WO2016181592A1 - ヘイズの評価方法 - Google Patents

ヘイズの評価方法 Download PDF

Info

Publication number
WO2016181592A1
WO2016181592A1 PCT/JP2016/001315 JP2016001315W WO2016181592A1 WO 2016181592 A1 WO2016181592 A1 WO 2016181592A1 JP 2016001315 W JP2016001315 W JP 2016001315W WO 2016181592 A1 WO2016181592 A1 WO 2016181592A1
Authority
WO
WIPO (PCT)
Prior art keywords
haze
scattered light
standard sample
value
standard
Prior art date
Application number
PCT/JP2016/001315
Other languages
English (en)
French (fr)
Inventor
久之 斎藤
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to CN201680027570.7A priority Critical patent/CN107615468B/zh
Priority to US15/570,278 priority patent/US10234281B2/en
Priority to DE112016001802.9T priority patent/DE112016001802T5/de
Priority to KR1020177032618A priority patent/KR102262072B1/ko
Publication of WO2016181592A1 publication Critical patent/WO2016181592A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/303Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1486Counting the particles

Definitions

  • the present invention relates to a method for evaluating haze.
  • the particle counter apparatus is an apparatus for examining the number and position of particles by generating strong scattered light when incident light hits a wafer and there are particles there. Even when haze (unevenness on the surface) is present on the surface of the silicon wafer, weak scattered light is generated by applying light to the wafer, so that the haze can also be measured using the particle counter device.
  • Haze is an important quality item, and this is managed as a haze value by a particle counter device.
  • a high haze value means that the surface roughness is large, and a low haze value means that the surface roughness is small.
  • the particle counter normally performs particle size calibration on a standard wafer (standard sample) coated with standard particles (made of polystyrene or SiO 2 ) in order to increase measurement accuracy.
  • the laser intensity and the sensitivity of the photomultiplier (photomultiplier) differ slightly from device to device, so the light intensity scattered from particles of a certain size should be the same for the incident light. It is difficult to make the detector sensitivity etc. completely the same.
  • a standard particle of a certain size is placed on the wafer, and the scattered light intensity generated from this wafer (depending on the device) is fixed as a value unique to the device. The difference between devices is filled by treating it as the scattered light intensity for the size particle.
  • the calibration should be performed on a standard wafer (standard sample) with respect to the haze value, but what is required for a standard wafer for haze is as follows. 1) There is no in-plane distribution of roughness, and it is constant from any direction (atomic steps, etc. have a step from one direction but no step from another) Not possible). 2) There should be no dirt during the measurement (if it gets dirty, the haze value will change). 3) It must not be dirty or cloudy during storage (the haze value changes when clouded).
  • Patent Document 1 discloses that a standard wafer for haze is formed by forming cylindrical irregularities on the surface of a silicon wafer from the viewpoint of constant roughness when viewed from any direction.
  • the present invention has been made in view of the above problems, and it is possible to calibrate the haze value of a particle counter device using a standard sample for haze and to evaluate the haze that can improve the measurement accuracy of haze. It aims to provide a method.
  • the present invention is a method for evaluating haze on a substrate surface by a particle counter device using scattered light, wherein the haze of the substrate surface is determined from the scattered light intensity of light incident on the substrate surface.
  • a haze value calibration is performed using a standard sample, and a haze evaluation method characterized by using a sample coated with standard particles as the standard sample is provided.
  • the haze value Is preferably obtained.
  • the haze value is calibrated using the standard sample, and the standard sample is used as the standard sample.
  • the measurement accuracy of haze can be improved.
  • the inventor has intensively studied a haze evaluation method capable of calibrating the haze value of the particle counter device using a standard sample for haze and improving the measurement accuracy of haze.
  • the essence of the haze measurement is how much scattered light the incident light captures. If constant scattered light is generated, the cause of generation need not be the roughness of the substrate surface.
  • the present inventor has found that a standard sample coated with standard particles that returns a certain amount of scattered light to incident light can be applied not only to particle calibration but also to haze calibration. .
  • a standard sample coated with standard particles is prepared (see S11 in FIG. 1). Specifically, a standard sample coated with standard particles made of polystyrene (PSL) or SiO 2 having a predetermined size (particle diameter) is prepared.
  • PSL polystyrene
  • SiO 2 having a predetermined size (particle diameter)
  • the haze value is calibrated using the standard sample (see S12 in FIG. 1). Specifically, the standard sample prepared in S11 is measured with a particle counter device, and the median value (median value) of the actual scattered light intensity is obtained. At this time, the measured value needs to be an actually measured value of the scattered light intensity, not a value calibrated with the particle size. Compare the measured median value of the actual scattered light intensity with the median value of the initial value of the actual scattered light intensity when the standard sample is formed (hereinafter referred to as “standard value”). Based on this, the haze value is calibrated.
  • a substrate for haze evaluation is prepared (see S13 in FIG. 1). Specifically, a wafer in a manufacturing process in which haze management is performed is prepared.
  • the haze value of the substrate surface is obtained from the scattering intensity of the light incident on the substrate surface using a particle counter device (see S14 in FIG. 1). Specifically, the haze value of the substrate surface is obtained from the scattering intensity of the light incident on the wafer surface prepared in S13, using the particle counter device that has been calibrated for the haze value in S12.
  • FIG. 3 shows an example of haze measurement.
  • FIG. 3A shows a haze map, which shows the in-plane distribution of the haze in the wafer. In FIG.
  • a light-colored region is a region having a large haze value (surface irregularities are large), and a dark-colored region is a portion having a small haze value (small surface irregularities).
  • FIG. 3B shows the haze value distribution, the horizontal axis is the haze value, and the vertical axis is the count number. In FIG. 3B, the location indicated by the arrow corresponds to the median value of the scattered light intensity.
  • FIG. 2A shows an application example of standard particles.
  • FIG. 2A eight kinds of standard particles having different sizes are applied on a silicon wafer.
  • FIG. 2B shows the measurement results of the wafer counter shown in FIG.
  • the horizontal axis is the scattered light intensity (scattered light intensity generated from one standard particle) and can be converted to the particle size
  • the vertical axis is the count number (number of times scattered light is generated). Yes, the number of particles. It can be seen from the measurement results in FIG. 2 (b) that there are eight peaks for each particle size. If the wafer shown in FIG. 2A is used as a standard sample, calibration can be performed simultaneously for eight types of scattered light intensities, and calibration can be performed efficiently and with high accuracy.
  • the standard sample is used to calibrate the haze value, and a sample coated with standard particles is used as the standard sample.
  • the measurement accuracy of haze can be improved.
  • the time-dependent change of the scattered light intensity of the light incident on the surface of the standard sample is monitored, and the haze value is obtained by changing the conversion rate of the haze value based on the change rate of the scattered light intensity of the standard sample. It is preferable. Thus, if a haze value is calculated
  • a plurality of the particle counter devices it is preferable to calibrate the haze value between.
  • the calibration of the haze value between the plurality of particle counter devices is performed, the measurement accuracy of the haze when using the plurality of particle counter devices can be improved.
  • Example 1 The median value of the scattered light intensity detected from the wafer coated with PSL (polystyrene latex) standard particles (particle size: 0.12 ⁇ m) and the change over time of the converted PLS standard particle size were measured. The measurements were performed using the same particle counter device. The results are shown in FIGS. 4 (a) and 4 (b). Here, FIG. 4 (a) shows the change with time of the median value of the scattered light intensity, and FIG. 4 (b) shows the change with time of the PLS standard particle size after conversion.
  • PSL polystyrene latex
  • Example 2 The change with time of the haze value detected from the specific position of the wafer used in Experimental Example 1 was measured.
  • the haze was measured by simulating the scattered light from the standard particles as the scattered light from the haze. The measurement was performed using the same particle counter device as in Experimental Example 1. The results are shown in FIG.
  • the median value of the scattered light intensity generated from one size of PSL standard particles decreases with time.
  • the haze value also decreases at the same time.
  • the PLS standard particle size after conversion as shown in FIG. 4 (b), even if the scattered light intensity decreases, the PSL standard particle size after conversion when the change exceeds a certain value. Since the conversion value is changed so as not to change, the time-dependent change in the PLS standard particle size after conversion is relatively small.
  • the median value of the scattered light intensity changes due to a change with time of the particle counter device.
  • changes over time of the apparatus include a decrease in laser light output and a decrease in detector sensitivity.
  • the same size particles can be output as the same size even if the status of the device changes.
  • the results of Experimental Examples 1 and 2 by monitoring the temporal change of the median value of the scattered light intensity generated from the standard particles of known size, it is possible to indirectly monitor the temporal change of the haze value. I was able to confirm that it was possible.
  • the change between the particle counter devices of the haze value can be obtained indirectly.
  • Example 1 In a particle counter using scattered light, the median value of the scattered light intensity is monitored by monitoring the median value of the scattered light intensity generated from the wafer (standard sample) coated with 0.12 ⁇ m PSL standard particles. Became 0.90 times. At this time, by multiplying the conversion rate of the haze value by 1.11, it was possible to obtain a haze value that offsets the change over time of the particle counter device.
  • Example 2 Generated from a wafer (standard sample) coated with PSL standard particles having a particle size of 0.12 ⁇ m in each of two particle counter devices using scattered light (hereinafter referred to as “device A” and “device B”).
  • the median value of scattered light intensity was determined.
  • the median value of scattered light intensity in apparatus B was 1.20 times the median value of scattered light intensity in apparatus A.
  • the correction value of the noise value measured by the device B was 0.83 times, it was possible to obtain a haze value that offsets the variation between the particle counter devices.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

本発明は、散乱光を用いたパーティクルカウンター装置により基板表面のヘイズを評価する方法であって、前記基板表面に入射した光の散乱光強度から前記基板表面のヘイズ値を求める際に、標準サンプルを用いてヘイズ値のキャリブレーションを行い、前記標準サンプルとして標準粒子を塗布したサンプルを用いることを特徴とするヘイズの評価方法である。これにより、ヘイズ用の標準サンプルを用いてパーティクルカウンター装置のヘイズ値のキャリブレーションを行い、ヘイズの測定精度を向上させることができるヘイズの評価方法が提供される。

Description

ヘイズの評価方法
 本発明は、ヘイズの評価方法に関する。
 パーティクルカウンター装置において、パーティクル測定はもちろんだが、ヘイズの測定も行うことができる。ここで、パーティクルカウンター装置とは、入射した光がウエハに当たり、そこにパーティクルがある場合に強い散乱光が発生することで、パーティクルの個数や位置を調べる装置である。
 ヘイズ(表面の凹凸)がシリコンウエハ表面に存在する場合にも、ウエハに光を当てることにより弱い散乱光が発生するので、上記のパーティクルカウンター装置を用いて、ヘイズの測定も行うことができる。
 ヘイズは重要な品質項目であり、これをパーティクルカウンター装置によりヘイズ値として管理している。ヘイズ値が大きいということは表面のラフネスが大きいということであり、ヘイズ値が低いと表面のラフネスが小さいということを意味している。
 パーティクルカウンター装置は、通常、測定精度を上げるために、標準粒子(ポリスチレンやSiOで作られている)を塗布した標準ウエハ(標準サンプル)で、粒子サイズのキャリブレーションを行っている。
 装置ごとに、レーザー強度や、フォトマル(光電子増倍管)の感度が若干異なるため、本来ならば入射光に対して、ある一定のサイズのパーティクルから散乱する光強度は同じであるはずだが、検出器感度などを完全に一緒にするのは難しく、実際にはある一定サイズの標準粒子をウエハに乗せ、このウエハから発生する散乱光強度(装置によって異なる)をその装置固有の値として、一定サイズのパーティクルに対する散乱光強度として扱うことで装置間差を埋めている。
 ヘイズ値に関しても同様に標準ウエハ(標準サンプル)でキャリブレーションを行うべきであるが、ヘイズ用の標準ウエハに要求されるものは、以下の通りである。
 1)粗さの面内分布がなく一定であり、かつ、どの方位から見ても一定であること(原子ステップなどは、ある方向からは段差があるが、別の方向からでは段差がないので不可)。
 2)測定途中で汚れないこと(汚れるとヘイズ値が変わる)。
 3)保管中に汚れたり、曇らないこと(曇るとヘイズ値が変わる)。
 特許文献1には、どの方向から見ても粗さ一定という観点から、シリコンウエハ表面に円柱状の凹凸を作ることでヘイズ用の標準ウエハを、形成することが開示されている。
特許第3919854号
 しかしながら、ヘイズ用の標準サンプルに求められる品質は、上記に述べたように、非常に難しく、特に経時変化を捉えるならば、保管方法まで考えなくてはならない。
 従って、長期間にわたるヘイズ用の標準サンプルを形成することは難しく、特許文献1に開示されたヘイズ用の標準サンプルであっても経時変化という点では問題があった。
 また、ヘイズを管理する要求が強まっている昨今、ヘイズ用の標準サンプルを作り、装置間差を求め、また、経時変化を管理することが求められている。
 本発明は、上記問題点に鑑みてなされたものであって、ヘイズ用の標準サンプルを用いてパーティクルカウンター装置のヘイズ値のキャリブレーションを行い、ヘイズの測定精度を向上させることができるヘイズの評価方法を提供することを目的とする。
 上記目的を達成するために、本発明は、散乱光を用いたパーティクルカウンター装置により基板表面のヘイズを評価する方法であって、前記基板表面に入射した光の散乱光強度から前記基板表面のヘイズ値を求める際に、標準サンプルを用いてヘイズ値のキャリブレーションを行い、前記標準サンプルとして標準粒子を塗布したサンプルを用いることを特徴とするヘイズの評価方法を提供する。
 このように、基板表面に入射した光の散乱光強度から基板表面のヘイズ値を求める際に、標準サンプルを用いてヘイズ値のキャリブレーションを行い、標準サンプルとして標準粒子を塗布したサンプルを用いることでヘイズの測定精度を向上させることができる。
 このとき、前記標準サンプルの表面に入射した光の散乱光強度の経時変化をモニタリングし、前記標準サンプルの散乱光強度の変化率に基づいて、ヘイズ値の換算率を変更することにより、ヘイズ値を求めることが好ましい。
 このようにしてヘイズ値を求めれば、効果的にヘイズの測定精度を向上させることができる。
 このとき、複数の前記パーティクルカウンター装置で前記標準サンプルの散乱光強度を測定し、測定された前記標準サンプルの散乱光強度の値に基づいて、ヘイズ値の補正係数を決めることにより、複数の前記パーティクルカウンター装置間のヘイズ値のキャリブレーションを行うことが好ましい。
 このようにして複数のパーティクルカウンター装置間のヘイズ値のキャリブレーションを行えば、複数のパーティクルカウンター装置を用いた際のヘイズの測定精度を向上させることができる。
 以上のように、本発明によれば、基板表面に入射した光の散乱光強度から前記基板表面のヘイズ値を求める際に、標準サンプルを用いてヘイズ値のキャリブレーションを行い、標準サンプルとして標準粒子を塗布したサンプルを用いることで、ヘイズの測定精度を向上させることができる。
本発明のヘイズの評価方法のフローを示す図である。 標準粒子の塗布例、及び、このように標準粒子を塗布したウエハの測定結果を示す図である。 ヘイズの測定例を示す図である。 散乱光強度のメジアン値、換算後のPSLサイズ、及びヘイズ値の経時変化を示す図である。
 前述したように、ヘイズ用の標準サンプルに求められる品質は非常に厳しく、特に経時変化を捉えるならば、保管方法まで考えなくてはならないため、長期間にわたって使用できるヘイズ用の標準サンプルを形成することは難しく、特許文献1に開示されたようなヘイズ用の標準サンプルであっても経時変化という点では問題があった。
 そこで、本発明者は、ヘイズ用の標準サンプルを用いてパーティクルカウンター装置のヘイズ値のキャリブレーションを行い、ヘイズの測定精度を向上させることができるヘイズの評価方法について鋭意検討した。その結果、ヘイズ測定の本質は、入射光に対しどれくらいの散乱光を装置が捕らえるかということであり、一定の散乱光が発生するのであれば、発生原因が基板表面の粗さである必要はなく、つまり、入射光に対し一定の散乱光を返す標準粒子が塗布された標準サンプルが、パーティクルのキャリブレーションだけでなく、ヘイズのキャリブレーションにも適用可能であることを本発明者は見出した。
 さらに、上記の知見に基づいて、基板表面に入射した光の散乱光強度から基板表面のヘイズ値を求める際に、標準サンプルを用いてヘイズ値のキャリブレーションを行い、標準サンプルとして標準粒子を塗布したサンプルを用いることでヘイズの測定精度を向上させることができることを見出し、本発明をなすに至った。
 以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。
 まず、図1を参照しながら、本発明のヘイズの評価方法について説明する。
 まず、標準粒子を塗布した標準サンプルを準備する(図1のS11参照)。
 具体的には、所定のサイズ(粒径)のポリスチレン(PSL)やSiO等で作られている標準粒子を塗布した標準サンプルを準備する。
 次に、散乱光を用いたパーティクルカウンター装置について、上記の標準サンプルを用いてヘイズ値のキャリブレーションを行う(図1のS12参照)。
 具体的には、S11で準備した標準サンプルをパーティクルカウンター装置で測定し、実散乱光強度のメジアン値(中央値)を求める。このとき、測定値は、パーティクルサイズでキャリブレーションされた値ではなく、散乱光強度の実測値である必要がある。
 測定された実散乱光強度のメジアン値を、標準サンプルを形成したときの実散乱光強度の初期値のメジアン値(以下、「標準値」と称する)と比較して、標準値からのずれに基づいて、ヘイズ値のキャリブレーションを行う。
 この場合、標準サンプルが汚れた場合、散乱光強度の平均値は変わるが、一定サイズ粒子のついたサンプルからのメジアン値は変わらない。このことにより、標準サンプルの汚れに起因する変動を低減することができる。
 同様に標準サンプルが多少曇っている場合でも、標準粒子の付着していない場所からの実散乱光強度は影響を受けるものの、標準粒子からの実散乱光強度は殆ど影響を受けない。それは、標準粒子からの散乱光は、曇りに対する散乱光に比べ十分に大きいためである。
 次に、ヘイズ評価用の基板を準備する(図1のS13参照)。
 具体的には、ヘイズ管理している製造工程におけるウエハを準備する。
 次に、パーティクルカウンター装置を用いて、基板表面に入射した光の散乱強度から基板表面のヘイズ値を求める(図1のS14参照)。
 具体的には、S12でヘイズ値のキャリブレーションを行ったパーティクルカウンター装置を用いて、S13で準備したウエハ表面に入射した光の散乱強度から基板表面のヘイズ値を求める。
 ここで、図3にヘイズの測定例を示す。図3(a)はヘイズマップを示しており、ヘイズのウエハ内の面内分布を示している。図3(a)において、色の薄い領域はヘイズ値が大きい(表面の凹凸が大きい)領域であり、色の濃い領域はヘイズ値が小さい(表面の凹凸が小さい)部分である。図3(b)は、ヘイズ値分布を示しており、横軸はヘイズ値であり、縦軸はカウント数である。なお、図3(b)において、矢印で示した箇所が、散乱光強度のメジアン値に相当している。
 図2(a)に標準粒子の塗布例を示す。図2(a)において、8種類のサイズの異なる標準粒子がシリコンウエハ上に塗布されている。図2(b)に図2(a)で示したウエハのパーティクルカウンター装置による測定結果を示す。図2(b)において、横軸は散乱光強度(1標準粒子から発生する散乱光強度)であり、粒子サイズに換算することができ、縦軸はカウント数(散乱光が発生した回数)であり、粒子の個数である。図2(b)の測定結果から粒子サイズ別に8本のピークがあることがわかる。
 図2(a)に示すウエハを標準サンプルとして用いれば、8種類の散乱光強度について、同時にキャリブレーションを行うことができ、効率よく、高精度のキャリブレーションを行うことができる。
 上記のように、基板表面に入射した光の散乱光強度から基板表面のヘイズ値を求める際に、標準サンプルを用いてヘイズ値のキャリブレーションを行い、標準サンプルとして標準粒子を塗布したサンプルを用いることでヘイズの測定精度を向上させることができる。
 ここで、標準サンプルの表面に入射した光の散乱光強度の経時変化をモニタリングし、標準サンプルの散乱光強度の変化率に基づいて、ヘイズ値の換算率を変更することにより、ヘイズ値を求めることが好ましい。
 このようにしてヘイズ値を求めれば、効果的にヘイズの測定精度を向上させることができる。
 ここで、複数のパーティクルカウンター装置で標準サンプルの散乱光強度を測定し、測定された標準サンプルの散乱光強度の値に基づいて、ヘイズ値の補正係数を決めることにより、複数の前記パーティクルカウンター装置間のヘイズ値のキャリブレーションを行うことが好ましい。
 このようにして複数のパーティクルカウンター装置間のヘイズ値のキャリブレーションを行えば、複数のパーティクルカウンター装置を用いた際のヘイズの測定精度を向上させることができる。
 以下、実験例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実験例1)
 PSL(ポリスチレン・ラテックス)標準粒子(粒径0.12μm)を塗布したウエハから検出される散乱光強度のメジアン値、換算後のPLS標準粒子サイズの経時変化を測定した。測定は、いずれも同じパーティクルカウンター装置を用いて行った。結果を図4(a)、(b)に示す。ここで、図4(a)は散乱光強度のメジアン値の経時変化を示し、図4(b)は、換算後のPLS標準粒子サイズの経時変化を示している。
(実験例2)
 実験例1で用いたウエハの特定位置から検出されるヘイズ値の経時変化を測定した。ここで、実験例2においては、標準粒子からの散乱光を疑似的にヘイズからの散乱光と捉えて、ヘイズの測定を行った。測定は、実験例1と同じパーティクルカウンター装置を用いて行った。結果を図4(c)に示す。
 図4(a)からわかるように、ひとつのサイズのPSL標準粒子から発生する散乱光強度のメジアン値は時間が経つにつれて下がってくる。図4(c)からわかるように、同時にヘイズ値も下がってくる。しかしながら、換算後のPLS標準粒子サイズについては、図4(b)に示すように、散乱光強度が下がってきても、その変化がある一定値を超えた場合に、換算後のPSL標準粒子サイズが変わらないように換算値を変更するため、換算後のPLS標準粒子サイズの経時変化は比較的少なくなっている。
 この場合、散乱光強度のメジアン値が変わるのは、パーティクルカウンター装置の経時変化による。装置の経時変化としては、例えば、レーザー光の出力の低下、検出器の感度の低下、等が挙げられる。
 パーティクルサイズは、散乱光強度と標準粒子サイズでキャリブレーションすることで、装置の状況が変わっても、同じサイズのパーティクルを同じサイズとして出力ができる。一方、実験例1、2の結果によれば、既知サイズの標準粒子から発生する散乱光強度のメジアン値の経時変化をモニタリングすることで、間接的にヘイズ値の経時変化のモニタリングを行うことができることが確認できた。
 同様にして、既知サイズの標準粒子から発生する散乱光強度のメジアン値のパーティクルカウンター装置間の変化を求めることで、間接的にヘイズ値のパーティクルカウンター装置間の変化を求めることができる。
 以下、実施例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
 散乱光を用いたパーティクルカウンター装置において、粒径0.12μmのPSL標準粒子を塗布したウエハ(標準サンプル)から発生する散乱光強度のメジアン値の経時変化のモニタリングを行い、散乱光強度のメジアン値が0.90倍になった。この時、ヘイズ値の換算率を1.11倍することで、パーティクルカウンター装置の経時変化を相殺したヘイズ値を求めることができた。
(実施例2)
 2台の散乱光を用いたパーティクルカウンター装置(以下、「装置A」、「装置B」と称する)のそれぞれにおいて、粒径0.12μmのPSL標準粒子を塗布したウエハ(標準サンプル)から発生する散乱光強度のメジアン値を求めた。装置Bでの散乱光強度のメジアン値は、装置Aの散乱光強度のメジアン値の1.20倍となった。この時、装置Bで測定したノイズ値の補正値を0.83倍とすることで、パーティクルカウンター装置間の変動を相殺したヘイズ値を求めることができた。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (3)

  1.  散乱光を用いたパーティクルカウンター装置により基板表面のヘイズを評価する方法であって、
     前記基板表面に入射した光の散乱光強度から前記基板表面のヘイズ値を求める際に、標準サンプルを用いてヘイズ値のキャリブレーションを行い、前記標準サンプルとして標準粒子を塗布したサンプルを用いることを特徴とするヘイズの評価方法。
  2.  前記標準サンプルの表面に入射した光の散乱光強度の経時変化をモニタリングし、前記標準サンプルの散乱光強度の変化率に基づいて、ヘイズ値の換算率を変更することにより、ヘイズ値を求めることを特徴とする請求項1に記載のヘイズの評価方法。
  3.  複数の前記パーティクルカウンター装置で前記標準サンプルの散乱光強度を測定し、測定された前記標準サンプルの散乱光強度の値に基づいて、ヘイズ値の補正係数を決めることにより、複数の前記パーティクルカウンター装置間のヘイズ値のキャリブレーションを行うことを特徴とする請求項1又は請求項2に記載のヘイズの評価方法。
PCT/JP2016/001315 2015-05-13 2016-03-10 ヘイズの評価方法 WO2016181592A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680027570.7A CN107615468B (zh) 2015-05-13 2016-03-10 雾度的评价方法
US15/570,278 US10234281B2 (en) 2015-05-13 2016-03-10 Method for evaluating haze
DE112016001802.9T DE112016001802T5 (de) 2015-05-13 2016-03-10 Verfahren zum Bewerten einer Trübung
KR1020177032618A KR102262072B1 (ko) 2015-05-13 2016-03-10 헤이즈의 평가 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-098286 2015-05-13
JP2015098286A JP6299668B2 (ja) 2015-05-13 2015-05-13 ヘイズの評価方法

Publications (1)

Publication Number Publication Date
WO2016181592A1 true WO2016181592A1 (ja) 2016-11-17

Family

ID=57249125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001315 WO2016181592A1 (ja) 2015-05-13 2016-03-10 ヘイズの評価方法

Country Status (6)

Country Link
US (1) US10234281B2 (ja)
JP (1) JP6299668B2 (ja)
KR (1) KR102262072B1 (ja)
CN (1) CN107615468B (ja)
DE (1) DE112016001802T5 (ja)
WO (1) WO2016181592A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10989656B2 (en) 2017-05-05 2021-04-27 3M Innovative Properties Company Scatterometry system and method of using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7054634B2 (ja) * 2018-02-21 2022-04-14 セーレン株式会社 測定装置
CN109916945A (zh) * 2019-04-10 2019-06-21 浙江众泰汽车制造有限公司 一种雾度评价装置及雾度评价方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198869A (en) * 1990-10-15 1993-03-30 Vlsi Standards, Inc. Reference wafer for haze calibration
JP2007114183A (ja) * 2005-07-22 2007-05-10 Commiss Energ Atom 絶縁薄膜上にナノ構造体を含むヘイズノイズ標準の製造方法
JP2010109257A (ja) * 2008-10-31 2010-05-13 Hitachi High-Technologies Corp 暗視野検査装置校正用基準ウエハ、暗視野検査装置校正用基準ウエハの製造方法、暗視野検査装置の校正方法、暗視野検査装置およびウエハ検査方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5599464A (en) 1995-10-06 1997-02-04 Vlsi Standards, Inc. Formation of atomic scale vertical features for topographic instrument calibration
CN1127120C (zh) * 1998-09-04 2003-11-05 佳能株式会社 半导体衬底及其制造方法
JP3341212B2 (ja) * 2000-06-15 2002-11-05 スガ試験機株式会社 ヘーズ値測定装置及び測定方法
JP2002310902A (ja) * 2001-04-16 2002-10-23 Central Glass Co Ltd 波長選択性のある散乱光測定方法
KR100675216B1 (ko) * 2005-08-23 2007-01-29 삼성전기주식회사 헤이즈 측정 방법 및 그 장치
KR100871876B1 (ko) * 2006-09-26 2008-12-03 나노전광 주식회사 광검출기를 이용한 포토마스크 표면의 헤이즈 검출장치 및그 검출방법
US8194233B2 (en) * 2008-04-11 2012-06-05 Microsoft Corporation Method and system to reduce stray light reflection error in time-of-flight sensor arrays
JP5223998B2 (ja) * 2010-11-29 2013-06-26 大日本印刷株式会社 評価用基板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198869A (en) * 1990-10-15 1993-03-30 Vlsi Standards, Inc. Reference wafer for haze calibration
JP2007114183A (ja) * 2005-07-22 2007-05-10 Commiss Energ Atom 絶縁薄膜上にナノ構造体を含むヘイズノイズ標準の製造方法
JP2010109257A (ja) * 2008-10-31 2010-05-13 Hitachi High-Technologies Corp 暗視野検査装置校正用基準ウエハ、暗視野検査装置校正用基準ウエハの製造方法、暗視野検査装置の校正方法、暗視野検査装置およびウエハ検査方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FRANK HOLSTEYNS ET AL.: "Monitoring and Qualification Using Comprehensive Surface Haze Information", SEMICONDUCTOR MANUFACTURING, 2003 IEEE INTERNATIONAL SYMPOSIUM ON, 30 September 2003 (2003-09-30), pages 378 - 381, XP010667477 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10989656B2 (en) 2017-05-05 2021-04-27 3M Innovative Properties Company Scatterometry system and method of using the same

Also Published As

Publication number Publication date
KR102262072B1 (ko) 2021-06-09
US20180128606A1 (en) 2018-05-10
US10234281B2 (en) 2019-03-19
JP2016213411A (ja) 2016-12-15
DE112016001802T5 (de) 2018-01-25
CN107615468A (zh) 2018-01-19
CN107615468B (zh) 2020-06-19
KR20180006912A (ko) 2018-01-19
JP6299668B2 (ja) 2018-03-28

Similar Documents

Publication Publication Date Title
WO2016181592A1 (ja) ヘイズの評価方法
JP5643198B2 (ja) プラズマ処理チャンバ内の膜を特徴付けるためのrfバイアス容量結合静電(rfb−cce)プローブ構成、それに関連する方法、及び、その方法を実行するコードを格納するプログラム格納媒体
JP5365581B2 (ja) 薄膜付ウェーハの評価方法
FR3059812B1 (fr) Procede d''analyse de tendance et d''ajustement automatique de parametres d''alarme
JP2015534267A5 (ja)
KR101360540B1 (ko) 분광학적 타원해석법을 이용한 전자 소자의 특성 평가 방법
WO2015086704A1 (en) Apparatus and method for profiling a beam of a light emitting semiconductor device
US8742345B1 (en) Method for detecting electron beam of scanning electron microscope and for detecting fine patterns
JP2017525945A (ja) サンプル及び/又はサンプル表面に形成された少なくとも1つのフィルムの特性及び/又はパラメータを測定するためのアレンジメント
JP6784756B2 (ja) 接合相手の表面に材料を連続させて接続する前に達成可能な接着強度を決定するためのアレンジメント
KR102507052B1 (ko) 샘플의 침투율을 결정하는 어셈블리
TWI777357B (zh) 用於光學關鍵尺寸計量的方法和系統及機器可存取的儲存介質
JPH09243546A (ja) 異物検査装置
JP5608722B2 (ja) 検査装置、および検査装置の調整方法
KR101418308B1 (ko) 엘이디 파장 측정 장치 및 이를 이용한 엘이디 파장 측정 방법
JP2008191044A (ja) 光子又は粒子の計数方法
US9157866B2 (en) Light source device, surface inspecting apparatus using the device, and method for calibrating surface inspecting apparatus using the device
CN106128976B (zh) 一种监控侧墙刻蚀后残留的方法
JP6729526B2 (ja) 欠陥サイズ分布の測定方法
JP5483286B2 (ja) 検査装置用の標準ウエハ
TWI506264B (zh) Method of Evaluating Powdery Dust Dispersion by Optical Telemetry
Kong et al. Known void size micro-bump, a novel standard of 3D X-ray computed tomography in-line metrology for accuracy assessment and monitoring
CN115727774A (zh) 红外光谱仪测量外延层厚度的校准方法及校准片
JP2011185795A (ja) 鋼管部材の内面めっきの腐食量推定方法
Wang et al. Spectral Sensitivity Analysis of OCD Tool for sub 40 nm Process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792327

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15570278

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177032618

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016001802

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792327

Country of ref document: EP

Kind code of ref document: A1