WO2016184410A1 - 一种超高速电动发电涡轮增压装置 - Google Patents
一种超高速电动发电涡轮增压装置 Download PDFInfo
- Publication number
- WO2016184410A1 WO2016184410A1 PCT/CN2016/082707 CN2016082707W WO2016184410A1 WO 2016184410 A1 WO2016184410 A1 WO 2016184410A1 CN 2016082707 W CN2016082707 W CN 2016082707W WO 2016184410 A1 WO2016184410 A1 WO 2016184410A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- groove pattern
- foil
- radial
- bearing
- super
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/18—Structural association of electric generators with mechanical driving motors, e.g. with turbines
- H02K7/1807—Rotary generators
- H02K7/1823—Rotary generators structurally associated with turbines or similar engines
- H02K7/183—Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/04—Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
- F02B37/10—Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump at least one pump being alternatively or simultaneously driven by exhaust and other drive, e.g. by pressurised fluid from a reservoir or an engine-driven pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/02—Sliding-contact bearings for exclusively rotary movement for radial load only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/08—Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/04—Sliding-contact bearings for exclusively rotary movement for axial load only
- F16C17/042—Sliding-contact bearings for exclusively rotary movement for axial load only with flexible leaves to create hydrodynamic wedge, e.g. axial foil bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D15/00—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
- F01D15/10—Adaptations for driving, or combinations with, electric generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/16—Arrangement of bearings; Supporting or mounting bearings in casings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B41/00—Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
- F02B41/02—Engines with prolonged expansion
- F02B41/10—Engines with prolonged expansion in exhaust turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/06—Arrangements of bearings; Lubricating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/12—Cooling of plants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/05—Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
- F04D29/056—Bearings
- F04D29/057—Bearings hydrostatic; hydrodynamic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/52—Casings; Connections of working fluid for axial pumps
- F04D29/522—Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
- F04D29/582—Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/02—Sliding-contact bearings for exclusively rotary movement for radial load only
- F16C17/026—Sliding-contact bearings for exclusively rotary movement for radial load only with helical grooves in the bearing surface to generate hydrodynamic pressure, e.g. herringbone grooves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/04—Sliding-contact bearings for exclusively rotary movement for axial load only
- F16C17/08—Sliding-contact bearings for exclusively rotary movement for axial load only for supporting the end face of a shaft or other member, e.g. footstep bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/10—Sliding-contact bearings for exclusively rotary movement for both radial and axial load
- F16C17/102—Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
- F16C17/107—Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one surface for radial load and at least one surface for axial load
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/26—Systems consisting of a plurality of sliding-contact bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/06—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
- F16C32/0603—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/10—Construction relative to lubrication
- F16C33/1005—Construction relative to lubrication with gas, e.g. air, as lubricant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C37/00—Cooling of bearings
- F16C37/002—Cooling of bearings of fluid bearings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/16—Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/16—Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
- H02K5/161—Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields radially supporting the rotary shaft at both ends of the rotor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/16—Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
- H02K5/163—Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields radially supporting the rotary shaft at only one end of the rotor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/18—Structural association of electric generators with mechanical driving motors, e.g. with turbines
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/02—Arrangements for cooling or ventilating by ambient air flowing through the machine
- H02K9/04—Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
- H02K9/06—Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/02—Sliding-contact bearings for exclusively rotary movement for radial load only
- F16C17/028—Sliding-contact bearings for exclusively rotary movement for radial load only with fixed wedges to generate hydrodynamic pressure, e.g. multi-lobe bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2360/00—Engines or pumps
- F16C2360/23—Gas turbine engines
Definitions
- the invention relates to a super high speed electric power generation turbocharger device, belonging to the technical field of high precision machinery.
- Turbocharging is one of the most important technical measures for strengthening, energy saving and environmental protection of internal combustion engines.
- the engine turbocharger uses the exhaust energy of the engine to drive the turbine, and the turbine drives the coaxial compressor to work on the air, and sends the compressed air to the engine cylinder to increase the air charge coefficient without increasing the cylinder volume of the engine. Inject more fuel into the engine to increase engine output and improve combustion for the purpose of strengthening the engine.
- turbocharged engines have "turbo lag" during acceleration. Therefore, in order to improve the transient characteristics of turbocharged engines, an electric-assisted turbocharger system that relies on an electric motor to drive the turbocharger shaft to rotate and improve acceleration performance is adopted. More and more attention has been received in recent years.
- the first is called an electric auxiliary turbocharger, and the electric motor is only used as a motor for driving the supercharger rotor;
- the second is a turbine.
- Power generation supercharger that is, when the engine exhaust energy is excessive, the remaining exhaust gas energy drives the turbine to drive the generator to generate electricity, improve the exhaust gas energy utilization rate and improve the engine economy;
- the third is the electric power generation turbocharger, which integrates the former two
- the power generation/motor of the electric power turbocharger is used as a motor under low (load) speed conditions of the turbocharger rotor; in the high (load) speed condition, power generation is performed as a generator mode.
- the electric power turbocharger has both electrical assistance and power generation functions, and has obvious advantages.
- the motor generator rotor and the turbo compressor rotor are integrated into one unit, the mass of the entire rotor system is increased, the inertia is increased, and the acceleration performance of the rotor is deteriorated, which is difficult to adapt to high-speed working conditions, and is large.
- the quality of the rotor also consumes a lot of exhaust energy. This is one of the reasons why the electric power turbocharger has obvious advantages, but it has not been widely used.
- An ultra-high speed electric power generation turbocharger comprising a turbine, a compressor, an electric motor, two radial bearings and a thrust bearing
- the turbine including a turbine, a turbine casing, a turbine deflector and a turbine diversion a compressor housing, the compressor comprising a pressure wheel, a compressor housing and a compressor diffuser, the motor comprising a rotor, a stator, an inner shaft, and an outer shaft And a motor housing;
- the radial bearing is a slot type dynamic pressure gas radial bearing, comprising a bearing sleeve and a bearing inner sleeve
- the thrust bearing is a hybrid dynamic pressure gas thrust bearing, including two a side disc and a middle disc sandwiched between the two side discs, each of which is provided with a foil-type elastic member between the side discs and the middle disc;
- the rotor is sleeved in the middle of the inner shaft, and two radial directions
- the bearings are respectively slee
- the turbine is disposed at the left end of the inner shaft, and the compressor is disposed at the right end of the inner shaft.
- the ultra-high speed electric power generation turbocharger further includes a left radial bearing sleeve and a left bearing chamber end cover, the turbine housing is fixedly coupled to the left radial bearing sleeve, and the turbine deflector housing is The left bearing chamber end cover is fixedly connected, the left bearing chamber end cover is fixedly connected with the left radial bearing sleeve, and the left radial bearing sleeve is fixedly connected with the motor housing.
- the ultra-high speed electric power generation turbocharger further includes a right radial bearing sleeve and a right bearing chamber end cover, the compressor housing is fixedly connected to the right bearing chamber end cover, and the right bearing chamber end cover and the right The radial bearing sleeve is fixedly connected, and the right radial bearing sleeve is fixedly connected to the motor housing.
- a plurality of open slots are defined in a peripheral side of the inner wall of the motor housing, and a plurality of vent holes are formed in an end surface of the motor housing, and the open slots communicate with the vent holes to facilitate gas introduction and derivation.
- the open slots communicate with the vent holes to facilitate gas introduction and derivation.
- the outer circumferential surface and the both end surfaces of the bearing inner sleeve have a regular pattern of grooves.
- the groove pattern of one end surface of the bearing inner sleeve is mirror-symmetrical with the groove pattern of the other end surface, and the axial contour line of the groove pattern of the outer circumferential surface and the groove pattern of the both end surfaces
- the radial contour lines form a one-to-one correspondence and intersect each other.
- the axial high line in the groove pattern of the outer circumferential surface of the bearing inner sleeve corresponds to the radial high line in the groove pattern on both end faces, and is mutually overlapped before the end face is chamfered.
- the axial median line in the groove pattern of the outer circumferential surface corresponds to the radial median line in the groove pattern on both end faces, and is mutually overlapped before the end face is chamfered;
- the axial lower line in the middle corresponds to the radially lower line in the groove pattern on both end faces, and is mutually overlapped before the end face is chamfered.
- the matching gap between the bearing inner sleeve and the bearing outer sleeve is 0.003 to 0.008 mm.
- a stop ring is provided at both ends of the bearing housing.
- both end faces of the middle plate are provided with a regular pattern of groove patterns, and the groove pattern of one end face is mirror-symmetrical with the groove pattern of the other end face.
- the outer circumferential surface of the intermediate disk is also provided with a groove pattern, and the shape of the groove pattern of the outer circumferential surface is the same as the shape of the groove pattern on both end faces, and the groove pattern of the outer circumferential surface Axial contour and groove on both ends
- the radial contours of the pattern form a one-to-one correspondence and are mutually connected.
- the axial high line in the groove pattern of the outer circumferential surface of the middle disk corresponds to the radial high line in the groove pattern on both end faces, and is mutually overlapped before the end face is chamfered;
- the outer circumference The axial median line in the groove pattern corresponds to the radial median line in the groove pattern on both end faces, and crosses each other before the end face is chamfered;
- the axis in the groove pattern of the outer circumferential surface The low-order line corresponds to the radially lower line in the groove pattern on both end faces, and is mutually overlapped before the end face is chamfered.
- a wear-resistant coating is provided on the mating surface of the foil-type elastic member that is fitted to the intermediate disk.
- the fitting gap between the foil-type elastic member and the middle plate is 0.003 to 0.008 mm.
- At least one end of the foil-type elastic member is fixed to an inner end surface of the corresponding side disk.
- the foil-type elastic members on each of the side plates are plural and evenly distributed along the inner end faces of the side plates.
- the foil-type elastic member fixed to one side disk is mirror-symmetrical to the foil-shaped elastic member fixed to the other side disk.
- a card slot for fixing the foil-type elastic member is provided on the inner end surface of the side disk.
- the foil-type elastic member is composed of a wave foil and a flat foil, and the curved convex top end of the wave foil is attached to the flat foil.
- the foil-type elastic member is composed of a wave foil and a flat foil, and the inter-wave arch transition bottom edge of the wave foil is in contact with the flat foil.
- the foil-type elastic member is composed of two flat foils.
- the above-mentioned groove patterns are all impeller shapes.
- the above-mentioned foil-type elastic member is preferably subjected to surface heat treatment.
- the rotor comprises a rotor base, a magnetic steel and a magnetic steel protective sleeve, the rotor base is sleeved on the inner shaft, the magnetic steel sleeve is disposed at a central portion of the rotor base, and the magnetic steel protective sleeve is sleeved On the magnetic steel.
- the stator comprises a core and a winding, the core being fixed on an inner wall of a motor housing located above the rotor, the winding being disposed on the core.
- the core comprises a stator lamination formed by stacking a plurality of punching sheets and an end platen fixed to both sides of the stator lamination.
- the punching piece has a circular shape, and a plurality of cup-shaped perforations are arranged at intervals in the annular portion, the mouth of the perforated cup is closed, and the bottom of the cup is open.
- the winding is a three-phase star connection
- the center line is not led out, and only three ends of A, B, and C are drawn.
- each phase winding is 2 coils, and each coil is continuously wound from an enamelled copper wire.
- the present invention has the following beneficial effects:
- the electric power generating turbocharger provided by the present invention uses gas as a lubricant for the bearing, and therefore has not only the advantages of no pollution, low friction loss, long use time, wide application range, energy saving and environmental protection, but also
- the structure has good heat dissipation effect and can ensure stable operation for a long time; in particular, the air bearing of the structure can realize ultra-high-speed stable operation under air-floating state (tested, the limit speed can reach 100,000-450,000 rpm), Therefore, according to the same power requirement, the invention can significantly reduce the volume of the electric power generation turbocharger device to achieve miniaturization, has the advantages of small occupied space, convenient use, and the like, and has important value for promoting the development of miniaturization high-tech, relative to the present There are significant advances in technology.
- Embodiment 1 is a schematic cross-sectional structural view of a super high speed electric power generation turbocharger provided in Embodiment 1;
- Embodiment 2 is a partially divided left perspective structural view of a trough type dynamic pressure gas radial bearing provided in Embodiment 1;
- Figure 3 is a partial enlarged view of A in Figure 2;
- Embodiment 4 is a schematic partial right side perspective view showing the slot type dynamic pressure gas radial bearing provided in Embodiment 1;
- Figure 5 is a partial enlarged view of B in Figure 4.
- FIG. 6 is a schematic cross-sectional structural view of a hybrid dynamic pressure gas thrust bearing provided in Embodiment 1;
- Figure 7a is a left side view of the center disk described in Embodiment 1;
- Figure 7b is a right side view of the center disk described in Embodiment 1;
- Figure 8a is a right side view of the left side disk to which the foil-type elastic member is fixed as described in Embodiment 1;
- Figure 8b is a left side view of the right side disk with the foil-type elastic member fixed in Embodiment 1;
- FIG. 9 is a schematic cross-sectional structural view of a foil-type elastic member provided in Embodiment 1;
- Figure 10 is a perspective view showing the structure of the foil-type elastic member provided in Embodiment 1;
- Figure 11a is a left side perspective structural view of a hybrid dynamic pressure gas thrust bearing provided in Embodiment 2;
- Figure 11b is a right perspective view showing the hybrid dynamic pressure gas thrust bearing of the second embodiment
- Figure 12 is a partially sectional perspective structural view of the hybrid dynamic pressure gas thrust bearing provided in the second embodiment
- Figure 13 is a left perspective view showing the middle plate of the second embodiment
- Figure 14 is a partial enlarged view of C in Figure 13;
- Figure 15 is a right perspective view showing the center disk of the second embodiment
- Figure 16 is a partial enlarged view of D in Figure 15;
- Figure 17 is a schematic view showing the structure of a rotor provided in Embodiment 3.
- FIG. 18 is a schematic structural view of a core provided in Embodiment 4.
- Figure 19 is a schematic structural view of a punching piece according to Embodiment 4.
- FIG. 20 is a schematic structural view of a winding provided in Embodiment 4.
- FIG. 21 is a perspective structural view of a motor housing provided in Embodiment 5.
- Figure 22 is a partial enlarged view of E in Figure 21 .
- an ultra-high speed electric power generation turbocharger device includes a turbine 1, a compressor 2, a motor 3, two radial bearings 4 and a thrust bearing 5, and the turbine 1 comprising a turbine 11 , a turbine housing 12 , a turbine deflector 13 and a turbine deflector housing 14 , the compressor 2 comprising a pressure roller 21 , a compressor housing 22 and a compressor diffuser 23
- the motor 3 includes a rotor 31, a stator 32, an inner shaft 33, an outer shaft 34, and a motor housing 35;
- the radial bearing 4 is a slot type dynamic pressure gas radial bearing, comprising a bearing sleeve 41 and a bearing inner sleeve 42;
- the thrust bearing 5 is a hybrid dynamic pressure gas thrust bearing, comprising two side discs 51 and a clip A middle plate 52 is disposed between the two side plates, and a foil-type elastic member 53 is disposed between each of the side plates 51 and the middle plate 52.
- the rotor 31 is sleeved in the middle of the inner shaft 33, and two paths are provided.
- the bearing 4 is sleeved on an outer shaft 34 located at the left and right ends of the rotor 31, and the thrust bearing 5 is sleeved on the outer shaft 34 at the right end and on the outer end side of the right end radial bearing 4b, the turbine 1 and the compressor 2 are respectively disposed at both ends of the inner shaft 33 (the turbine 1 is disposed at the left end of the inner shaft 33 in the present embodiment, and the compressor 2 is disposed at the right end of the inner shaft 33).
- the ultra-high speed electric power generating turbocharger further includes a left radial bearing sleeve 6a, a right radial bearing sleeve 6b, a left bearing chamber end cover 7a and a right bearing chamber end cover 7b, the turbine housing 12 and the left radial direction
- the bearing sleeve 6a is fixedly connected
- the turbine deflector housing 14 is fixedly connected to the left bearing chamber end cover 7a
- the left bearing chamber end cover 7a is fixedly connected to the left radial bearing sleeve 6a
- the left radial bearing sleeve 6a and the motor housing are fixedly connected.
- the compressor housing 22 is fixedly connected to the right bearing chamber end cover 7b
- the right bearing chamber end cover 7b is fixedly connected to the right radial bearing sleeve 6b
- the right radial bearing sleeve 6b is fixedly coupled to the motor housing 35.
- the outer circumferential surface and the left and right end surfaces of the bearing inner sleeve 42 each have a regular shape of the groove pattern 43 (431, 432 and 433 in the figure, the groove in this embodiment).
- the pattern is an impeller shape), and the groove pattern 432 of the left end surface is mirror-symmetrical with the groove pattern 433 of the right end surface.
- the axial contour line of the groove pattern 431 located on the outer circumferential surface of the bearing inner sleeve 42 forms a one-to-one correspondence with the radial contour lines of the groove patterns (432 and 433) of the left and right end surfaces, and is mutually overlapped, that is, external
- the axially high bit line 4311 in the circumferential groove pattern 431 corresponds to the radial high bit lines (4321 and 4331) in the groove patterns (432 and 433) of the left and right end faces, and is chamfered before the end face is chamfered Interacting with each other;
- the axial center line 4312 in the groove pattern 431 of the outer circumferential surface corresponds to the radial center line (4322 and 4332) in the groove patterns (432 and 433) of the left and right end faces, and
- the front end is circumferentially chamfered to each other;
- the groove pattern 432 of the left end surface and the groove pattern 433 of the right end surface are mirror-symmetrical and outer circumference.
- the axial contour line of the groove pattern 431 forms a one-to-one correspondence with the radial contour lines of the groove patterns (432 and 433) of the left and right end faces, and mutually intersects each other, thereby ensuring the groove pattern of the impeller shape at both end faces.
- the pressurized gas generated by (432 and 433) is transported from the axial direction of the shaft to the groove passage formed by the groove pattern 431 of the outer circumferential surface, so as to form a gas film required for supporting the high-speed running bearing more strongly, and
- the gas film is used as a lubricant for the dynamic pressure gas radial bearing, and thus is advantageous for achieving high-speed stable operation of the trough type dynamic pressure gas radial bearing 4 in an air floating state.
- the retaining ring 44 when the retaining ring 44 is respectively disposed at both ends of the bearing outer casing 41, it can be realized by the high-speed rotary shaft.
- the self-sealing action is generated between the end faces of the bearing inner sleeve 42 and the retaining ring 44, so that the dynamic pressure gas continuously generated by the groove pattern can be tightly sealed and stored in the entire matching gap of the bearing, thereby fully ensuring the radial direction of the dynamic pressure gas at high speed. Lubrication of bearings is required.
- the fitting clearance between the bearing outer casing 41 and the bearing inner sleeve 42 is preferably 0.003 to 0.008 mm to further ensure the reliability and stability of the bearing at high speed.
- a hybrid dynamic pressure gas thrust bearing 5 provided in this embodiment includes: two side discs 51 with a middle disc 52 interposed between the two side discs 51 on each side.
- a foil-shaped elastic member 53 is disposed between the disk 51 and the intermediate plate 52; the left end surface of the intermediate plate 52 is provided with a groove pattern 521 having a regular shape, and the right end surface is provided with a groove pattern 522 having a regular shape.
- the groove pattern 521 of the left end surface of the middle plate 52 and the groove pattern 522 of the right end surface form a mirror symmetry, and the radial contour line and the right end surface of the groove pattern 521 of the left end surface are formed.
- the radial contours of the troughs 522 form a one-to-one correspondence.
- the troughs 521 and 522 have the same shape, and are in the shape of an impeller in this embodiment.
- the foil-type elastic member 53 is fixed to the inner end surface of the corresponding side disk 51 (for example, the left side disk 511 to which the foil-type elastic member 53a is fixed as shown in Fig. 8a and the left side disk 511 shown in Fig. 8b
- the right side disc 512) to which the foil type elastic member 53b is fixed, and the foil type elastic member 53a fixed to the left side disc 511 is mirror-symmetrical with the foil type elastic member 53b fixed to the right side disc 512.
- the foil-type elastic member 53 By providing the foil-type elastic member 53 between the side disk 51 and the intermediate disk 52, regular groove patterns (521 and 522) are provided on the left and right end faces of the middle plate 52, and the groove pattern 521 of the left end face is The groove pattern 522 of the right end surface is mirror-symmetrical, thereby obtaining a rigid characteristic of a high limit rotation speed of the groove type dynamic pressure gas thrust bearing, and a high impact resistance and load of the foil type dynamic pressure gas thrust bearing.
- the hybrid dynamic pressure gas thrust bearing of the flexible nature of the capability because the foil-shaped elastic member 53 forms a wedge-shaped space with the intermediate disk 52, when the disk 52 rotates, the gas is driven by its own viscous action and is compressed to the wedge shape.
- the axial dynamic pressure can be significantly enhanced, compared with the existing simple foil dynamic pressure gas thrust bearing, which can have a limit rotation speed which is multiplied under the same load; meanwhile, due to the increased foil type
- the elastic member 53 can also significantly improve the bearing capacity, the impact resistance and the ability to suppress the whirl of the bearing under the elastic action, and can have the same in comparison with the existing simple groove type dynamic pressure gas thrust bearing. Doubling the speed of impact resistance and load capacity.
- the foil-shaped elastic member 53 is composed of a wave foil 531 and a flat foil 532, and a top end of the curved protrusion 5311 of the wave foil 531 is attached to the flat foil 532.
- the inter-wave transition bottom edge 5312 of the wave foil 531 is in contact with the inner end surface of the corresponding side disk 51.
- a hybrid dynamic pressure gas thrust bearing provided by the present embodiment differs from Embodiment 1 only in that:
- a groove pattern 523 is also provided on the outer circumferential surface of the intermediate disk 52, and the shape of the groove pattern 523 of the outer circumferential surface is the same as that of the groove patterns (521 and 522) of the left and right end faces (this embodiment)
- the axial contour of the groove pattern 523 of the outer circumferential surface and the radial contour lines of the groove patterns (521 and 522) of the left and right end faces are in one-to-one correspondence with each other and intersect with each other; :
- the axially high bit line 5231 in the groove pattern 523 of the outer circumferential surface corresponds to the radial high line line 5211 in the groove pattern 521 of the left end surface, and is mutually overlapped before the end face is chamfered;
- the groove of the outer circumferential surface The axial center line 5232 in the pattern 523 corresponds to the radial center line 5212 in the groove pattern 521 of the left end surface, and is mutually overlapped before the end surface is chamfered;
- the axially lower bit line 5233 corresponds to the radially lower bit line 5213 in the groove pattern 521 of the left end face, and is mutually overlapped before the end face is chamfered (as shown in FIG. 14);
- the axially high bit line 5231 in the groove pattern 523 of the outer circumferential surface corresponds to the radial high line 5221 in the groove pattern 522 of the right end face, and is mutually overlapped before the end face is chamfered;
- the groove of the outer circumferential surface The axial center line 5232 in the pattern 523 corresponds to the radial center line 5222 in the groove pattern 522 of the right end surface, and is mutually overlapped before the end surface is chamfered;
- the axially lower bit line 5233 corresponds to the radially lower bit line 5223 in the groove pattern 522 of the right end face, and is mutually overlapped before the end face is chamfered (as shown in FIG. 16).
- a groove pattern is also provided on the outer circumferential surface of the intermediate disk 52, and the shape of the groove pattern 523 of the outer circumferential surface is the same as that of the groove patterns (521 and 522) of the left and right end faces, and When the axial contour line of the groove pattern 523 of the circumferential surface forms a one-to-one correspondence with the radial contour lines of the groove patterns (521 and 522) of the left and right end faces, the groove pattern of both end faces of the inner disk can be obtained.
- the pressurized gas generated by (521 and 522) is transported from the axial direction of the shaft to the groove passage formed by the groove pattern 523 of the outer circumferential surface so as to form a gas film which is stronger for supporting the high speed running bearing, and
- the gas film is used as a lubricant for the dynamic pressure gas thrust bearing, so that the high-speed stable operation of the hybrid dynamic pressure gas thrust bearing in the air-floating state can be further ensured, and further guarantee for realizing the high limit rotation speed of the motor.
- a card slot 513 (shown in Fig. 12) for fixing the foil-type elastic member 53 is provided on the inner end surface of the side disk 51.
- the fitting clearance of the foil-type elastic member 53 and the intermediate disk 52 is preferably 0.003 to 0.008 mm to further ensure the reliability and stability of the high-speed operation of the bearing.
- the foil-type elastic member 53 is preferably subjected to surface heat treatment.
- composition of the foil-type elastic member 53 of the present invention is not limited to that described in the above embodiments, and may be composed of a wave foil and a flat foil, but the transition edge between the wave arches of the wave foil is The flat foil is fitted, or it is composed of two flat foils directly, or other existing structures.
- the rotor 31 includes a rotor base 311, a magnetic steel 312, and a magnetic steel sleeve 313.
- the rotor base 311 is sleeved on the inner shaft 33, and the magnetic steel 312 is sleeved on the rotor.
- the magnetic steel protective sleeve 313 is sleeved on the magnetic steel 312 to better satisfy the ultra-high speed rotation.
- the stator 32 includes a core 321 and a winding 322 fixed to an inner wall of the motor housing 35 above the rotor 31, the winding 322 being disposed on the core
- the core 321 includes a stator lamination 3212 formed by stacking a plurality of punching pieces 3211 and an end platen 3213 fixed to both sides of the stator lamination 3212.
- the punching piece 3211 has a circular ring shape, and a plurality of cup-shaped through holes 32111 are formed at intervals in the annular portion.
- the cup mouth portion 32111a of the through hole 32111 is closed, and the bottom of the cup foot 32111b is open.
- the winding 322 is connected by a three-phase star type, the center line is not led out, and only three ends of A, B, and C are taken out; each phase winding is two coils, and each coil is made of an enamelled copper wire. Continuously wound.
- a plurality of opening slots 351 are defined in the inner wall of the motor housing 35, and a plurality of vent holes 352 are formed in the end surface of the motor housing.
- the opening slots 351 are connected to the vent holes 352.
- the bearing provided by the invention can reach the limit rotation speed of 100,000-450,000 rpm in the air floating state, so the invention can significantly reduce the volume of the electric power generation turbocharger device for the same power requirement, and realize the miniaturization
- the development of miniaturization of high technology has important value.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Thermal Sciences (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Motor Or Generator Frames (AREA)
- Supercharger (AREA)
- Slot Machines And Peripheral Devices (AREA)
- Support Of The Bearing (AREA)
Abstract
一种超高速电动发电涡轮增压装置,包括涡轮机(1)、压气机(2)、电机(3)、2个径向轴承(4)及1个止推轴承(5),所述电机(3)包括转子(31)、定子(32)、内轴(33)、外轴(34)及电机壳体(35),所述径向轴承(4)为槽式动压气体径向轴承,所述止推轴承(5)为混合式动压气体止推轴承,所述转子(31)套设在内轴(33)的中部,2个径向轴承(4)分别套设在位于转子(31)左、右端的外轴(34)上,所述止推轴承(5)套设在右端的外轴(34)上、并位于右端径向轴承(4)的外端侧,所述涡轮机(1)和压气机(2)分别设置在内轴(33)的两端。所述增压装置可实现在气浮状态下的超高速稳定运转,针对相同功率要求,可使电动发电涡轮增压装置的体积显著减小实现微型化。
Description
本发明是涉及一种超高速电动发电涡轮增压装置,属于高精密机械技术领域。
涡轮增压是内燃机强化、节能、环保的最重要技术措施之一。发动机涡轮增压器是利用发动机排出的废气能量驱动涡轮、涡轮带动同轴的压气机对空气做功,将压缩空气送入发动机气缸,在不增加发动机气缸容积的条件下,增加空气充量系数,使发动机喷入更多燃油,从而提高发动机输出功率、改善燃烧,达到强化发动机的目的。但是,涡轮增压发动机在加速过程中存在“涡轮滞后”现象,因此为了改善涡轮增压发动机的瞬态特性,采用依靠电动机带动涡轮增压器转轴转动、提高加速性能的电辅助涡轮增压系统近年来得到越来越多的关注。
目前,依靠电动机带动涡轮增压器转子提高其性能的布置方法主要有三种:第一种称为电辅助涡轮增压器,其电动机仅作为驱动增压器转子的电动机使用;第二种为涡轮发电增压器,即当发动机废气能量过剩时,剩余废气能量驱动涡轮带动发电机发电,提高废气能量利用率从而改善发动机经济性;第三种为电动发电涡轮增压器,即将前两者整合为一体,电动发电涡轮增压器的发电/电动机在涡轮增压器转子低(负荷)速工况下作为电动机使用;在高(负荷)速工况下,作为发电机模式,发电蓄能。电动发电涡轮增压器兼具电辅助与发电功能,具有明显的优势。但是,当电动发电机转子与涡轮压气机转子集成装配为一整体时,会使整个转子系统质量增加,惯性增大,使得转子的加速性能变差,难以适应高转速工况,并且,较大质量的转子也消耗了较多的废气能量。这也是电动发电涡轮增压器虽然优势明显,但至今未得到广泛应用的原因之一。
发明内容
针对现有技术存在的上述问题,本发明的目的是提供一种可稳定运行的超高速电动发电涡轮增压装置。
为实现上述目的,本发明采用的技术方案如下:
一种超高速电动发电涡轮增压装置,包括涡轮机、压气机、电机、2个径向轴承及1个止推轴承,所述涡轮机包括涡轮、涡轮机壳体、涡轮机导流器及涡轮机导流器壳体,所述压气机包括压轮、压气机壳体及压气机扩压器,所述电机包括转子、定子、內轴、外轴
及电机壳体;其特征在于:所述径向轴承为槽式动压气体径向轴承,包括轴承外套和轴承内套;所述止推轴承为混合式动压气体止推轴承,包括两个侧盘以及夹设在两个侧盘之间的中盘,在每个侧盘与中盘之间均设有箔型弹性件;所述转子套设在內轴的中部,2个径向轴承分别套设在位于转子左、右端的外轴上,所述止推轴承套设在右端的外轴上、并位于右端径向轴承的外端侧,所述涡轮机和压气机分别设置在內轴的两端。
作为一种实施方案,所述涡轮机设置在內轴的左端,所述压气机设置在內轴的右端。
作为进一步实施方案,所述的超高速电动发电涡轮增压装置还包括左径向轴承套和左轴承室端盖,涡轮机壳体与左径向轴承套固定连接,涡轮机导流器壳体与左轴承室端盖固定连接,左轴承室端盖与左径向轴承套固定连接,左径向轴承套与电机壳体固定连接。
作为进一步实施方案,所述的超高速电动发电涡轮增压装置还包括右径向轴承套和右轴承室端盖,压气机壳体与右轴承室端盖固定连接,右轴承室端盖与右径向轴承套固定连接,右径向轴承套与电机壳体固定连接。
作为优选方案,在电机壳体的内壁周侧开设有若干开口槽,在电机壳体的端面开设有若干通气孔,所述开口槽与通气孔相连通,以利于气体的导入和导出,一方面实现快速散热排气,另一面实现对轴承室内进行空气补给。
作为优选方案,所述轴承内套的外圆周面和两端面均具有规则形状的槽式花纹。
作为进一步优选方案,所述轴承内套的一端面的槽式花纹与另一端面的槽式花纹形成镜像对称,以及外圆周面的槽式花纹的轴向轮廓线与两端面的槽式花纹的径向轮廓线均形成一一对应并相互交接。
作为进一步优选方案,所述轴承内套的外圆周面的槽式花纹中的轴向高位线与两端面的槽式花纹中的径向高位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向中位线与两端面的槽式花纹中的径向中位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向低位线与两端面的槽式花纹中的径向低位线均相对应、并在端面圆周倒角前相互交接。
作为优选方案,所述轴承内套与轴承外套间的配合间隙为0.003~0.008mm。
作为优选方案,在所述轴承外套的两端设有止环。
作为优选方案,所述中盘的两端面均设有规则形状的槽式花纹,且一端面的槽式花纹与另一端面的槽式花纹形成镜像对称。
作为优选方案,在所述中盘的外圆周面也设有槽式花纹,且外圆周面的槽式花纹的形状与两端面的槽式花纹的形状相同,以及外圆周面的槽式花纹的轴向轮廓线与两端面的槽
式花纹的径向轮廓线均形成一一对应并相互交接。
作为进一步优选方案,中盘的外圆周面的槽式花纹中的轴向高位线与两端面的槽式花纹中的径向高位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向中位线与两端面的槽式花纹中的径向中位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向低位线与两端面的槽式花纹中的径向低位线均相对应、并在端面圆周倒角前相互交接。
作为进一步优选方案,在与中盘相配合的箔型弹性件的配合面上设有耐磨涂层。
作为进一步优选方案,所述箔型弹性件与中盘的配合间隙为0.003~0.008mm。
作为进一步优选方案,所述箔型弹性件的至少一端固定在对应侧盘的内端面上。
作为进一步优选方案,每个侧盘上的箔型弹性件为多个,且沿侧盘的内端面均匀分布。
作为进一步优选方案,固定在一个侧盘上的箔型弹性件与固定在另一个侧盘上的箔型弹性件形成镜像对称。
作为进一步优选方案,在侧盘的内端面设有用于固定箔型弹性件的卡槽。
作为一种实施方案,所述的箔型弹性件由波箔和平箔组成,所述波箔的弧形凸起顶端与平箔相贴合。
作为另一种实施方案,所述的箔型弹性件由波箔和平箔组成,所述波箔的波拱间过渡底边与平箔相贴合。
作为又一种实施方案,所述的箔型弹性件由两个平箔组成。
上述的槽式花纹均为叶轮形状。
上述的箔型弹性件优选经过表面热处理。
作为优选方案,所述转子包括转子底座、磁钢和磁钢保护套,所述转子底座套设在內轴上,所述磁钢套设在转子底座的中心部,所述磁钢保护套套设在磁钢上。
作为优选方案,所述定子包括铁芯和绕组,所述铁芯固定在位于转子上方的电机壳体的内壁上,所述绕组设置在铁芯上。
作为优选方案,所述铁芯包括由若干冲片上下叠置形成的定子叠片和固定在定子叠片两侧的端压板。
作为进一步优选方案,所述冲片呈圆环形,在环形部间隔设有多个杯状穿孔,所述穿孔的杯口部封闭,杯脚的底部开口。
作为优选方案,所述绕组为三相星型连接,中心线不引出,只引出A、B、C三个端头。
作为进一步优选方案,每相绕组为2个线圈,每个线圈由漆包铜线连续绕制而成。
与现有技术相比,本发明具有如下有益效果:
因本发明所提供的电动发电涡轮增压装置,是以气体作为轴承的润滑剂,因此不仅具有无污染、摩擦损失低、使用时间长、适用范围广、节能环保等诸多优点,而且采用所述结构,散热效果好,可保证长时间稳定运行;尤其是,因所述结构的空气轴承能实现在气浮状态下的超高速稳定运转(经测试,可达100,000~450,000rpm的极限转速),因此针对相同功率要求,本发明可使电动发电涡轮增压装置的体积显著减小实现微型化,具有占用空间小、使用便捷等优点,对促进微型化高新技术的发展具有重要价值,相对于现有技术具有显著性进步。
图1是实施例1提供的一种超高速电动发电涡轮增压装置的剖面结构示意图;
图2是实施例1提供的槽式动压气体径向轴承的局部分割的左视立体结构示意图;
图3是图2中的A局部放大图;
图4是实施例1提供的槽式动压气体径向轴承的局部分割的右视立体结构示意图;
图5是图4中的B局部放大图;
图6是实施例1提供的混合式动压气体止推轴承的剖面结构示意图;
图7a是实施例1中所述中盘的左视图;
图7b是实施例1中所述中盘的右视图;
图8a是实施例1中所述的固定有箔型弹性件的左侧盘的右视图;
图8b是实施例1中所述的固定有箔型弹性件的右侧盘的左视图;
图9是实施例1提供的箔型弹性件的截面结构示意图;
图10是实施例1提供的箔型弹性件的立体结构示意图;
图11a是实施例2提供的一种混合式动压气体止推轴承的左视立体结构示意图;
图11b是实施例2提供的混合式动压气体止推轴承的右视立体结构示意图;
图12是实施例2提供的混合式动压气体止推轴承的局部分割立体结构示意图;
图13是实施例2中所述中盘的左视立体结构示意图;
图14是图13中的C局部放大图;
图15是实施例2中所述中盘的右视立体结构示意图;
图16是图15中的D局部放大图;
图17是实施例3所提供的转子结构示意图;
图18是实施例4所提供的铁芯结构示意图;
图19是实施例4所述冲片的结构示意图;
图20是实施例4所提供的绕组结构示意图;
图21是实施例5所提供的电机壳体的立体结构示意图;
图22是图21中的E局部放大图。
图中标号示意如下:
1、涡轮机;11、涡轮;12、涡轮机壳体;13、涡轮机导流器;14、涡轮机导流器壳体;2、压气机;21、压轮;22、压气机壳体;23、压气机扩压器;3、电机;31、转子;311、转子底座;312、磁钢;313、磁钢保护套;32、定子;321、铁芯;3211、冲片;32111、杯状穿孔;32111a、杯口部;32111b、杯脚;3212、定子叠片;3213、端压板;322、绕组;33、內轴;34、外轴;35、电机壳体;351、开口槽;352、通气孔;4、槽式动压气体径向轴承;4a、左端径向轴承;4b、右端径向轴承;41、轴承外套;42、轴承内套;43、槽式花纹;431、外圆周面的槽式花纹;4311、轴向高位线;4312、轴向中位线;4313、轴向低位线;432、左端面的槽式花纹;4321、径向高位线;4322、径向中位线;4323、径向低位线;433、右端面的槽式花纹;4331、径向高位线;4332、径向中位线;4333、径向低位线;44、止环;5、混合式动压气体止推轴承;51、侧盘;511、左侧盘;512、右侧盘;513、卡槽;52、中盘;521、左端面的槽式花纹;5211、径向高位线;5212、径向中位线;5213、径向低位线;522、右端面的槽式花纹;5221、径向高位线;5222、径向中位线;5223、径向低位线;523、外圆周面的槽式花纹;5231、轴向高位线;5232、轴向中位线;5233、轴向低位线;53、箔型弹性件;53a、固定在左侧盘上的箔型弹性件;53b、固定在右侧盘上的箔型弹性件;531、波箔;5311、弧形凸起;5312、波拱间过渡底边;532、平箔;6a、左径向轴承套;6b、右径向轴承套;7a、左轴承室端盖;7b、右轴承室端盖。
下面结合附图及实施例对本发明的技术方案做进一步详细地说明。
实施例1
如图1所示:本实施例提供的一种超高速电动发电涡轮增压装置,包括涡轮机1、压气机2、电机3、2个径向轴承4及1个止推轴承5,所述涡轮机1包括涡轮11、涡轮机壳体12、涡轮机导流器13及涡轮机导流器壳体14,所述压气机2包括压轮21、压气机壳体22及压气机扩压器23,所述电机3包括转子31、定子32、內轴33、外轴34及电机壳体35;
所述径向轴承4为槽式动压气体径向轴承,包括轴承外套41和轴承内套42;所述止推轴承5为混合式动压气体止推轴承,包括两个侧盘51以及夹设在两个侧盘之间的中盘52,在每个侧盘51与中盘52之间均设有箔型弹性件53;所述转子31套设在內轴33的中部,2个径向轴承4分别套设在位于转子31左、右端的外轴34上,所述止推轴承5套设在右端的外轴34上、并位于右端径向轴承4b的外端侧,所述涡轮机1和压气机2分别设置在內轴33的两端(本实施例中所述涡轮机1设置在內轴33的左端,所述压气机2设置在內轴33的右端)。
所述的超高速电动发电涡轮增压装置还包括左径向轴承套6a、右径向轴承套6b、左轴承室端盖7a和右轴承室端盖7b,涡轮机壳体12与左径向轴承套6a固定连接,涡轮机导流器壳体14与左轴承室端盖7a固定连接,左轴承室端盖7a与左径向轴承套6a固定连接,左径向轴承套6a与电机壳体35固定连接,压气机壳体22与右轴承室端盖7b固定连接,右轴承室端盖7b与右径向轴承套6b固定连接,右径向轴承套6b与电机壳体35固定连接。
结合图2至图5所示:所述轴承内套42的外圆周面和左、右端面均具有规则形状的槽式花纹43(如图中的431、432和433,本实施例中的槽式花纹均为叶轮形状),且左端面的槽式花纹432与右端面的槽式花纹433形成镜像对称。位于轴承内套42的外圆周面的槽式花纹431的轴向轮廓线与左、右端面的槽式花纹(432和433)的径向轮廓线均形成一一对应并相互交接,即:外圆周面的槽式花纹431中的轴向高位线4311与左、右端面的槽式花纹(432和433)中的径向高位线(4321和4331)均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹431中的轴向中位线4312与左、右端面的槽式花纹(432和433)中的径向中位线(4322和4332)均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹431中的轴向低位线4313与左、右端面的槽式花纹(432和433)中的径向低位线(4323和4333)均相对应、并在端面圆周倒角前相互交接。
通过使轴承内套42的外圆周面和两端面均具有规则形状的槽式花纹(431、432和433),左端面的槽式花纹432与右端面的槽式花纹433形成镜像对称及外圆周面的槽式花纹431的轴向轮廓线与左、右端面的槽式花纹(432和433)的径向轮廓线均形成一一对应并相互交接,可保证两端面的叶轮形状的槽式花纹(432和433)所产生的增压气体从轴心沿径向不断地往外圆周面的槽式花纹431形成的凹槽通道里输送,以致形成更强支撑高速运转轴承所需的气膜,而气膜即作为动压气体径向轴承的润滑剂,因此有利于实现所述槽式动压气体径向轴承4在气浮状态下的高速稳定运转。
另外,当在轴承外套41的两端分别设置止环44时,可实现在高速回转轴的带动下,
使轴承内套42的两端面与止环44间产生自密封作用,使槽式花纹连续产生的动压气体能完好地密闭保存在轴承的整个配合间隙中,充分保证高速运转的动压气体径向轴承的润滑需要。
所述轴承外套41与轴承内套42间的配合间隙优选为0.003~0.008mm,以进一步确保轴承高速运转的可靠性和稳定性。
如图6所示:本实施例提供的一种混合式动压气体止推轴承5,包括:两个侧盘51,在两个侧盘51之间夹设有中盘52,在每个侧盘51与中盘52之间设有箔型弹性件53;所述中盘52的左端面设有规则形状的槽式花纹521,右端面设有规则形状的槽式花纹522。
结合图7a和图7b可见:所述中盘52的左端面的槽式花纹521与右端面的槽式花纹522之间形成镜像对称,左端面的槽式花纹521的径向轮廓线与右端面的槽式花纹522的径向轮廓线形成一一对应。
所述的槽式花纹521与522的形状相同,本实施例中均为叶轮形状。
进一步结合图8a和图8b可见:所述箔型弹性件53固定在对应侧盘51的内端面上(例如图8a所示的固定有箔型弹性件53a的左侧盘511和图8b所示的固定有箔型弹性件53b的右侧盘512),且固定在左侧盘511上的箔型弹性件53a与固定在右侧盘512上的箔型弹性件53b形成镜像对称。在每个侧盘上的箔型弹性件可为多个(图中示出的是4个),且沿侧盘的内端面均匀分布。
通过在侧盘51与中盘52之间设置箔型弹性件53,在中盘52的左、右端面设置规则形状的槽式花纹(521和522),且使左端面的槽式花纹521与右端面的槽式花纹522形成镜像对称,从而得到了既具有槽式动压气体止推轴承的高极限转速的刚性特征、又具有箔片式动压气体止推轴承的高抗冲击能力和载荷能力的柔性特征的混合式动压气体止推轴承;因为箔型弹性件53与中盘52间形成了楔形空间,当中盘52转动时,气体因其自身的粘性作用被带动并被压缩到楔形空间内,从而可使轴向动压力得到显著增强,相对于现有的单纯箔片式动压气体止推轴承,可具有在相同载荷下成倍增加的极限转速;同时,由于增加了箔型弹性件53,在其弹性作用下,还可使轴承的载荷能力、抗冲击能力和抑制轴涡动的能力显著提高,相对于现有的单纯槽式动压气体止推轴承,可具有在相同转速下成倍增加的抗冲击能力和载荷能力。
结合图6和图9、图10所示:所述的箔型弹性件53由波箔531和平箔532组成,所述波箔531的弧形凸起5311的顶端与平箔532相贴合,所述波箔531的波拱间过渡底边5312与对应侧盘51的内端面相贴合。
为进一步降低高速运转的中盘52对箔型弹性件53的磨损,以延长轴承的使用寿命,最好在与中盘52相配合的箔型弹性件53的配合面上设置耐磨涂层(图中未示出)。
实施例2
结合图11a、11b、12至16所示可见,本实施例提供的一种混合式动压气体止推轴承与实施例1的区别仅在于:
在所述中盘52的外圆周面也设有槽式花纹523,且外圆周面的槽式花纹523的形状与左、右端面的槽式花纹(521和522)的形状相同(本实施例中均为叶轮形状),以及外圆周面的槽式花纹523的轴向轮廓线与左、右端面的槽式花纹(521和522)的径向轮廓线均形成一一对应并相互交接;即:
外圆周面的槽式花纹523中的轴向高位线5231与左端面的槽式花纹521中的径向高位线5211均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹523中的轴向中位线5232与左端面的槽式花纹521中的径向中位线5212均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹523中的轴向低位线5233与左端面的槽式花纹521中的径向低位线5213均相对应、并在端面圆周倒角前相互交接(如图14所示);
外圆周面的槽式花纹523中的轴向高位线5231与右端面的槽式花纹522中的径向高位线5221均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹523中的轴向中位线5232与右端面的槽式花纹522中的径向中位线5222均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹523中的轴向低位线5233与右端面的槽式花纹522中的径向低位线5223均相对应、并在端面圆周倒角前相互交接(如图16所示)。
当在所述中盘52的外圆周面也设有槽式花纹,且使外圆周面的槽式花纹523的形状与左、右端面的槽式花纹(521和522)的形状相同,以及外圆周面的槽式花纹523的轴向轮廓线与左、右端面的槽式花纹(521和522)的径向轮廓线均形成一一对应并相互交接时,可使内盘两端面的槽式花纹(521和522)所产生的增压气体从轴心沿径向不断地往外圆周面的槽式花纹523形成的凹槽通道里输送,以致形成更强支撑高速运转轴承所需的气膜,而气膜即作为动压气体止推轴承的润滑剂,因而可进一步确保所述的混合式动压气体止推轴承在气浮状态下的高速稳定运转,为实现电机的高极限转速提供进一步保证。
在侧盘51的内端面上设有用于固定箔型弹性件53的卡槽513(如图12所示)。
所述的箔型弹性件53与中盘52的配合间隙优选为0.003~0.008mm,以进一步确保轴承高速运转的可靠性和稳定性。
为了更好地满足高速运转的性能要求,所述的箔型弹性件53优选经过表面热处理。
另外需要说明的是:本发明所述的箔型弹性件53的组成结构不限于上述实施例中所述,还可以采用波箔和平箔组成,但所述波箔的波拱间过渡底边与平箔相贴合,或者,直接采用两个平箔组成,或采用其它的现有结构。
实施例3
结合图1和图17所示:所述转子31包括转子底座311、磁钢312和磁钢保护套313,所述转子底座311套设在內轴33上,所述磁钢312套设在转子底座311的中心部,所述磁钢保护套313套设在磁钢312上,以更好满足超高速转动。
实施例4
结合图1和图18所示:所述定子32包括铁芯321和绕组322,所述铁芯321固定在位于转子31上方的电机壳体35的内壁上,所述绕组322设置在铁芯321上;所述铁芯321包括由若干冲片3211上下叠置形成的定子叠片3212和固定在定子叠片3212两侧的端压板3213。
如图19所示:所述冲片3211呈圆环形,在环形部间隔设有多个杯状穿孔32111,所述穿孔32111的杯口部32111a封闭,杯脚32111b的底部开口。
如图20所示:所述绕组322采用三相星型连接,中心线不引出,只引出A、B、C三个端头;每相绕组为2个线圈,每个线圈由漆包铜线连续绕制而成。
实施例5
结合图21和图22所示:在电机壳体35的内壁周侧开设有若干开口槽351,在电机壳体的端面开设有若干通气孔352,所述开口槽351与通气孔352相连通,以利于气体的导入和导出,一方面实现快速散热排气,另一面实现对轴承室内进行空气补给。
经测试,本发明提供的轴承在气浮状态下能达到100,000~450,000rpm的极限转速,因此针对相同功率要求,本发明可使电动发电涡轮增压装置的体积显著减小实现微型化,对促进微型化高新技术的发展具有重要价值。
最后有必要在此指出的是:以上内容只用于对本发明所述技术方案做进一步详细说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。
Claims (19)
- 一种超高速电动发电涡轮增压装置,包括涡轮机、压气机、电机、2个径向轴承及1个止推轴承,所述涡轮机包括涡轮、涡轮机壳体、涡轮机导流器及涡轮机导流器壳体,所述压气机包括压轮、压气机壳体及压气机扩压器,所述电机包括转子、定子、內轴、外轴及电机壳体;其特征在于:所述径向轴承为槽式动压气体径向轴承,包括轴承外套和轴承内套;所述止推轴承为混合式动压气体止推轴承,包括两个侧盘以及夹设在两个侧盘之间的中盘,在每个侧盘与中盘之间均设有箔型弹性件;所述转子套设在內轴的中部,2个径向轴承分别套设在位于转子左、右端的外轴上,所述止推轴承套设在右端的外轴上、并位于右端径向轴承的外端侧,所述涡轮机和压气机分别设置在內轴的两端。
- 根据权利要求1所述的超高速电动发电涡轮增压装置,其特征在于:所述涡轮机设置在內轴的左端,所述压气机设置在內轴的右端。
- 根据权利要求1所述的超高速电动发电涡轮增压装置,其特征在于:在电机壳体的内壁周侧开设有若干开口槽,在电机壳体的端面开设有若干通气孔。
- 根据权利要求1所述的超高速电动发电涡轮增压装置,其特征在于:所述轴承内套的外圆周面和两端面均具有规则形状的槽式花纹。
- 根据权利要求4所述的超高速电动发电涡轮增压装置,其特征在于:所述轴承内套的一端面的槽式花纹与另一端面的槽式花纹形成镜像对称,以及外圆周面的槽式花纹的轴向轮廓线与两端面的槽式花纹的径向轮廓线均形成一一对应并相互交接。
- 根据权利要求5所述的超高速电动发电涡轮增压装置,其特征在于:所述轴承内套的外圆周面的槽式花纹中的轴向高位线与两端面的槽式花纹中的径向高位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向中位线与两端面的槽式花纹中的径向中位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向低位线与两端面的槽式花纹中的径向低位线均相对应、并在端面圆周倒角前相互交接。
- 根据权利要求1所述的超高速电动发电涡轮增压装置,其特征在于:所述中盘的两端面均设有规则形状的槽式花纹,且一端面的槽式花纹与另一端面的槽式花纹形成镜像对称。
- 根据权利要求7所述的超高速电动发电涡轮增压装置,其特征在于:在所述中盘的外圆周面也设有槽式花纹,且外圆周面的槽式花纹的形状与两端面的槽式花纹的形状相同,以及外圆周面的槽式花纹的轴向轮廓线与两端面的槽式花纹的径向轮廓线均形成一一对应并相互交接。
- 根据权利要求8所述的超高速电动发电涡轮增压装置,其特征在于:中盘的外圆周 面的槽式花纹中的轴向高位线与两端面的槽式花纹中的径向高位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向中位线与两端面的槽式花纹中的径向中位线均相对应、并在端面圆周倒角前相互交接;外圆周面的槽式花纹中的轴向低位线与两端面的槽式花纹中的径向低位线均相对应、并在端面圆周倒角前相互交接。
- 根据权利要求1所述的超高速电动发电涡轮增压装置,其特征在于:固定在一个侧盘上的箔型弹性件与固定在另一个侧盘上的箔型弹性件形成镜像对称。
- 根据权利要求1或10所述的超高速电动发电涡轮增压装置,其特征在于:所述的箔型弹性件由波箔和平箔组成,所述波箔的弧形凸起顶端与平箔相贴合。
- 根据权利要求1或10所述的超高速电动发电涡轮增压装置,其特征在于:所述的箔型弹性件由波箔和平箔组成,所述波箔的波拱间过渡底边与平箔相贴合。
- 根据权利要求1或10所述的超高速电动发电涡轮增压装置,其特征在于:所述的箔型弹性件由两个平箔组成。
- 根据权利要求1所述的超高速电动发电涡轮增压装置,其特征在于:所述转子包括转子底座、磁钢和磁钢保护套,所述转子底座套设在內轴上,所述磁钢套设在转子底座的中心部,所述磁钢保护套套设在磁钢上。
- 根据权利要求1所述的超高速电动发电涡轮增压装置,其特征在于:所述定子包括铁芯和绕组,所述铁芯固定在位于转子上方的电机壳体的内壁上,所述绕组设置在铁芯上。
- 根据权利要求15所述的超高速电动发电涡轮增压装置,其特征在于:所述铁芯包括由若干冲片上下叠置形成的定子叠片和固定在定子叠片两侧的端压板。
- 根据权利要求16所述的超高速电动发电涡轮增压装置,其特征在于:所述冲片呈圆环形,在环形部间隔设有多个杯状穿孔,所述穿孔的杯口部封闭,杯脚的底部开口。
- 根据权利要求15所述的超高速电动发电涡轮增压装置,其特征在于:所述绕组为三相星型连接,中心线不引出,只引出A、B、C三个端头。
- 根据权利要求18所述的超高速电动发电涡轮增压装置,其特征在于:每相绕组为2个线圈,每个线圈由漆包铜线连续绕制而成。
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNPCT/CN2015/079233 | 2015-05-19 | ||
PCT/CN2015/079234 WO2016183788A1 (zh) | 2015-05-19 | 2015-05-19 | 一种混合式动压气体止推轴承 |
PCT/CN2015/079233 WO2016183787A1 (zh) | 2015-05-19 | 2015-05-19 | 一种槽式动压气体径向轴承 |
CNPCT/CN2015/079234 | 2015-05-19 | ||
CN201610327762.1 | 2016-05-18 | ||
CN201610327762.1A CN105888818B (zh) | 2015-05-19 | 2016-05-18 | 一种超高速电动发电涡轮增压装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016184410A1 true WO2016184410A1 (zh) | 2016-11-24 |
Family
ID=56716270
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/082705 WO2016184408A1 (zh) | 2015-05-19 | 2016-05-19 | 一种超高速涡轮发电机 |
PCT/CN2016/082707 WO2016184410A1 (zh) | 2015-05-19 | 2016-05-19 | 一种超高速电动发电涡轮增压装置 |
PCT/CN2016/082709 WO2016184412A1 (zh) | 2015-05-19 | 2016-05-19 | 一种超高速燃气轮发电机 |
PCT/CN2016/082711 WO2016184414A1 (zh) | 2015-05-19 | 2016-05-19 | 一种超高速涡喷发动机 |
PCT/CN2016/082713 WO2016184416A1 (zh) | 2015-05-19 | 2016-05-19 | 一种超高速涡轮增压器 |
PCT/CN2016/082702 WO2016184406A1 (zh) | 2015-05-19 | 2016-05-19 | 一种超高速电机 |
PCT/CN2016/082676 WO2016184404A1 (zh) | 2015-05-19 | 2016-05-19 | 一种超高速鼓风机 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/082705 WO2016184408A1 (zh) | 2015-05-19 | 2016-05-19 | 一种超高速涡轮发电机 |
Family Applications After (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/082709 WO2016184412A1 (zh) | 2015-05-19 | 2016-05-19 | 一种超高速燃气轮发电机 |
PCT/CN2016/082711 WO2016184414A1 (zh) | 2015-05-19 | 2016-05-19 | 一种超高速涡喷发动机 |
PCT/CN2016/082713 WO2016184416A1 (zh) | 2015-05-19 | 2016-05-19 | 一种超高速涡轮增压器 |
PCT/CN2016/082702 WO2016184406A1 (zh) | 2015-05-19 | 2016-05-19 | 一种超高速电机 |
PCT/CN2016/082676 WO2016184404A1 (zh) | 2015-05-19 | 2016-05-19 | 一种超高速鼓风机 |
Country Status (3)
Country | Link |
---|---|
CN (14) | CN105888818B (zh) |
TW (2) | TWI704751B (zh) |
WO (7) | WO2016184408A1 (zh) |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105888818B (zh) * | 2015-05-19 | 2019-01-04 | 罗立峰 | 一种超高速电动发电涡轮增压装置 |
CN106285918B (zh) * | 2016-10-13 | 2019-04-02 | 福州大学 | 双电机涡轮增压发电装置及其控制方法 |
CN108005727B (zh) * | 2016-10-27 | 2019-12-20 | 北京精密机电控制设备研究所 | 一种适用于高温高背压干气密封结构的超高速涡轮机 |
CN106368804B (zh) * | 2016-11-04 | 2019-02-15 | 广州汽车集团股份有限公司 | 发动机增压方法和系统 |
CN106451894A (zh) * | 2016-12-05 | 2017-02-22 | 中国工程物理研究院机械制造工艺研究所 | 采用空气动压箔片轴承进行支撑的高速永磁电机 |
CN106369056B (zh) * | 2016-12-05 | 2019-06-21 | 中国工程物理研究院机械制造工艺研究所 | 涡轮增压器 |
CN108868890A (zh) * | 2018-01-12 | 2018-11-23 | 至玥腾风科技投资集团有限公司 | 一种特斯拉涡轮机及控制方法 |
CN108868891B (zh) * | 2018-01-12 | 2024-04-02 | 刘慕华 | 一种转子系统及其控制方法和燃气轮机发电机组及其控制方法 |
CN108868911B (zh) * | 2018-01-12 | 2024-03-19 | 刘慕华 | 一种发电系统及其控制方法 |
CN108868893B (zh) * | 2018-01-12 | 2024-04-02 | 刘慕华 | 一种转子系统及其控制方法和燃气轮机发电机组及其控制方法 |
CN108952967B (zh) * | 2018-06-27 | 2020-04-03 | 中国科学院工程热物理研究所 | 具有改进的空气系统的涡喷发动机 |
CN109193990B (zh) * | 2018-10-21 | 2024-06-25 | 刘慕华 | 一种电机及其装配方法 |
CN109113916A (zh) * | 2018-10-24 | 2019-01-01 | 汪平 | 一种无拦坝涡动涡叶水力发电组件 |
CN109660057B (zh) * | 2018-12-22 | 2024-07-12 | 拓浦柯(中国)有限公司 | 一种单向旋转永磁高速电机及其双向空气轴承 |
CN111365285A (zh) * | 2018-12-25 | 2020-07-03 | 珠海格力电器股份有限公司 | 压缩机、冷媒循环系统和制冷设备 |
CN109742898B (zh) * | 2018-12-28 | 2020-11-03 | 西安航天泵业有限公司 | 一种集成式全封闭低温液力发电装置 |
CN109751254B (zh) * | 2019-01-30 | 2021-06-25 | 青岛科技大学 | 一种立式小微型气悬浮离心压缩机 |
CN109707638B (zh) * | 2019-01-30 | 2021-06-25 | 青岛科技大学 | 一种轴承和密封一体化的小微型离心压缩机 |
KR20200140504A (ko) * | 2019-06-07 | 2020-12-16 | 가부시키가이샤 미쯔이 이앤에스 머시너리 | 내연기관의 과급기 잉여동력 회수장치 및 선박 |
CN110439847B (zh) * | 2019-08-30 | 2022-01-11 | 广州市昊志机电股份有限公司 | 离心式压缩机轴系结构和离心式压缩机 |
CN111075563A (zh) * | 2019-12-27 | 2020-04-28 | 至玥腾风科技集团有限公司 | 一种冷热电三联供微型燃气轮机设备 |
CN111535884B (zh) * | 2020-04-29 | 2022-07-08 | 北京动力机械研究所 | 一种惰性混合气体轴承高效膨胀装置 |
CN112636510B (zh) * | 2020-11-09 | 2022-08-19 | 珠海格力电器股份有限公司 | 一种气浮转子散热结构及电机 |
CN112628281B (zh) * | 2020-11-09 | 2022-02-22 | 珠海格力电器股份有限公司 | 一种气浮轴承转子系统及电机 |
DE102020129525A1 (de) * | 2020-11-10 | 2022-05-12 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Abgasturbolader |
CN112483415B (zh) * | 2020-11-13 | 2022-08-12 | 西安航天动力研究所 | 基于一体化筒状支承座的液体火箭发动机低温涡轮泵 |
CN113007211B (zh) * | 2021-02-07 | 2021-11-26 | 北京伯肯当代氢燃料电池实验室有限公司 | 高散热率箔片式轴向止推轴承、组合轴承及热管理方法 |
CN113107617A (zh) * | 2021-04-29 | 2021-07-13 | 宋召挺 | 流体涡轮式增压发电装置 |
CN113517785A (zh) * | 2021-07-08 | 2021-10-19 | 中国航发湖南动力机械研究所 | 一种航空发动机交流发电机装置 |
CN114337054A (zh) * | 2021-12-10 | 2022-04-12 | 陕西航天西诺美灵电气有限公司 | 一种可抗高过载轴向冲击载荷的电机 |
CN114876824B (zh) * | 2022-05-23 | 2023-08-29 | 烟台东德实业有限公司 | 一种高速离心空压机与膨胀机集成系统风冷结构 |
CN115978092B (zh) * | 2023-03-21 | 2023-06-16 | 中国空气动力研究与发展中心空天技术研究所 | 超高速微型转子的支承结构和支承结构设计方法 |
CN116608203B (zh) * | 2023-07-20 | 2023-10-03 | 山东华东风机有限公司 | 一种径向双波箔空气轴承 |
CN116792328B (zh) * | 2023-07-26 | 2023-12-22 | 烟台东德实业有限公司 | 一种内置水冷及风冷的单级高速离心空压机 |
CN116838723B (zh) * | 2023-09-04 | 2023-11-03 | 天津飞旋科技股份有限公司 | 一种轴承本体、箔片动压轴承及旋转机械轴系 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN86105887A (zh) * | 1985-08-28 | 1987-02-25 | 五十铃汽车有限公司 | 内燃机的辅助装置 |
JP2000130176A (ja) * | 1998-10-30 | 2000-05-09 | Isuzu Motors Ltd | 発電・電動機を備えたターボチャージャ |
CN103089407A (zh) * | 2013-01-09 | 2013-05-08 | 北京理工大学 | 转子离合式电动发电涡轮增压器及其辅助控制电路与控制方法 |
CN103089405A (zh) * | 2013-01-09 | 2013-05-08 | 北京理工大学 | 转子离合式电动发电涡轮增压器 |
CN103688068A (zh) * | 2011-08-24 | 2014-03-26 | 博格华纳公司 | 轴承安排 |
CN104895917A (zh) * | 2015-05-19 | 2015-09-09 | 罗立峰 | 一种混合式动压气体止推轴承 |
CN104895916A (zh) * | 2015-05-19 | 2015-09-09 | 罗立峰 | 一种槽式动压气体径向轴承 |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56141021A (en) * | 1980-04-02 | 1981-11-04 | Toyota Motor Corp | Bearing construction for turbo machinery |
JPH01290999A (ja) * | 1988-05-14 | 1989-11-22 | Daikin Ind Ltd | ファン装置 |
JPH07154010A (ja) * | 1993-12-01 | 1995-06-16 | Fanuc Ltd | レーザ用ターボブロア |
CN2191308Y (zh) * | 1994-04-19 | 1995-03-08 | 崔援 | 一种双风叶电风扇 |
US6294842B1 (en) * | 1997-12-19 | 2001-09-25 | Alliedsignal Inc. | Fog cycle for microturbine power generating system |
JP2002039096A (ja) * | 2000-07-27 | 2002-02-06 | Minebea Co Ltd | 送風機 |
CN2558797Y (zh) * | 2002-04-03 | 2003-07-02 | 廖英桐 | 改进的动压轴承 |
CN1209554C (zh) * | 2002-09-23 | 2005-07-06 | 北京航空航天大学 | 微型涡轮喷气发动机 |
JP4078983B2 (ja) * | 2003-01-10 | 2008-04-23 | ソニー株式会社 | 軸受けユニットおよび軸受けユニットを有する回転駆動装置 |
GB0304320D0 (en) * | 2003-02-26 | 2003-04-02 | Bladon Jets Ltd | Gas turbine engines |
CN1283931C (zh) * | 2004-03-18 | 2006-11-08 | 西安交通大学 | 高速透平机械弹性支承平箔型止推气体轴承 |
US7108488B2 (en) * | 2004-03-26 | 2006-09-19 | Honeywell International, Inc. | Turbocharger with hydrodynamic foil bearings |
US7948105B2 (en) * | 2007-02-01 | 2011-05-24 | R&D Dynamics Corporation | Turboalternator with hydrodynamic bearings |
CN201258910Y (zh) * | 2008-08-11 | 2009-06-17 | 罗立峰 | 径向动压气浮轴承 |
KR101324226B1 (ko) * | 2008-09-22 | 2013-11-20 | 삼성테크윈 주식회사 | 유체 과급 장치 |
JP2011047388A (ja) * | 2009-08-28 | 2011-03-10 | Toshiba Home Technology Corp | 送風装置 |
JP5497489B2 (ja) * | 2010-03-08 | 2014-05-21 | 本田技研工業株式会社 | 遠心型圧縮機 |
CN102619616A (zh) * | 2011-01-30 | 2012-08-01 | 梁天宇 | 一种涡轮增压器 |
CN201982337U (zh) * | 2011-04-07 | 2011-09-21 | 浙江同源鼓风机制造有限公司 | 高速离心式鼓风机 |
CN102200136B (zh) * | 2011-05-25 | 2012-09-05 | 北京虎渡能源科技有限公司 | 一种空气悬浮供气可调高速电机直驱鼓风机 |
CN102242762B (zh) * | 2011-05-27 | 2013-01-23 | 罗立峰 | 动压气体径向陶瓷轴承 |
CN102278366A (zh) * | 2011-05-27 | 2011-12-14 | 罗立峰 | 自密封动压气体径向陶瓷轴承 |
CN102192237A (zh) * | 2011-06-07 | 2011-09-21 | 罗立峰 | 自密封动压气体径向陶瓷轴承 |
CN102261374B (zh) * | 2011-06-15 | 2014-04-09 | 罗立峰 | 动压气体止推陶瓷轴承 |
CN102223007A (zh) * | 2011-06-24 | 2011-10-19 | 罗立峰 | 高速永磁电动机/发电机 |
KR101666092B1 (ko) * | 2012-10-16 | 2016-10-13 | 가부시키가이샤 아이에이치아이 | 스러스트 베어링 |
CN103306995B (zh) * | 2013-05-30 | 2015-08-26 | 西安交通大学 | 一种花键齿拉杆组合转子高速直驱压缩机结构 |
CN103670672B (zh) * | 2013-12-19 | 2016-03-02 | 湖南大学 | 一种涡轮增压器 |
CN203840113U (zh) * | 2014-05-10 | 2014-09-17 | 台州市勃森工艺灯饰有限公司 | 灯饰电机排风保护壳 |
CN204082684U (zh) * | 2014-05-30 | 2015-01-07 | 鑫贺精密电子(东莞)有限公司 | 一种散热风扇 |
CN104265460B (zh) * | 2014-08-20 | 2016-03-23 | 中国科学院工程热物理研究所 | 微型航空发动机轴承燃油换热冷却装置 |
CN105888818B (zh) * | 2015-05-19 | 2019-01-04 | 罗立峰 | 一种超高速电动发电涡轮增压装置 |
CN104895924A (zh) * | 2015-05-19 | 2015-09-09 | 罗立峰 | 一种混合式动压气体径向轴承 |
CN105202027B (zh) * | 2015-05-19 | 2017-10-20 | 罗立峰 | 一种混合式动压气体止推轴承 |
CN105895917A (zh) * | 2016-06-17 | 2016-08-24 | 天津商业大学 | 利用回生淀粉制备离子电池负极材料的方法 |
-
2016
- 2016-05-18 CN CN201610327762.1A patent/CN105888818B/zh active Active
- 2016-05-18 CN CN201610329288.6A patent/CN105889313B/zh active Active
- 2016-05-18 CN CN201620452740.3U patent/CN205858947U/zh active Active
- 2016-05-18 CN CN201620452845.9U patent/CN205864143U/zh not_active Withdrawn - After Issue
- 2016-05-18 CN CN201610329302.2A patent/CN106014641B/zh active Active
- 2016-05-18 CN CN201610329210.4A patent/CN106026492B/zh active Active
- 2016-05-18 CN CN201620450047.2U patent/CN205858730U/zh active Active
- 2016-05-18 CN CN201610334013.1A patent/CN105889314B/zh active Active
- 2016-05-18 CN CN201620450029.4U patent/CN205864174U/zh not_active Withdrawn - After Issue
- 2016-05-18 CN CN201620452770.4U patent/CN205858479U/zh not_active Withdrawn - After Issue
- 2016-05-18 CN CN201620454708.9U patent/CN205858494U/zh not_active Withdrawn - After Issue
- 2016-05-18 CN CN201620457923.4U patent/CN205858948U/zh active Active
- 2016-05-18 CN CN201610327779.7A patent/CN106026517B/zh active Active
- 2016-05-18 CN CN201610327807.5A patent/CN105889097B/zh active Active
- 2016-05-19 WO PCT/CN2016/082705 patent/WO2016184408A1/zh active Application Filing
- 2016-05-19 WO PCT/CN2016/082707 patent/WO2016184410A1/zh active Application Filing
- 2016-05-19 WO PCT/CN2016/082709 patent/WO2016184412A1/zh active Application Filing
- 2016-05-19 WO PCT/CN2016/082711 patent/WO2016184414A1/zh active Application Filing
- 2016-05-19 WO PCT/CN2016/082713 patent/WO2016184416A1/zh active Application Filing
- 2016-05-19 WO PCT/CN2016/082702 patent/WO2016184406A1/zh active Application Filing
- 2016-05-19 TW TW105115473A patent/TWI704751B/zh active
- 2016-05-19 WO PCT/CN2016/082676 patent/WO2016184404A1/zh active Application Filing
- 2016-05-19 TW TW105115472A patent/TWI694210B/zh active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN86105887A (zh) * | 1985-08-28 | 1987-02-25 | 五十铃汽车有限公司 | 内燃机的辅助装置 |
JP2000130176A (ja) * | 1998-10-30 | 2000-05-09 | Isuzu Motors Ltd | 発電・電動機を備えたターボチャージャ |
CN103688068A (zh) * | 2011-08-24 | 2014-03-26 | 博格华纳公司 | 轴承安排 |
CN103089407A (zh) * | 2013-01-09 | 2013-05-08 | 北京理工大学 | 转子离合式电动发电涡轮增压器及其辅助控制电路与控制方法 |
CN103089405A (zh) * | 2013-01-09 | 2013-05-08 | 北京理工大学 | 转子离合式电动发电涡轮增压器 |
CN104895917A (zh) * | 2015-05-19 | 2015-09-09 | 罗立峰 | 一种混合式动压气体止推轴承 |
CN104895916A (zh) * | 2015-05-19 | 2015-09-09 | 罗立峰 | 一种槽式动压气体径向轴承 |
Also Published As
Publication number | Publication date |
---|---|
TWI704751B (zh) | 2020-09-11 |
WO2016184412A1 (zh) | 2016-11-24 |
CN105889313A (zh) | 2016-08-24 |
TW201706511A (zh) | 2017-02-16 |
WO2016184416A1 (zh) | 2016-11-24 |
CN106026492B (zh) | 2019-01-04 |
WO2016184406A1 (zh) | 2016-11-24 |
CN205858730U (zh) | 2017-01-04 |
TWI694210B (zh) | 2020-05-21 |
TW201706516A (zh) | 2017-02-16 |
CN105888818B (zh) | 2019-01-04 |
WO2016184408A1 (zh) | 2016-11-24 |
CN205864174U (zh) | 2017-01-04 |
CN105889313B (zh) | 2018-10-26 |
CN105889097B (zh) | 2019-01-04 |
CN105889314B (zh) | 2019-01-04 |
CN106014641A (zh) | 2016-10-12 |
CN205858494U (zh) | 2017-01-04 |
CN205858479U (zh) | 2017-01-04 |
CN106014641B (zh) | 2018-06-12 |
CN105889314A (zh) | 2016-08-24 |
WO2016184404A1 (zh) | 2016-11-24 |
CN205858947U (zh) | 2017-01-04 |
CN106026492A (zh) | 2016-10-12 |
CN105889097A (zh) | 2016-08-24 |
WO2016184414A1 (zh) | 2016-11-24 |
CN205864143U (zh) | 2017-01-04 |
CN205858948U (zh) | 2017-01-04 |
CN105888818A (zh) | 2016-08-24 |
CN106026517A (zh) | 2016-10-12 |
CN106026517B (zh) | 2019-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016184410A1 (zh) | 一种超高速电动发电涡轮增压装置 | |
WO2016184411A1 (zh) | 一种小微型电动发电涡轮增压装置 | |
JPH0567771B2 (zh) | ||
US10450948B2 (en) | Charger, in particular an exhaust gas turbo charger, for a drive device and corresponding drive device | |
JPH10285838A (ja) | 高速回転電機 | |
CN206060459U (zh) | 一种低噪散热型三相异步电机 | |
CN211474265U (zh) | 一种转子系统及微型燃气轮机发电机组 | |
CN211598835U (zh) | 一种转子系统及微型燃气轮机发电机组 | |
CN207010496U (zh) | 双转子永磁电机 | |
CN211046716U (zh) | 一种双擎径向复合永磁同步发电机 | |
CN212744393U (zh) | 一种离心式空气压缩机 | |
CN202872600U (zh) | 一种高效永磁同步电机 | |
KR20100033856A (ko) | 영구 자석 모터 및 이를 구비한 유체 과급 장치 | |
JPS63277438A (ja) | 高速回転電機の回転子構造 | |
JP2016196873A (ja) | 電動アシストターボチャージャ。 | |
CN204652145U (zh) | 一种高效节能型异步电机 | |
JPS63224640A (ja) | 高速回転電機の回転子構造 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16795897 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16795897 Country of ref document: EP Kind code of ref document: A1 |