靱性に優れた高強度溶接鋼管、およびその製造方法 |
JP2013127108A (ja) * | 2011-11-14 | 2013-06-27 | Kobe Steel Ltd | 溶接熱影響部の靭性に優れた厚鋼板 |
JP2014214371A (ja) * | 2013-04-30 | 2014-11-17 | 株式会社神戸製鋼所 | 耐サワー性とhaz靭性に優れた鋼板 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018193595A (ja) * | 2017-05-19 | 2018-12-06 | 新日鐵住金株式会社 | 炭素鋼鋳片及び炭素鋼鋳片の製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6193206B2 (ja) | 耐サワー性、haz靭性及びhaz硬さに優れた鋼板およびラインパイプ用鋼管 | |
JP5392441B1 (ja) | 耐水素誘起割れ性に優れた高強度ラインパイプ用鋼管及びこれに用いる高強度ラインパイプ用鋼板、並びにこれらの製造方法 | |
JP5773098B1 (ja) | フェライト−マルテンサイト2相ステンレス鋼およびその製造方法 | |
JP6211296B2 (ja) | 耐サワー性とhaz靭性に優れた鋼板 | |
US10023946B2 (en) | Thick steel sheet having excellent CTOD properties in multilayer welded joints, and manufacturing method for thick steel sheet | |
JP5748032B1 (ja) | ラインパイプ用鋼板及びラインパイプ | |
JP5096088B2 (ja) | 靭性および疲労亀裂発生抑制特性に優れた溶接継手 | |
WO2018185851A1 (ja) | 縦シーム溶接鋼管 | |
WO2012108517A1 (ja) | クリープ特性に優れた溶接金属 | |
JP5870665B2 (ja) | 耐硫化物応力腐食割れ性に優れた引張強度600MPa以上の高強度溶接鋼管 | |
JP5375981B2 (ja) | 耐溶接割れ性に優れた耐摩耗溶接鋼管およびその製造方法 | |
WO2015022899A1 (ja) | 溶接部品質の優れた電縫鋼管及びその製造方法 | |
JP5842314B2 (ja) | 大入熱溶接用鋼 | |
WO2012141220A1 (ja) | 変形性能及び低温靭性に優れた高強度鋼板及び高強度鋼管並びにこれらの製造方法 | |
JP2012207237A (ja) | 多層盛溶接部の靭性に優れた降伏強さ500MPa級厚鋼板およびその製造方法 | |
MX2014010898A (es) | Procedimiento para producir junta por soldadura y la junta por soldadura. | |
JP2016216819A (ja) | 厚鋼板及び溶接継手 | |
WO2015159806A1 (ja) | 強度、靭性および耐sr割れ性に優れた溶接金属 | |
WO2018185853A1 (ja) | 縦シーム溶接鋼管 | |
JP5874402B2 (ja) | 耐溶接割れ性と耐スラリー腐食摩耗性に優れた溶接鋼管およびその製造方法 | |
JP2017082267A (ja) | 厚鋼板 | |
KR20160119243A (ko) | 용접 조인트 | |
WO2016190150A1 (ja) | 厚鋼板及び溶接継手 | |
KR20200051745A (ko) | 내사우어 라인 파이프용 고강도 강판 및 그의 제조 방법 그리고 내사우어 라인 파이프용 고강도 강판을 이용한 고강도 강관 | |
JP5343486B2 (ja) | 大入熱溶接用鋼材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16799856 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20177033268 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016799856 Country of ref document: EP |