WO2016181617A1 - 充放電制御装置 - Google Patents

充放電制御装置 Download PDF

Info

Publication number
WO2016181617A1
WO2016181617A1 PCT/JP2016/002121 JP2016002121W WO2016181617A1 WO 2016181617 A1 WO2016181617 A1 WO 2016181617A1 JP 2016002121 W JP2016002121 W JP 2016002121W WO 2016181617 A1 WO2016181617 A1 WO 2016181617A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage battery
discharge
charge
amount
Prior art date
Application number
PCT/JP2016/002121
Other languages
English (en)
French (fr)
Inventor
馬場 朗
遥 仲宗根
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to AU2016259953A priority Critical patent/AU2016259953B2/en
Priority to EP16792347.3A priority patent/EP3297116B1/en
Priority to JP2017517602A priority patent/JP6361949B2/ja
Priority to US15/572,448 priority patent/US10432006B2/en
Priority to ES16792347T priority patent/ES2819975T3/es
Publication of WO2016181617A1 publication Critical patent/WO2016181617A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0283Price estimation or determination
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/14Marketing, i.e. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards

Definitions

  • the present invention relates to a charge / discharge control device and the like used in a power system that supplies power to a load using generated power of a power source that generates power using renewable energy and discharged power of a storage battery.
  • the remaining power of the storage battery may be insufficient in the specific time zone, and sufficient discharge power may not be obtained from the storage battery.
  • sufficient discharged power from the storage battery in the time zone in which the generated power of the solar battery can not be obtained May not be obtained. As a result, sufficient power may not be obtained from the solar cell or the storage battery.
  • the present invention has been made in view of the above, and it is an object of the present invention to provide a charge and discharge control device and the like capable of appropriately securing the remaining power amount of a storage battery before a specific time zone.
  • a charge and discharge control device is a charge and discharge used in a power system that supplies power to a load using generated power of a power source that generates power using renewable energy and discharged power of a storage battery.
  • a control unit for performing charge control for charging the storage battery using surplus power not consumed by the load among the generated power, and a control unit for performing discharge control for discharging the storage battery, and the storage battery in a specific time zone And a setting unit configured to set a threshold corresponding to the planned discharge power amount to be supplied as a discharge power amount from the storage unit to the load with respect to the remaining power amount of the storage battery, and the control unit Before this, if the remaining power amount of the storage battery is equal to or less than the threshold value, discharge prohibition control is performed to prohibit the discharge of the storage battery.
  • the remaining power amount of the storage battery is appropriately secured before the specific time zone.
  • FIG. 1 is a block diagram showing an overall configuration of a power system using a charge / discharge control device according to an embodiment.
  • FIG. 2 is a schematic view showing an example of a power pattern of one day in the embodiment.
  • FIG. 3 is a flowchart showing an operation of the discharge inhibition mode in the embodiment.
  • FIG. 4 is a flowchart showing the operation of the discharge permission mode in the embodiment.
  • FIG. 5A is a schematic view showing a first setting example of the threshold in the embodiment.
  • FIG. 5B is a schematic view showing a second setting example of the threshold in the embodiment.
  • FIG. 6 is a conceptual view showing a time limit zone in the embodiment.
  • the amount of power usually means an integrated value of power in a predetermined period, and corresponds to energy.
  • the amount of power per unit time corresponds to the power (power). Since electric power (power) and electric energy (energy) correspond to each other, electric power may be used here in the meaning of electric energy (energy), and electric energy is used in the meaning of electric power (power) There is a case. Then, the amount of power may be referred to as the amount of power.
  • charge and discharge correspond to at least one of charge and discharge.
  • Embodiment FIG. 1 shows the overall configuration of the power system.
  • the power system includes a charge / discharge control device 1, a distribution board 2, a solar battery (power supply) 3, a PV power conditioner 4, a storage battery 5, a storage battery power conditioner 6, and current sensors 91 to 93. Supply power.
  • the power system is applied to a single dwelling unit in the present embodiment, the power system may be applied to a building such as an apartment house or a business office.
  • the power system uses a solar cell 3, a storage battery 5, and a system power supply 8 as a power supply for supplying power to the load 7.
  • AC power (commercial power) is supplied to the distribution board 2 from the system power supply 8. Furthermore, alternating current power (generated power) is supplied to the distribution board 2 from the solar cell 3 which is a distributed power supply via the PV power conditioner 4. Furthermore, AC power (discharge power) is supplied from the storage battery 5 to the distribution board 2 through the storage battery power conditioner 6.
  • a master breaker a plurality of branch breakers, a switch, and the like are incorporated. Further, the plurality of branch breakers of the distribution board 2 are provided for the plurality of branch circuits. The distribution board 2 supplies AC power to the load 7 via the branch circuit.
  • the load 7 in FIG. 1 is an electrical device such as a lighting device, an air conditioner, or an information device connected to a branch circuit.
  • a plurality of loads 7 may be connected to the distribution board 2 via a plurality of branch circuits.
  • the solar cell 3 generates electricity using sunlight.
  • the PV power conditioner 4 converts DC power obtained by the solar cell 3 generating electric power into AC power, and outputs it as generated power of the solar cell 3. Furthermore, the PV power conditioner 4 adjusts the frequency and output voltage of the AC power (generated power of the solar cell 3) output from the PV power conditioner 4 in order to perform grid connection with the grid power supply 8.
  • the storage battery 5 is connected to the distribution board 2 via a storage battery power conditioner 6.
  • the storage battery power conditioner 6 charges and discharges the storage battery 5. Specifically, storage battery power conditioner 6 converts alternating current power supplied from distribution board 2 into direct current power, and supplies direct current power to storage battery 5 to charge storage battery 5. In addition, the storage battery power conditioner 6 discharges the storage battery 5, converts direct current power supplied from the storage battery 5 into alternating current power, and supplies alternating current power to the distribution board 2.
  • storage battery power conditioner 6 adjusts the frequency and output voltage of AC power (discharged power) output from storage battery power conditioner 6 in order to perform grid interconnection with grid power supply 8.
  • the generated power of the solar cell 3 is used for a part or all of the load power, charging power and reverse current power.
  • the discharge power of the storage battery 5 is used for load power.
  • the load power is the total power consumed by the entire load 7 (the sum of the power consumed by the multiple loads 7).
  • the charging power is the power charged by the storage battery 5.
  • Reverse flow power is power that flows backward to the system power supply 8.
  • the current sensor 91 measures the current transmitted and received between the system power supply 8 and the distribution board 2 and outputs measurement data indicating the measured current to the charge and discharge control device 1.
  • the current sensor 92 measures the current supplied from the PV power conditioner 4 to the distribution board 2 and outputs measurement data indicating the measured current to the charge / discharge control device 1.
  • the current sensor 93 measures the total current supplied from the distribution board 2 to the entire load 7 (the sum of the currents supplied to the plurality of loads 7), and controls charge and discharge of measurement data indicating the measured total current. Output to device 1
  • the charge / discharge control device 1 includes a control unit 11, a setting unit (threshold setting unit) 12, an acquisition unit (data acquisition unit) 13, a storage unit 14, and an estimation unit 15. Control the charge / discharge operation to be performed. That is, the charge / discharge control device 1 controls the charge (charge power) of the storage battery 5 and the discharge (discharge power) of the storage battery 5 via the storage battery power conditioner 6.
  • the charge / discharge control device 1 controls the charge / discharge to adjust the commercial power supplied from the system power supply 8 to the load 7 and the reverse flow power flowing backward from the solar cell 3 to the system power supply 8.
  • the charge / discharge control device 1 causes the generated power of the solar cell 3 to reversely flow to the system power supply 8 but does not cause the discharge power of the storage battery 5 to reversely flow to the system power supply 8.
  • the charge and discharge control device 1 may include only a part of the control unit 11, the setting unit 12, the acquisition unit 13, the storage unit 14, and the estimation unit 15. Other components may be included in a device separate from the charge and discharge control device 1.
  • the charge / discharge control device 1 may include only the control unit 11 and the setting unit 12 among the control unit 11, the setting unit 12, the acquisition unit 13, the storage unit 14, and the estimation unit 15.
  • Control unit 11 performs charge control for charging storage battery 5 using surplus power and discharge control for discharging storage battery 5 by controlling the charge / discharge operation performed by storage battery power conditioner 6 on storage battery 5. It is a controller.
  • the surplus power is power not consumed by the load 7 among the power generated by the solar cell 3.
  • the discharged power discharged by the storage battery 5 is supplied to the load 7.
  • the maximum (peak) of the amount of load power (the amount of power demand of a home) which changes during a day occurs in the evening. And in the specific time zone after the evening, the load power amount is relatively large during one day, and the generated power of the solar cell 3 is zero or very low.
  • the specific time zone may be a time at which the load power amount is maximal, that is, a peak time zone including the evening.
  • the time when the load power amount is maximum may be the time when the load power amount is maximum among one day.
  • the remaining power (SOC: State Of Charge) of the storage battery 5 be appropriately secured by the start time of the specific time zone.
  • SOC State Of Charge
  • the amount of load power in a specific time zone differs for each home. Therefore, in a home where the load power amount in the specific time zone is large, the remaining power of the storage battery 5 is not sufficiently secured by the start of the specific time zone, and the power that can be supplied from the storage battery 5 to the load 7 in the specific time zone is insufficient there's a possibility that.
  • control unit 11 switches the control mode of storage battery power conditioner 6 to the discharge prohibition mode or the discharge permission mode, and storage battery power conditioner 6 controls storage battery 5 Control the charge / discharge operation to be performed.
  • discharge inhibition mode discharge inhibition control for inhibiting the discharge of the storage battery 5 is performed.
  • discharge permission mode discharge permission control for permitting discharge of storage battery 5 is performed.
  • the storage battery power conditioner 6 does not discharge the storage battery 5 in the discharge inhibition mode, and the storage battery power conditioner 6 discharges the storage battery 5 in the discharge permission mode.
  • the discharge prohibition mode may be called a surplus charge mode, and the discharge permission mode may be called a private consumption mode.
  • the storage battery power conditioner 6 charges the storage battery 5 with the surplus power even in the discharge inhibition mode or the discharge permission mode.
  • the acquisition unit 13 is an acquisition unit that acquires measurement data of the current sensors 91 to 93 and stores the measurement data in the storage unit 14.
  • the storage unit 14 stores the history of each measurement data of the current sensors 91 to 93.
  • the acquisition unit 13 may acquire data related to the storage battery 5 from the storage battery power conditioner 6.
  • the data regarding the storage battery 5 is, for example, data indicating the amount of remaining power stored in the storage battery 5, data indicating the charging current of the storage battery 5, and data indicating the discharge current of the storage battery 5.
  • the estimation unit 15 refers to the storage unit 14 and based on the history of measurement data (load current) of the current sensor 93, a discharge schedule scheduled as an amount of discharged power supplied from the storage battery 5 to the load 7 in a specific time zone It is an estimator that estimates the amount of power.
  • the estimation unit 15 determines the load consumed in the past in the particular time zone based on the history of the load power in the particular time zone. Find the average value of the amount of power. At this time, the estimation unit 15 uses measurement data over a predetermined period in the past (for example, one week, one month, or six months). Then, the estimation unit 15 estimates, from the measurement data in the past predetermined period, the average value of the load power amount in the specific time zone as the discharge scheduled power amount.
  • the estimation unit 15 estimates the estimated discharge power amount based on the history of load power that differs for each home, the estimated estimated discharge power amount is based on the actual power usage pattern of each home. In addition, the estimation unit 15 may estimate the maximum value of the load power amount in the specific time zone as the planned discharge power amount. The estimation unit 15 may learn the load power based on the history of the load power, and estimate the estimated discharge power amount based on the learning result.
  • the estimation unit 15 may estimate the scheduled discharge power amount for each season. For example, the estimation unit 15 divides a year into four months of spring, summer, autumn, and winter, and estimates the estimated discharge time of spring based on the history of load power in a specific time zone of spring. You may Similarly, for each of the summer, autumn, and winter seasons, the estimation unit 15 may estimate the discharge planned power amount of the season based on the history of load power in a specific time zone of the season.
  • the estimation unit 15 may estimate the estimated discharge power amount for each day of the week. For example, the estimation unit 15 may estimate the discharge scheduled power amount on Monday based on the history of load power in a specific time zone on Monday. Similarly, for each day of the week from Tuesday to Sunday, the estimation unit 15 may estimate the estimated discharge power amount of the day of the week based on the history of load power in a specific time zone of the day of the day.
  • the setting unit 12 derives the battery remaining amount (remaining power amount of the storage battery 5) according to the size of the planned discharge power amount estimated by the estimation unit 15 as a threshold value for switching the above-mentioned discharge prohibition mode and discharge permission mode.
  • the setting unit 12 is a setting device that sets a threshold corresponding to the planned discharge power amount to the remaining power amount of the storage battery 5.
  • the threshold value corresponds to the remaining battery capacity capable of supplying the planned discharge power amount.
  • the threshold may be set to the battery remaining amount equal to the planned discharge power amount, or may be set to the remaining battery amount larger than the planned discharge power amount.
  • setting unit 12 may derive, for each season or every day of the week, a threshold for the remaining amount of power of storage battery 5 according to the size of the planned discharge amount of that season or day of the week.
  • control part 11 will control storage battery power conditioner 6 in discharge prohibition mode, if the amount of remaining power of storage battery 5 is below a threshold before a specific time zone. Further, control unit 11 controls storage battery power conditioner 6 in the discharge permission mode if the remaining power amount of storage battery 5 is larger than the threshold before the specific time zone. That is, control unit 11 controls charging and discharging of storage battery 5 such that the remaining power amount of storage battery 5 does not fall below the threshold before the specific time zone.
  • control unit 11 controls storage battery power conditioner 6 in the discharge permission mode regardless of the magnitude relation between the remaining power amount of storage battery 5 and the threshold value. That is, in the specific time zone, when the remaining power of storage battery 5 is not 0 and the generated power is insufficient for the load power, the discharge power of storage battery 5 is used for the load power.
  • FIG. 2 is an example of a power pattern for one day
  • X1 (broken line) is load power consumed by the load 7
  • X2 (dashed dotted line) is generated power of the solar cell 3
  • X3 (solid line) is a storage battery. 5 shows the amount of remaining power stored.
  • the load power X1 increases from the morning when the consumer starts to work. Thereafter, in the daytime, the load power X1 fluctuates in accordance with the use state of the load 7. Then, in the evening, the load power X1 increases again. Thereafter, the load power X1 decreases.
  • the generated power X2 of the solar cell 3 increases from the operation start time t1 (near the sunrise time) of the PV power conditioner 4 if the weather allows a sufficient amount of solar radiation to be secured. Then, in the daytime, the generated power X2 of the solar cell 3 decreases after reaching a maximum value around time t10 in the south. Then, the generated power X2 of the solar cell 3 becomes 0 after the operation stop time t2 (around the sunset time) of the PV power conditioner 4.
  • the generated power X2 of the solar cell 3 exceeds 0 before the specific time zone T1 (from morning to evening), the generated power X2 is used as the load power X1.
  • the load power X1 is larger than the generated power X2
  • the remaining power amount X3 stored in the storage battery 5 is basically used to cover the load power X1 of the specific time period T1. Furthermore, when it is determined that the remaining power amount X3 of the storage battery 5 is sufficiently secured by the specific time period T1, the remaining power amount X3 of the storage battery 5 still covers the load power X1 even before the specific time period T1. May be used.
  • control unit 11 operates as follows in the period from 0 o'clock to the start time t3 of the specific time zone T1.
  • Control unit 11 controls storage battery power conditioner 6 in the discharge prohibition mode in period M1 in which remaining power amount X3 of storage battery 5 is equal to or smaller than threshold value K1.
  • the control unit 11 performs a discharge prohibition control that prohibits the discharge of the storage battery 5.
  • control unit 11 charges storage battery 5 using the surplus power.
  • the threshold value K1 is set by the setting unit 12, and is the remaining battery capacity capable of supplying the planned discharge power amount in the specific time period T1.
  • control unit 11 determines that the planned discharge amount of power can not be covered by remaining power amount X3 of storage battery 5, and storage battery power conditioner 6 is Control. As a result, power control is performed such that the planned discharge amount of power is covered by the remaining power amount X3 of the storage battery 5.
  • the flowchart of FIG. 3 illustrates an example of control performed by the control unit 11 in the discharge inhibition mode.
  • the control unit 11 acquires measurement data from each of the current sensors 91 to 93, and acquires data on the storage battery 5 from the storage battery power conditioner 6 (S1). Then, based on the measurement data of the current sensor 91, the control unit 11 determines whether or not the reverse flow current flowing from the distribution board 2 to the grid power supply 8 is generated (S2).
  • the control unit 11 determines that the surplus power is reversely flowing, and performs control to charge the storage battery 5 on the storage battery power conditioner 6 (S3). Specifically, the control unit 11 instructs the storage battery power conditioner 6 to charge the storage battery 5 to charge the storage battery 5 with surplus power, and brings the reverse flow current closer to zero.
  • control part 11 performs control which does not charge / discharge the storage battery 5 with respect to the storage battery power conditioner 6, when the reverse flow current does not generate
  • control unit 11 controls storage battery power conditioner 6 in the discharge permission mode in period M2 in which remaining power amount X3 of storage battery 5 is larger than threshold value K1. In this case, the control unit 11 performs discharge permission control for permitting the discharge of the storage battery 5. In the discharge permission mode, when there is surplus power, control unit 11 charges storage battery 5 using the surplus power.
  • control unit 11 determines that remaining power amount X3 of storage battery 5 covers the discharge planned power amount, and storage battery power conditioner 6 in the discharge permission mode. Control. Therefore, when it is determined that the planned discharge amount of power is covered by the remaining power amount X3 of the storage battery 5, the control unit 11 supplies the discharge power of the storage battery 5 to the load 7. Thus, the remaining power amount X3 of the storage battery 5 is effectively used before the specific time zone T1. In addition, the purchase amount of commercial power is suppressed, and the power cost is suppressed.
  • the control unit 11 controls the storage battery power conditioner 6 in the discharge permission mode regardless of the magnitude relation between the remaining power amount X3 of the storage battery 5 and the threshold value K1. That is, in the specific time zone T1, even if the remaining power amount X3 of the storage battery 5 is equal to or less than the threshold value K1, the discharged power of the storage battery 5 is used as the load power X1. Therefore, in the specific time zone T1, the remaining power amount X3 of the storage battery 5 is effectively used. In addition, the purchase amount of commercial power is suppressed, and the power cost is suppressed.
  • the flowchart of FIG. 4 illustrates an example of control performed by the control unit 11 in the discharge permission mode.
  • the control unit 11 acquires measurement data from each of the current sensors 91 to 93, and acquires data on the storage battery 5 from the storage battery power conditioner 6 (S11). Then, based on the measurement data of the current sensor 91, the control unit 11 determines whether a reverse flow current flowing from the distribution board 2 to the grid power supply 8 is generated (S12).
  • the control unit 11 determines that the surplus power is reversely flowing, and performs control to charge the storage battery 5 on the storage battery power conditioner 6 (S13). Specifically, the control unit 11 instructs the storage battery power conditioner 6 to charge the storage battery 5 to charge the storage battery 5 with surplus power, and brings the reverse flow current closer to zero.
  • control part 11 performs control with which the storage battery 5 is discharged with respect to the storage battery power conditioner 6, when the reverse flow current does not generate
  • control unit 11 performs power control such that the remaining power amount X3 of the storage battery 5 becomes larger than the threshold K1 in the period from 0 o'clock to the start time t3 of the specific time period T1.
  • control part 11 controls storage battery power conditioner 6 in discharge permission mode in specific time zone T1.
  • the start time t3 of the specific time zone T1 is after the operation stop time t2 of the PV power conditioner 4.
  • the generated power X2 of the solar cell 3 is 0, and no surplus power is generated.
  • control unit 11 does not perform charge control for charging the storage battery 5 with surplus power.
  • control unit 11 instructs storage battery power conditioner 6 to discharge storage battery 5. Thereby, the remaining power amount X3 of the storage battery 5 is effectively used, and the power purchase amount is suppressed.
  • Control unit 11 may control the discharge rate such that remaining power amount X3 of storage battery 5 becomes zero at end time t4 of the specific time period T1.
  • remaining power amount X3 and threshold value K1 of storage battery 5 may be expressed by SOC (%), may be expressed by dischargeable electric energy (Wh), or may be discharged by dischargeable capacity (Ah). It may be expressed by).
  • the setting unit 12 may increase the threshold value K1 stepwise in advance of the specific time zone T1. That is, before the start time t3 of the specific time zone T1, when the time difference between the current time and the start time t3 is large, the threshold K1 may be set to a low value. Then, as the current time approaches the start time t3 of the specific time zone T1, the threshold K1 may be set to a sequentially higher value.
  • the threshold K1 is set to a low value. Therefore, the possibility of performing control in the discharge permission mode is increased. Then, by supplying the discharge power of the storage battery 5 to the load 7, the remaining power amount of the storage battery 5 is effectively used. Then, the purchase amount of commercial power is suppressed, and the power cost is suppressed.
  • the threshold K1 is set to a high value. Therefore, the possibility that control is performed in the discharge inhibition mode is high. Thus, the remaining power of the storage battery 5 is sufficiently secured by the start time t3 of the specific time zone T1.
  • the setting unit 12 sets the threshold value K1 to a large value at an early timing, the storage capacity of the storage battery 5 can be ensured more reliably.
  • setting section 12 sets threshold K1 to a large value at a later timing, the remaining power of storage battery 5 is more effectively used before specific time zone T1, and the purchase of commercial power is further suppressed. Ru.
  • the setting unit 12 may continuously increase the threshold K1 by the specific time zone T1, as shown in FIG. 5B.
  • the specific time zone T1 is a time zone after the evening when the load power amount is maximal.
  • the specific time zone T1 may be a time zone in which the unit price of electricity is higher than other time zones.
  • the specific time zone T1 may include a time zone in which the power unit price is higher than other time zones.
  • the specific time zone T1 may be defined as a time zone after the evening when the generated power can not be sufficiently obtained.
  • control unit 11 may include, in the execution condition of the discharge inhibition mode, the fact that it is within a predetermined time limit.
  • the time limit is also called a permission time.
  • a time limit period T2 is preset in advance of the specific time period T1 within one day.
  • Control unit 11 controls the storage battery power conditioner 6 in the discharge inhibition mode to perform the discharge inhibition control only when the remaining power amount of storage battery 5 is equal to or less than threshold value K1 within this time limit period T2. Outside the time limit period T2, the control unit 11 controls the storage battery power conditioner 6 in the discharge permission mode to perform discharge permission control.
  • the control unit 11 may perform the discharge restriction to perform the discharge prohibition control if the remaining power amount of the storage battery 5 is equal to or less than the threshold value K1. Then, the control unit 11 may perform discharge permission control even if the remaining power amount of the storage battery 5 is equal to or less than the threshold value K1 without performing discharge limitation except in the time limit period T2.
  • this time limit period T2 is set to a time length corresponding to the magnitude of the planned discharge power amount estimated by the estimation unit 15. Specifically, if the planned discharge power amount is small, the time limit T2 is set to the time limit T2a having a short time length (the start timing of the time limit T2 is delayed). Also, if the planned discharge power amount is large, the time limit period T2 is set to the long time limit time period T2b (the start timing of the time limit period T2 becomes earlier).
  • control unit 11 may start the discharge limitation for prohibiting the discharge of storage battery 5 as soon as the planned amount of discharge is larger, if the remaining power amount of storage battery 5 is equal to or less than threshold value K1. As a result, even when the planned discharge power amount is large, the remaining power amount of the storage battery 5 can be sufficiently secured.
  • the start timing of the time limit period T2 is set, for example, after 0 o'clock, and is set every day.
  • the solar cell 3 is used as a power source for generating power using renewable energy, but a wind power generator may be used as a power source for generating power using renewable energy. .
  • a wind power generator may be used as a power source for generating power using renewable energy.
  • the charge / discharge control device 1 of the present embodiment is particularly suitable for an environment in which it is difficult to match the supply available time zone of the generated power and the consumption time zone of the power in the home.
  • the charge / discharge control device 1 supplies power to the load 7 using the generated power of the solar cell (power source) 3 that generates power using renewable energy and the discharged power of the storage battery 5.
  • the charge and discharge control device 1 includes a control unit 11 and a setting unit 12.
  • the control unit 11 performs charge control for charging the storage battery 5 using surplus power not consumed by the load 7 among the generated power and discharge control for discharging the storage battery 5.
  • the setting unit 12 sets a threshold K1 according to the planned discharge power amount scheduled as the discharge power amount supplied from the storage battery 5 to the load 7 in the specific time period T1 with respect to the remaining power amount of the storage battery 5. If the remaining power amount of storage battery 5 is equal to or less than threshold value K 1 before specific time zone T1, control unit 11 performs discharge prohibition control for prohibiting the discharge of storage battery 5.
  • the charge / discharge control device 1 can set the threshold value K1 based on the planned discharge amount in the specific time zone T1 for each home, and comparing the remaining power amount of the storage battery 5 with the threshold value K1 Whether or not it can be determined. That is, when the remaining power of storage battery 5 is equal to or less than threshold value K 1, charge / discharge control device 1 prohibits the discharge of storage battery 5 so that the remaining power of storage battery 5 can cover the planned discharge power. Control can be performed.
  • charge / discharge control device 1 can appropriately secure the remaining power amount of storage battery 5 before the specific time zone T1.
  • control unit 11 may perform discharge permission control for permitting discharge of storage battery 5 if the remaining power amount of storage battery 5 is larger than threshold value K1 before the specific time zone T1.
  • the remaining power amount of the storage battery 5 is effectively used prior to the specific time zone T1.
  • the purchase amount of commercial power is suppressed, and the power cost is suppressed.
  • the setting unit 12 may increase the threshold K1 as the planned discharge power amount is larger. Thereby, the threshold value K1 is appropriately set.
  • the setting unit 12 may further increase the threshold K1 as the current time is closer to the specific time zone T1. Thereby, the charge / discharge control device 1 achieves both utilization of the remaining power of the storage battery 5 (suppression of the purchase amount of commercial power) and securing of the remaining power of the storage battery 5 before the specific time period T1. be able to.
  • control unit 11 may start the discharge restriction to perform the discharge prohibition control as soon as the amount of remaining power of the storage battery 5 is equal to or less than the threshold K1 as the planned amount of discharge is larger. Thereby, charge / discharge control device 1 can sufficiently ensure the remaining power of storage battery 5 even when the planned discharge power is large.
  • the specific time zone T1 may include a time when the amount of power consumed by the load 7 is a maximum during one day. Thereby, charge / discharge control device 1 can appropriately secure the remaining power amount of storage battery 5 before the specific time period T1 including the time when the load power amount is at the peak.
  • the specific time zone T1 may include a time zone in which the unit price of the commercial power supplied to the load 7 is higher than that in the other time zones.
  • charge / discharge control device 1 can appropriately secure the remaining power amount of storage battery 5 before the specific time period T1 where the power unit price is relatively high.
  • the charge and discharge control device 1 may be equipped with a computer. Then, when the computer executes the program, each function of the control unit 11, the setting unit 12, the estimation unit 15, and the like of the above-described charge and discharge control device 1 may be realized.
  • this computer mainly includes a device provided with a processor for executing a program, a device for an interface for exchanging data with another device, and a device for storing data. It has as a component.
  • the device provided with the processor may be a CPU or MPU that is separate from the semiconductor memory, or may be a microcomputer integrally provided with the semiconductor memory.
  • the storage device may be a combination of a storage device having a short access time, such as a semiconductor memory, and a large-capacity storage device, such as a hard disk drive.
  • a form readable in a computer readable ROM Read Only Memory
  • a form stored in advance in a recording medium such as an optical disc
  • the program causes the computer to function as the charge and discharge control device 1 (specifically, at least the control unit 11 and the setting unit 12 of the charge and discharge control device 1).
  • a program that causes a computer to function as the charge / discharge control device 1 can also achieve the same effect as described above. That is, this program can properly secure the remaining power amount of the storage battery 5 before the specific time zone T1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Power Engineering (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Development Economics (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Accounting & Taxation (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • General Business, Economics & Management (AREA)
  • Finance (AREA)
  • Health & Medical Sciences (AREA)
  • Tourism & Hospitality (AREA)
  • Primary Health Care (AREA)
  • Human Resources & Organizations (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Public Health (AREA)
  • Game Theory and Decision Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

充放電制御装置(1)は、発電電力のうち負荷(7)で消費されない余剰電力を用いて蓄電池(5)を充電させる充電制御、および、蓄電池(5)を放電させる放電制御を行う制御部(11)と、特定時間帯において蓄電池(5)から負荷(7)へ供給される放電電力量として予定される放電予定電力量に応じた閾値を蓄電池(5)の残電力量に対して設定する設定部(12)とを備え、制御部(11)は、特定時間帯よりも前において、蓄電池(5)の残電力量が閾値以下であれば、蓄電池(5)の放電を禁止する放電禁止制御を行う。

Description

充放電制御装置
 本発明は、再生可能エネルギーを利用した発電を行う電源の発電電力と、蓄電池の放電電力とを用いて負荷への電力供給を行う電力システムに用いられる充放電制御装置等に関する。
 従来、太陽電池および蓄電池を用いて、建物内の負荷への電力供給を行う電力システムがある。この種のシステムは、太陽電池の発電電力と蓄電池の放電電力とを組み合わせて、負荷へ電力を供給する。特許文献1に記載の蓄電システムは、この種のシステムの一例である。
特開2011-83082号公報
 しかしながら、特定時間帯よりも前に、蓄電池の残電力量が適切に確保されていなければ、特定時間帯において、蓄電池の残電力量が不足し、蓄電池から十分な放電電力が得られない可能性がある。例えば、太陽電池の発電電力が得られない時間帯よりも前に蓄電池の残電力量が適切に確保されていなければ、太陽電池の発電電力が得られない時間帯において、蓄電池から十分な放電電力が得られない可能性がある。結果として、太陽電池からも蓄電池からも十分な電力が得られない可能性がある。
 また、特定時間帯よりも前において蓄電池の残電力量を不必要または過剰に確保することは、非効率である。
 本発明は、上記事由に鑑みてなされたものであり、特定時間帯よりも前において蓄電池の残電力量を適切に確保することができる充放電制御装置等を提供することを目的とする。
 本発明の一態様に係る充放電制御装置は、再生可能エネルギーを利用した発電を行う電源の発電電力と、蓄電池の放電電力とを用いて負荷への電力供給を行う電力システムに用いられる充放電制御装置であって、前記発電電力のうち前記負荷で消費されない余剰電力を用いて前記蓄電池を充電させる充電制御、および、前記蓄電池を放電させる放電制御を行う制御部と、特定時間帯において前記蓄電池から前記負荷へ供給される放電電力量として予定される放電予定電力量に応じた閾値を前記蓄電池の残電力量に対して設定する設定部とを備え、前記制御部は、前記特定時間帯よりも前において、前記蓄電池の残電力量が前記閾値以下であれば、前記蓄電池の放電を禁止する放電禁止制御を行う。
 本発明の一態様に係る充放電制御装置等によって、特定時間帯よりも前において蓄電池の残電力量が適切に確保される。
図1は、実施の形態における充放電制御装置を用いた電力システムの全体構成を示すブロック図である。 図2は、実施の形態における1日の電力パターンの一例を示す模式図である。 図3は、実施の形態における放電禁止モードの動作を示すフローチャートである。 図4は、実施の形態における放電許可モードの動作を示すフローチャートである。 図5Aは、実施の形態における閾値の第1設定例を示す模式図である。 図5Bは、実施の形態における閾値の第2設定例を示す模式図である。 図6は、実施の形態における制限時間帯を示す概念図である。
 以下、本発明の実施の形態を図面に基づいて説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示す。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態、動作の順序等は、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素は、任意の構成要素として説明される。
 また、電力量は、通常、所定期間における電力の積算値を意味し、エネルギーに対応する。そして、単位時間あたりの電力量が、電力(パワー)に対応する。電力(パワー)と電力量(エネルギー)とは互いに対応するため、ここでは、電力が、電力量(エネルギー)の意味で用いられる場合があり、電力量が、電力(パワー)の意味で用いられる場合がある。そして、電力の量を電力量と呼ぶ場合がある。
 また、電流、電力および電力量は、それらの値を意味する場合がある。また、充放電は、充電および放電の少なくとも一方に対応する。
 (実施の形態)
 図1は、電力システムの全体構成を示す。電力システムは、充放電制御装置1、分電盤2、太陽電池(電源)3、PVパワーコンディショナ4、蓄電池5、蓄電池パワーコンディショナ6、および、電流センサ91~93を備え、負荷7へ電力を供給する。なお、本実施の形態では、戸建ての住戸に電力システムが適用されているが、集合住宅または事業所などの建物に電力システムが適用されてもよい。
 電力システムは、負荷7に電力を供給する電源として、太陽電池3と、蓄電池5と、系統電源8とを用いる。
 分電盤2には、系統電源8から交流電力(商用電力)が供給される。さらに、分電盤2には、分散電源である太陽電池3からPVパワーコンディショナ4を介して交流電力(発電電力)が供給される。さらに、分電盤2には、蓄電池5から蓄電池パワーコンディショナ6を介して交流電力(放電電力)が供給される。
 また、分電盤2の盤内には、主幹ブレーカ、複数の分岐ブレーカ、および、開閉器等が内蔵されている。また、分電盤2の複数の分岐ブレーカは、複数の分岐回路に対して設けられている。分電盤2は、分岐回路を介して負荷7に交流電力を供給する。
 なお、図1の負荷7は、分岐回路に接続された照明装置、空調装置または情報機器などの電気機器である。複数の負荷7が、複数の分岐回路を介して分電盤2に接続されてもよい。
 太陽電池3は、太陽光を利用して発電する。PVパワーコンディショナ4は、太陽電池3が発電することで得られた直流電力を交流電力に変換して、太陽電池3の発電電力として出力する。さらに、PVパワーコンディショナ4は、系統電源8と系統連系を行うため、PVパワーコンディショナ4が出力する交流電力(太陽電池3の発電電力)の周波数および出力電圧を調節する。
 蓄電池5は、蓄電池パワーコンディショナ6を介して分電盤2に接続している。蓄電池パワーコンディショナ6は、蓄電池5の充電および放電を行う。具体的には、蓄電池パワーコンディショナ6は、分電盤2から供給される交流電力を直流電力に変換して、直流電力を蓄電池5に供給することで、蓄電池5を充電させる。また、蓄電池パワーコンディショナ6は、蓄電池5を放電させ、蓄電池5から供給される直流電力を交流電力に変換して、交流電力を分電盤2へ供給する。
 さらに、蓄電池パワーコンディショナ6は、系統電源8と系統連系を行うため、蓄電池パワーコンディショナ6が出力する交流電力(放電電力)の周波数および出力電圧を調節する。
 太陽電池3の発電電力は、負荷電力、充電電力および逆潮電力のうち、一部または全部に用いられる。蓄電池5の放電電力は、負荷電力に用いられる。負荷電力は、負荷7の全体で消費される総電力(複数の負荷7で消費される電力の合計)である。充電電力は、蓄電池5によって充電される電力である。逆潮流電力は、系統電源8へ逆潮流する電力である。
 電流センサ91は、系統電源8と分電盤2との間で授受される電流を測定し、測定された電流を示す測定データを充放電制御装置1へ出力する。電流センサ92は、PVパワーコンディショナ4から分電盤2に供給される電流を測定し、測定された電流を示す測定データを充放電制御装置1へ出力する。電流センサ93は、分電盤2から負荷7の全体へ供給される総電流(複数の負荷7へ供給される電流の合計)を測定し、測定された総電流を示す測定データを充放電制御装置1へ出力する。
 充放電制御装置1は、制御部11、設定部(閾値設定部)12、取得部(データ取得部)13、記憶部14、および、推定部15を備え、蓄電池パワーコンディショナ6によって蓄電池5に対して行われる充放電動作を制御する。すなわち、充放電制御装置1は、蓄電池パワーコンディショナ6を介して、蓄電池5の充電(充電電力)、および、蓄電池5の放電(放電電力)を制御する。
 そして、充放電制御装置1は、充放電を制御することで、系統電源8から負荷7へ供給される商用電力、および、太陽電池3から系統電源8へ逆潮流する逆潮流電力を調整する。なお、この電力システムにおいて、充放電制御装置1は、太陽電池3の発電電力を系統電源8へ逆潮流させるが、蓄電池5の放電電力を系統電源8へ逆潮流させない。
 また、充放電制御装置1は、制御部11、設定部12、取得部13、記憶部14および推定部15のうち一部のみを備えてもよい。その他の構成要素は、充放電制御装置1とは別の装置に含まれてもよい。例えば、充放電制御装置1は、制御部11、設定部12、取得部13、記憶部14および推定部15のうち、制御部11および設定部12のみを備えてもよい。
 制御部11は、蓄電池パワーコンディショナ6が蓄電池5に対して行う充放電動作を制御することで、余剰電力を用いて蓄電池5を充電させる充電制御、および、蓄電池5を放電させる放電制御を行う制御器である。ここで、余剰電力は、太陽電池3の発電電力のうち負荷7で消費されない電力である。蓄電池5によって放電される放電電力は、負荷7に供給される。
 一般に、1日の間に変化する負荷電力量(家庭の需要電力量)の極大(ピーク)が夕方に発生する。そして、夕方以降における特定時間帯では、負荷電力量が1日の間において比較的大きく、且つ、太陽電池3の発電電力が0または非常に低い。ここで、特定時間帯は、負荷電力量が極大である時間、つまり夕方を含むピーク時間帯でもよい。また、負荷電力量が極大である時間は、負荷電力量が1日の間で最大である時間でもよい。
 特定時間帯における商用電力の電力量を抑制するため、特定時間帯の開始時刻までに、蓄電池5の残電力量(SOC:State Of Charge)が適切に確保されているほうがよい。しかしながら、特定時間帯の負荷電力量は家庭毎に異なる。したがって、特定時間帯の負荷電力量が大きい家庭では、特定時間帯の開始までに蓄電池5の残電力量が十分に確保されず、特定時間帯において蓄電池5から負荷7へ供給可能な電力が不足する可能性がある。
 そこで、蓄電池5の残電力量を適切に確保するため、制御部11は、蓄電池パワーコンディショナ6の制御モードを放電禁止モードまたは放電許可モードに切り替えて、蓄電池パワーコンディショナ6によって蓄電池5に対して行われる充放電動作を制御する。ここで、放電禁止モードでは、蓄電池5の放電を禁止する放電禁止制御が行われる。放電許可モードでは、蓄電池5の放電を許可する放電許可制御が行われる。
 特に、負荷電力に対して発電電力が不足している場合において、放電禁止モードでは蓄電池パワーコンディショナ6が蓄電池5を放電させず、放電許可モードでは蓄電池パワーコンディショナ6が蓄電池5を放電させる。
 なお、放電禁止モードは、余剰充電モードと呼ばれる場合があり、放電許可モードは、自家消費モードと呼ばれる場合がある。また、発電電力のうち負荷電力を超える余剰電力が発生している場合、放電禁止モードでも放電許可モードでも、蓄電池パワーコンディショナ6は余剰電力で蓄電池5を充電させる。
 取得部13は、電流センサ91~93の各測定データを取得して、記憶部14に格納する取得器である。記憶部14には、電流センサ91~93の各測定データの履歴が記憶される。また、取得部13は、蓄電池5に関するデータを蓄電池パワーコンディショナ6から取得してもよい。蓄電池5に関するデータは、例えば、蓄電池5に蓄電されている残電力量を示すデータ、蓄電池5の充電電流を示すデータ、および、蓄電池5の放電電流を示すデータなどである。
 推定部15は、記憶部14を参照し、電流センサ93の測定データ(負荷電流)の履歴に基づいて、特定時間帯において蓄電池5から負荷7へ供給される放電電力量として予定される放電予定電力量を推定する推定器である。
 具体的には、電流センサ93の測定データの履歴が負荷電力の履歴に相当するので、推定部15は、特定時間帯における負荷電力の履歴に基づいて、特定時間帯において過去に消費された負荷電力量の平均値を求める。その際、推定部15は、過去の所定期間(例えば、1週間、1ヶ月または6ヶ月など)に亘る測定データを用いる。そして、推定部15は、過去の所定期間における測定データから、特定時間帯における負荷電力量の平均値を放電予定電力量として推定する。
 推定部15が、家庭毎に異なる負荷電力の履歴に基づいて、放電予定電力量を推定するので、推定された放電予定電力量は、各家庭の実際の電力使用形態に基づいている。なお、推定部15は、特定時間帯における負荷電力量の最大値を放電予定電力量と推定してもよい。推定部15は、負荷電力の履歴に基づいて、負荷電力を学習し、学習結果に基づいて、放電予定電力量を推定してもよい。
 また、推定部15は、季節毎の放電予定電力量を推定してもよい。例えば、推定部15は、1年をそれぞれ4か月の春、夏、秋および冬の複数の季節に分割し、春の特定時間帯における負荷電力の履歴に基づいて、春の放電予定電力量を推定してもよい。同様に、推定部15は、夏、秋および冬の各季節について、その季節の特定時間帯における負荷電力の履歴に基づいて、その季節の放電予定電力量を推定してもよい。
 また、推定部15は、曜日毎の放電予定電力量を推定してもよい。例えば、推定部15は、月曜日の特定時間帯における負荷電力の履歴に基づいて、月曜日の放電予定電力量を推定してもよい。同様に、推定部15は、火曜日から日曜日までの各曜日について、その曜日の特定時間帯における負荷電力の履歴に基づいて、その曜日の放電予定電力量を推定してもよい。
 設定部12は、推定部15が推定した放電予定電力量の大きさに応じた電池残量(蓄電池5の残電力量)を、上述の放電禁止モードおよび放電許可モードを切り替えるための閾値として導出する。つまり、設定部12は、放電予定電力量に応じた閾値を蓄電池5の残電力量に対して設定する設定器である。ここで、閾値は、放電予定電力量の供給が可能な電池残量に相当する。例えば、閾値は、放電予定電力量に等しい電池残量に設定されてもよいし、放電予定電力量よりも大きい電池残量に設定されてもよい。
 また、設定部12は、季節毎または曜日毎に、その季節またはその曜日の放電予定電力量の大きさに応じて、蓄電池5の残電力量に対する閾値を導出してもよい。
 そして、制御部11は、特定時間帯よりも前において、蓄電池5の残電力量が閾値以下であれば、放電禁止モードで蓄電池パワーコンディショナ6を制御する。また、制御部11は、特定時間帯よりも前において、蓄電池5の残電力量が閾値よりも大きければ、放電許可モードで蓄電池パワーコンディショナ6を制御する。すなわち、制御部11は、特定時間帯よりも前において、蓄電池5の残電力量が閾値を下回らないように、蓄電池5の充電および放電を制御する。
 また、特定時間帯では、制御部11は、蓄電池5の残電力量と閾値との大小関係に関わらず、放電許可モードで蓄電池パワーコンディショナ6を制御する。すなわち、特定時間帯において、蓄電池5の残電力量が0ではなく、かつ、発電電力が負荷電力に対して不足している場合に、蓄電池5の放電電力が負荷電力に対して用いられる。
 以下、本実施の形態における電力制御について、図2を用いて説明する。図2は、1日の電力パターンの一例であり、X1(破線)は負荷7が消費する負荷電力であり、X2(一点鎖線)は太陽電池3の発電電力であり、X3(実線)は蓄電池5に蓄電されている残電力量を示す。
 まず、需要者が活動を始める朝から、負荷電力X1は増加する。その後、昼間において、負荷7の使用状態に応じて、負荷電力X1は変動する。そして、夕方において、負荷電力X1は再び増加する。その後、負荷電力X1は減少する。
 太陽電池3の発電電力X2は、日射量が十分に確保される天候であれば、PVパワーコンディショナ4の運転開始時刻t1(日の出時刻付近)から増加する。そして、昼間において、太陽電池3の発電電力X2は、南中時刻t10付近で最大値となった後に減少する。そして、太陽電池3の発電電力X2は、PVパワーコンディショナ4の運転停止時刻t2(日没時刻付近)以降において、0となる。
 そして、特定時間帯T1よりも前(朝~夕方まで)において、太陽電池3の発電電力X2が0を上回る場合、発電電力X2は負荷電力X1に用いられる。負荷電力X1が発電電力X2よりも大きい場合、不足電力(=負荷電力X1-発電電力X2)は、主に商用電力で賄われる。また、発電電力X2が負荷電力X1よりも大きい場合、蓄電池パワーコンディショナ6は、余剰電力(=発電電力X2-負荷電力X1)で蓄電池5を充電させる。
 そして、蓄電池5に蓄電されている残電力量X3は、基本的に特定時間帯T1の負荷電力X1を賄うために用いられる。さらに、蓄電池5の残電力量X3が特定時間帯T1までに十分に確保されると判定された場合、蓄電池5の残電力量X3は、特定時間帯T1よりも前でも負荷電力X1を賄うために用いられてもよい。
 具体的には、図2において、制御部11は、0時から、特定時間帯T1の開始時刻t3までの期間において、以下のように動作する。制御部11は、蓄電池5の残電力量X3が閾値K1以下である期間M1において、放電禁止モードで蓄電池パワーコンディショナ6を制御する。この場合、制御部11は、蓄電池5の放電を禁止する放電禁止制御を行う。放電禁止モードにおいて、余剰電力がある場合、制御部11は、余剰電力を用いて蓄電池5を充電させる。
 ここで、閾値K1は、設定部12によって設定されており、特定時間帯T1における放電予定電力量の供給が可能な電池残量である。
 蓄電池5の残電力量X3が閾値K1以下である場合、制御部11は、蓄電池5の残電力量X3で放電予定電力量が賄われないと判定し、放電禁止モードで蓄電池パワーコンディショナ6を制御する。これにより、蓄電池5の残電力量X3で放電予定電力量が賄われるように、電力制御が行われる。
 図3のフローチャートは、放電禁止モードにおいて制御部11が行う制御の一例を示す。まず、制御部11は、電流センサ91~93のそれぞれから測定データを取得し、蓄電池パワーコンディショナ6から蓄電池5に関するデータを取得する(S1)。そして、制御部11は、電流センサ91の測定データに基づいて、分電盤2から系統電源8へ流れる逆潮流電流が発生しているか否かを判定する(S2)。
 そして、制御部11は、逆潮流電流が発生している場合、余剰電力が逆潮流していると判定し、蓄電池5を充電させる制御を蓄電池パワーコンディショナ6に対して行う(S3)。具体的には、制御部11は、蓄電池5の充電を蓄電池パワーコンディショナ6に指示して、余剰電力による蓄電池5の充電を行い、逆潮流電流を0に近づける。
 また、制御部11は、逆潮流電流が発生していない場合、蓄電池5を充放電させない制御を蓄電池パワーコンディショナ6に対して行う(S4)。具体的には、制御部11は、蓄電池5の充放電の停止を蓄電池パワーコンディショナ6に指示し、充電電力および放電電力を0にする。
 また、制御部11は、蓄電池5の残電力量X3が閾値K1よりも大きい期間M2において、放電許可モードで蓄電池パワーコンディショナ6を制御する。この場合、制御部11は、蓄電池5の放電を許可する放電許可制御を行う。放電許可モードにおいて、余剰電力がある場合、制御部11は、余剰電力を用いて蓄電池5を充電させる。
 すなわち、蓄電池5の残電力量X3が閾値K1よりも大きい場合、制御部11は、蓄電池5の残電力量X3で放電予定電力量が賄われると判定し、放電許可モードで蓄電池パワーコンディショナ6を制御する。したがって、蓄電池5の残電力量X3で放電予定電力量が賄われると判定された場合、制御部11は、蓄電池5の放電電力を負荷7へ供給する。これにより、特定時間帯T1よりも前において、蓄電池5の残電力量X3が有効に利用される。また、商用電力の買電量が抑制され、電力コストが抑制される。
 そして、特定時間帯T1では、制御部11は、蓄電池5の残電力量X3と閾値K1との大小関係に関わらず、放電許可モードで蓄電池パワーコンディショナ6を制御する。すなわち、特定時間帯T1では、蓄電池5の残電力量X3が閾値K1以下でも、蓄電池5の放電電力が負荷電力X1に用いられる。したがって、特定時間帯T1において、蓄電池5の残電力量X3が有効に利用される。また、商用電力の買電量が抑制され、電力コストが抑制される。
 図4のフローチャートは、放電許可モードにおいて制御部11が行う制御の一例を示す。まず、制御部11は、電流センサ91~93のそれぞれから測定データを取得し、蓄電池パワーコンディショナ6から蓄電池5に関するデータを取得する(S11)。そして、制御部11は、電流センサ91の測定データに基づいて、分電盤2から系統電源8へ流れる逆潮流電流が発生しているか否かを判定する(S12)。
 そして、制御部11は、逆潮流電流が発生している場合、余剰電力が逆潮流していると判定し、蓄電池5を充電させる制御を蓄電池パワーコンディショナ6に対して行う(S13)。具体的には、制御部11は、蓄電池5の充電を蓄電池パワーコンディショナ6に指示して、余剰電力による蓄電池5の充電を行い、逆潮流電流を0に近づける。
 また、制御部11は、逆潮流電流が発生していない場合、蓄電池5を放電させる制御を蓄電池パワーコンディショナ6に対して行う(S14)。具体的には、制御部11は、蓄電池5の放電を蓄電池パワーコンディショナ6に指示し、分電盤2を介して負荷7へ放電電力を供給させる。これにより、蓄電池5の残電力量X3が有効に利用される。また、買電量が抑制される。
 上述のように、制御部11は、0時から、特定時間帯T1の開始時刻t3までの期間において、蓄電池5の残電力量X3が閾値K1よりも大きくなるように電力制御を行う。
 そして、制御部11は、特定時間帯T1において、放電許可モードで蓄電池パワーコンディショナ6を制御する。図2の例において、特定時間帯T1の開始時刻t3は、PVパワーコンディショナ4の運転停止時刻t2以降である。特定時間帯T1において、太陽電池3の発電電力X2は0であり、余剰電力は発生しない。
 したがって、この例では、特定時間帯T1において、制御部11は余剰電力で蓄電池5を充電させる充電制御を行わない。一方、制御部11は、蓄電池5を放電させるように蓄電池パワーコンディショナ6に指示する。これにより、蓄電池5の残電力量X3が有効に利用され、買電量が抑制される。
 制御部11は、特定時間帯T1の終了時刻t4において、蓄電池5の残電力量X3が0になるように、放電レートを制御してもよい。
 また、蓄電池5の残電力量X3および閾値K1は、それぞれ、SOC(%)で表現されてもよいし、放電可能な電力量(Wh)で表現されてもよいし、放電可能な容量(Ah)で表現されてもよい。
 また、設定部12は、図5Aに示すように、特定時間帯T1よりも前において、閾値K1を段階的に大きくしてもよい。すなわち、特定時間帯T1の開始時刻t3以前において、現在時刻と開始時刻t3との時間差が大きい場合、閾値K1は低い値に設定されてもよい。そして、現在時刻が特定時間帯T1の開始時刻t3に近付くにつれて、閾値K1は順次高い値に設定されてもよい。
 図5Aの例では、現在時刻と特定時間帯T1の開始時刻t3との時間差が大きい場合、閾値K1は低い値に設定される。したがって、放電許可モードで制御が行われる可能性が高くなる。そして、蓄電池5の放電電力が負荷7に供給されることによって、蓄電池5の残電力量が有効に利用される。そして、商用電力の買電量が抑制され、電力コストが抑制される。
 そして、現在時刻が特定時間帯T1の開始時刻t3に近付くと、閾値K1は高い値に設定される。したがって、放電禁止モードで制御が行われる可能性が高くなる。これにより、特定時間帯T1の開始時刻t3までに蓄電池5の残電力量が十分に確保される。
 また、設定部12が早いタイミングで閾値K1を大きい値に設定すれば、蓄電池5において放電予定電力量がより確実に確保される。また、設定部12が遅いタイミングで閾値K1を大きい値に設定すれば、特定時間帯T1よりも前において、蓄電池5の残電力量がより有効に利用され、商用電力の買電量がより抑制される。
 なお、設定部12は、図5Bに示すように、閾値K1を特定時間帯T1までに連続的に大きくしてもよい。
 また、上述では、特定時間帯T1は、負荷電力量が極大である夕方以降における時間帯である。しかし、商用電力の電力単価が1日の間において時間帯毎に変動する電力料金プランが採用されている場合、特定時間帯T1は、他の時間帯よりも電力単価が高い時間帯でもよい。また、特定時間帯T1は、他の時間帯よりも電力単価が高い時間帯を含んでもよい。また、特定時間帯T1は、発電電力が十分に得られない夕方以降における時間帯として定められてもよい。
 また、制御部11は、放電禁止モードの実行条件に、予め決められた制限時間帯内であることを含めてもよい。制限時間帯は許可時間帯とも呼ばれる。
 具体的には、図6に示すように、1日のうちで、特定時間帯T1よりも前に制限時間帯T2が予め設定されている。制御部11は、この制限時間帯T2内でのみ、蓄電池5の残電力量が閾値K1以下である場合に、放電禁止モードで蓄電池パワーコンディショナ6を制御して、放電禁止制御を行う。制限時間帯T2以外では、制御部11は、放電許可モードで蓄電池パワーコンディショナ6を制御して、放電許可制御を行う。
 つまり、制御部11は、制限時間帯T2において、蓄電池5の残電力量が閾値K1以下であれば放電禁止制御を行う放電制限を行ってもよい。そして、制御部11は、制限時間帯T2以外において、放電制限を行わず、蓄電池5の残電力量が閾値K1以下であっても放電許可制御を行ってもよい。
 例えば、この制限時間帯T2は、推定部15が推定した放電予定電力量の大きさに応じた時間長に設定される。具体的には、放電予定電力量が小さければ、制限時間帯T2は、短い時間長の制限時間帯T2aに設定される(制限時間帯T2の開始タイミングが遅くなる)。また、放電予定電力量が大きければ、制限時間帯T2は、長い時間長の制限時間帯T2bに設定される(制限時間帯T2の開始タイミングが早くなる)。
 すなわち、制御部11は、蓄電池5の残電力量が閾値K1以下であれば蓄電池5の放電を禁止する放電制限を放電予定電力量が大きいほど早く開始してもよい。これにより、放電予定電力量が大きい場合でも、蓄電池5の残電力量を十分に確保することができる。なお、制限時間帯T2の開始タイミングは、例えば、0時以降に設定され、また、日毎に設定される。
 また、本実施の形態では、再生可能エネルギーを利用した発電を行う電源として太陽電池3が用いられているが、風力発電装置などが再生可能エネルギーを利用した発電を行う電源として用いられてもよい。太陽電池3または風力発電装置などでは、発電電力を安定して供給することは困難であり、発電電力の供給可能時間帯と家庭における電力の消費時間帯とを一致させることは困難である。
 発電電力の供給可能時間帯と家庭における電力の消費時間帯とを一致させることが困難な環境に対して、本実施の形態の充放電制御装置1は特に適している。
 上述の通り、充放電制御装置1は、再生可能エネルギーを利用した発電を行う太陽電池(電源)3の発電電力と、蓄電池5の放電電力とを用いて負荷7への電力供給を行う電力システムに用いられる。例えば、充放電制御装置1は、制御部11と、設定部12とを備える。
 制御部11は、発電電力のうち負荷7で消費されない余剰電力を用いて蓄電池5を充電させる充電制御、および、蓄電池5を放電させる放電制御を行う。設定部12は、特定時間帯T1において蓄電池5から負荷7へ供給される放電電力量として予定される放電予定電力量に応じた閾値K1を蓄電池5の残電力量に対して設定する。制御部11は、特定時間帯T1よりも前において、蓄電池5の残電力量が閾値K1以下であれば、蓄電池5の放電を禁止する放電禁止制御を行う。
 これにより、充放電制御装置1は、家庭毎の特定時間帯T1における放電予定電力量に基づいて閾値K1を設定することができ、蓄電池5の残電力量を閾値K1と比較することで放電の可否を判定することができる。すなわち、充放電制御装置1は、蓄電池5の残電力量が閾値K1以下である場合、蓄電池5の放電を禁止することで、蓄電池5の残電力量で放電予定電力量が賄われるように電力制御を行うことができる。
 したがって、充放電制御装置1は、特定時間帯T1よりも前において蓄電池5の残電力量を適切に確保することができる。
 また、制御部11は、特定時間帯T1よりも前において、蓄電池5の残電力量が閾値K1よりも大きければ、蓄電池5の放電を許可する放電許可制御行ってもよい。
 これにより、特定時間帯T1よりも前において、蓄電池5の残電力量が有効に利用される。また、商用電力の買電量が抑制され、電力コストが抑制される。
 また、設定部12は、放電予定電力量が大きいほど、閾値K1を大きくしてもよい。これにより、閾値K1が適切に設定される。
 また、設定部12は、さらに、現在時刻が特定時間帯T1に近いほど、閾値K1を大きくしてもよい。これにより、充放電制御装置1は、特定時間帯T1よりも前において、蓄電池5の残電力量の利用(商用電力の買電量の抑制)と、蓄電池5の残電力量の確保とを両立させることができる。
 また、制御部11は、放電予定電力量が大きいほど、蓄電池5の残電力量が閾値K1以下であれば放電禁止制御を行う放電制限を早く開始してもよい。これにより、充放電制御装置1は、放電予定電力量が大きい場合でも、蓄電池5の残電力量を十分に確保することができる。
 また、特定時間帯T1は、負荷7で消費される電力量が1日の間で極大である時間を含んでもよい。これにより、充放電制御装置1は、負荷電力量がピークである時間を含む特定時間帯T1よりも前において蓄電池5の残電力量を適切に確保することができる。
 また、特定時間帯T1は、負荷7へ供給される商用電力の単価が他の時間帯に比べて高い時間帯を含んでもよい。これにより、充放電制御装置1は、電力単価が比較的高い特定時間帯T1よりも前において蓄電池5の残電力量を適切に確保することができる。
 また、充放電制御装置1は、コンピュータを搭載してもよい。そして、このコンピュータがプログラムを実行することによって、上述の充放電制御装置1の制御部11、設定部12および推定部15等の各機能が実現されてもよい。
 例えば、このコンピュータは、プログラムを実行するプロセッサを備えたデバイスと、他の装置との間でデータを授受するためのインターフェイス用のデバイスと、データを記憶するための記憶用のデバイスとを主な構成要素として備える。プロセッサを備えたデバイスは、半導体メモリと別体であるCPUまたはMPUでもよいし、半導体メモリを一体に備えるマイコンでもよい。記憶用のデバイスは、半導体メモリのようにアクセス時間が短い記憶装置と、ハードディスク装置のような大容量の記憶装置とが併用されてもよい。
 プログラムの提供形態として、コンピュータに読み取り可能なROM(Read Only Memory)、光ディスク等の記録媒体に予め格納されている形態、および、インターネット等を含む広域通信網を介して記録媒体に供給される形態等がある。
 例えば、プログラムは、コンピュータを、充放電制御装置1(具体的には、充放電制御装置1の少なくとも制御部11および設定部12)として機能させる。
 コンピュータを充放電制御装置1として機能させるプログラムも、上記と同様の効果を奏し得る。すなわち、このプログラムは、特定時間帯T1よりも前において蓄電池5の残電力量を適切に確保することができる。
 なお、上述の実施の形態は本発明の一例である。このため、本発明は、上述の実施の形態に限定されることはなく、この実施の形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。
 1 充放電制御装置
 3 太陽電池(電源)
 5 蓄電池
 7 負荷
 11 制御部
 12 設定部

Claims (8)

  1.  再生可能エネルギーを利用した発電を行う電源の発電電力と、蓄電池の放電電力とを用いて負荷への電力供給を行う電力システムに用いられる充放電制御装置であって、
     前記発電電力のうち前記負荷で消費されない余剰電力を用いて前記蓄電池を充電させる充電制御、および、前記蓄電池を放電させる放電制御を行う制御部と、
     特定時間帯において前記蓄電池から前記負荷へ供給される放電電力量として予定される放電予定電力量に応じた閾値を前記蓄電池の残電力量に対して設定する設定部とを備え、
     前記制御部は、前記特定時間帯よりも前において、前記蓄電池の残電力量が前記閾値以下であれば、前記蓄電池の放電を禁止する放電禁止制御を行う
     充放電制御装置。
  2.  前記制御部は、前記特定時間帯よりも前において、前記蓄電池の残電力量が前記閾値よりも大きければ、前記蓄電池の放電を許可する放電許可制御行う
     請求項1に記載の充放電制御装置。
  3.  前記設定部は、前記放電予定電力量が大きいほど、前記閾値を大きくする
     請求項1または2に記載の充放電制御装置。
  4.  前記設定部は、さらに、現在時刻が前記特定時間帯に近いほど、前記閾値を大きくする
     請求項1~3のいずれか1項に記載の充放電制御装置。
  5.  前記制御部は、前記放電予定電力量が大きいほど、前記蓄電池の残電力量が前記閾値以下であれば前記放電禁止制御を行う放電制限を早く開始する
     請求項1~4のいずれか1項に記載の充放電制御装置。
  6.  前記特定時間帯は、前記負荷で消費される電力量が1日の間で極大である時間を含む
     請求項1~5のいずれか1項に記載の充放電制御装置。
  7.  前記特定時間帯は、前記負荷へ供給される商用電力の単価が他の時間帯に比べて高い時間帯を含む
     請求項1~6のいずれか1項に記載の充放電制御装置。
  8.  コンピュータを、請求項1~7のいずれか1項に記載の充放電制御装置として機能させる
     プログラム。
PCT/JP2016/002121 2015-05-13 2016-04-21 充放電制御装置 WO2016181617A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2016259953A AU2016259953B2 (en) 2015-05-13 2016-04-21 Charge/discharge control apparatus
EP16792347.3A EP3297116B1 (en) 2015-05-13 2016-04-21 Charge/discharge control apparatus
JP2017517602A JP6361949B2 (ja) 2015-05-13 2016-04-21 充放電制御装置
US15/572,448 US10432006B2 (en) 2015-05-13 2016-04-21 Charge/discharge control apparatus
ES16792347T ES2819975T3 (es) 2015-05-13 2016-04-21 Aparato de control de carga/descarga

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-098071 2015-05-13
JP2015098071 2015-05-13

Publications (1)

Publication Number Publication Date
WO2016181617A1 true WO2016181617A1 (ja) 2016-11-17

Family

ID=57247923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002121 WO2016181617A1 (ja) 2015-05-13 2016-04-21 充放電制御装置

Country Status (6)

Country Link
US (1) US10432006B2 (ja)
EP (1) EP3297116B1 (ja)
JP (1) JP6361949B2 (ja)
AU (1) AU2016259953B2 (ja)
ES (1) ES2819975T3 (ja)
WO (1) WO2016181617A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020022317A (ja) * 2018-08-02 2020-02-06 パナソニックIpマネジメント株式会社 制御システム、制御方法、プログラム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6583777B2 (ja) * 2015-07-29 2019-10-02 パナソニックIpマネジメント株式会社 節電制御装置および節電制御方法
US11376984B2 (en) * 2017-05-16 2022-07-05 Hubbell Incorporated Electric vehicle charger with load shedding
EP3800759A1 (en) * 2019-10-02 2021-04-07 Fronius International GmbH System and method for operating an inverter
US11799318B2 (en) * 2021-01-08 2023-10-24 Schneider Electric It Corporation Predictive battery management for applications using battery energy to overcome electrical circuit voltage and current limitations

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011083082A (ja) * 2009-10-05 2011-04-21 Panasonic Electric Works Co Ltd 蓄電システム
WO2012017936A1 (ja) * 2010-08-05 2012-02-09 三菱自動車工業株式会社 電力需給平準化システムのバッテリ情報出力装置
JP2013176187A (ja) * 2012-02-23 2013-09-05 Sanyo Electric Co Ltd 蓄電池制御装置
JP2014158404A (ja) * 2013-02-18 2014-08-28 Mitsubishi Heavy Ind Ltd 電力管理装置、充放電計画装置、充放電計画方法およびプログラム

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7149605B2 (en) * 2003-06-13 2006-12-12 Battelle Memorial Institute Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices
WO2010131341A1 (ja) * 2009-05-13 2010-11-18 トヨタ自動車株式会社 制振制御装置
WO2010137100A1 (ja) * 2009-05-25 2010-12-02 トヨタ自動車株式会社 ハイブリッド自動車およびその制御方法
JP4816780B2 (ja) * 2009-09-11 2011-11-16 株式会社デンソー 車載充放電制御装置およびそれに含まれる部分制御装置
JP4803306B1 (ja) * 2010-04-07 2011-10-26 ソニー株式会社 電池パックおよび電池パックの製造方法
KR101174891B1 (ko) 2010-06-01 2012-08-17 삼성에스디아이 주식회사 전력 저장 시스템 및 그 제어방법
JP2012249476A (ja) 2011-05-30 2012-12-13 Panasonic Corp 電力供給システム
JP5799228B2 (ja) * 2011-06-17 2015-10-21 パナソニックIpマネジメント株式会社 電力供給システム
US9537420B2 (en) * 2011-09-21 2017-01-03 Enphase Energy, Inc. Method and apparatus for power module output power regulation
JP2013090424A (ja) * 2011-10-18 2013-05-13 Toyota Motor Corp 走行用モータを有する自動車
JP5218800B2 (ja) * 2011-10-31 2013-06-26 トヨタ自動車株式会社 蓄電部を備えた車両、及び、同車両とエネルギー管理装置とを含む充放電システム
KR20140108690A (ko) * 2012-01-24 2014-09-12 도요타 지도샤(주) 차량 제어 장치, 차량, 및 차량 제어 방법
JP5247899B1 (ja) * 2012-02-15 2013-07-24 株式会社小松製作所 蓄電器の充放電制御装置、蓄電器の充放電制御方法、および蓄電器の充放電制御装置を備えたハイブリッド作業機械
JP5677362B2 (ja) * 2012-04-27 2015-02-25 本田技研工業株式会社 電源劣化判定装置
JP5919566B2 (ja) * 2012-05-31 2016-05-18 パナソニックIpマネジメント株式会社 制御方法およびそれを利用した制御装置
JP5995653B2 (ja) 2012-08-16 2016-09-21 三菱電機株式会社 充放電制御装置、充放電制御方法、プログラム及び充放電制御システム
JP2014064425A (ja) * 2012-09-24 2014-04-10 Toshiba Corp 電力変換装置及びプログラム
JP2014165952A (ja) 2013-02-21 2014-09-08 Daiwa House Industry Co Ltd 電力供給システム
JP6107349B2 (ja) * 2013-04-11 2017-04-05 スズキ株式会社 バッテリ充放電制御装置
JP5867457B2 (ja) * 2013-06-26 2016-02-24 トヨタ自動車株式会社 内燃機関制御装置と車両
JP6232878B2 (ja) * 2013-09-24 2017-11-22 トヨタ自動車株式会社 蓄電システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011083082A (ja) * 2009-10-05 2011-04-21 Panasonic Electric Works Co Ltd 蓄電システム
WO2012017936A1 (ja) * 2010-08-05 2012-02-09 三菱自動車工業株式会社 電力需給平準化システムのバッテリ情報出力装置
JP2013176187A (ja) * 2012-02-23 2013-09-05 Sanyo Electric Co Ltd 蓄電池制御装置
JP2014158404A (ja) * 2013-02-18 2014-08-28 Mitsubishi Heavy Ind Ltd 電力管理装置、充放電計画装置、充放電計画方法およびプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020022317A (ja) * 2018-08-02 2020-02-06 パナソニックIpマネジメント株式会社 制御システム、制御方法、プログラム
JP7016060B2 (ja) 2018-08-02 2022-02-04 パナソニックIpマネジメント株式会社 制御システム、制御方法、プログラム

Also Published As

Publication number Publication date
US10432006B2 (en) 2019-10-01
JP6361949B2 (ja) 2018-07-25
EP3297116A1 (en) 2018-03-21
JPWO2016181617A1 (ja) 2018-01-11
EP3297116B1 (en) 2020-08-05
AU2016259953A1 (en) 2017-11-30
AU2016259953B2 (en) 2018-10-04
EP3297116A4 (en) 2018-05-23
US20180138731A1 (en) 2018-05-17
ES2819975T3 (es) 2021-04-19

Similar Documents

Publication Publication Date Title
US9007027B2 (en) Charge management for energy storage temperature control
JP6202403B2 (ja) 電力供給システム
JP5583781B2 (ja) 電力管理システム
WO2016181617A1 (ja) 充放電制御装置
JP5319156B2 (ja) 電力需給制御プログラム、電力需給制御装置および電力需給制御システム
JP5187776B2 (ja) 電気機器
JP4845062B2 (ja) 電力運用システム、電力運用方法および太陽光発電装置
JP2008306832A (ja) 電力貯蔵システム
JP6426922B2 (ja) 電力システム、御装置及び充放電制御方法
JP5944269B2 (ja) 電力供給システム
US9276411B2 (en) Electricity supply system
JP7032474B2 (ja) 配電制御システム、配電制御方法
JP6109209B2 (ja) 電力供給システム
JP5841279B2 (ja) 電力充電供給装置
US9876350B2 (en) Power supply system
JP6187920B2 (ja) 給電制御装置及び配電システム
WO2016185671A1 (ja) 蓄電池制御装置
JP6713101B2 (ja) 蓄電池システム及び蓄電池の制御方法
WO2017163747A1 (ja) 蓄電システム、充放電制御装置、その制御方法、およびプログラム
JP6280741B2 (ja) 電力供給システム
JP7208095B2 (ja) サーバ装置及び制御方法
JP2013051838A (ja) 電池運用装置、電池運用方法及びコンピュータプログラム
JP2020188539A (ja) Pcs用コントローラ
JP6523120B2 (ja) 電力供給システム
JP6378871B2 (ja) 電力供給システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792347

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017517602

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15572448

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016259953

Country of ref document: AU

Date of ref document: 20160421

Kind code of ref document: A