WO2016181657A1 - 制御装置、電子機器及び無接点電力伝送システム - Google Patents

制御装置、電子機器及び無接点電力伝送システム Download PDF

Info

Publication number
WO2016181657A1
WO2016181657A1 PCT/JP2016/002343 JP2016002343W WO2016181657A1 WO 2016181657 A1 WO2016181657 A1 WO 2016181657A1 JP 2016002343 W JP2016002343 W JP 2016002343W WO 2016181657 A1 WO2016181657 A1 WO 2016181657A1
Authority
WO
WIPO (PCT)
Prior art keywords
power transmission
power
unit
load modulation
battery
Prior art date
Application number
PCT/JP2016/002343
Other languages
English (en)
French (fr)
Inventor
大西 幸太
Original Assignee
セイコーエプソン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーエプソン株式会社 filed Critical セイコーエプソン株式会社
Priority to US15/572,484 priority Critical patent/US10291082B2/en
Priority to EP16792384.6A priority patent/EP3297126A4/en
Priority to CN201680026454.3A priority patent/CN107534317B/zh
Publication of WO2016181657A1 publication Critical patent/WO2016181657A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00045Authentication, i.e. circuits for checking compatibility between one component, e.g. a battery or a battery charger, and another component, e.g. a power source

Definitions

  • the present invention relates to a control device, an electronic device, a contactless power transmission system, and the like.
  • contactless power transmission which uses electromagnetic induction and enables power transmission even without a metal contact
  • Charging of electronic devices has been proposed.
  • Patent Documents 1 to 4 there are technologies disclosed in Patent Documents 1 to 4 as conventional technologies for contactless power transmission.
  • data is communicated from the power reception side (secondary side) to the power transmission side (primary side) using load modulation, and various types of information on the power reception side are transmitted to the power transmission side.
  • ID authentication is performed based on ID authentication information transmitted from the power receiving apparatus to the power transmitting apparatus before the start of normal power transmission. Then, when the compatibility of the power receiving device is authenticated by the ID authentication, normal power transmission from the power transmitting device to the power receiving device is started.
  • control device an electronic device, a contactless power transmission system, and the like that can realize contactless power transmission and communication by load modulation with a simple operation sequence.
  • One aspect of the present invention is a control device on a power transmission side in a non-contact power transmission system including a power transmission device and a power reception device, and a driver control circuit that controls a power transmission driver of a power transmission unit that transmits power to the power reception device;
  • This is related to a control device that starts normal power transmission by the power transmission unit on the condition that modulation is started and continues the normal power transmission by the power transmission unit while the load modulation is continued.
  • power is transmitted to the power receiving apparatus, and communication processing by load modulation is performed with the power receiving apparatus.
  • normal power transmission by the power transmission unit is started on the condition that the power receiving apparatus has started load modulation, and normal power transmission is continued while the load modulation is continued. In this way, for example, complicated sequence processing before starting normal power transmission can be eliminated, and contactless power transmission and communication by load modulation can be realized with a simple operation sequence.
  • control unit may stop the normal power transmission when the load modulation is not detected, and cause the power transmission unit to perform intermittent power transmission for landing detection.
  • control unit stops the normal power transmission when a full charge of the battery of the power receiving device is detected based on the communication data, and performs intermittent power transmission for removal detection as the power transmission. You may let the part do it.
  • control unit stops the normal power transmission when an abnormality on the power receiving side is detected based on the communication data, and causes the power transmission unit to perform intermittent power transmission for removal detection. May be.
  • the power receiving device discharges power from a battery to a power supply target after the output voltage of the power receiving unit decreases and a start-up period of a discharge operation elapses
  • the control unit May cause the power transmission unit to perform intermittent power transmission for removal detection at intervals of a period shorter than the activation period.
  • control unit stops the normal power transmission when a temperature abnormality of the battery of the power receiving device is detected based on the communication data, and performs intermittent power transmission during a wait period.
  • the power transmission unit may perform the normal power transmission after the wait period has elapsed.
  • the power transmission unit includes the power transmission driver and a power supply voltage control unit that controls a power supply voltage of the power transmission driver, and the control unit receives the communication data from the power receiving device.
  • the power supply voltage control unit may be controlled based on the above.
  • control unit may change the power supply voltage that is variably changed based on the transmission power setting information included in the communication data from the power supply voltage control unit to the power transmission driver during the normal power transmission period.
  • the power supply voltage for landing detection and removal detection may be supplied from the power supply voltage control unit to the power transmission driver.
  • the power transmission driver In this way, during the normal power transmission period, it is possible to supply the power transmission driver with a power supply voltage that varies variably based on the transmission power setting information, thereby realizing appropriate power control. In addition, during the period of intermittent power transmission for landing detection and removal detection, the power supply voltage for landing detection and removal detection is supplied to the power transmission driver so that appropriate landing detection and removal detection can be realized.
  • control unit may supply a variable voltage from the power supply voltage control unit to the power transmission driver as the power supply voltage for landing detection or removal detection.
  • One aspect of the present invention is a control device on a power receiving side in a non-contact power transmission system including a power transmission device and a power reception device, and a battery based on power received by a power reception unit that receives power from the power transmission device A charging unit for charging the battery, a load modulation unit for transmitting communication data to the power transmission device by load modulation, and discharging the battery to supply power from the battery to a power supply target A discharge unit; and a control unit that controls the discharge unit, wherein the load modulation unit starts the load modulation when landing is detected, and the control unit detects when landing is detected This relates to a control device that stops the discharge operation of the discharge unit.
  • power from a power transmission device is received, the battery is charged based on the received power, and a discharging operation for supplying power from the battery to a power supply target is performed. .
  • Communication data is transmitted to the power transmission device by load modulation.
  • load modulation when landing is detected, load modulation is started and the discharge operation of the discharge unit is stopped. In this way, by starting load modulation under the condition of landing detection, non-contact power transmission and communication by load modulation can be realized with a simple operation sequence. Further, when the landing is detected, the discharge operation is stopped, so that useless power consumption can be suppressed and power saving can be achieved.
  • control unit may cause the discharge unit to perform a discharge operation during the removal period.
  • control unit may perform landing detection and removal detection based on an output voltage of the power receiving unit.
  • the output voltage of the power receiving unit can be monitored and landing detection and removal detection can be executed.
  • the load modulation unit may transmit the communication data including transmission power setting information to the power transmission device by the load modulation.
  • Another aspect of the present invention relates to an electronic device including any of the control devices described above.
  • Another aspect of the present invention is a contactless power transmission system including a power transmission device and a power reception device, wherein the power transmission device transmits power to the power reception device and transmits communication data by load modulation.
  • the power receiving device charges the battery based on the power received from the power transmitting device, and transmits communication data to the power transmitting device by the load modulation,
  • the battery discharge operation is performed to supply power from the battery to a power supply target, and the power receiving device starts the load modulation and detects the battery discharge operation when landing is detected.
  • the power transmission device starts normal power transmission on the condition that the power receiving device starts the load modulation, and the normal power transmission is continued while the load modulation is continued. Relating to non-contact power transmission system to continue electrodeposition.
  • load modulation by the power receiving device when landing is detected, load modulation by the power receiving device is started, communication data is transmitted from the power receiving device to the power transmitting device, and the discharging operation of the battery is stopped.
  • the supply of power from the battery to the power supply target is stopped.
  • the power transmission device starts normal power transmission to the power receiving device, and the normal power transmission is continued while the load modulation is continued. Therefore, non-contact power transmission and communication by load modulation can be realized with a simple operation sequence, and power saving and the like can be achieved.
  • 1A and 1B are explanatory diagrams of a contactless power transmission system according to the present embodiment.
  • FIGS. 16A and 16B are explanatory diagrams of the power control method of the present embodiment.
  • FIG. 17A and FIG. 17B are explanatory diagrams of effects when the power control method of the present embodiment is used.
  • FIG. 1A shows an example of a contactless power transmission system of this embodiment.
  • the charger 500 (one of the electronic devices) includes the power transmission device 10.
  • the electronic device 510 includes the power receiving device 40.
  • the electronic device 510 includes an operation switch unit 514 and a battery 90. Note that FIG. 1A schematically shows the battery 90, but the battery 90 is actually built in the electronic device 510.
  • the contactless power transmission system of the present embodiment is configured by the power transmission device 10 and the power reception device 40 of FIG.
  • the charger 500 is supplied with electric power via the power adapter 502, and this electric power is transmitted from the power transmitting device 10 to the power receiving device 40 by non-contact power transmission. Thereby, the battery 90 of the electronic device 510 can be charged, and the device in the electronic device 510 can be operated.
  • the power source of the charger 500 may be a power source using a USB (USB cable).
  • USB USB cable
  • Various devices can be assumed as the electronic device 510 to which the present embodiment is applied. For example, various devices such as hearing aids, wristwatches, biological information measuring devices (wearable devices), portable information terminals (smartphones, mobile phones, etc.), cordless telephones, shavers, electric toothbrushes, wrist computers, handy terminals, electric vehicles, electric bicycles, etc. An electronic device can be assumed.
  • power transmission from the power transmission device 10 to the power reception device 40 is performed by a primary coil L1 (power transmission coil) provided on the power transmission side and a secondary provided on the power reception side.
  • L1 power transmission coil
  • secondary provided on the power reception side.
  • This is realized by electromagnetically coupling the coil L2 (power receiving coil) to form a power transmission transformer.
  • FIG. 2 shows a configuration example of the power transmission device 10, the power reception device 40, the power transmission side control device 20, and the power reception side control device 50 of the present embodiment.
  • a power transmission-side electronic device such as the charger 500 in FIG. 1A includes at least the power transmission device 10 in FIG.
  • the electronic device 510 on the power receiving side can include at least the power receiving device 40, the battery 90, and the power supply target 100.
  • the power supply target 100 is various devices such as a processing unit (DSP or the like), for example.
  • DSP processing unit
  • the primary coil L1 and the secondary coil L2 are electromagnetically coupled to transmit power from the power transmitting device 10 to the power receiving device 40, and to charge the battery 90 and the like.
  • a non-contact power transmission) system is realized.
  • the power transmission device 10 (power transmission module, primary module) includes a primary coil L1, a power transmission unit 12, a display unit 16, and a control device 20.
  • the power transmission device 10 is not limited to the configuration shown in FIG. 2, and various modifications such as omitting some of the components (for example, a display unit), adding other components, and changing the connection relationship. Implementation is possible.
  • the power transmission unit 12 generates an AC voltage having a predetermined frequency during power transmission and supplies it to the primary coil L1.
  • the power transmission unit 12 includes a first power transmission driver DR1 that drives one end of the primary coil L1, a second power transmission driver DR2 that drives the other end of the primary coil L1, and a power supply voltage control unit 14.
  • the power transmission unit 12 may include at least one capacitor (condenser) that forms a resonance circuit together with the primary coil L1.
  • Each of the power transmission drivers DR1 and DR2 of the power transmission unit 12 is realized by, for example, an inverter circuit (buffer circuit) configured by a power MOS transistor. These power transmission drivers DR1 and DR2 are controlled (driven) by the driver control circuit 22 of the control device 20.
  • the power supply voltage control unit 14 of the power transmission unit 12 controls the power supply voltage VDRV of the power transmission drivers DR1 and DR2.
  • the control unit 24 controls the power supply voltage control unit 14 based on communication data received from the power receiving side.
  • the power supply voltage VDRV supplied to the power transmission drivers DR1 and DR2 is controlled, and, for example, variable control of the transmission power is realized.
  • the power supply voltage control unit 14 can be realized by, for example, a DCDC converter.
  • the power supply voltage control unit 14 generates a power supply driver power supply voltage VDRV (for example, 6V to 15V) by boosting the power supply voltage (for example, 5V) from the power supply, and supplies it to the power transmission drivers DR1 and DR2. .
  • the power supply voltage control unit 14 increases the power supply voltage VDRV supplied to the power transmission drivers DR1 and DR2 and decreases the transmission power. In this case, the power supply voltage VDRV is lowered.
  • the primary coil L1 (power transmission side coil) is electromagnetically coupled to the secondary coil L2 (power reception side coil) to form a power transmission transformer.
  • an electronic device 510 is placed on the charger 500 so that the magnetic flux of the primary coil L1 passes through the secondary coil L2.
  • the charger 500 and the electronic device 510 are physically separated so that the magnetic flux of the primary coil L1 does not pass through the secondary coil L2.
  • the display unit 16 displays various states of the contactless power transmission system (during power transmission, ID authentication, etc.) using colors, images, and the like, and can be realized by, for example, an LED or an LCD.
  • the control device 20 performs various controls on the power transmission side and can be realized by an integrated circuit device (IC) or the like.
  • the control device 20 includes a driver control circuit 22, a control unit 24, and a communication unit 30.
  • the control device 20 can include a clock generation circuit 37 and an oscillation circuit 38. Note that the control device 20 is not limited to the configuration shown in FIG. 2, and some of the components (for example, a clock generation circuit, an oscillation circuit, etc.) are omitted, other components are added, or the connection relationship is changed.
  • Various modifications of the above are possible. For example, a modification in which the power transmission unit 12 or the like is built in the control device 20 is also possible.
  • the driver control circuit 22 controls the power transmission drivers DR1 and DR2 of the power transmission unit 12 that transmits power to the power receiving device 40.
  • the driver control circuit 22 outputs a control signal (drive signal) to the gates of the transistors constituting the power transmission drivers DR1 and DR2, and drives the primary coil L1 by the power transmission drivers DR1 and DR2.
  • the control unit 24 executes various control processes of the control device 20 on the power transmission side.
  • the control unit 24 controls the driver control circuit 22.
  • the control unit 24 performs various sequence controls and determination processes necessary for power transmission, communication processing, and the like.
  • the control unit 24 can be realized by a logic circuit generated by an automatic placement and routing method such as a gate array or various processors such as a microcomputer.
  • the communication unit 30 performs communication processing of communication data with the power receiving device 40.
  • the communication unit 30 performs communication processing with the power receiving device 40 (control device 50) that transmits communication data by load modulation.
  • the communication unit 30 performs processing for detecting and receiving communication data from the power receiving device 40.
  • the oscillation circuit 38 is constituted by a crystal oscillation circuit or the like, for example, and generates a primary side clock signal.
  • the clock generation circuit 37 generates a drive clock signal that defines a drive frequency.
  • the driver control circuit 22 generates a control signal having a given frequency (drive frequency) based on the drive clock signal, the control signal from the control unit 24, and the like, and sends the control signal to the power transmission drivers DR1 and DR2 of the power transmission unit 12. Output and control.
  • the power receiving device 40 (power receiving module, secondary module) includes a secondary coil L2 and a control device 50.
  • the power receiving device 40 is not limited to the configuration shown in FIG. 2, and various modifications may be made such as omitting some of the components, adding other components, and changing the connection relationship.
  • the control device 50 performs various controls on the power receiving side and can be realized by an integrated circuit device (IC) or the like.
  • the control device 50 includes a power reception unit 52, a control unit 54, a load modulation unit 56, a charging unit 58, and a discharging unit 60. Further, a nonvolatile memory 62 and a detection unit 64 can be included.
  • the control device 50 is not limited to the configuration shown in FIG. 2, and various modifications such as omitting some of the components, adding other components, and changing the connection relationship are possible. For example, modifications such as providing the power receiving unit 52 and the like outside the control device 50 are possible.
  • the power receiving unit 52 receives power from the power transmission device 10. Specifically, the power receiving unit 52 converts the AC induced voltage of the secondary coil L2 into a DC rectified voltage VCC and outputs it. This conversion is performed by a rectifier circuit 53 included in the power receiving unit 52.
  • the rectifier circuit 53 can be realized by, for example, a plurality of transistors and diodes.
  • the control unit 54 executes various control processes of the control device 50 on the power receiving side. For example, the control unit 54 controls the load modulation unit 56, the charging unit 58, and the discharging unit 60. Further, the power receiving unit 52, the nonvolatile memory 62, the detecting unit 64, and the like can be controlled.
  • the control unit 54 can be realized by a logic circuit generated by an automatic placement and routing method such as a gate array or various processors such as a microcomputer.
  • the load modulation unit 56 performs load modulation.
  • the load modulation unit 56 includes a current source IS, and performs load modulation using the current source IS.
  • the load modulation unit 56 includes a current source IS (constant current source) and a switch element SW.
  • the current source IS and the switch element SW are provided in series between, for example, a node NVC of the rectified voltage VCC and a node of GND (in a broad sense, the low-potential side power supply voltage). Then, for example, the switch element SW is turned on or off based on a control signal from the control unit 54, and the current (constant current) of the current source IS flowing from the node NVC to GND is turned on or off, whereby load modulation is performed. Realized.
  • the capacitor CM is connected to the node NVC.
  • the capacitor CM is provided as an external component of the control device 50, for example.
  • the switch element SW can be realized by a MOS transistor or the like. This switch element SW may be provided as a transistor constituting the circuit of the current source IS.
  • the load modulation unit 56 is not limited to the configuration of FIG. 2, and various modifications such as using a resistor instead of the current source IS are possible.
  • the charging unit 58 charges the battery 90 (charge control). For example, the charging unit 58 charges the battery 90 based on the power received by the power receiving unit 52 that receives power from the power transmission device 10. For example, the charging unit 58 is supplied with a voltage based on the rectified voltage VCC (DC voltage in a broad sense) from the power receiving unit 52 and charges the battery 90.
  • the charging unit 58 can include a CC charging circuit 59.
  • the CC charging circuit 59 is a circuit that performs CC (Constant-Current) charging of the battery 90.
  • the discharging unit 60 performs the discharging operation of the battery 90.
  • the discharge unit 60 power supply unit
  • the discharge unit 60 performs the discharge operation of the battery 90 and supplies the power from the battery 90 to the power supply target 100.
  • the discharge unit 60 is supplied with the charging voltage VBAT of the battery 90 and supplies the output voltage VOUT to the power supply target 100.
  • the discharge unit 60 can include a charge pump circuit 61.
  • the charge pump circuit 61 steps down the battery voltage VBAT (for example, 1/3 step down) and supplies the output voltage VOUT (VBAT / 3) to the power supply target 100.
  • the discharge unit 60 (charge pump circuit) operates using, for example, the charging voltage VBAT as a power supply voltage.
  • the battery 90 is, for example, a rechargeable secondary battery, such as a lithium battery (lithium ion secondary battery, lithium ion polymer secondary battery, etc.), a nickel battery (nickel / hydrogen storage battery, nickel / cadmium storage battery, etc.), or the like.
  • the power supply target 100 is, for example, a device (integrated circuit device) such as a processing unit (DSP, microcomputer), and is provided in an electronic device 510 (FIG. 1A) including the power receiving device 40. The device to be supplied.
  • the non-volatile memory 62 is a non-volatile memory device that stores various types of information.
  • the nonvolatile memory 62 stores various information such as status information of the power receiving device 40 (control device 50), for example.
  • an EEPROM or the like can be used as the nonvolatile memory 62.
  • a MONOS (Metal-Oxide-Nitride-Oxide-Silicon) type memory can be used.
  • a flash memory using a MONOS type memory can be used.
  • another type of memory such as a floating gate type may be used as the EEPROM.
  • the detection unit 64 performs various detection processes. For example, the detection unit 64 monitors the rectified voltage VCC, the charging voltage VBAT, and the like, and executes various detection processes. Specifically, the detection unit 64 includes an A / D conversion circuit 65, and a voltage based on the rectified voltage VCC and the charging voltage VBAT, a temperature detection voltage from a temperature detection unit (not shown), and the like are displayed on the A / D conversion circuit 65. A / D conversion is performed using the digital A / D conversion value obtained. As detection processing performed by the detection unit 64, detection processing of overdischarge, overvoltage, overcurrent, or temperature abnormality (high temperature, low temperature) can be assumed.
  • the detection unit 64 detects overvoltage and temperature abnormality during charging, overvoltage protection, high temperature protection, and low temperature protection can be realized. Further, when the detector 64 detects overdischarge and overcurrent during discharge, overdischarge protection and overcurrent protection can be realized.
  • the control device 20 on the power transmission side in the contactless power transmission system including the power transmission device 10 and the power reception device 40 includes a driver control circuit 22, a control unit 24, and a communication unit 30.
  • the control part 24 starts normal power transmission by the power transmission part 12 on condition that the power receiving apparatus 40 (control apparatus 50) started load modulation (when load modulation is started).
  • the control unit 24 controls the power transmission unit 12 via the driver control circuit 22 to start normal power transmission.
  • the control unit 24 charges the battery 90 on the condition that the start of load modulation on the power receiving side is detected without performing authentication processing such as ID authentication, for example. Normal power transmission (main power transmission, continuous power transmission) is started.
  • the control unit 24 starts normal power transmission by the power transmission unit 12 based on the detection result.
  • the load modulation unit 56 first, for example, empty data (for example, empty for one packet). Data (dummy data) communication data is transmitted by load modulation.
  • the control unit 24 receives the communication data of the empty data, the control unit 24 starts normal power transmission.
  • the communication unit 30 detects communication data of empty data by its current detection function or the like, and the control unit 24 starts normal power transmission when the communication unit 30 detects communication data of empty data. .
  • the control unit 24 continues normal power transmission by the power transmission unit 12 while the load modulation is continued. For example, the control unit 24 controls the power transmission unit 12 via the driver control circuit 22 to continue normal power transmission. Then, when the load modulation is not detected, the control unit 24 stops the normal power transmission by the power transmission unit 12. Specifically, when load modulation is not detected, the control unit 24 stops normal power transmission, and causes the power transmission unit 12 to perform, for example, intermittent power transmission for landing detection. For example, when communication data is not detected by the communication unit 30, it is determined that load modulation is not detected, and normal power transmission is stopped.
  • control unit 24 stops normal power transmission when full charge of the battery 90 of the power receiving device 40 is detected (notified) based on communication data (communication data transmitted by load modulation), for example, for removal detection.
  • the power transmission unit 12 performs intermittent power transmission.
  • control unit 24 stops normal power transmission and causes the power transmission unit 12 to perform intermittent power transmission for removal detection. In this way, the control unit 24 performs normal power transmission stop control based on the communication data received by the communication unit 30.
  • the power receiving device 40 discharges the power from the battery 90 to the power supply target 100 after the output voltage (VCC) of the power receiving unit 52 decreases and the start-up period of the discharge operation elapses. Specifically, after a given activation period has elapsed after the output voltage (VCC) of the power receiving unit 52 has fallen below a determination voltage (eg, 3.1 V), the power from the battery 90 is supplied to the power supply target 100. Discharge. In this case, the control unit 24 on the power transmission side causes the power transmission unit 12 to perform intermittent power transmission for removal detection at intervals shorter than the activation period.
  • control unit 24 stops the normal power transmission when the temperature abnormality of the battery 90 of the power receiving device 40 is detected based on the communication data. Then, intermittent power transmission is performed by the power transmission unit 12 during the wait period, and normal power transmission is resumed after the wait period has elapsed.
  • the power transmission unit 12 includes power transmission drivers DR1 and DR2 and a power supply voltage control unit 14 that controls the power supply voltage VDRV of the power transmission drivers DR1 and DR2.
  • the control unit 24 controls the power supply voltage control unit 14 based on communication data (communication data transmitted by load modulation) from the power receiving device 40 during a period of normal power transmission in which load modulation is performed. I do.
  • contactless power transmission is performed by variably controlling the power supply voltage VDRV supplied by the power supply voltage control unit 14 based on transmission power setting information (power transmission status information, such as rectified voltage information) included in the communication data.
  • the electric power transmitted by is variably controlled.
  • the power-receiving-side control device 50 in the contactless power transmission system includes a charging unit 58, a load modulation unit 56, a discharging unit 60, a controlling unit 54 that controls the discharging unit 60, and the like. Then, the load modulation unit 56 starts load modulation when landing is detected. For example, when the landing is detected by the control unit 54, the load modulation unit 56 starts load modulation under the control of the control unit 54. And the control part 54 stops the discharge operation of the discharge part 60, when a landing is detected. For example, in the removal period (period in which the electronic device 510 is removed), the control unit 54 causes the discharge unit 60 to perform a discharge operation, and stops the discharge operation when landing detection is performed. In this case, the control unit 54 can perform landing detection and removal detection based on the output voltage (VCC) of the power receiving unit 52.
  • VCC output voltage
  • the load modulation unit 56 transmits communication data including transmission power setting information to the power transmission device 10 by load modulation.
  • transmission power setting information communication data including information on the output voltage (VCC) of the power receiving unit 52 is transmitted.
  • VCC output voltage
  • FIG. 3 is a diagram for explaining the outline of the operation sequence.
  • the electronic device 510 having the power receiving device 40 is not placed on the charger 500 having the power transmitting device 10 and is in a removed state.
  • the standby state is entered.
  • the power transmission side is in a waiting state
  • the power reception side is in a discharge operation on state.
  • the power transmission unit 12 of the power transmission device 10 performs intermittent power transmission for landing detection. That is, the power transmission unit 12 is in a state of detecting the landing of the electronic device 510 by performing intermittent power transmission in which power is intermittently transmitted every given period without performing continuous power transmission like normal power transmission.
  • the discharge operation to the power supply target 100 is turned on, and the power supply to the power supply target 100 is enabled. That is, the discharging unit 60 of the power receiving device 40 performs an operation of discharging the power from the battery 90 to the power supply target 100.
  • the power supply target 100 such as a processing unit can be operated by being supplied with power from the battery 90.
  • the communication check & charge state is entered.
  • the power transmission side performs normal power transmission, and the power receiving side turns on the charging operation and turns off the discharging operation.
  • the power receiving side transmits communication data by load modulation.
  • the power transmission unit 12 of the power transmission device 10 performs normal power transmission that is continuous power transmission. At this time, normal power transmission is performed while performing power control in which the power varies variably according to the state of power transmission. Control based on the state of charge of the battery 90 is also performed.
  • the state of power transmission is determined by, for example, the positional relationship (distance between the coils) of the primary coil L1 and the secondary coil L2, and is based on information such as the rectified voltage VCC that is the output voltage of the power receiving unit 52, for example. I can judge.
  • the state of charge of the battery 90 can be determined based on information such as the charge voltage VBAT.
  • the charging operation of the charging unit 58 of the power receiving device 40 is turned on, and the battery 90 is charged based on the power received by the power receiving unit 52. Further, the discharging operation of the discharging unit 60 is turned off, and the power from the battery 90 is not supplied to the power supply target 100.
  • communication data is transmitted to the power transmission side by load modulation of the load modulation unit 56.
  • communication data including information such as power transmission status information (VCC, etc.), charging status information (VBAT, various status flags, etc.) and temperature is transmitted from the power receiving side by constant load modulation during the normal power transmission period. Sent to the side.
  • the power control by the power supply voltage control unit 14 of the power transmission unit 12 is performed based on power transmission state information included in the communication data.
  • a full charge standby state is entered.
  • the power transmission side is in a waiting state
  • the power reception side is in a state in which the discharge operation is off.
  • the power transmission unit 12 performs intermittent power transmission for removal detection. That is, the power transmission unit 12 is in a state of detecting the removal of the electronic device 510 by performing intermittent power transmission in which power is intermittently transmitted every given period without performing continuous power transmission like normal power transmission. In addition, the discharge operation of the discharge unit 60 remains off, and the power supply to the power supply target 100 remains disabled.
  • the discharge operation of the discharge unit 60 is switched from off to on, and the power from the battery 90 is supplied to the power supply target 100 via the discharge unit 60.
  • the power supply target 100 such as a processing unit operates, and the user can use the electronic device 510 normally.
  • the discharging operation to the power supply target 100 is turned off during the charging period (normal power transmission period) of the battery 90 of the electronic apparatus 510. Can be prevented from being consumed.
  • the normal power transmission is switched to the intermittent power transmission, and the discharge operation to the power supply target 100 is turned on.
  • the discharge operation is turned on in this way, the power from the battery 90 is supplied to the power supply target 100, and the normal operation of the power supply target 100 such as a processing unit (DSP) becomes possible.
  • DSP processing unit
  • the electronic device 510 of a type that does not operate during the charging period in which the electronic device 510 is placed on the charger 500 for example, an electronic device worn by a user such as a hearing aid
  • An operation sequence of contactless power transmission can be realized.
  • power saving can be realized by turning off the discharging operation of the power from the battery 90 during the charging period (normal power transmission period).
  • the discharge operation is automatically turned on, so that power from the battery 90 is supplied to various devices that are the power supply target 100 of the electronic apparatus 510, and the device It becomes possible to operate, and it becomes possible to automatically shift to the normal operation mode of the electronic device 510.
  • FIG. 4, FIG. 5, and FIG. 6 are signal waveform diagrams for explaining the operation sequence of the contactless power transmission system of the present embodiment.
  • B1 in FIG. 4 is the standby state of A1 in FIG. 3, and intermittent power transmission for landing detection is performed. That is, power transmission is performed at intervals of the period TL2 at intervals of the period TL1.
  • the interval of TL1 is 3 seconds, for example, and the interval of TL2 is 50 milliseconds, for example.
  • the rectified voltage VCC which is the output voltage of the power receiving unit 52, is 6.0 V or less, so communication by load modulation is not performed.
  • the load modulation unit 56 starts load modulation as shown in B5. That is, in B2 and B3, the coils L1 and L2 are not sufficiently electromagnetically coupled, but in B4, the coils L1 and L2 are properly electromagnetically coupled as shown in FIG. ing. For this reason, the rectified voltage VCC rises and exceeds 6.0 V, and load modulation starts. When this load modulation (empty communication data) is detected by the power transmission side, normal power transmission by the power transmission unit 12 is started as indicated by B6.
  • the normal power transmission of B6 is continuous power transmission different from the intermittent power transmission of B1, and charging of the battery 90 by the charging unit 58 is started by the electric power by this normal power transmission. At this time, the discharge operation of the discharge unit 60 is off.
  • communication data including various information such as a rectified voltage, a charging voltage, and a status flag is transmitted from the power reception side to the power transmission side by the load modulation indicated by B5, and power transmission control is executed.
  • the load modulation of B5 is started when the rectified voltage VCC is increased by the intermittent power transmission for landing detection shown in B7.
  • C1 of FIG. 5 the electronic device 510 is removed during the normal power transmission period in which the battery 90 is charged.
  • This removal of C1 is removal before the battery 90 is fully charged, as indicated by C2 and C3. That is, it is removal in a state where the full charge flag is at the L level which is an inactive level.
  • the power on the power transmission side is not transmitted to the power receiving side, and the rectified voltage VCC, which is the output voltage of the power receiving unit 52, decreases.
  • VCC the rectified voltage of the power receiving unit 52
  • the load modulation by the load modulation unit 56 is stopped as shown in C5.
  • normal power transmission by the power transmission unit 12 is stopped as indicated by C6.
  • the discharge of the start capacitor on the power receiving side starts.
  • the start capacitor is a capacitor for starting the discharge operation on the power receiving side (for measuring the starting period), and is provided as an external component of the control device 50 on the power receiving side, for example.
  • the start-up period TST elapses after the rectified voltage VCC falls below the determination voltage (3.1 V)
  • the discharge operation of the discharge unit 60 is switched from off to on as indicated by C8, and the power from the battery 90 is It is supplied to the supply object 100.
  • the discharge operation of the discharge unit 60 is turned on, and the battery 90 Is discharged to the power supply target 100.
  • the electronic device 510 can be used as indicated by A5 in FIG.
  • the power transmission unit 12 performs intermittent power transmission for landing detection as indicated by C9.
  • a charging system control unit and a discharging system control unit are provided as the control unit 54 on the power receiving side in FIG.
  • the control unit of the charging system operates by being supplied with a power supply voltage based on the rectified voltage VCC (output voltage) of the power receiving unit 52.
  • the control unit and the discharge unit 60 of the discharge system operate by being supplied with a power supply voltage by the battery voltage VBAT.
  • the charging unit 58 and the load modulation unit 56 are controlled by a charging system control unit.
  • the control unit of the discharge system performs charge / discharge control of the start capacitor, control of the discharge unit 60 (on / off control of discharge operation), and the like.
  • the full charge flag is at the H level which is the active level, and the full charge of the battery 90 is detected.
  • the state shifts to the full charge standby state as indicated by A3 in FIG. 3, and intermittent power transmission for removal detection after full charge is performed as indicated by D2. That is, power transmission is performed at intervals of the period TR2 at intervals of the period TR1.
  • the interval of TR1 is 1.5 seconds, for example, and the interval of TR2 is 50 milliseconds, for example.
  • the interval TR1 for intermittent power transmission for removal detection is shorter than the interval TL1 for intermittent power transmission for landing detection.
  • the rectified voltage of the power receiving unit 52 becomes VCC> 6.0V as indicated by D3 and D4 in FIG. 6, and load modulation is performed as indicated by D5 and D6.
  • the power transmission side can detect that the electronic device 510 has not yet been removed by detecting this load modulation (such as empty communication data).
  • the interval (for example, 1.5 seconds) of the intermittent power transmission period TR1 for removal detection is shorter than the interval (for example, 3 seconds) of the start-up period TST indicated by D7 set by the start capacitor. Therefore, in a state where the electronic device 510 is not removed, the voltage (charge voltage) of the start capacitor does not fall below the threshold voltage VT for turning on the discharge operation, and the discharge operation is switched from OFF to ON as indicated by D8. There is no switching.
  • the electronic device 510 is removed. And after completion
  • FIG. 7 is a signal waveform diagram for explaining the operation sequence in the overall wait state due to a temperature abnormality (temperature error).
  • E1 of FIG. 7 for example, a temperature abnormality (high temperature abnormality) in which the battery temperature reaches 50 degrees is detected, and the temperature error flag is at the H level which is an active level.
  • an overall wait period TOW is set as indicated by E2.
  • normal power transmission stops and for example, intermittent power transmission for removal detection is performed. That is, intermittent power transmission similar to the fully charged standby state described in FIG. 6 is performed.
  • communication data including a temperature error flag is transmitted from the power receiving side to the power transmission side by load modulation, whereby normal power transmission of the power transmission unit 12 is stopped and intermittent power transmission is started.
  • the interval of the wait period TOW is, for example, 5 minutes.
  • the wait period TOW normal power transmission that is continuous power transmission is not performed, and the battery 90 is not charged. Therefore, the battery 90 dissipates heat, and the battery temperature decreases as indicated by E3 in FIG.
  • E4 normal power transmission is resumed as indicated by E4
  • charging of the battery 90 is resumed.
  • the updating process of the cycle number representing the number of times of charging is not performed. That is, since the repetition of the battery charging due to the temperature abnormality should not be included in the number of charging times, the update process for incrementing the cycle number (cycle time) by one is not performed.
  • the battery temperature has reached 50 degrees again, and the temperature error flag is at the H level.
  • the wait period TOW indicated by E7 is set, normal power transmission is stopped, and intermittent power transmission is performed.
  • E8 of FIG. 7 the electronic device 510 is removed, and when the voltage of the start capacitor described in FIG. 6 falls below the threshold voltage VT, the discharge operation of the discharge unit 60 is switched from OFF to ON as shown in E9. Switch. And as shown to E10, intermittent power transmission for the landing detection by the power transmission part 12 comes to be performed.
  • normal power transmission by the power transmission unit 12 is started as indicated by B6 on the condition that the power receiving device 40 starts load modulation as indicated by B5 in FIG. And while the load modulation of B5 is continued, the normal power transmission shown in B6 is continued. Specifically, when load modulation is not detected as indicated by C5 in FIG. 5, normal power transmission by the power transmission unit 12 is stopped as indicated by C6. And as shown to C9, the intermittent transmission for the landing detection by the power transmission part 12 comes to be performed.
  • the normal power transmission is started on the condition that the load modulation is started, the normal power transmission is continued while the load modulation is continued, and the normal power transmission is stopped when the load modulation is not detected.
  • a sequence is adopted. In this way, complicated authentication processing or the like can be eliminated, and contactless power transmission and communication by load modulation can be realized with a simple and simple operation sequence.
  • by performing communication based on constant load modulation during the normal power transmission period it is possible to realize efficient contactless power transmission according to the state of power transmission.
  • the power transmission unit 12 when the full charge of the battery 90 of the power receiving device 40 is detected based on communication data from the power receiving side, as illustrated in D2, the power transmission unit 12 The normal power transmission due to is stopped, and intermittent power transmission for removal detection is performed.
  • intermittent power transmission for landing detection by the power transmission unit 12 is performed as shown in D12.
  • the normal power transmission by the power transmission unit 12 is stopped, and intermittent power transmission for removal detection is performed.
  • the power receiving side abnormality is, for example, a battery charging error such as a battery failure in which the voltage of the battery 90 is less than 1.0 V, or a timer end error that causes the charging time to exceed a predetermined period (for example, 6 to 8 hours). is there.
  • a battery charging error such as a battery failure in which the voltage of the battery 90 is less than 1.0 V
  • a timer end error that causes the charging time to exceed a predetermined period (for example, 6 to 8 hours).
  • a temperature abnormality occurs as an abnormality on the power receiving side
  • normal power transmission by the power transmission unit 12 is stopped, and intermittent power transmission for removal detection is performed.
  • a special operation sequence as shown in FIG. 7 is executed. Specifically, as shown at E1 in FIG. 7, when a temperature abnormality (high temperature error) of the battery 90 of the power receiving device 40 is detected based on the communication data (temperature error flag), the normal power transmission stops and E2 As shown in FIG. 4, intermittent power transmission is performed by the power transmission unit 12 during the wait period TOW. Then, after the wait period TOW has elapsed, normal power transmission by the power transmission unit 12 is resumed as indicated by E4.
  • the wait period TOW is set, and during the wait period TOW, normal power transmission that is continuous power transmission is not performed, and the battery 90 is not charged.
  • heat dissipation of the battery 90 can be performed using the wait period TOW.
  • charging of the battery 90 by normal power transmission can be resumed. Therefore, for example, appropriate charging control of the battery 90 in a high temperature environment or the like can be realized.
  • the power receiving device 40 has the battery 90 after the rectified voltage VCC, which is the output voltage of the power receiving unit 52, drops and the discharge operation start-up period TST elapses. Is discharged to the power supply target 100. Specifically, the discharge operation is started after the start-up period TST has elapsed after the rectified voltage VCC falls below the determination voltage (3.1 V). That is, as shown in C8 of FIG. 5 and D11 of FIG. 6, the discharge operation of the discharge unit 60 is turned on, and the power from the battery 90 is supplied to the power supply target 100. In this embodiment, as shown by D2 and D7 in FIG. 6, intermittent power transmission for removal detection is performed at intervals of a period TR1 (for example, 1.5 seconds) shorter than the activation period TST (for example, 3 seconds). .
  • TR1 for example, 1.5 seconds
  • the discharge operation of the discharge unit 60 does not turn on during the intermittent power transmission period for removal detection.
  • the rectified voltage VCC does not rise periodically as in the period of intermittent power transmission for removal detection, and the activation period TST shown in D7 has elapsed.
  • the discharge operation of the discharge unit 60 is turned on as indicated by D11. Accordingly, the removal of the electronic device 510 is detected, and the discharge operation of the discharge unit 60 is automatically turned on so that the power from the battery 90 can be supplied to the power supply target 100.
  • FIG. 8 is a diagram illustrating a communication method using load modulation. As shown in FIG. 8, on the power transmission side (primary side), the power transmission drivers DR1 and DR2 of the power transmission unit 12 drive the primary coil L1. Specifically, the power transmission drivers DR1 and DR2 operate based on the power supply voltage VDRV supplied from the power supply voltage control unit 14 to drive the primary coil L1.
  • the coil end voltage of the secondary coil L2 is rectified by the rectifier circuit 53 of the power receiving unit 52, and the rectified voltage VCC is output to the node NVC.
  • the primary coil L1 and the capacitor CA1 constitute a power transmission side resonance circuit
  • the secondary coil L2 and the capacitor CA2 constitute a power reception side resonance circuit.
  • the current ID2 of the current source IS is intermittently passed from the node NVC to the GND side, and the load state on the power receiving side (the potential on the power receiving side) Fluctuate.
  • the current ID1 flowing through the sense resistor RCS provided in the power supply line varies due to the variation in the load state on the power receiving side due to load modulation.
  • a sense resistor RCS for detecting a current flowing through the power supply is provided between the power supply on the power transmission side (for example, a power supply device such as the power supply adapter 502 in FIG. 1A) and the power supply voltage control unit 14.
  • the power supply voltage control unit 14 is supplied with a power supply voltage from the power supply via the sense resistor RCS.
  • the current ID1 flowing from the power source to the sense resistor RCS fluctuates due to fluctuations in the load state on the power receiving side due to load modulation, and the communication unit 30 detects this current fluctuation. And the communication part 30 performs the detection process of the communication data transmitted by load modulation based on a detection result.
  • FIG. 9 shows an example of a specific configuration of the communication unit 30.
  • the communication unit 30 includes a current detection circuit 32, a comparison circuit 34, and a demodulation unit 36. Further, an amplifier AP for signal amplification and a filter unit 35 can be included.
  • the communication unit 30 is not limited to the configuration shown in FIG. 9, and various components such as omitting some of the components, adding other components (for example, a bandpass filter unit), and changing the connection relationship. Variations are possible.
  • the current detection circuit 32 detects the current ID1 flowing from the power source (power supply device) to the power transmission unit 12. Specifically, the current ID1 flowing from the power source to the power transmission unit 12 via the power supply voltage control unit 14 is detected.
  • This current ID1 may include, for example, a current flowing through the driver control circuit 22 or the like.
  • the current detection circuit 32 is configured by an IV conversion amplifier IVC.
  • the IV conversion amplifier IVC has its non-inverting input terminal (+) connected to one end of the sense resistor RCS and its inverting input terminal ( ⁇ ) connected to the other end of the sense resistor RCS.
  • the IV conversion amplifier IVC amplifies a minute voltage VC1-VC2 generated when a minute current ID1 flows through the sense resistor RCS, and outputs the amplified voltage VC1-VC2 as a detection voltage VDT.
  • the detection voltage VDT is further amplified by the amplifier AP and output to the comparison circuit 34 as the detection voltage VDTA.
  • the amplifier AP receives the detection voltage VDT at its non-inverting input terminal, receives the reference voltage VRF at its inverting input terminal, and outputs a signal of the detection voltage VDTA amplified with reference to the reference voltage VRF. .
  • the demodulator 36 determines a load modulation pattern based on the comparison determination result CQ (comparison determination result FQ after filtering) of the comparison circuit 34. That is, communication data is detected by performing demodulation processing of the load modulation pattern, and is output as detection data DAT.
  • the control unit 24 on the power transmission side performs various processes based on the detection data DAT.
  • a filter unit 35 is provided between the comparison circuit 34 and the demodulation unit 36. Then, the demodulator 36 determines the load modulation pattern based on the comparison determination result FQ after the filter processing by the filter unit 35.
  • a digital filter or the like can be used as the filter unit 35, but a passive filter may be used as the filter unit 35.
  • the filter unit 35 and the demodulator 36 operate by being supplied with a drive clock signal FCK, for example.
  • the drive clock signal FCK is a signal that defines a power transmission frequency
  • the driver control circuit 22 is supplied with the drive clock signal FCK to drive the power transmission drivers DR1 and DR2 of the power transmission unit 12.
  • the primary coil L1 is driven at a frequency (power transmission frequency) defined by the drive clock signal FCK.
  • the communication unit 30 may be provided with a band-pass filter unit that performs band-pass filter processing that passes signals in the frequency band of load modulation and attenuates signals in bands other than the frequency band of load modulation.
  • the communication unit 30 detects communication data from the power receiving device 40 based on the output of the bandpass filter unit.
  • the band pass filter unit performs band pass filter processing on the detection voltage VDT detected by the current detection circuit 32.
  • the comparison circuit 34 compares and determines the detection voltage VDTA after the bandpass filter processing by the bandpass filter unit and the determination voltage VCP.
  • This band-pass filter portion can be provided, for example, between the IV conversion amplifier IVC and the amplifier AP.
  • FIG. 10 is a diagram illustrating a communication configuration on the power receiving side.
  • the power reception unit 52 extracts a clock signal having a frequency corresponding to the drive clock signal FCK and supplies the clock signal to the communication data generation unit 55.
  • the communication data generation unit 55 is provided in the control unit 54 of FIG. 2, and performs communication data generation processing based on the supplied clock signal. Then, the communication data generation unit 55 outputs a control signal CSW for transmitting the generated communication data to the load modulation unit 56, and performs, for example, on / off control of the switch element SW by the control signal CSW, so that the communication data
  • the load modulation unit 56 performs load modulation corresponding to the above.
  • the load modulation unit 56 performs load modulation by changing the load state (load by load modulation) on the power receiving side, for example, the first load state and the second load state.
  • the first load state is a state where, for example, the switch element SW is turned on, and the load state on the power receiving side (load modulation load) is a high load (impedance is small).
  • the second load state is a state in which, for example, the switch element SW is turned off, and the load state (load modulation load) on the power receiving side is a low load (impedance is large).
  • the first load state is made to correspond to the logical level “1” (first logical level) of the communication data
  • the second load state is changed to the logical level “1” of the communication data.
  • the communication data is transmitted from the power receiving side to the power transmitting side in correspondence with “0” (second logic level). That is, when the logic level of the bit of communication data is “1”, the switch element SW is turned on, and when the logic level of the bit of communication data is “0”, the switch element SW is turned off.
  • communication data having a predetermined number of bits has been transmitted.
  • FIG. 11 is a diagram schematically showing signal waveforms of the detection voltage VDTA, the determination voltage VCP of the comparison circuit 30, and the comparison determination result CQ.
  • the detection voltage VDTA is a voltage signal that changes based on the reference voltage VRF
  • the determination voltage VCP is a voltage obtained by adding the offset voltage VOFF of the comparator CP to the reference voltage VRF. It is a signal.
  • the position of the edge of the signal of the comparison determination result CQ changes as shown in F1 and F2, and the width (interval) of the period TM1 is long. It will fluctuate such as becoming shorter or shorter.
  • the period TM1 is a period corresponding to the logic level “1”
  • the width of the period TM1 varies, a communication data sampling error occurs, and a communication data detection error occurs.
  • the probability that a communication data detection error will occur increases.
  • the logical level “1” (data 1) and the logical level “0” (data 0) of each bit of the communication data are transmitted from the power receiving side using the load modulation pattern and detected on the power transmitting side.
  • the technique to do is adopted.
  • the load modulation unit 56 on the power receiving side has the load modulation pattern of the first logic level “1” of the communication data transmitted to the power transmission apparatus 10 as the first pattern PT1. Load modulation is performed. On the other hand, for the second logic level “0” of the communication data, load modulation is performed such that the load modulation pattern becomes a second pattern PT2 different from the first pattern PT1.
  • the communication unit 30 (demodulation unit) on the power transmission side determines that the communication data is the first logic level “1” when the load modulation pattern is the first pattern PT1. On the other hand, when the load modulation pattern is the second pattern PT2 different from the first pattern PT1, it is determined that the communication data is the second logic level “0”.
  • the load modulation pattern is a pattern composed of a first load state and a second load state.
  • the first load state is a state in which the load on the power receiving side by the load modulation unit 56 becomes a high load, for example.
  • the second load state is a state in which the load on the power receiving side by the load modulation unit 56 is, for example, a low load.
  • the first pattern PT1 is a pattern in which the width of the period TM1 in the first load state is longer than that of the second pattern PT2.
  • the first pattern PT1 having the width of the period TM1 in the first load state is longer than that of the second pattern PT2 is the logic level “1”.
  • the second pattern PT2 in which the width of the period TM1 in the first load state is shorter than the first pattern PT1 is the logic level “0”.
  • the first pattern PT1 is, for example, a pattern corresponding to the bit pattern (1110).
  • the second pattern PT2 is a pattern corresponding to the bit pattern (1010), for example.
  • the power receiving side turns on or off the switch element SW of the load modulation unit 56 with the bit pattern (1110) corresponding to the first pattern PT1. Turn off. Specifically, switch control is performed to turn the switch element SW on, on, on, and off in order.
  • the load modulation pattern is the first pattern PT1 corresponding to the bit pattern (1110)
  • the power transmission side determines that the logical level of the communication data bit is “1”.
  • the power receiving side turns on the switch element SW of the load modulation unit 56 with the bit pattern (1010) corresponding to the second pattern PT2. Or turn it off. Specifically, switch control is performed to turn on, off, on, and off the switch element SW in order.
  • the load modulation pattern is the second pattern PT2 corresponding to the bit pattern of (1010)
  • the power transmission side determines that the logical level of the communication data bit is “0”.
  • the lengths of the first and second patterns PT1 and PT2 can be expressed as 512 ⁇ T, for example. it can.
  • the power receiving side has a bit pattern of (1010) corresponding to the second pattern PT2 at an interval of, for example, 128 ⁇ T, and the load modulation unit 56
  • the switch element SW is turned on or off.
  • the power transmission side performs communication data detection processing and capture processing by the method shown in FIG. 13, for example.
  • the communication unit 30 (demodulation unit) samples the load modulation pattern at a given sampling interval SI from the first sampling point SP1 set in the first load state period TM1 in the first pattern PT1. Go to capture communication data of a given number of bits.
  • sampling points SP1, SP2, SP3, SP4, SP5, and SP6 in FIG. 13 are sampling points set for each sampling interval SI.
  • This sampling interval SI is an interval corresponding to the length of the load modulation pattern. That is, the interval corresponds to the length of the first and second patterns PT1 and PT2 that are load modulation patterns.
  • the length of the sampling interval SI is also 512 ⁇ T.
  • the load modulation patterns in the periods TS1, TS2, TS3, TS4, TS5, and TS6 are PT1, PT2, PT1, PT2, PT2, and PT2, respectively.
  • the communication unit 30 detects a pulse whose signal level is H level, and performs bit synchronization when the width of the pulse is within the first range width (for example, 220 ⁇ T to 511 ⁇ T). Do.
  • the first sampling point SP1 is set at the center point of the pulse width, and a signal is taken in every sampling interval SI (for example, 512 ⁇ T) from the first sampling point SP1. If the level of the captured signal is H level, it is determined that the level is logic level “1” (first pattern PT1). If the level is L level, logic level “0” (second pattern PT2) is determined. It is judged that. By doing so, communication data (101000) is captured in FIG.
  • the width of the period TM1 in the first load state is within the first range width (220 ⁇ T to 511 ⁇ T), as shown in FIG.
  • the first sampling point SP1 is set within the load period TM1. That is, when the width of the period TM1 in which the signal level is H level is within the first range width, bit synchronization is performed, and the first sampling point SP1 is set, for example, at the center point in the period TM1. . Then, sampling is performed at each sampling interval SI from the set first sampling point SP1.
  • the first range width (220 ⁇ T to 511 ⁇ T) is a range width set corresponding to the first load state period TM1 (384 ⁇ T) in the first pattern PT1.
  • the width of the period TM1 varies due to noise or the like.
  • the H level period within the first range width 220 ⁇ T to 511 ⁇ T is determined to be the period TM1 of the first pattern PT1, and is a bit for setting the first sampling point SP1. Synchronize. By doing so, even when noise is superimposed on the signal as shown in FIG. 11, appropriate bit synchronization can be performed and an appropriate first sampling point SP1 can be set.
  • the communication unit 30 After the first sampling point SP1 is set in this way, sampling is performed at each sampling interval SI, and any one of the first and second patterns PT1, PT2 is performed based on the signal level at each sampling point. Judge whether or not. That is, when the load state is the first load state (when the signal level is the H level) at the second sampling point SP2 next to the first sampling point SP1, the communication unit 30 performs the second operation. It is determined that the load modulation pattern at the sampling point SP2 is the first pattern PT1. That is, it is determined that the logical level of the bit of the communication data is “1”.
  • the load modulation pattern at the second sampling point SP2 is the second pattern.
  • PT2 the load modulation pattern at the second sampling point SP2
  • the load state is the first load state (H level) and the width of the first load state period TM1 including the second sampling point SP2 is within the first range. If it is within the width (220 ⁇ T to 511 ⁇ T), it is determined that the load modulation pattern at the second sampling point SP2 is the first pattern PT1 (logic level “1”).
  • the load state is the second load state (L level) and the width of the period TM2 of the second load state including the second sampling point SP2 is equal to the second sampling point SP2. If it is within the range width (for example, 80 ⁇ T to 150 ⁇ T), it is determined that the load modulation pattern at the second sampling point SP2 is the second pattern PT2 (logic level “0”).
  • the second range width (80 ⁇ T to 150 ⁇ T) is a range width set corresponding to the second load state period TM2 (128 ⁇ T) in the second pattern PT2. Since the typical value of the period TM2 is 128 ⁇ T which is a width corresponding to 1 bit, the second range width 80 ⁇ T to 150 ⁇ T including this 128 ⁇ T is set.
  • the logical level of communication data is determined by determining the load modulation pattern. For example, in the related art, the first load state in which the switch element SW of the load modulator 56 is turned on is determined as the logic level “1”, and the second load state in which the switch element SW is turned off is the logic level “0”. A method that makes judgments is adopted. However, with this conventional method, as described with reference to FIG. 11, there is a possibility that a communication data detection error may occur due to noise or the like.
  • the logical level of each bit of the communication data is determined by determining whether the load modulation pattern is, for example, the first or second pattern PT1 or PT2 as shown in FIG. Is detected. Therefore, even in a situation where there is a lot of noise as shown in FIG. 11, it is possible to properly detect communication data. That is, in the first and second patterns PT1 and PT2 in FIG. 12, for example, the width of the period TM1 in the first load state (H level) is greatly different. In this embodiment, the difference in the width of the period TM1 is different. By discriminating, the pattern is discriminated and the logical level of each bit of the communication data is detected. For example, in the first bit synchronization in FIG.
  • the sampling point SP1 is set at the center point of the period TM1, and then Signals are taken in at sampling points SP2, SP3, SP4. Therefore, for example, even when the width of the period TM1 at the sampling point SP1 varies due to noise, the communication data can be properly detected. Further, since the subsequent sampling points SP2, SP3, SP4,... Can be set by a simple process based on the sampling interval SI, there is an advantage that the processing load of the communication data detection process can be reduced.
  • the communication method of the present embodiment is not limited to the method described with reference to FIGS. 12, 13, and the like, and various modifications can be made.
  • the logic level “1” is associated with the first pattern PT1 and the logic level “0” is associated with the second pattern PT2, but this association may be reversed.
  • the first and second patterns PT1 and PT2 in FIG. 12 are examples of load modulation patterns, and the load modulation pattern of the present embodiment is not limited to this, and various modifications can be made.
  • the first and second patterns PT1 and PT2 are set to the same length, but may be set to different lengths. In FIG.
  • the first pattern PT1 of the bit pattern (1110) and the second pattern PT2 of the bit pattern (1010) are used, but the first and second patterns of bit patterns different from these are used.
  • PT1 and PT2 may be adopted.
  • the first and second patterns PT1 and PT2 may be patterns having different lengths of at least the first load state period TM1 (or the second load state period TM2). The pattern can be adopted.
  • FIG. 14 (A) and FIG. 14 (B) show examples of the format of communication data used in the present embodiment.
  • communication data is composed of 64 bits, and one packet is composed of 64 bits.
  • the first 16 bits are 00h.
  • 00h which is dummy (empty) data is set in the first 16 bits.
  • the power transmission side performs various processes necessary for, for example, bit synchronization in the first 16-bit 00h communication period.
  • the power supply voltage control unit 14 variably controls the power supply voltage VDRV to be supplied to the power transmission drivers DR1 and DR2 based on the rectified voltage (VCC) information and the like, thereby transmitting power transmitted by the power transmission unit 12. Is controlled variably.
  • the temperature is, for example, a battery temperature.
  • the charging voltage and charging current are the charging voltage (such as VBAT) and charging current of the battery 90, and are information indicating the charging state.
  • the status flag is information indicating the status on the power receiving side such as temperature error (high temperature abnormality, low temperature abnormality), battery error (battery voltage of 1.0 V or less), overvoltage error, timer error, full charge (normal end), and the like.
  • the number of cycles (cycle time) is information representing the number of times of charging.
  • the IC number is a number for specifying the IC of the control device.
  • CRC information is set in the fourth 16 bits.
  • CRC is information for CRC error check.
  • the load modulation of B5 starts with, for example, empty data (dummy data) of 1 packet (64 bits) first. Communication data is transmitted. Then, the power transmission side detects communication data of this empty data and starts normal power transmission.
  • FIG. 15 is a flowchart illustrating a detailed example of communication processing according to the present embodiment.
  • the power receiving side determines whether or not the rectified voltage is VCC> 6.0V (step S1). For example, when the power transmission side transmits power, the rectified voltage VCC rises due to the power received by the power receiving side, and VCC> 6.0V.
  • the control device 50 on the power receiving side operates with a power source using the transmission power on the power transmission side. For this reason, in the period when electric power is not transmitted from the power transmission side, the control device 50 (excluding the discharge system circuit) is not supplied with power, and is in a reset state, for example.
  • the power receiving side When the rectified voltage becomes VCC> 6.0V, the power receiving side first transmits the IC number to the power transmitting side by a load variable (step S2). For example, in FIGS. 14A and 14B, communication of IC number is designated by a data code, and communication data including IC number information is transmitted.
  • step S4 When normal charging could not be started, for example, in the case of preliminary charging when the battery voltage is VBAT ⁇ 2.5V (charging the overdischarge battery) or in the case of a battery error when VBAT ⁇ 1.0V (In step S3: NO), the power receiving side transmits communication data including information such as a rectified voltage, a charging voltage, a charging current, a temperature, and a status flag by load modulation (step S4).
  • step S3 when the normal charging can be started (step S3: YES), the charging cycle number is incremented by 1 (step S5), and the cycle number after the increment is transmitted by load modulation (step S6).
  • step S7 transmission of communication data including information such as a rectified voltage, a charging voltage, a charging current, a temperature, and a status flag is repeated (step S7).
  • the power transmission side can determine the state of charge on the power reception side based on these pieces of information.
  • the communication method of this embodiment is not limited to this, and various deformation
  • the communication method of the present embodiment is not limited to the method of associating the load modulation pattern with the logic level as shown in FIGS. 12 and 13.
  • the first load state is associated with the logic level “1”
  • a method of associating the load state 2 with the logical level “0” may be employed.
  • the format of communication data and communication processing are not limited to the methods shown in FIGS. 13, 14A, and 14B, and various modifications can be made.
  • the power transmission side employs a technique for performing power transmission control based on communication data from the power receiving side.
  • the power transmission unit 12 includes power transmission drivers DR1 and DR2, and a power supply voltage control unit that controls the power supply voltage VDRV of the power transmission drivers DR1 and DR2.
  • the control part 24 controls the power supply voltage control part 14 based on the communication data from the power receiving apparatus 40 (control apparatus 50).
  • the control unit 24 causes the power supply voltage control unit 14 to supply the power supply drivers DR1 and DR2 with the power supply voltage VDRV that changes variably based on the transmission power setting information included in the communication data.
  • the transmission power of the power transmission unit 12 is variably controlled based on the transmission power setting information.
  • control unit 24 causes the power supply voltage control unit 14 to supply the power supply drivers DR1 and DR2 with the power supply voltage VDRV for landing detection and removal detection during the intermittent power transmission for landing detection and removal detection.
  • the power supply voltage for landing detection and removal detection is a voltage corresponding to the voltage level on the high potential side in the signal waveform of the primary coil driving voltage in FIGS. 4, 5, and 6.
  • the landing detection power supply voltage and the removal detection power supply voltage may be the same voltage or different voltages.
  • the power supply voltage for removal detection may be set to a voltage higher than the power supply voltage for landing detection.
  • control unit 24 may supply a variable voltage from the power supply voltage control unit 14 to the power transmission drivers DR1 and DR2 as a power supply voltage for landing detection or removal detection.
  • This point can be solved by variably controlling the power supply voltage for landing detection or removal detection.
  • FIGS. 16A and 16B are diagrams illustrating a method for controlling transmission power based on transmission power setting information (rectified voltage VCC or the like).
  • FIG. 16A shows an example in which the distance between the coils L1 and L2 is reduced.
  • control is performed such that the power supply voltage VDRV gradually decreases as the distance between the coils approaches. That is, the power supply voltage control unit 14 performs control to lower the power supply voltage VDRV supplied to the power transmission drivers DR1 and DR2 under the control of the control unit 24. That is, the power supply voltage VDRV is controlled so that the rectified voltage VCC that is the output voltage of the power receiving unit 52 is constant.
  • power control is performed such that the received power of the power receiving device 40 is constant, and optimal and stable power control can be realized.
  • FIG. 16B shows an example in which the distance between the coils L1 and L2 is increased.
  • control is performed in which the power supply voltage VDRV gradually increases as the distance between the coils increases. That is, the power supply voltage control unit 14 performs control to increase the power supply voltage VDRV supplied to the power transmission drivers DR1 and DR2 under the control of the control unit 24. That is, the power supply voltage VDRV is controlled so that the rectified voltage VCC that is the output voltage of the power receiving unit 52 is constant.
  • the power control is performed such that the received power of the power receiving device 40 is constant, and optimal and stable power control can be realized.
  • FIGS. 17A and 17B are diagrams for explaining the effect of the power control of the present embodiment.
  • Z represents the distance on the Z axis that is the axis along the height direction in the coils L1 and L2 shown in FIG. 1B.
  • r represents the distance of the position shift (position shift in the radial direction from the coil center) on the XY plane orthogonal to the Z axis.
  • the position margin Can be improved.
  • Iin represents current consumption flowing from the power source to the power receiving device (power transmission unit 12, control device 20, etc.).
  • the power supply voltage is variably controlled based on the transmission power setting information, power saving is achieved. It becomes possible to plan.
  • FIG. 18 shows a detailed configuration example of the power receiving unit 52, the charging unit 58, and the like.
  • the rectifying circuit 53 of the power receiving unit 52 includes rectifying transistors TA1, TA2, TA3, and TA4, and a rectifying control unit 51 that controls these transistors TA1 to TA4.
  • the transistor TA1 is provided between a node NB1 at one end of the secondary coil L2 and a node of GND (low potential side power supply voltage).
  • the transistor TA2 is provided between the node NB1 and the node NVC of the rectified voltage VCC.
  • the transistor TA3 is provided between the node NB2 at the other end of the secondary coil L2 and the node of GND.
  • the transistor TA4 is provided between the node NB2 and the node NVC.
  • a body diode is provided between the drain and source of each of these transistors TA1 to TA4.
  • the rectification control unit 51 outputs a control signal to the gates of the transistors TA1 to TA4, and performs rectification control for generating the rectified voltage VCC.
  • Resistors RB1 and RB2 are provided in series between the node NVC of the rectified voltage VCC and the node of GND.
  • a voltage ACH1 obtained by dividing the rectified voltage VCC by resistors RB1 and RB2 is input to, for example, the A / D conversion circuit 65 of FIG. As a result, the rectified voltage VCC can be monitored, and power control based on information on the rectified voltage VCC can be realized.
  • the regulator 57 performs voltage adjustment (regulation) of the rectified voltage VCC and outputs the voltage VD5.
  • This voltage VD5 is supplied to the CC charging circuit 59 of the charging unit 58 via the transistor TC1.
  • the transistor TC1 is turned off based on the control signal GC1 when, for example, an overvoltage is detected in which the charging voltage VBAT exceeds a given voltage (for example, 4.25V).
  • Each circuit of the control device 50 (a circuit excluding a discharge system such as the discharge unit 60) operates using a voltage based on the voltage VD5 (a voltage obtained by regulating VD5) as a power supply voltage.
  • the CC charging circuit 59 includes a transistor TC2, an operational amplifier OPC, a resistor RC1, and a current source ISC.
  • the transistor TC2 is controlled based on the output signal of the operational amplifier OPC.
  • the non-inverting input terminal of the operational amplifier OPC is connected to one end of the resistor RC1.
  • the other end of the resistor RC1 is connected to one end of a sense resistor RS provided as an external component of the control device 50.
  • the other end of the sense resistor RS is connected to the inverting input terminal of the operational amplifier OPC.
  • the current source ISC is provided between the non-inverting input terminal of the operational amplifier OPC and the node of GND. The current flowing through the current source ISC is controlled based on the signal ICDA.
  • the transistor TC2 is controlled so that the voltage at one end of the resistor RC1 (voltage at the non-inverting input terminal) is equal to the voltage VCS2 at the other end of the sense resistor RS (voltage at the inverting input terminal). Is done.
  • the signal CHON becomes active.
  • the transistors TC3 and TC4 are turned on, and the battery 90 is charged. Further, backflow from the battery 90 is prevented by the resistor RC2 provided between the gate of the transistor TC3 and the node NBAT of the charging voltage VBAT.
  • Resistors RC3 and RC4 are provided in series between the nodes NBAT and GND, and the voltage ACH2 obtained by dividing the charging voltage VBAT by the resistors RC3 and RC4 is input to the A / D conversion circuit 65. The As a result, the charging voltage VBAT can be monitored, and various controls according to the state of charge of the battery 90 can be realized.
  • a thermistor TH (temperature detecting unit in a broad sense) is provided near the battery 90.
  • the voltage RCT at one end of the thermistor TH is input to the control device 50, which allows the battery temperature to be measured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

簡素な動作シーケンスで、無接点電力伝送と、負荷変調による通信とを実現できる制御装置、電子機器及び無接点電力伝送システム等の提供。 送電装置と受電装置とを有する無接点電力伝送システムにおける送電側の制御装置は、受電装置に電力を送電する送電部の送電ドライバーを制御するドライバー制御回路と、ドライバー制御回路を制御する制御部と、負荷変調により通信データを送信する受電装置との間での通信処理を行う通信部を含む。制御部は、受電装置が負荷変調を開始したことを条件に、送電部による通常送電を開始させ、負荷変調が継続されている間は、送電部による通常送電を継続させる。

Description

制御装置、電子機器及び無接点電力伝送システム
 本発明は、制御装置、電子機器及び無接点電力伝送システム等に関する。
 近年、電磁誘導を利用し、金属部分の接点がなくても電力伝送を可能にする無接点電力伝送(非接触電力伝送)が脚光を浴びている、この無接点電力伝送の適用例として、家庭用機器や携帯端末などの電子機器の充電が提案されている。
 無接点電力伝送の従来技術としては例えば特許文献1~4に開示される技術がある。これらの従来技術では、負荷変調を用いて、受電側(2次側)から送電側(1次側)にデータを通信し、受電側の各種の情報を送電側に伝えている。
特開2009-303294号公報 特開2010-284058号公報 特開2011-211780号公報 特開2012-60730号公報
 例えば特許文献1の従来技術では、通常送電の開始前において、受電装置から送電装置に送信されるID認証情報に基づいて、ID認証が行われる。そして、当該ID認証によって受電装置の適合性が認証された場合に、送電装置から受電装置への通常送電が開始する。
 しかしながら、この従来技術の手法では、複雑な認証処理等が必要になるため、動作シーケンスが複雑になってしまう。また、通常送電後に、常時の負荷変調は行われていなかったため、適切な電力制御等を実現できなかった。
 本発明の幾つかの態様によれば、簡素な動作シーケンスで、無接点電力伝送と、負荷変調による通信とを実現できる制御装置、電子機器及び無接点電力伝送システム等を提供できる。
 本発明の一態様は、送電装置と受電装置とを有する無接点電力伝送システムにおける送電側の制御装置であって、前記受電装置に電力を送電する送電部の送電ドライバーを制御するドライバー制御回路と、前記ドライバー制御回路を制御する制御部と、負荷変調により通信データを送信する前記受電装置との間での通信処理を行う通信部と、を含み、前記制御部は、前記受電装置が前記負荷変調を開始したことを条件に、前記送電部による通常送電を開始させ、前記負荷変調が継続されている間は、前記送電部による前記通常送電を継続させる制御装置に関係する。
 本発明の一態様によれば、受電装置に対して電力が送電されると共に、受電装置との間で負荷変調による通信処理が行われる。そして本発明の一態様では、受電装置が負荷変調を開始したことを条件に、送電部による通常送電が開始し、この負荷変調が継続されている間は、通常送電が継続するようになる。このようにすれば、例えば通常送電開始前の複雑なシーケンス処理等を不要にでき、簡素な動作シーケンスで、無接点電力伝送と、負荷変調による通信とを実現できるようになる。
 また本発明の一態様では、前記制御部は、前記負荷変調が非検出となった場合に、前記通常送電を停止させ、着地検出用の間欠送電を前記送電部に行わせてもよい。
 このようにすれば、負荷変調が非検出となったことを条件に、通常送電が停止し、着地検出用の間欠送電が行われるようになる。従って、簡素な動作シーケンスで、着地検出用の間欠送電に移行して、着地検出を実現できるようになる。
 また本発明の一態様では、前記制御部は、前記通信データに基づいて前記受電装置のバッテリーの満充電が検出された場合に、前記通常送電を停止させ、取り去り検出用の間欠送電を前記送電部に行わせてもよい。
 このようにすれば、バッテリーの満充電が検出されると、通常送電が停止し、取り去り検出用の間欠送電が行われるようになる。従って、簡素な動作シーケンスで、取り去り検出用の間欠送電に移行して、満充電後の取り去り検出を実現できるようになる。
 また本発明の一態様では、前記制御部は、前記通信データに基づいて受電側の異常が検出された場合に、前記通常送電を停止させ、取り去り検出用の間欠送電を前記送電部に行わせてもよい。
 このようにすれば、受電側の異常が検出されると、通常送電が停止し、取り去り検出用の間欠送電が行われるようになる。従って、簡素な動作シーケンスで、取り去り検出用の間欠送電に移行して、受電側の異常に対応することなどが可能になる。
 また本発明の一態様では、前記受電装置は、前記受電部の出力電圧が低下し、放電動作の起動期間が経過した後に、バッテリーからの電力を電力供給対象に対して放電し、前記制御部は、前記起動期間よりも短い期間の間隔で、前記取り去り検出用の間欠送電を前記送電部に行わせてもよい。
 このようにすれば、放電動作の起動期間が経過すると、バッテリーからの電力が電力供給対象に放電されて、電力供給対象に電力が供給されるようになる。そして取り去り検出用の間欠送電は、放電動作の起動期間よりも短い期間の間隔で行われる。従って、取り去り検出用の間欠送電と、起動期間の経過によるバッテリーの放電動作の開始とを、両立して実現できるようになる。
 また本発明の一態様では、前記制御部は、前記通信データに基づいて前記受電装置のバッテリーの温度異常が検出された場合に、前記通常送電を停止させ、ウェイト期間の間、間欠送電を前記送電部に行わせ、前記ウェイト期間の経過後に、前記通常送電を再開させてもよい。
 このようにすれば、温度異常が検出された場合に、通常送電が停止し、ウェイト期間の間は間欠送電が行われ、ウェイト期間が経過すると、通常送電が再開するようになる。これにより、例えば高温の環境等での適切なバッテリーの充電制御等を実現できるようなる。
 また本発明の一態様では、前記送電部は、前記送電ドライバーと、前記送電ドライバーの電源電圧を制御する電源電圧制御部と、を有し、前記制御部は、前記受電装置からの前記通信データに基づいて、前記電源電圧制御部を制御してもよい。
 このようにすれば、受電装置からの通信データに基づいて、送電ドライバーに供給される電源電圧等を制御できるようになり、適切な電力制御や安全な電力制御等の実現が可能になる。
 また本発明の一態様では、前記制御部は、前記通常送電の期間では、前記通信データが含む送電電力設定情報に基づき可変に変化する前記電源電圧を、前記電源電圧制御部から前記送電ドライバーに供給させ、着地検出用、取り去り検出用の間欠送電の期間では、着地検出用、取り去り検出用の前記電源電圧を、前記電源電圧制御部から前記送電ドライバーに供給させてもよい。
 このようにすれば、通常送電の期間においては、送電電力設定情報に基づき可変に変化する電源電圧を送電ドライバーに供給して、適切な電力制御を実現できるようになる。また着地検出用や取り去り検出用の間欠送電の期間においては、着地検出用、取り去り検出用の電源電圧を送電ドライバーに供給して、適切な着地検出や取り去り検出を実現できるようになる。
 また本発明の一態様では、前記制御部は、着地検出用又は取り去り検出用の前記電源電圧として、可変の電圧を、前記電源電圧制御部から前記送電ドライバーに供給させてもよい。
 このようにすれば、状況に応じた可変の電圧の電源電圧を送電ドライバーに供給して、着地検出用や取り去り検出用の間欠送電を実行できるようになる。
 本発明の一態様は、送電装置と受電装置とを有する無接点電力伝送システムにおける受電側の制御装置であって、前記送電装置からの電力を受電する受電部が受電した電力に基づいて、バッテリーを充電する充電部と、負荷変調により、前記送電装置に対して通信データを送信する負荷変調部と、前記バッテリーの放電動作を行って、前記バッテリーからの電力を電力供給対象に対して供給する放電部と、前記放電部を制御する制御部と、を含み、前記負荷変調部は、着地が検出された場合に、前記負荷変調を開始し、前記制御部は、着地が検出された場合に、前記放電部の放電動作を停止する制御装置に関係する。
 本発明の一態様によれば、送電装置からの電力が受電され、受電した電力に基づいてバッテリーの充電が行われると共に、バッテリーからの電力を電力供給対象に対して供給する放電動作が行われる。また負荷変調により送電装置に対して通信データが送信される。そして本発明の一態様では、着地が検出された場合に、負荷変調が開始すると共に、放電部の放電動作が停止する。このように、着地検出を条件に負荷変調を開始することで、簡素な動作シーケンスで、無接点電力伝送と、負荷変調による通信とを実現できるようになる。また着地が検出された場合に、放電動作が停止することで、無駄な電力の消費を抑制でき、省電力化を図れるようになる。
 また本発明の一態様では、前記制御部は、取り去り期間において、前記放電部に放電動作を行わせてもよい。
 このようにすれば、取り去り期間において、放電部の放電動作を行わせて、バッテリーからの電力を電力供給対象に供給し、電力供給対象の通常動作等を実現できるようになる。
 また本発明の一態様では、前記制御部は、前記受電部の出力電圧に基づいて、着地検出、取り去り検出を行ってもよい。
 このようにすれば、受電部の出力電圧をモニターして、着地検出、取り去り検出を実行できるようになる。
 また本発明の一態様では、前記負荷変調部は、前記負荷変調により、送電電力設定情報を含む前記通信データを前記送電装置に送信してもよい。
 このようにすれば、例えば着地が検出されると、負荷変調が開始し、この負荷変調により、送電電力設定情報を含む通信データを送電装置に送信できる。これにより、例えば送電電力設定情報に基づく電力制御等を実現できるようになる。
 本発明の他の態様は、上記のいずれかに記載の制御装置を含む電子機器に関係する。
 本発明の他の態様は、送電装置と受電装置とを含む無接点電力伝送システムであって、前記送電装置は、前記受電装置に電力を送電すると共に、負荷変調により通信データを送信する前記受電装置との間での通信処理を行い、前記受電装置は、前記送電装置から受電した電力に基づいて、バッテリーを充電し、前記負荷変調により、前記送電装置に対して通信データを送信すると共に、前記バッテリーの放電動作を行って、前記バッテリーからの電力を電力供給対象に対して供給し、前記受電装置は、着地が検出された場合に、前記負荷変調を開始すると共に、前記バッテリーの放電動作を停止し、前記送電装置は、前記受電装置が前記負荷変調を開始したことを条件に、通常送電を開始し、前記負荷変調が継続されている間は、前記通常送電を継続する無接点電力伝送システムに関係する。
 本発明の他の態様によれば、着地が検出されると、受電装置による負荷変調が開始して、受電装置から送電装置に対して通信データが送信されると共に、バッテリーの放電動作が停止して、バッテリーからの電力の電力供給対象への供給が停止する。そして、この負荷変調が開始されたことを条件に、送電装置は受電装置に対する通常送電を開始し、負荷変調が継続されている間は、この通常送電が継続されるようになる。従って、簡素な動作シーケンスで、無接点電力伝送と、負荷変調による通信とを実現できるようになると共に、省電力化等も図れるようになる。
図1(A)、図1(B)は本実施形態の無接点電力伝送システムの説明図。 本実施形態の送電装置、受電装置、送電側、受電側の制御装置の構成例。 本実施形態の無接点電力伝送システムの動作シーケンスの概要の説明図。 本実施形態の動作シーケンスを説明する信号波形図。 本実施形態の動作シーケンスを説明する信号波形図。 本実施形態の動作シーケンスを説明する信号波形図。 本実施形態の動作シーケンスを説明する信号波形図。 負荷変調による通信手法の説明図。 通信部の構成例。 受電側の通信構成の説明図。 通信時のノイズに起因する問題点の説明図。 本実施形態の通信手法の説明図。 本実施形態の通信手法の説明図。 図14(A)、図14(B)は通信データのフォーマットの例。 通信処理の詳細例を説明するフローチャート。 図16(A)、図16(B)は本実施形態の電力制御手法の説明図。 図17(A)、図17(B)は本実施形態の電力制御手法を用いた場合の効果についての説明図。 受電部、充電部の詳細な構成例。
 以下、本発明の好適な実施の形態について詳細に説明する。なお以下に説明する本実施形態は特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。
 1.電子機器
 図1(A)に本実施形態の無接点電力伝送システムの一例を示す。充電器500(電子機器の1つ)は送電装置10を有する。電子機器510は受電装置40を有する。また電子機器510は、操作用のスイッチ部514やバッテリー90を有する。なお図1(A)ではバッテリー90を模式的に示しているが、このバッテリー90は実際には電子機器510に内蔵されている。図1(A)の送電装置10と受電装置40により本実施形態の無接点電力伝送システムが構成される。
 充電器500には、電源アダプター502を介して電力が供給され、この電力が、無接点電力伝送により送電装置10から受電装置40に送電される。これにより、電子機器510のバッテリー90を充電し、電子機器510内のデバイスを動作させることができる。
 なお充電器500の電源は、USB(USBケーブル)による電源であってもよい。また、本実施形態が適用される電子機器510としては種々の機器を想定できる。例えば補聴器、腕時計、生体情報測定装置(ウェアラブル機器)、携帯情報端末(スマートフォン、携帯電話機等)、コードレス電話器、シェーバー、電動歯ブラシ、リストコンピューター、ハンディターミナル、電気自動車、或いは電動自転車などの種々の電子機器を想定できる。
 図1(B)に模式的に示すように、送電装置10から受電装置40への電力伝送は、送電側に設けられた1次コイルL1(送電コイル)と、受電側に設けられた2次コイルL2(受電コイル)を電磁的に結合させて電力伝送トランスを形成することなどで実現される。これにより非接触での電力伝送が可能になる。
 2.送電装置、受電装置、送電側、受電側の制御装置
 図2に本実施形態の送電装置10、受電装置40、送電側の制御装置20、受電側の制御装置50の構成例を示す。図1(A)の充電器500などの送電側の電子機器は、少なくとも図2の送電装置10を含む。また受電側の電子機器510は、少なくとも受電装置40とバッテリー90と電力供給対象100を含むことができる。電力供給対象100は、例えば処理部(DSP等)などの各種のデバイスである。そして図2の構成により、1次コイルL1と2次コイルL2を電磁的に結合させて送電装置10から受電装置40に対して電力を伝送し、バッテリー90の充電等を行う無接点電力伝送(非接触電力伝送)システムが実現される。
 送電装置10(送電モジュール、1次モジュール)は、1次コイルL1、送電部12、表示部16、制御装置20を含む。なお送電装置10は図2の構成に限定されず、その構成要素の一部(例えば表示部等)を省略したり、他の構成要素を追加したり、接続関係を変更するなどの種々の変形実施が可能である。
 送電部12は、電力伝送時において所定周波数の交流電圧を生成して、1次コイルL1に供給する。この送電部12は、1次コイルL1の一端を駆動する第1の送電ドライバーDR1や、1次コイルL1の他端を駆動する第2の送電ドライバーDR2や、電源電圧制御部14を含む。また送電部12は、1次コイルL1と共に共振回路を構成する少なくとも1つのキャパシター(コンデンサー)を含むことができる。
 送電部12の送電ドライバーDR1、DR2の各々は、例えばパワーMOSトランジスターにより構成されるインバーター回路(バッファー回路)などにより実現される。これらの送電ドライバーDR1、DR2は、制御装置20のドライバー制御回路22により制御(駆動)される。
 送電部12の電源電圧制御部14は、送電ドライバーDR1、DR2の電源電圧VDRVを制御する。例えば制御部24は、受電側から受信した通信データに基づいて、電源電圧制御部14を制御する。これにより、送電ドライバーDR1、DR2に供給される電源電圧VDRVが制御されて、例えば送電電力の可変制御等が実現される。この電源電圧制御部14は、例えばDCDCコンバーターなどにより実現できる。例えば電源電圧制御部14は、電源からの電源電圧(例えば5V)の昇圧動作を行って、送電ドライバー用の電源電圧VDRV(例えば6V~15V)を生成して、送電ドライバーDR1、DR2に供給する。具体的には、送電装置10から受電装置40への送電電力を高くする場合には、電源電圧制御部14は、送電ドライバーDR1、DR2に供給する電源電圧VDRVを高くし、送電電力を低くする場合には、電源電圧VDRVを低くする。
 1次コイルL1(送電側コイル)は、2次コイルL2(受電側コイル)と電磁結合して電力伝送用トランスを形成する。例えば電力伝送が必要なときには、図1(A)、図1(B)に示すように、充電器500の上に電子機器510を置き、1次コイルL1の磁束が2次コイルL2を通るような状態にする。一方、電力伝送が不要なときには、充電器500と電子機器510を物理的に離して、1次コイルL1の磁束が2次コイルL2を通らないような状態にする。
 表示部16は、無接点電力伝送システムの各種状態(電力伝送中、ID認証等)を、色や画像などを用いて表示するものであり、例えばLEDやLCDなどにより実現できる。
 制御装置20は、送電側の各種制御を行うものであり、集積回路装置(IC)などにより実現できる。この制御装置20は、ドライバー制御回路22、制御部24、通信部30を含む。また制御装置20は、クロック生成回路37、発振回路38を含むことができる。なお制御装置20は図2の構成に限定されず、その構成要素の一部(例えばクロック生成回路、発振回路等)を省略したり、他の構成要素を追加したり、接続関係を変更するなどの種々の変形実施が可能である。例えば送電部12等を制御装置20に内蔵させる変形実施も可能である。
 ドライバー制御回路22は、受電装置40に電力を送電する送電部12の送電ドライバーDR1、DR2を制御する。例えばドライバー制御回路22は、送電ドライバーDR1、DR2を構成するトランジスターのゲートに対して制御信号(駆動信号)を出力し、送電ドライバーDR1、DR2により1次コイルL1を駆動させる。
 制御部24は、送電側の制御装置20の各種の制御処理を実行する。例えば制御部24は、ドライバー制御回路22の制御を行う。具体的には制御部24は、電力伝送、通信処理等に必要な各種のシーケンス制御や判定処理を行う。この制御部24は、例えばゲートアレイ等の自動配置配線手法で生成されたロジック回路や、或いはマイクロコンピューターなどの各種のプロセッサーにより実現できる。
 通信部30は、受電装置40との間での通信データの通信処理を行う。例えば通信部30は、負荷変調により通信データを送信する受電装置40(制御装置50)との間での通信処理を行う。具体的には通信部30は、受電装置40からの通信データを検出して受信するための処理を行う。
 発振回路38は、例えば水晶発振回路などにより構成され、1次側のクロック信号を生成する。クロック生成回路37は、駆動周波数を規定する駆動クロック信号等を生成する。そして、ドライバー制御回路22は、この駆動クロック信号や制御部24からの制御信号などに基づいて、所与の周波数(駆動周波数)の制御信号を生成し、送電部12の送電ドライバーDR1、DR2に出力して、制御する。
 受電装置40(受電モジュール、2次モジュール)は、2次コイルL2、制御装置50を含む。なお受電装置40は図2の構成に限定されず、その構成要素の一部を省略したり、他の構成要素を追加したり、接続関係を変更するなどの種々の変形実施が可能である。
 制御装置50は、受電側の各種制御を行うものであり、集積回路装置(IC)などにより実現できる。この制御装置50は、受電部52、制御部54、負荷変調部56、充電部58、放電部60を含む。また不揮発性メモリー62、検出部64を含むことができる。なお制御装置50は図2の構成に限定されず、その構成要素の一部を省略したり、他の構成要素を追加したり、接続関係を変更するなどの種々の変形実施が可能である。例えば受電部52等を制御装置50の外部に設けるなどの変形実施が可能である。
 受電部52は、送電装置10からの電力を受電する。具体的には受電部52は、2次コイルL2の交流の誘起電圧を直流の整流電圧VCCに変換して、出力する。この変換は受電部52が有する整流回路53により行われる。整流回路53は、例えば複数のトランジスターやダイオードなどにより実現できる。
 制御部54は、受電側の制御装置50の各種の制御処理を実行する。例えば制御部54は、負荷変調部56、充電部58、放電部60の制御を行う。また受電部52や不揮発性メモリー62や検出部64などの制御を行うこともできる。この制御部54は、例えばゲートアレイ等の自動配置配線手法で生成されたロジック回路や、或いはマイクロコンピューターなどの各種のプロセッサーにより実現できる。
 負荷変調部56は負荷変調を行う。例えば負荷変調部56は電流源ISを有し、この電流源ISを用いて負荷変調を行う。具体的には、負荷変調部56は電流源IS(定電流源)とスイッチ素子SWを有する。電流源ISとスイッチ素子SWは、例えば整流電圧VCCのノードNVCとGND(広義には低電位側電源電圧)のノードとの間に直列に設けられる。そして、例えば制御部54からの制御信号に基づいてスイッチ素子SWがオン又はオフにされ、ノードNVCからGNDに流れる電流源ISの電流(定電流)をオン又はオフにすることで、負荷変調が実現される。
 なお、ノードNVCにはキャパシターCMの一端が接続される。このキャパシターCMは例えば制御装置50の外付け部品として設けられる。またスイッチ素子SWはMOSのトランジスターなどにより実現できる。このスイッチ素子SWは、電流源ISの回路を構成するトランジスターとして設けられるものであってもよい。また負荷変調部56は図2の構成に限定されず、例えば電流源ISの代わりとして抵抗を用いるなどの種々の変形実施が可能である。
 充電部58はバッテリー90の充電(充電制御)を行う。例えば充電部58は、送電装置10からの電力を受電する受電部52が受電した電力に基づいて、バッテリー90を充電する。例えば充電部58は、受電部52からの整流電圧VCC(広義には直流電圧)に基づく電圧が供給されて、バッテリー90を充電する。この充電部58はCC充電回路59を含むことができる。CC充電回路59は、バッテリー90のCC(Constant-Current)充電を行う回路である。
 放電部60はバッテリー90の放電動作を行う。例えば放電部60(電力供給部)は、バッテリー90の放電動作を行って、バッテリー90からの電力を電力供給対象100に対して供給する。例えば放電部60は、バッテリー90の充電電圧VBATが供給され、出力電圧VOUTを電力供給対象100に供給する。この放電部60はチャージポンプ回路61を含むことができる。チャージポンプ回路61は、バッテリー電圧VBATを降圧(例えば1/3降圧)して、出力電圧VOUT(VBAT/3)を電力供給対象100に対して供給する。この放電部60(チャージポンプ回路)は、例えば充電電圧VBATを電源電圧として動作する。
 バッテリー90は例えば充電可能な二次電池であり、例えばリチウム電池(リチウムイオン二次電池、リチウムイオンポリマー二次電池等)、ニッケル電池(ニッケル・水素蓄電池、ニッケル・カドミウム蓄電池等)などである。電力供給対象100は、例えば、処理部(DSP、マイコン)などのデバイス(集積回路装置)であり、受電装置40を内蔵する電子機器510(図1(A))に設けられ、バッテリー90の電力供給対象となるデバイスである。
 不揮発性メモリー62は、各種の情報を記憶する不揮発性のメモリーデバイスである。この不揮発性メモリー62は、例えば受電装置40(制御装置50)のステータス情報等の各種の情報を記憶する。不揮発性メモリー62としては、例えばEEPROMなどを用いることができる。EEPROMとしては例えばMONOS(Metal-Oxide-Nitride-Oxide-Silicon)型のメモリーを用いることができる。例えばMONOS型のメモリーを用いたフラッシュメモリーを用いることができる。或いはEEPROMとして、フローティングゲート型などの他のタイプのメモリーを用いてもよい。
 検出部64は各種の検出処理を行う。例えば検出部64は、整流電圧VCCや充電電圧VBAT等を監視して、各種の検出処理を実行する。具体的には検出部64はA/D変換回路65を有し、整流電圧VCCや充電電圧VBATに基づく電圧や、不図示の温度検出部からの温度検出電圧などを、A/D変換回路65によりA/D変換し、得られたデジタルのA/D変換値を用いて検出処理を実行する。検出部64が行う検出処理としては、過放電、過電圧、過電流、或いは温度異常(高温、低温)の検出処理を想定できる。例えば充電時に検出部64が過電圧、温度異常を検出することで、過電圧保護、高温保護、低温保護を実現できる。また放電時に検出部64が過放電、過電流を検出することで、過放電保護、過電流保護を実現できる。
 そして本実施形態では、送電装置10と受電装置40とを有する無接点電力伝送システムにおける送電側の制御装置20が、ドライバー制御回路22と、制御部24と、通信部30を含む。そして制御部24は、受電装置40(制御装置50)が負荷変調を開始したことを条件(負荷変調を開始した場合)に、送電部12による通常送電を開始させる。例えば制御部24は、ドライバー制御回路22を介して送電部12を制御して、通常送電を開始させる。具体的には制御部24は、通常送電の開始前には、例えばID認証等の認証処理を行わずに、受電側の負荷変調の開始が検出されたことを条件に、バッテリー90を充電するための通常送電(本送電、連続送電)を開始する。例えば受電装置40の負荷変調部56が負荷変調を開始すると、この負荷変調による負荷状態の変化が送電側により検出され、この検出結果に基づき制御部24が、送電部12による通常送電を開始させる。
 具体的には、負荷変調部56は、着地が検出されると(着地が検出されて制御装置50のリセット状態が解除されると)、まず初めに、例えば空データ(例えば1パケット分の空データ。ダミーデータ)の通信データを負荷変調により送信する。制御部24は、この空データの通信データを受信すると、通常送電を開始する。具体的には、通信部30が、その電流検出機能等により空データの通信データを検出し、制御部24は、通信部30により空データの通信データが検出されると、通常送電を開始する。
 そして制御部24は、負荷変調が継続されている間は、送電部12による通常送電を継続させる。例えば制御部24は、ドライバー制御回路22を介して送電部12を制御して、通常送電を継続させる。そして制御部24は、負荷変調が非検出になると、送電部12による通常送電を停止させる。具体的には制御部24は、負荷変調が非検出となった場合に、通常送電を停止させ、例えば着地検出用の間欠送電を送電部12に行わせる。例えば通信部30による通信データの検出が非検出になった場合に、負荷変調が非検出であると判断して、通常送電を停止させる。
 また制御部24は、通信データ(負荷変調による送信される通信データ)に基づいて受電装置40のバッテリー90の満充電が検出(通知)された場合に、通常送電を停止させ、例えば取り去り検出用の間欠送電を送電部12に行わせる。また制御部24は、通信データに基づいて受電側の異常が検出された場合に、通常送電を停止させ、取り去り検出用の間欠送電を送電部12に行わせる。このように制御部24は、通信部30が受信した通信データに基づいて、通常送電の停止制御を行う。
 また受電装置40は、受電部52の出力電圧(VCC)が低下し、放電動作の起動期間が経過した後に、バッテリー90からの電力を電力供給対象100に対して放電する。具体的には、受電部52の出力電圧(VCC)が判定電圧(例えば3.1V)を下回ってから所与の起動期間が経過した後に、バッテリー90からの電力を電力供給対象100に対して放電する。この場合に、送電側の制御部24は、当該起動期間よりも短い期間の間隔で、取り去り検出用の間欠送電を送電部12に行わせる。
 また制御部24は、通信データに基づいて受電装置40のバッテリー90の温度異常が検出された場合に、通常送電を停止させる。そしてウェイト期間の間、間欠送電を送電部12に行わせ、ウェイト期間の経過後に通常送電を再開させる。
 また送電部12は、送電ドライバーDR1、DR2と、送電ドライバーDR1、DR2の電源電圧VDRVを制御する電源電圧制御部14を有する。この場合に制御部24は、負荷変調が行われている通常送電の期間の間、受電装置40からの通信データ(負荷変調により送信される通信データ)に基づいて、電源電圧制御部14の制御を行う。例えば、通信データが含む送電電力設定情報(電力伝送の状態情報。例えば整流電圧の情報)に基づいて、電源電圧制御部14が供給する電源電圧VDRVを可変に制御することで、無接点電力伝送により送電される電力を可変に制御する。
 また本実施形態では、無接点電力伝送システムにおける受電側の制御装置50は、充電部58と、負荷変調部56と、放電部60と、放電部60などを制御する制御部54を含む。そして負荷変調部56は、着地が検出された場合に、負荷変調を開始する。例えば負荷変調部56は、制御部54により着地が検出された場合に、制御部54の制御の下で、負荷変調を開始する。そして制御部54は、着地が検出された場合に、放電部60の放電動作を停止する。例えば制御部54は、取り去り期間(電子機器510が取り去られている期間)においては、放電部60に放電動作を行わせ、着地検出が行われると、この放電動作を停止する。この場合に制御部54は、受電部52の出力電圧(VCC)に基づいて、着地検出や取り去り検出を行うことができる。
 また本実施形態では負荷変調部56は、負荷変調により、送電電力設定情報を含む通信データを送電装置10に送信する。例えば送電電力設定情報として、受電部52の出力電圧(VCC)の情報を含む通信データを送信する。
 3.無接点電力伝送システムの動作シーケンス
 次に本実施形態の無接点電力伝送システムの動作シーケンスについて説明する。図3は動作シーケンスの概要を説明する図である。
 図3のA1では、受電装置40を有する電子機器510が、送電装置10を有する充電器500に上に置かれておらず、取り去り状態になっている。この場合にはスタンバイステートとなる。このスタンバイステートでは、送電側はウェイティング状態となり、受電側は放電動作オンの状態となる。
 具体的にはスタンバイステートでは、送電装置10の送電部12は、着地検出のための間欠送電を行う。即ち、送電部12は、通常送電のような連続送電は行わずに、所与の期間毎に間欠的に電力を送電する間欠送電を行って、電子機器510の着地を検出する状態になる。またスタンバイモードでは、受電装置40では、電力供給対象100への放電動作がオンになっており、電力供給対象100への電力供給がイネーブルになっている。即ち、受電装置40の放電部60は、バッテリー90からの電力を電力供給対象100に放電する動作を行う。これにより、処理部等の電力供給対象100は、バッテリー90からの電力が供給されて動作可能になる。
 図3のA2に示すように、電子機器510が充電器500に上に置かれ、着地が検出されると、通信チェック&充電ステートになる。この通信チェック&充電ステートでは、送電側は通常送電を行い、受電側は、充電動作がオンになると共に、放電動作がオフになる。また受電側は、負荷変調による通信データの送信を行う。
 具体的には通信チェック&充電ステートでは、送電装置10の送電部12は、連続送電である通常送電を行う。この際に、電力伝送の状態などに応じて電力が可変に変化する電力制御を行いながら、通常送電を行う。またバッテリー90の充電状態に基づく制御も行われる。電力伝送の状態は、例えば1次コイルL1、2次コイルL2の位置関係(コイル間距離等)などにより決まる状態であり、例えば受電部52の出力電圧である整流電圧VCCなどの情報に基づいて判断できる。バッテリー90の充電状態は、例えば充電電圧VBATなどの情報に基づいて判断できる。
 また通信チェック&充電ステートでは、受電装置40の充電部58の充電動作がオンになり、受電部52が受電した電力に基づいてバッテリー90の充電が行われる。また放電部60の放電動作がオフになり、バッテリー90からの電力が、電力供給対象100に供給されなくなる。また通信チェック&充電ステートでは、負荷変調部56の負荷変調により、通信データが送電側に送信される。例えば電力伝送状態情報(VCC等)や、充電状態情報(VBATや各種のステータスフラグ等)や、温度などの情報を含む通信データが、通常送電期間中の常時の負荷変調により、受電側から送電側に送信される。例えば送電部12の電源電圧制御部14による電力制御は、通信データに含まれる電力伝送状態情報などに基づいて行われる。
 図3のA3に示すように、バッテリー90の満充電が検出されると、満充電スタンバイステートになる。満充電スタンバイステートでは、送電側はウェイティング状態となり、受電側は、放電動作オフのままの状態となる。
 具体的には、送電部12は、例えば取り去り検出のための間欠送電を行う。即ち、送電部12は、通常送電のような連続送電は行わずに、所与の期間毎に間欠的に電力を送電する間欠送電を行って、電子機器510の取り去りを検出する状態になる。また放電部60の放電動作はオフのままとなり、電力供給対象100への電力供給もディスエーブルのままとなる。
 図3のA4に示すように電子機器510の取り去りが検出されると、A5に示すように電子機器510が使用状態になり、受電側の放電動作がオンになる。
 具体的には、放電部60の放電動作がオフからオンに切り替わり、バッテリー90からの電力が放電部60を介して電力供給対象100に供給される。これにより、バッテリー90からの電力が供給されて、処理部等の電力供給対象100が動作し、ユーザーが電子機器510を通常に使用できる状態となる。
 以上のように本実施形態では図3のA1に示すように、電子機器510の着地が検出されると、通常送電が行われ、この通常送電期間において常時の負荷変調が行われる。また着地が検出されると、放電部60の放電動作が停止する。そして、この常時の負荷変調では、送電側の電力制御のための情報や受電側のステータスを表す情報を含む通信データが、受電側から送電側に送信される。例えば電力制御のための情報(電力伝送状態情報)を通信することで、例えば1次コイルL1と2次コイルL2の位置関係等に応じた最適な電力制御を実現できる。また受電側のステータスを表す情報を通信することで、最適で安全な充電環境を実現できる。そして本実施形態では、負荷変調が継続している間は、通常送電も継続され、放電部60の放電動作もオフのままになる。
 また本実施形態では図3のA3に示すように、バッテリー90の満充電が検出されると、通常送電が停止し、取り去り検出用の間欠送電が行われる。そしてA4、A5に示すように、取り去りが検出されて、取り去り期間になると、放電部60の放電動作が行われる。これによりバッテリー90からの電力が電力供給対象100に供給されて、電子機器510の通常動作が可能になる。なお、着地検出や取り去り検出は、受電部52の出力電圧(例えば整流電圧VCC)に基づいて行われる。
 このように本実施形態では、電子機器510のバッテリー90の充電期間(通常送電期間)においては、電力供給対象100への放電動作がオフになるため、充電期間において電力供給対象100により無駄に電力が消費されてしまう事態を抑制できる。
 そして、電子機器510の取り去りが検出されると、通常送電から間欠送電に切り替わると共に、電力供給対象100への放電動作がオンになる。このように放電動作がオンになることで、バッテリー90からの電力が電力供給対象100に供給されるようになり、処理部(DSP)等の電力供給対象100の通常動作が可能になる。このようにすることで、例えば電子機器510が充電器500の上に置かれる充電期間においては動作しないようなタイプの電子機器510(例えば、補聴器等のユーザーが装着する電子機器)において、好適な無接点電力伝送の動作シーケンスを実現できる。即ち、このようなタイプの電子機器510では、充電期間(通常送電期間)において、バッテリー90からの電力の放電動作がオフになることで、省電力化を実現できる。そして、取り去りが検出されると、自動的に放電動作がオンになることで、電子機器510の電力供給対象100である各種のデバイスに対して、バッテリー90からの電力が供給され、当該デバイスが動作できるようになり、電子機器510の通常の動作モードに自動的に移行できるようになる。
 図4、図5、図6は本実施形態の無接点電力伝送システムの動作シーケンスを説明するための信号波形図である。
 図4のB1は、図3のA1のスタンバイステートであり、着地検出用の間欠送電が行われている。即ち、期間TL1の間隔毎に期間TL2の間隔の送電が行われる。TL1の間隔は例えば3秒であり、TL2の間隔は例えば50ミリ秒である。そして図4のB2、B3では、受電部52の出力電圧である整流電圧VCCは6.0V以下であるため、負荷変調による通信は行われない。
 一方、B4では整流電圧VCCが着地検出の閾値電圧である6.0Vを超えたため、B5に示すように負荷変調部56が負荷変調を開始する。即ち、B2、B3ではL1、L2のコイルが十分には電磁的結合状態になっていないが、B4ではL1、L2のコイルが図1(B)に示すように適正な電磁的結合状態になっている。このため、整流電圧VCCが上昇して、6.0Vを超え、負荷変調が開始する。そして、この負荷変調(空の通信データ)が送電側により検出されると、B6に示すように送電部12による通常送電が開始する。B6の通常送電は、B1の間欠送電とは異なる連続送電であり、この通常送電による電力により、充電部58によるバッテリー90の充電が開始する。この時、放電部60の放電動作はオフになっている。また、B5に示す負荷変調により、整流電圧や充電電圧やステータスフラグなどの各種の情報を含む通信データが、受電側から送電側に送信されて、送電制御が実行される。なお、B5の負荷変調は、B7に示す着地検出用の間欠送電により整流電圧VCCが上昇したことにより開始している。
 図5のC1では、バッテリー90の充電が行われる通常送電期間において、電子機器510が取り去られている。このC1の取り去りは、C2、C3に示すように、バッテリー90の満充電前の取り去りである。即ち、満充電フラグが非アクティブレベルであるLレベルになっている状態での取り去りである。
 このように電子機器510の取り去りが行われると、送電側の電力が受電側に伝達されなくなり、受電部52の出力電圧である整流電圧VCCが低下する。そしてC4に示すように例えばVCC<3.1Vになると、C5に示すように負荷変調部56による負荷変調が停止する。負荷変調が停止すると、C6に示すように送電部12による通常送電が停止する。
 また、整流電圧VCC(出力電圧)が低下し、判定電圧である例えば3.1Vを下回ると、不図示の受電側のスタートキャパシターの放電が開始する。このスタートキャパシターは、受電側の放電動作の起動用(起動期間の計測用)のキャパシターであり、例えば受電側の制御装置50の外付け部品として設けられる。そして、整流電圧VCCが判定電圧(3.1V)を下回ってから、起動期間TSTが経過すると、C8に示すように放電部60の放電動作がオフからオンに切り替わり、バッテリー90からの電力が電力供給対象100に供給されるようになる。具体的には、スタートキャパシターの電圧(充電電圧)が放電動作オンのための閾値電圧を下回ると、起動期間TSTが経過したと判断され、放電部60の放電動作がオンになって、バッテリー90からの電力を電力供給対象100に対して放電される。これにより、図3のA5に示すように電子機器510が使用可能な状態になる。また送電部12は、通常送電を停止した後、C9に示すように、着地検出用の間欠送電を行うようになる。
 なお本実施形態では図2の受電側の制御部54として、充電系の制御部と、放電系の制御部が設けられている。充電系の制御部は、受電部52の整流電圧VCC(出力電圧)による電源電圧が供給されて動作する。放電系の制御部や放電部60は、バッテリー電圧VBATによる電源電圧が供給されて動作する。そして充電部58、負荷変調部56の制御等は充電系の制御部が行う。一方、スタートキャパシターの充放電の制御や放電部60の制御(放電動作のオン・オフ制御)等は、放電系の制御部が行う。
 図6のD1では、満充電フラグがアクティブレベルであるHレベルになっており、バッテリー90の満充電が検出されている。このように満充電が検出されると、図3のA3に示すように満充電スタンバイステートに移行し、D2に示すように満充電後の取り去り検出用の間欠送電が行われる。即ち、期間TR1の間隔毎に期間TR2の間隔の送電が行われる。TR1の間隔は例えば1.5秒であり、TR2の間隔は例えば50ミリ秒である。取り去り検出用の間欠送電の期間TR1の間隔は、着地検出用の間欠送電の期間TL1の間隔に比べて、短くなっている。
 この取り去り検出用の間欠送電により、図6のD3、D4に示すように受電部52の整流電圧がVCC>6.0Vとなり、D5、D6に示すように負荷変調が行われる。送電側は、この負荷変調(空の通信データ等)を検出することで、電子機器510が未だ取り去られていないことを検出できる。
 そして、前述のスタートキャパシターにより設定されるD7に示す起動期間TSTの間隔(例えば3秒)に比べて、取り去り検出用の間欠送電の期間TR1の間隔(例えば1.5秒)は短い。従って、電子機器510が取り去られていない状態では、スタートキャパシターの電圧(充電電圧)は、放電動作オンのための閾値電圧VTを下回らず、D8に示すように放電動作のオフからオンへの切り替わりは行われない。
 一方、D9では、電子機器510が取り去られている。そして、D4に示す取り去り検出用の間欠送電の期間TR2の終了後に、D10に示すように、受電部52の整流電圧VCCは判定電圧である3.1Vを下回るため、D7に示す起動期間TSTの計測がスタートする。そしてD11では、スタートキャパシターの電圧が放電動作オンのための閾値電圧VTを下回っており、起動期間TSTの経過が検出されている。これにより、放電部60の放電動作がオフからオンに切り替わり、バッテリー90からの電力が電力供給対象100に供給されるようになる。またD12に示すように、電子機器510の着地検出用の間欠送電が行われるようになる。
 図7は、温度異常(温度エラー)によるオーバーオールのウェイトステートでの動作シーケンスを説明するための信号波形図である。
 図7のE1では、例えばバッテリー温度が50度に達する温度異常(高温異常)が検出されており、温度エラーフラグがアクティブレベルであるHレベルになっている。この場合に本実施形態では、E2に示すようにオーバーオールのウェイト期間TOWが設定される。このウェイト期間TOWでは、通常送電は停止し、例えば取り去り検出用の間欠送電が行われる。つまり、図6で説明した満充電スタンバイステートと同様の間欠送電が行われる。例えば温度エラーフラグを含む通信データが、負荷変調により受電側から送電側に送信され、これにより送電部12の通常送電が停止し、間欠送電が開始する。
 ウェイト期間TOWの間隔は例えば5分であり、ウェイト期間TOWでは、連続送電である通常送電は行われず、バッテリー90の充電が行われない。このためバッテリー90が放熱し、図7のE3に示すようにバッテリー温度が低下する。そしてウェイト期間TOWが経過すると、E4に示すように通常送電が再開し、バッテリー90の充電が再開する。この時、本実施形態では、E5に示すように充電回数を表すサイクル回数の更新処理は行われない。即ち、温度異常に起因するバッテリー充電の繰り返しは、充電回数に含めるべきではないため、サイクル回数(サイクルタイム)を+1する更新処理は行われない。
 図7のE6では、再びバッテリー温度が50度に達し、温度エラーフラグがHレベルになっている。これによりE7に示すウェイト期間TOWが設定され、通常送電が停止して、間欠送電が行われるようになる。
 そして図7のE8では、電子機器510が取り去られており、図6で説明したスタートキャパシターの電圧が閾値電圧VTを下回ると、E9に示すように放電部60の放電動作がオフからオンに切り替わる。そしてE10に示すように送電部12による着地検出用の間欠送電が行われるようになる。
 以上のように本実施形態では、図4のB5に示すように受電装置40が負荷変調を開始したことを条件に、B6に示すように送電部12による通常送電が開始する。そしてB5の負荷変調が継続されている間は、B6に示す通常送電は継続する。具体的には図5のC5に示すように負荷変調が非検出となった場合に、C6に示すように送電部12による通常送電が停止する。そしてC9に示すように送電部12による着地検出用の間欠送電が行われるようになる。
 このように本実施形態では、負荷変調の開始を条件に通常送電を開始し、負荷変調が継続されている間は通常送電を継続し、負荷変調が非検出になると通常送電を停止するという動作シーケンスを採用している。このようにすれば、複雑な認証処理等を不要にでき、シンプルで簡素な動作シーケンスで、無接点電力伝送と、負荷変調による通信を実現できるようになる。また、通常送電期間中において、常時の負荷変調による通信を行うことで、電力伝送の状態等に応じた効率的な無接点電力伝送も実現できるようになる。
 また本実施形態では、図6のD1に示すように、受電側からの通信データに基づいて受電装置40のバッテリー90の満充電が検出された場合には、D2に示すように、送電部12による通常送電が停止し、取り去り検出用の間欠送電が行われるようになる。そしてD9に示すように電子機器510が取り去られて、当該取り去りが検出されると、D12に示すように送電部12による着地検出用の間欠送電が行われるようになる。
 このようにすれば、満充電が検出されると、連続送電である通常送電が停止し、間欠的に電力を伝送する間欠送電に移行するようになる。これにより、取り去り期間等において、無駄に電力が消費されてしまうのを抑制でき、省電力化等を図れるようになる。
 また本実施形態では、通信データに基づいて受電側の異常が検出された場合にも、送電部12による通常送電が停止し、取り去り検出用の間欠送電が行われるようになる。この受電側の異常とは、例えばバッテリー90の電圧が1.0Vを下回るバッテリーフェールなどのバッテリー充電エラーや、充電時間が所定期間(例えば6~8時間)を超えてしまうタイマーエンドのエラーなどである。このようにすれば、受電側の異常が検出された場合に、連続送電である通常送電が自動的に停止して、間欠送電に移行するようになるため、安全性や信頼性等を確保できる。
 また受電側の異常として、温度異常が生じた場合にも、送電部12による通常送電が停止し、取り去り検出用の間欠送電が行われる。但し、温度異常の場合には、図7に示すような特別な動作シーケンスが実行される。具体的には、図7のE1に示すように通信データ(温度エラーフラグ)に基づいて受電装置40のバッテリー90の温度異常(高温エラー)が検出された場合に、通常送電が停止し、E2に示すようにウェイト期間TOWの間、送電部12による間欠送電が行われる。そしてウェイト期間TOWの経過後に、E4に示すように送電部12による通常送電が再開する。
 このようにすれば、温度異常の場合には、ウェイト期間TOWが設定され、そのウェイト期間TOWの間は、連続送電である通常送電は行われず、バッテリー90の充電も行われないようになる。これにより、ウェイト期間TOWを利用して、バッテリー90の放熱等が可能になる。また、ウェイト期間TOWの経過後に、通常送電によるバッテリー90の充電を再開できる。従って、例えば高温の環境等での適切なバッテリー90の充電制御等を実現できるようになる。
 また本実施形態では、図5、図6で説明したように、受電装置40は、受電部52の出力電圧である整流電圧VCCが低下し、放電動作の起動期間TSTが経過した後に、バッテリー90からの電力を電力供給対象100に対して放電する。具体的には整流電圧VCCが判定電圧(3.1V)を下回ってから、起動期間TSTが経過した後に、放電動作が開始する。即ち、図5のC8や図6のD11に示すように、放電部60の放電動作がオンになって、バッテリー90からの電力が電力供給対象100に供給されるようになる。そして本実施形態では、図6のD2とD7に示すように、起動期間TST(例えば3秒)よりも短い期間TR1(例えば1.5秒)の間隔で、取り去り検出用の間欠送電が行われる。
 このようにすれば、取り去り検出用の期間TR1の長さでは、起動期間TSTは経過しないため、取り去り検出用の間欠送電の期間においては放電部60の放電動作はオンにならないようになる。そして図6のD9に示すように、電子機器510が取り去られると、取り去り検出用の間欠送電の期間のように整流電圧VCCが定期的に上昇することはなくなり、D7に示す起動期間TSTが経過することで、D11に示すように放電部60の放電動作がオンになる。従って、電子機器510の取り去りを検出して、自動的に、放電部60の放電動作をオンにして、バッテリー90からの電力を電源供給対象100に供給できるようになる。
 4.通信手法
 図8は、負荷変調による通信手法を説明する図である。図8に示すように、送電側(1次側)では、送電部12の送電ドライバーDR1、DR2が1次コイルL1を駆動する。具体的には送電ドライバーDR1、DR2は、電源電圧制御部14から供給された電源電圧VDRVに基づいて動作して、1次コイルL1を駆動する。
 一方、受電側(2次側)では、2次コイルL2のコイル端電圧を受電部52の整流回路53が整流し、ノードNVCに整流電圧VCCが出力される。なお、1次コイルL1とキャパシターCA1により送電側の共振回路が構成され、2次コイルL2とキャパシターCA2により受電側の共振回路が構成されている。
 受電側では、負荷変調部56のスイッチ素子SWをオン・オフさせることで、電流源ISの電流ID2をノードNVCからGND側に間欠的に流して、受電側の負荷状態(受電側の電位)を変動させる。
 送電側では、負荷変調による受電側の負荷状態の変動により、電源ラインに設けられたセンス抵抗RCSに流れる電流ID1が変動する。例えば送電側の電源(例えば図1(A)の電源アダプター502等の電源装置)と電源電圧制御部14との間に、電源に流れる電流を検出するためのセンス抵抗RCSが設けられている。電源電圧制御部14は、このセンス抵抗RCSを介して電源から電源電圧が供給される。そして負荷変調による受電側の負荷状態の変動により、電源からセンス抵抗RCSに流れる電流ID1が変動し、通信部30が、この電流変動を検出する。そして通信部30は、検出結果に基づいて、負荷変調により送信される通信データの検出処理を行う。
 図9に通信部30の具体的な構成の一例を示す。図9に示すように通信部30は、電流検出回路32、比較回路34、復調部36を含む。また、信号増幅用のアンプAP、フィルター部35を含むことができる。なお通信部30は図9の構成に限定されず、その構成要素の一部を省略したり、他の構成要素(例えばバンドパスフィルター部)を追加したり、接続関係を変更するなどの種々の変形実施が可能である。
 電流検出回路32は、電源(電源装置)から送電部12に流れる電流ID1を検出する。具体的には電源から電源電圧制御部14を介して送電部12に流れる電流ID1を検出する。この電流ID1は、例えばドライバー制御回路22等に流れる電流を含んでいてもよい。
 図9では、電流検出回路32は、IV変換用アンプIVCにより構成される。IV変換用アンプIVCは、その非反転入力端子(+)がセンス抵抗RCSの一端に接続され、その反転入力端子(-)がセンス抵抗RCSの他端に接続される。そしてIV変換用アンプIVCは、センス抵抗RCSに微少の電流ID1が流れることで生成される微少の電圧VC1-VC2を増幅して、検出電圧VDTとして出力する。この検出電圧VDTは、アンプAPにより更に増幅されて、検出電圧VDTAとして比較回路34に出力される。具体的にはアンプAPは、その非反転入力端子に検出電圧VDTが入力され、その反転入力端子に基準電圧VRFが入力され、基準電圧VRFを基準として増幅された検出電圧VDTAの信号を出力する。
 比較回路34は、電流検出回路32による検出電圧VDTAと、判定用電圧VCP=VRF+VOFFとの比較判定を行う。そして比較判定結果CQを出力する。例えば検出電圧VDTAが判定用電圧VCPを上回っているか、或いは下回っているかの比較判定を行う。この比較回路34は、例えばコンパレーターCPにより構成できる。この場合に、例えば判定用電圧VCP=VRF+VOFFの電圧VOFFは、コンパレーターCPのオフセット電圧などにより実現してもよい。
 復調部36は、比較回路34の比較判定結果CQ(フィルター処理後の比較判定結果FQ)に基づいて負荷変調パターンを判断する。即ち、負荷変調パターンの復調処理を行うことで、通信データを検出し、検出データDATとして出力する。送電側の制御部24は、この検出データDATに基づいて種々の処理を行う。
 なお図9では、比較回路34と復調部36との間にフィルター部35が設けられている。そして復調部36は、フィルター部35によるフィルター処理後の比較判定結果FQに基づいて、負荷変調パターンを判断する。このフィルター部35としては、例えばデジタルフィルターなどを用いることができるが、フィルター部35としてパッシブのフィルターを用いてもよい。フィルター部35を設けることで、例えば後述する図11のF1、F2でのノイズの悪影響等を低減できる。
 フィルター部35、復調部36は、例えば駆動クロック信号FCKが供給されて動作する。駆動クロック信号FCKは、送電周波数を規定する信号であり、ドライバー制御回路22は、この駆動クロック信号FCKが供給されて、送電部12の送電ドライバーDR1、DR2を駆動する。そして、一次コイルL1は、この駆動クロック信号FCKで規定される周波数(送電周波数)で駆動されることになる。
 なお、通信部30に、負荷変調の周波数帯域の信号を通過させ、負荷変調の周波数帯域以外の帯域の信号を減衰させるバンドパスフィルター処理を行うバンドパスフィルター部を設けてもよい。この場合には通信部30は、バンドパスフィルター部の出力に基づいて受電装置40からの通信データを検出する。具体的には、バンドパスフィルター部は、電流検出回路32による検出電圧VDTに対して、バンドパスフィルター処理を行う。そして比較回路34は、バンドパスフィルター部によるバンドパスフィルター処理後の検出電圧VDTAと判定用電圧VCPの比較判定を行う。このバンドパスフィルター部は、例えばIV変換用アンプIVCとアンプAPの間に設けることができる。
 図10は、受電側の通信構成を説明する図である。受電部52は、駆動クロック信号FCKに対応する周波数のクロック信号を抽出して、通信データ生成部55に供給する。通信データ生成部55は、図2の制御部54に設けられており、供給されたクロック信号に基づいて通信データの生成処理を行う。そして通信データ生成部55は、生成された通信データを送信するための制御信号CSWを負荷変調部56に出力し、この制御信号CSWにより例えばスイッチ素子SWのオン・オフ制御を行って、通信データに対応する負荷変調を負荷変調部56に行わせる。
 負荷変調部56は、例えば第1の負荷状態、第2の負荷状態というように、受電側の負荷状態(負荷変調による負荷)を変化させることで、負荷変調を行う。第1の負荷状態は、例えばスイッチ素子SWがオンになる状態であり、受電側の負荷状態(負荷変調の負荷)が高負荷(インピーダンス小)になる状態である。第2の負荷状態は、例えばスイッチ素子SWがオフになる状態であり、受電側の負荷状態(負荷変調の負荷)が低負荷(インピーダンス大)になる状態である。
 そして、これまでの負荷変調手法では、例えば第1の負荷状態を、通信データの論理レベル「1」(第1の論理レベル)に対応させ、第2の負荷状態を、通信データの論理レベル「0」(第2の論理レベル)に対応させて、受電側から送電側への通信データの送信を行っていた。即ち、通信データのビットの論理レベルが「1」である場合には、スイッチ素子SWをオンにし、通信データのビットの論理レベルが「0」である場合には、スイッチ素子SWをオフにすることで、所定のビット数の通信データを送信していた。
 しかしながら、例えばコイル間の結合度が低かったり、コイルが小型であったり、送電電力も低パワーであるような用途では、このような従来の負荷変調手法では、適正な通信の実現が難しい。即ち、負荷変調により受電側の負荷状態を、第1の負荷状態、第2の負荷状態というように変化させても、ノイズ等が原因で、通信データの論理レベル「1」、「0」のデータ検出エラーが発生してしまう。つまり、受電側で負荷変調を行っても、この負荷変調により、送電側のセンス抵抗RCSに流れる電流ID1は、非常に微少な電流となる。このため、ノイズが重畳すると、データ検出エラーが発生し、ノイズ等を原因とする通信エラーが発生してしまう。
 例えば図11は、検出電圧VDTA、比較回路30の判定用電圧VCP及び比較判定結果CQの信号波形を模式的に示した図である。図11に示すように、検出電圧VDTAは、基準電圧VRFを基準にして変化する電圧信号になっており、判定用電圧VCPは、この基準電圧VRFにコンパレーターCPのオフセット電圧VOFFを加算した電圧信号になっている。
 そして図11に示すように、例えば検出電圧VDTAの信号にノイズが重畳すると、F1、F2に示すように比較判定結果CQの信号のエッジの位置が変化し、期間TM1の幅(間隔)が長くなったり、短くなるというように変動してしまう。例えば期間TM1が論理レベル「1」に対応する期間であるとすると、期間TM1の幅が変動すると、通信データのサンプリングエラーが発生してしまい、通信データの検出エラーが生じる。特に、通常送電期間において常時の負荷変調を行って通信を行う場合には、通信データに重畳されるノイズが多くなる可能性があり、通信データの検出エラーが発生する確率が高くなってしまう。
 そこで本実施形態では、通信データの各ビットの論理レベル「1」(データ1)、論理レベル「0」(データ0)を、負荷変調パターンを用いて、受電側から送信し、送電側において検出する手法を採用している。
 具体的には図12に示すように、受電側の負荷変調部56は、送電装置10に送信する通信データの第1の論理レベル「1」については、負荷変調パターンが第1のパターンPT1となる負荷変調を行う。一方、通信データの第2の論理レベル「0」については、負荷変調パターンが第1のパターンPT1とは異なる第2のパターンPT2となる負荷変調を行う。
 そして送電側の通信部30(復調部)は、負荷変調パターンが第1のパターンPT1である場合には、第1の論理レベル「1」の通信データであると判断する。一方、負荷変調パターンが第1のパターンPT1とは異なる第2のパターンPT2である場合には、第2の論理レベル「0」の通信データであると判断する。
 ここで負荷変調パターンは、第1の負荷状態と第2の負荷状態で構成されるパターンである。第1の負荷状態は、負荷変調部56による受電側の負荷が、例えば高負荷になる状態である。具体的には、図12において、第1の負荷状態の期間TM1は、負荷変調部56のスイッチ素子SWがオンになって、電流源ISの電流がノードNVCからGND側に流れる期間であり、第1、第2のパターンPT1、PT2のHレベル(ビット=1)に対応する期間である。
 一方、第2の負荷状態は、負荷変調部56による受電側の負荷が、例えば低負荷になる状態である。具体的には、図12において第2の負荷状態の期間TM2は、負荷変調部56のスイッチ素子SWがオフになる期間であり、第1、第2のパターンPT1、PT2のLレベル(ビット=0)に対応する期間である。
 そして図12において、第1のパターンPT1は、第1の負荷状態の期間TM1の幅が第2のパターンPT2に比べて長くなるパターンとなっている。このように第1の負荷状態の期間TM1の幅が、第2のパターンPT2に比べて長い第1のパターンPT1については、論理レベル「1」であると判断される。一方、第1の負荷状態の期間TM1の幅が、第1のパターンPT1に比べて短い第2のパターンPT2については、論理レベル「0」であると判断される。
 図12に示すように、第1のパターンPT1は、例えば(1110)のビットパターンに対応するパターンである。第2のパターンPT2は、例えば(1010)のビットパターンに対応するパターンである。これらのビットパターンにおいて、ビット=1は、負荷変調部56のスイッチ素子SWがオンになる状態に対応し、ビット=0は、負荷変調部56のスイッチ素子SWがオフになる状態に対応する。
 例えば受電側は、送信する通信データのビットが論理レベル「1」である場合には、第1のパターンPT1に対応する(1110)のビットパターンで、負荷変調部56のスイッチ素子SWをオン又はオフにする。具体的には、スイッチ素子SWを、順に、オン、オン、オン、オフにするスイッチ制御を行う。そして送電側は、負荷変調パターンが、(1110)のビットパターンに対応する第1のパターンPT1であった場合には、通信データのビットの論理レベルは「1」であると判断する。
 一方、受電側は、送信する通信データのビットが論理レベル「0」である場合には、第2のパターンPT2に対応する(1010)のビットパターンで、負荷変調部56のスイッチ素子SWをオン又はオフにする。具体的には、スイッチ素子SWを、順に、オン、オフ、オン、オフにするスイッチ制御を行う。そして送電側は、負荷変調パターンが、(1010)のビットパターンに対応する第2のパターンPT2であった場合には、通信データのビットの論理レベルは「0」であると判断する。
 ここで、送電部12の駆動周波数をFCKとし、駆動周期をT=1/FCKとした場合には、第1、第2のパターンPT1、PT2の長さは、例えば512×Tと表すことができる。この場合に、1つのビット区間の長さは、(512×T)/4=128×Tと表される。従って、受電側は、通信データのビットが論理レベル「1」である場合には、例えば128×Tの間隔で、第1のパターンPT1に対応する(1110)のビットパターンで、負荷変調部56のスイッチ素子SWをオン又はオフにする。また受電側は、通信データのビットが論理レベル「0」である場合には、例えば128×Tの間隔で、第2のパターンPT2に対応する(1010)のビットパターンで、負荷変調部56のスイッチ素子SWをオン又はオフにする。
 一方、送電側は、例えば図13に示す手法で通信データの検出処理及び取り込み処理を行う。例えば通信部30(復調部)は、第1のパターンPT1における第1の負荷状態の期間TM1内に設定された第1のサンプリングポイントSP1から、所与のサンプリング間隔SIで負荷変調パターンのサンプリングを行って、所与のビット数の通信データを取り込む。
 例えば図13のサンプリングポイントSP1、SP2、SP3、SP4、SP5、SP6は、サンプリング間隔SI毎に設定されるサンプリングポイントである。このサンプリング間隔SIは、負荷変調パターンの長さに対応する間隔である。即ち、負荷変調パターンである第1、第2のパターンPT1、PT2の長さに対応する間隔である。例えば図12では、第1、第2のパターンPT1、PT2の長さは512×T(=512/FCK)となっているため、サンプリング間隔SIの長さも512×Tになる。
 そして図13では、期間TS1、TS2、TS3、TS4、TS5、TS6での負荷変調パターンは、各々、PT1、PT2、PT1、PT2、PT2、PT2になっている。ここで期間TS1、TS2、TS3、TS4、TS5、TS6はサンプリングポイントSP1、SP2、SP3、SP4、SP5、SP6に対応する期間である。従って、図13の場合には、第1のサンプリングポイントSP1から、サンプリング間隔SIで負荷変調パターンのサンプリングを行うことで、例えばビット数=6である通信データ(101000)が取り込まれることになる。
 具体的には通信部30は、信号レベルがHレベルとなるパルスを検出し、そのパルスの幅が第1の範囲幅内(例えば220×T~511×T)である場合に、ビット同期を行う。そして、ビット同期した場合には、そのパルス幅の中心点に第1のサンプリングポイントSP1を設定し、第1のサンプリングポイントSP1からサンプリング間隔SI(例えば512×T)毎に信号を取り込む。そして取り込んだ信号のレベルが、Hレベルであれば、論理レベル「1」(第1のパターンPT1)であると判断し、Lレベルであれば、論理レベル「0」(第2のパターンPT2)であると判断する。このようにすることで、図13では、通信データ(101000)が取り込まれることになる。実際には、ビット同期後(SP1での1ビット分のデータを取り込んだ後)、15ビット分のデータを取り込むことで、全体として16ビット分の通信データが取り込まれる。この16ビットの通信データでは最初の1ビット(ビット同期したビット)は必ず「1」になる。
 このように本実施形態では、第1の負荷状態の期間TM1の幅が、第1の範囲幅内(220×T~511×T)である場合に、図13に示すように、第1の負荷状態の期間TM1内に、第1のサンプリングポイントSP1を設定する。即ち、信号レベルがHレベルとなる期間TM1の幅が、第1の範囲幅内である場合に、ビット同期を行い、その期間TM1内の例えば中心点に、第1のサンプリングポイントSP1を設定する。そして、設定された第1のサンプリングポイントSP1から、サンプリング間隔SI毎にサンプリングを行う。ここで第1の範囲幅(220×T~511×T)は、第1のパターンPT1における第1の負荷状態の期間TM1(384×T)に対応して設定される範囲幅である。
 即ち、図11で説明したように、ノイズ等が原因となって、期間TM1の幅は変動してしまう。そして第1のパターンPT1における期間TM1の幅のティピカル値は、3ビット分(111)に対応する幅である128×3×T=384×Tである。従って、この384×Tを含むような第1の範囲幅220×T~511×Tを設定する。そして、第1の範囲幅220×T~511×T内であるHレベルの期間については、第1のパターンPT1の期間TM1であると判断し、第1のサンプリングポイントSP1を設定するためのビット同期を行う。このようにすることで、図11に示すようにノイズが信号に重畳している場合にも、適正なビット同期を行って、適切な第1のサンプリングポイントSP1を設定できるようになる。
 そして、このように第1のサンプリングポイントSP1を設定した後は、サンプリング間隔SI毎にサンプリングを行い、各サンプリングポイントでの信号レベルに基づいて、第1、第2のパターンPT1、PT2のいずれなのかを判断する。即ち、通信部30は、第1のサンプリングポイントSP1の次の第2のサンプリングポイントSP2において、負荷状態が第1の負荷状態である場合(信号レベルがHレベルである場合)には、第2のサンプリングポイントSP2での負荷変調パターンが第1のパターンPT1であると判断する。即ち、通信データのビットの論理レベルが「1」であると判断する。
 一方、第2のサンプリングポイントSP2において、負荷状態が第2の負荷状態である場合(信号レベルがLレベルである場合)には、第2のサンプリングポイントSP2での負荷変調パターンが第2のパターンPT2であると判断する。即ち、通信データのビットの論理レベルが「0」であると判断する。その後のサンプリングポイントにおいても同様である。
 例えば図13では、サンプリングポイントSP2での負荷状態は第2の負荷状態(Lレベル)であるため、第2のパターンPT2であると判断され、論理レベルが「0」であると判断される。サンプリングポイントSP3での負荷状態は第1の負荷状態(Hレベル)であるため、第1のパターンPT1であると判断され、論理レベルが「1」であると判断される。サンプリングポイントSP4、SP5、SP6での負荷状態は第2の負荷状態(Lレベル)であるため、第2のパターンPT2であると判断され、論理レベルが「0」であると判断される。
 なお、図13の各サンプリングポイントSP2~SP6において、そのサンプリングポイントを含む負荷状態の期間の幅が、所定の範囲幅内であるか否かを確認するようにしてもよい。
 例えば第2のサンプリングポイントSP2において、負荷状態が第1の負荷状態(Hレベル)であり、且つ、第2のサンプリングポイントSP2を含む第1の負荷状態の期間TM1の幅が、第1の範囲幅内(220×T~511×T)である場合には、第2のサンプリングポイントSP2での負荷変調パターンが第1のパターンPT1(論理レベル「1」)であると判断する。
 一方、第2のサンプリングポイントSP2において、負荷状態が第2の負荷状態(Lレベル)であり、且つ、第2のサンプリングポイントSP2を含む第2の負荷状態の期間TM2の幅が、第2の範囲幅内(例えば80×T~150×T)である場合には、第2のサンプリングポイントSP2での負荷変調パターンが第2のパターンPT2(論理レベル「0」)であると判断する。
 ここで第2の範囲幅(80×T~150×T)は、第2のパターンPT2における第2の負荷状態の期間TM2(128×T)に対応して設定される範囲幅である。期間TM2のティピカル値は、1ビットに対応する幅である128×Tとなるため、この128×Tを含むような第2の範囲幅80×T~150×Tが設定される。
 以上のように本実施形態では、負荷変調パターンを判別して通信データの論理レベルを判定している。例えば従来では、負荷変調部56のスイッチ素子SWがオンになる第1の負荷状態を論理レベル「1」と判断し、スイッチ素子SWがオフになる第2の負荷状態を論理レベル「0」と判断するような手法を採用している。しかしながら、この従来例の手法では、図11で説明したように、ノイズ等が原因で通信データの検出エラーが発生してしまうおそれがある。
 これに対して本実施形態では、負荷変調パターンが、例えば図12に示すような第1、第2のパターンPT1、PT2のいずれであるかを判別することで、通信データの各ビットの論理レベルを検出している。従って、図11のようなノイズが多いような状況においても、通信データの適正な検出が可能になる。即ち、図12の第1、第2のパターンPT1、PT2では、例えば第1の負荷状態(Hレベル)の期間TM1の幅が大きく異なっており、本実施形態では、この期間TM1の幅の違いを判別することで、パターンを判別して、通信データの各ビットの論理レベルを検出している。例えば図13の最初のビット同期において、期間TM1の幅が第1の範囲幅内(220×T~511×T)である場合に、その期間TM1の中心点にサンプリングポイントSP1を設定し、その後のサンプリングポイントSP2、SP3、SP4・・・での信号の取り込みを行っている。従って、例えばノイズが原因でサンプリングポイントSP1での期間TM1の幅等が変動した場合にも、通信データの適正な検出が可能になる。また、以降のサンプリングポイントSP2、SP3、SP4・・・は、サンプリング間隔SIに基づき簡素な処理で設定できるため、通信データの検出処理の処理負荷も軽減できるという利点がある。
 なお本実施形態の通信手法は、図12、図13等で説明した手法に限定されず、種々の変形実施が可能である。例えば図12では第1のパターンPT1に論理レベル「1」を対応づけ、第2のパターンPT2に論理レベル「0」を対応づけているが、この対応づけは逆であってもよい。また、図12の第1、第2のパターンPT1、PT2は負荷変調パターンの一例であり、本実施形態の負荷変調パターンはこれに限定されず、種々の変形実施が可能である。例えば図12では、第1、第2のパターンPT1、PT2は同じ長さに設定されているが、異なる長さに設定してもよい。また図12では、ビットパターン(1110)の第1のパターンPT1と、ビットパターン(1010)の第2のパターンPT2を用いているが、これらとは異なったビットパターンの第1、第2のパターンPT1、PT2を採用してもよい。例えば第1、第2のパターンPT1、PT2は、少なくとも第1の負荷状態の期間TM1(或いは第2の負荷状態の期間TM2)の長さが異なるパターンであればよく、図12とは異なる種々のパターンを採用できる。
 図14(A)、図14(B)に、本実施形態で用いられる通信データのフォーマットの例を示す。
 図14(A)では、通信データは64ビットで構成され、この64ビットで1つのパケットが構成される。一番目の16ビットは00hとなっている。例えば受電側の負荷変調を検出して送電側が通常送電(或いは間欠送電)を開始する場合に、通信部30の電流検出回路32等が動作して、通信データを適正に検出できるようになるまでに、ある程度の時間が必要になる。このため、一番目の16ビットには、ダミー(空)のデータである00hを設定する。送電側は、この1番目の16ビットの00hの通信期間において、例えばビット同期のために必要な種々の処理を行うことになる。
 次の2番目の16ビットには、データコードと、整流電圧(VCC)の情報が設定される。データコードは、図14(B)に示すように、次の3番目の16ビットで通信されるデータを特定するためのコードである。整流電圧(VCC)は、送電装置10の送電電力設定情報として用いられる。具体的には、電源電圧制御部14は、この整流電圧(VCC)の情報等に基づいて、送電ドライバーDR1、DR2に供給する電源電圧VDRVを可変に制御し、これにより送電部12の送電電力を可変に制御する。
 3番目の16ビットには、データコードでの設定に従って、温度、充電電圧、充電電流、ステータスフラグ、サイクル回数、或いはIC番号などの情報が設定される。温度は例えばバッテリー温度などである。充電電圧、充電電流は、バッテリー90の充電電圧(VBAT等)、充電電流であり、充電状態を表す情報である。ステータスフラグは、例えば温度エラー(高温異常、低温異常)、バッテリーエラー(1.0V以下のバッテリー電圧)、過電圧エラー、タイマーエラー、満充電(ノーマルエンド)などの受電側のステータスを表す情報である。サイクル回数(サイクルタイム)は充電回数を表す情報である。IC番号は、制御装置のICを特定するための番号である。4番目の16ビットにはCRCの情報が設定される。CRCは、CRCのエラーチェックのための情報である。
 なお、図4において電子機器510の着地が検出されて、VCC>6.0Vになった場合に、B5の負荷変調では、まず初めに例えば1パケット(64ビット)の空データ(ダミーデータ)の通信データが送信される。そして送電側は、この空データの通信データを検出して、通常送電を開始することになる。
 図15は、本実施形態の通信処理の詳細例を説明するフローチャートである。まず、受電側(制御部54)は、整流電圧がVCC>6.0Vであるか否かを判断する(ステップS1)。例えば送電側が電力を送電すると、受電側が受電した電力により整流電圧VCCが上昇して、VCC>6.0Vになる。例えば受電側の制御装置50は、送電側の送電電力による電源で動作する。このため、送電側から電力が送電されていない期間では、制御装置50(放電系の回路を除く)は電源が供給されず、例えばリセット状態となっている。
 整流電圧がVCC>6.0Vになると、受電側は、まず初めに、負荷変量によりIC番号を送電側に送信する(ステップS2)。例えば図14(A)、図14(B)において、データコードによりIC番号の通信を指定して、IC番号の情報を含む通信データを送信する。
 そして、例えばバッテリー電圧がVBAT<2.5Vのときの予備充電(過放電バッテリーに対する充電)の場合や、VBAT<1.0Vのときのバッテリーエラーの場合など、通常充電を開始できなかった場合(ステップS3:NO)には、受電側は、整流電圧、充電電圧、充電電流、温度、ステータスフラグ等の情報を含む通信データを負荷変調により送信する(ステップS4)。
 一方、通常充電を開始できた場合(ステップS3:YES)には、充電のサイクル回数を1だけインクリメントし(ステップS5)、インクリメント後のサイクル回数を負荷変調により送信する(ステップS6)。そして通常充電の期間では、整流電圧、充電電圧、充電電流、温度、ステータスフラグ等の情報を含む通信データの送信が繰り返される(ステップS7)。送電側は、これらの情報に基づいて受電側の充電状態等を判断できる。
 なお、以上では本実施形態の通信手法の一例を示したが、本実施形態の通信手法はこれに限定されず種々の変形実施が可能である。例えば本実施形態の通信手法は、図12、図13のように負荷変調パターンを論理レベルに対応づける手法には限定されず、例えば第1の負荷状態を論理レベル「1」に対応づけ、第2の負荷状態を論理レベル「0」に対応づける手法などを採用してもよい。また、通信データのフォーマットや通信処理も図13、図14(A)、図14(B)に示す手法に限定されず、種々の変形実施が可能である。
 5.電力制御
 本実施形態では、送電側は受電側からの通信データに基づいて送電制御を行う手法を採用している。具体的には図2において、送電部12は、送電ドライバーDR1、DR2と、送電ドライバーDR1、DR2の電源電圧VDRVを制御する電源電圧制御部を有する。そして制御部24は、受電装置40(制御装置50)からの通信データに基づいて、電源電圧制御部14を制御する。
 具体的には、制御部24は、通常送電の期間では、通信データが含む送電電力設定情報に基づき可変に変化する電源電圧VDRVを、電源電圧制御部14から送電ドライバーDR1、DR2に供給させる。これにより、送電部12の送電電力が、送電電力設定情報に基づき可変に制御されるようになる。
 一方、制御部24は、着地検出用、取り去り検出用の間欠送電の期間では、着地検出用、取り去り検出用の電源電圧VDRVを、電源電圧制御部14から送電ドライバーDR1、DR2に供給させる。
 ここで、着地検出用、取り去り検出用の電源電圧は、図4、図5、図6の1次コイル駆動電圧の信号波形において、高電位側の電圧レベルに対応する電圧である。これらの着地検出用の電源電圧と取り去り検出用の電源電圧は同じ電圧であってもよいし、異なる電圧であってもよい。例えば、取り去り検出用の電源電圧を、着地検出用の電源電圧よりも高い電圧に設定してもよい。取り去り検出用の電源電圧を高い電圧に設定することで、図3において電子機器510が実際には取り去られていないのに、取り去られたと誤検出されるような事態を抑制できる。
 或いは制御部24は、着地検出用又は取り去り検出用の電源電圧として、可変の電圧を、電源電圧制御部14から送電ドライバーDR1、DR2に供給させてもよい。
 着検出用の電源電圧として、例えば6V、9Vというように2種類の電源電圧を用意することで、広い範囲での着地検知が可能となる。例えばL1、L2のコイル間が近い場合に、いきなり高い電圧(例えば9V)の電源電圧を印加すると、受電側(2次側)の耐圧を超えてしまい、問題が生じる可能性がある。一方、低い電圧(例えば6V)の電源電圧では、L1、L2のコイル間の距離が遠い場合などに、適切な着地検出等を実現できなくなるという問題がある。
 この点、着地検出用又は取り去り検出用の電源電圧を可変に制御すれば、上記の問題を解決できる。例えば着地検出用又は取り去り検出用の間欠送電において、送電期間(TL2、TR2)の前半期間で、例えば6Vの電圧で駆動した後に、当該送電期間(TL2、TR2)の後半の期間で、9V(TL2=50msec)の電圧で駆動する。こうすることで、より広い範囲の着地が可能になる。この場合に、例えば6Vから9Vというように、着地検出用又は取り去り検出用の電源電圧等を徐々に上昇させる制御を行ってもよい。
 図16(A)、図16(B)は、送電電力設定情報(整流電圧VCC等)に基づいて送電電力を制御する手法を説明する図である。
 図16(A)は、L1、L2のコイル間の距離を近づけた場合の例を示している。この場合には9Vの電源電圧VDRVでの着地検出が行われた後、コイル間の距離が近づくにつれて、電源電圧VDRVが徐々に低下する制御が行われる。即ち、電源電圧制御部14は、制御部24の制御の下で、送電ドライバーDR1、DR2に供給される電源電圧VDRVを低下させる制御を行う。つまり、受電部52の出力電圧である整流電圧VCCが一定になるように電源電圧VDRVが制御される。これにより、L1、L2のコイル間の距離が近づいた場合にも、受電装置40の受電電力が一定になるような電力制御が行われ、最適で安定した電力制御を実現できる。
 図16(B)は、L1、L2のコイル間の距離を離した場合の例を示している。この場合には、コイル間の距離が離れるにつれて、電源電圧VDRVが徐々に上昇する制御が行われる。即ち、電源電圧制御部14は、制御部24の制御の下で、送電ドライバーDR1、DR2に供給される電源電圧VDRVを上昇させる制御を行う。つまり、受電部52の出力電圧である整流電圧VCCが一定になるように電源電圧VDRVが制御される。これにより、L1、L2のコイル間の距離が離れた場合にも、受電装置40の受電電力が一定になるような電力制御が行われ、最適で安定した電力制御を実現できるようになる。
 図17(A)、図17(B)は本実施形態の電力制御の効果について説明する図である。図17(A)において、Zは、図1(B)に示すL1、L2のコイルにおいて高さ方向に沿った軸であるZ軸での距離を表すものである。rは、Z軸に直交するXY平面での位置ズレ(コイル中心から半径方向での位置ズレ)の距離を表すものである。図17(A)に示すように、6Vや9Vの固定の電源電圧を用いる場合に比べて、送電電力設定情報に基づき電源電圧を可変に制御する本実施形態の手法によれば、位置余裕度を向上できる。
 また図17(B)において、Iinは、電源から受電側の装置(送電部12、制御装置20等)に流れる消費電流を表すものである。図17(B)に示すように、電源電圧を6V、9V、12Vに固定する手法に比べて、送電電力設定情報に基づき電源電圧を可変に制御する本実施形態の手法によれば、省電力化を図れるようになる。
 6.受電部、充電部
 図18に、受電部52、充電部58等の詳細な構成例を示す。図18に示すように、受電部52の整流回路53は、整流用のトランジスターTA1、TA2、TA3、TA4と、これらのトランジスターTA1~TA4を制御する整流制御部51を有する。
 トランジスターTA1は、2次コイルL2の一端のノードNB1と、GND(低電位側電源電圧)のノードとの間に設けられる。トランジスターTA2は、ノードNB1と整流電圧VCCのノードNVCとの間に設けられる。トランジスターTA3は、2次コイルL2の他端のノードNB2と、GNDのノードとの間に設けられる。トランジスターTA4は、ノードNB2とノードNVCとの間に設けられる。これらのトランジスターTA1~TA4の各々のドレイン・ソース間にはボディーダイオードが設けられている。整流制御部51は、トランジスターTA1~TA4のゲートに対して制御信号を出力して、整流電圧VCCを生成するための整流制御を行う。
 整流電圧VCCのノードNVCとGNDのノードとの間には抵抗RB1、RB2が直列に設けられている。整流電圧VCCを、抵抗RB1、RB2で電圧分割した電圧ACH1が、例えば図2のA/D変換回路65に入力される。これにより整流電圧VCCの監視が可能になり、整流電圧VCCの情報に基づく電力制御等を実現できる。
 レギュレーター57は、整流電圧VCCの電圧調整(レギュレート)を行って、電圧VD5を出力する。この電圧VD5は、トランジスターTC1を介して、充電部58のCC充電回路59に供給される。トランジスターTC1は、例えば充電電圧VBATが所与の電圧(例えば4.25V)を超える過電圧の検出時において、制御信号GC1に基づいてオフになる。なお制御装置50の各回路(放電部60等の放電系の回路を除く回路)は、この電圧VD5に基づく電圧(VD5をレギュレートした電圧等)を電源電圧として動作する。
 CC充電回路59は、トランジスターTC2と、演算増幅器OPCと、抵抗RC1と、電流源ISCを有する。トランジスターTC2は、演算増幅器OPCの出力信号に基づき制御される。演算増幅器OPCの非反転入力端子は、抵抗RC1の一端に接続される。抵抗RC1の他端は、制御装置50の外付け部品として設けられるセンス抵抗RSの一端に接続される。センス抵抗RSの他端は、演算増幅器OPCの反転入力端子に接続される。電流源ISCは、演算増幅器OPCの非反転入力端子とGNDのノードとの間に設けられる。電流源ISCに流れる電流は、信号ICDAに基づいて制御される。
 演算増幅器OPCの仮想接地により、抵抗RC1の一端の電圧(非反転入力端子の電圧)と、センス抵抗RSの他端の電圧VCS2(反転入力端子の電圧)が等しくなるように、トランジスターTC2が制御される。信号ICDAの制御により電流源ISCに流れる電流をIDAとし、抵抗RSに流れる電流をIRSとする。すると、IRS×RS=IDA×RC1となるように、制御される。即ち、このCC充電回路59では、センス抵抗RSに流れる電流IRS(充電電流)が、信号ICDAにより設定される一定の電流値になるように制御される。これにより、CC(Constant-Current)充電が可能になる。
 充電時には、信号CHONがアクティブになる。これにより、トランジスターTC3、TC4がオン状態になり、バッテリー90への充電が行われるようになる。またトランジスターTC3のゲートと充電電圧VBATのノードNBATとの間に設けられる抵抗RC2等により、バッテリー90からの逆流も防止される。またノードNBATとGNDのノードとの間には抵抗RC3、RC4が直列に設けられており、充電電圧VBATを、抵抗RC3、RC4で電圧分割した電圧ACH2が、A/D変換回路65に入力される。これにより充電電圧VBATの監視が可能になり、バッテリー90の充電状態に応じた各種の制御を実現できる。
 またバッテリー90の近くには、サーミスターTH(広義には温度検出部)が設けられている。このサーミスターTHの一端の電圧RCTが制御装置50に入力され、これによりバッテリー温度の測定が可能になる。
 なお、上記のように本実施形態について詳細に説明したが、本発明の新規事項および効果から実体的に逸脱しない多くの変形が可能であることは当業者には容易に理解できるであろう。従って、このような変形例はすべて本発明の範囲に含まれるものとする。例えば、明細書又は図面において、少なくとも一度、より広義または同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また本実施形態及び変形例の全ての組み合わせも、本発明の範囲に含まれる。また送電側、受電側の制御装置、送電装置、受電装置の構成・動作等も、本実施形態で説明したものに限定されず、種々の変形実施が可能である。
L1 1次コイル、L2 2次コイル、DR1、DR2 送電ドライバー、IS、ISC 電流源、SW スイッチ素子、CM キャパシター、IVC IV変換用アンプ、AP アンプ、CP コンパレーター、TA1~TA4、TC1~TC4 トランジスター、RCS、RS センス抵抗、RB1、RB2、RC1~RC3 抵抗、OPC 演算増幅器、TH サーミスター(温度検出部)、10 送電装置、12 送電部、14 電源電圧制御部、16 表示部、20 制御装置、22 ドライバー制御回路、24 制御部、30 通信部、32 電流検出回路、34 比較回路、35 フィルター部、36 復調部、37 クロック生成回路、38 発振回路、40 受電装置、50 制御装置、51 整流制御部、52 受電部、53 整流回路、54 制御部、55 通信データ生成部、56 負荷変調部、57 レギュレーター、58 充電部、59 CC充電回路、60 放電部、61 チャージポンプ回路、62 不揮発性メモリー64 検出部、90 バッテリー、100 電力供給対象、500 充電器、502 電源アダプター、510 電子機器、514 スイッチ部

Claims (15)

  1.  送電装置と受電装置とを有する無接点電力伝送システムにおける送電側の制御装置であって、
     前記受電装置に電力を送電する送電部の送電ドライバーを制御するドライバー制御回路と、
     前記ドライバー制御回路を制御する制御部と、
     負荷変調により通信データを送信する前記受電装置との間での通信処理を行う通信部と、
     を含み、
     前記制御部は、
     前記受電装置が前記負荷変調を開始したことを条件に、前記送電部による通常送電を開始させ、
     前記負荷変調が継続されている間は、前記送電部による前記通常送電を継続させることを特徴とする制御装置。
  2.  請求項1において、
     前記制御部は、
     前記負荷変調が非検出となった場合に、前記通常送電を停止させ、着地検出用の間欠送電を前記送電部に行わせることを特徴とする制御装置。
  3.  請求項1又は2において、
     前記制御部は、
     前記通信データに基づいて前記受電装置のバッテリーの満充電が検出された場合に、前記通常送電を停止させ、取り去り検出用の間欠送電を前記送電部に行わせることを特徴とする制御装置。
  4.  請求項1乃至3のいずれかにおいて、
     前記制御部は、
     前記通信データに基づいて受電側の異常が検出された場合に、前記通常送電を停止させ、取り去り検出用の間欠送電を前記送電部に行わせることを特徴とする制御装置。
  5.  請求項3又は4において、
     前記受電装置は、前記受電部の出力電圧が低下し、放電動作の起動期間が経過した後に、バッテリーからの電力を電力供給対象に対して放電し、
     前記制御部は、
     前記起動期間よりも短い期間の間隔で、前記取り去り検出用の間欠送電を前記送電部に行わせることを特徴とする制御装置。
  6.  請求項1乃至5のいずれかにおいて、
     前記制御部は、
     前記通信データに基づいて前記受電装置のバッテリーの温度異常が検出された場合に、前記通常送電を停止させ、ウェイト期間の間、間欠送電を前記送電部に行わせ、前記ウェイト期間の経過後に、前記通常送電を再開させることを特徴とする制御装置。
  7.  請求項1乃至6のいずれかにおいて、
     前記送電部は、前記送電ドライバーと、前記送電ドライバーの電源電圧を制御する電源電圧制御部と、を有し、
     前記制御部は、
     前記受電装置からの前記通信データに基づいて、前記電源電圧制御部を制御することを特徴とする制御装置。
  8.  請求項7において、
     前記制御部は、
     前記通常送電の期間では、前記通信データが含む送電電力設定情報に基づき可変に変化する前記電源電圧を、前記電源電圧制御部から前記送電ドライバに供給させ、
     着地検出用、取り去り検出用の間欠送電の期間では、着地検出用、取り去り検出用の前記電源電圧を、前記電源電圧制御部から前記送電ドライバーに供給させることを特徴とする制御装置。
  9.  請求項8において、
     前記制御部は、
     着地検出用又は取り去り検出用の前記電源電圧として、可変の電圧を、前記電源電圧制御部から前記送電ドライバーに供給させることを特徴とする制御装置。
  10.  送電装置と受電装置とを有する無接点電力伝送システムにおける受電側の制御装置であって、
     前記送電装置からの電力を受電する受電部が受電した電力に基づいて、バッテリーを充電する充電部と、
     負荷変調により、前記送電装置に対して通信データを送信する負荷変調部と、
     前記バッテリーの放電動作を行って、前記バッテリーからの電力を電力供給対象に対して供給する放電部と、
     前記放電部を制御する制御部と、
     を含み、
     前記負荷変調部は、
     着地が検出された場合に、前記負荷変調を開始し、
     前記制御部は、
     着地が検出された場合に、前記放電部の放電動作を停止することを特徴とする制御装置。
  11.  請求項10において、
     前記制御部は、
     取り去り期間において、前記放電部に放電動作を行わせることを特徴とする制御装置。
  12.  請求項10又は11において、
     前記制御部は、
     前記受電部の出力電圧に基づいて、着地検出、取り去り検出を行うことを特徴とする制御装置。
  13.  請求項10乃至12のいずれかにおいて、
     前記負荷変調部は、
     前記負荷変調により、送電電力設定情報を含む前記通信データを前記送電装置に送信することを特徴とする制御装置。
  14.  請求項1乃至13のいずれかに記載の制御装置を含むことを特徴とする電子機器。
  15.  送電装置と受電装置とを含む無接点電力伝送システムであって、
     前記送電装置は、
     前記受電装置に電力を送電すると共に、負荷変調により通信データを送信する前記受電装置との間での通信処理を行い、
     前記受電装置は、
     前記送電装置から受電した電力に基づいて、バッテリーを充電し、前記負荷変調により、前記送電装置に対して通信データを送信すると共に、前記バッテリーの放電動作を行って、前記バッテリーからの電力を電力供給対象に対して供給し、
     前記受電装置は、
     着地が検出された場合に、前記負荷変調を開始すると共に、前記バッテリーの放電動作を停止し、
     前記送電装置は、
     前記受電装置が前記負荷変調を開始したことを条件に、通常送電を開始し、前記負荷変調が継続されている間は、前記通常送電を継続することを特徴とする無接点電力伝送システム。
PCT/JP2016/002343 2015-05-13 2016-05-13 制御装置、電子機器及び無接点電力伝送システム WO2016181657A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/572,484 US10291082B2 (en) 2015-05-13 2016-05-13 Control device, electronic apparatus, and contactless power transmission system
EP16792384.6A EP3297126A4 (en) 2015-05-13 2016-05-13 CONTROL DEVICE, ELECTRONIC DEVICE AND SYSTEM FOR CONTACTLESS POWER TRANSMISSION
CN201680026454.3A CN107534317B (zh) 2015-05-13 2016-05-13 控制装置、电子设备和无触点电力传输系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-098048 2015-05-13
JP2015098048A JP6540216B2 (ja) 2015-05-13 2015-05-13 制御装置、電子機器及び無接点電力伝送システム

Publications (1)

Publication Number Publication Date
WO2016181657A1 true WO2016181657A1 (ja) 2016-11-17

Family

ID=57248068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002343 WO2016181657A1 (ja) 2015-05-13 2016-05-13 制御装置、電子機器及び無接点電力伝送システム

Country Status (5)

Country Link
US (1) US10291082B2 (ja)
EP (1) EP3297126A4 (ja)
JP (1) JP6540216B2 (ja)
CN (1) CN107534317B (ja)
WO (1) WO2016181657A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6701623B2 (ja) * 2015-05-13 2020-05-27 セイコーエプソン株式会社 制御装置、電子機器及び無接点電力伝送システム
WO2017213032A1 (ja) * 2016-06-06 2017-12-14 株式会社村田製作所 ワイヤレス給電システム、ワイヤレス電力送電装置およびワイヤレス電力受電装置
JP6966864B2 (ja) * 2017-04-20 2021-11-17 エイブリック株式会社 バッテリ装置
KR101984140B1 (ko) * 2017-05-12 2019-05-30 주식회사 맵스 전하 펌프 기반의 무선전력 수신기
JP7087524B2 (ja) * 2018-03-23 2022-06-21 セイコーエプソン株式会社 制御装置、受電装置、電子機器、無接点電力伝送システム及び制御方法
JP7100572B2 (ja) * 2018-12-14 2022-07-13 キヤノン株式会社 受電装置、受電装置の制御方法及びプログラム
CN109687600B (zh) * 2018-12-20 2021-07-20 美的集团(上海)有限公司 电子装置、无线输电接收电路及通信方法和无线输电系统
JP7211486B2 (ja) * 2019-03-14 2023-01-24 株式会社村田製作所 ワイヤレス給電システム
JP7313220B2 (ja) * 2019-07-25 2023-07-24 キヤノン株式会社 受電装置、送電装置、それらの制御方法、およびプログラム
EP4014331B1 (en) 2019-08-13 2023-07-05 Google LLC Methods, apparatus and system for bidirectional wireless charging in wearable devices
JPWO2022269859A1 (ja) * 2021-06-24 2022-12-29

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003317688A (ja) * 2002-04-23 2003-11-07 Matsushita Electric Works Ltd 充電式電気機器
JP2004120856A (ja) * 2002-09-25 2004-04-15 Matsushita Electric Ind Co Ltd 電源装置
JP2009159675A (ja) * 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd 非接触給電用パネル
JP2010016985A (ja) * 2008-07-03 2010-01-21 Sanyo Electric Co Ltd 電力搬送における情報伝送方法とこの情報伝送方法を使用する充電台と電池内蔵機器
JP2010213414A (ja) * 2009-03-09 2010-09-24 Seiko Epson Corp 送電制御装置、送電装置、受電制御装置、受電装置、電子機器および無接点電力伝送システム
JP2012204921A (ja) * 2011-03-24 2012-10-22 Panasonic Corp 電子機器
JP2013527735A (ja) * 2009-07-13 2013-06-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 誘導パワー伝送
JP2014050270A (ja) * 2012-09-03 2014-03-17 Hitachi Maxell Ltd 非接触充電システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4494426B2 (ja) * 2007-02-16 2010-06-30 セイコーエプソン株式会社 送電制御装置、受電制御装置、無接点電力伝送システム、送電装置、受電装置および電子機器
JP4600462B2 (ja) 2007-11-16 2010-12-15 セイコーエプソン株式会社 送電制御装置、送電装置、電子機器及び無接点電力伝送システム
WO2009069844A1 (en) * 2007-11-30 2009-06-04 Chun-Kil Jung Multiple non-contact charging system of wireless power transmision and control method thereof
JP4572355B2 (ja) 2008-06-10 2010-11-04 セイコーエプソン株式会社 送電制御装置、送電装置、無接点電力伝送システムおよびデータ判定方法
JP5431033B2 (ja) 2009-06-08 2014-03-05 Necトーキン株式会社 非接触電力伝送及び通信システム
JP2011030404A (ja) * 2009-06-22 2011-02-10 Felica Networks Inc 情報処理装置、プログラム、および情報処理システム
JP5519367B2 (ja) 2010-03-29 2014-06-11 パナソニック株式会社 受電装置及び電力伝送システム
JP5579503B2 (ja) * 2010-05-29 2014-08-27 三洋電機株式会社 電池パック、電池駆動機器、充電台及び電池パックの充電方法
JP5395018B2 (ja) 2010-09-07 2014-01-22 日本電信電話株式会社 共鳴型無線電力伝送装置
US9667084B2 (en) * 2013-03-13 2017-05-30 Nxp Usa, Inc. Wireless charging systems, devices, and methods
CN104124770B (zh) * 2013-04-28 2018-09-25 海尔集团技术研发中心 基于无线电能传输系统的多负载控制方法及系统
KR102082415B1 (ko) * 2013-05-27 2020-02-27 엘지전자 주식회사 무선 전력 전송 장치 및 그 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003317688A (ja) * 2002-04-23 2003-11-07 Matsushita Electric Works Ltd 充電式電気機器
JP2004120856A (ja) * 2002-09-25 2004-04-15 Matsushita Electric Ind Co Ltd 電源装置
JP2009159675A (ja) * 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd 非接触給電用パネル
JP2010016985A (ja) * 2008-07-03 2010-01-21 Sanyo Electric Co Ltd 電力搬送における情報伝送方法とこの情報伝送方法を使用する充電台と電池内蔵機器
JP2010213414A (ja) * 2009-03-09 2010-09-24 Seiko Epson Corp 送電制御装置、送電装置、受電制御装置、受電装置、電子機器および無接点電力伝送システム
JP2013527735A (ja) * 2009-07-13 2013-06-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 誘導パワー伝送
JP2012204921A (ja) * 2011-03-24 2012-10-22 Panasonic Corp 電子機器
JP2014050270A (ja) * 2012-09-03 2014-03-17 Hitachi Maxell Ltd 非接触充電システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3297126A4 *

Also Published As

Publication number Publication date
JP2016214028A (ja) 2016-12-15
EP3297126A4 (en) 2019-04-24
US20180138759A1 (en) 2018-05-17
JP6540216B2 (ja) 2019-07-10
EP3297126A1 (en) 2018-03-21
US10291082B2 (en) 2019-05-14
CN107534317A (zh) 2018-01-02
CN107534317B (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
WO2016181657A1 (ja) 制御装置、電子機器及び無接点電力伝送システム
CN107615612B (zh) 控制装置、电子设备和无触点电力传输系统
WO2016181656A1 (ja) 制御装置、電子機器及び無接点電力伝送システム
JP6609986B2 (ja) 制御装置、電子機器及び無接点電力伝送システム
JP6880546B2 (ja) 制御装置、受電装置、電子機器及び無接点電力伝送システム
CN106160141B (zh) 控制装置、电子设备以及无触点电力传输系统
CN107086671B (zh) 控制装置、受电装置、电子设备、电力传输系统以及电力供给方法
CN107134863B (zh) 控制装置、受电装置、电子设备以及电力传输系统
JP6550914B2 (ja) 制御装置、電子機器及び無接点電力伝送システム
JP6880547B2 (ja) 無接点電力伝送システム
JP2018064308A (ja) 制御装置、受電装置、電子機器及び無接点電力伝送システム
JP6860040B2 (ja) 制御装置、電子機器及び無接点電力伝送システム
JP6720533B2 (ja) 制御装置、電子機器及び無接点電力伝送システム
JP6860039B2 (ja) 制御装置及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792384

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15572484

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016792384

Country of ref document: EP