WO2016184414A1 - 一种超高速涡喷发动机 - Google Patents

一种超高速涡喷发动机 Download PDF

Info

Publication number
WO2016184414A1
WO2016184414A1 PCT/CN2016/082711 CN2016082711W WO2016184414A1 WO 2016184414 A1 WO2016184414 A1 WO 2016184414A1 CN 2016082711 W CN2016082711 W CN 2016082711W WO 2016184414 A1 WO2016184414 A1 WO 2016184414A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove pattern
bearing
foil
turbojet engine
radial
Prior art date
Application number
PCT/CN2016/082711
Other languages
English (en)
French (fr)
Inventor
罗立峰
Original Assignee
罗立峰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2015/079233 external-priority patent/WO2016183787A1/zh
Priority claimed from PCT/CN2015/079234 external-priority patent/WO2016183788A1/zh
Application filed by 罗立峰 filed Critical 罗立峰
Publication of WO2016184414A1 publication Critical patent/WO2016184414A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • F02B37/10Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump at least one pump being alternatively or simultaneously driven by exhaust and other drive, e.g. by pressurised fluid from a reservoir or an engine-driven pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/042Sliding-contact bearings for exclusively rotary movement for axial load only with flexible leaves to create hydrodynamic wedge, e.g. axial foil bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/10Engines with prolonged expansion in exhaust turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/06Arrangements of bearings; Lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/057Bearings hydrostatic; hydrodynamic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/026Sliding-contact bearings for exclusively rotary movement for radial load only with helical grooves in the bearing surface to generate hydrodynamic pressure, e.g. herringbone grooves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/08Sliding-contact bearings for exclusively rotary movement for axial load only for supporting the end face of a shaft or other member, e.g. footstep bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • F16C17/107Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one surface for radial load and at least one surface for axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/26Systems consisting of a plurality of sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1005Construction relative to lubrication with gas, e.g. air, as lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • F16C37/002Cooling of bearings of fluid bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/161Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/163Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields radially supporting the rotary shaft at only one end of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/028Sliding-contact bearings for exclusively rotary movement for radial load only with fixed wedges to generate hydrodynamic pressure, e.g. multi-lobe bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines

Definitions

  • the invention relates to an ultra-high speed turbojet engine and belongs to the technical field of high precision machinery.
  • the principle of the turbojet engine is to use the compressor to suck in air from the air inlet and compress the air into the combustion chamber.
  • the injector sprays the atomized oil to the combustion chamber, and the ignition device compresses the high pressure air and oil.
  • the mist mixed gas is ignited, the mixed gas is burned and expanded, and the turbine is rotated.
  • the rotating turbine drives the compressor mixture to expand and expand through the turbine, and the combusted gas is ejected from the air outlet to generate thrust.
  • the compressor and the turbine blade are fixedly disposed on the central shaft, and the assembly formed by the compressor, the turbine blade and the central shaft is rotatably disposed in the engine casing, so as to realize the rotation of the compressor, the turbine blade and the central shaft assembly.
  • the bearing is arranged on the central shaft; since the thrust-to-weight ratio is inversely proportional to the structural size, for a small turbojet engine, if a large thrust-to-weight ratio is to be achieved, the bearing must be able to achieve ultra-high-speed stable operation, but the conventional oil-based bearing exists. When the speed of the shaft exceeds the limit speed, the bearing temperature will rise, making the bearing extremely vulnerable to damage, resulting in limitations in industrial applications, and cannot meet the requirements of today's miniaturization.
  • An ultra high speed turbojet engine comprising a turbine, a compressor, a rotating shaft, two radial bearings, a thrust bearing and a combustion chamber, the turbine including a turbine, a turbine deflector and a turbine casing, the compressor
  • the machine comprises a pressure wheel, a compressor diffuser and a compressor casing; wherein the radial bearing is a slot type dynamic pressure gas radial bearing, comprising a bearing shell and a bearing inner sleeve; the thrust bearing is a mixture
  • the dynamic pressure gas thrust bearing comprises two side plates and a middle plate sandwiched between the two side plates, and a foil-type elastic member is disposed between each of the side plates and the middle plate;
  • the two radial bearings are respectively disposed on a rotating shaft located in the combustion chamber, and the thrust bearing sleeve is disposed on a rotating shaft between the combustion chamber and the pressure roller.
  • the small micro turbojet engine further includes a turbine bracket, a compressor bracket, a rotating sleeve, a bearing sleeve, and a left bearing chamber end cover and a right bearing chamber end cover.
  • the rotating shaft sleeve is disposed on the rotating shaft and has a diameter.
  • the bearing and the thrust bearing are sleeved on the rotating sleeve, the bearing sleeve is disposed outside the radial bearing and the thrust bearing;
  • the turbine housing is fixedly connected with the turbine bracket, and the turbine bracket is fixedly connected with the casing of the combustion chamber , turbine bracket and turbine deflector
  • the fixed connection, the turbine deflector is fixedly connected with the left bearing chamber end cover;
  • the compressor housing is fixedly connected with the compressor bracket;
  • the compressor bracket is fixedly connected with the combustion chamber housing, and the compressor bracket is fixedly connected with the compressor diffuser
  • the compressor diffuser is fixedly connected to the right bearing chamber end cover.
  • the surface of the rotating shaft is provided with a heat dissipation spiral groove to facilitate heat dissipation of the rotating shaft and the bearing chamber.
  • the outer circumferential surface and the both end surfaces of the bearing inner sleeve have a regular pattern of grooves.
  • the groove pattern of one end surface of the bearing inner sleeve is mirror-symmetrical with the groove pattern of the other end surface, and the axial contour line of the groove pattern of the outer circumferential surface and the groove pattern of the both end surfaces
  • the radial contour lines form a one-to-one correspondence and intersect each other.
  • the axial high line in the groove pattern of the outer circumferential surface of the bearing inner sleeve corresponds to the radial high line in the groove pattern on both end faces, and is mutually overlapped before the end face is chamfered.
  • the axial median line in the groove pattern of the outer circumferential surface corresponds to the radial median line in the groove pattern on both end faces, and is mutually overlapped before the end face is chamfered;
  • the axial lower line in the middle corresponds to the radially lower line in the groove pattern on both end faces, and is mutually overlapped before the end face is chamfered.
  • the matching gap between the bearing inner sleeve and the bearing outer sleeve is 0.003 to 0.008 mm.
  • a stop ring is provided at both ends of the bearing housing.
  • the outer circumference of the bearing sleeve has coaxial through holes and recessed holes, and the through holes are located in the coaxial recessed holes to facilitate the introduction and discharge of gas, and on the one hand, realize rapid heat dissipation and exhaust. On the other side, air supply to the bearing chamber is achieved.
  • both end faces of the middle plate are provided with a regular pattern of groove patterns, and the groove pattern of one end face is mirror-symmetrical with the groove pattern of the other end face.
  • the outer circumferential surface of the intermediate disk is also provided with a groove pattern, and the shape of the groove pattern of the outer circumferential surface is the same as the shape of the groove pattern on both end faces, and the groove pattern of the outer circumferential surface
  • the axial contour line forms a one-to-one correspondence with the radial contour lines of the groove patterns on both end faces and intersects each other.
  • the axial high line in the groove pattern of the outer circumferential surface of the middle disk corresponds to the radial high line in the groove pattern on both end faces, and is mutually overlapped before the end face is chamfered;
  • the outer circumference The axial median line in the groove pattern corresponds to the radial median line in the groove pattern on both end faces, and crosses each other before the end face is chamfered;
  • the axis in the groove pattern of the outer circumferential surface The low-order line corresponds to the radially lower line in the groove pattern on both end faces, and is mutually overlapped before the end face is chamfered.
  • a wear-resistant coating is provided on the mating surface of the foil-type elastic member that is fitted to the intermediate disk.
  • the fitting gap between the foil-type elastic member and the middle plate is 0.003 to 0.008 mm.
  • At least one end of the foil-type elastic member is fixed to an inner end surface of the corresponding side disk.
  • the foil-type elastic members on each of the side plates are plural and evenly distributed along the inner end faces of the side plates.
  • the foil-type elastic member fixed to one side disk is mirror-symmetrical to the foil-shaped elastic member fixed to the other side disk.
  • a card slot for fixing the foil-type elastic member is provided on the inner end surface of the side disk.
  • the foil-type elastic member is composed of a wave foil and a flat foil, and the curved convex top end of the wave foil is attached to the flat foil.
  • the foil-type elastic member is composed of a wave foil and a flat foil, and the inter-wave arch transition bottom edge of the wave foil is in contact with the flat foil.
  • the foil-type elastic member is composed of two flat foils.
  • the above-mentioned groove patterns are all impeller shapes.
  • the above-mentioned foil-type elastic member is preferably subjected to surface heat treatment.
  • the present invention has the following beneficial effects:
  • the turbojet engine provided by the present invention uses gas as a lubricant for the bearing, so that it has not only pollution-free, low friction loss, long service time, wide application range, energy saving and environmental protection, but also uses the structure to dissipate heat. Good effect, can guarantee stable operation for a long time; in particular, because the air bearing of the structure can achieve ultra-high-speed stable operation under air-floating state (tested, the limit speed can reach 100,000 ⁇ 450,000 rpm), so the same
  • the invention can significantly reduce the volume of the turbojet engine to achieve miniaturization, has the advantages of small occupied space and convenient use, and has important value for promoting the development of miniaturization high-tech, and has significant progress compared with the prior art. .
  • Embodiment 1 is a schematic cross-sectional structural view of an ultra high speed turbojet engine provided in Embodiment 1;
  • Embodiment 2 is a partially divided left perspective structural view of a trough type dynamic pressure gas radial bearing provided in Embodiment 1;
  • Figure 3 is a partial enlarged view of A in Figure 2;
  • Embodiment 4 is a schematic partial right side perspective view showing the slot type dynamic pressure gas radial bearing provided in Embodiment 1;
  • Figure 5 is a partial enlarged view of B in Figure 4.
  • FIG. 6 is a schematic cross-sectional structural view of a hybrid dynamic pressure gas thrust bearing provided in Embodiment 1;
  • Figure 7a is a left side view of the center disk described in Embodiment 1;
  • Figure 7b is a right side view of the center disk described in Embodiment 1;
  • Figure 8a is a right side view of the left side disk to which the foil-type elastic member is fixed as described in Embodiment 1;
  • Figure 8b is a left side view of the right side disk with the foil-type elastic member fixed in Embodiment 1;
  • FIG. 9 is a schematic cross-sectional structural view of a foil-type elastic member provided in Embodiment 1;
  • Figure 10 is a perspective view showing the structure of the foil-type elastic member provided in Embodiment 1;
  • Figure 11 is a cross-sectional structural view showing a slot type dynamic pressure gas radial bearing provided in Embodiment 2;
  • Figure 12 is a partial enlarged view of C in Figure 11;
  • Figure 13a is a left perspective view of a hybrid dynamic pressure gas thrust bearing provided in Embodiment 3;
  • Figure 13b is a right perspective structural view of the hybrid dynamic pressure gas thrust bearing provided in Embodiment 3;
  • Figure 14 is a partially sectional perspective structural view of the hybrid dynamic pressure gas thrust bearing provided in Embodiment 3.
  • Figure 15 is a left perspective view of the middle disc of the third embodiment.
  • Figure 16 is a partial enlarged view of D in Figure 15;
  • Figure 17 is a right perspective view showing the center disk of the second embodiment
  • Figure 18 is a partial enlarged view of E in Figure 17;
  • FIG. 19 is a schematic structural view of a rotating shaft provided in Embodiment 4.
  • Figure 20 is a partial enlarged view of F in Figure 19.
  • an ultra-high speed turbojet engine provided by the embodiment includes a turbine 1 , a compressor 2 , a rotating shaft 3 , 2 radial bearings 4 , a thrust bearing 5 , and a combustion chamber 6 .
  • the turbine 1 comprises a turbine 11 , a turbine deflector 12 and a turbine housing 13 , the compressor 2 comprising a pressure wheel 21 , a compressor diffuser 22 and a compressor housing 23; characterized in that the radial bearing 4 is a slot type dynamic pressure gas radial bearing, comprising a bearing sleeve 41 and a bearing inner sleeve 42; the thrust bearing 5 is a hybrid dynamic pressure gas thrust bearing, comprising two side discs 51 and sandwiched on two sides A middle plate 52 between the disks is provided with a foil-type elastic member 53 between each of the side plates 51 and the intermediate plate 52.
  • the combustion chamber 6 is sleeved in the middle of the rotating shaft 3, and two radial bearings 4 are respectively sleeved.
  • the thrust bearing 5 is disposed on the rotating shaft 3 located in the combustion chamber 6, and the thrust bearing 5 is sleeved on the rotating shaft 3 between the combustion chamber 6 and the pressure roller 21.
  • the small micro turbojet engine further includes a turbine bracket 14, a compressor bracket 24, a rotating sleeve 31, a bearing sleeve 7 and a left bearing chamber end cover 8a and a right bearing chamber end cover 8b, and the rotating sleeve 31 is sleeved on the rotating shaft 3, the radial bearing 4 and the thrust bearing 5 are sleeved on the rotating sleeve 31, the bearing sleeve 7 is sleeved outside the radial bearing 4 and the thrust bearing 5; the turbine housing 13 and the turbine bracket 14 Fixedly connected, the turbine bracket 14 is fixedly connected to the housing 61 of the combustion chamber 6, the turbine bracket 14 is fixedly connected to the turbine deflector 12, and the turbine deflector 12 is fixedly connected to the left bearing chamber end cover 8a; the compressor housing 23 is The compressor bracket 24 is fixedly connected; the compressor bracket 24 is fixedly connected to the casing 61 of the combustion chamber 6, the compressor bracket 24 is fixedly connected to the compressor diffuser 22, and the compressor diffuser 22 is
  • the outer circumferential surface and the left and right end surfaces of the bearing inner sleeve 42 each have a regular shape of the groove pattern 43 (431, 432 and 433 in the figure, the groove in this embodiment).
  • the pattern is an impeller shape), and the groove pattern 432 of the left end surface is mirror-symmetrical with the groove pattern 433 of the right end surface.
  • the axial contour line of the groove pattern 431 located on the outer circumferential surface of the bearing inner sleeve 42 forms a one-to-one correspondence with the radial contour lines of the groove patterns (432 and 433) of the left and right end surfaces, and is mutually overlapped, that is, external
  • the axially high bit line 4311 in the circumferential groove pattern 431 corresponds to the radial high bit lines (4321 and 4331) in the groove patterns (432 and 433) of the left and right end faces, and is chamfered before the end face is chamfered Interacting with each other;
  • the axial center line 4312 in the groove pattern 431 of the outer circumferential surface corresponds to the radial center line (4322 and 4332) in the groove patterns (432 and 433) of the left and right end faces, and
  • the front end is circumferentially chamfered to each other;
  • the groove pattern 432 of the left end surface and the groove pattern 433 of the right end face form a mirror image symmetry and the radial contour of the groove pattern 431 of the outer circumferential surface and the radial pattern of the groove patterns (432 and 433) of the left and right end faces.
  • the lines are formed in a one-to-one correspondence and mutually intersected, and the pressurized gas generated by the groove patterns (432 and 433) of the impeller shape at both end faces can be ensured from the axial direction of the axially continuous groove pattern 431 of the outer circumferential surface.
  • the groove channel is conveyed so as to form a gas film required to support the high-speed running bearing more strongly, and the gas film is used as a lubricant for the dynamic pressure gas radial bearing, thereby facilitating the realization of the groove type dynamic pressure gas radial bearing 4 High-speed stable operation in an air floating state.
  • the retaining ring 44 when the retaining ring 44 is respectively disposed at both ends of the bearing outer casing 41, the self-sealing action between the end faces of the bearing inner sleeve 42 and the retaining ring 44 can be achieved under the driving of the high-speed rotating shaft, so that the trough pattern is continuous.
  • the generated dynamic pressure gas can be well sealed and stored in the entire matching clearance of the bearing, which fully ensures the lubrication of the high-speed running dynamic pressure gas radial bearing.
  • the fitting clearance between the bearing outer casing 41 and the bearing inner sleeve 42 is preferably 0.003 to 0.008 mm to further ensure the reliability and stability of the bearing at high speed.
  • a hybrid dynamic pressure gas thrust bearing 5 provided in this embodiment includes: two side discs 51 with a middle disc 52 interposed between the two side discs 51 on each side.
  • a foil-shaped elastic member 53 is disposed between the disk 51 and the intermediate plate 52; the left end surface of the intermediate plate 52 is provided with a groove pattern 521 having a regular shape, and the right end surface is provided with a groove pattern 522 having a regular shape.
  • the groove pattern 521 of the left end surface of the middle plate 52 and the groove pattern 522 of the right end surface form a mirror symmetry, and the radial contour line and the right end surface of the groove pattern 521 of the left end surface are formed.
  • the radial contours of the troughs 522 form a one-to-one correspondence.
  • the troughs 521 and 522 have the same shape, and are in the shape of an impeller in this embodiment.
  • the foil-type elastic member 53 is fixed to the inner end surface of the corresponding side disk 51 (for example, the left side disk 511 to which the foil-type elastic member 53a is fixed as shown in Fig. 8a and the left side disk 511 shown in Fig. 8b
  • the right side disc 512) to which the foil type elastic member 53b is fixed, and the foil type elastic member 53a fixed to the left side disc 511 is mirror-symmetrical with the foil type elastic member 53b fixed to the right side disc 512.
  • the foil-type elastic member 53 By providing the foil-type elastic member 53 between the side disk 51 and the intermediate disk 52, regular groove patterns (521 and 522) are provided on the left and right end faces of the middle plate 52, and the groove pattern 521 of the left end face is The groove pattern 522 of the right end surface is mirror-symmetrical, thereby obtaining a rigid characteristic of a high limit rotation speed of the groove type dynamic pressure gas thrust bearing, and a high impact resistance and load of the foil type dynamic pressure gas thrust bearing.
  • the hybrid dynamic pressure gas thrust bearing of the flexible nature of the capability because the foil-shaped elastic member 53 forms a wedge-shaped space with the intermediate disk 52, when the disk 52 rotates, the gas is driven by its own viscous action and is compressed to the wedge shape.
  • the axial dynamic pressure can be significantly enhanced compared to the existing single
  • the pure foil type dynamic pressure gas thrust bearing can have a limit rotation speed which is multiplied under the same load; at the same time, due to the increase of the foil type elastic member 53, the load capacity and resistance of the bearing can be made under the elastic action.
  • the impact capability and the ability to suppress the eddy of the shaft are significantly improved, and the impact resistance and load capacity which are multiplied at the same rotational speed can be obtained with respect to the conventional simple trough hydrodynamic gas thrust bearing.
  • the foil-shaped elastic member 53 is composed of a wave foil 531 and a flat foil 532, and a top end of the curved protrusion 5311 of the wave foil 531 is attached to the flat foil 532.
  • the inter-wave transition bottom edge 5312 of the wave foil 531 is in contact with the inner end surface of the corresponding side disk 51.
  • the slot type dynamic pressure gas radial bearing provided in this embodiment is different from the first embodiment only in that the outer circumference of the bearing outer casing 41 has a coaxial through hole 411 and The recessed hole 412 is located in the coaxial recessed hole 412 to facilitate the introduction and the introduction of the gas.
  • the rapid heat dissipation and exhaust are realized, and the other side realizes the air supply to the bearing chamber.
  • a hybrid dynamic pressure gas thrust bearing provided by this embodiment differs from Embodiment 1 only in that:
  • a groove pattern 523 is also provided on the outer circumferential surface of the intermediate disk 52, and the shape of the groove pattern 523 of the outer circumferential surface is the same as that of the groove patterns (521 and 522) of the left and right end faces (this embodiment)
  • the axial contour of the groove pattern 523 of the outer circumferential surface and the radial contour lines of the groove patterns (521 and 522) of the left and right end faces are in one-to-one correspondence with each other and intersect with each other; :
  • the axially high bit line 5231 in the groove pattern 523 of the outer circumferential surface corresponds to the radial high line line 5211 in the groove pattern 521 of the left end surface, and is mutually overlapped before the end face is chamfered;
  • the groove of the outer circumferential surface The axial center line 5232 in the pattern 523 corresponds to the radial center line 5212 in the groove pattern 521 of the left end surface, and is mutually overlapped before the end surface is chamfered;
  • the axial low bit line 5233 corresponds to the radially lower bit line 5213 in the groove pattern 521 of the left end face, and overlaps each other before the end face is chamfered (as shown in FIG. 16);
  • the axially high bit line 5231 in the groove pattern 523 of the outer circumferential surface corresponds to the radial high line 5221 in the groove pattern 522 of the right end face, and is mutually overlapped before the end face is chamfered;
  • the groove of the outer circumferential surface The axial center line 5232 in the pattern 523 corresponds to the radial center line 5222 in the groove pattern 522 of the right end surface, and is mutually overlapped before the end surface is chamfered;
  • the lower bit lines 5223 correspond to each other and overlap each other before the end face is chamfered (as shown in FIG. 18).
  • a groove pattern is also provided on the outer circumferential surface of the intermediate disk 52, and the shape of the groove pattern 523 of the outer circumferential surface is the same as that of the groove patterns (521 and 522) of the left and right end faces, and When the axial contour line of the groove pattern 523 of the circumferential surface forms a one-to-one correspondence with the radial contour lines of the groove patterns (521 and 522) of the left and right end faces, the groove pattern of both end faces of the inner disk can be obtained.
  • the pressurized gas generated by (521 and 522) is transported from the axial direction of the shaft to the groove passage formed by the groove pattern 523 of the outer circumferential surface so as to form a gas film which is stronger for supporting the high speed running bearing, and
  • the gas film is used as a lubricant for the dynamic pressure gas thrust bearing, so that the high-speed stable operation of the hybrid dynamic pressure gas thrust bearing in the air-floating state can be further ensured, and further guarantee for realizing the high limit rotation speed of the motor.
  • a card slot 513 (shown in Fig. 14) for fixing the foil-type elastic member 53 is provided on the inner end surface of the side disk 51.
  • the fitting clearance of the foil-type elastic member 53 and the intermediate disk 52 is preferably 0.003 to 0.008 mm to further ensure the reliability and stability of the high-speed operation of the bearing.
  • the foil-type elastic member 53 is preferably subjected to surface heat treatment.
  • composition of the foil-type elastic member 53 of the present invention is not limited to that described in the above embodiments, and may be composed of a wave foil and a flat foil, but the transition edge between the wave arches of the wave foil is The flat foil is fitted, or it is composed of two flat foils directly, or other existing structures.
  • a heat dissipating spiral groove 32 is formed on the surface of the rotating shaft 3 to facilitate heat dissipation of the rotating shaft and the bearing chamber.
  • the bearing provided by the invention can reach the limit rotation speed of 100,000-450,000 rpm in the air floating state, so the invention can significantly reduce the volume of the turbojet engine to achieve miniaturization for the same power requirement, and promote miniaturization and high innovation.
  • the development of technology is of great value.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Motor Or Generator Frames (AREA)
  • Supercharger (AREA)
  • Support Of The Bearing (AREA)
  • Slot Machines And Peripheral Devices (AREA)

Abstract

一种超高速涡喷发动机,其包括涡轮机(1)、压气机(2)、转轴(3)、2个径向轴承(4)、1个止推轴承(5)及燃烧室(6),所述径向轴承(4)为槽式动压气体径向轴承,所述止推轴承(5)为混合式动压气体止推轴承,所述燃烧室(6)套设在转轴(3)的中部,2个径向轴承(4)分别套设在位于燃烧室(6)内的转轴(3)上,所述止推轴承(5)套设在位于燃烧室(6)与压轮(21)间的转轴(3)上。该涡喷发动机可实现在气浮状态下的超高速稳定运转,针对相同功率要求,可使涡喷发动机的体积显著减小实现微型化。

Description

一种超高速涡喷发动机 技术领域
本发明是涉及一种超高速涡喷发动机,属于高精密机械技术领域。
背景技术
涡喷发动机的原理是利用压气机将空气从进气口吸进去,并将空气压缩到燃烧室里,喷油嘴向燃烧室喷出雾化的油料,点火装置将压缩后的高压空气和油雾混合气体点燃,混合气体燃烧膨胀,推动涡轮旋转,旋转的涡轮带动压气机混合气燃烧膨胀经过涡轮后,燃烧后的气体从喷气口喷出,从而产生推力。其中压气机与涡轮叶片固定设置在中轴上,压气机、涡轮叶片、中轴构成的总成转动式设置在发动机机壳内,为实现对压气机、涡轮叶片、中轴构成总成的转动支撑,所述的中轴上设置有轴承;由于推重比与结构尺寸成反比关系,对于小型涡喷发动机,若要实现大推重比,必须轴承能实现超高速稳定运转,但传统油系轴承存在着极限转速,当转轴转速超过极限转速时,会使轴承温升高,使轴承极易损坏失效,以致工业应用受到局限,不能满足当今微型化发展要求。
发明内容
针对现有技术存在的上述问题,本发明的目的是提供一种可长时间稳定运行的超高速涡喷发动机。
为实现上述目的,本发明采用的技术方案如下:
一种超高速涡喷发动机,包括涡轮机、压气机、转轴、2个径向轴承、1个止推轴承及燃烧室,所述涡轮机包括涡轮、涡轮机导流器及涡轮机壳体,所述压气机包括压轮、压气机扩压器及压气机壳体;其特征在于:所述径向轴承为槽式动压气体径向轴承,包括轴承外套和轴承内套;所述止推轴承为混合式动压气体止推轴承,包括两个侧盘以及夹设在两个侧盘之间的中盘,在每个侧盘与中盘之间均设有箔型弹性件;所述燃烧室套设在转轴的中部,2个径向轴承分别套设在位于燃烧室内的转轴上,所述止推轴承套设在位于燃烧室与压轮间的转轴上。
作为进一步实施方案,所述的小微型涡喷发动机还包括涡轮机支架、压气机支架、转轴套、轴承套及左轴承室端盖和右轴承室端盖,所述转轴套套设在转轴上,径向轴承和止推轴承均套设在转轴套上,所述轴承套套设在径向轴承和止推轴承的外部;涡轮机壳体与涡轮机支架固定连接,涡轮机支架与燃烧室的壳体固定连接,涡轮机支架与涡轮机导流器 固定连接,涡轮机导流器与左轴承室端盖固定连接;压气机壳体与压气机支架固定连接;压气机支架与燃烧室的壳体固定连接,压气机支架与压气机扩压器固定连接,压气机扩压器与右轴承室端盖固定连接。
作为优选方案,所述转轴的表面开设有散热螺旋槽,以利于转轴和轴承室的散热。
作为优选方案,所述轴承内套的外圆周面和两端面均具有规则形状的槽式花纹。
作为进一步优选方案,所述轴承内套的一端面的槽式花纹与另一端面的槽式花纹形成镜像对称,以及外圆周面的槽式花纹的轴向轮廓线与两端面的槽式花纹的径向轮廓线均形成一一对应并相互交接。
作为进一步优选方案,所述轴承内套的外圆周面的槽式花纹中的轴向高位线与两端面的槽式花纹中的径向高位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向中位线与两端面的槽式花纹中的径向中位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向低位线与两端面的槽式花纹中的径向低位线均相对应、并在端面圆周倒角前相互交接。
作为优选方案,所述轴承内套与轴承外套间的配合间隙为0.003~0.008mm。
作为优选方案,在所述轴承外套的两端设有止环。
作为优选方案,所述轴承外套的外圆周上具有同轴的通孔和凹孔,所述的通孔位于同轴的凹孔内,以利于气体的导入和导出,一方面实现快速散热排气,另一面实现对轴承室内进行空气补给。
作为优选方案,所述中盘的两端面均设有规则形状的槽式花纹,且一端面的槽式花纹与另一端面的槽式花纹形成镜像对称。
作为优选方案,在所述中盘的外圆周面也设有槽式花纹,且外圆周面的槽式花纹的形状与两端面的槽式花纹的形状相同,以及外圆周面的槽式花纹的轴向轮廓线与两端面的槽式花纹的径向轮廓线均形成一一对应并相互交接。
作为进一步优选方案,中盘的外圆周面的槽式花纹中的轴向高位线与两端面的槽式花纹中的径向高位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向中位线与两端面的槽式花纹中的径向中位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向低位线与两端面的槽式花纹中的径向低位线均相对应、并在端面圆周倒角前相互交接。
作为进一步优选方案,在与中盘相配合的箔型弹性件的配合面上设有耐磨涂层。
作为进一步优选方案,所述箔型弹性件与中盘的配合间隙为0.003~0.008mm。
作为进一步优选方案,所述箔型弹性件的至少一端固定在对应侧盘的内端面上。
作为进一步优选方案,每个侧盘上的箔型弹性件为多个,且沿侧盘的内端面均匀分布。
作为进一步优选方案,固定在一个侧盘上的箔型弹性件与固定在另一个侧盘上的箔型弹性件形成镜像对称。
作为进一步优选方案,在侧盘的内端面设有用于固定箔型弹性件的卡槽。
作为一种实施方案,所述的箔型弹性件由波箔和平箔组成,所述波箔的弧形凸起顶端与平箔相贴合。
作为另一种实施方案,所述的箔型弹性件由波箔和平箔组成,所述波箔的波拱间过渡底边与平箔相贴合。
作为又一种实施方案,所述的箔型弹性件由两个平箔组成。
上述的槽式花纹均为叶轮形状。
上述的箔型弹性件优选经过表面热处理。
与现有技术相比,本发明具有如下有益效果:
因本发明所提供的涡喷发动机,是以气体作为轴承的润滑剂,因此不仅具有无污染、摩擦损失低、使用时间长、适用范围广、节能环保等诸多优点,而且采用所述结构,散热效果好,可保证长时间稳定运行;尤其是,因所述结构的空气轴承能实现在气浮状态下的超高速稳定运转(经测试,可达100,000~450,000rpm的极限转速),因此针对相同功率要求,本发明可使涡喷发动机的体积显著减小实现微型化,具有占用空间小、使用便捷等优点,对促进微型化高新技术的发展具有重要价值,相对于现有技术具有显著性进步。
附图说明
图1是实施例1提供的一种超高速涡喷发动机的剖面结构示意图;
图2是实施例1提供的槽式动压气体径向轴承的局部分割的左视立体结构示意图;
图3是图2中的A局部放大图;
图4是实施例1提供的槽式动压气体径向轴承的局部分割的右视立体结构示意图;
图5是图4中的B局部放大图;
图6是实施例1提供的混合式动压气体止推轴承的剖面结构示意图;
图7a是实施例1中所述中盘的左视图;
图7b是实施例1中所述中盘的右视图;
图8a是实施例1中所述的固定有箔型弹性件的左侧盘的右视图;
图8b是实施例1中所述的固定有箔型弹性件的右侧盘的左视图;
图9是实施例1提供的箔型弹性件的截面结构示意图;
图10是实施例1提供的箔型弹性件的立体结构示意图;
图11是实施例2提供的一种槽式动压气体径向轴承的剖面结构示意图;
图12是图11中的C局部放大图;
图13a是实施例3提供的一种混合式动压气体止推轴承的左视立体结构示意图;
图13b是实施例3提供的混合式动压气体止推轴承的右视立体结构示意图;
图14是实施例3提供的混合式动压气体止推轴承的局部分割立体结构示意图;
图15是实施例3中所述中盘的左视立体结构示意图;
图16是图15中的D局部放大图;
图17是实施例2中所述中盘的右视立体结构示意图;
图18是图17中的E局部放大图;
图19是实施例4所提供的转轴结构示意图;
图20是图19中的F局部放大图。
图中标号示意如下:
1、涡轮机;11、涡轮;12、涡轮机导流器;13、涡轮机壳体;14、涡轮机支架;2、压气机;21、压轮;22、压气机扩压器;23、压气机壳体;24、压气机支架;3、转轴;31、转轴套;32、散热螺旋槽;4、槽式动压气体径向轴承;4a、左端径向轴承;4b、右端径向轴承;41、轴承外套;411、通孔;412、凹孔;42、轴承内套;43、槽式花纹;431、外圆周面的槽式花纹;4311、轴向高位线;4312、轴向中位线;4313、轴向低位线;432、左端面的槽式花纹;4321、径向高位线;4322、径向中位线;4323、径向低位线;433、右端面的槽式花纹;4331、径向高位线;4332、径向中位线;4333、径向低位线;44、止环;5、混合式动压气体止推轴承;51、侧盘;511、左侧盘;512、右侧盘;513、卡槽;52、中盘;521、左端面的槽式花纹;5211、径向高位线;5212、径向中位线;5213、径向低位线;522、右端面的槽式花纹;5221、径向高位线;5222、径向中位线;5223、径向低位线;523、外圆周面的槽式花纹;5231、轴向高位线;5232、轴向中位线;5233、轴向低位线;53、箔型弹性件;53a、固定在左侧盘上的箔型弹性件;53b、固定在右侧盘上的箔型弹性件;531、波箔;5311、弧形凸起;5312、波拱间过渡底边;532、平箔;6、燃烧室;61、燃烧室的壳体;7、轴承套;8a、左轴承室端盖;8b、右轴承室端盖。
具体实施方式
下面结合附图及实施例对本发明的技术方案做进一步详细地说明。
实施例1
如图1所示:本实施例提供的一种超高速涡喷发动机,包括涡轮机1、压气机2、转轴3、2个径向轴承4、1个止推轴承5及燃烧室6,所述涡轮机1包括涡轮11、涡轮机导流器12及涡轮机壳体13,所述压气机2包括压轮21、压气机扩压器22及压气机壳体23;其特征在于:所述径向轴承4为槽式动压气体径向轴承,包括轴承外套41和轴承内套42;所述止推轴承5为混合式动压气体止推轴承,包括两个侧盘51以及夹设在两个侧盘之间的中盘52,在每个侧盘51与中盘52之间均设有箔型弹性件53;所述燃烧室6套设在转轴3的中部,2个径向轴承4分别套设在位于燃烧室6内的转轴3上,所述止推轴承5套设在位于燃烧室6与压轮21间的转轴3上。
所述的小微型涡喷发动机还包括涡轮机支架14、压气机支架24、转轴套31、轴承套7及左轴承室端盖8a和右轴承室端盖8b,所述转轴套31套设在转轴3上,径向轴承4和止推轴承5均套设在转轴套31上,所述轴承套7套设在径向轴承4和止推轴承5的外部;涡轮机壳体13与涡轮机支架14固定连接,涡轮机支架14与燃烧室6的壳体61固定连接,涡轮机支架14与涡轮机导流器12固定连接,涡轮机导流器12与左轴承室端盖8a固定连接;压气机壳体23与压气机支架24固定连接;压气机支架24与燃烧室6的壳体61固定连接,压气机支架24与压气机扩压器22固定连接,压气机扩压器22与右轴承室端盖8b固定连接。
结合图2至图5所示:所述轴承内套42的外圆周面和左、右端面均具有规则形状的槽式花纹43(如图中的431、432和433,本实施例中的槽式花纹均为叶轮形状),且左端面的槽式花纹432与右端面的槽式花纹433形成镜像对称。位于轴承内套42的外圆周面的槽式花纹431的轴向轮廓线与左、右端面的槽式花纹(432和433)的径向轮廓线均形成一一对应并相互交接,即:外圆周面的槽式花纹431中的轴向高位线4311与左、右端面的槽式花纹(432和433)中的径向高位线(4321和4331)均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹431中的轴向中位线4312与左、右端面的槽式花纹(432和433)中的径向中位线(4322和4332)均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹431中的轴向低位线4313与左、右端面的槽式花纹(432和433)中的径向低位线(4323和4333)均相对应、并在端面圆周倒角前相互交接。
通过使轴承内套42的外圆周面和两端面均具有规则形状的槽式花纹(431、432和433), 左端面的槽式花纹432与右端面的槽式花纹433形成镜像对称及外圆周面的槽式花纹431的轴向轮廓线与左、右端面的槽式花纹(432和433)的径向轮廓线均形成一一对应并相互交接,可保证两端面的叶轮形状的槽式花纹(432和433)所产生的增压气体从轴心沿径向不断地往外圆周面的槽式花纹431形成的凹槽通道里输送,以致形成更强支撑高速运转轴承所需的气膜,而气膜即作为动压气体径向轴承的润滑剂,因此有利于实现所述槽式动压气体径向轴承4在气浮状态下的高速稳定运转。
另外,当在轴承外套41的两端分别设置止环44时,可实现在高速回转轴的带动下,使轴承内套42的两端面与止环44间产生自密封作用,使槽式花纹连续产生的动压气体能完好地密闭保存在轴承的整个配合间隙中,充分保证高速运转的动压气体径向轴承的润滑需要。
所述轴承外套41与轴承内套42间的配合间隙优选为0.003~0.008mm,以进一步确保轴承高速运转的可靠性和稳定性。
如图6所示:本实施例提供的一种混合式动压气体止推轴承5,包括:两个侧盘51,在两个侧盘51之间夹设有中盘52,在每个侧盘51与中盘52之间设有箔型弹性件53;所述中盘52的左端面设有规则形状的槽式花纹521,右端面设有规则形状的槽式花纹522。
结合图7a和图7b可见:所述中盘52的左端面的槽式花纹521与右端面的槽式花纹522之间形成镜像对称,左端面的槽式花纹521的径向轮廓线与右端面的槽式花纹522的径向轮廓线形成一一对应。
所述的槽式花纹521与522的形状相同,本实施例中均为叶轮形状。
进一步结合图8a和图8b可见:所述箔型弹性件53固定在对应侧盘51的内端面上(例如图8a所示的固定有箔型弹性件53a的左侧盘511和图8b所示的固定有箔型弹性件53b的右侧盘512),且固定在左侧盘511上的箔型弹性件53a与固定在右侧盘512上的箔型弹性件53b形成镜像对称。在每个侧盘上的箔型弹性件可为多个(图中示出的是4个),且沿侧盘的内端面均匀分布。
通过在侧盘51与中盘52之间设置箔型弹性件53,在中盘52的左、右端面设置规则形状的槽式花纹(521和522),且使左端面的槽式花纹521与右端面的槽式花纹522形成镜像对称,从而得到了既具有槽式动压气体止推轴承的高极限转速的刚性特征、又具有箔片式动压气体止推轴承的高抗冲击能力和载荷能力的柔性特征的混合式动压气体止推轴承;因为箔型弹性件53与中盘52间形成了楔形空间,当中盘52转动时,气体因其自身的粘性作用被带动并被压缩到楔形空间内,从而可使轴向动压力得到显著增强,相对于现有的单 纯箔片式动压气体止推轴承,可具有在相同载荷下成倍增加的极限转速;同时,由于增加了箔型弹性件53,在其弹性作用下,还可使轴承的载荷能力、抗冲击能力和抑制轴涡动的能力显著提高,相对于现有的单纯槽式动压气体止推轴承,可具有在相同转速下成倍增加的抗冲击能力和载荷能力。
结合图6和图9、图10所示:所述的箔型弹性件53由波箔531和平箔532组成,所述波箔531的弧形凸起5311的顶端与平箔532相贴合,所述波箔531的波拱间过渡底边5312与对应侧盘51的内端面相贴合。
为进一步降低高速运转的中盘52对箔型弹性件53的磨损,以延长轴承的使用寿命,最好在与中盘52相配合的箔型弹性件53的配合面上设置耐磨涂层(图中未示出)。
实施例2
如图11和图12所示,本实施例提供的一种槽式动压气体径向轴承与实施例1的区别仅在于:所述轴承外套41的外圆周上具有同轴的通孔411和凹孔412,所述的通孔411位于同轴的凹孔412内,以利于气体的导入和导出,一方面实现快速散热排气,另一面实现对轴承室内进行空气补给。
实施例3
结合图13a、13b、14至18所示可见,本实施例提供的一种混合式动压气体止推轴承与实施例1的区别仅在于:
在所述中盘52的外圆周面也设有槽式花纹523,且外圆周面的槽式花纹523的形状与左、右端面的槽式花纹(521和522)的形状相同(本实施例中均为叶轮形状),以及外圆周面的槽式花纹523的轴向轮廓线与左、右端面的槽式花纹(521和522)的径向轮廓线均形成一一对应并相互交接;即:
外圆周面的槽式花纹523中的轴向高位线5231与左端面的槽式花纹521中的径向高位线5211均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹523中的轴向中位线5232与左端面的槽式花纹521中的径向中位线5212均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹523中的轴向低位线5233与左端面的槽式花纹521中的径向低位线5213均相对应、并在端面圆周倒角前相互交接(如图16所示);
外圆周面的槽式花纹523中的轴向高位线5231与右端面的槽式花纹522中的径向高位线5221均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹523中的轴向中位线5232与右端面的槽式花纹522中的径向中位线5222均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹523中的轴向低位线5233与右端面的槽式花纹522中的径向 低位线5223均相对应、并在端面圆周倒角前相互交接(如图18所示)。
当在所述中盘52的外圆周面也设有槽式花纹,且使外圆周面的槽式花纹523的形状与左、右端面的槽式花纹(521和522)的形状相同,以及外圆周面的槽式花纹523的轴向轮廓线与左、右端面的槽式花纹(521和522)的径向轮廓线均形成一一对应并相互交接时,可使内盘两端面的槽式花纹(521和522)所产生的增压气体从轴心沿径向不断地往外圆周面的槽式花纹523形成的凹槽通道里输送,以致形成更强支撑高速运转轴承所需的气膜,而气膜即作为动压气体止推轴承的润滑剂,因而可进一步确保所述的混合式动压气体止推轴承在气浮状态下的高速稳定运转,为实现电机的高极限转速提供进一步保证。
在侧盘51的内端面上设有用于固定箔型弹性件53的卡槽513(如图14所示)。
所述的箔型弹性件53与中盘52的配合间隙优选为0.003~0.008mm,以进一步确保轴承高速运转的可靠性和稳定性。
为了更好地满足高速运转的性能要求,所述的箔型弹性件53优选经过表面热处理。
另外需要说明的是:本发明所述的箔型弹性件53的组成结构不限于上述实施例中所述,还可以采用波箔和平箔组成,但所述波箔的波拱间过渡底边与平箔相贴合,或者,直接采用两个平箔组成,或采用其它的现有结构。
实施例4
结合图19和图20所示:在转轴3的表面开设有散热螺旋槽32,以利于转轴和轴承室的散热。
经测试,本发明提供的轴承在气浮状态下能达到100,000~450,000rpm的极限转速,因此针对相同功率要求,本发明可使涡喷发动机的体积显著减小实现微型化,对促进微型化高新技术的发展具有重要价值。
最后有必要在此指出的是:以上内容只用于对本发明所述技术方案做进一步详细说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。

Claims (14)

  1. 一种超高速涡喷发动机,包括涡轮机、压气机、转轴、2个径向轴承、1个止推轴承及燃烧室,所述涡轮机包括涡轮、涡轮机导流器及涡轮机壳体,所述压气机包括压轮、压气机扩压器及压气机壳体;其特征在于:所述径向轴承为槽式动压气体径向轴承,包括轴承外套和轴承内套;所述止推轴承为混合式动压气体止推轴承,包括两个侧盘以及夹设在两个侧盘之间的中盘,在每个侧盘与中盘之间均设有箔型弹性件;所述燃烧室套设在转轴的中部,2个径向轴承分别套设在位于燃烧室内的转轴上,所述止推轴承套设在位于燃烧室与压轮间的转轴上。
  2. 根据权利要求1所述的超高速涡喷发动机,其特征在于:所述的小微型涡喷发动机还包括涡轮机支架、压气机支架、转轴套、轴承套及左轴承室端盖和右轴承室端盖,所述转轴套套设在转轴上,径向轴承和止推轴承均套设在转轴套上,所述轴承套套设在径向轴承和止推轴承的外部;涡轮机壳体与涡轮机支架固定连接,涡轮机支架与燃烧室的壳体固定连接,涡轮机支架与涡轮机导流器固定连接,涡轮机导流器与左轴承室端盖固定连接;压气机壳体与压气机支架固定连接;压气机支架与燃烧室的壳体固定连接,压气机支架与压气机扩压器固定连接,压气机扩压器与右轴承室端盖固定连接。
  3. 根据权利要求1或2所述的超高速涡喷发动机,其特征在于:所述转轴的表面开设有散热螺旋槽。
  4. 根据权利要求1所述的超高速涡喷发动机,其特征在于:所述轴承内套的外圆周面和两端面均具有规则形状的槽式花纹。
  5. 根据权利要求4所述的超高速涡喷发动机,其特征在于:所述轴承内套的一端面的槽式花纹与另一端面的槽式花纹形成镜像对称,以及外圆周面的槽式花纹的轴向轮廓线与两端面的槽式花纹的径向轮廓线均形成一一对应并相互交接。
  6. 根据权利要求5所述的超高速涡喷发动机,其特征在于:所述轴承内套的外圆周面的槽式花纹中的轴向高位线与两端面的槽式花纹中的径向高位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向中位线与两端面的槽式花纹中的径向中位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向低位线与两端面的槽式花纹中的径向低位线均相对应、并在端面圆周倒角前相互交接。
  7. 根据权利要求1所述的超高速涡喷发动机,其特征在于:所述轴承外套的外圆周上具有同轴的通孔和凹孔,所述的通孔位于同轴的凹孔内。
  8. 根据权利要求1所述的超高速涡喷发动机,其特征在于:所述中盘的两端面均设有规则形状的槽式花纹,且一端面的槽式花纹与另一端面的槽式花纹形成镜像对称。
  9. 根据权利要求8所述的超高速涡喷发动机,其特征在于:在所述中盘的外圆周面也设有槽式花纹,且外圆周面的槽式花纹的形状与两端面的槽式花纹的形状相同,以及外圆周面的槽式花纹的轴向轮廓线与两端面的槽式花纹的径向轮廓线均形成一一对应并相互交接。
  10. 根据权利要求9所述的超高速涡喷发动机,其特征在于:中盘的外圆周面的槽式花纹中的轴向高位线与两端面的槽式花纹中的径向高位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向中位线与两端面的槽式花纹中的径向中位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向低位线与两端面的槽式花纹中的径向低位线均相对应、并在端面圆周倒角前相互交接。
  11. 根据权利要求1所述的超高速涡喷发动机,其特征在于:固定在一个侧盘上的箔型弹性件与固定在另一个侧盘上的箔型弹性件形成镜像对称。
  12. 根据权利要求1或11所述的超高速涡喷发动机,其特征在于:所述的箔型弹性件由波箔和平箔组成,所述波箔的弧形凸起顶端与平箔相贴合。
  13. 根据权利要求1或11所述的超高速涡喷发动机,其特征在于:所述的箔型弹性件由波箔和平箔组成,所述波箔的波拱间过渡底边与平箔相贴合。
  14. 根据权利要求1或11所述的超高速涡喷发动机,其特征在于:所述的箔型弹性件由两个平箔组成。
PCT/CN2016/082711 2015-05-19 2016-05-19 一种超高速涡喷发动机 WO2016184414A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
PCT/CN2015/079233 WO2016183787A1 (zh) 2015-05-19 2015-05-19 一种槽式动压气体径向轴承
CNPCT/CN2015/079234 2015-05-19
PCT/CN2015/079234 WO2016183788A1 (zh) 2015-05-19 2015-05-19 一种混合式动压气体止推轴承
CNPCT/CN2015/079233 2015-05-19
CN201610329302.2A CN106014641B (zh) 2015-05-19 2016-05-18 一种超高速涡喷发动机
CN201610329302.2 2016-05-18

Publications (1)

Publication Number Publication Date
WO2016184414A1 true WO2016184414A1 (zh) 2016-11-24

Family

ID=56716270

Family Applications (7)

Application Number Title Priority Date Filing Date
PCT/CN2016/082676 WO2016184404A1 (zh) 2015-05-19 2016-05-19 一种超高速鼓风机
PCT/CN2016/082711 WO2016184414A1 (zh) 2015-05-19 2016-05-19 一种超高速涡喷发动机
PCT/CN2016/082709 WO2016184412A1 (zh) 2015-05-19 2016-05-19 一种超高速燃气轮发电机
PCT/CN2016/082702 WO2016184406A1 (zh) 2015-05-19 2016-05-19 一种超高速电机
PCT/CN2016/082705 WO2016184408A1 (zh) 2015-05-19 2016-05-19 一种超高速涡轮发电机
PCT/CN2016/082713 WO2016184416A1 (zh) 2015-05-19 2016-05-19 一种超高速涡轮增压器
PCT/CN2016/082707 WO2016184410A1 (zh) 2015-05-19 2016-05-19 一种超高速电动发电涡轮增压装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082676 WO2016184404A1 (zh) 2015-05-19 2016-05-19 一种超高速鼓风机

Family Applications After (5)

Application Number Title Priority Date Filing Date
PCT/CN2016/082709 WO2016184412A1 (zh) 2015-05-19 2016-05-19 一种超高速燃气轮发电机
PCT/CN2016/082702 WO2016184406A1 (zh) 2015-05-19 2016-05-19 一种超高速电机
PCT/CN2016/082705 WO2016184408A1 (zh) 2015-05-19 2016-05-19 一种超高速涡轮发电机
PCT/CN2016/082713 WO2016184416A1 (zh) 2015-05-19 2016-05-19 一种超高速涡轮增压器
PCT/CN2016/082707 WO2016184410A1 (zh) 2015-05-19 2016-05-19 一种超高速电动发电涡轮增压装置

Country Status (3)

Country Link
CN (14) CN106014641B (zh)
TW (2) TWI694210B (zh)
WO (7) WO2016184404A1 (zh)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106014641B (zh) * 2015-05-19 2018-06-12 罗立峰 一种超高速涡喷发动机
CN106285918B (zh) * 2016-10-13 2019-04-02 福州大学 双电机涡轮增压发电装置及其控制方法
CN108005727B (zh) * 2016-10-27 2019-12-20 北京精密机电控制设备研究所 一种适用于高温高背压干气密封结构的超高速涡轮机
CN106368804B (zh) * 2016-11-04 2019-02-15 广州汽车集团股份有限公司 发动机增压方法和系统
CN106451894A (zh) * 2016-12-05 2017-02-22 中国工程物理研究院机械制造工艺研究所 采用空气动压箔片轴承进行支撑的高速永磁电机
CN106369056B (zh) * 2016-12-05 2019-06-21 中国工程物理研究院机械制造工艺研究所 涡轮增压器
CN108868893B (zh) * 2018-01-12 2024-04-02 刘慕华 一种转子系统及其控制方法和燃气轮机发电机组及其控制方法
CN108868911B (zh) * 2018-01-12 2024-03-19 刘慕华 一种发电系统及其控制方法
CN108868891B (zh) * 2018-01-12 2024-04-02 刘慕华 一种转子系统及其控制方法和燃气轮机发电机组及其控制方法
CN108868890A (zh) * 2018-01-12 2018-11-23 至玥腾风科技投资集团有限公司 一种特斯拉涡轮机及控制方法
CN108952967B (zh) * 2018-06-27 2020-04-03 中国科学院工程热物理研究所 具有改进的空气系统的涡喷发动机
CN109193990A (zh) * 2018-10-21 2019-01-11 至玥腾风科技投资集团有限公司 一种电机及其装配方法
CN109113916A (zh) * 2018-10-24 2019-01-01 汪平 一种无拦坝涡动涡叶水力发电组件
CN109660057A (zh) * 2018-12-22 2019-04-19 泉州鑫鸿海机械设备有限公司 一种单向旋转永磁高速电机及其双向空气轴承
CN109742898B (zh) * 2018-12-28 2020-11-03 西安航天泵业有限公司 一种集成式全封闭低温液力发电装置
CN109751254B (zh) * 2019-01-30 2021-06-25 青岛科技大学 一种立式小微型气悬浮离心压缩机
CN109707638B (zh) * 2019-01-30 2021-06-25 青岛科技大学 一种轴承和密封一体化的小微型离心压缩机
KR20200140504A (ko) * 2019-06-07 2020-12-16 가부시키가이샤 미쯔이 이앤에스 머시너리 내연기관의 과급기 잉여동력 회수장치 및 선박
CN110439847B (zh) * 2019-08-30 2022-01-11 广州市昊志机电股份有限公司 离心式压缩机轴系结构和离心式压缩机
CN111075563A (zh) * 2019-12-27 2020-04-28 至玥腾风科技集团有限公司 一种冷热电三联供微型燃气轮机设备
CN111535884B (zh) * 2020-04-29 2022-07-08 北京动力机械研究所 一种惰性混合气体轴承高效膨胀装置
CN112628281B (zh) * 2020-11-09 2022-02-22 珠海格力电器股份有限公司 一种气浮轴承转子系统及电机
CN112636510B (zh) * 2020-11-09 2022-08-19 珠海格力电器股份有限公司 一种气浮转子散热结构及电机
CN112483415B (zh) * 2020-11-13 2022-08-12 西安航天动力研究所 基于一体化筒状支承座的液体火箭发动机低温涡轮泵
CN113007211B (zh) * 2021-02-07 2021-11-26 北京伯肯当代氢燃料电池实验室有限公司 高散热率箔片式轴向止推轴承、组合轴承及热管理方法
CN113517785A (zh) * 2021-07-08 2021-10-19 中国航发湖南动力机械研究所 一种航空发动机交流发电机装置
CN114876824B (zh) * 2022-05-23 2023-08-29 烟台东德实业有限公司 一种高速离心空压机与膨胀机集成系统风冷结构
CN115978092B (zh) * 2023-03-21 2023-06-16 中国空气动力研究与发展中心空天技术研究所 超高速微型转子的支承结构和支承结构设计方法
CN116608203B (zh) * 2023-07-20 2023-10-03 山东华东风机有限公司 一种径向双波箔空气轴承
CN116792328B (zh) * 2023-07-26 2023-12-22 烟台东德实业有限公司 一种内置水冷及风冷的单级高速离心空压机
CN116838723B (zh) * 2023-09-04 2023-11-03 天津飞旋科技股份有限公司 一种轴承本体、箔片动压轴承及旋转机械轴系

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1490514A (zh) * 2002-09-23 2004-04-21 北京航空航天大学 微型涡轮喷气发动机
US20070039330A1 (en) * 2003-02-26 2007-02-22 Bladon Christopher G Air thrust bearing for a gas turbine engine
CN103670672A (zh) * 2013-12-19 2014-03-26 湖南大学 一种涡轮增压器
CN104895916A (zh) * 2015-05-19 2015-09-09 罗立峰 一种槽式动压气体径向轴承
CN104895917A (zh) * 2015-05-19 2015-09-09 罗立峰 一种混合式动压气体止推轴承

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141021A (en) * 1980-04-02 1981-11-04 Toyota Motor Corp Bearing construction for turbo machinery
EP0217537B1 (en) * 1985-08-28 1989-12-27 Isuzu Motors Limited Power generation apparatus for use with an internal combustion engine
JPH01290999A (ja) * 1988-05-14 1989-11-22 Daikin Ind Ltd ファン装置
JPH07154010A (ja) * 1993-12-01 1995-06-16 Fanuc Ltd レーザ用ターボブロア
CN2191308Y (zh) * 1994-04-19 1995-03-08 崔援 一种双风叶电风扇
US6294842B1 (en) * 1997-12-19 2001-09-25 Alliedsignal Inc. Fog cycle for microturbine power generating system
JP2000130176A (ja) * 1998-10-30 2000-05-09 Isuzu Motors Ltd 発電・電動機を備えたターボチャージャ
JP2002039096A (ja) * 2000-07-27 2002-02-06 Minebea Co Ltd 送風機
CN2558797Y (zh) * 2002-04-03 2003-07-02 廖英桐 改进的动压轴承
JP4078983B2 (ja) * 2003-01-10 2008-04-23 ソニー株式会社 軸受けユニットおよび軸受けユニットを有する回転駆動装置
CN1283931C (zh) * 2004-03-18 2006-11-08 西安交通大学 高速透平机械弹性支承平箔型止推气体轴承
US7108488B2 (en) * 2004-03-26 2006-09-19 Honeywell International, Inc. Turbocharger with hydrodynamic foil bearings
US7948105B2 (en) * 2007-02-01 2011-05-24 R&D Dynamics Corporation Turboalternator with hydrodynamic bearings
CN201258910Y (zh) * 2008-08-11 2009-06-17 罗立峰 径向动压气浮轴承
KR101324226B1 (ko) * 2008-09-22 2013-11-20 삼성테크윈 주식회사 유체 과급 장치
JP2011047388A (ja) * 2009-08-28 2011-03-10 Toshiba Home Technology Corp 送風装置
JP5497489B2 (ja) * 2010-03-08 2014-05-21 本田技研工業株式会社 遠心型圧縮機
CN102619616A (zh) * 2011-01-30 2012-08-01 梁天宇 一种涡轮增压器
CN201982337U (zh) * 2011-04-07 2011-09-21 浙江同源鼓风机制造有限公司 高速离心式鼓风机
CN102200136B (zh) * 2011-05-25 2012-09-05 北京虎渡能源科技有限公司 一种空气悬浮供气可调高速电机直驱鼓风机
CN102242762B (zh) * 2011-05-27 2013-01-23 罗立峰 动压气体径向陶瓷轴承
CN102278366A (zh) * 2011-05-27 2011-12-14 罗立峰 自密封动压气体径向陶瓷轴承
CN102192237A (zh) * 2011-06-07 2011-09-21 罗立峰 自密封动压气体径向陶瓷轴承
CN102261374B (zh) * 2011-06-15 2014-04-09 罗立峰 动压气体止推陶瓷轴承
CN102223007A (zh) * 2011-06-24 2011-10-19 罗立峰 高速永磁电动机/发电机
DE112012002973B4 (de) * 2011-08-24 2022-11-24 Borgwarner Inc. radiales Luftlager und Lageranordnung
WO2014061698A1 (ja) * 2012-10-16 2014-04-24 株式会社Ihi スラスト軸受
CN103089405B (zh) * 2013-01-09 2015-09-16 北京理工大学 转子离合式电动发电涡轮增压器
CN103089407B (zh) * 2013-01-09 2015-01-14 北京理工大学 转子离合式电动发电涡轮增压器及其辅助控制电路与方法
CN103306995B (zh) * 2013-05-30 2015-08-26 西安交通大学 一种花键齿拉杆组合转子高速直驱压缩机结构
CN203840113U (zh) * 2014-05-10 2014-09-17 台州市勃森工艺灯饰有限公司 灯饰电机排风保护壳
CN204082684U (zh) * 2014-05-30 2015-01-07 鑫贺精密电子(东莞)有限公司 一种散热风扇
CN104265460B (zh) * 2014-08-20 2016-03-23 中国科学院工程热物理研究所 微型航空发动机轴承燃油换热冷却装置
CN105202027B (zh) * 2015-05-19 2017-10-20 罗立峰 一种混合式动压气体止推轴承
CN104895924A (zh) * 2015-05-19 2015-09-09 罗立峰 一种混合式动压气体径向轴承
CN106014641B (zh) * 2015-05-19 2018-06-12 罗立峰 一种超高速涡喷发动机
CN105895917A (zh) * 2016-06-17 2016-08-24 天津商业大学 利用回生淀粉制备离子电池负极材料的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1490514A (zh) * 2002-09-23 2004-04-21 北京航空航天大学 微型涡轮喷气发动机
US20070039330A1 (en) * 2003-02-26 2007-02-22 Bladon Christopher G Air thrust bearing for a gas turbine engine
CN103670672A (zh) * 2013-12-19 2014-03-26 湖南大学 一种涡轮增压器
CN104895916A (zh) * 2015-05-19 2015-09-09 罗立峰 一种槽式动压气体径向轴承
CN104895917A (zh) * 2015-05-19 2015-09-09 罗立峰 一种混合式动压气体止推轴承

Also Published As

Publication number Publication date
CN205858947U (zh) 2017-01-04
WO2016184416A1 (zh) 2016-11-24
WO2016184412A1 (zh) 2016-11-24
CN205858494U (zh) 2017-01-04
CN106026517A (zh) 2016-10-12
CN105889314B (zh) 2019-01-04
CN205864174U (zh) 2017-01-04
CN205858948U (zh) 2017-01-04
TWI704751B (zh) 2020-09-11
TW201706516A (zh) 2017-02-16
CN106026492B (zh) 2019-01-04
CN105889097A (zh) 2016-08-24
CN106026492A (zh) 2016-10-12
CN205864143U (zh) 2017-01-04
TW201706511A (zh) 2017-02-16
TWI694210B (zh) 2020-05-21
CN106014641B (zh) 2018-06-12
CN105889097B (zh) 2019-01-04
CN105888818A (zh) 2016-08-24
CN105888818B (zh) 2019-01-04
WO2016184406A1 (zh) 2016-11-24
CN106014641A (zh) 2016-10-12
CN205858479U (zh) 2017-01-04
WO2016184408A1 (zh) 2016-11-24
CN106026517B (zh) 2019-01-04
WO2016184410A1 (zh) 2016-11-24
CN205858730U (zh) 2017-01-04
CN105889314A (zh) 2016-08-24
WO2016184404A1 (zh) 2016-11-24
CN105889313B (zh) 2018-10-26
CN105889313A (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
WO2016184414A1 (zh) 一种超高速涡喷发动机
WO2016184415A1 (zh) 一种小微型涡喷发动机
WO2016184403A1 (zh) 一种小微型散热风扇
US6368077B1 (en) Turbocharger shaft dual phase seal
JP5730436B2 (ja) 浮動ブッシュ軸受装置及びこれを備える過給機
US10677287B2 (en) Bearing structure and turbocharger
US10690141B2 (en) Seal structure and supercharger provided with the seal structure
WO2016184402A1 (zh) 一种超高速散热风扇
CN101893092A (zh) 可双向旋转的气体润滑非接触式机械密封装置
CN114458687B (zh) 弹性箔片动压气浮径向轴承、电机、空气压缩机
CN105179462B (zh) 一种波箔型空气动压轴承
US11460042B2 (en) Floating bush bearing device and supercharger
CN113202765B (zh) 摩擦副组件、曲轴组件和压缩机
CN219605625U (zh) 一种涡轮增压器轴系组件
JPS6321756Y2 (zh)
KR20210063726A (ko) 터보 차저
CN110939657A (zh) 微动压型涡轮增压器浮动轴承
JPS59213988A (ja) 回転圧縮機
JPS58124023A (ja) タ−ボ過給機の軸受装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16795901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16795901

Country of ref document: EP

Kind code of ref document: A1