WO2016184047A1 - 一种器件装配方法和线路板 - Google Patents

一种器件装配方法和线路板 Download PDF

Info

Publication number
WO2016184047A1
WO2016184047A1 PCT/CN2015/093888 CN2015093888W WO2016184047A1 WO 2016184047 A1 WO2016184047 A1 WO 2016184047A1 CN 2015093888 W CN2015093888 W CN 2015093888W WO 2016184047 A1 WO2016184047 A1 WO 2016184047A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
storage tank
tin storage
tin
circuit board
Prior art date
Application number
PCT/CN2015/093888
Other languages
English (en)
French (fr)
Inventor
董晶
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016184047A1 publication Critical patent/WO2016184047A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3421Leaded components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/048Self-alignment during soldering; Terminals, pads or shape of solder adapted therefor

Definitions

  • This document relates to, but is not limited to, the field of circuit board technology, and in particular to a device assembly method and a circuit board.
  • the demand for high performance and high index makes the nuances of every link in the manufacturing process of wireless communication equipment more important, especially the PA (Power Amplifier, power) that determines the overall performance of wireless base station products. Zoom in) section.
  • the RF power amplifier tube is the key to determine the performance of the PA. Therefore, ensuring the welding effect of the power amplifier tube and giving full play to its RF performance is a top priority.
  • the solder is placed between the power amplifier tube and the slot on the substrate, and then the substrate is placed in a high temperature reactor to melt the solder.
  • a certain pressure is applied above the power amplifier tube through the pressure point to promote soldering.
  • the gas generated during melting, in the above process, the amount of tin, the change of the furnace temperature, the residence time of the device in the reactor, the pressure point position, the pressure and other factors will affect the effect of the solder, in addition, when the solder melts Flow is also uncertain and increases the complexity of the welding process.
  • the control of the amount of tin plays an important role in the effect of welding.
  • the amount of tin When the amount of tin is small, it is easy to make more bubbles between the discharge tube and the groove, which affects the quality of the weld.
  • the amount of tin When the amount of tin is large, the high temperature liquid state The solder climbs to the side wall of the power amplifier tube without space, causing the power amplifier tube to be short-circuited, and even in the case of the same amount of tin, due to the influence of the above other factors, the cavity ratios of the two power amplifier tubes after welding are different. Therefore, the above factors are combined to make the welding quality uncertain in the current welding process, which affects the welding success rate, and the failure rate of the power amplifier tube is high, which increases the production cost and reduces the production efficiency.
  • Embodiments of the present invention provide a device assembly method and a circuit board to solve the technical problem of how to avoid short circuit of the power amplifier tube and reduce the void ratio of the power tube welding.
  • Embodiments of the present invention provide a device assembly method, the device being a sinker device, comprising: providing a slot for placing a device on a metal substrate; and providing a tin storage tank on an outer side of the slot, the storage tin The depth of the groove is greater than the groove;
  • the device When soldering the device is required, the device is placed in a slot and solder is placed between the device and the slot; the device is soldered into the slot by a soldering process.
  • the disposing the tin storage tank on the outer side of the slot includes: respectively, a tin storage tank is disposed on the first side and the second side of the slot;
  • first side and the second side respectively correspond to the sides of the device to be placed in the slot without the pins being disposed.
  • the disposing the tin storage tank on the outer side of the slot includes: respectively, a tin storage tank is disposed on the first side, the second side, and the third side of the slot;
  • first side and the second side respectively correspond to two sides of the device to be placed in the slot
  • the third side corresponds to one of the input pins to be placed on the device to be placed in the slot side.
  • the disposing the tin storage tank on the outer side of the slot includes: respectively, a tin storage tank is disposed on each of the four outer sides of the slot.
  • the tin storage tank has a width of 1 to 5 mm; and the tin storage tank has a depth of 2 to 6 mm.
  • Embodiments of the present invention also provide a circuit board on which a sinker device is soldered, and the device is mounted on the circuit board according to any of the above device assembly methods.
  • An embodiment of the present invention further provides a circuit board on which a sinker device is soldered, the circuit board includes a metal substrate, a PCB, and a device, and the PCB is disposed on the metal substrate by soldering, a metal substrate is provided with a slot for placing the device, the device is soldered in the slot, and a pin of the device is fixed to the PCB by soldering,
  • the outer side of the slot is provided with a tin storage tank, and the tin storage tank has a depth greater than the slot.
  • the sink device is a power amplifier tube
  • the power amplifier tube includes a ceramic cover, an insulating layer, and a pin. And copper flanges.
  • a tin storage tank is respectively disposed on the first side and the second side of the slot; wherein the first side and the second side respectively correspond to two not disposed pins on the device to be placed in the slot Side; or
  • the first side and the second side respectively correspond to the device not disposed on the device to be placed in the slot
  • the third side corresponds to the side on which the input pin is placed on the device to be placed in the slot
  • a tin storage tank is disposed on each of the four outer sides of the slot.
  • the tin storage tank has a width of 1 to 5 mm; and the tin storage tank has a depth of 2 to 6 mm.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the above method.
  • the beneficial effects of the embodiments of the present invention include: in the embodiment of the present invention, by providing a tin storage tank on the outer side of the slot, when the solder is more, the solder can flow into the tin storage tank without causing high temperature liquid solder during the soldering process. Climbing to the sidewall of the power amplifier tube without space leads to the problem of short circuit of the power amplifier tube, and the solder is gathered in the tin storage tank at the bottom of the device, and a relatively large space is formed at the bottom of the device to provide relief for the high temperature gas flux.
  • the channel also avoids the solder paste thickness control to bring the problem of multi-tin and tin, which reduces the sensitivity of the soldering quality to the thickness of the solder paste.
  • the short circuit caused by the excessive amount of tin is avoided.
  • the void ratio of the welding can be reduced, the sensitivity of the welding quality to other influencing factors such as the pressure point position and the furnace temperature can be reduced, the uncertainty of the welding quality can be lowered, and the product consistency can be improved.
  • the grounding effect and the performance requirements of the power tube are further ensured, and the welding of the power amplifier tube is reduced. Rate, thus reducing production costs and improve production efficiency.
  • 1A is a side view showing a structure of a circuit board for welding a power amplifier tube according to the related art
  • 1B is a schematic plan view of a metal substrate 10 in the related art
  • FIG. 2 is a schematic flow chart of a device assembly method according to an embodiment of the present invention.
  • 3A is a schematic side view showing a circuit board according to an embodiment of the present invention.
  • FIG. 3B is a schematic top view of a metal substrate 50 according to an embodiment of the invention.
  • the device assembly method is used for mounting a sinker device on a circuit board.
  • the device assembly method provided by the embodiment of the present invention is particularly suitable for assembly of a high frequency device.
  • the device is a power amplifier tube.
  • the power amplifier tube with a power of 10 W or more is described.
  • FIG. 1A is a side view of a circuit board for soldering a power amplifier tube according to the related art.
  • the circuit board includes a metal substrate 10, a printed circuit board PCB board 20, and a power amplifier tube 30.
  • the power amplifier tube 30 includes a copper flange 31, an insulator 32, a pin 33, and a ceramic cover 34.
  • the PCB board 20 is disposed on the metal substrate 10 through the solder 40.
  • the metal substrate 10 is provided with a slot for placing the power amplifier tube 30.
  • FIG. 1B is a schematic plan view of the metal substrate 10 in the related art, as shown in FIG. 1B, on the metal substrate 10. A slot 11 for placing the power tube 30 is provided.
  • the power amplifier tube 30 is soldered in the slot 11, and the pin 33 of the power amplifier tube 30 is fixed to the PCB board 20 by soldering.
  • the copper flange 31 of the power amplifier tube 30 is soldered to the slot 11 of the metal substrate 10 by solder 40.
  • the size of the slot 11 is set according to the size of the copper flange 31.
  • the size of the slot 11 includes the length, width, and height of the slot 11, wherein the length and width of the slot 11 are calculated according to the size of the copper flange 31 of the power amplifier tube 30, according to the pin
  • the height of the 33 and the thickness of the PCB 20 are used to calculate the height of the slot 11.
  • the conventional power tube slot design is based on the above calculation results to provide a three-dimensional rectangular slot on the metal substrate corresponding to the soldering portion of the power amplifier tube.
  • a rectangular hole of a size equivalent to the copper flange 31 of the power amplifier tube 30 is opened according to the size of the copper flange 31 of the power amplifier tube 30.
  • solder paste is applied to the slot of the metal substrate or a tin plate is placed, and the copper flange 31 of the power amplifier tube 30 passes through a rectangular hole opened in the PCB board 20 and sinks into a rectangular slot of the metal substrate 10.
  • solder paste or tin After melting, it is solidified by cooling, thereby completing the welding process of the power amplifier tube 30.
  • the control of the amount of tin between the copper flange 31 and the slit 11 plays an important role in the effect of the welding due to the groove 11 of the metal substrate 10.
  • the size of the copper flange 31 of the power amplifier tube is basically the same, and there is almost no space between the two.
  • the solder is more, the high temperature liquid solder in the SMT welding process often climbs to the side wall of the power amplifier tube 30 without the space, resulting in the power amplifier tube. 30 is short-circuited, and when the solder is small, a gap is formed between the copper flange 31 and the slot 11 due to lack of solder, resulting in a high welding void ratio of the power amplifier tube 30, and a poor grounding effect.
  • the control of the amount of tin has always been a problem, and it is easy to appear more or less, resulting in short circuit or low PA power, poor efficiency, linear failure and other radio frequency performance can not meet the normal requirements.
  • the power amplifier tube manufacturer also has clear requirements for the welding void ratio of the device. For example, the process standard given by the FSL packaging expert: the overall void ratio is within 25%, and the maximum void ratio does not exceed 10%.
  • FIG. 2 is a schematic flow chart of a device assembly method according to an embodiment of the present invention, wherein the device is a sinker device, as shown in FIG. 2, including:
  • Step 110 providing a slot for placing the device on the metal substrate
  • Step 120 disposing a tin storage tank on the outer side of the slot, wherein the depth of the tin storage tank is greater than the slot;
  • Step 130 when soldering the device is required, placing the device in the slot and placing solder between the device and the slot;
  • the device is soldered into the slot by a soldering process.
  • the solder by providing a tin storage tank on the outer side of the slot, when the solder is more, the solder can flow into the tin storage tank without causing the high temperature liquid solder in the welding process to the power amplifier tube side without space.
  • the wall climbing causes the short circuit of the power amplifier tube, and the solder is gathered in the tin storage tank at the bottom of the device, and a relatively large space is formed at the bottom of the device to provide a venting channel for the high temperature gas flux, and the thickness of the solder paste is also avoided.
  • the control brings the problem of less tin and less tin, which reduces the sensitivity of the soldering quality to the thickness of the solder paste.
  • the problem of short circuit caused by too much tin is avoided, and in addition, the amount of tin is slightly larger. Underneath, it can reduce the void rate of welding, reduce the sensitivity of welding quality to other influencing factors such as pressure point position and furnace temperature, and reduce the uncertainty of welding quality.
  • the product consistency is improved, and the grounding effect and the performance requirement of the power tube are further ensured on the basis of ensuring the void ratio of the power tube welding, the welding failure rate of the power amplifier tube is reduced, thereby reducing the production cost and improving the production rate.
  • the step 120 includes: providing the tin storage tank on the outer side of the slot includes: respectively, a tin storage tank is disposed on each of the four outer sides of the slot.
  • a tin storage tank may be provided on each of the four outer sides.
  • the step of providing a tin storage tank on the outer side of the slot includes: providing a tin storage tank on the first side, the second side, and the third side of the slot Wherein the first side and the second side respectively correspond to the sides of the device to be placed in the slot, and the third side corresponds to the side on which the input pin is disposed on the device.
  • the performance of the tube can be set on the other three sides of the output pin, so that the number of the tin storage tank can be increased, thereby increasing the drainage effect on the excess solder, and in addition, due to the side wall and the PCB board
  • the large gap between the two has an excessive influence on one side of the output pin. Therefore, no solder tank is provided on one side of the output pin, which can affect the performance of the power amplifier tube as little as possible.
  • the step 120 includes: respectively, a tin storage tank is disposed on the first side and the second side of the slot; wherein the first side and the second side respectively correspond to being placed in the slot
  • the sides of the pins are not set on the device in the middle.
  • the performance of the tube can be set on both sides of the tube without the setting of the pin, so that the drainage of the excess solder can be realized by the storage tank and the performance of the power tube can be avoided.
  • the tin storage tank has a width of 1 to 5 mm; and the tin storage tank has a depth of 2 to 6 mm.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the above method.
  • the embodiment of the present invention further provides a welding based on the same or similar concept as the above method embodiment.
  • the device assembly method of the embodiment of the present invention is used for production, the welding cavity ratio of the power amplifier tube is reduced by 20%-30%, the improvement is obvious, and the overall void ratio is controlled within 15%; combined with the use of the tin storage tank, The welding effect of the power amplifier tube is fully ensured, and the overall power is increased by 0.3dB-0.5dB after the application of the embodiment of the invention in the PA production, the overall efficiency is improved by 0.5%--1.5%, the linear overall optimization is 1dB-3dB, and the production yield is improved. 2%-5%, fully improve the performance of RF power amplifier tubes, reduce production costs, and enhance product competitiveness.
  • the embodiment of the present invention further provides a circuit board soldered with a sinker device.
  • FIG. 3A is a schematic side view of a circuit board according to an embodiment of the present invention.
  • the circuit board includes a metal substrate 50 , a PCB board 60 , and a power amplifier tube 70 .
  • the power amplifier tube 70 includes a copper flange 71, an insulator 72, a pin 73, and a ceramic cover 74.
  • the PCB board 60 is disposed on the metal substrate 50 by the solder 80.
  • the metal substrate 50 is provided with a slot for placing the power amplifier tube 70.
  • FIG. 3B is a schematic top view of a metal substrate 50 according to an embodiment of the present invention. As shown in FIG.
  • the metal substrate 50 in the embodiment of the present invention is provided with a slot 51 for placing the power tube 70, and a tin storage slot 52 is also provided.
  • the power amplifier tube 70 is soldered in the slot 51, and the power amplifier tube 70 is
  • the pin 73 is fixed to the PCB board 60 by soldering.
  • a tin storage tank 52 is disposed outside the slot 51, and the tin storage tank 52 has a depth greater than the slot 51.
  • the sinker device is a power amplifier tube 70
  • the power amplifier tube includes a copper flange 71, an insulator 72, a pin 73, and a ceramic cover 74.
  • a tin storage tank 52 is disposed on the first side and the second side of the slot 51, the first side and the second side respectively corresponding to the sides of the device to be placed in the slot without the pins 73 being provided; or
  • a tin storage tank 52 is disposed on the first side, the second side, and the third side of the slot 51, the first side and the second side respectively corresponding to the sides of the device to be placed in the slot without the pins 73 being disposed a third side corresponding to a side of the device on which the input pin 73 is disposed; or
  • a tin storage tank 52 is provided on each of the four outer sides of the slot 51.
  • the tin storage tank has a width of 1 to 5 mm; and the tin storage tank has a depth of 2 to 6 mm.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • each device/function module/functional unit in the above embodiment When each device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the above technical solution can avoid the problem of short circuit caused by too much tin in the production process, and in addition, in the case of a slight amount of tin, the void rate of welding can be reduced, and the welding quality can be reduced to the pressure point position and the furnace temperature.
  • the sensitivity of other influencing factors reduces the uncertainty of welding quality and improves the consistency of the product.
  • the grounding effect and performance requirements of the power tube are further ensured, and the performance is reduced.
  • the power amplifier tube is not qualified for welding, thereby reducing production costs and increasing production efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Molten Solder (AREA)

Abstract

提供了一种器件装配方法,所述方法包括在金属基板(50)上设置用于放置器件的开槽(51);所述方法还包括:在开槽(51)的外侧设置储锡槽(52),所述储锡槽(52)的深度大于所述开槽(51);当需要焊接器件(70)时,将器件(70)放置在开槽(51)中,并在器件(70)和开槽(51)之间放置焊锡;通过焊接工艺将器件(70)焊接在开槽(51)中。还提供了一种线路板。所述器件装配方法能够降低焊接的空洞率,减少焊接质量对压点位置和炉温等其他影响因素的敏感度,降低了焊接质量的不确定性,提高了产品的一致性,在保证功率管焊接的空洞率的基础上,进一步保证了接地效果和功率管的性能要求,减小了功放管焊接不合格率,从而降低了生产成本,并提高了生产效率。

Description

一种器件装配方法和线路板 技术领域
本文涉及但不限于线路板技术领域,特别涉及一种器件装配方法和线路板。
背景技术
随着无线通讯技术的发展,高性能、高指标的需求使得无线通讯设备产品制造过程中每个环节的细微之处都显得尤为重要,特别是决定无线基站产品整体性能的PA(Power Amplifier,功率放大)部分。而射频功放管又是决定PA性能的关键所在,因此,保证功放管的焊接效果、充分发挥其射频性能是重中之重。
在焊接过程中,将焊锡放置在功放管和基板上的开槽之间,然后将基板放入高温反应炉,从而融化焊锡,此外,需要在功放管上方通过压点施加一定的压力,促进焊锡融化时产生的气体排出,上述过程中,锡量的多少,炉温的变化,器件在反应炉中停留时间,压点位置,压力大小等因素均会影响焊锡的效果,此外,焊锡融化时产生流动也具有不确定性,也增加了焊接过程的复杂度。上述因素中,锡量的控制对焊接的效果起到重要作用,当锡量较少时,容易造成功放管和开槽之间的气泡较多,影响焊接质量,当锡量较多时,高温液态焊料在没有空间的情况下向功放管侧壁攀爬导致功放管短路,并且,即使在锡量相同的情况下,由于上述其他因素的影响,两个功放管焊接完毕之后的空洞率也不相同,因此,综合上述因素,使得现在的焊接工艺中,焊接质量的不确定性较高,影响了焊接成功率,功放管焊接不合格率较高,提高了生产成本,降低了生产效率。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求 的保护范围。
本发明实施例提供一种器件装配方法和线路板,以解决如何避免功放管短路,减小功率管焊接的空洞率的技术问题。
本发明实施例提供了一种器件装配方法,所述器件为沉槽式器件,包括:在金属基板上设置用于放置器件的开槽;在开槽的外侧设置储锡槽,所述储锡槽的深度大于所述开槽;
当需要焊接器件时,将器件放置在开槽中,并在器件和开槽之间放置焊锡;通过焊接工艺将器件焊接在开槽中。
可选地,所述在开槽的外侧设置储锡槽包括:在所述开槽的第一侧和第二侧分别设置储锡槽;
其中,第一侧和第二侧分别对应于要放置在开槽中的器件上没有设置管脚的两侧。
可选地,所述在开槽的外侧设置储锡槽包括:在所述开槽的第一侧、第二侧、和第三侧分别设置储锡槽;
其中,第一侧和第二侧分别对应于要放置在开槽中的器件上没有设置管脚的两侧,第三侧对应于要放置在开槽中的器件上设置有输入管脚的一侧。
可选地,所述在开槽的外侧设置储锡槽包括:在所述开槽的四个外侧均分别设置有储锡槽。
可选地,所述储锡槽的宽度为1~5mm;所述储锡槽的深度为2~6mm。
本发明实施例还提供了一种线路板,所述线路板上焊接有沉槽式器件,所述器件按照上述任一器件装配方法装配在所述线路板上。
本发明实施例还提供了一种线路板,所述线路板上焊接有沉槽式器件,所述线路板包括金属基板、PCB、以及器件,所述PCB通过焊锡设置在金属基板上,所述金属基板上设置有用于放置所述器件的开槽,所述器件焊接在所述开槽中,所述器件的管脚通过焊锡固定在所述PCB上,
所述开槽的外侧设置有储锡槽,所述储锡槽的深度大于所述开槽。
可选地,沉槽式器件为功放管,所述功放管包括陶瓷盖、绝缘层、管脚 以及铜法兰。
可选地,在所述开槽的第一侧和第二侧分别设置储锡槽;其中,第一侧和第二侧分别对应于要放置在开槽中的器件上没有设置管脚的两侧;或
在所述开槽的第一侧、第二侧、和第三侧分别设置储锡槽;其中,第一侧和第二侧分别对应于要放置在开槽中的器件上没有设置管脚的两侧,第三侧对应于要放置在开槽中的器件上设置有输入管脚的一侧;或
在所述开槽的四个外侧分别设置有储锡槽。
可选地,所述储锡槽的宽度为1~5mm;所述储锡槽的深度为2~6mm。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述的方法。
本发明实施例的有益效果包括:本发明实施例中,通过在开槽的外侧设置储锡槽,当焊锡较多时,焊锡可以流入储锡槽中,而不会造成焊接过程中高温液态焊料在没有空间的情况下向功放管侧壁攀爬导致功放管短路的问题,并使焊锡聚拢在器件底部的储锡槽内,同时在器件底部形成一个比较大的空间为高温气体助焊剂提供泄放通道,同时还避免了锡膏厚度控制来带了多锡少锡问题,降低了焊接质量对锡膏厚度的敏感度,因此在生产过程中,避免了由于锡量过多而造成短路的问题,此外,在锡量稍多的情况下,能够降低焊接的空洞率,减少焊接质量对压点位置和炉温等其他影响因素的敏感度,降低了焊接质量的不确定性,提高了产品的一致性,在保证功率管焊接的空洞率的基础上,进一步保证了接地效果和功率管的性能要求,减小了功放管焊接不合格率,从而降低了生产成本,并提高了生产效率。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1A为相关技术中一种焊接有功放管的线路板的侧视结构示意图;
图1B为相关技术中金属基板10的俯视示意图;
图2为本发明实施例提供的一种器件装配方法的流程示意图;
图3A为本发明实施例还提供的一种线路板的侧视结构示意图;
图3B为本发明实施例还提供的一种金属基板50的俯视示意图。
本发明的实施方式
为使本领域的技术人员更好地理解本发明实施例的技术方案,下面结合附图对本发明实施例提供的器件装配方法和线路板进行详细描述。
上述器件装配方法用于沉槽式器件在线路板上的安装,本发明实施例提供的器件装配方法尤其适用于高频器件的装配,本发明实施例中,为了描述方便,器件以功放管为例进行说明,尤其是功率在10W以上的功放管。
在说明本发明实施例提供的器件装配方法和线路板之前,首先对相关技术中的焊接有功放管的线路板进行说明。
图1A为相关技术中一种焊接有功放管的线路板的侧视结构示意图,如图1A所示,线路板包括金属基板10、印刷电路板PCB板20、以及功放管30。其中,功放管30包含铜法兰31、绝缘体32、管脚33和陶瓷盖34四部分。PCB板20通过焊锡40设置在金属基板10上,金属基板10上设置有用于放置功放管30的开槽,图1B为相关技术中金属基板10的俯视示意图,结合1B所示,金属基板10上设置有用于放置功率管30的开槽11。功放管30焊接在开槽11中,功放管30的管脚33通过焊锡固定在PCB板20上。
其中,功放管30的铜法兰31通过焊锡40焊接在金属基板10的开槽11中,一般来说,开槽11的大小是根据铜法兰31的大小设置的。在金属基板10设计时,开槽11的尺寸包括开槽11的长度、宽度、以及高度,其中,根据功放管30的铜法兰31的大小计算出开槽11的长度和宽度,根据管脚33的高度和PCB板20的厚度计算出开槽11的高度,传统的功放管开槽设计是根据上述计算结果在金属基板上对应于功放管焊接部位设置一个立体矩形的开槽。对于PCB板20、则是根据功放管30的铜法兰31的大小开设一个和功放管30的铜法兰31大小相当的矩形孔。在进行SMT焊接时,在金属基板的开槽处涂上锡膏或者放置锡片,功放管30的铜法兰31穿过PCB板20上开设的矩形孔并沉入金属基板10的矩形开槽中,通过高温回炉使锡膏或者锡片 融化,再通过冷却凝固,从而完成功放管30的焊接过程。
此外,在实现铜法兰31和开槽11之间的焊接时,铜法兰31和开槽11之间的锡量的控制对焊接的效果起到重要作用,由于金属基板10的开槽11和功放管铜法兰31大小基本相当,二者之间几乎没有空间,当焊锡较多时常会造成SMT焊接过程中高温液态焊料在没有空间的情况下向功放管30侧壁攀爬导致功放管30短路,而当焊锡较少时,使得铜法兰31和开槽11之间由于缺少焊锡而产生缝隙,导致功放管30的焊接空洞率偏高,接地效果较差。
在批量生产过程中,关于锡量的控制一直是个难题,很容易出现偏多或者偏少的现象,导致短路或者PA功率低、效率差、线性不合格等射频性能达不到正常要求的现象。此外,为了保证功放管的优良性能,功放管厂家对该器件的焊接空洞率也有明确要求,例如FSL封装专家给出的工艺标准:总体空洞率25%以内,且最大空洞率不超过10%。
图2为本发明实施例提供的一种器件装配方法的流程示意图,其中,器件为沉槽式器件,如图2所示,包括:
步骤110:在金属基板上设置用于放置器件的开槽;
步骤120:在开槽的外侧设置储锡槽,其中,储锡槽的深度大于开槽;:
步骤130,当需要焊接器件时,将器件放置在开槽中,并在器件和开槽之间放置焊锡;
步骤140,通过焊接工艺将器件焊接在开槽中。
本发明实施例中,通过在开槽的外侧设置储锡槽,当焊锡较多时,焊锡可以流入储锡槽中,而不会造成焊接过程中高温液态焊料在没有空间的情况下向功放管侧壁攀爬导致功放管短路的问题,并使焊锡聚拢在器件底部的储锡槽内,同时在器件底部形成一个比较大的空间为高温气体助焊剂提供泄放通道,同时还避免了锡膏厚度控制来带了多锡少锡问题,降低了焊接质量对锡膏厚度的敏感度,因此在生产过程中,避免了由于锡量过多而造成短路的问题,此外,在锡量稍多的情况下,能够降低焊接的空洞率,减少焊接质量对压点位置和炉温等其他影响因素的敏感度,降低了焊接质量的不确定性, 提高了产品的一致性,在保证功率管焊接的空洞率的基础上,进一步保证了接地效果和功率管的性能要求,减小了功放管焊接不合格率,从而降低了生产成本,并提高了生产效率。
可选的,本发明实施例中,步骤120包括:所述在开槽的外侧设置储锡槽包括:在所述开槽的四个外侧均分别设置有储锡槽。为了增多储锡槽的数量,从而提高对过量的焊锡的引流作用,可以在四个外侧均设置有储锡槽。
可选的,本发明实施例中,步骤120中,所述在开槽的外侧设置储锡槽包括:在所述开槽的第一侧、第二侧、和第三侧分别设置储锡槽;其中,第一侧和第二侧分别对应于要放置在开槽中的器件上没有设置管脚的两侧,第三侧对应于所述器件上设置有输入管脚的一侧。
如果开设储锡槽,铜法兰的侧壁与PCB板之间的空隙会变大,功放管的管脚与PCB板的接触面积会变小,影响功放管的性能,因此,为了避免影响功放管的性能,可以在输出管脚之外的其他三侧设置储锡槽,这样,既可以增多储锡槽的数量,从而提高对过量的焊锡的引流作用,此外,由于侧壁与PCB板之间的空隙变大对输出管脚的一侧影响过大,因此在输出管脚的一侧不设置储锡槽,可以尽可能小的影响功放管的性能。
可选的,本发明实施例中,步骤120包括:在所述开槽的第一侧和第二侧分别设置储锡槽;其中,第一侧和第二侧分别对应于要放置在开槽中的器件上没有设置管脚的两侧。
如果开设储锡槽,铜法兰的侧壁与PCB板之间的空隙会变大,功放管的管脚与PCB板的接触面积会变小,影响功放管的性能,因此,为了避免影响功放管的性能,可以在没有设置管脚的两侧设置储锡槽,这样,既可以实现储锡槽对过量的焊锡的引流作用,也避免了影响功放管的性能。
本发明实施例中,可选地,所述储锡槽的宽度为1~5mm;所述储锡槽的深度为2~6mm。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述的方法。
基于与上述方法实施例相同或相似的构思,本发明实施例还提供一种焊 接有沉槽式器件的线路板,在上述线路板中,所述器件按照本发明实施例提供的任一器件装配方法安装在所述线路板上。
经批量生产验证,通过本发明实施例的器件装配方法进行生产,功放管焊接空洞率降低20%--30%,改善明显,整体空洞率控制在15%以内;结合储锡槽的配合使用,充分保证了功放管的焊接效果,PA生产中批量应用该发明实施例措施后功率整体提高0.3dB—0.5dB,效率整体改善0.5%--1.5%,线性整体优化1dB—3dB,生产成品率提升2%—5%,充分改善了射频功放管的性能,降低生产成本,提升产品竞争力。
基于与上述方法实施例相同或相似的构思,本发明实施例还提供一种焊接有沉槽式器件的线路板。
图3A为本发明实施例还提供的一种线路板的侧视结构示意图,如图3A所示,线路板包括金属基板50、PCB板60、以及功放管70。功放管70包含铜法兰71、绝缘体72、管脚73和陶瓷盖74四部分。PCB板60通过焊锡80设置在金属基板50上,金属基板50上设置有用于放置所述功放管70的开槽,图3B为本发明实施例还提供的一种金属基板50的俯视示意图,结合3B所示,本发明实施例中的金属基板50上设置有用于放置功率管70的开槽51,还设置有储锡槽52,功放管70焊接在所述开槽51中,功放管70的管脚73通过焊锡固定在所述PCB板60上。开槽51的外侧设置有储锡槽52,储锡槽52的深度大于所述开槽51。
本发明实施例中,沉槽式器件为功放管70,所述功放管包括铜法兰71、绝缘体72、管脚73和陶瓷盖74。
本发明实施例中,可选地,
在开槽51的第一侧和第二侧设置储锡槽52,第一侧和第二侧分别对应于要放置在开槽中的器件上没有设置管脚73的两侧;或
在开槽51的第一侧、第二侧、和第三侧设置储锡槽52,第一侧和第二侧分别对应于要放置在开槽中的器件上没有设置管脚73的两侧,第三侧对应于所述器件上设置有输入管脚73的一侧;或
在开槽51的四个外侧均分别设置有储锡槽52。
本发明实施例中,可选地,所述储锡槽的宽度为1~5mm;所述储锡槽的深度为2~6mm。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的各装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的各装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
上述技术方案可以在生产过程中,避免由于锡量过多而造成短路的问题,此外,在锡量稍多的情况下,能够降低焊接的空洞率,减少焊接质量对压点位置和炉温等其他影响因素的敏感度,降低了焊接质量的不确定性,提高了产品的一致性,在保证功率管焊接的空洞率的基础上,进一步保证了接地效果和功率管的性能要求,减小了功放管焊接不合格率,从而降低了生产成本,并提高了生产效率。

Claims (11)

  1. 一种沉槽式器件装配方法,包括:
    在金属基板上设置用于放置器件的开槽;
    在开槽的外侧设置储锡槽,所述储锡槽的深度大于所述开槽;
    当需要焊接器件时,将器件放置在开槽中,并在器件和开槽之间放置焊锡;
    通过焊接工艺将器件焊接在开槽中。
  2. 如权利要求1所述的器件装配方法,其中,所述在开槽的外侧设置储锡槽包括:
    在所述开槽的第一侧和第二侧分别设置储锡槽;
    其中,第一侧和第二侧分别对应于要放置在开槽中的器件上没有设置管脚的两侧。
  3. 如权利要求1所述的器件装配方法,其中,所述在开槽的外侧设置储锡槽包括:
    在所述开槽的第一侧、第二侧、和第三侧分别设置储锡槽;
    其中,第一侧和第二侧分别对应于要放置在开槽中的器件上没有设置管脚的两侧,第三侧对应于要放置在开槽中的器件上设置有输入管脚的一侧。
  4. 如权利要求1所述的器件装配方法,其中,所述在开槽的外侧设置储锡槽包括:
    在所述开槽的四个外侧均分别设置有储锡槽。
  5. 如权利要求1~4中任一项所述的器件装配方法,其中,
    所述储锡槽的宽度为1~5mm;所述储锡槽的深度为2~6mm。
  6. 一种线路板,所述线路板上包括:
    焊接沉槽式器件,所述器件按照如权利要求1~5中任一项所述的方法装配在所述线路板上。
  7. 一种焊接有沉槽式器件的线路板,所述线路板包括:
    金属基板、印刷电路板PCB、以及器件;
    所述PCB通过焊锡设置在金属基板上;
    所述金属基板上设置有用于放置所述器件的开槽,所述器件焊接在所述开槽中,所述器件的管脚通过焊锡固定在所述PCB上;
    所述开槽的外侧设置有储锡槽,所述储锡槽的深度大于所述开槽。
  8. 如权利要求7所述的线路板,其中,
    沉槽式器件为功放管,所述功放管包括陶瓷盖、绝缘层、管脚以及铜法兰。
  9. 如权利要求7所述的线路板,其中,所述开槽的外侧设置有储锡槽包括:
    在所述开槽的第一侧和第二侧分别设置储锡槽;其中,第一侧和第二侧分别对应于要放置在开槽中的器件上没有设置管脚的两侧;或
    在所述开槽的第一侧、第二侧、和第三侧分别设置储锡槽;其中,第一侧和第二侧分别对应于要放置在开槽中的器件上没有设置管脚的两侧,第三侧对应于要放置在开槽中的器件上设置有输入管脚的一侧;或
    在所述开槽的四个外侧分别设置有储锡槽。
  10. 如权利要求7~9中任一项所述的线路板,其中,
    所述储锡槽的宽度为1~5mm;所述储锡槽的深度为2~6mm。
  11. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1~5中任一项所述的方法。
PCT/CN2015/093888 2015-05-18 2015-11-05 一种器件装配方法和线路板 WO2016184047A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510254418.X 2015-05-18
CN201510254418.XA CN106304678A (zh) 2015-05-18 2015-05-18 一种器件装配方法和线路板

Publications (1)

Publication Number Publication Date
WO2016184047A1 true WO2016184047A1 (zh) 2016-11-24

Family

ID=57319267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093888 WO2016184047A1 (zh) 2015-05-18 2015-11-05 一种器件装配方法和线路板

Country Status (2)

Country Link
CN (1) CN106304678A (zh)
WO (1) WO2016184047A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112367773A (zh) * 2020-10-28 2021-02-12 安徽瑞迪微电子有限公司 Dbc基板与芯片焊接方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6818477B2 (en) * 2001-11-26 2004-11-16 Powerwave Technologies, Inc. Method of mounting a component in an edge-plated hole formed in a printed circuit board
CN101136343A (zh) * 2006-12-08 2008-03-05 中兴通讯股份有限公司 一种集成电路与散热件的连接方法
CN102510663A (zh) * 2011-09-29 2012-06-20 华为技术有限公司 印制板组件及其加工方法
CN102543219A (zh) * 2010-12-08 2012-07-04 昆山广禾电子科技有限公司 散热片模组的改良结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6818477B2 (en) * 2001-11-26 2004-11-16 Powerwave Technologies, Inc. Method of mounting a component in an edge-plated hole formed in a printed circuit board
CN101136343A (zh) * 2006-12-08 2008-03-05 中兴通讯股份有限公司 一种集成电路与散热件的连接方法
CN102543219A (zh) * 2010-12-08 2012-07-04 昆山广禾电子科技有限公司 散热片模组的改良结构
CN102510663A (zh) * 2011-09-29 2012-06-20 华为技术有限公司 印制板组件及其加工方法

Also Published As

Publication number Publication date
CN106304678A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
US9313881B2 (en) Through mold via relief gutter on molded laser package (MLP) packages
EP3182485B1 (en) Protective main board for battery cell, electronic terminal and method for assembling battery cell of electronic terminal
KR101411584B1 (ko) 배터리 보호 장치 제조 방법 및 배터리 보호 장치
US11641072B2 (en) PCB-pinout based packaged module and method for preparing PCB-pinout based packaged module
KR101036986B1 (ko) 고체 전해 콘덴서
TW201436670A (zh) 一種濾波元件與印刷電路板的焊接構造
KR20130065686A (ko) 배터리 팩 및 그 생산방법
CN107787122B (zh) 电路板线路补偿方法和装置
WO2016184047A1 (zh) 一种器件装配方法和线路板
CN104576883A (zh) 芯片安装用阵列基板及其制造方法
CN104254190A (zh) 电路板及其制作方法
CN102573327A (zh) 一种电源专用功率电子线路板和功率模块的制作方法
CN201491379U (zh) 一种包含lcd压焊焊盘的印刷电路板
KR102488402B1 (ko) 인쇄 회로 기판, 인쇄 회로 기판의 제작 방법 및 이동 단말
KR102409692B1 (ko) 통신 모듈
JP2009206154A (ja) 配線基板、及びその製造方法
CN208315303U (zh) 薄膜芯片电阻
JP2022542308A (ja) パッケージデバイス及びその製造方法、並びに電子デバイス
JP2007184455A (ja) 電子回路基板
CN214477336U (zh) 一种微波功放载板的背面涂覆工装
WO2024193384A1 (zh) 电子装联方法及电路板组件
CN113260167A (zh) 一种防止pcb板上螺孔与铜箔氧化的装置及其方法
CN219395294U (zh) 一种微波功放管封装装置
US20040105243A1 (en) Electronic device having a plurality of metallic balls for transmitting signals between two circuit boards
CN209982451U (zh) 包含密封结构的滤波器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15892423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15892423

Country of ref document: EP

Kind code of ref document: A1