WO2016184402A1 - 一种超高速散热风扇 - Google Patents

一种超高速散热风扇 Download PDF

Info

Publication number
WO2016184402A1
WO2016184402A1 PCT/CN2016/082669 CN2016082669W WO2016184402A1 WO 2016184402 A1 WO2016184402 A1 WO 2016184402A1 CN 2016082669 W CN2016082669 W CN 2016082669W WO 2016184402 A1 WO2016184402 A1 WO 2016184402A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
ultra
cooling fan
groove pattern
speed cooling
Prior art date
Application number
PCT/CN2016/082669
Other languages
English (en)
French (fr)
Inventor
罗立峰
Original Assignee
罗立峰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 罗立峰 filed Critical 罗立峰
Publication of WO2016184402A1 publication Critical patent/WO2016184402A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/057Bearings hydrostatic; hydrodynamic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • F16C17/107Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one surface for radial load and at least one surface for axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/0563Bearings cartridges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/026Sliding-contact bearings for exclusively rotary movement for radial load only with helical grooves in the bearing surface to generate hydrodynamic pressure, e.g. herringbone grooves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/028Sliding-contact bearings for exclusively rotary movement for radial load only with fixed wedges to generate hydrodynamic pressure, e.g. multi-lobe bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings

Definitions

  • the invention relates to an ultra-high speed cooling fan and belongs to the technical field of high precision machinery.
  • the conventional cooling fan generally includes a stator and a rotor disposed around the stator and rotatable relative to the stator.
  • the rotor includes a hub, a rotating shaft extending perpendicularly from the hub, and a plurality of blades disposed around the periphery of the hub.
  • a bearing is arranged centrally, and the rotating shaft of the rotor is received in the bearing.
  • the volume of the cooling fan is required to be smaller and smaller, and a fan of a small volume can be satisfied.
  • High heat dissipation requirements can only require ultra high speed.
  • the bearings used in the existing cooling fans are oil-impregnated bearings, which can only achieve a rotational speed of no more than 10,000 rpm, which has become a bottleneck for the development of electronic components to miniaturization. Therefore, a cooling fan capable of achieving ultra-high speed operation has been developed. It will be of great significance to realize the development of electronic components to miniaturization.
  • An ultra-high-speed cooling fan comprising a rotor, a stator, a rotating shaft, a bearing, a plurality of blades and a fixed fan blade, wherein the bearing is a slot type dynamic pressure gas radial bearing, including a bearing outer casing and a bearing inner sleeve .
  • the outer circumferential surface and the both end surfaces of the bearing inner sleeve have a regular pattern of grooves.
  • the groove pattern of one end surface of the bearing inner sleeve is mirror-symmetrical with the groove pattern of the other end surface, and the axial contour line of the groove pattern of the outer circumferential surface and the groove pattern of the both end surfaces Radial contour One-to-one correspondence and mutual handover.
  • the axial high line in the groove pattern of the outer circumferential surface of the bearing inner sleeve corresponds to the radial high line in the groove pattern on both end faces, and is mutually overlapped before the end face is chamfered.
  • the axial median line in the groove pattern of the outer circumferential surface corresponds to the radial median line in the groove pattern on both end faces, and is mutually overlapped before the end face is chamfered;
  • the axial lower line in the middle corresponds to the radially lower line in the groove pattern on both end faces, and is mutually overlapped before the end face is chamfered.
  • the groove pattern is an impeller shape.
  • the matching gap between the bearing inner sleeve and the bearing outer sleeve is 0.003 to 0.008 mm.
  • a stop ring is provided at both ends of the bearing housing.
  • the hub and the rotating shaft are fixed by a locking bolt connection.
  • the rotating shaft and the locking bolt are both provided with a cavity to reduce the weight of the fan.
  • the ultra-high speed cooling fan further comprises a fan housing and a rotating shaft base, and a rotating shaft lock nut is arranged on the rotating shaft near the rotating shaft base.
  • the present invention has the following beneficial effects:
  • the invention replaces the oil-containing bearing by using the slot type dynamic pressure gas radial bearing, the gas is used as the lubricant of the bearing, and has the advantages of no pollution, low friction loss, long use time, wide application range, and the like, especially
  • the slot type dynamic pressure gas radial bearing according to the invention adopts the following structure: "the outer circumferential surface and the both end surfaces of the bearing inner sleeve have a groove pattern with a regular shape, and the groove pattern of one end surface and the groove pattern of the other end surface When the mirror symmetry is formed, and the axial contour of the groove pattern of the outer circumferential surface and the radial contour lines of the groove patterns of the both end faces are in one-to-one correspondence and mutually overlapped, the ultra-high speed in the air floating state can be realized.
  • the present invention can significantly reduce the volume of the cooling fan to achieve miniaturization for the same heat dissipation requirements, thereby promoting the development of electronic components to miniaturization It has important value and has significant progress over the prior art.
  • Embodiment 1 is a schematic front perspective view of a super high speed cooling fan provided in Embodiment 1;
  • Embodiment 2 is a rear perspective view of the ultra-high speed cooling fan provided in Embodiment 1;
  • Embodiment 3 is a front elevational view showing the super high speed cooling fan provided in Embodiment 1;
  • Figure 4 is a view taken along line A-A of Figure 3;
  • Figure 5 is a partially exploded left perspective view of the slot type dynamic pressure gas radial bearing of Embodiment 1;
  • Figure 6 is a partial enlarged view of B in Figure 5;
  • Figure 7 is a right side perspective view showing the partial division of the slot type dynamic pressure gas radial bearing in the first embodiment
  • Figure 8 is a partial enlarged view of C in Figure 7.
  • an ultra-high speed cooling fan provided by the embodiment includes a rotor 1, a stator 2, a rotating shaft 3, a bearing 4, a plurality of blades 5, a hub 6 for fixing the fan blades, and a fan casing 7
  • the bearing 4 is a slot type dynamic pressure gas radial bearing, including a bearing shell 41 and a bearing inner sleeve 42.
  • the hub 6 and the rotating shaft 3 are connected and fixed by a locking bolt 9 .
  • the rotating shaft 3 and the locking bolt 9 both open a cavity (31/91).
  • the shaft locker 10 is provided on the rotating shaft 3 close to the shaft base 8.
  • the outer circumferential surface and the left and right end surfaces of the bearing inner sleeve 42 each have a regular shape of the groove pattern 43 (431, 432 and 433 in the figure, the groove in this embodiment).
  • the pattern is an impeller shape), and the groove pattern 432 of the left end surface is mirror-symmetrical with the groove pattern 433 of the right end surface.
  • the axial contour line of the groove pattern 431 located on the outer circumferential surface of the bearing inner sleeve 42 forms a one-to-one correspondence with the radial contour lines of the groove patterns (432 and 433) of the left and right end surfaces, and is mutually overlapped, that is, external
  • the axially high bit line 4311 in the circumferential groove pattern 431 corresponds to the radial high bit lines (4321 and 4331) in the groove patterns (432 and 433) of the left and right end faces, and is chamfered before the end face is chamfered Interacting with each other;
  • the axial center line 4312 in the groove pattern 431 of the outer circumferential surface corresponds to the radial center line (4322 and 4332) in the groove patterns (432 and 433) of the left and right end faces, and
  • the front end is circumferentially chamfered to each other;
  • the groove pattern 432 of the left end surface and the groove pattern 433 of the right end surface are mirror-symmetrical and outer circumference.
  • Grooved pattern 431 The axial contour line forms a one-to-one correspondence with the radial contour lines of the groove patterns (432 and 433) of the left and right end faces, and mutually intersects each other to ensure the groove pattern (432 and 433) of the impeller shape at both end faces.
  • the generated pressurized gas is transported from the axial center to the groove passage formed by the groove pattern 431 of the outer circumferential surface in a radial direction, so that a gas film required for supporting the high-speed running bearing is formed, and the gas film is used as a dynamic pressure.
  • the lubricant of the gas radial bearing can thus achieve high-speed stable operation of the bearing 4 in an air-floating state.
  • the slot type dynamic pressure gas radial bearing provided by the invention can realize the limit rotation speed of 200,000-450,000 rpm, and the noise is small; therefore, the invention can significantly reduce the volume of the heat dissipation fan to achieve miniaturization for the same heat dissipation requirement. Therefore, it is of great value to promote the development of electronic components to miniaturization.
  • the retaining ring 44 when the retaining ring 44 is respectively disposed at both ends of the bearing outer casing 41, the self-sealing action between the end faces of the bearing inner sleeve 42 and the retaining ring 44 can be achieved under the driving of the high-speed rotating shaft, so that the trough pattern is continuous.
  • the generated dynamic pressure gas can be well sealed and stored in the entire matching clearance of the bearing, which fully ensures the lubrication of the high-speed running dynamic pressure gas radial bearing.
  • the fitting clearance between the bearing outer casing 41 and the bearing inner sleeve 42 is preferably 0.003 to 0.008 mm to further ensure the reliability and stability of the bearing at high speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Sliding-Contact Bearings (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种超高速散热风扇,其包括转子(1)、定子(2)、转轴(3)、轴承(4)、若干扇叶(5)及固定扇叶(5)的轮毂(6),所述轴承(4)为槽式动压气体径向轴承,包括轴承外套(41)和轴承内套(42)。通过使用槽式动压气体径向轴承代替含油轴承,以气体作为轴承的润滑剂,不仅具有无污染、摩擦损失低、使用时间长、适用范围广等诸多优点,尤其是,由于所述的槽式动压气体径向轴承可实现在气浮状态下的超高速稳定运转,因此针对相同散热要求可使散热风扇的体积显著减小实现微型化,因而对促进电子元件向微小型化的发展具有重要价值。

Description

一种超高速散热风扇 技术领域
本发明是涉及一种超高速散热风扇,属于高精密机械技术领域。
背景技术
随着电子产品应用技术的不断提高和发展,中央处理器等电子元件的运行速度越来越快,其运行时产生的热量也随之相应增加,如果不将这些热量及时散发出去,将极大影响电子元件的性能,使电子元件的运行速度降低,并且随着热量的不断累积,还可能烧毁电子元件,因此必须对电子元件进行快速有效散热。
为此,通常在电子元件附近安装一散热风扇,通过风扇扇叶旋转产生的气流直接吹向电子元件或安装于电子元件上的散热器,而对其实现有效散热。现有散热风扇一般包括一定子及环设于该定子外围并可相对定子转动的一转子,该转子包括一轮毂、从轮毂垂直延伸的一转轴及环设于轮毂外围的若干扇叶,该定子中央设置一轴承,转子的转轴收容于该轴承内定位。该散热风扇工作时,转子相对于定子作高速旋转运动,扇叶转动时产生气流从而驱散热量。
由于散热风扇驱散热量的效率与扇叶的尺寸、数量及转轴的转速息息相关,而随着电子元件向微小型化的发展,要求散热风扇的体积越来越小,要实现微小体积的风扇能满足高散热要求,就只能要求超高转速。但现有的散热风扇所用轴承均为含油轴承,只能实现不超过10000转每分钟的转速,以致成为电子元件向微小型化的发展瓶颈,因此,研发一种可实现超高速运行的散热风扇,将对实现电子元件向微小型化的发展具有重要意义。
发明内容
针对现有技术存在的上述问题和需求,本发明的目的是提供一种超高速散热风扇,以促进电子元件向微小型化的发展。
为实现上述目的,本发明采用的技术方案如下:
一种超高速散热风扇,包括转子、定子、转轴、轴承、若干扇叶及固定扇叶的轮毂,其特征在于:所述轴承为槽式动压气体径向轴承,包括轴承外套和轴承内套。
作为优选方案,所述轴承内套的外圆周面和两端面均具有规则形状的槽式花纹。
作为进一步优选方案,所述轴承内套的一端面的槽式花纹与另一端面的槽式花纹形成镜像对称,以及外圆周面的槽式花纹的轴向轮廓线与两端面的槽式花纹的径向轮廓线均形 成一一对应并相互交接。
作为进一步优选方案,所述轴承内套的外圆周面的槽式花纹中的轴向高位线与两端面的槽式花纹中的径向高位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向中位线与两端面的槽式花纹中的径向中位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向低位线与两端面的槽式花纹中的径向低位线均相对应、并在端面圆周倒角前相互交接。
作为进一步优选方案,所述的槽式花纹为叶轮形状。
作为优选方案,所述轴承内套与轴承外套间的配合间隙为0.003~0.008mm。
作为优选方案,在所述轴承外套的两端设有止环。
作为优选方案,所述轮毂与转轴间通过锁紧螺栓连接固定。
作为进一步优选方案,所述转轴和锁紧螺栓均开设有空腔,以减轻所述风扇的重量。
作为优选方案,所述的超高速散热风扇还包括风扇壳体和转轴底座,在靠近转轴底座的转轴上设有转轴锁母。
与现有技术相比,本发明具有如下有益效果:
因本发明通过使用槽式动压气体径向轴承代替含油轴承,以气体作为轴承的润滑剂,不仅具有无污染、摩擦损失低、使用时间长、适用范围广等诸多优点,尤其是,当本发明所述的槽式动压气体径向轴承采用如下结构“轴承内套的外圆周面和两端面均具有规则形状的槽式花纹,并且一端面的槽式花纹与另一端面的槽式花纹形成镜像对称,以及外圆周面的槽式花纹的轴向轮廓线与两端面的槽式花纹的径向轮廓线均形成一一对应并相互交接”时,可实现在气浮状态下的超高速稳定运转(可达200,000~450,000rpm的极限转速),而且噪声小,因此针对相同散热要求,本发明可使散热风扇的体积显著减小实现微型化,因而对促进电子元件向微小型化的发展具有重要价值,相对于现有技术具有显著性进步。
附图说明
图1是实施例1提供的一种超高速散热风扇的前视立体结构示意图;
图2是实施例1提供的超高速散热风扇的后视立体结构示意图;
图3是实施例1提供的超高速散热风扇的正视结构示意图;
图4是图3的A-A向视图;
图5是实施例1中所述槽式动压气体径向轴承的局部分割的左视立体结构示意图;
图6是图5中的B局部放大图;
图7是实施例1中所述槽式动压气体径向轴承的局部分割的右视立体结构示意图;
图8是图7中的C局部放大图。
图中标号示意如下:1、转子;2、定子;3、转轴;31、转轴空腔;4、轴承;41、轴承外套;42、轴承内套;43、槽式花纹;431、外圆周面的槽式花纹;4311、轴向高位线;4312、轴向中位线;4313、轴向低位线;432、左端面的槽式花纹;4321、径向高位线;4322、径向中位线;4323、径向低位线;433、右端面的槽式花纹;4331、径向高位线;4332、径向中位线;4333、径向低位线;44、止环;5、扇叶;6、轮毂;7、风扇壳体;8、转轴底座;9、锁紧螺栓;91、锁紧螺栓空腔;10、转轴锁母。
具体实施方式
下面结合附图及实施例对本发明的技术方案做进一步详细地说明。
实施例1
结合图1至图4所示:本实施例提供的一种超高速散热风扇,包括转子1、定子2、转轴3、轴承4、若干扇叶5、固定扇叶的轮毂6、风扇壳体7和转轴底座8,所述轴承4为槽式动压气体径向轴承,包括轴承外套41和轴承内套42。所述轮毂6与转轴3间通过锁紧螺栓9连接固定。
为减轻风扇的重量,所述转轴3和锁紧螺栓9均开设空腔(31/91)。
为确保高速转动的稳定性,在靠近转轴底座8的转轴3上设有转轴锁母10。
结合图5至图8所示:所述轴承内套42的外圆周面和左、右端面均具有规则形状的槽式花纹43(如图中的431、432和433,本实施例中的槽式花纹均为叶轮形状),且左端面的槽式花纹432与右端面的槽式花纹433形成镜像对称。位于轴承内套42的外圆周面的槽式花纹431的轴向轮廓线与左、右端面的槽式花纹(432和433)的径向轮廓线均形成一一对应并相互交接,即:外圆周面的槽式花纹431中的轴向高位线4311与左、右端面的槽式花纹(432和433)中的径向高位线(4321和4331)均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹431中的轴向中位线4312与左、右端面的槽式花纹(432和433)中的径向中位线(4322和4332)均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹431中的轴向低位线4313与左、右端面的槽式花纹(432和433)中的径向低位线(4323和4333)均相对应、并在端面圆周倒角前相互交接。
通过使轴承内套42的外圆周面和两端面均具有规则形状的槽式花纹(431、432和433),左端面的槽式花纹432与右端面的槽式花纹433形成镜像对称及外圆周面的槽式花纹431 的轴向轮廓线与左、右端面的槽式花纹(432和433)的径向轮廓线均形成一一对应并相互交接,可保证两端面的叶轮形状的槽式花纹(432和433)所产生的增压气体从轴心沿径向不断地往外圆周面的槽式花纹431形成的凹槽通道里输送,以致形成更强支撑高速运转轴承所需的气膜,而气膜即作为动压气体径向轴承的润滑剂,因此可实现所述轴承4在气浮状态下的高速稳定运转。
经测试:本发明提供的槽式动压气体径向轴承可实现200,000~450,000rpm的极限转速,而且噪声小;因此针对相同散热要求,本发明可使散热风扇的体积显著减小实现微型化,因而对促进电子元件向微小型化的发展具有重要价值。
另外,当在轴承外套41的两端分别设置止环44时,可实现在高速回转轴的带动下,使轴承内套42的两端面与止环44间产生自密封作用,使槽式花纹连续产生的动压气体能完好地密闭保存在轴承的整个配合间隙中,充分保证高速运转的动压气体径向轴承的润滑需要。
所述轴承外套41与轴承内套42间的配合间隙优选为0.003~0.008mm,以进一步确保轴承高速运转的可靠性和稳定性。
最后有必要在此指出的是:以上内容只用于对本发明所述技术方案做进一步详细说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。

Claims (10)

  1. 一种超高速散热风扇,包括转子、定子、转轴、轴承、若干扇叶及固定扇叶的轮毂,其特征在于:所述轴承为槽式动压气体径向轴承,包括轴承外套和轴承内套。
  2. 根据权利要求1所述的超高速散热风扇,其特征在于:所述轴承内套的外圆周面和两端面均具有规则形状的槽式花纹。
  3. 根据权利要求2所述的超高速散热风扇,其特征在于:所述轴承内套的一端面的槽式花纹与另一端面的槽式花纹形成镜像对称,以及外圆周面的槽式花纹的轴向轮廓线与两端面的槽式花纹的径向轮廓线均形成一一对应并相互交接。
  4. 根据权利要求3所述的超高速散热风扇,其特征在于:所述轴承内套的外圆周面的槽式花纹中的轴向高位线与两端面的槽式花纹中的径向高位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向中位线与两端面的槽式花纹中的径向中位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向低位线与两端面的槽式花纹中的径向低位线均相对应、并在端面圆周倒角前相互交接。
  5. 根据权利要求2至4中任一项所述的超高速散热风扇,其特征在于:所述的槽式花纹为叶轮形状。
  6. 根据权利要求1所述的超高速散热风扇,其特征在于:所述轴承内套与轴承外套间的配合间隙为0.003~0.008mm。
  7. 根据权利要求1所述的超高速散热风扇,其特征在于:在所述轴承外套的两端设有止环。
  8. 根据权利要求1所述的超高速散热风扇,其特征在于:所述轮毂与转轴间通过锁紧螺栓连接固定。
  9. 根据权利要求8所述的超高速散热风扇,其特征在于:所述转轴和锁紧螺栓均开设有空腔。
  10. 根据权利要求1所述的超高速散热风扇,其特征在于:所述的超高速散热风扇还包括风扇壳体和转轴底座,在靠近转轴底座的转轴上设有转轴锁母。
PCT/CN2016/082669 2015-05-19 2016-05-19 一种超高速散热风扇 WO2016184402A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/CN2015/079233 WO2016183787A1 (zh) 2015-05-19 2015-05-19 一种槽式动压气体径向轴承
CNPCT/CN2015/079233 2015-05-19
CN201610327808.X 2016-05-18
CN201610327808.XA CN105889121A (zh) 2015-05-19 2016-05-18 一种超高速散热风扇

Publications (1)

Publication Number Publication Date
WO2016184402A1 true WO2016184402A1 (zh) 2016-11-24

Family

ID=56166981

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2015/079233 WO2016183787A1 (zh) 2015-05-19 2015-05-19 一种槽式动压气体径向轴承
PCT/CN2016/082669 WO2016184402A1 (zh) 2015-05-19 2016-05-19 一种超高速散热风扇

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/079233 WO2016183787A1 (zh) 2015-05-19 2015-05-19 一种槽式动压气体径向轴承

Country Status (13)

Country Link
US (1) US10280972B2 (zh)
EP (1) EP3299648B1 (zh)
JP (1) JP6762358B2 (zh)
KR (1) KR102030175B1 (zh)
CN (5) CN104895916A (zh)
DK (1) DK3299648T3 (zh)
EA (1) EA035430B1 (zh)
ES (1) ES2742897T3 (zh)
HU (1) HUE046304T2 (zh)
PT (1) PT3299648T (zh)
SG (1) SG11201709527XA (zh)
TW (2) TW201707548A (zh)
WO (2) WO2016183787A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106014641B (zh) * 2015-05-19 2018-06-12 罗立峰 一种超高速涡喷发动机
ES2742897T3 (es) * 2015-05-19 2020-02-17 Lifeng Luo Cojinete radial con gas a presión dinámica de tipo ranura
CN105545956B (zh) * 2016-03-04 2019-05-14 至玥腾风科技投资集团有限公司 一种电磁使能的主动式动压气体轴承
CN106352016A (zh) * 2016-11-16 2017-01-25 沈阳航空航天大学 一种外圈或轴颈带凸台的增阻式挤压油膜阻尼器
CN106402270A (zh) * 2016-11-16 2017-02-15 沈阳航空航天大学 一种外圈带凹槽及轴颈带凸台的增阻式挤压油膜阻尼器
CN110901953A (zh) * 2019-12-04 2020-03-24 中国直升机设计研究所 一种智能弹性轴承及其状态监控系统
CN112160980B (zh) * 2020-08-26 2021-10-08 珠海格力电器股份有限公司 气体动压轴承、电机和压缩机
CN113124063B (zh) * 2021-04-28 2023-01-13 青岛科技大学 一种动压箔片径向气体轴承冷却结构和冷却方法
CN113864341A (zh) * 2021-09-24 2021-12-31 浙江翰翔科技有限公司 一种静动混合气浮轴承转子系统及操作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345993A (ja) * 1999-06-02 2000-12-12 Minebea Co Ltd 送風機
CN1767325A (zh) * 2004-10-30 2006-05-03 鸿富锦精密工业(深圳)有限公司 流体动压轴承马达及采用该马达的风扇
CN102852830A (zh) * 2011-06-30 2013-01-02 日本电产株式会社 风扇
CN102852968A (zh) * 2011-06-30 2013-01-02 日本电产株式会社 动压轴承装置以及风扇
CN103670672A (zh) * 2013-12-19 2014-03-26 湖南大学 一种涡轮增压器
CN104895916A (zh) * 2015-05-19 2015-09-09 罗立峰 一种槽式动压气体径向轴承

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4225196A (en) * 1978-12-29 1980-09-30 Mechanical Technology Incorporated Hydrodynamic compliant thrust bearing
JP3305278B2 (ja) * 1999-03-26 2002-07-22 セイコーインスツルメンツ株式会社 液体動圧軸受及びスピンドルモータ
US6394842B1 (en) * 1999-04-01 2002-05-28 Fujitsu Takamisawa Component Limited Cable connecting structure
JP2001200838A (ja) * 1999-11-09 2001-07-27 Seiko Instruments Inc 流体動圧軸受、流体動圧軸受装置、流体動圧軸受の製造方法、及び軸受表面加工方法
JP2002323036A (ja) * 2001-04-27 2002-11-08 Matsushita Electric Ind Co Ltd 動圧型気体軸受装置およびこれを用いたハードディスクドライブ装置
US7296931B2 (en) * 2002-11-13 2007-11-20 Ntn Corporation Fluid lubricated bearing device
JP2003239950A (ja) * 2002-02-15 2003-08-27 Seiko Instruments Inc 動圧軸受、及びモータ
CN2558797Y (zh) * 2002-04-03 2003-07-02 廖英桐 改进的动压轴承
JP2004028113A (ja) * 2002-06-21 2004-01-29 Matsushita Electric Ind Co Ltd 動圧気体軸受および当該軸受を用いた装置
JP2005265010A (ja) * 2004-03-17 2005-09-29 Ishikawajima Harima Heavy Ind Co Ltd 動圧気体軸受
WO2005098252A1 (ja) * 2004-04-09 2005-10-20 Ntn Corporation 動圧軸受装置
DE102004045629B4 (de) * 2004-09-21 2008-07-03 Minebea Co., Ltd. Fluiddynamisches Lagersystem
CN1632331A (zh) * 2005-01-18 2005-06-29 哈尔滨工业大学 混合式螺旋槽动静压气体复合止推轴承
JP4841565B2 (ja) * 2005-12-22 2011-12-21 山本電気株式会社 偏平型ブラシレスモーターポンプ及び該偏平型ブラシレスモーターポンプを用いた車両用電動ウオーターポンプユニット
CN101294601A (zh) * 2007-04-25 2008-10-29 富准精密工业(深圳)有限公司 动压轴承结构及采用该动压轴承结构的散热风扇
TWI323318B (en) * 2007-05-11 2010-04-11 Foxconn Tech Co Ltd Dynamic bearing structure and cooling fan employing the dynamic bearing structure
DE102007043575A1 (de) * 2007-09-13 2009-03-26 Minebea Co., Ltd. Fluiddynamische Lagerstruktur und fluiddynamisches Lager
CN201106631Y (zh) * 2007-10-15 2008-08-27 中国科学院工程热物理研究所 内流道自润滑结构的动压气浮轴承
JP5121047B2 (ja) * 2007-11-02 2013-01-16 株式会社不二越 動圧軸受及びラジアル動圧軸受を用いたスピンドル装置
CN201258910Y (zh) * 2008-08-11 2009-06-17 罗立峰 径向动压气浮轴承
US8618706B2 (en) * 2008-12-04 2013-12-31 Seagate Technology Llc Fluid pumping capillary seal for a fluid dynamic bearing
CN102242762B (zh) * 2011-05-27 2013-01-23 罗立峰 动压气体径向陶瓷轴承
CN202108867U (zh) * 2011-05-27 2012-01-11 罗立峰 自密封动压气体径向陶瓷轴承
CN202140419U (zh) * 2011-05-27 2012-02-08 罗立峰 动压气体径向陶瓷轴承
CN102278366A (zh) * 2011-05-27 2011-12-14 罗立峰 自密封动压气体径向陶瓷轴承
CN102192237A (zh) * 2011-06-07 2011-09-21 罗立峰 自密封动压气体径向陶瓷轴承
CN202091349U (zh) * 2011-06-15 2011-12-28 罗立峰 动压气体止推陶瓷轴承
JP5943291B2 (ja) * 2011-06-30 2016-07-05 日本電産株式会社 軸受装置および送風ファン
DE112012002973B4 (de) * 2011-08-24 2022-11-24 Borgwarner Inc. radiales Luftlager und Lageranordnung
CN104895924A (zh) * 2015-05-19 2015-09-09 罗立峰 一种混合式动压气体径向轴承

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345993A (ja) * 1999-06-02 2000-12-12 Minebea Co Ltd 送風機
CN1767325A (zh) * 2004-10-30 2006-05-03 鸿富锦精密工业(深圳)有限公司 流体动压轴承马达及采用该马达的风扇
CN102852830A (zh) * 2011-06-30 2013-01-02 日本电产株式会社 风扇
CN102852968A (zh) * 2011-06-30 2013-01-02 日本电产株式会社 动压轴承装置以及风扇
CN103670672A (zh) * 2013-12-19 2014-03-26 湖南大学 一种涡轮增压器
CN104895916A (zh) * 2015-05-19 2015-09-09 罗立峰 一种槽式动压气体径向轴承

Also Published As

Publication number Publication date
KR20180018575A (ko) 2018-02-21
JP2018514732A (ja) 2018-06-07
JP6762358B2 (ja) 2020-09-30
TWI704295B (zh) 2020-09-11
CN205350045U (zh) 2016-06-29
EP3299648A1 (en) 2018-03-28
HUE046304T2 (hu) 2020-02-28
TW201707548A (zh) 2017-02-16
US20180119738A1 (en) 2018-05-03
EP3299648A4 (en) 2018-11-21
PT3299648T (pt) 2019-08-20
DK3299648T3 (da) 2019-08-12
WO2016183787A1 (zh) 2016-11-24
EP3299648B1 (en) 2019-07-03
CN104895916A (zh) 2015-09-09
US10280972B2 (en) 2019-05-07
ES2742897T3 (es) 2020-02-17
TW201704649A (zh) 2017-02-01
CN205858771U (zh) 2017-01-04
SG11201709527XA (en) 2017-12-28
CN105202014B (zh) 2018-11-27
EA035430B1 (ru) 2020-06-15
KR102030175B1 (ko) 2019-10-08
CN105889121A (zh) 2016-08-24
EA201792554A1 (ru) 2018-07-31
CN105202014A (zh) 2015-12-30

Similar Documents

Publication Publication Date Title
WO2016184402A1 (zh) 一种超高速散热风扇
WO2016184403A1 (zh) 一种小微型散热风扇
TWI694210B (zh) 超高速鼓風機
WO2016184415A1 (zh) 一种小微型涡喷发动机
KR101302761B1 (ko) 유체역학적 엑시얼 베어링
US5639096A (en) Oil film cooled face seal
CN104895924A (zh) 一种混合式动压气体径向轴承
CN109707637B (zh) 一种双气悬浮支撑的小微型离心压缩机
CN105202018B (zh) 一种混合式动压气体径向轴承
CN109899303B (zh) 一种无径向轴承的小微型离心压缩机
WO2021129425A1 (zh) 一种空气轴承、转子系统及微型燃气轮机
CN215672762U (zh) 一种推力轴承后置式空气悬浮鼓风机
TW201837321A (zh) 旋轉機及用於旋轉機之轉子
CN113404704A (zh) 一种推力轴承后置式空气悬浮鼓风机
JP2009287560A (ja) ターボチャージャのためのスラスト軸受シール
TWI624597B (zh) 自轉式圓柱體扇葉之散熱風扇結構
CN109751254B (zh) 一种立式小微型气悬浮离心压缩机
CN207701440U (zh) 一种多级送料泵
US11460042B2 (en) Floating bush bearing device and supercharger
CN217950475U (zh) 一种用于涡轮膨胀机轴承的螺旋冷却器
KR100745507B1 (ko) 터보 압축기
TWM550342U (zh) 自轉式圓柱體扇葉之散熱風扇結構
US20220025901A1 (en) Fan frame structure
JP2007192303A (ja) ターボチャージャ用アンギュラ玉軸受
WO2017163911A1 (ja) 回転機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16795889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16795889

Country of ref document: EP

Kind code of ref document: A1