WO2016186083A1 - イオン交換膜 - Google Patents

イオン交換膜 Download PDF

Info

Publication number
WO2016186083A1
WO2016186083A1 PCT/JP2016/064526 JP2016064526W WO2016186083A1 WO 2016186083 A1 WO2016186083 A1 WO 2016186083A1 JP 2016064526 W JP2016064526 W JP 2016064526W WO 2016186083 A1 WO2016186083 A1 WO 2016186083A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
ion exchange
electrolysis
exchange membrane
ion
Prior art date
Application number
PCT/JP2016/064526
Other languages
English (en)
French (fr)
Inventor
中島 篤
直紀 坂本
卓也 森川
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to EP16796476.6A priority Critical patent/EP3299495B1/en
Priority to US15/574,976 priority patent/US10252257B2/en
Priority to JP2017519360A priority patent/JP6410380B2/ja
Priority to KR1020177028800A priority patent/KR101962061B1/ko
Priority to CA2986205A priority patent/CA2986205C/en
Priority to CN201680022563.8A priority patent/CN107532315A/zh
Publication of WO2016186083A1 publication Critical patent/WO2016186083A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • B01J39/20Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/12Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F16/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F16/12Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F16/14Monomers containing only one unsaturated aliphatic radical
    • C08F16/30Monomers containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2237Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2243Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
    • C08J5/225Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231 containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2275Heterogeneous membranes
    • C08J5/2281Heterogeneous membranes fluorine containing heterogeneous membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/246All polymers belonging to those covered by groups B32B27/32 and B32B27/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0223Vinyl resin fibres
    • B32B2262/0238Vinyl halide, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • B32B2262/0284Polyethylene terephthalate [PET] or polybutylene terephthalate [PBT]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/04Cellulosic plastic fibres, e.g. rayon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene

Definitions

  • the present invention relates to an ion exchange membrane.
  • Fluorine ion exchange membranes have excellent heat resistance and chemical resistance, and are used in various applications as diaphragms for electrolysis such as alkaline chloride electrolysis, ozone generation electrolysis, fuel cells, water electrolysis, and hydrochloric acid electrolysis. It is used for.
  • the ion exchange membrane method has become mainstream.
  • Various performances are required for ion exchange membranes used for alkali chloride electrolysis.
  • electrolysis performance such as film strength that does not cause damage during handling or electrolysis.
  • the electrolytic performance of the ion exchange membrane and the membrane strength are in a trade-off relationship, but the development of an ion exchange membrane having a high both is required.
  • Patent Document 1 discloses an ion exchange membrane comprising at least two layers of a fluoropolymer layer having a sulfonic acid group and a fluoropolymer layer having a carboxylic acid group.
  • Patent Document 1 has room for further improvement in achieving both membrane strength and electrolytic performance.
  • This invention is made
  • the present inventors have contracted ion clusters present in the ion exchange membrane during electrolysis, and the ion cluster diameter after electrolysis of the ion exchange membrane is the same as before electrolysis. It has been found that the electrolytic performance is dramatically improved by controlling the ion cluster diameter so as to decrease at a predetermined ratio, and the present invention has been achieved. That is, the present invention is as follows.
  • the ion cluster diameter of the layer B before electrolysis is 2.5 to 4.0 nm
  • the ion exchange membrane according to [1], wherein the ion cluster diameter of the layer B after electrolysis is 2.0 to 3.3 nm.
  • the thickness of the layer A before electrolysis is 50 to 180 ⁇ m
  • the layer A includes a polymer of a compound represented by the following formula (2)
  • a represents an integer of 0 to 2 2
  • b represents an integer of 1 to 4
  • Y represents —F or —CF 3.
  • the ion exchange membrane of the present invention is excellent in membrane strength and electrolytic performance.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • the present invention is not limited to the following embodiment, and can be implemented with various modifications within the scope of the gist.
  • the ion exchange membrane of this embodiment includes a layer A containing a fluorinated polymer having a sulfonic acid group (hereinafter sometimes simply referred to as “layer A”) and a layer containing a fluorinated polymer having a carboxylic acid group. B (hereinafter sometimes simply referred to as “layer B”), and the ion cluster diameter of the layer B after the electrolysis relative to the ion cluster diameter of the layer B before the electrolysis under the following electrolysis conditions (1)
  • the ratio [(ion cluster diameter of layer B after electrolysis) / (ion cluster diameter of layer B before electrolysis)] is 0.83 to 0.95.
  • the electrolysis condition (1) is between the anode chamber supplied with the 3.5 N (N) sodium chloride aqueous solution and the cathode chamber supplied with the 10.8 N (N) sodium hydroxide aqueous solution.
  • electrolysis is performed for 7 days under conditions of a temperature of 85 ° C. and a current density of 6 kA / m 2 . Since it is constituted in this way, the ion exchange membrane of this embodiment is excellent in membrane strength and electrolysis performance.
  • the electrolysis under the above electrolysis condition (1) is also simply referred to as “electrolysis”.
  • zero gap means that the ion exchange membrane is in contact with both the cathode and the anode in the electrolytic layer (the distance between the ion exchange membrane and the anode, and the ion exchange membrane and the cathode These members may be in contact with the ion exchange membrane over the entire surface of the electrode (anode or cathode) or at some point on the electrode surface. It may be in contact with the film.
  • FIG. 1 shows a schematic sectional view of an example of the configuration of the ion exchange membrane of the present embodiment.
  • a layer A (4) containing a fluorinated polymer having a sulfonic acid group and a layer B (5) containing a fluorinated polymer having a carboxylic acid group are laminated, Are provided with a reinforcing core 3 and communication holes 2a and 2b.
  • the layer A (4) containing a fluorinated polymer having a sulfonic acid group is on the anode side ( ⁇ ) of the electrolytic layer
  • the layer B (5) containing a fluorinated polymer having a carboxylic acid group is the cathode of the electrolytic layer. Installed to be on the side ( ⁇ ). Moreover, it has the coating layers 6 and 7 on the film
  • the communication hole 2a and the reinforcing core 3 are formed in a direction perpendicular to the paper surface, and the communication hole 2b is formed in the vertical direction of the paper surface.
  • the communication hole 2 b formed in the vertical direction of the paper surface is formed along a substantially vertical direction with respect to the reinforcing core material 3. Further, the communication holes 2a and 2b may have a portion 8 facing the anode side surface of the layer A.
  • the ion exchange membrane of this embodiment is preferably laminated so that the surface of the layer A and the surface of the layer B are in contact with each other.
  • the layer A and the layer B may be collectively referred to as a film body.
  • the layer A included in the ion exchange membrane of the present embodiment includes a fluorinated polymer A having a sulfonic acid group (hereinafter sometimes simply referred to as “polymer A”), and is made of the polymer A.
  • the “fluorinated polymer having a sulfonic acid group” means a fluorinated polymer having a sulfonic acid group or a sulfonic acid group precursor that can be converted into a sulfonic acid group by hydrolysis.
  • the layer A may contain a polymer B, which will be described later, in a range of less than 20% by mass with respect to 100% by mass of the layer A. It is preferable to contain at least mass%.
  • the fluorine-containing polymer A having a sulfonic acid group constituting the layer A is, for example, copolymerized with the following first group of monomers and second group of monomers, or the second group of monomers: It can be produced by homopolymerizing the body.
  • the polymer A is a copolymer, it may be a block polymer or a random polymer.
  • a vinyl fluoride compound is mentioned.
  • a vinyl fluoride compound what is represented by following General formula (1) is preferable.
  • CF 2 CX 1 X 2 (1) (In the general formula (1), X 1 and X 2 each independently represent —F, —Cl, —H, or —CF 3. )
  • the vinyl fluoride compound represented by the general formula (1) is not particularly limited, and examples thereof include vinyl fluoride, tetrafluoroethylene, hexafluoropropylene, vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene. It is done.
  • the vinyl fluoride compound is preferably a perfluoromonomer, and is selected from the group consisting of tetrafluoroethylene and hexafluoropropylene.
  • a fluoromonomer is more preferable, and tetrafluoroethylene (TFE) is more preferable.
  • the first group of monomers may be used alone or in combination of two or more.
  • the second group of monomers is not particularly limited, and examples thereof include vinyl compounds having a functional group that can be converted into a sulfonic acid type ion exchange group.
  • a represents an integer of 0 to 2
  • b represents an integer of 1 to 4
  • Y represents —F or —CF 3.
  • Formula (2) when a is 2, a plurality of Ys are independent of each other.
  • CF 2 CFOCF 2 CF 2 SO 2 F
  • CF 2 CFOCF 2 CF (CF 3 ) OCF 2 CF 2 SO 2 F
  • CF 2 CFOCF 2 CF (CF 3 ) OCF 2 CF 2 CF 2 SO 2 F
  • CF 2 CF (CF 2 ) 2 SO 2 F
  • CF 2 CFO [CF 2 CF (CF 3 ) O] 2 CF 2 CF 2 SO 2 F
  • CF 2 CFOCF 2 CF (CF 2 OCF 3) OCF 2 CF 2 SO 2 F.
  • CF 2 CFOCF 2 CF ( CF 3) OCF 2 CF 2 CF 2 SO 2 F
  • CF 2 CFOCF 2 CF (CF 3) OCF 2 CF 2 SO 2 F
  • the second group of monomers may be used alone or in combination of two or more.
  • the polymer A contained in the layer A may be a single type or a combination of two or more types.
  • the ion exchange capacity of the fluorinated polymer A having a sulfonic acid group can be adjusted by changing the ratio of the monomers represented by the general formulas (1) and (2).
  • the layer A may be a single layer or may be composed of two or more layers depending on the composition of the polymer A constituting the layer A.
  • the thickness is preferably 50 ⁇ m or more and 180 ⁇ m or less, and more preferably 80 ⁇ m or more and 160 ⁇ m or less. When the thickness of the layer A is within this range, the strength of the membrane body tends to be higher.
  • layer A-1 when layer A has a two-layer structure, the layer in contact with the anode is referred to as layer A-1, and the layer in contact with layer B is referred to as fluoropolymer layer A-2.
  • the fluorinated polymer forming the layer A-1 also referred to as “fluorinated polymer A-1”
  • fluorinated polymer A-2 fluorinated polymer A-2
  • the composition is preferably different from that of the other.
  • the thickness of the layer A-1 is preferably 10 ⁇ m or more and 60 ⁇ m or less.
  • the thickness of the layer A-2 is preferably 30 ⁇ m or more and 120 ⁇ m or less, and more preferably 40 ⁇ m or more and 100 ⁇ m or less.
  • the layer A-1 and the layer A-2 are within the above range, the strength of the film body can be sufficiently maintained. Further, the total thickness of the layer A-1 and the layer A-2 is preferably 50 ⁇ m or more and 180 ⁇ m or less, and more preferably 80 ⁇ m or more and 160 ⁇ m or less.
  • the layer A may be formed by laminating two or more films composed of polymers A having different compositions.
  • the layer B included in the ion exchange membrane of the present embodiment includes a fluorinated polymer B having a carboxylic acid group (hereinafter sometimes simply referred to as “polymer B”).
  • the “fluorinated polymer having a carboxylic acid group” refers to a fluorinated polymer having a carboxylic acid group or a carboxylic acid group precursor that can be converted into a carboxylic acid group by hydrolysis.
  • the layer B may contain a component other than the polymer B in a range of less than 10% by mass with respect to 100% by mass of the layer B, and 90% by mass or more of the polymer B with respect to 100% by mass of the layer B. It is particularly preferable that 100% by mass of the polymer B is contained.
  • metal chlorides such as potassium chloride, etc. are mentioned.
  • the fluorine-containing polymer having a carboxylic acid group constituting the layer B is, for example, a copolymer of the first group of monomers and the following third group of monomers, or the third group of monomers. It can be produced by homopolymerizing the body.
  • the polymer B is a copolymer, it may be a block copolymer or a random polymer.
  • the third group of monomers is not particularly limited, and examples thereof include vinyl compounds having a functional group that can be converted into a carboxylic acid type ion exchange group.
  • c represents an integer of 0 to 2
  • d represents an integer of 1 to 4
  • Y represents —F or —CF 3
  • R represents —CH 3 , —C 2 H 5 , or —C. It represents the 3 H 7.
  • Y is preferably —CF 3 and R is preferably —CH 3 .
  • the ion exchange membrane of this embodiment when used as an ion exchange membrane for alkaline electrolysis, it is preferable to use at least a perfluoromonomer as the third group of monomers.
  • the alkyl group (see R above) in the ester group is lost from the polymer at the time of hydrolysis, the alkyl group (R) may not be a perfluoroalkyl group.
  • the third group of monomers may be used alone or in combination of two or more. There are no particular limitations on the type of combination of the monomers constituting the polymer B, the ratio thereof, the degree of polymerization, and the like. Further, the polymer B contained in the layer B may be a single type or a combination of two or more types.
  • the ion exchange capacity of the fluoropolymer B having a carboxylic acid group can be adjusted by changing the ratio of the monomers represented by the general formulas (3) and (4).
  • the thickness of the layer B is preferably 5 ⁇ m or more and 50 ⁇ m or less, more preferably 5 ⁇ m or more and 20 ⁇ m or less.
  • the electrolytic performance of the ion exchange membrane tends to be further improved, and as a result, higher current efficiency and lower voltage tend to be achieved.
  • the cluster of the layer B easily contracts during electrolysis, [(ion cluster diameter of the layer B after electrolysis) / (ion cluster of the layer B before electrolysis). The value of (diameter)] tends to be small.
  • the layer A contains a polymer of the compound represented by the above formula (2), and the layer B has the above formula (3). It is preferable that the polymer of the compound represented by these is included.
  • the total thickness of layer A and layer B before electrolysis is preferably 55 ⁇ m or more, more preferably 55 ⁇ m or more and 210 ⁇ m or less, and 85 ⁇ m or more and 190 ⁇ m or less. More preferably it is.
  • the thickness of the layer A before electrolysis is preferably 50 to 180 ⁇ m, and the thickness of the layer B before electrolysis is preferably 5 to 30 ⁇ m.
  • each thickness of the layer A and the layer B means the thickness of each of the layer A and the layer B constituting the ion exchange membrane after the hydrolysis process described later and before performing the above-described electrolysis. It can be measured by the method described in the examples. Moreover, the said thickness can be controlled by adjusting the extrusion amount of the film forming process mentioned later, and the take-up speed of a film, for example.
  • ion clusters exist in a water-containing state.
  • An ion cluster is a space through which ions pass and is formed by association of ion exchange groups.
  • the ion cluster diameter varies depending on the degree of association of the ion exchange groups and the moisture content of the membrane body, and can be controlled by the ion exchange capacity of the fluoropolymer and the hydrolysis conditions. Further, the cluster diameter may change due to current application.
  • the ion exchange membrane of the present embodiment is excellent in both membrane strength and electrolysis performance of the ion exchange membrane because the ratio of ion cluster diameters before and after electrolysis is within a predetermined range.
  • the electrolysis condition (1) is that the ion exchange membrane is disposed between the anode chamber and the cathode chamber, a 3.5 N (N) aqueous sodium chloride solution is supplied to the anode chamber, and the cathode chamber is 10.8 N (N) aqueous sodium hydroxide solution is supplied, electrolysis is performed for 7 days under conditions of an electrolysis temperature of 85 ° C.
  • the “ion cluster diameter of the layer B before electrolysis” means the ion cluster diameter of the layer B in the ion exchange membrane after the hydrolysis step in the production of an ion exchange membrane described later and before being used for electrolysis. I mean. “Ion cluster diameter of layer B after electrolysis” refers to the ion cluster diameter of layer B in the ion exchange membrane after electrolysis is performed under the above electrolysis condition (1). In this specification, [(ion cluster diameter of layer B after electrolysis) / (ion cluster diameter of layer B before electrolysis)] is simply “ratio of ion cluster diameter of layer B before and after electrolysis”. May be described.
  • the ratio of the ion cluster diameters of the layer B before and after electrolysis is 0.83 or more, it is possible to suppress the voltage during electrolysis from increasing, and to suppress degradation in electrolysis performance.
  • the reason for this is not limited to the following, but is thought to be because the ion cluster diameter of the layer B before electrolysis does not become too large, and a significant increase in thickness due to an increase in the moisture content of the ion exchange membrane can be suppressed. It is done.
  • the ratio of the ion cluster diameters of the layer B before and after electrolysis is 0.95 or less, the ion selectivity during electrolysis is good.
  • the ratio of the ion cluster diameter of the layer B before and after electrolysis is 0.83 to 0.95.
  • the ratio of the ion cluster diameter of the layer B before and after electrolysis is such that the ion cluster diameter of the layer B before energization is increased, the ion cluster diameter of the layer B after energization is decreased, and the ratio is decreased.
  • the above range can be controlled.
  • the ion cluster diameter of the layer B before energization tends to be increased by increasing the treatment temperature of the salt exchange treatment described later, increasing the treatment time, or the like.
  • the ion cluster diameter of layer A in the ion exchange membrane of the present embodiment is preferably 3.0 to 4.5 nm, more preferably 3.2 to 4.0 nm, and more preferably 3.4 to More preferably, it is 3.8 nm.
  • the ion cluster diameter of layer B is preferably 2.5 to 4.0 nm, more preferably 3.0 to 3.8 nm, and 3.2 to 3.6 nm. More preferably it is.
  • the ion cluster diameter in case the layer A is comprised by two or more layers from which a composition differs be an average value thereof.
  • the average value of the ion cluster diameters of layer A-1 and layer A-2 is 3.0 to 4.5 nm.
  • the electrolytic performance and strength of the ion exchange membrane tend to be further improved. That is, when the cluster diameter is larger than the lower limit value of the above range, the strength tends to be further improved, and when the cluster diameter is smaller than the upper limit value of the above range, an increase in voltage tends to be further suppressed.
  • the ion cluster diameter is a state in which the layer A and the layer B are separated and separated into a single layer film composed only of each layer, and then the obtained film of the layer A and the layer B is impregnated with water at 25 ° C. And measured by small angle X-ray scattering (SAXS).
  • SAXS small angle X-ray scattering
  • the ion cluster diameter of the layer B is preferably 2.0 to 3.3 nm, and preferably 2.5 to 3.2 nm. Is more preferable. Furthermore, in the ion exchange membrane of this embodiment, from the viewpoint of further improving electrolysis performance and strength, the ion cluster diameter of the layer B before electrolysis is 2.5 to 4.0 nm, and the layer B after electrolysis The ion cluster diameter is particularly preferably 2.0 to 3.3 nm.
  • the ion exchange capacity of the fluoropolymer constituting the layer A and the layer B is one of the factors that control the ion cluster diameter.
  • the ion exchange capacity of the fluoropolymer refers to the equivalent of exchange groups per gram of dry resin, and can be measured by neutralization titration.
  • the ion exchange capacity of the fluoropolymer A constituting the layer A is preferably 0.8 to 1.2 meq / g, more preferably 0.9 to 1.1 meq / g.
  • the ion exchange capacity of the fluoropolymer B constituting the layer B is preferably 0.75 meq / g or more, and more preferably 0.81 to 0.98 meq / g.
  • the ion exchange capacity of the fluoropolymer is in the above range, the electrolytic performance and strength of the ion exchange membrane tend to be more effectively suppressed.
  • the water content in the ion exchange membrane is increased when the ion exchange capacity of the fluoropolymer B constituting the layer B is 0.81 or more, cluster shrinkage is likely to occur during electrolysis.
  • the larger the ion exchange capacity of each layer the larger the ion cluster diameter of the layer, and the smaller the ion exchange capacity, the smaller the ion cluster diameter.
  • the ion exchange capacity of each layer can be controlled by, for example, selection of a monomer constituting the fluoropolymer contained in the layer and the content of the monomer. Specifically, it can be controlled by, for example, the charging ratios of the general formulas (1) to (3) described above, and more specifically, the simple formulas represented by the general formulas (2) and (3) containing ion exchange groups.
  • the ion exchange capacity tends to increase as the content of the monomer increases.
  • the ion exchange membrane of the present embodiment preferably includes the reinforcing core material 3 in the membrane.
  • the reinforcing core material can enhance the strength and dimensional stability of the ion exchange membrane, and is preferably present inside the membrane body.
  • the reinforcing core material is preferably a woven fabric woven with reinforcing yarn.
  • the material of the reinforcing core material is preferably a fiber made of a fluorine-based polymer because long-term heat resistance and chemical resistance are required.
  • the material of the reinforcing core material is not particularly limited.
  • polytetrafluoroethylene PTFE
  • tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer PFA
  • tetrafluoroethylene-ethylene copolymer ETFE
  • examples thereof include tetrafluoroethylene-hexafluoropropylene copolymer, trifluorochloroethylene-ethylene copolymer, and vinylidene fluoride polymer (PVDF), and it is particularly preferable to use a fiber made of polytetrafluoroethylene.
  • the yarn diameter of the reinforcing core material is preferably 20 to 300 denier, more preferably 50 to 250 denier, and the weave density (the number of driving per unit length) is preferably 5 to 50 / inch.
  • Examples of the shape of the reinforcing core material include a woven fabric, a non-woven fabric, and a knitted fabric, but a woven fabric is preferable.
  • the thickness of the woven fabric is preferably 30 to 250 ⁇ m, more preferably 30 to 150 ⁇ m.
  • the woven fabric or knitted fabric is not particularly limited.
  • monofilaments, multifilaments, yarns thereof, slit yarns, or the like are used. Is used.
  • the aperture ratio of the reinforcing core material is not particularly limited, but is preferably 30% or more, more preferably 50% or more and 90% or less.
  • the aperture ratio is preferably 30% or more from the viewpoint of electrochemical properties as an ion exchange membrane, and 90% or less from the viewpoint of mechanical strength of the membrane.
  • the aperture ratio is a ratio of the total area (B) through which substances such as ions can pass through the ion exchange membrane to the total surface area (A) of the ion exchange membrane, and is represented by (B) / (A).
  • (B) is the total area of the regions in the ion exchange membrane where ions, electrolytes, etc. are not blocked by the reinforcing core material, reinforcing yarns, etc. contained in the ion exchange membrane.
  • the method for measuring the aperture ratio is as follows.
  • (B) is calculated
  • said (A) is calculated
  • a tape yarn obtained by slitting a high-strength porous sheet made of PTFE into a tape shape, or a highly oriented monofilament made of PTFE of 50 to 300 denier is used. It is preferable to use a plain weave structure with a weave density of 10 to 50 pieces / inch, a thickness in the range of 50 to 100 ⁇ m, and an aperture ratio of 60% or more.
  • the woven fabric may contain auxiliary fibers, which are usually called sacrificial core materials, for the purpose of preventing misalignment of the reinforcing core material in the membrane manufacturing process.
  • auxiliary fibers which are usually called sacrificial core materials, for the purpose of preventing misalignment of the reinforcing core material in the membrane manufacturing process.
  • the sacrificial core material is soluble in the film production process or in an electrolytic environment, and is not particularly limited, and rayon, polyethylene terephthalate (PET), cellulose, polyamide, and the like are used.
  • the amount of the mixed woven fabric is preferably 10 to 80% by mass, more preferably 30 to 70% by mass, based on the entire woven or knitted fabric.
  • the ion exchange membrane of this embodiment may have communication holes 2a and 2b in the membrane.
  • the communication hole refers to a hole that can serve as a flow path for cations generated during electrolysis or an electrolytic solution. By forming the communication hole, the mobility of alkali ions or electrolyte generated during electrolysis tends to be further improved.
  • the shape of the communication hole is not particularly limited, but according to the manufacturing method described later, the shape of the sacrificial core material used for forming the communication hole can be obtained.
  • the communication hole is preferably formed so as to alternately pass through the anode side (layer A side) and the cathode side (layer B side) of the reinforcing core material.
  • the ion exchange membrane of this embodiment may have coating layers 6 and 7 for preventing gas adhesion on the cathode side and the anode side as necessary.
  • a material which comprises a coating layer It is preferable that an inorganic substance is included from a viewpoint of gas adhesion prevention.
  • an inorganic substance For example, a zirconium oxide, a titanium oxide, etc. are mentioned. It does not specifically limit as a method of forming a coating layer, A well-known method can be used. For example, a method in which a liquid in which fine particles of inorganic oxide are dispersed in a binder polymer solution is applied by spraying or the like can be used.
  • the ion exchange membrane according to this embodiment is controlled so that the ratio of the ion cluster diameter of the layer B containing the fluoropolymer having a carboxylic acid group before and after electrolysis under the electrolysis condition (1) is within the above range. Therefore, the ion exchange capacity and hydrolysis conditions of the fluoropolymer A and the fluoropolymer B are adjusted.
  • the manufacturing method of the ion exchange membrane of this embodiment is demonstrated in detail.
  • the method for producing the ion exchange membrane of the present embodiment is not particularly limited, 1) a step of producing a fluorine-containing polymer having an ion exchange group or an ion exchange group precursor that can be converted into an ion exchange group by hydrolysis (polymer production step); 2) A step of obtaining a reinforcing core material woven with sacrificial yarn (a manufacturing process of a reinforcing core material); 3) A step of forming a film of a fluoropolymer having an ion exchange group or an ion exchange group precursor that can be converted into an ion exchange group by hydrolysis (filming step); 4) A step of embedding the reinforcing core material and the film to form a composite film (embedding step); 5) A production method comprising hydrolyzing the composite membrane with an acid or an alkali (hydrolysis step) is preferable.
  • the “ion exchange group” means a sulfonic acid group or a carboxylic acid group.
  • the ion exchange membrane of this embodiment controls the ion exchange capacity of the fluoropolymer in the polymer production process of 1) and / or hydrolysis in the hydrolysis process of 5) among the above processes, for example. By controlling the conditions, the ratio of the ion cluster diameters of the layer B before and after electrolysis can be adjusted. Hereinafter, each step will be described.
  • the fluoropolymer A having a sulfonic acid group constituting the layer A is, for example, copolymerized with a first group of monomers and a second group of monomers, or with a second group of monomers. It can be produced by homopolymerizing the monomer.
  • the fluorine-containing polymer B having a carboxylic acid group constituting the layer B is, for example, as described above, for example, copolymerizing a first group of monomers and a third group of monomers, or the third group. These monomers can be produced by homopolymerization.
  • the polymerization method is not particularly limited, for example, a polymerization method generally used for polymerization of fluorinated ethylene, particularly tetrafluoroethylene can be used.
  • the fluoropolymer can be obtained, for example, by a non-aqueous method.
  • a non-aqueous method for example, an inert solvent such as perfluorohydrocarbon or chlorofluorocarbon is used, and in the presence of a radical polymerization initiator such as perfluorocarbon peroxide or azo compound, the temperature is 0 to 200 ° C., the pressure is 0.
  • the polymerization reaction can be performed under conditions of 1 to 20 MPa.
  • the type and ratio of the above-mentioned monomers are not particularly limited, and may be determined according to the type and amount of the functional group desired to be imparted to the obtained fluorinated polymer.
  • the mixing ratio of the raw material monomers may be adjusted in the production of the fluoropolymer forming each layer.
  • the fluoropolymer A having a sulfonic acid group constituting the layer A is produced, for example, by polymerizing the monomer represented by the general formula (2) or represented by the general formula (1). It is preferable that the monomer represented by the general formula (2) is copolymerized and produced at the following molar ratio.
  • Monomer represented by Formula (1): Monomer represented by Formula (2) 4: 1 to 7: 1.
  • the fluoropolymer B having a carboxylic acid group constituting the layer B is produced, for example, by polymerizing the monomer represented by the general formula (3) or represented by the general formula (1). It is preferable that the monomer to be produced is copolymerized with the monomer represented by the general formula (3) at the following molar ratio.
  • Monomer represented by general formula (1): Monomer represented by general formula (3) 6: 1 to 9: 1.
  • the reinforcing core material is embedded in the membrane from the viewpoint of further improving the strength of the membrane.
  • the sacrificial yarn is also woven into the reinforcing core material.
  • the blended amount of the sacrificial yarn is preferably 10 to 80% by mass, more preferably 30 to 70% by mass, based on the entire reinforcing core material.
  • the sacrificial yarn is preferably polyvinyl alcohol having a thickness of 20 to 50 denier and made of monofilament or multifilament.
  • the method for forming the fluoropolymer obtained in the step 1) into a film is not particularly limited, but it is preferable to use an extruder.
  • Examples of the method for forming a film include the following methods.
  • the layer A and the layer B each constitute a single layer, there can be mentioned a method in which the fluoropolymer A and the fluoropolymer B are formed into films separately.
  • layer A has a two-layer structure composed of layer A-1 and layer A-2, a fluoropolymer A-2 and a fluoropolymer B are coextruded to form a composite film, and a fluoropolymer is separately provided.
  • the co-extrusion of the fluoropolymer A-2 and the fluoropolymer B is preferable because it contributes to increasing the adhesive strength at the interface.
  • the embedding step it is preferable to embed the reinforcing core material obtained in the step 2) and the film obtained in the step 3) on a heated drum.
  • a heat-resistant release paper with air permeability it is embedded and integrated while removing air between each layer by reducing the pressure at a temperature at which the fluoropolymer constituting each layer melts.
  • a membrane is obtained.
  • Examples of the order of laminating the reinforcing core material and the film include the following methods in accordance with the step 3).
  • a method of laminating a release paper, a film of the layer A, a reinforcing core material, and a film of the layer B in this order on the drum can be mentioned.
  • the layer A has a two-layer structure composed of the layer A-1 and the layer A-2
  • the release paper, the film of the layer A-1, the reinforcing core material, the layer A-2 and the layer B are formed on the drum.
  • a method of laminating a composite film in this order; or a method of laminating release paper, a composite film of layer A-1 and layer A-2, a reinforcing core material, and a layer B on a drum are examples of the order of laminating the reinforcing core material and the film.
  • a convex portion made of a molten polymer can be formed at the time of embedding by using a release paper embossed in advance.
  • the composite membrane obtained in the step 4) is hydrolyzed with acid or alkali.
  • the ratio of the ion cluster diameters of the layer B before and after electrolysis can be controlled by changing the hydrolysis conditions such as the solution composition, hydrolysis temperature, time and the like.
  • the hydrolysis is carried out by, for example, an aqueous solution of 2.5 to 4.0 N (N) potassium hydroxide (KOH) and 20 to 40% by mass DMSO (dimethylsulfoxide). It is preferably carried out at 40 to 90 ° C. for 10 minutes to 24 hours.
  • salt exchange treatment is preferably performed using a 0.5 to 0.7 N (N) sodium hydroxide (NaOH) solution at 50 to 95 ° C.
  • N sodium hydroxide
  • the treatment time is preferably less than 2 hours. .
  • the ion cluster diameter can be controlled by changing the composition, temperature, time, etc. of the liquid used in the hydrolysis process. For example, when increasing the ion cluster diameter, it can be achieved by decreasing the KOH concentration, increasing the DMSO concentration, increasing the hydrolysis temperature, or lengthening the hydrolysis time.
  • the ratio of the ion cluster diameter of the layer B before and after electrolysis can also be controlled, and the cluster diameter of the layer B after electrolysis can be made much smaller than before electrolysis. .
  • the ion cluster diameter of the layer B before electrolysis is controlled to be large, the ratio of the ion cluster diameter of the layer B before and after electrolysis becomes small.
  • a coating layer may be provided on the surface of the hydrolyzed membrane.
  • the electrolytic cell of this embodiment includes the ion exchange membrane of this embodiment.
  • FIG. 2 shows a schematic diagram of an example of the electrolytic cell of the present embodiment.
  • the electrolytic cell 13 includes at least the anode 11, the cathode 12, and the ion exchange membrane 1 of this embodiment disposed between the anode and the cathode.
  • an electrolytic cell can be used for various electrolysis, the case where it is used for electrolysis of aqueous alkali chloride solution is demonstrated as a typical example below.
  • Electrolysis conditions are not particularly limited, and can be performed under known conditions.
  • a 2.5 to 5.5 N (N) alkali chloride aqueous solution is supplied to the anode chamber, water or a diluted alkali hydroxide aqueous solution is supplied to the cathode chamber, the electrolysis temperature is 50 to 120 ° C., and the current density is Electrolysis can be performed under conditions of 0.5 to 10 kA / m 2 .
  • the configuration of the electrolytic cell of this embodiment is not particularly limited, and may be, for example, a monopolar type or a bipolar type.
  • the material constituting the electrolytic cell is not particularly limited.
  • the material for the anode chamber is preferably titanium or the like resistant to alkali chloride and chlorine, and the material for the cathode chamber is resistant to alkali hydroxide and hydrogen. Nickel or the like is preferred.
  • the electrode may be arranged with an appropriate interval between the ion exchange membrane and the anode, but the anode and the ion exchange membrane may be arranged in contact with each other.
  • the cathode is generally arranged with an appropriate interval from the ion exchange membrane, but a contact type electrolytic cell (zero gap electrolytic cell) without this interval may be used.
  • Each measuring method in an Example and a comparative example is as follows.
  • [Measurement method of ion cluster diameter] The ion cluster diameter was measured by small angle X-ray scattering (SAXS).
  • SAXS small angle X-ray scattering
  • the coating layer was removed with a brush, and then the layer A and the layer B were peeled off, and a single-layer membrane consisting only of each layer was impregnated with water at 25 ° C Measurements were made in the state.
  • the SAXS measurement was performed using a Rigaku SAXS device NanoViewer.
  • the small-angle region was measured using a sample-detector distance of 841 mm and PILATUS100K as the detector, and the wide-angle region was measured using a sample-detector distance of 75 mm using an imaging plate as the detector.
  • Scattering data was obtained at scattering angles in the range of 1 ° ⁇ scattering angle (2 ⁇ ) ⁇ 30 °. Measurement was performed with seven samples stacked, and the exposure time was 15 minutes for both the small-angle and wide-angle measurement.
  • the data was made one-dimensional by a rational method such as an annular average.
  • the obtained SAXS profile was subjected to correction derived from the detector, such as correction of the dark current of the detector, and correction for scattering by substances other than the sample (empty cell scattering correction).
  • correction for the X-ray beam shape was also performed.
  • Yasuhiro Hashimoto, Naoki Sakamoto, Hideki Iijima Polymer Papers vol. 63 No. 3 pp. 166 The ion cluster diameter was determined according to the method described in 2006.
  • the ion cluster structure is represented by a core-shell type hard sphere having a particle size distribution, and using the theoretical scattering formula based on this model, scattering from the ion cluster of the measured SAXS profile is dominant.
  • the average cluster diameter (ion cluster diameter) and ion cluster number density were determined by fitting the SAXS profile of the region.
  • the core portion corresponds to the ion cluster, and the core diameter is the ion cluster diameter.
  • the shell layer is virtual and the electron density of the shell layer is the same as that of the matrix portion.
  • the thickness of the shell layer was 0.25 nm.
  • the following formula (A) shows the theoretical scattering formula of the model used for fitting.
  • the fitting range was 1.4 ⁇ 2 ⁇ ⁇ 6.7 °.
  • C is a constant
  • N is the cluster number density
  • is the volume fraction when assuming the core, that is, the ionic cluster portion and the surrounding virtual shell as a hard sphere
  • is the Bragg angle
  • is used.
  • t is shell layer thickness
  • a 0 is an average ion cluster radius
  • ⁇ (x) is a gamma function
  • is a standard deviation of the ion cluster radius (core radius).
  • P (a) represents a distribution function of the core radius a.
  • M is a parameter representing the distribution.
  • Ib (q) represents background scattering including scattering from excess water and thermal diffuse scattering at the time of measurement, and is assumed to be a constant here.
  • N, ⁇ , a 0 , ⁇ , and Ib (q) are set as variable parameters when fitting.
  • the ion cluster diameter means an average diameter (2a 0 ) of the ion cluster.
  • the ion exchange membrane before electrolysis is cut off from the layer A-1 side or the layer B side in the cross-sectional direction with a width of about 100 ⁇ m, and in a water-containing state, the cross-section is directed upward to use an optical microscope The thickness was measured.
  • the part to be cut off is an intermediate part (valley part) of the adjacent reinforcing core material
  • the location to be measured in the obtained cross-sectional view is an intermediate part of the adjacent reinforcing core material 3 as shown in FIG.
  • the thicknesses of layer A and layer B were measured with the direction from ( ⁇ ) to ( ⁇ ) as the thickness direction.
  • electrolytic performance evaluation As the electrolytic cell, a zero gap electrolytic cell in which the configuration of the electrolytic cell 13 shown in FIG. 2 was changed as follows was used. That is, the positional relationship between the ion exchange membrane 1 and the anode 11 and the cathode 12 in the electrolytic cell 13 is such that the ion exchange membrane 1 and the anode 11 are in contact with each other and the ion exchange membrane 1 and the cathode 12 are in contact with each other (so-called “ An electrolytic cell was prepared so as to be in a “zero gap” state).
  • electrolysis was performed under the following conditions, and the electrolysis performance was evaluated based on the electrolysis voltage, current efficiency, and the amount of sodium chloride in the sodium hydroxide produced.
  • the case where the ion exchange membrane is in contact with the entire electrode surface of the cathode and the anode or in contact with a certain point on the electrode surface is in a zero gap state.
  • Salt water was supplied to the anode side while adjusting the sodium chloride concentration to be 3.5 N (N), and water was supplied while maintaining the sodium hydroxide concentration at 10.8 N (N) on the cathode side. .
  • the temperature of the saline solution was set to 85 ° C., and electrolysis was performed at a current density of 6 kA / m 2 and a condition that the liquid pressure on the cathode side of the electrolytic cell was 5.3 kPa higher than the liquid pressure on the anode side.
  • the concentration of sodium chloride contained in caustic soda during electrolysis for 7 days was measured by the method of JIS standard K1200-3-1.
  • the electrolytically generated caustic soda was neutralized by adding nitric acid, and an iron (III) sulfate ammonium solution and mercury (II) thiocyanate were added to color the solution.
  • the solution was subjected to spectrophotometric analysis with a UV meter to measure the sodium chloride concentration in caustic soda, and the measurement value on day 7 was determined as the sodium chloride concentration in caustic soda.
  • a JASCO V-630 spectrophotometer was used as the UV meter.
  • the current efficiency was determined by measuring the mass and concentration of the produced caustic soda and dividing the number of moles of caustic soda produced in a certain period of time by the number of moles of electrons flowing during that time.
  • the ion exchange capacity was confirmed by neutralization titration.
  • the ion exchange capacity was similarly confirmed in the following examples and comparative examples.
  • CF 2 CX 1 X 2 (1) CF 2 ⁇ CF— (OCF 2 CYF) a —O— (CF 2 ) b —SO 2 F (2)
  • the fluoropolymer A (A-1, A-2) was prepared by solution polymerization shown below.
  • CF 2 CF 2 (TFE)
  • TFE CF 2 (TFE) 2
  • a 5% HFC43-10mee solution of (CF 3 CF 2 CF 2 COO) 2 was added as a polymerization initiator to initiate the reaction.
  • methanol was added as a chain transfer agent.
  • the polymer A was obtained in the same manner as the polymer A, except that a 5% HFC43-10mee solution of (CF 3 CF 2 CF 2 COO) 2 was added instead of methanol in the middle without using a chain transfer agent.
  • pellets of fluoropolymers A and B were obtained in the same manner.
  • the obtained fluoropolymer A-2 and fluoropolymer B were co-extruded by an apparatus equipped with two extruders, a two-layer co-extrusion T-die, and a take-out machine, A layer film (a1) was obtained.
  • the thickness of the layer A-2 was 80 ⁇ m
  • the thickness of the layer B was 13 ⁇ m.
  • the layers A-2 and B were distinguished by applying polarized light.
  • a single layer film (b1) of layer A-1 having a thickness of 20 ⁇ m was obtained using a single layer T die.
  • Plain weave was used in an alternating arrangement so that the number of sacrificial yarns was 64 / inch, which is 4 times that of PTFE, and a woven fabric having a thickness of 100 ⁇ m was obtained.
  • the obtained woven fabric was pressure-bonded with a heated metal roll to adjust the thickness of the woven fabric to 70 ⁇ m. At this time, the opening ratio of only the PTFE yarn was 75%.
  • This composite membrane was hydrolyzed in an aqueous solution containing 30% by mass of DMSO and 4.0 N (N) of KOH at a temperature of 80 ° C. for 0.5 hour, and then 0.6 N (N) under the condition of 50 ° C. Salt exchange treatment was performed using NaOH solution for 1 hour.
  • CF 2 ⁇ CF 2 and CF 2 ⁇ CFOCF 2 CF (CF 3 ) O (CF 2 ) 3 SO 2 F having an ion exchange capacity of 1.0 meq / g in a mixed solution of 50/50 parts by mass of water and ethanol 20% by mass of a fluorinated polymer having a sulfonic acid group obtained by hydrolyzing the copolymer was dissolved.
  • the ion exchange membrane obtained as described above was electrolyzed.
  • the value of (ion cluster diameter of layer B after electrolysis) / (ion cluster diameter of layer B before electrolysis) was 0.91.
  • the measurement results are shown in Table 1.
  • the obtained fluoropolymer A-2 and fluoropolymer B were co-extruded by an apparatus equipped with two extruders, a two-layer co-extrusion T-die, and a take-out machine, A layer film (a2) was obtained.
  • the thickness of layer A-2 was 80 ⁇ m
  • the thickness of layer B was 13 ⁇ m.
  • a single layer film (b2) of layer A-1 having a thickness of 20 ⁇ m was obtained using a single layer T die.
  • This composite membrane was hydrolyzed in an aqueous solution containing 30% by mass of DMSO and 4.0 N (N) KOH at a temperature of 50 ° C. for 24 hours, and then a 0.6 N (N) NaOH solution under the condition of 90 ° C. A salt exchange treatment was performed for 0.5 hour.
  • the ion exchange membrane obtained as described above was electrolyzed.
  • the value of (ion cluster diameter of layer B after electrolysis) / (ion cluster diameter of layer B before electrolysis) was 0.93.
  • the measurement results are shown in Table 1.
  • Fluoropolymer A-2 and fluoropolymer B were co-extruded with two extruders, a two-layer co-extrusion T-die, and an apparatus equipped with a take-out machine to form a 93 ⁇ m-thick two-layer film ( a3) was obtained.
  • the thickness of the fluoropolymer layer A-2 was 80 ⁇ m
  • the thickness of the fluoropolymer layer B was 13 ⁇ m.
  • a monolayer film (b3) of the fluoropolymer layer A-1 having a thickness of 20 ⁇ m was obtained by a monolayer T die.
  • This composite membrane was hydrolyzed in an aqueous solution containing 30% by mass of DMSO and 4.0 N (N) KOH at a temperature of 50 ° C. for 24 hours, and then a 0.6 N (N) NaOH solution under the condition of 95 ° C.
  • the salt exchange treatment was performed for 1 hour.
  • CF 2 ⁇ CF 2 and CF 2 ⁇ CFOCF 2 CF (CF 3 ) O (CF 2 ) 3 SO 2 F having an ion exchange capacity of 1.0 meq / g in a mixed solution of 50/50 parts by mass of water and ethanol 20% by mass of a fluorinated polymer having a sulfonic acid group obtained by hydrolyzing the copolymer was dissolved.
  • the ion exchange membrane obtained as described above was electrolyzed.
  • the value of (ion cluster diameter of layer B after electrolysis) / (ion cluster diameter of layer B before electrolysis) was 0.86.
  • the measurement results are shown in Table 1.
  • Fluoropolymer A-2 and fluoropolymer B were co-extruded with two extruders, a two-layer co-extrusion T-die, and an apparatus equipped with a take-out machine to form a two-layer film (100 ⁇ m thick) a4) was obtained.
  • the thickness of the fluoropolymer layer A-2 was 85 ⁇ m
  • the thickness of the fluoropolymer layer B was 15 ⁇ m.
  • a single layer film (b4) of fluoropolymer layer A-1 having a thickness of 25 ⁇ m was obtained by a single layer T die.
  • This composite membrane was hydrolyzed in an aqueous solution containing 30% by mass of DMSO and 4.0 N (N) of KOH at a temperature of 80 ° C. for 0.5 hour, and then 0.6 N (N) under the condition of 50 ° C. Salt exchange treatment was performed using NaOH solution for 1 hour.
  • CF 2 ⁇ CF 2 and CF 2 ⁇ CFOCF 2 CF (CF 3 ) O (CF 2 ) 3 SO 2 F having an ion exchange capacity of 1.0 meq / g in a mixed solution of 50/50 parts by mass of water and ethanol 20% by mass of a fluorinated polymer having a sulfonic acid group obtained by hydrolyzing the copolymer was dissolved.
  • the obtained fluoropolymer A-2 and fluoropolymer B were co-extruded by an apparatus equipped with two extruders, a two-layer co-extrusion T-die, and a take-out machine, A layer film (a1) was obtained.
  • the thickness of the layer A-2 was 80 ⁇ m
  • the thickness of the layer B was 13 ⁇ m.
  • the layers A-2 and B were distinguished by applying polarized light.
  • a single layer film (b1) of layer A-1 having a thickness of 20 ⁇ m was obtained using a single layer T die.
  • a 100-denier tape yarn made of polytetrafluoroethylene (PTFE) was twisted 900 times / m to obtain a woven fabric having a thickness of 100 ⁇ m. .
  • the obtained woven fabric was pressure-bonded with a heated metal roll to adjust the thickness of the woven fabric to 70 ⁇ m. At this time, the opening ratio of only the PTFE yarn was 75%.
  • This composite membrane was hydrolyzed in an aqueous solution containing 30% by mass of DMSO and 4.0 N (N) of KOH at a temperature of 80 ° C. for 0.5 hour, and then 0.6 N (N) under the condition of 50 ° C. Salt exchange treatment was performed using NaOH solution for 1 hour.
  • CF 2 ⁇ CF 2 and CF 2 ⁇ CFOCF 2 CF (CF 3 ) O (CF 2 ) 3 SO 2 F having an ion exchange capacity of 1.0 meq / g in a mixed solution of 50/50 parts by mass of water and ethanol 20% by mass of a fluorinated polymer having a sulfonic acid group obtained by hydrolyzing the copolymer was dissolved.
  • the ion exchange membrane obtained as described above was electrolyzed.
  • the value of (ion cluster diameter of layer B after electrolysis) / (ion cluster diameter of layer B before electrolysis) was 0.95.
  • the measurement results are shown in Table 1.
  • the obtained fluoropolymer A-2 and fluoropolymer B were co-extruded by an apparatus equipped with two extruders, a two-layer co-extrusion T-die, and a take-out machine, A layer film (a5) was obtained.
  • the thickness of layer A-2 was 80 ⁇ m
  • the thickness of layer B was 13 ⁇ m.
  • a single layer film (b5) of layer A-1 having a thickness of 20 ⁇ m was obtained using a single layer T die.
  • the reinforcing core material the same material as in Example 1 was used.
  • This composite membrane was hydrolyzed in an aqueous solution containing 30% by mass of DMSO and 4.0 N (N) of KOH at a temperature of 80 ° C. for 0.5 hour, and then 0.6 N (N) under the condition of 50 ° C. Salt exchange treatment was performed using NaOH solution for 1 hour.
  • CF 2 ⁇ CF 2 and CF 2 ⁇ CFOCF 2 CF (CF 3 ) O (CF 2 ) 3 SO 2 F having an ion exchange capacity of 1.0 meq / g in a mixed solution of 50/50 parts by mass of water and ethanol 20% by mass of a fluorinated polymer having a sulfonic acid group obtained by hydrolyzing the copolymer was dissolved.
  • the ion exchange membrane obtained as described above was electrolyzed.
  • the electrolysis was carried out for 7 days in the above-mentioned electrolytic cell in which the fluoropolymer layer A was arranged toward the anode side, at a current density of 6 kA / m 2 and at a temperature of 85 ° C.
  • the items measured were the electrolysis voltage, current efficiency, and the amount of sodium chloride in the caustic soda produced, and the electrolysis performance was evaluated based on the measured values on the seventh day after the start of electrolysis. At this time, the value of (ion cluster diameter of layer B after electrolysis) / (ion cluster diameter of layer B before electrolysis) was 0.98.
  • the current efficiency was measured by the same method as in Example 1.
  • the obtained fluoropolymer A-2 and fluoropolymer B were co-extruded by an apparatus equipped with two extruders, a two-layer co-extrusion T-die, and a take-out machine, A layer film (a6) was obtained.
  • the thickness of layer A-2 was 80 ⁇ m
  • the thickness of layer B was 13 ⁇ m.
  • a single layer film (b6) of layer A-1 having a thickness of 20 ⁇ m was obtained using a single layer T die.
  • This composite membrane was hydrolyzed in an aqueous solution containing 30% by mass of DMSO and 4.0 N (N) of KOH at a temperature of 50 ° C. for 0.5 hours, and then 0.6 N (N) under the condition of 95 ° C. Salt exchange treatment was performed using NaOH solution for 5 hours.
  • CF 2 ⁇ CF 2 and CF 2 ⁇ CFOCF 2 CF (CF 3 ) O (CF 2 ) 3 SO 2 F having an ion exchange capacity of 1.0 meq / g in a mixed solution of 50/50 parts by mass of water and ethanol 20% by mass of a fluorinated polymer having a sulfonic acid group obtained by hydrolyzing the copolymer was dissolved.
  • the ion exchange membrane obtained as described above was electrolyzed.
  • the value of (ion cluster diameter of layer B after electrolysis) / (ion cluster diameter of layer B before electrolysis) was 0.77.
  • the measurement results are shown in Table 1.
  • Fluoropolymer A-2 and fluoropolymer B co-extruded with two extruders, two-layer co-extrusion T-die, and take-out machine, and a two-layer film with a thickness of 93 ⁇ m (A5) was obtained.
  • the thickness of the fluoropolymer layer A-2 was 75 ⁇ m
  • the thickness of the layer B was 15 ⁇ m.
  • a single layer film (b5) of layer A-1 having a thickness of 20 ⁇ m was obtained using a single layer T die.
  • This composite membrane was hydrolyzed in an aqueous solution containing 30% by mass of DMSO and 4.0 N (N) of KOH at a temperature of 75 ° C. for 0.75 hour, and then 0.6 N (N) under the condition of 85 ° C. Salt exchange treatment was performed using NaOH solution.
  • CF 2 ⁇ CF 2 and CF 2 ⁇ CFOCF 2 CF (CF 3 ) O (CF 2 ) 3 SO 2 F having an ion exchange capacity of 1.0 meq / g in a mixed solution of 50/50 parts by mass of water and ethanol 20% by mass of a fluorinated polymer having a sulfonic acid group obtained by hydrolyzing the copolymer was dissolved.
  • 40% by mass of zirconium oxide having an average primary particle diameter of 1 ⁇ m was added, and a suspension was obtained by uniformly dispersing with a ball mill. The suspension was applied to both surfaces of the ion exchange membrane after the hydrolysis and salt exchange treatment by a spray method and dried to form a coating layer.
  • the ion exchange membrane obtained as described above was electrolyzed.
  • the value of (ion cluster diameter of layer B after electrolysis) / (ion cluster diameter of layer B before electrolysis) was 0.98.
  • the measurement results are shown in Table 1.
  • Fluoropolymer A-2 and fluoropolymer B co-extruded with two extruders, two-layer co-extrusion T-die, and take-out machine, and a two-layer film with a thickness of 93 ⁇ m (A5) was obtained.
  • the thickness of the fluoropolymer layer A-2 was 75 ⁇ m
  • the thickness of the layer B was 15 ⁇ m.
  • a single layer film (b5) of layer A-1 having a thickness of 20 ⁇ m was obtained using a single layer T die.
  • This composite membrane was hydrolyzed in an aqueous solution containing 30% by mass of DMSO and 4.0 N (N) KOH at a temperature of 90 ° C. for 0.75 hour, and then 0.6 N (N) under the condition of 85 ° C. Salt exchange treatment was performed using NaOH solution.
  • CF 2 ⁇ CF 2 and CF 2 ⁇ CFOCF 2 CF (CF 3 ) O (CF 2 ) 3 SO 2 F having an ion exchange capacity of 1.0 meq / g in a mixed solution of 50/50 parts by mass of water and ethanol 20% by mass of a fluorinated polymer having a sulfonic acid group obtained by hydrolyzing the copolymer was dissolved.
  • 40% by mass of zirconium oxide having an average primary particle diameter of 1 ⁇ m was added, and a suspension was obtained by uniformly dispersing with a ball mill. The suspension was applied to both surfaces of the ion exchange membrane after the hydrolysis and salt exchange treatment by a spray method and dried to form a coating layer.
  • the ion exchange membrane obtained as described above was electrolyzed.
  • the value of (ion cluster diameter of layer B after electrolysis) / (ion cluster diameter of layer B before electrolysis) was 0.97.
  • the measurement results are shown in Table 1.
  • Fluoropolymer A-2 and fluoropolymer B are co-extruded with two extruders, two-layer co-extrusion T-die, and a take-out machine to form a two-layer film with a thickness of 105 ⁇ m (A5) was obtained.
  • the thickness of the fluoropolymer layer A-2 was 80 ⁇ m
  • the thickness of the layer B was 25 ⁇ m.
  • a single layer film (b5) of layer A-1 having a thickness of 20 ⁇ m was obtained using a single layer T die.
  • This composite membrane was hydrolyzed in an aqueous solution containing 30% by mass of DMSO and 4.0 N (N) of KOH at a temperature of 80 ° C. for 0.5 hour, and then 0.6 N (N) under the condition of 50 ° C. Salt exchange treatment was performed using NaOH solution.
  • CF 2 ⁇ CF 2 and CF 2 ⁇ CFOCF 2 CF (CF 3 ) O (CF 2 ) 3 SO 2 F having an ion exchange capacity of 1.0 meq / g in a mixed solution of 50/50 parts by mass of water and ethanol 20% by mass of a fluorinated polymer having a sulfonic acid group obtained by hydrolyzing the copolymer was dissolved.
  • 40% by mass of zirconium oxide having an average primary particle diameter of 1 ⁇ m was added, and a suspension was obtained by uniformly dispersing with a ball mill. The suspension was applied to both surfaces of the ion exchange membrane after the hydrolysis and salt exchange treatment by a spray method and dried to form a coating layer.
  • the ion exchange membrane obtained as described above was electrolyzed.
  • the value of (ion cluster diameter of layer B after electrolysis) / (ion cluster diameter of layer B before electrolysis) was 0.97.
  • the measurement results are shown in Table 1.
  • Table 1 shows the compositions and characteristics of the ion exchange membranes of the above examples and comparative examples.
  • the ion exchange membranes of Examples 1 to 4 had good electrolysis performance, and the results of strength evaluation of tensile strength and tensile elongation showed values that could sufficiently withstand electrolysis.
  • the electrolysis voltage was higher than that of Examples 1 to 4.
  • the electrolysis voltage increased significantly.
  • the ion exchange membranes of Comparative Examples 3 to 4 had good strength evaluation results, the electrolysis voltage was higher than that of Examples 1 to 4.
  • the ion exchange membrane of Comparative Example 5 had good strength evaluation results, the electrolytic voltage was higher than that of Examples 1 to 4.
  • the ion exchange membrane of the present invention can be suitably used in the field of alkali chloride electrolysis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明に係るイオン交換膜は、スルホン酸基を有する含フッ素重合体を含む層Aと、カルボン酸基を有する含フッ素重合体を含む層Bと、を有し、下記電解条件における電解前の前記層Bのイオンクラスター径に対する、前記電解後の前記層Bのイオンクラスター径の割合〔(前記電解後の層Bのイオンクラスター径)/(前記電解前の層Bのイオンクラスター径)〕が0.83~0.95である: (電解条件) 3.5規定(N)の塩化ナトリウム水溶液が供給された陽極室と、10.8規定(N)の水酸化ナトリウム水溶液が供給された陰極室との間に前記イオン交換膜が配置されたゼロギャップ電解槽において、温度が85℃、電流密度が6kA/mの条件で7日間電解を行う。

Description

イオン交換膜
 本発明は、イオン交換膜に関する。
 含フッ素イオン交換膜は、耐熱性や耐薬品性などが優れており、塩化アルカリ電解用、オゾン発生電解用、燃料電池用、水電解用、塩酸電解用などの電解用隔膜として、種々の用途に用いられている。
 これらの中で、特に、塩素と水酸化アルカリを製造する塩化アルカリの電解では、近年、イオン交換膜法が主流となっている。塩化アルカリの電解に用いられるイオン交換膜には、様々な性能が求められている。例えば、高い電流効率及び低い電解電圧で電解を行えること、製造した水酸化アルカリ中に含まれる不純物(特に塩化アルカリ等)の濃度が低いこと等の電解性能、及び、膜強度が高く、膜の取扱い時や電解時に損傷しない等の膜強度などの性能が要求されている。そして、イオン交換膜の電解性能と膜強度とはトレードオフの関係にあるが、両者が高いイオン交換膜の開発が求められている。
 特許文献1には、スルホン酸基を有する含フッ素重合体層と、カルボン酸基を有する含フッ素重合体層の少なくとも二層から成るイオン交換膜が開示されている。
特開2001-323084号公報
 しかしながら、特許文献1に記載のイオン交換膜は、膜強度と電解性能との両立において更なる改善の余地がある。
 本発明は、上述した従来技術が有する課題に鑑みてなされたものであり、膜強度と電解性能の両方に優れるイオン交換膜を提供することを目的とする。
 本発明者らは、上記課題を解決するため鋭意検討を行った結果、イオン交換膜内に存在するイオンクラスターを電解中に収縮させ、イオン交換膜の電解後のイオンクラスター径が、電解前のイオンクラスター径に対して所定の割合で小さくなるように制御することにより、電解性能が飛躍的に向上することを見出し、本発明を成すに至った。
 すなわち、本発明は、以下のとおりである。
[1]
 スルホン酸基を有する含フッ素重合体を含む層Aと、
 カルボン酸基を有する含フッ素重合体を含む層Bと、
 を有し、
 下記電解条件における電解前の前記層Bのイオンクラスター径に対する、前記電解後の前記層Bのイオンクラスター径の割合〔(前記電解後の層Bのイオンクラスター径)/(前記電解前の層Bのイオンクラスター径)〕が0.83~0.95である、イオン交換膜:
(電解条件)
 3.5規定(N)の塩化ナトリウム水溶液が供給された陽極室と、10.8規定(N)の水酸化ナトリウム水溶液が供給された陰極室との間に前記イオン交換膜が配置されたゼロギャップ電解槽において、温度が85℃、電流密度が6kA/mの条件で7日間電解を行う。 
[2]
 前記電解前の層Bのイオンクラスター径が2.5~4.0nmであり、
 前記電解後の層Bのイオンクラスター径が2.0~3.3nmである、[1]に記載のイオン交換膜。
[3]
 前記電解前における、前記層Aの厚みと前記層Bの厚みとの合計が55μm以上である、[1]又は[2]に記載のイオン交換膜。
[4]
 前記電解前の層Aのイオンクラスター径が3.0~4.5nmである、[1]~[3]のいずれかに記載のイオン交換膜。
[5]
 前記電解前の層Aの厚さが50~180μmであり、
 前記電解前の層Bの厚さが5~20μmである、[1]~[4]のいずれかに記載のイオン交換膜。
[6]
 前記層Aは、下記式(2)で表される化合物の重合体を含み、
 前記層Bは下記式(3)で表される化合物の重合体を含む、[1]~[5]のいずれかに記載のイオン交換膜:
  CF=CF-(OCFCYF)-O-(CF-SOF  (2)
(式(2)中、aは0~2の整数、bは1~4の整数、Yは-F又は-CFを表す。)
  CF=CF-(OCFCYF)-O-(CF-COOR  (3)
(式(3)中、cは0~2の整数、dは1~4の整数、Yは-F又は-CF、Rは-CH、-C、又は-Cを表す。)
[7]
 [1]~[6]のいずれかに記載のイオン交換膜を備える、電解槽。
 本発明のイオン交換膜は、膜強度及び電解性能に優れる。
本実施形態のイオン交換膜の一例の概略断面図である。 本実施形態の電解槽の一例の模式図である。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。なお、本発明は、以下の本実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 本実施形態のイオン交換膜は、スルホン酸基を有する含フッ素重合体を含む層A(以下、単に「層A」と記載することもある)とカルボン酸基を有する含フッ素重合体を含む層B(以下、単に「層B」と記載することもある)を有し、下記電解条件(1)における電解前の前記層Bのイオンクラスター径に対する、前記電解後の前記層Bのイオンクラスター径の割合〔(電解後の層Bのイオンクラスター径)/(電解前の層Bのイオンクラスター径)〕が0.83~0.95である。ここで、電解条件(1)は、3.5規定(N)の塩化ナトリウム水溶液が供給された陽極室と、10.8規定(N)の水酸化ナトリウム水溶液が供給された陰極室との間にイオン交換膜が配置されたゼロギャップ電解槽において、温度が85℃、電流密度が6kA/mの条件で7日間電解を行うこととする。このように構成されているため、本実施形態のイオン交換膜は、膜強度及び電解性能に優れる。以下、上記の電解条件(1)による電解を単に「電解」ともいう。なお、本明細書において、「ゼロギャップ」とは、電解層中、イオン交換膜が陰極及び陽極の双方と接した状態(イオン交換膜と陽極との間の距離、及びイオン交換膜と陰極との間の距離がゼロの状態)を意味し、これらの部材は電極(陽極又は陰極)の表面全体でイオン交換膜と接している状態であってもよいし、電極表面のある点においてイオン交換膜と接している状態であってもよい。
 図1に本実施形態のイオン交換膜の構成の一例の概略断面図を示す。本実施形態のイオン交換膜は、スルホン酸基を有する含フッ素重合体を含む層A(4)と、カルボン酸基を有する含フッ素重合体を含む層B(5)とが積層され、膜内部に強化芯材3と連通孔2a及び2bを有している。通常、スルホン酸基を有する含フッ素重合体を含む層A(4)が電解層の陽極側(α)に、カルボン酸基を有する含フッ素重合体を含む層B(5)が電解層の陰極側(β)になるように設置される。また、膜表面には、コーティング層6及び7を有している。図1において、連通孔2a及び強化芯材3は、紙面に対して垂直方向に形成され、連通孔2bは、紙面の上下方向に形成されている。即ち、紙面の上下方向に形成された連通孔2bは、強化芯材3に対して略垂直方向に沿って形成されている。また、連通孔2a及び2bは、層Aの陽極側表面に面している箇所8を有していても構わない。図1に示すように、本実施形態のイオン交換膜は、層Aの表面と層Bの表面とが接するように積層されていることが好ましい。以下、層Aと層Bを合わせて膜本体と称することがある。
〔層A〕
 本実施形態のイオン交換膜に含まれる層Aは、スルホン酸基を有する含フッ素重合体A(以下、単に「重合体A」と記載することもある。)を含み、重合体Aからなることが好ましい。ここで、「スルホン酸基を有する含フッ素重合体」とは、スルホン酸基、又は、加水分解によりスルホン酸基となり得るスルホン酸基前駆体を有する含フッ素重合体のことをいう。なお、層Aには重合体Aの他に後述する重合体Bを層A100質量%に対して20質量%未満の範囲で含んでいてもよく、層A100質量%に対して重合体Aを80質量%以上含むことが好ましい。
 層Aを構成する、スルホン酸基を有する含フッ素重合体Aは、例えば、以下の第1群の単量体と第2群の単量体とを共重合する、又は第2群の単量体を単独重合することによって製造することができる。重合体Aが共重合体の場合は、ブロック重合体であってもランダム重合体であってもよい。
 第1群の単量体としては、特に限定されないが、例えば、フッ化ビニル化合物が挙げられる。
 フッ化ビニル化合物としては、下記一般式(1)で表わされるものが好ましい。
 CF=CX   (1)
(一般式(1)において、X及びXは、それぞれ独立に、-F、-Cl、-H、又は-CFを表す。)
 上記一般式(1)で表わされるフッ化ビニル化合物としては、特に限定されないが、例えば、フッ化ビニル、テトラフルオロエチレン、ヘキサフルオロプロピレン、フッ化ビニリデン、トリフルオロエチレン、クロロトリフルオロエチレン等が挙げられる。
 特に、本実施形態に係るイオン交換膜をアルカリ電解用膜として用いる場合、フッ化ビニル化合物は、パーフルオロ単量体であることが好ましく、テトラフルオロエチレン、ヘキサフルオロプロピレンからなる群より選ばれるパーフルオロ単量体がより好ましく、テトラフルオロエチレン(TFE)がさらに好ましい。
 第1群の単量体は一種を単独で用いてもよいし、二種以上を併用してもよい。
 第2群の単量体としては、特に限定されないが、例えば、スルホン酸型イオン交換基に変換し得る官能基を有するビニル化合物が挙げられる。
 スルホン酸型イオン交換基に変換し得る官能基を有するビニル化合物としては、下記一般式(2)で表わされるものが好ましい。
CF=CF-(OCFCYF)-O-(CF-SOF  (2)
(式(2)中、aは0~2の整数、bは1~4の整数、Yは-F又は-CFを表す。)
 式(2)において、aが2のとき、複数存在するYは互いに独立である。
 第2群の単量体としては、特に限定されないが、例えば、下記に表す単量体等が挙げられる:
CF=CFOCFCFSOF、
CF=CFOCFCF(CF)OCFCFSOF、
CF=CFOCFCF(CF)OCFCFCFSOF、
CF=CF(CFSOF、
CF=CFO〔CFCF(CF)O〕CFCFSOF、
CF=CFOCFCF(CFOCF)OCFCFSOF。
 これらの中でも、CF=CFOCFCF(CF)OCFCFCFSOF、及びCF=CFOCFCF(CF)OCFCFSOFが好ましい。
 第2群の単量体は一種を単独で使用してもよいし、二種以上を併用してもよい。
 重合体Aを構成する単量体の組み合わせの種類、その比率及び重合度等は、特に限定されない。また、層A中に含まれる重合体Aは、一種単独であっても二種以上の組み合わせであってもよい。また、スルホン酸基を有する含フッ素重合体Aのイオン交換容量は、上記一般式(1)と(2)で表される単量体の比を変えることにより調整することができる。
 層Aは、構成する重合体Aの組成により、単層であってもよいし、2層以上から構成されていてもよい。
 層Aが単層である場合、その厚みは50μm以上180μm以下が好ましく、80μm以上160μm以下がより好ましい。層Aの厚みが該範囲内にあると、膜本体の強度がより高くなる傾向にある。
 本明細書において、層Aが2層構造の場合、陽極に接する側の層を層A-1とし、層Bと接する側の層を含フッ素重合体層A-2とする。ここで、層A-1を形成する含フッ素重合体(「含フッ素重合体A-1」とも称する)と、層A-2を形成する含フッ素重合体(「含フッ素重合体A-2」とも称する)とは、組成が異なるものとすることが好ましい。層A-1の厚みは10μm以上60μm以下が好ましい。層A-2の厚みは30μm以上120μm以下が好ましく、40μm以上100μm以下がより好ましい。層A-1及び層A-2の厚みが上記範囲内にあると、膜本体の強度を十分に保つことができる。また、層A-1及び層A-2の厚みの合計は、50μm以上180μm以下が好ましく、80μm以上160μm以下がより好ましい。層Aが2層以上から構成される場合は、組成の異なる重合体Aから構成される2枚以上のフィルムを積層して層Aを形成させてもよい。
〔層B〕
 本実施形態のイオン交換膜に含まれる層Bは、カルボン酸基を有する含フッ素重合体B(以下、単に「重合体B」と記載することもある。)を含む。ここで、「カルボン酸基を有する含フッ素重合体」とは、カルボン酸基、又は、加水分解によりカルボン酸基となり得るカルボン酸基前駆体を有する含フッ素重合体のことをいう。なお、層Bには重合体B以外の成分を層B100質量%に対して10質量%未満の範囲で含んでいてもよく、層B100質量%に対して重合体Bを90質量%以上含むことが好ましく、重合体Bを100質量%含むことがとりわけ好ましい。なお、層Bにおいて重合体B以外に含まれていてもよい成分としては、以下に限定されないが、例えば、塩化カリウムのような金属塩化物等が挙げられる。
 層Bを構成するカルボン酸基を有する含フッ素系重合体は、例えば、上記第1群の単量体と以下の第3群の単量体とを共重合する、又は第3群の単量体を単独重合することによって製造することができる。重合体Bが共重合体の場合、ブロック共重合体であってもランダム重合体であってもよい。
 第3群の単量体としては、特に限定されないが、例えば、カルボン酸型イオン交換基に変換し得る官能基を有するビニル化合物が挙げられる。
 カルボン酸型イオン交換基に変換し得る官能基を有するビニル化合物としては、下記一般式(3)で表されるものが好ましい。
 CF=CF-(OCFCYF)-O-(CF-COOR (3)
(一般式(3)中、cは0~2の整数、dは1~4の整数を表し、Yは-F又は-CF、Rは-CH、-C、又は-Cを表す。)
 一般式(3)において、cが2のとき、複数存在するYは互いに独立である。上記一般式(3)において、Yが-CFであり、Rが-CHであることが好ましい。
 特に、本実施形態のイオン交換膜をアルカリ電解用イオン交換膜として用いる場合、第3群の単量体としてパーフルオロ単量体を少なくとも用いることが好ましい。ただし、エステル基中のアルキル基(上記R参照)は加水分解される時点で重合体から失われるため、アルキル基(R)はパーフルオロアルキル基でなくてもよい。これらの中でも、第3群の単量体として、特に限定されないが、例えば、下記に表す単量体がより好ましい:
CF=CFOCFCF(CF)OCFCOOCH
CF=CFOCFCF(CF)O(CFCOOCH
CF=CF[OCFCF(CF)]O(CFCOOCH
CF=CFOCFCF(CF)O(CFCOOCH
CF=CFO(CFCOOCH
CF=CFO(CFCOOCH
 第3群の単量体は一種を単独で使用してもよいし、二種以上を併用してもよい。
 重合体Bを構成する単量体の組み合わせの種類、その比率及び重合度等は、特に限定されない。また、層B中に含まれる重合体Bは、一種単独であっても二種以上の組み合わせであってもよい。また、カルボン酸基を有する含フッ素重合体Bのイオン交換容量は、上記一般式(3)と(4)で表される単量体の比を変えることにより調整することができる。
 層Bの厚みとしては、5μm以上50μm以下が好ましく、より好ましくは5μm以上20μm以下である。層Bの厚みがこの範囲内にあると、イオン交換膜の電解性能がより向上する傾向にあり、結果としてより高い電流効率及び低い電圧を達成できる傾向にある。また、層Bの膜厚みが上記の範囲内にあると、電解中に層Bのクラスターが収縮しやすく、〔(電解後の層Bのイオンクラスター径)/(電解前の層Bのイオンクラスター径)〕の値が小さくなりやすい。
 本実施形態のイオン交換膜において、電解性能と強度をより向上させる観点から、層Aは、上記式(2)で表される化合物の重合体を含み、かつ、層Bは上記式(3)で表される化合物の重合体を含むことが好ましい。
 本実施形態のイオン交換膜において、電解前の、層Aの厚みと前記層Bの厚みの合計が55μm以上であることが好ましく、55μm以上210μm以下であることがより好ましく、85μm以上190μm以下であることがさらに好ましい。層Aと層Bの厚みの合計が、該範囲内にあることにより、膜本体の強度がより向上する傾向にある。同様の観点から、電解前の層Aの厚さが50~180μmであり、かつ、電解前の層Bの厚さが5~30μmであることが好ましい。ここで、層A及び層Bのそれぞれの厚みは、後述する加水分解工程を経た後であって、前述した電解を行う前のイオン交換膜を構成する層A及び層Bのそれぞれの厚みを意味するものとし、実施例に記載の方法で測定することができる。また、上記厚みは、例えば、後述するフィルム化工程の押し出し量、及びフィルムの引き取り速度を調節することで制御することができる。
〔電解前後のイオンクラスター径の比〕
 本実施形態のイオン交換膜は、含水状態においてイオンクラスターが存在する。イオンクラスターとは、イオンが通る空間のことであり、イオン交換基の会合によって形成される。イオンクラスター径はイオン交換基の会合度合いや膜本体の含水率によって変化し、含フッ素重合体のイオン交換容量や加水分解の条件によって制御でき、さらに、通電によりクラスター径が変化する場合がある。本実施形態のイオン交換膜は、電解前後のイオンクラスター径の比が所定の範囲内にあることにより、イオン交換膜の膜強度と電解性能の両方に優れる。
 本実施形態のイオン交換膜は、電解条件(1)で電解を行うと、〔(電解後の層Bのイオンクラスター径)/(電解前の層Bのイオンクラスター径)〕が0.83~0.95となり、好ましくは0.83~0.92であり、より好ましくは0.83~0.90である。ここで、電解条件(1)は、陽極室と陰極室との間に該イオン交換膜が配置され、前記陽極室に3.5規定(N)の塩化ナトリウム水溶液が供給され、前記陰極室に10.8規定(N)の水酸化ナトリウム水溶液が供給され、電解温度が85℃、電流密度が6kA/mの条件で7日間電解を行うことである。ここで、「電解前の層Bのイオンクラスター径」とは、後述するイオン交換膜の製造における加水分解工程後であり、かつ、電解に用いる前のイオン交換膜中の層Bのイオンクラスター径のことをいう。「電解後の層Bのイオンクラスター径」とは、上記電解条件(1)で電解を行った後のイオン交換膜中の、層Bのイオンクラスター径のことをいう。なお、本明細書中、〔(電解後の層Bのイオンクラスター径)/(電解前の層Bのイオンクラスター径)〕のことを、単に「電解前後の層Bのイオンクラスター径の比」と記載することもある。
 電解前後の層Bのイオンクラスター径の比が、0.83以上であると、電解中の電圧が高くなることを抑制し、電解性能の低下を抑制できる。この理由としては、以下に限定する趣旨ではないが、電解前の層Bのイオンクラスター径が大きくなり過ぎず、イオン交換膜の含水率増大による厚みの大幅な上昇を抑制できるからであると考えられる。電解前後の層Bのイオンクラスター径の比が、0.95以下であると、電解中のイオン選択性が良好となる。この理由としては、以下に限定する趣旨ではないが、電解中の層Bのイオンクラスター径が最適な大きさに収縮するためであると考えられる。このような観点から、電解前後の層Bのイオンクラスター径の比は0.83~0.95である。なお、電解前後の層Bのイオンクラスター径の比は、通電前の層Bのイオンクラスター径を大きくし、通電後の層Bのイオンクラスター径を小さくして、当該比を小さくする等の要領で、上記範囲に制御することができる。具体的には、例えば、後述する塩交換処理の処理温度を高くすることや、処理時間を長くすること等により、通電前の層Bのイオンクラスター径が大きくなる傾向にある。
〔イオンクラスター径〕
 電解前において、本実施形態のイオン交換膜における層Aのイオンクラスター径は3.0~4.5nmであることが好ましく、3.2~4.0nmであることがより好ましく、3.4~3.8nmであることがさらに好ましい。電解前のイオン交換膜において、層Bのイオンクラスター径は2.5~4.0nmであることが好ましく、3.0~3.8nmであることがより好ましく、3.2~3.6nmであることがさらに好ましい。なお、層Aが組成の異なる2層以上で構成される場合のイオンクラスター径は、それらの平均値とする。例えば、層Aが層A-1と層A-2の2層からなる場合、層A-1と層A-2のイオンクラスター径のイオンクラスター径の平均値が3.0~4.5nmであることが好ましい。電解前のイオン交換膜中の層A及び層Bのイオンクラスター径が上記範囲内にあると、イオン交換膜の電解性能及び強度がより向上する傾向にある。すなわち、上記の範囲の下限値よりもクラスター径が大きいと、強度がより向上する傾向にあり、上記の範囲の上限値よりもクラスター径が小さいと、電圧の上昇をより抑制できる傾向にある。なお、イオンクラスター径は、層Aと層Bを剥離し、それぞれの層のみからなる単層膜に分離した後、得られた層Aと層Bのフィルムを25℃において水に含浸させた状態で、小角X線散乱(SAXS)により測定する。なお、イオン交換膜がコーティング層を有する場合、当該コーティング層をブラシで除去した後、それぞれの層のみからなる単層膜に分離することを除き、上記と同様にしてSAXS測定に供することができる。詳細は、後述の実施例に記す。
 本実施形態のイオン交換膜は、上記電解条件(1)での電解後、層Bのイオンクラスター径が2.0~3.3nmであることが好ましく、2.5~3.2nmであることがより好ましい。さらに、本実施形態のイオン交換膜は、電解性能と強度をより向上させる観点から、電解前の層Bのイオンクラスター径が2.5~4.0nmであり、かつ、電解後の層Bのイオンクラスター径が2.0~3.3nmであることがとりわけ好ましい。
〔イオン交換容量〕
 本実施形態のイオン交換膜において、層A及び層Bを構成する含フッ素重合体のイオン交換容量は、イオンクラスター径を制御する因子の一つである。含フッ素重合体のイオン交換容量とは、乾燥樹脂1g当りの交換基の当量のことをいい、中和滴定によって測定することができる。層Aを構成する含フッ素重合体Aのイオン交換容量は、0.8~1.2ミリ当量/gであることが好ましく、より好ましくは0.9~1.1ミリ当量/gである。層Bを構成する含フッ素重合体Bのイオン交換容量は、0.75ミリ当量/g以上であることが好ましく、0.81~0.98ミリ当量/gであることがより好ましい。含フッ素重合体のイオン交換容量が、上記範囲内であると、イオン交換膜の電解性能及び強度の低下がより効果的に抑制される傾向にある。また、層Bを構成する含フッ素重合体Bのイオン交換容量が0.81以上であることにより、イオン交換膜中の含水率が高くなるので、電解した際にクラスター収縮が生じやすい。なお、各層のイオン交換容量が大きくなるほど、当該層のイオンクラスター径は大きくなり、イオン交換容量が小さくなるほどイオンクラスター径は小さくなる傾向にある。また、各層のイオン交換容量は、例えば、当該層に含まれる含フッ素重合体を構成する単量体の選択及び当該単量体の含有率により制御できる。具体的には、例えば、前述した一般式(1)~(3)の仕込み比によって制御でき、より具体的には、イオン交換基を含む一般式(2),(3)で表される単量体の含有率が大きくなるほど、イオン交換容量は大きくなる傾向にある。
〔強化芯材〕
 本実施形態のイオン交換膜は、膜内に強化芯材3を含むことが好ましい。強化芯材は、イオン交換膜の強度及び寸法安定性を強化することができ、膜本体の内部に存在することが好ましい。強化芯材とは、強化糸を織った織布などであることが好ましい。強化芯材の材料は、長期にわたる耐熱性、耐薬品性が必要であることから、フッ素系重合体から成る繊維であることが好ましい。強化芯材の材料としては、特に限定されないが、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-エチレン共重合体(ETFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、トリフルオロクロルエチレン-エチレン共重合体及びフッ化ビニリデン重合体(PVDF)などが挙げられ、特にポリテトラフルオロエチレンから成る繊維を用いることが好ましい。
 強化芯材の糸径としては、好ましくは20~300デニール、より好ましくは50~250デニール、織り密度(単位長さあたりの打ち込み本数)としては、好ましくは5~50本/インチである。強化芯材の形状としては、織布、不織布又は編布などが挙げられるが、織布の形態であることが好ましい。また、織布の厚みは、30~250μmであることが好ましく、30~150μmであることがより好ましい。
 織布または編布は、特に限定されないが、例えば、モノフィラメント、マルチフィラメントまたは、これらのヤーン、スリットヤーンなどが使用され、織り方は平織り、絡み織り、編織り、コード織り、シャーサッカなど種々の織り方が使用される。
 また、強化芯材の開口率は、特に限定されないが、好ましくは30%以上、より好ましくは50%以上90%以下である。開口率は、イオン交換膜としての電気化学的性質の観点から30%以上、また、膜の機械的強度の観点から90%以下が好ましい。開口率とは、イオン交換膜の表面積の合計(A)に対するイオン交換膜においてイオン等の物質が通過できる面積の合計(B)の割合であり、(B)/(A)で表される。(B)は、イオン交換膜において、イオンや電解液等が、イオン交換膜に含まれる強化芯材や強化糸等によって遮断されない領域の面積の合計である。開口率の測定方法は、下記のとおりである。イオン交換膜(コーティング等を塗る前の陽イオン交換膜)の表面画像を撮影し、強化芯材が存在しない部分の面積から、上記(B)が求められる。そして、イオン交換膜の表面画像の面積から上記(A)を求め、上記(B)を上記(A)で除することによって、開口率が求められる。
 これら種々の強化芯材の中でも、特に好ましい形態としては、例えば、PTFEから成る高強度多孔質シートをテープ状にスリットしたテープヤーン、又は、PTFEから成る高度に配向したモノフィラメントの50~300デニールを使用し、織り密度が10~50本/インチの平織り構成からなり、更にその厚みは50~100μmの範囲でかつその開口率は60%以上であることが好ましい。
 更に、織布には膜の製造工程において、強化芯材の目ズレを防止する目的で、通常犠牲芯材と呼ばれる補助繊維を含んでもよい。この犠牲芯材を含むことで、イオン交換膜内に連通孔2a,2bを形成することができる。
 犠牲芯材は、膜の製造工程もしくは電解環境下において溶解性を有するものであり、特に限定されないが、レーヨン、ポリエチレンテレフタレート(PET)、セルロース及びポリアミドなどが用いられる。この場合の混織量は、好ましくは織布または編布全体の10~80質量%、より好ましくは30~70質量%である。
〔連通孔〕
 本実施形態のイオン交換膜は、膜内に連通孔2a,2bを有していてもよい。本実施形態において、連通孔とは、電解の際に発生する陽イオンや電解液の流路となり得る孔をいう。連通孔を形成することで、電解の際に発生するアルカリイオンや電解液の移動性がより向上する傾向にある。連通孔の形状は特に限定されないが、後述する製法によれば、連通孔の形成に用いられる犠牲芯材の形状とすることができる。
 本実施形態において、連通孔は、強化芯材の陽極側(層A側)と陰極側(層B側)を交互に通過するように形成されることが好ましい。このような構造とすることで、強化芯材の陰極側に連通孔が形成されている部分では、連通孔に満たされている電解液を通して輸送された陽イオン(例えば、ナトリウムイオン)が、強化芯材の陰極側にも流れることができる。その結果、陽イオンの流れが遮蔽されることがないため、イオン交換膜の電気抵抗を更に低減できる傾向にある。
〔コーティング〕
 本実施形態のイオン交換膜は、必要に応じて陰極側及び陽極側にガス付着防止のためのコーティング層6,7を有していてもよい。コーティング層を構成する材料としては、特に限定されないが、ガス付着防止の観点から、無機物を含むことが好ましい。無機物としては、特に限定されないが、例えば、酸化ジルコニウム、酸化チタン等が挙げられる。コーティング層を形成する方法としては、特に限定されず、公知の方法を用いることができる。例えば、無機酸化物の微細粒子をバインダーポリマー溶液に分散した液を、スプレー等により塗布する方法が挙げられる。
〔イオン交換膜の製造方法〕
 本実施形態に係るイオン交換膜は、上記電解条件(1)での電解前後の、カルボン酸基を有する含フッ素重合体を含む層Bのイオンクラスター径の比を上記範囲内になるように制御して製造するため、含フッ素重合体A及び含フッ素重合体Bのそれぞれのイオン交換容量、及び加水分解の条件等を調整する。以下、本実施形態のイオン交換膜の製造方法について詳細に説明する。
 本実施形態のイオン交換膜の製造方法は、特に限定されないが、
1)イオン交換基、又は、加水分解によりイオン交換基となり得るイオン交換基前駆体を有する含フッ素重合体を製造する工程(重合体の製造工程)と、
2)犠牲糸を織り込んだ強化芯材を得る工程(強化芯材の製造工程)と、
3)イオン交換基、又は、加水分解によりイオン交換基となり得るイオン交換基前駆体を有する含フッ素重合体をフィルム化する工程(フィルム化工程)と、
4)前記強化芯材と、前記フィルムとを埋め込んで複合膜を形成する工程(埋め込み工程)と、
5)酸又はアルカリで、複合膜を加水分解する工程(加水分解工程)と、を含む製造方法が好ましい。
 ここで、「イオン交換基」とは、スルホン酸基又はカルボン酸基のことをいう。
 本実施形態のイオン交換膜は、上記の工程のうち、例えば、1)の重合体製造工程で含フッ素重合体のイオン交換容量を制御する、及び/又は、5)の加水分解工程で加水分解の条件を制御することにより、電解前後の層Bのイオンクラスター径の比を調整することができる。以下、各工程について説明する。
1)工程(重合体の製造工程)
 層Aを構成するスルホン酸基を有する含フッ素重合体Aは、上記のとおり、例えば、第1群の単量体と第2群の単量体とを共重合する、又は第2群の単量体を単独重合することによって製造することができる。層Bを構成するカルボン酸基を有する含フッ素重合体Bは、例えば、上記のとおり、例えば、第1群の単量体と第3群の単量体とを共重合する、又は第3群の単量体を単独重合することによって製造することができる。重合方法は特に限定されないが、例えば、フッ化エチレン、特にテトラフルオロエチレンの重合に一般的用いられる重合方法を用いることができる。
 含フッ素重合体は、例えば、非水性法により得ることができる。非水性法においては、例えば、パーフルオロ炭化水素、クロロフルオロカーボン等の不活性溶媒を用い、パーフルオロカーボンパーオキサイドやアゾ化合物等のラジカル重合開始剤の存在下で、温度0~200℃、圧力0.1~20MPaの条件下で、重合反応を行うことができる。
 含フッ素重合体の製造において、上記単量体の組み合わせの種類及びその割合は、特に限定されず、得られる含フッ素系重合体に付与したい官能基の種類及び量等によって決定してよい。
 本実施形態において、含フッ素重合体のイオン交換容量を制御するために、各層を形成する含フッ素重合体の製造において、原料の単量体の混合比を調整してもよい。
 層Aを構成するスルホン酸基を有する含フッ素重合体Aは、例えば、前記一般式(2)で表される単量体を重合して製造するか、又は、前記一般式(1)で表される単量体と、前記一般式(2)で表される単量体とを、以下のモル比で共重合して製造するのが好ましい。
  前記一般式(1)で表される単量体:前記一般式(2)で表される単量体=4:1~7:1。
 層Bを構成するカルボン酸基を有する含フッ素重合体Bは、例えば、前記一般式(3)で表される単量体を重合して製造するか、又は、前記一般式(1)で表される単量体と、前記一般式(3)で表される単量体とを、以下のモル比で共重合して製造されるのが好ましい。
  前記一般式(1)で表される単量体:前記一般式(3)で表される単量体=6:1~9:1。
2)工程(強化芯材の製造工程)
 本実施形態のイオン交換膜は、膜の強度をより向上させる観点から、強化芯材が膜内に埋め込まれていることが好ましい。連通孔を有するイオン交換膜とするときには、犠牲糸も一緒に強化芯材へ織り込む。この場合の犠牲糸の混織量は、好ましくは強化芯材全体の10~80質量%、より好ましくは30~70質量%である。犠牲糸としては、20~50デニールの太さを有し、モノフィラメント又はマルチフィラメントからなるポリビニルアルコール等であることも好ましい。
3)工程(フィルム化工程)
 前記1)工程で得られた含フッ素重合体を、フィルム化する方法は、特に限定されないが、押出し機を用いるのが好ましい。フィルム化する方法としては以下の方法が挙げられる。
 層Aと層Bがそれぞれ単層を構成する場合は、含フッ素重合体A、含フッ素重合体Bをそれぞれ別々にフィルム化する方法が挙げられる。
 層Aが層A-1と層A-2からなる2層構造を有する場合は、含フッ素重合体A-2と含フッ素重合体Bとを共押出しにより複合フィルムとし、別途、含フッ素重合体A-1を単独でフィルム化する方法;又は含フッ素重合体A-1と含フッ素重合体A-2とを共押出しにより複合フィルムとし、別途、含フッ素重合体Bを単独でフィルム化する方法が挙げられる。これらのうち、含フッ素重合体A-2と含フッ素重合体Bとを共押出しすると、界面の接着強度を高めることに寄与するため好ましい。
4)工程(埋め込み工程)
 埋め込み工程においては、前記2)工程で得られた強化芯材、及び前記3)工程で得られたフィルムを、昇温したドラムの上で埋め込むのが好ましい。ドラム上では、透気性を有する耐熱性の離型紙を介して、各層を構成する含フッ素重合体が溶融する温度下で減圧により各層間の空気を除去しながら埋め込んで一体化することで、複合膜が得られる。ドラムとしては、特に限定されないが、例えば、加熱源及び真空源を有し、その表面に多数の細孔を有するものが挙げられる。
 強化芯材及びフィルムを積層する際の順番としては、前記3)工程に合わせて以下の方法が挙げられる。
 層Aと層Bがそれぞれ単層を構成する場合は、ドラムの上に、離型紙、層Aのフィルム、強化芯材、層Bのフィルムの順に積層する方法が挙げられる。
 層Aが層A-1と層A-2からなる2層構造を有する場合は、ドラムの上に、離型紙、層A-1のフィルム、強化芯材、層A-2と層Bとの複合フィルムの順に積層する方法;又はドラムの上に、離型紙、層A-1と層A-2との複合フィルム、強化芯材、層Bの順に積層する方法が挙げられる。
 また、本実施形態のイオン交換膜の膜表面に凸部を設けるには、予めエンボス加工した離型紙を用いることによって、埋め込みの際に、溶融したポリマーからなる凸部を形成させることができる。
5)工程(加水分解工程)
 前記4)工程で得られた複合膜を、酸又はアルカリによって加水分解を行う。この加水分解工程において、加水分解条件、例えば、溶液組成、加水分解温度、時間等を変えることによって、電解前後の層Bのイオンクラスター径の比を制御することができる。本実施形態に係るイオン交換膜の製造において、加水分解は、例えば、2.5~4.0規定(N)の水酸化カリウム(KOH)と20~40質量%のDMSO(Dimethyl sulfoxide)の水溶液中、40~90℃で、10分~24時間行うことが好ましい。その後、50~95℃の条件下、0.5~0.7規定(N)苛性ソーダ(NaOH)溶液を用いて塩交換処理を行うことが好ましい。なお、層厚の過度な増大に起因する電圧上昇をより効果的に防止する観点から、上記塩交換処理における処理温度を70℃以上とする場合は、処理時間を2時間未満とすることが好ましい。
 なお、イオンクラスター径は、加水分解工程を行う液の組成、温度、時間等を変えることにより制御できる。例えば、イオンクラスター径を大きくさせる場合、KOH濃度を低下させる、DMSO濃度を上昇させる、加水分解温度を上昇させる、又は加水分解時間を長くすることにより達成できる。各層のイオンクラスター径を制御することにより、電解前後の層Bのイオンクラスター径の比も制御することができ、電解後の層Bのクラスター径を電解前に比べて大幅に小さくすることもできる。具体的には、例えば、電解前の層Bのイオンクラスター径が大きくなるように制御すると、電解前後の層Bのイオンクラスター径の比が小さくなる。また、加水分解した膜の表面にコーティング層を設けてもよい。
〔電解槽〕
 本実施形態の電解槽は、本実施形態のイオン交換膜を備える。図2に本実施形態の電解槽の一例の模式図を示す。電解槽13は、陽極11と、陰極12と、陽極と陰極との間に配置された、本実施形態のイオン交換膜1と、を少なくとも備える。電解槽は、種々の電解に使用できるが、以下、代表例として、塩化アルカリ水溶液の電解に使用する場合について説明する。
 電解条件は、特に限定されず、公知の条件で行うことができる。例えば、陽極室に2.5~5.5規定(N)の塩化アルカリ水溶液を供給し、陰極室は水又は希釈した水酸化アルカリ水溶液を供給し、電解温度が50~120℃、電流密度が0.5~10kA/mの条件で電解することができる。
 本実施形態の電解槽の構成は、特に限定されず、例えば、単極式でも複極式でもよい。電解槽を構成する材料としては、特に限定されないが、例えば、陽極室の材料としては、塩化アルカリ及び塩素に耐性があるチタン等が好ましく、陰極室の材料としては、水酸化アルカリ及び水素に耐性があるニッケル等が好ましい。電極の配置は、イオン交換膜と陽極との間に適当な間隔を設けて配置してもよいが、陽極とイオン交換膜が接触して配置されていてもよい。また、陰極は一般的にはイオン交換膜と適当な間隔を設けて配置されているが、この間隔がない接触型の電解槽(ゼロギャップ式電解槽)であってもよい。
 以下、実施例により本実施形態を詳細に説明する。なお、本実施形態は以下の実施例に限定されるものではない。
 実施例及び比較例における各測定方法は以下のとおりである。
[イオンクラスター径の測定方法]
 イオンクラスター径は小角X線散乱(SAXS)により測定した。SAXS測定はイオン交換膜がコーティング層を有する場合はコーティング層をブラシで除去した後、層Aと層Bを剥離し、それぞれの層のみからなる単層膜について、25℃において水に含浸させた状態で測定を行った。SAXS測定は、リガク製SAXS装置NanoViewerを用いた。小角領域は試料―検出器間距離841mmで検出器としてPILATUS100Kを用い、広角領域は試料―検出器間距離75mm、検出器にイメージングプレートを用いて測定を行い、両プロフィールを合体させることにより0.1°<散乱角(2θ)<30°の範囲の散乱角における散乱データを得た。試料は7枚重ねた状態で測定を行い、露光時間は小角領域、広角領域測定とも15分とした。二次元検出器によりデータを取得した場合には円環平均等合理的な手法によりデータを一次元化した。得られたSAXSプロフィールに対しては、検出器の暗電流補正等、検出器に由来する補正、試料以外の物質による散乱に対する補正(空セル散乱補正)を実施した。SAXSプロフィールに対するX線ビーム形状の影響(スメアの影響)が大きい場合はX線ビーム形状に対する補正(デスメア)も行った。こうして得られた一次元SAXSプロフィールに対し、橋本康博、坂本直紀、飯嶋秀樹 高分子論文集 vol.63 No.3 pp.166 2006に記載された手法に準じてイオンクラスター径を求めた。すなわち、イオンクラスター構造が粒径分布を持つコアーシェル型の剛体球で表されると仮定し、このモデルに基づく理論散乱式を用いて実測のSAXSプロフィールのイオンクラスター由来の散乱が支配的な散乱角領域のSAXSプロフィールをフィッティングすることで平均クラスター直径(イオンクラスター径)、イオンクラスター個数密度を求めた。このモデルにおいて、コアの部分がイオンクラスターに相当し、コアの直径がイオンクラスター径となるものとした。なお、シェル層は仮想的なものでシェル層の電子密度はマトリックス部分と同じとした。またここではシェル層厚みは0.25nmとした。フィッティングに用いるモデルの理論散乱式を次の式(A)に示す。また、フィッティング範囲は1.4<2θ<6.7°とした。
Figure JPOXMLDOC01-appb-M000001
 上記において、Cは定数、Nはクラスター個数密度、ηはコア、つまりイオンクラスター部分とその周りの仮想的なシェルを剛体球と仮定した場合のその体積分率、θはブッラグ角、λは用いるX線波長、tはシェル層厚み、aは平均イオンクラスター半径、Γ(x)はガンマ関数、σはイオンクラスター半径(コア半径)の標準偏差を示す。P(a)はコア半径aの分布関数を表し、ここではaの体積分布がSchultz-Zimm分布p(a)に従うとする。Mは分布を表すパラメータである。Ib(q)は測定時の過剰な水由来の散乱、熱散漫散乱を含むバックグラウンド散乱を表しており,ここでは定数と仮定する。フィッティングの際には上記パラメータのうち、N、η、a、σ、Ib(q)を可変パラメータとする。なお、本明細書において、イオンクラスター径とは、イオンクラスターの平均直径(2a)を意味する。
[加水分解工程後の各層の厚みの測定方法]
 加水分解工程後であって、電解前のイオン交換膜の、層A-1側、又は層B側から断面方向へ幅約100μmで切り落とし、含水した状態で断面を上部に向けて光学顕微鏡を用いて厚みを実測した。その際、切り落とす部分は隣り合う強化芯材の中間部分(谷部)であり、得られた断面図において測定する箇所は、図1で示すと、隣り合う強化芯材3の中間部分であり、(α)から(β)へ向かう方向を厚み方向として層Aと層Bの厚みを測定した。
[電解性能評価]
 電解槽として、図2に示す電解槽13の構成を次のように変更したゼロギャップ電解槽を用いた。すなわち、電解槽13におけるイオン交換膜1と陽極11及び陰極12との位置関係を、イオン交換膜1と陽極11とが接した状態及びイオン交換膜1と陰極12とが接した状態(いわゆる「ゼロギャップ」の状態)となるように変更した電解槽を用意した。このゼロギャップ電解槽を用いて、下記の条件で電解を行い、電解電圧、電流効率、生成する苛性ソーダ中の塩化ナトリウム量に基づいて電解性能を評価した。なお、イオン交換膜が陰極及び陽極の電極表面全体で接する場合も、電極表面のある点で接する場合も、ゼロギャップの状態であるものとした。
 陽極側に塩化ナトリウムの濃度が3.5規定(N)の濃度となるように調整しつつ食塩水を供給し、陰極側の苛性ソーダ濃度を10.8規定(N)に保ちつつ水を供給した。食塩水の温度を85℃に設定して、6kA/mの電流密度で、電解槽の陰極側の液圧が陽極側の液圧よりも5.3kPa高い条件で電解を行った。
 電解7日間の苛性ソーダに含まれる塩化ナトリウムの濃度をJIS規格K1200-3-1の方法で測定した。電解生成した苛性ソーダに硝酸を加えて中和し、硫酸鉄(III)アンモニウム溶液、チオシアン酸水銀(II)を加え、溶液を呈色させた。その溶液をUV計により吸光光度分析することによって苛性ソーダ中の塩化ナトリウム濃度を測定し、7日目の測定値を苛性ソーダ中の塩化ナトリウム濃度として求めた。UV計には、JASCO製V-630spetrophotometerを用いた。
 また、電流効率は、生成された苛性ソーダの質量、濃度を測定し、一定時間に生成された苛性ソーダのモル数を、その間に流れた電流の電子のモル数で除することで求めた。
[強度試験]
 強度試験としては、加水分解後(電解前)のイオン交換膜を用い、JISK6732に準じて引張強度及び引張伸度の測定を行った。
[実施例1]
 含フッ素重合体A-1として、下記一般式(1)で表わされる単量体(X=F、X=F)と下記一般式(2)で表わされる単量体(a=1、b=2、Y=CF)とをモル比5:1で共重合し、イオン交換容量が1.05m当量/gのポリマーを得た。なお、イオン交換容量は中和滴定で確認した。以下の実施例及び比較例でも同様にイオン交換容量を確認した。
 CF=CX   (1)
 CF=CF-(OCFCYF)-O-(CF-SOF  (2)
 含フッ素重合体A-2として、前記一般式(1)で表わされる単量体(X=F、X=F)と前記一般式(2)で表わされる単量体(a=1、b=2、Y=CF)とをモル比5.7:1で共重合し、イオン交換容量が0.99m当量/gのポリマーを得た。
 層Bを形成する含フッ素重合体Bとして、前記一般式(1)で表わされる単量体(X=F、X=F)と下記一般式(3)で表わされる単量体(c=1、d=2、Y=CF、R=CH)とをモル比7.5:1で共重合し、イオン交換容量が0.89m当量/gのポリマーを得た。
 CF=CF-(OCFCYF)-O-(CF-COOR  (3)
 なお、含フッ素重合体A(A-1、A-2)は、より詳細には、以下に示す溶液重合により作製した。
 まず、ステンレス製20LオートクレーブにCF=CFOCFCF(CF)O(CFCOOCHとHFC-43-10mee溶液を仕込み、容器内を充分に窒素置換した後、さらにCF=CF(TFE)で置換し、容器内の温度が35℃で安定になるまで加温してTFEで加圧した。
 次いで、重合開始剤として(CFCFCFCOO)の5%HFC43-10mee溶液を入れて、反応を開始した。この際、連鎖移動剤としてメタノールを加えた。35℃で攪拌しながらTFEを断続的にフィードしつつ、途中でメタノールを入れ、TFE圧力を降下させて、TFEを所定量供給したところで重合を停止した。未反応TFEを系外に放出した後、得られた重合液にメタノールを加えて含フッ素系重合体を凝集、分離した。さらに、乾燥した後、重合体Aを得た。得られた含フッ素系重合体は2軸押出し機にてペレット化した。
 また、含フッ素重合体Bは、CF=CFOCFCF(CF)O(CFCOOCHの代わりにCF=CFOCFCF(CF)O(CFSOFを仕込み、連鎖移動剤を使用せず、途中でメタノールの代わりに(CFCFCFCOO)の5%HFC43-10mee溶液を加える以外は重合体Aと同様の方法で得た。以下の実施例及び比較例でも同様に含フッ素重合体A及びBのペレットを得た。
 得られたフッ素重合体A-2とフッ素重合体Bを、2台の押し出し機、2層用の共押し出し用Tダイ、及び引き取り機を備えた装置により、共押しを行い、厚み93μmの2層フィルム(a1)を得た。該フィルム(a1)の断面を光学顕微鏡で観察した結果、層A-2の厚みが80μm、層Bの厚みが13μmであった。なお、層A-2と層Bとは偏光をかけることによって区別した。また、単層Tダイにて厚み20μmの層A-1の単層フィルム(b1)を得た。
 内部に加熱源及び真空源を有し、表面に多数の微細孔を有するドラム上に、透気性のある耐熱離型紙、単層フィルム(b1)、強化芯材、2層フィルム(a1)を順番に積層し、230℃の温度及び-650mmHgの減圧下で各材料間の空気を排除しながら一体化し、複合膜を得た。
 強化芯材として、ポリテトラフルオロエチレン(PTFE)製100デニールのテープヤーンに900回/mの撚りをかけ糸状としたものと、補助繊維(犠牲糸)の経糸として30デニール、6フィラメントのポリエチレンテレフタレート(PET)を200回/mの撚りをかけたもの、緯糸として35デニール、8フィラメントのPET製の糸に10回/mの撚りをかけたものを準備し、これらの糸をPTFE糸が24本/インチ、犠牲糸がPTFEに対して4倍の64本/インチとなるよう交互配列で平織りして厚み100μmの織布を得た。得られた織布を加熱された金属ロールで圧着し織布の厚みを70μmに調製した。このとき、PTFE糸のみの開口率は75%であった。
 この複合膜をDMSO30質量%、4.0規定(N)のKOHを含む水溶液中で80℃の温度で0.5時間加水分解し、その後、50℃の条件下、0.6規定(N)NaOH溶液を用いて1時間塩交換処理を行った。
 水とエタノールの50/50質量部の混合溶液に、イオン交換容量が1.0m当量/gのCF=CFとCF=CFOCFCF(CF)O(CFSOFの共重合体を加水分解してなるスルホン酸基を有するフッ素系重合体を20質量%溶解させた。その溶液に一次粒子径1μmの酸化ジルコニウム40質量%加え、ボールミルにて均一に分散させた懸濁液を得た。この懸濁液を前記加水分解及び塩交換処理後のイオン交換膜の両面にスプレー法により塗布し乾燥させる事により、コーティング層を形成させた。
 上記のようにして得られたイオン交換膜について、電解を行った。(電解後の層Bのイオンクラスター径)/(電解前の層Bのイオンクラスター径)の値は0.91であった。測定結果を表1に示す。
[実施例2]
 含フッ素重合体A-1として、前記一般式(1)で表わされる単量体(X=F、X=F)と前記一般式(2)で表わされる単量体(a=1、b=2、Y=CF)とをモル比5:1で共重合し、イオン交換容量が1.05m当量/gのポリマーを得た。
 含フッ素重合体A-2として、前記一般式(1)で表わされる単量体と前記一般式(2)(a=1、b=2、Y=CF)で表わされる単量体とをモル比5.7:1で共重合し、イオン交換容量が0.99m当量/gのポリマーを得た。
 層Bを形成する含フッ素重合体Bとして、前記一般式(1)で表わされる単量体(X=F、X=F)と前記一般式(3)で表わされる単量体(c=1、d=2、Y=CF、R=CH)とをモル比7.5:1で共重合し、イオン交換容量が0.89m当量/gのポリマーを得た。
 得られたフッ素重合体A-2とフッ素重合体Bを、2台の押し出し機、2層用の共押し出し用Tダイ、及び引き取り機を備えた装置により、共押しを行い、厚み93μmの2層フィルム(a2)を得た。該フィルムの断面を光学顕微鏡で観察した結果、層A-2の厚みが80μm、層Bの厚みが13μmであった。また、単層Tダイにて厚み20μmの層A-1の単層フィルム(b2)を得た。
 内部に加熱源及び真空源を有し、表面に多数の微細孔を有するドラム上に、透気性のある耐熱離型紙、単層フィルム(b2)、強化芯材、2層フィルム(a2)を順番に積層し、230℃の温度及び-650mmHgの減圧下で各材料間の空気を排除しながら一体化し、複合膜を得た。強化芯材としては、実施例1と同様のものを用いた。
 この複合膜をDMSO30質量%、4.0規定(N)のKOHを含む水溶液中で50℃の温度で24時間加水分解し、その後、90℃の条件下、0.6規定(N)NaOH溶液を用いて0.5時間塩交換処理を行った。
 水とエタノールの50/50質量部の混合溶液にイオン交換容量が1.0m当量/gのCF=CFとCF=CFOCFCF(CF)O(CFSOFの共重合体を加水分解してなるスルホン酸基を有するフッ素系重合体を20質量%溶解させた。その溶液に一次粒子径1μmの酸化ジルコニウム40質量%加え、ボールミルにて均一に分散させた懸濁液を得た。この懸濁液を前記加水分解及び塩交換処理後のイオン交換膜の両面にスプレー法により塗布し乾燥させる事により、コーティング層を形成させた。
 上記のようにして得られたイオン交換膜について、電解を行った。(電解後の層Bのイオンクラスター径)/(電解前の層Bのイオンクラスター径)の値は0.93であった。測定結果を表1に示す。
[実施例3]
 含フッ素重合体A-1として、前記一般式(1)で表わされる単量体(X=F、X=F)と前記一般式(2)で表わされる単量体(a=1、b=2、Y=CF)とをモル比5:1で共重合し、イオン交換容量が1.05m当量/gのポリマーを得た。
 含フッ素重合体A-2として、前記一般式(1)で表わされる単量体(X=F、X=F)と前記一般式(2)で表わされる単量体(a=1、b=2、Y=CF)とをモル比5.7:1で共重合し、イオン交換容量が0.99m当量/gのポリマーを得た。
 含フッ素重合体層Bを形成する含フッ素重合体Bとして、前記一般式(1)で表わされる単量体(X=F、X=F)と前記一般式(3)で表わされる単量体(c=1、d=2、Y=CF、R=CH)とをモル比7.3:1で共重合し、イオン交換容量が0.91m当量/gのポリマーを得た。
 フッ素重合体A-2とフッ素重合体Bを、2台の押し出し機、2層用の共押し出し用Tダイ、及び引き取り機を備えた装置により、共押しを行い、厚み93μmの2層フィルム(a3)を得た。該フィルムの断面を光学顕微鏡で観察した結果、含フッ素重合体層A-2の厚みが80μm、含フッ素重合体層Bの厚みが13μmであった。また、単層Tダイにて厚み20μmの含フッ素重合体層A-1の単層フィルム(b3)を得た。
 内部に加熱源及び真空源を有し、表面に多数の微細孔を有するドラム上に、透気性のある耐熱離型紙、単層フィルム(b3)、強化芯材、2層フィルム(a3)を順番に積層し、230℃の温度及び-650mmHgの減圧下で各材料間の空気を排除しながら一体化し、複合膜を得た。強化芯材としては、実施例1と同様のものを用いた。
 この複合膜をDMSO30質量%、4.0規定(N)のKOHを含む水溶液中で50℃の温度で24時間加水分解し、その後、95℃の条件下、0.6規定(N)NaOH溶液を用いて1時間塩交換処理を行った。
 水とエタノールの50/50質量部の混合溶液に、イオン交換容量が1.0m当量/gのCF=CFとCF=CFOCFCF(CF)O(CFSOFの共重合体を加水分解してなるスルホン酸基を有するフッ素系重合体を20質量%溶解させた。その溶液に一次粒子径1μmの酸化ジルコニウム40質量%加えボールミルにて均一に分散させた懸濁液を得た。この懸濁液を前記加水分解及び塩交換処理後のイオン交換膜の両面にスプレー法により塗布し乾燥させる事により、コーティング層を形成させた。
 上記のようにして得られたイオン交換膜について、電解を行った。(電解後の層Bのイオンクラスター径)/(電解前の層Bのイオンクラスター径)の値は0.86であった。測定結果を表1に示す。
[実施例4]
 含フッ素重合体A-1として、前記一般式(1)で表わされる単量体(X=F、X=F)と前記一般式(2)で表わされる単量体(a=1、b=2、Y=CF)とをモル比5:1で共重合し、イオン交換容量が1.05m当量/gのポリマーを得た。
 含フッ素重合体A-2として、前記一般式(1)で表わされる単量体(X=F、X=F)と前記一般式(2)で表わされる単量体(a=1、b=2、Y=CF)とをモル比6:1で共重合し、イオン交換容量が0.95m当量/gのポリマーを得た。
 含フッ素重合体層Bを形成する含フッ素重合体Bとして、前記一般式(1)で表わされる単量体(X=F、X=F)と前記一般式(3)で表わされる単量体(c=1、d=2、Y=CF、R=CH)とをモル比8:1で共重合し、イオン交換容量が0.85m当量/gのポリマーを得た。
 フッ素重合体A-2とフッ素重合体Bを、2台の押し出し機、2層用の共押し出し用Tダイ、及び引き取り機を備えた装置により、共押しを行い、厚み100μmの2層フィルム(a4)を得た。該フィルムの断面を光学顕微鏡で観察した結果、含フッ素重合体層A-2の厚みが85μm、含フッ素重合体層Bの厚みが15μmであった。また、単層Tダイにて厚み25μmの含フッ素重合体層A-1の単層フィルム(b4)を得た。
 内部に加熱源及び真空源を有し、表面に多数の微細孔を有するドラム上に、透気性のある耐熱離型紙、単層フィルム(b4)、強化芯材、2層フィルム(a4)を順番に積層し、230℃の温度及び-650mmHgの減圧下で各材料間の空気を排除しながら一体化し、複合膜を得た。強化芯材としては、実施例1と同様のものを用いた。
 この複合膜をDMSO30質量%、4.0規定(N)のKOHを含む水溶液中で80℃の温度で0.5時間加水分解し、その後、50℃の条件下、0.6規定(N)NaOH溶液を用いて1時間塩交換処理を行った。
 水とエタノールの50/50質量部の混合溶液に、イオン交換容量が1.0m当量/gのCF=CFとCF=CFOCFCF(CF)O(CFSOFの共重合体を加水分解してなるスルホン酸基を有するフッ素系重合体を20質量%溶解させた。その溶液に一次粒子径1μmの酸化ジルコニウム40質量%加えボールミルにて均一に分散させた懸濁液を得た。この懸濁液を前記加水分解及び塩交換処理後のイオン交換膜の両面にスプレー法により塗布し乾燥させる事により、コーティング層を形成させた。
 上記のようにして得られたイオン交換膜について、電解を行った。(電解後の層Bのイオンクラスター径)/(電解前の層Bのイオンクラスター径)の値は0.93であった。測定結果を表1に示す。
[実施例5]
 含フッ素重合体A-1として、前記一般式(1)で表わされる単量体(X=F、X=F)と前記一般式(2)で表わされる単量体(a=1、b=2、Y=CF)とをモル比5:1で共重合し、イオン交換容量が1.05m当量/gのポリマーを得た。
 含フッ素重合体A-2として、前記一般式(1)で表わされる単量体(X=F、X=F)と前記一般式(2)で表わされる単量体(a=1、b=2、Y=CF)とをモル比5.7:1で共重合し、イオン交換容量が0.99m当量/gのポリマーを得た。
 層Bを形成する含フッ素重合体Bとして、前記一般式(1)で表わされる単量体(X=F、X=F)と前記一般式(3)で表わされる単量体(c=1、d=2、Y=CF、R=CH)とをモル比7.5:1で共重合し、イオン交換容量が0.89m当量/gのポリマーを得た。
 得られたフッ素重合体A-2とフッ素重合体Bを、2台の押し出し機、2層用の共押し出し用Tダイ、及び引き取り機を備えた装置により、共押しを行い、厚み93μmの2層フィルム(a1)を得た。該フィルム(a1)の断面を光学顕微鏡で観察した結果、層A-2の厚みが80μm、層Bの厚みが13μmであった。なお、層A-2と層Bとは偏光をかけることによって区別した。また、単層Tダイにて厚み20μmの層A-1の単層フィルム(b1)を得た。
 内部に加熱源及び真空源を有し、表面に多数の微細孔を有するドラム上に、透気性のある耐熱離型紙、単層フィルム(b1)、強化芯材、2層フィルム(a1)を順番に積層し、230℃の温度及び-650mmHgの減圧下で各材料間の空気を排除しながら一体化し、複合膜を得た。
 強化芯材として、ポリテトラフルオロエチレン(PTFE)製100デニールのテープヤーンに900回/mの撚りをかけ糸状としたものを24本/インチとなるよう平織りして厚み100μmの織布を得た。得られた織布を加熱された金属ロールで圧着し織布の厚みを70μmに調製した。このとき、PTFE糸のみの開口率は75%であった。
 この複合膜をDMSO30質量%、4.0規定(N)のKOHを含む水溶液中で80℃の温度で0.5時間加水分解し、その後、50℃の条件下、0.6規定(N)NaOH溶液を用いて1時間塩交換処理を行った。
 水とエタノールの50/50質量部の混合溶液に、イオン交換容量が1.0m当量/gのCF=CFとCF=CFOCFCF(CF)O(CFSOFの共重合体を加水分解してなるスルホン酸基を有するフッ素系重合体を20質量%溶解させた。その溶液に一次粒子径1μmの酸化ジルコニウム40質量%加え、ボールミルにて均一に分散させた懸濁液を得た。この懸濁液を前記加水分解及び塩交換処理後のイオン交換膜の両面にスプレー法により塗布し乾燥させる事により、コーティング層を形成させた。
 上記のようにして得られたイオン交換膜について、電解を行った。(電解後の層Bのイオンクラスター径)/(電解前の層Bのイオンクラスター径)の値は0.95であった。測定結果を表1に示す。
[比較例1]
 含フッ素重合体A-1として、前記一般式(1)で表わされる単量体(X=F、X=F)と前記一般式(2)で表わされる単量体(a=1、b=2、Y=CF)とをモル比5:1で共重合し、イオン交換容量が1.05m当量/gのポリマーを得た。
 含フッ素重合体A-2として、前記一般式(1)で表わされる単量体(X=F、X=F)と前記一般式(2)で表わされる単量体(a=1、b=2、Y=CF)とをモル比5.7:1で共重合し、イオン交換容量が0.99m当量/gのポリマーを得た。
 含フッ素重合体層Bを形成する含フッ素重合体Bとして、前記一般式(1)で表わされる単量体(X=F、X=F)と前記一般式(3)で表わされる単量体(c=1、d=2、Y=CF、R=CH)とをモル比8.5:1で共重合し、イオン交換容量が0.80m当量/gのポリマーを得た。
 得られたフッ素重合体A-2とフッ素重合体Bを、2台の押し出し機、2層用の共押し出し用Tダイ、及び引き取り機を備えた装置により、共押しを行い、厚み93μmの2層フィルム(a5)を得た。該フィルムの断面を光学顕微鏡で観察した結果、層A-2の厚みが80μm、層Bの厚みが13μmであった。また、単層Tダイにて厚み20μmの層A-1の単層フィルム(b5)を得た。
 内部に加熱源及び真空源を有し、表面に多数の微細孔を有するドラム上に、透気性のある耐熱離型紙、単層フィルム(b5)、強化芯材、2層フィルム(a5)を順番に積層し、230℃の温度及び-650mmHgの減圧下で各材料間の空気を排除しながら一体化し、複合膜を得た。強化芯材としては、実施例1と同様のものを用いた。
 この複合膜をDMSO30質量%、4.0規定(N)のKOHを含む水溶液中で80℃の温度で0.5時間加水分解し、その後、50℃の条件下、0.6規定(N)NaOH溶液を用いて1時間塩交換処理を行った。
 水とエタノールの50/50質量部の混合溶液に、イオン交換容量が1.0m当量/gのCF=CFとCF=CFOCFCF(CF)O(CFSOFの共重合体を加水分解してなるスルホン酸基を有するフッ素系重合体を20質量%溶解させた。その溶液に一次粒子径1μmの酸化ジルコニウム40質量%加えボールミルにて均一に分散させた懸濁液を得た。この懸濁液を前記加水分解及び塩交換処理後のイオン交換膜の両面にスプレー法により塗布し乾燥させる事により、コーティング層を形成させた。
 上記のようにして得られたイオン交換膜について、電解を行った。電解は含フッ素重合体層Aが陽極側に向けて配置された前述の電解槽で、6kA/mの電流密度で、温度を85℃に設定して7日間行った。測定した項目は、電解電圧、電流効率、生成する苛性ソーダ中の塩化ナトリウム量であり、それぞれ、電解開始後7日目の測定値で電解性能を評価した。この時、(電解後の層Bのイオンクラスター径)/(電解前の層Bのイオンクラスター径)の値は0.98であった。電流効率は実施例1と同様の方法により測定した。
[比較例2]
 含フッ素重合体A-1として、前記一般式(1)で表わされる単量体(X=F、X=F)と前記一般式(2)で表わされる単量体(a=1、b=2、Y=CF)とをモル比5:1で共重合し、イオン交換容量が1.05m当量/gのポリマーを得た。
 含フッ素重合体A-2として、前記一般式(1)で表わされる単量体(X=F、X=F)と前記一般式(2)で表わされる単量体(a=1、b=2、Y=CF)とをモル比5.7:1で共重合し、イオン交換容量が0.99m当量/gのポリマーを得た。
 含フッ素重合体層Bを形成する含フッ素重合体Bとして、前記一般式(1)で表わされる単量体(X=F、X=F)と前記一般式(3)で表わされる単量体(c=1、d=2、Y=CF、R=CH)とをモル比7.5:1で共重合し、イオン交換容量が0.89m当量/gのポリマーを得た。
 得られたフッ素重合体A-2とフッ素重合体Bを、2台の押し出し機、2層用の共押し出し用Tダイ、及び引き取り機を備えた装置により、共押しを行い、厚み93μmの2層フィルム(a6)を得た。該フィルムの断面を光学顕微鏡で観察した結果、層A-2の厚みが80μm、層Bの厚みが13μmであった。また、単層Tダイにて厚み20μmの層A-1の単層フィルム(b6)を得た。
 内部に加熱源及び真空源を有し、表面に多数の微細孔を有するドラム上に、透気性のある耐熱離型紙、単層フィルム(b6)、強化芯材、2層フィルム(a6)を順番に積層し、230℃の温度及び-650mmHgの減圧下で各材料間の空気を排除しながら一体化し、複合膜を得た。強化芯材としては、実施例1と同様のものを用いた。
 この複合膜をDMSO30質量%、4.0規定(N)のKOHを含む水溶液中で50℃の温度で0.5時間加水分解し、その後、95℃の条件下、0.6規定(N)NaOH溶液を用いて5時間塩交換処理を行った。
 水とエタノールの50/50質量部の混合溶液に、イオン交換容量が1.0m当量/gのCF=CFとCF=CFOCFCF(CF)O(CFSOFの共重合体を加水分解してなるスルホン酸基を有するフッ素系重合体を20質量%溶解させた。その溶液に一次粒子径1μmの酸化ジルコニウム40質量%加え、ボールミルにて均一に分散させた懸濁液を得た。この懸濁液を前記加水分解及び塩交換処理後のイオン交換膜の両面にスプレー法により塗布し乾燥させる事により、コーティング層を形成させた。
 上記のようにして得られたイオン交換膜について、電解を行った。(電解後の層Bのイオンクラスター径)/(電解前の層Bのイオンクラスター径)の値は0.77であった。測定結果を表1に示す。
[比較例3]
 含フッ素重合体A-1として、前記一般式(1)で表される単量体(X=F、X=F)と前記一般式(2)で表される単量体(a=1、b=2、Y=CF)とをモル比5:1で共重合し、イオン交換容量が1.05m当量/gのポリマーを得た。
 含フッ素重合体A-2として、前記一般式(1)で表される単量体(X=F、X=F)と前記一般式(2)で表される単量体(a=1、b=2、Y=CF)とをモル比5.7:1で共重合し、イオン交換容量が0.98m当量/gのポリマーを得た。
 層Bを形成する含フッ素重合体Bとして、前記一般式(1)で表わされる単量体(X=F、X=F)と前記一般式(3)で表わされる単量体(c=1、d=2、Y=CF、R=CH)とをモル比8.5:1で共重合し、イオン交換容量が0.80m当量/gのポリマーを得た。
 フッ素重合体A-2とフッ素重合体Bをし、2台の押し出し機、2層用の共押し出し用Tダイ、及び引き取り機を備えた装置により、共押しを行い、厚み93μmの2層フィルム(a5)を得た。該フィルムの断面を光学顕微鏡で観察した結果、含フッ素重合体層A-2の厚みが75μm、層Bの厚みが15μmであった。また、単層Tダイにて厚み20μmの層A-1の単層フィルム(b5)を得た。
 内部に加熱源及び真空源を有し、表面に多数の微細孔を有するドラム上に、透気性のある耐熱離型紙、単層フィルム(b5)、強化芯材、2層フィルム(a5)を順番に積層し、230℃の温度及び-650mmHgの減圧下で各材料間の空気を排除しながら一体化し、複合膜を得た。強化芯材は、実施例1と同様のものを用いた。
 この複合膜をDMSO30質量%、4.0規定(N)のKOHを含む水溶液中で75℃の温度で0.75時間加水分解し、その後、85℃の条件下、0.6規定(N)NaOH溶液を用いて塩交換処理を行った。
 水とエタノールの50/50質量部の混合溶液に、イオン交換容量が1.0m当量/gのCF=CFとCF=CFOCFCF(CF)O(CFSOFの共重合体を加水分解してなるスルホン酸基を有するフッ素系重合体を20質量%溶解させた。その溶液に平均一次粒子径1μmの酸化ジルコニウム40質量%加え、ボールミルにて均一に分散させた懸濁液を得た。この懸濁液を前記加水分解及び塩交換処理後のイオン交換膜の両面にスプレー法により塗布し乾燥させる事により、コーティング層を形成させた。
 上記のようにして得られたイオン交換膜について、電解を行った。(電解後の層Bのイオンクラスター径)/(電解前の層Bのイオンクラスター径)の値は0.98であった。測定結果を表1に示す。
[比較例4]
 含フッ素重合体A-1として、前記一般式(1)で表される単量体(X=F、X=F)と前記一般式(2)で表される単量体(a=1、b=2、Y=CF)とをモル比5:1で共重合し、イオン交換容量が1.05m当量/gのポリマーを得た。
 含フッ素重合体A-2として、前記一般式(1)で表される単量体(X=F、X=F)と前記一般式(2)で表される単量体(a=1、b=2、Y=CF)とをモル比5.7:1で共重合し、イオン交換容量が0.98m当量/gのポリマーを得た。
 層Bを形成する含フッ素重合体Bとして、前記一般式(1)で表わされる単量体(X=F、X=F)と前記一般式(3)で表わされる単量体(c=1、d=2、Y=CF、R=CH)とをモル比8.5:1で共重合し、イオン交換容量が0.80m当量/gのポリマーを得た。
 フッ素重合体A-2とフッ素重合体Bをし、2台の押し出し機、2層用の共押し出し用Tダイ、及び引き取り機を備えた装置により、共押しを行い、厚み93μmの2層フィルム(a5)を得た。該フィルムの断面を光学顕微鏡で観察した結果、含フッ素重合体層A-2の厚みが75μm、層Bの厚みが15μmであった。また、単層Tダイにて厚み20μmの層A-1の単層フィルム(b5)を得た。
 内部に加熱源及び真空源を有し、表面に多数の微細孔を有するドラム上に、透気性のある耐熱離型紙、単層フィルム(b5)、強化芯材、2層フィルム(a5)を順番に積層し、230℃の温度及び-650mmHgの減圧下で各材料間の空気を排除しながら一体化し、複合膜を得た。強化芯材は、実施例1と同様のものを用いた。
 この複合膜をDMSO30質量%、4.0規定(N)のKOHを含む水溶液中で90℃の温度で0.75時間加水分解し、その後、85℃の条件下、0.6規定(N)NaOH溶液を用いて塩交換処理を行った。
 水とエタノールの50/50質量部の混合溶液に、イオン交換容量が1.0m当量/gのCF=CFとCF=CFOCFCF(CF)O(CFSOFの共重合体を加水分解してなるスルホン酸基を有するフッ素系重合体を20質量%溶解させた。その溶液に平均一次粒子径1μmの酸化ジルコニウム40質量%加え、ボールミルにて均一に分散させた懸濁液を得た。この懸濁液を前記加水分解及び塩交換処理後のイオン交換膜の両面にスプレー法により塗布し乾燥させる事により、コーティング層を形成させた。
 上記のようにして得られたイオン交換膜について、電解を行った。(電解後の層Bのイオンクラスター径)/(電解前の層Bのイオンクラスター径)の値は0.97であった。測定結果を表1に示す。
[比較例5]
 含フッ素重合体A-1として、前記一般式(1)で表される単量体(X=F、X=F)と前記一般式(2)で表される単量体(a=1、b=2、Y=CF)とをモル比5:1で共重合し、イオン交換容量が1.05m当量/gのポリマーを得た。
 含フッ素重合体A-2として、前記一般式(1)で表される単量体(X=F、X=F)と前記一般式(2)で表される単量体(a=1、b=2、Y=CF)とをモル比5.7:1で共重合し、イオン交換容量が0.99m当量/gのポリマーを得た。
 層Bを形成する含フッ素重合体Bとして、前記一般式(1)で表わされる単量体(X=F、X=F)と前記一般式(3)で表わされる単量体(c=1、d=2、Y=CF、R=CH)とをモル比7.5:1で共重合し、イオン交換容量が0.89m当量/gのポリマーを得た。
 フッ素重合体A-2とフッ素重合体Bをし、2台の押し出し機、2層用の共押し出し用Tダイ、及び引き取り機を備えた装置により、共押しを行い、厚み105μmの2層フィルム(a5)を得た。該フィルムの断面を光学顕微鏡で観察した結果、含フッ素重合体層A-2の厚みが80μm、層Bの厚みが25μmであった。また、単層Tダイにて厚み20μmの層A-1の単層フィルム(b5)を得た。
 内部に加熱源及び真空源を有し、表面に多数の微細孔を有するドラム上に、透気性のある耐熱離型紙、単層フィルム(b5)、強化芯材、2層フィルム(a5)を順番に積層し、230℃の温度及び-650mmHgの減圧下で各材料間の空気を排除しながら一体化し、複合膜を得た。強化芯材は、実施例1と同様のものを用いた。
 この複合膜をDMSO30質量%、4.0規定(N)のKOHを含む水溶液中で80℃の温度で0.5時間加水分解し、その後、50℃の条件下、0.6規定(N)NaOH溶液を用いて塩交換処理を行った。
 水とエタノールの50/50質量部の混合溶液に、イオン交換容量が1.0m当量/gのCF=CFとCF=CFOCFCF(CF)O(CFSOFの共重合体を加水分解してなるスルホン酸基を有するフッ素系重合体を20質量%溶解させた。その溶液に平均一次粒子径1μmの酸化ジルコニウム40質量%加え、ボールミルにて均一に分散させた懸濁液を得た。この懸濁液を前記加水分解及び塩交換処理後のイオン交換膜の両面にスプレー法により塗布し乾燥させる事により、コーティング層を形成させた。
 上記のようにして得られたイオン交換膜について、電解を行った。(電解後の層Bのイオンクラスター径)/(電解前の層Bのイオンクラスター径)の値は0.97であった。測定結果を表1に示す。
 上記実施例及び比較例のイオン交換膜の組成及び特性等を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例1~4のイオン交換膜は、電解性能が良好であり、かつ引張強度及び引張伸度の強度評価の結果も電解に十分耐え得る値を示した。
 一方、比較例1のイオン交換膜は、強度評価の結果は良好であったものの電解電圧が実施例1~4に比べて高かった。
 比較例2のイオン交換膜は、強度評価の結果は良好であったものの電解電圧が大きく上昇した。
 比較例3~4のイオン交換膜は、強度評価の結果は良好であったものの電解電圧が実施例1~4に比べて高かった。
 比較例5のイオン交換膜は、強度評価の結果は良好であったものの電解電圧が実施例1~4に比べて高かった。
 本出願は、2015年5月18日出願の日本特許出願(特願2015-101292号)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明のイオン交換膜は、塩化アルカリ電気分解の分野で、好適に利用できる。
1  イオン交換膜
2a  連通孔
2b  連通孔
3  強化芯材
4  層A
5  層B
6  コーティング層
7  コーティング層
8  層Aの陽極側表面に面している箇所
α  電解層の陽極側
β  電解層の陰極側
11  陽極
12  陰極
13  電解槽

Claims (7)

  1.  スルホン酸基を有する含フッ素重合体を含む層Aと、
     カルボン酸基を有する含フッ素重合体を含む層Bと、
     を有し、
     下記電解条件における電解前の前記層Bのイオンクラスター径に対する、前記電解後の前記層Bのイオンクラスター径の割合〔(前記電解後の層Bのイオンクラスター径)/(前記電解前の層Bのイオンクラスター径)〕が0.83~0.95である、イオン交換膜:
    (電解条件)
     3.5規定(N)の塩化ナトリウム水溶液が供給された陽極室と、10.8規定(N)の水酸化ナトリウム水溶液が供給された陰極室との間に前記イオン交換膜が配置されたゼロギャップ電解槽において、温度が85℃、電流密度が6kA/mの条件で7日間電解を行う。
  2.  前記電解前の層Bのイオンクラスター径が2.5~4.0nmであり、
     前記電解後の層Bのイオンクラスター径が2.0~3.3nmである、請求項1に記載のイオン交換膜。
  3.  前記電解前における、前記層Aの厚みと前記層Bの厚みとの合計が55μm以上である、請求項1又は2に記載のイオン交換膜。
  4.  前記電解前の層Aのイオンクラスター径が3.0~4.5nmである、請求項1~3のいずれか1項に記載のイオン交換膜。
  5.  前記電解前の層Aの厚さが50~180μmであり、
     前記電解前の層Bの厚さが5~20μmである、請求項1~4のいずれか1項に記載のイオン交換膜。
  6.  前記層Aは、下記式(2)で表される化合物の重合体を含み、
     前記層Bは下記式(3)で表される化合物の重合体を含む、請求項1~5のいずれか1項に記載のイオン交換膜:
      CF=CF-(OCFCYF)-O-(CF-SOF  (2)
    (式(2)中、aは0~2の整数、bは1~4の整数、Yは-F又は-CFを表す。)
      CF=CF-(OCFCYF)-O-(CF-COOR  (3)
    (式(3)中、cは0~2の整数、dは1~4の整数、Yは-F又は-CF、Rは-CH、-C、又は-Cを表す。)
  7.  請求項1~6のいずれか1項に記載のイオン交換膜を備える、電解槽。
PCT/JP2016/064526 2015-05-18 2016-05-16 イオン交換膜 WO2016186083A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16796476.6A EP3299495B1 (en) 2015-05-18 2016-05-16 Ion exchange membrane
US15/574,976 US10252257B2 (en) 2015-05-18 2016-05-16 Ion exchange membrane
JP2017519360A JP6410380B2 (ja) 2015-05-18 2016-05-16 イオン交換膜
KR1020177028800A KR101962061B1 (ko) 2015-05-18 2016-05-16 이온 교환막
CA2986205A CA2986205C (en) 2015-05-18 2016-05-16 Fluorine-containing ion exchange membrane and electrolytic cell comprising the fluorine-containing ion exchange membrane
CN201680022563.8A CN107532315A (zh) 2015-05-18 2016-05-16 离子交换膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-101292 2015-05-18
JP2015101292 2015-05-18

Publications (1)

Publication Number Publication Date
WO2016186083A1 true WO2016186083A1 (ja) 2016-11-24

Family

ID=57320048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064526 WO2016186083A1 (ja) 2015-05-18 2016-05-16 イオン交換膜

Country Status (8)

Country Link
US (1) US10252257B2 (ja)
EP (1) EP3299495B1 (ja)
JP (2) JP6410380B2 (ja)
KR (1) KR101962061B1 (ja)
CN (2) CN107532315A (ja)
CA (1) CA2986205C (ja)
TW (1) TWI609099B (ja)
WO (1) WO2016186083A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019036633A1 (en) * 2017-08-17 2019-02-21 The Trustees Of Columbia University In The City Of New York REDOX FLUX BATTERIES AND COMPOUNDS FOR BATTERY APPLICATION
JP2019108542A (ja) * 2017-12-19 2019-07-04 Agc株式会社 塩化アルカリ電解用イオン交換膜、塩化アルカリ電解用イオン交換膜の製造方法および塩化アルカリ電解装置
CN110015748A (zh) * 2018-01-10 2019-07-16 河南烯碳合成材料有限公司 净水装置
WO2019181919A1 (ja) * 2018-03-20 2019-09-26 旭化成株式会社 陽イオン交換膜及び多層構造膜、並びに、電解槽
JP2020076149A (ja) * 2018-11-05 2020-05-21 旭化成株式会社 イオン交換膜及び電解槽

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111139498B (zh) * 2018-11-05 2022-06-03 旭化成株式会社 离子交换膜和电解槽
CN114689830B (zh) * 2022-05-06 2023-05-26 华电电力科学研究院有限公司 一种阴离子树脂的碳酸氢根交换容量检测方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058707A (ja) * 2012-09-14 2014-04-03 Asahi Kasei Chemicals Corp イオン交換膜、イオン交換膜の製造方法及び電解槽
WO2014203886A1 (ja) * 2013-06-19 2014-12-24 旭化成ケミカルズ株式会社 含フッ素系重合体、陽イオン交換膜及び電解槽

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551351B2 (ja) * 1974-03-07 1980-01-12
US4337137A (en) * 1980-06-11 1982-06-29 The Dow Chemical Company Composite ion exchange membranes
JPS6253341A (ja) * 1985-09-03 1987-03-09 Asahi Glass Co Ltd 改良された含フツ素陽イオン交換膜
JP2001323084A (ja) * 2000-05-18 2001-11-20 Asahi Kasei Corp イオン交換膜
JP4573715B2 (ja) 2004-07-09 2010-11-04 旭化成ケミカルズ株式会社 電解用フッ素系陽イオン交換膜
JP5576387B2 (ja) * 2009-10-26 2014-08-20 旭化成ケミカルズ株式会社 陽イオン交換膜の製造方法
WO2013100079A1 (ja) 2011-12-28 2013-07-04 旭化成イーマテリアルズ株式会社 レドックスフロー二次電池及びレドックスフロー二次電池用電解質膜
JP5774514B2 (ja) * 2012-02-13 2015-09-09 旭化成ケミカルズ株式会社 陽イオン交換膜、及びこれを用いた電解槽
JP5773906B2 (ja) * 2012-02-13 2015-09-02 旭化成ケミカルズ株式会社 陽イオン交換膜及びこれを用いた電解槽
JP5844653B2 (ja) * 2012-02-13 2016-01-20 旭化成ケミカルズ株式会社 陽イオン交換膜及びこれを用いた電解槽
JP5793444B2 (ja) * 2012-02-13 2015-10-14 旭化成ケミカルズ株式会社 陽イオン交換膜及びこれを用いた電解槽
IN2014DN06873A (ja) * 2012-02-27 2015-05-22 Asahi Glass Co Ltd

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058707A (ja) * 2012-09-14 2014-04-03 Asahi Kasei Chemicals Corp イオン交換膜、イオン交換膜の製造方法及び電解槽
WO2014203886A1 (ja) * 2013-06-19 2014-12-24 旭化成ケミカルズ株式会社 含フッ素系重合体、陽イオン交換膜及び電解槽

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3299495A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019036633A1 (en) * 2017-08-17 2019-02-21 The Trustees Of Columbia University In The City Of New York REDOX FLUX BATTERIES AND COMPOUNDS FOR BATTERY APPLICATION
CN111066109A (zh) * 2017-08-17 2020-04-24 纽约市哥伦比亚大学理事会 用于电池应用的氧化还原液流电池和化合物
US11289729B2 (en) 2017-08-17 2022-03-29 The Trustees Of Columbia University In The City Of New York Redox flow batteries and compounds for battery application
JP2019108542A (ja) * 2017-12-19 2019-07-04 Agc株式会社 塩化アルカリ電解用イオン交換膜、塩化アルカリ電解用イオン交換膜の製造方法および塩化アルカリ電解装置
CN110015748A (zh) * 2018-01-10 2019-07-16 河南烯碳合成材料有限公司 净水装置
WO2019181919A1 (ja) * 2018-03-20 2019-09-26 旭化成株式会社 陽イオン交換膜及び多層構造膜、並びに、電解槽
JPWO2019181919A1 (ja) * 2018-03-20 2020-12-03 旭化成株式会社 陽イオン交換膜及び多層構造膜、並びに、電解槽
JP2020076149A (ja) * 2018-11-05 2020-05-21 旭化成株式会社 イオン交換膜及び電解槽
JP7421898B2 (ja) 2018-11-05 2024-01-25 旭化成株式会社 イオン交換膜及び電解槽

Also Published As

Publication number Publication date
CN107532315A (zh) 2018-01-02
TWI609099B (zh) 2017-12-21
CN111304691A (zh) 2020-06-19
CA2986205A1 (en) 2016-11-24
JPWO2016186083A1 (ja) 2018-03-01
CA2986205C (en) 2021-02-16
JP2019007021A (ja) 2019-01-17
EP3299495B1 (en) 2020-06-03
US20180126370A1 (en) 2018-05-10
JP6612410B2 (ja) 2019-11-27
US10252257B2 (en) 2019-04-09
EP3299495A4 (en) 2018-05-02
TW201710560A (zh) 2017-03-16
KR20170127539A (ko) 2017-11-21
EP3299495A1 (en) 2018-03-28
JP6410380B2 (ja) 2018-10-24
KR101962061B1 (ko) 2019-03-25

Similar Documents

Publication Publication Date Title
JP6612410B2 (ja) イオン交換膜
JP6577644B2 (ja) イオン交換膜
WO2016186084A1 (ja) イオン交換膜
JP7421898B2 (ja) イオン交換膜及び電解槽
CN111139498B (zh) 离子交换膜和电解槽
WO2019181919A1 (ja) 陽イオン交換膜及び多層構造膜、並びに、電解槽

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796476

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177028800

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2986205

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2017519360

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15574976

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016796476

Country of ref document: EP