WO2016181524A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2016181524A1
WO2016181524A1 PCT/JP2015/063761 JP2015063761W WO2016181524A1 WO 2016181524 A1 WO2016181524 A1 WO 2016181524A1 JP 2015063761 W JP2015063761 W JP 2015063761W WO 2016181524 A1 WO2016181524 A1 WO 2016181524A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
touch sensing
wiring
display device
layer
Prior art date
Application number
PCT/JP2015/063761
Other languages
English (en)
French (fr)
Inventor
幸弘 木村
福吉 健蔵
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to PCT/JP2015/063761 priority Critical patent/WO2016181524A1/ja
Priority to JP2015548525A priority patent/JP6065125B1/ja
Priority to CN201580079930.3A priority patent/CN107533252B/zh
Priority to KR1020177034974A priority patent/KR102017410B1/ko
Publication of WO2016181524A1 publication Critical patent/WO2016181524A1/ja
Priority to US15/810,914 priority patent/US10452221B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/047Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using sets of wires, e.g. crossed wires

Definitions

  • the present invention relates to a liquid crystal display device capable of stable touch sensing and having high touch sensing sensitivity.
  • the present invention relates to a liquid crystal display capable of high-speed response.
  • Liquid crystal display devices are used for large displays such as televisions, tablets, and smartphones.
  • the liquid crystal display device roughly has a configuration in which a liquid crystal layer is sandwiched between two transparent substrates such as glass.
  • the main liquid crystal drive system in such liquid crystal display devices is VA (Vertical Alignment) mode known as a vertical electric field system, IPS (In-Plane Switching) mode known as a horizontal electric field system, or fringe electric field switching It can be roughly divided into FFS (Fringe Field Switching) mode.
  • VA Vertical Alignment
  • IPS In-Plane Switching
  • FFS Fring Field Switching
  • liquid crystal driving is performed by vertically aligning liquid crystal molecules with respect to the substrate surface of the liquid crystal display device and applying an electric field to the liquid crystal molecules in the vertical direction along the thickness direction of the liquid crystal layer.
  • liquid crystal driving is performed by horizontally aligning liquid crystal molecules with respect to a substrate surface of a liquid crystal display device and applying an electric field to the liquid crystal molecules in a direction substantially parallel to the substrate surface.
  • a liquid crystal display using such vertical alignment such as VA mode is excellent in black display.
  • the IPS mode or the FFS mode is a liquid crystal driving method used in a liquid crystal display device having a wide viewing angle.
  • a liquid crystal display device in which the FFS mode is adopted has a great merit that liquid crystals can be driven at high speed by using a fringe electric field.
  • polarity inversion drive In order to suppress the burn-in of the liquid crystal display, polarity inversion drive (AC inversion drive) is performed to reverse the positive and negative voltages applied to the liquid crystal layer after a predetermined image display period has elapsed in order to suppress the burn-in of the liquid crystal display. ing.
  • dot inversion drive which individually inverts the polarity of each of a plurality of pixels, and a horizontal line which inverts the polarity of pixels in row units where a plurality of pixels are arranged along the horizontal direction of the screen.
  • Inversion driving column inversion driving that inverts the polarity of a pixel in a row unit in which a plurality of pixels are arranged along the vertical direction of the screen, inverts the polarity of a pixel in a screen unit, or
  • a frame inversion drive or the like which partitions and inverts the polarity of a pixel in block units.
  • Such liquid crystal driving techniques are described or suggested in Patent Documents 1 to 5 and 7, for example.
  • a liquid crystal display device having a touch sensing function As such a liquid crystal display device, recently, a liquid crystal display device having a touch sensing function provided with means for detecting capacitance has been widely used.
  • a touch sensing method a capacitance change generated when a pointer such as a finger or a pen contacts or approaches the display screen is detected by, for example, touch sensing wires (touch electrodes) arranged in the X direction and the Y direction. Method is mainly used.
  • touch sensing wires touch electrodes
  • an out-cell method in which a touch panel having a touch sensing function is attached to the surface of the display device and an in-cell method in which the display device itself has a touch sensing function are known. It is done. In recent years, more display devices employ the in-cell method than the out-cell method.
  • Patent documents 2 to 6 disclose touch sensing technology using an in-cell method.
  • the in-cell method there are problems with touch sensing technology that are not clarified in these patent documents.
  • there is a new technical problem that leads to noise that is generated from the source wiring electrically linked to the active element provided inside the liquid crystal cell that is, a problem that was not a problem in the touch panel external method. .
  • Patent Document 1 discloses a technique for inverting the polarity of a pixel in units of columns in which a plurality of pixels are arranged along the vertical direction of the screen with respect to liquid crystal driving.
  • Patent Document 1 does not include touch sensing technology.
  • Patent Document 2 and Patent Document 3 disclose a touch sensing technology as well as a description regarding dot inversion driving.
  • the drive electrode and the detection electrode that perform the touch sensing function are substantially configured by metal wiring.
  • the disclosure of such Patent Document 3 is similar to the feature of Claim 2 described in Patent Document 6.
  • Patent Document 4 relates to an in-plane switching (IPS) liquid crystal display, and discloses a technology in which a touch sensing drive electrode forms an electrode pair used for detection of a touch sensing signal and display.
  • IPS in-plane switching
  • Patent Document 5 includes a plurality of touch drive electrodes made of a transparent material and extending in a first direction, and a plurality of touch detection electrodes extending in a second direction, and one of the touch drive electrodes and the touch detection electrodes is a liquid crystal It is disclosed to function as a counter electrode of the display.
  • Patent Documents 1 to 6 do not consider means for reducing the noise caused by the source wiring to which the video signal for performing each video display is applied, and the high sensitivity touch sensing technology Not provided
  • the techniques disclosed in Patent Documents 1 to 6 are insufficient to suppress the generation of noise due to liquid crystal driving. Further, these patent documents do not disclose means for causing the display state of the liquid crystal layer to return to a dark state in an accelerated manner using touch sensing wiring after the liquid crystal drive voltage is applied to the liquid crystal. .
  • the response time of the liquid crystal is the rise time (hereinafter, ⁇ on) when the liquid crystal drive voltage is applied to the liquid crystal molecules (liquid crystal layer), and the time when the liquid crystal drive voltage is not applied to the liquid crystal molecules (the liquid crystal drive voltage is off) ) Is the total time with the falling time (hereinafter, ⁇ off).
  • the liquid crystal driving method for shortening ⁇ on and the structure of the liquid crystal device include an overdrive method for increasing the liquid crystal driving voltage, an electrode structure for reducing the thickness of the liquid crystal layer, and a high speed operation of liquid crystal molecules Etc., various methods and structures can be adopted.
  • Patent documents 2 to 6 do not disclose a technique for realizing the time reduction of ⁇ off.
  • a display device adopting an in-cell method and having a touch sensing function in order to improve the sensing sensitivity, it is essential to take measures against noise generated by liquid crystal driving.
  • polarity inversion drive is generally employed as liquid crystal drive.
  • the source wiring for transmitting the video signal is a generation source that generates noise due to the polarity inversion.
  • the source line is likely to be accompanied by a change in stray capacitance associated with the polarity inversion of the video signal.
  • liquid crystal driving for example, in a liquid crystal display device using a longitudinal electric field method combined with a fringe electric field as shown in Patent Document 2, ⁇ on when liquid crystal driving voltage is applied to liquid crystal molecules (when liquid crystal driving voltage is on) The liquid crystal is driven at high speed.
  • FFS mode liquid crystal driving since it is a lateral electric field method using a fringe electric field, it is possible to greatly reduce ⁇ on when the driving voltage is on.
  • the driving voltage is turned off, the electric field applied to the liquid crystal molecules disappears, so it takes time for the liquid crystal molecules to return to the original vertical alignment, making it difficult to reduce the falling time ⁇ off of the liquid crystal molecules.
  • the response time of the liquid crystal is expressed by the sum of the rise time ⁇ on and the fall time ⁇ off, improvement of the responsiveness is required by decreasing ⁇ off.
  • a thin film transistor in which an oxide semiconductor of a composite oxide of indium oxide such as IGZO, gallium oxide, zinc oxide or the like is used as a channel layer.
  • Such a thin film transistor has about 50 times as high electron mobility as a conventional thin film transistor using an amorphous silicon semiconductor for a channel layer, and can perform writing (writing of a video signal) to a pixel electrode faster.
  • the leakage current is extremely small, so voltage retention after writing to the pixel electrode is good and rewriting is performed to maintain image display. There is no need.
  • the characteristic that the voltage retention is good causes the problem that the burn-in in the pixel is likely to occur.
  • the present invention has been made in view of the above problems, and reduces the response time of the liquid crystal display device in the horizontal electric field mode or the vertical electric field mode, reduces the burn-in of the pixels, and further transmits the video signal.
  • the present invention provides a liquid crystal display device in which the generation of noise originating from the source wiring which is performed and affecting touch sensing is reduced.
  • a liquid crystal display device includes a display device substrate provided with a first touch sensing wiring, a plurality of polygonal pixel openings, and a pixel electrode provided in each of the plurality of pixel openings. Electrically connected to the first active element electrically connected to the pixel electrode, a first gate wiring electrically connected to the first active element, and the second active element A second gate line, a first source line electrically connected to the first active element at right angles to the first gate line in plan view, and a second source line orthogonal to the second gate line in plan view A second source line electrically linked to a second active element, a first insulating layer provided under the pixel electrode, a second insulating layer provided under the first insulating layer, and First insulating layer and second insulating layer An array substrate including a common electrode provided between the layers and a second touch sensing wire orthogonal to the first touch sensing wire in plan view, and held between the display device substrate and the array substrate Supplying a positive first video signal
  • examples of the shape pattern of the polygonal pixel openings include a square pattern, a rectangular pattern, a parallelogram pattern, and a dog-legged pattern.
  • the display device substrate may include a transparent substrate and a transparent resin layer provided on the transparent substrate.
  • the first touch sensing wiring is provided between the transparent substrate and the transparent resin layer.
  • the display device substrate may include a plurality of transparent resin layers (a first transparent resin layer, a second transparent resin layer).
  • the liquid crystal layer is driven by applying a liquid crystal drive voltage between the pixel electrode and the common electrode by the control unit, the image display is performed, and the image display is performed. 2 Voltage is applied to the touch sensing wiring.
  • an electric field directed in a direction (a direction parallel to the transparent substrate) crossing the liquid crystal layer in plan view is generated between the second touch sensing interconnections, and the electric field causes the liquid crystal to be in the black display state. It can be accelerated back.
  • “Return to black display” means that the alignment of the liquid crystal returns to the initial alignment state in the liquid crystal display device of normally black display.
  • a voltage that generates an electric field that accelerates the alignment state of the liquid crystal to a black display state that is, a voltage applied to the second touch sensing wiring is referred to as a “reset voltage” or a “reset signal”.
  • the second touch sensing wiring (conductive wiring) to which the reset voltage is applied may be referred to as “reset wiring”.
  • an electric field generated by application of a reset voltage may be referred to as a "reset electric field”.
  • driving of liquid crystal molecules in which the alignment state of liquid crystal molecules is initially aligned by generation of the electric field may be referred to as “reset driving”.
  • this reset voltage means a voltage applied to the second touch sensing wiring in order to shorten the fall time (hereinafter, ⁇ off) of the liquid crystal molecules.
  • resetting the liquid crystal molecules means that the alignment state of the liquid crystal molecules is returned to the alignment state (initial alignment) in black display.
  • the pixel opening is partitioned by the first gate wiring, the second gate wiring, the first source wiring, and the second source wiring in plan view. May be
  • the long side of the pixel opening may extend in a direction along the first source wiring and the second source wiring.
  • one of the first touch sensing wiring and the second touch sensing wiring overlaps the first gate wiring and the second gate wiring in plan view.
  • the other of the first touch sensing wiring and the second touch sensing wiring may be provided so as to overlap the first source wiring and the second source wiring.
  • the display device substrate has a display surface, and in a cross sectional view, the distance from the display surface to the first touch sensing wiring is greater than the distance from the display surface
  • the distance to the second touch sensing wiring is large, and the second touch sensing wiring is at a position on the first insulating layer, a position on the second insulating layer, and a position below the second insulating layer, It may be provided at any position.
  • the first gate wiring and the second gate wiring may be located between two pixel openings adjacent to each other among the plurality of pixel openings. , May be disposed parallel to each other.
  • the liquid crystal display device includes a backlight unit provided on the back surface or the side surface of the array substrate, and when the voltage is applied to the second touch sensing wiring, the backlight unit The light emission of may be stopped.
  • the liquid crystal layer may be driven by a fringe electric field generated between the pixel electrode and the common electrode.
  • the display device substrate has a transparent electrode, and the liquid crystal layer is driven by a fringe electric field generated between the pixel electrode and the common electrode.
  • the liquid crystal display may be driven by an electric field in the thickness direction of the liquid crystal layer generated between the pixel electrode and the transparent electrode.
  • the transparent electrode may be provided above the transparent substrate of the display device substrate and may be provided on the transparent resin layer covering the first touch sensing wiring. In other words, it may be provided on any one of the plurality of transparent resin layers positioned between the display device substrate and the liquid crystal layer. Further, since the liquid crystal layer is driven by an electric field generated between the pixel electrode and the transparent electrode, the liquid crystal layer has a liquid crystal layer with negative dielectric anisotropy and an initial alignment of vertical alignment. A molecule is used. That is, a liquid crystal display device using a vertical electric field method is realized.
  • a liquid crystal drive voltage is applied in the thickness direction to a liquid crystal layer disposed between a transparent electrode provided on a display device substrate and a pixel electrode provided on an array substrate to form a liquid crystal layer. It is a method of driving.
  • the common electrode has a superimposed portion overlapping the pixel electrode and a projecting portion protruding from an end portion of the pixel electrode in plan view Good.
  • an electrode structure is realized because the rise time (hereinafter, ⁇ on) of liquid crystal molecules is shortened.
  • the liquid crystal driving voltage applied between the projection of the common electrode and the pixel electrode is used as a fringe electric field, and ⁇ on can be shortened.
  • control unit is configured to apply the liquid crystal drive voltage to the pixel electrode and when the liquid crystal drive voltage is not applied to the pixel electrode.
  • the voltage may be applied to the second touch sensing wiring.
  • the voltage (reset voltage) applied to the second touch sensing wiring includes a positive voltage and a negative voltage, and the voltage is an image display It may be inverted positive or negative at regular intervals.
  • each of the first touch sensing wiring and the second touch sensing wiring may include a metal layer.
  • the display device substrate includes a first transparent substrate, and the first touch sensing wiring is a black layer formed above the first transparent substrate. You may have a two-layer structure comprised by the said metal layer laminated
  • the array substrate includes a second transparent substrate, and the second touch sensing wiring is a black layer formed above the second transparent substrate.
  • the metal layer is a copper-containing layer, and the metal layer has a configuration in which the copper-containing layer is sandwiched by conductive metal oxide layers.
  • a copper content layer a copper layer or a copper alloy layer is mentioned, for example.
  • the conductive metal oxide layer may be a composite oxide containing zinc oxide, indium oxide, and tin oxide.
  • the first and second active elements are thin film transistors having a channel layer made of a semiconductor, and the metal of the second touch sensing wiring in plan view A part of the layer may form a light shielding layer covering the channel layer.
  • the channel layer may be made of an oxide semiconductor.
  • the oxide semiconductor applied to the channel layer include composite metal oxides containing two or more elements selected from the group consisting of zinc, indium, tin, tungsten, magnesium, gallium, and germanium.
  • the structure of the channel layer formed of an oxide semiconductor may be any of single crystal, polycrystal, microcrystalline, mixed crystal including crystal and amorphous, or amorphous.
  • the thickness of the oxide semiconductor can be in the range of 5 nm to 50 nm.
  • At least one of a red filter, a green filter, and a blue filter is provided on the display device substrate at a position corresponding to the pixel opening. It is also good.
  • the liquid crystal display device may further include a black matrix layer partitioning the pixel opening on the display device substrate.
  • a liquid crystal display device includes a display device substrate provided with a first touch sensing wiring, a plurality of polygonal pixel openings, and a pixel electrode provided in each of the plurality of pixel openings. Electrically connected to the first active element electrically connected to the pixel electrode, a first gate wiring electrically connected to the first active element, and the second active element A second gate line, a first source line electrically connected to the first active element at right angles to the first gate line in plan view, and a second source line orthogonal to the second gate line in plan view A second source line electrically linked to a second active element, a first insulating layer provided under the pixel electrode, a second insulating layer provided under the first insulating layer, and First insulating layer and second insulating layer An array substrate including a common electrode provided between the layers and a second touch sensing wire orthogonal to the first touch sensing wire in plan view, and held between the display device substrate and the array substrate Supplying a positive first video signal
  • the control unit applies a touch sensing drive voltage to one of the first touch sensing wiring and the second touch sensing wiring when performing the touch sensing drive.
  • a touch sensing signal may be detected through the other of the first touch sensing wiring and the second touch sensing wiring.
  • the touch sensing drive voltage may be applied to the second touch sensing wiring, and the first touch sensing wiring may detect the touch sensing signal.
  • the second touch sensing wiring functions as a touch drive wiring (touch drive electrode, touch sensing drive wiring), and the first touch sensing wiring functions as a touch detection wiring (touch detection electrode, touch sensing detection wiring).
  • the first touch sensing wiring may function as a touch drive wiring.
  • the second touch sensing wiring functions as a touch detection wiring.
  • the second touch sensing wiring can function not only as the reset voltage is applied but also as a touch sensing drive wiring or a touch sensing detection wiring.
  • the reset voltage is applied to the second touch sensing wiring and the touch sensing drive voltage is applied to the second touch sensing wiring
  • the drive operation of touch sensing and the reset drive of liquid crystal molecules in the image display period Can be done by time division.
  • the reset voltage is applied to the second touch sensing wiring and the second touch sensing wiring detects a touch sensing signal
  • the touch sensing detection operation and the reset driving of the liquid crystal molecules are performed during the image display period. It can be done by division.
  • the touch sensing function is an electrostatic capacitance system that detects a change in capacitance between the first touch sensing wiring and the second touch sensing wiring.
  • the touch sensing drive wiring to which the drive voltage is applied and the touch sensing detection wiring used for signal detection can be used interchangeably. Note that it is not necessary to use all of the plurality of touch sensing wirings for touch sensing.
  • one wiring group may be configured by a plurality of touch sensing wirings. In this case, a plurality of wiring groups are provided in the liquid crystal display device.
  • the potential of the number of wirings smaller than the number of all wirings among all the wirings is set to a floating potential, and touch sensing is performed using the remaining numbers of wirings. Also good (thinning drive).
  • the liquid crystal display device includes a backlight unit provided on the back surface or the side surface of the array substrate, and the black display stable period is a period when light emission of the backlight unit is stopped May be In this case, after video display such as white display in a display unit period (described later), a backlight unit such as an LED is turned off (light emission is stopped) in a black display stable period.
  • At least one of a red filter, a green filter, and a blue filter is provided on the display device substrate at a position corresponding to the pixel opening. It is also good.
  • the liquid crystal display device may be provided with a black matrix layer provided on the display device substrate and partitioning the pixel opening.
  • the alignment state of the liquid crystal can be acceleratedly returned to the dark state, and the response time of the liquid crystal can be shortened. Furthermore, according to the liquid crystal display device according to the aspect of the present invention, generation of noise due to the source wiring to which the video signal is transmitted can be suppressed, and touch sensing with high sensitivity can be provided. According to the liquid crystal display device according to the aspect of the present invention, a metal layer containing an alloy such as copper or aluminum having good conductivity can be used as the first touch sensing wiring and the second touch sensing wiring. The time constant when using a layer can be reduced, and the S / N ratio of touch sensing can be improved.
  • each of the plurality of source lines is fixed to a negative potential (video signal of negative polarity) or a positive potential (video signal of positive polarity)
  • the potential does not reverse. Therefore, when the potential polarity of the video signal supplied to the source wiring is inverted, the waveform of the video signal is not broken. Therefore, not only the touch sensing function can be realized, but also the display image quality can be improved.
  • an oxide semiconductor such as IGZO As a semiconductor used for a channel layer of an active element, writing (writing of a video signal) to a pixel electrode can be performed at a speed several dozen times faster than an amorphous silicon semiconductor.
  • the display image quality can be further improved.
  • the leakage current is several orders of magnitude smaller than that of a polysilicon semiconductor; therefore, the voltage can be favorably maintained after writing to the pixel electrode. Therefore, it is not necessary to repeat the image writing for maintaining the image quality for a fixed time, which is necessary in the case of the active element in which the polysilicon semiconductor is adopted.
  • an oxide semiconductor such as IGZO for the channel layer of the active element, generation of noise accompanying the video signal supplied to the pixel electrode can be further reduced.
  • the second touch sensing wiring is formed on the array substrate.
  • a light shielding layer electrically independent of the second touch sensing wiring using the metal layer constituting the second touch sensing wiring, and the light shielding pattern of the light shielding layer can be formed into a TFT (Thin Film).
  • TFT Thin Film
  • the light shielding pattern of the light shielding layer can be formed into a TFT (Thin Film).
  • TFT Thin Film
  • stray light such as re-reflected light from being incident on the channel layer, which contributes to the improvement of the image quality.
  • FIG. 1 is a block diagram showing a liquid crystal display device according to a first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view partially showing the liquid crystal display device according to the first embodiment of the present invention, which is a view along line A-A ′ shown in FIG. 3. It is a top view which shows partially the pixel structure which looked at the liquid crystal display concerning a 1st embodiment of the present invention from the observer direction.
  • FIG. 10 is a plan view partially showing the array substrate when the liquid crystal display device according to the first embodiment of the present invention is viewed from the viewer direction, showing an array structure excluding the display device substrate, the second touch sensing wiring and the light shielding layer FIG. FIG.
  • FIG. 4 is a cross-sectional view partially showing the liquid crystal display device according to the first embodiment of the present invention, taken along the line CC ′ shown in FIG. 3, and a light shielding layer (light shielding pattern) on the channel layer of the active element
  • It is a figure which shows the structure which arranges. It is a top view which shows typically the touch sensing wiring which concerns on 1st Embodiment of this invention, and is a figure explaining the electrical connection of 2nd touch sensing wiring 7a, 7b.
  • FIG. 8A is a plan view partially showing the liquid crystal display device according to the first embodiment of the present invention, and a diagram for explaining the operation of liquid crystal located between the common electrode and the pixel electrode in the opening of one pixel; It is a figure which shows the relationship of the liquid crystal molecule of an initial orientation (black display) state, and an electrode structure.
  • FIG. 8A is a plan view partially showing the liquid crystal display device according to the first embodiment of the present invention, and a diagram for explaining the operation of liquid crystal located between the common electrode and the pixel electrode in the opening of one pixel;
  • FIG. 6 is a diagram showing an operation of liquid crystal molecules when a liquid crystal drive voltage is applied between a pixel electrode and a common electrode.
  • FIG. 8A is a plan view partially showing the liquid crystal display device according to the first embodiment of the present invention, and a diagram for explaining the operation of liquid crystal located between the common electrode and the pixel electrode in the opening of one pixel; While the liquid crystal drive voltage is not applied between the pixel electrode and the common electrode (non-application state), a reset voltage is applied between the second touch sensing wires 7a and 7b, and a direction shown by a symbol B1 or a symbol B2 It is a figure explaining generating an electric field in a shown direction, and making an alignment state of a liquid crystal return to a black display state in an accelerated manner.
  • FIG. 10 is a cross-sectional view partially showing the liquid crystal display device according to the first embodiment of the present invention, taken along the line BB ′ (source wire) shown in FIG. 3;
  • FIG. 7 is a diagram showing the state of a fringe electric field generated when a touch sensing drive voltage is applied between the touch sensing wiring 7 and the touch sensing wiring 7;
  • FIG. 10 is a cross-sectional view partially showing the liquid crystal display device according to the first embodiment of the present invention, taken along the line BB ′ (source wire) shown in FIG.
  • FIG. 3 It is a figure which shows a change of a fringe electric field when a touch sensing drive voltage is applied between touch sensing wiring 7, and pointers, such as a finger, contact or adjoin the surface by the side of the observer of a display device substrate. It is a signal timing chart for demonstrating the liquid crystal display device which concerns on 1st Embodiment of this invention, and is a figure explaining the on / off timing of a liquid crystal drive voltage, and the timing of touch sensing drive.
  • FIG. 17 is a diagram comparing a waveform relating to liquid crystal driving in the conventional example and a waveform relating to liquid crystal driving in a liquid crystal display device according to an embodiment of the present invention, wherein on / off timing of liquid crystal driving voltage and a conventional active element It is a figure explaining change of pixel transmissivity T rans of ( an active element provided with a channel layer comprised with a polysilicon semiconductor, for example).
  • FIG. 2 is a circuit diagram partially showing the liquid crystal display device according to the first embodiment of the present invention, and includes a plurality of first source wires fixed to a negative polarity and a plurality of second source wires fixed to a positive polarity
  • FIG. 2 is a circuit diagram partially showing the liquid crystal display device according to the first embodiment of the present invention, and includes a plurality of first source wires fixed to a negative polarity and a plurality of second source wires fixed to a positive polarity
  • FIG. 8 is a diagram showing an alternate line structure of interconnections, and is a plan view partially showing an example of column inversion drive in the case where a gate signal is used to drive an active element by selecting only the first gate interconnection.
  • FIG. 2 is a circuit diagram partially showing the liquid crystal display device according to the first embodiment of the present invention, and includes a plurality of first source wires fixed to a negative polarity and a plurality of second source wires fixed to a positive polarity
  • Is a diagram showing an alternately arranged wiring structure, and partially shows an example of dot inversion driving in the case where gate signals are used for driving active elements by selecting every other two gate wiring lines. It is a top view.
  • FIG. 1 is a diagram showing an alternate line structure of interconnections, and is a plan view partially showing an example of column inversion drive in the case where a gate signal is used to drive an active element by selecting only the first gate interconnection.
  • FIG. 2 is a circuit diagram partially showing the liquid crystal display device according to the first
  • FIG. 18 is a cross-sectional view partially showing the liquid crystal display device according to the second embodiment of the present invention, which is a view taken along the line H-H ′ shown in FIG. 17. It is a top view which shows partially the pixel structure which looked at the liquid crystal display concerning a 2nd embodiment of the present invention from the observer direction. It is a top view which shows partially an example of the array substrate which looked at the liquid crystal display concerning a 2nd embodiment of the present invention from the observer direction.
  • FIG. 16 is a plan view partially showing an example of the array substrate when the liquid crystal display device according to the second embodiment of the present invention is viewed from the viewer direction, wherein the display device substrate and the second touch sensing wiring, the light shielding layer, and the pixel electrode are removed.
  • FIG. 16 is a plan view partially showing an example of the array substrate when the liquid crystal display device according to the second embodiment of the present invention is viewed from the viewer direction, wherein the display device substrate and the second touch sensing wiring, the light shielding layer, and the
  • FIG. 7 is a diagram showing an example of the arrangement of the active element, the gate wiring, and the source wiring.
  • FIG. 19 is a cross-sectional view partially showing the liquid crystal display device according to the second embodiment of the present invention, taken along the line GG ′ shown in FIG. 18, and a light shielding layer (light shielding pattern) on the channel layer of the active element. It is a figure which shows the structure which arranges. It is a top view which shows typically the 2nd touch sensing wiring concerning a 2nd embodiment of the present invention, and is a figure for explaining the 2nd touch sensing wiring to which reset voltage is applied.
  • FIG. 19 is a cross-sectional view partially showing the liquid crystal display device according to the second embodiment of the present invention, taken along the line GG ′ shown in FIG. 18, and a light shielding layer (light shielding pattern) on the channel layer of the active element. It is a figure which shows the structure which arranges. It is a top view which shows typically the 2nd touch sensing wiring concerning a 2nd embodiment of
  • FIG. 10 is a cross-sectional view partially showing a liquid crystal display device according to a second embodiment of the present invention, partially showing a terminal portion having a configuration in which a first metal layer is sandwiched between conductive metal oxide layers. is there.
  • FIG. 7 is a cross-sectional view partially showing a liquid crystal display device according to a second embodiment of the present invention, showing a structure of a first touch sensing wiring.
  • FIG. 10 is a cross-sectional view partially showing a liquid crystal display device according to a second embodiment of the present invention, showing a state of white display when a liquid crystal drive voltage is applied between a transparent electrode which is a common electrode and a pixel electrode.
  • FIG. 10 is a cross-sectional view partially showing the liquid crystal display device according to the second embodiment of the present invention, and immediately after stopping the application of the liquid crystal drive voltage (when the liquid crystal drive voltage is off), the reset voltage between the second touch sensing lines
  • FIG. 7 is a diagram showing the return of liquid crystal molecules when a voltage is applied, and a diagram partially showing a state in which the state of liquid crystal returns to the state of black display in an accelerated manner.
  • FIG. 10 is a cross-sectional view partially showing the liquid crystal display device according to the second embodiment of the present invention, and immediately after stopping the application of the liquid crystal drive voltage (when the liquid crystal drive voltage is off), the reset voltage between the second touch sensing lines 25 is a view showing the return of liquid crystal molecules when a voltage is applied, and a state in which the liquid crystal state is acceleratedly returned to the black display state when the electric field is applied in the direction opposite to the electric field direction shown in FIG.
  • FIG. FIG. 10 is a cross-sectional view partially showing the liquid crystal display device according to the second embodiment of the present invention, and a fringe electric field generated when a touch sensing drive voltage is applied between the first touch sensing wire and the second touch sensing wire.
  • FIG. 17 is a diagram showing the situation of FIG.
  • FIG. 17 is a diagram taken along the line II ′ shown in FIG.
  • FIG. 10 is a cross-sectional view partially showing a liquid crystal display device according to a second embodiment of the present invention, wherein a touch sensing drive voltage is applied between a first touch sensing wire and a second touch sensing wire, and a finger or the like
  • FIG. 18 is a diagram showing a change in the fringe electric field when the pointer of (b) contacts or approaches the display device substrate, and is a diagram along the line II 'shown in FIG. FIG.
  • FIG. 10 is a plan view partially showing a liquid crystal display device according to a third embodiment of the present invention, as viewed from the surface where the display device substrate and the liquid crystal layer are in contact toward the display surface of the display device substrate; It is a figure which shows the arrangement
  • FIG. 10 is a cross-sectional view partially showing a liquid crystal display device according to a third embodiment of the present invention, provided at an array substrate provided with a common electrode under the pixel electrode and at a position on the display device substrate corresponding to the pixel opening FIG.
  • FIG. 16 is a diagram showing an arrangement of the red filter, the green filter, the blue filter, and the black matrix.
  • FIG. 10 is a cross-sectional view partially showing a liquid crystal display device according to a third embodiment of the present invention, which is generated by applying a liquid crystal driving voltage between a transparent electrode and a pixel electrode, and between a pixel electrode and a common electrode. It is a figure which shows partially the state of the white display.
  • FIG. 18 is a cross-sectional view partially showing the liquid crystal display device according to the third embodiment of the present invention, wherein a reset voltage is applied to the second touch sensing wiring immediately after stopping the application of the liquid crystal drive voltage (when the liquid crystal drive voltage is off).
  • FIG. 10 is a cross-sectional view partially showing a liquid crystal display device according to a third embodiment of the present invention, which is generated by applying a liquid crystal driving voltage between a transparent electrode and a pixel electrode, and between a pixel electrode and a common electrode. It is a figure which shows partially the
  • FIG. 7 is a diagram showing an operation of liquid crystal molecules for applying an electric field to the liquid crystal layer in a direction crossing the liquid crystal layer and acceleratingly returning a display state to a black display state.
  • FIG. 18 is a cross-sectional view partially showing the liquid crystal display device according to the third embodiment of the present invention, wherein a reset voltage is applied to the second touch sensing wiring immediately after stopping the application of the liquid crystal drive voltage (when the liquid crystal drive voltage is off).
  • FIG. 33 is a diagram showing an operation of liquid crystal molecules for accelerating a display state to a black display state by applying an electric field to the liquid crystal layer in a direction transverse to the liquid crystal layer and opposite to the electric field direction shown in FIG. .
  • FIG. 30 is a cross-sectional view partially showing a modification of the liquid crystal display device according to the third embodiment of the present invention, which is a view along the line E-E ′ shown in FIG. 29.
  • FIG. 21 is a cross-sectional view partially showing a modified example of the liquid crystal display device according to the third embodiment of the present invention, and an array substrate including a common electrode below the pixel electrodes and a position on the display device substrate corresponding to the pixel opening
  • FIG. 30 is a diagram showing an arrangement of red filters, green filters, blue filters, and black matrices provided in FIG. 29 along the line FF ′ shown in FIG. 29.
  • FIG. 10 is a circuit diagram partially showing a liquid crystal display device according to a fourth embodiment of the present invention, showing an array structure having two active elements in one pixel.
  • the display device substrate according to the present embodiment is a display device other than a liquid crystal display device such as an organic EL display device. Is also applicable.
  • FIG. 1 is a block diagram showing a liquid crystal display device according to a first embodiment of the present invention.
  • the liquid crystal display device LCD 1 of the present embodiment includes a display unit 110, a display unit 110, and a control unit 120 for controlling a touch sensing function.
  • the control unit 120 has a known configuration, and includes a video signal timing control unit 121 (first control unit), a touch sensing / reset signal control unit 122 (second control unit), and a system control unit 123 (third control). Section) and
  • the video signal timing control unit 121 sets the common electrodes 20 (described later) provided on the array substrate 200 to a constant potential, and also sets gate wirings 9 and 10 (described later, scanning lines) and source wirings 14 provided on the array substrate 200. , 15 (described later, signal lines).
  • the video signal timing control unit 121 applies a liquid crystal drive voltage for display between the common electrode 20 and the pixel electrode 17 (described later)
  • a fringe electric field is generated on the array substrate 200, and liquid crystal is generated along the fringe electric field.
  • the molecules rotate and the liquid crystal layer 300 is driven. Thus, an image is displayed on the array substrate 200.
  • video signals having, for example, alternating rectangular waves are individually applied to each of the plurality of pixel electrodes 17 via source wirings (signal lines).
  • the square wave may be a positive or negative direct current square wave.
  • the video signal timing control unit 121 sends the positive first video signal and the negative second video signal to the source wiring, as described later.
  • the touch sensing / reset signal control unit 122 applies a touch sensing drive voltage to one of the first touch sensing wiring 3 (described later) and the second touch sensing wiring 7 (described later), and the first touch sensing wiring 3 and the second touch A touch sensing signal is detected through the other of the sensing wires 7.
  • the touch sensing / reset signal control unit 122 can also supply a reset voltage (to be described later, a reset signal) to the second touch sensing wiring 7.
  • the meaning of the first touch sensing wiring 3 used for such a touch sensing operation includes a touch drive wiring to which a touch sensing drive voltage is applied and a touch detection wiring for detecting a touch sensing signal.
  • the first touch sensing wiring 3 functions as a touch detection wiring.
  • the second touch sensing wiring 7 functions as a touch detection wiring
  • the first touch sensing wiring 3 functions as a touch drive wiring. That is, in the touch sensing function, the roles of the first touch sensing wiring 3 and the second touch sensing wiring 7 may be switched.
  • the system control unit 123 controls the video signal timing control unit 121 and the touch sensing / reset signal control unit 122, and can alternately perform liquid crystal driving and detection of change in capacitance, that is, in time division. . Furthermore, the system control unit 123 controls signal supply to the first touch sensing wiring 3 or the second touch sensing wiring 7 in the touch sensing / reset signal control unit 122 in synchronization with liquid crystal driving in the video signal timing control unit 121. , Control the supply of the reset voltage to the second touch sensing wiring 7.
  • the second touch sensing wiring 7 is an electric field (an electric field facing in a direction crossing the liquid crystal layer 300 in a plan view) in the liquid crystal layer 300 with the reset voltage applied to the second touch sensing wiring 7 And a function as touch sensing wiring for performing touch sensing such as touch detection and touch drive.
  • the two functions of the second touch sensing wiring 7 are performed by time division, and the second touch sensing wiring 7 performs various roles (two functions) in accordance with the change of time (on the time axis). It can be realized.
  • the reset voltage applied to the second touch sensing wiring 7 includes a positive voltage and a negative voltage, and the reset voltage is for each predetermined period of the video display controlled by the video signal timing control unit 121 (video display Every period) may be inverted positive or negative.
  • the direction of the electric field can be switched so that the electric field directed in the direction crossing the liquid crystal layer 300 in a plan view is reversed.
  • whether the reset voltage is positive or negative means whether it is a positive potential or a negative potential with respect to the ground potential (0 V).
  • the potential of each of the two second touch sensing wires is set to be positive or not so that the at least two different second touch sensing wires (conductive wires) have opposite potentials in plan view without being limited to such positive and negative definitions.
  • the voltage may be applied to the two second touch sensing wires by switching to a negative potential. Also, an offset may be added to the positive or negative reset voltage, and the reset voltage may be slightly shifted to the low voltage side or the high voltage side. Since the first touch sensing wiring and the second touch sensing wiring according to the embodiment of the present invention can be formed of a metal layer with good conductivity, the resistance value of the touch sensing wiring and the second touch sensing wiring is lowered to perform touch. The sensitivity can be improved.
  • control unit 120 having the above configuration applies a liquid crystal drive voltage between the pixel electrode 17 and the common electrode 20 in synchronization with the supply of the first video signal and the second video signal.
  • Drive 300 Furthermore, control of image display is performed, and a voltage is applied to the second touch sensing wiring 7 after image display is performed. Furthermore, as described later, the control unit 120 uses the first touch sensing wiring 3 and the second touch sensing wiring 7 in at least one of a stable period of video display and a stable period of black display after video display. Perform touch sensing drive.
  • the liquid crystal display device according to this embodiment can include a display device substrate according to an embodiment described later. Further, the “plan view” described below means a plane viewed from the direction in which the observer observes the display surface of the liquid crystal display device (the plane of the display device substrate).
  • the shape of the display unit of the liquid crystal display device according to the embodiment of the present invention, or the shape of the pixel opening defining the pixels, and the number of pixels constituting the liquid crystal display device are not limited.
  • the planar view, the direction of the short side of the pixel opening is defined as the X direction
  • the direction of the long side is defined as the Y direction
  • the thickness direction of the transparent substrate is Z
  • the liquid crystal display device is described.
  • the liquid crystal display may be configured by switching the X direction and the Y direction defined as described above.
  • FIG. 2 is a cross-sectional view partially showing the liquid crystal display device LCD 1 according to the present embodiment.
  • FIG. 2 is a cross-sectional view taken along the short side direction of the pixel opening, and is a view taken along the line AA 'in FIG.
  • the liquid crystal display device LCD1 includes a display device substrate 100 (opposite substrate), an array substrate 200 bonded to face the display device substrate 100, and a liquid crystal layer 300 sandwiched by the display device substrate 100 and the array substrate 200. .
  • the backlight unit BU for supplying the light L to the liquid crystal display device LCD1 is the back surface of the array substrate 200 constituting the liquid crystal display device LCD1 (the surface opposite to the surface of the transparent substrate of the array substrate 200 on which the liquid crystal layer 300 is disposed) Provided in).
  • the backlight unit may be provided on the side surface of the liquid crystal display device LCD1.
  • a reflection plate, a light guide plate, a light diffusion plate or the like for reflecting light emitted from the backlight unit BU toward the inside to the liquid crystal display device LCD1 is provided on the back surface of the transparent substrate 22 of the array substrate 200.
  • the display device substrate 100 is provided on the transparent substrate 21 so as to cover the transparent substrate 21 (first transparent substrate), the first touch sensing wiring 3 provided on the transparent substrate 21, and the first touch sensing wiring 3. And a transparent resin layer 1.
  • the first touch sensing wiring 3 (touch detection wiring, touch drive wiring) is formed of a conductive layer including at least the black layer 8 and the metal layer 5. That is, the first touch sensing wiring 3 has a two-layer structure including the black layer 8 and the metal layer 5.
  • the metal layer 5 is formed on the black layer 8.
  • the conductive layer has a three-layer configuration of a first conductive metal oxide layer 6, a metal layer 5, and a second conductive metal oxide layer 4.
  • the conductive metal oxide a complex oxide obtained by adding a small amount of metal oxide such as titanium, zirconium, magnesium, aluminum, or germanium to a metal oxide based on indium oxide or tin oxide can be used.
  • a metal layer for example, a copper-containing layer which is a copper layer or a copper alloy layer, or an aluminum alloy layer containing aluminum (aluminum-containing layer) can be adopted.
  • a transparent resin layer 1 is provided on the first touch sensing wiring 3. In other words, the first touch sensing wiring 3 is formed at a position near the liquid crystal layer 300 in the display device substrate 100.
  • the metal layer has a copper-containing layer is a complex oxide layer containing zinc oxide, indium oxide, and tin oxide. Is desirable.
  • the reason is as follows.
  • the etching rate in the wet etching can be easily adjusted by adjusting the composition ratio of zinc oxide and tin oxide constituting the complex oxide. From this, in the case of the second touch sensing wiring 7 and the first touch sensing wiring 3 having a three-layer configuration in which the copper-containing layer is sandwiched by the conductive metal oxide layer composed of the complex oxide, a multiple layer configuration is used.
  • the pattern of the 2nd touch sensing wiring 7 and the 1st touch sensing wiring 3 can be formed easily.
  • the copper-containing layer has low adhesion to a substrate constituting a color filter, a resin, a glass or the like, and the copper-containing layer has not reached a practical level from the viewpoint of adhesion.
  • the complex oxide layer composed of zinc oxide, indium oxide and tin oxide has sufficient adhesion to color filters and glass, and also has sufficient adhesion to copper-containing layers. ing.
  • the second touch sensing wiring 7 and the second touch sensing wiring 7 achieving high adhesion are provided.
  • the first touch sensing wiring 3 can be provided.
  • copper oxide since copper oxide is formed over time on the surface of the copper-containing layer, copper oxide has the property that it is difficult to obtain an ohmic contact in electrical connection.
  • a composite oxide layer of zinc oxide, indium oxide and tin oxide can obtain an ohmic contact and is excellent in mounting stability. From this, by adopting a laminated structure in which the copper-containing layer is sandwiched between the complex oxide layers as the second touch sensing wiring 7 and the first touch sensing wiring 3, an excellent wiring structure is realized in terms of ohmic contact. can do.
  • the metal layer applicable to the 2nd touch sensing wiring 7 and the 1st touch sensing wiring 3 is explained.
  • copper, silver, gold, titanium, molybdenum, aluminum, or an alloy containing these metals is applicable. Since nickel is a ferromagnetic material, the deposition rate is lowered, but it can be formed by vacuum deposition such as sputtering. Chromium has the negative problem of environmental pollution and a large resistance value, but can be used as the metal layer according to the present embodiment.
  • the metal material forming the metal layer is selected from magnesium, calcium, titanium, molybdenum, indium, tin, zinc, neodymium, nickel, aluminum, in addition to copper or aluminum, in order to obtain close contact with the glass substrate or resin 1 It is preferable to use an alloy to which the above metal element is added.
  • the amount of addition of the metal element to the material forming the metal layer is preferably 3 at% or less because the resistance value of the copper alloy or aluminum is not significantly reduced.
  • a copper alloy can be formed by vacuum film formation by sputtering.
  • the film thickness is 100 nm or more, or 150 nm or more, visible light hardly transmits. Therefore, as the film thickness of the metal layer according to the present embodiment, for example, a film thickness of 100 nm to 300 nm is adopted, whereby a sufficient light shielding property can be obtained.
  • a metal oxide having light absorbency on the first touch sensing wiring 3 by forming a metal oxide having light absorbency on the first touch sensing wiring 3, light reflection of the metal layer used for the first touch sensing wiring 3 can be suppressed.
  • the configuration of the metal oxide layer and the metal layer that can be applied to the embodiment of the present invention include the following configurations. For example, forming a metal layer on a copper alloy layer in a state where oxygen is insufficient in ITO (Indium Tin Oxide), IZTO, or IZO (registered trademark) containing indium oxide as a central base material
  • the layer structure obtained by the metal oxide layer and the metal layer has an advantage that continuous film formation can be performed by a vacuum film formation apparatus such as a sputtering apparatus.
  • the black layer 8 constituting the first touch sensing wiring 3 will be described.
  • the black layer is made of, for example, a colored resin in which a black coloring material is dispersed.
  • the oxide of copper or oxide of copper alloy can not obtain sufficient blackness or low reflectance, but the reflectance of visible light at the interface between the black layer according to the present embodiment and the substrate such as glass is almost the same. It is suppressed to 3% or less and high visibility can be obtained.
  • the black coloring material carbon, carbon nanotubes, or a mixture of a plurality of organic pigments can be applied.
  • carbon is used as a main colorant at a ratio of 51% by mass or more based on the total amount of colorant.
  • an organic pigment such as blue or red can be added to the black colorant and used.
  • the reproducibility of the black layer can be improved by adjusting the concentration of carbon contained in the photosensitive black coating solution as the starting material (reducing the carbon concentration).
  • the range of the carbon concentration in this embodiment is set in the range of 4 to 50% by mass with respect to the total solid content including the resin, the curing agent and the pigment.
  • the carbon concentration may exceed 50% by mass, but when the carbon concentration exceeds 50% by mass with respect to the total solid content, the coating film suitability tends to decrease.
  • the carbon concentration is set to 4% by mass or less, sufficient black color can not be obtained, and the reflected light generated in the metal layer of the base located below the black layer is largely recognized and the visibility is reduced. there were.
  • a black layer may be formed by using a mixture of a plurality of organic pigments for black color adjustment. Considering the refractive index (about 1.5) of the substrate such as glass and transparent resin, the reflectance of the black layer is 3% or less so that the reflectance at the interface between the black layer and those substrates is 3% or less It is set. In this case, it is desirable to adjust the content and type of the black colorant, the resin used for the colorant, and the film thickness.
  • the reflectance at the interface between the substrate such as glass having a refractive index of about 1.5 and the black layer should be 3% or less in the visible light wavelength range. It is possible to realize low reflectance.
  • the reflectance of the black layer should be 3% or less in consideration of the necessity to prevent the reflected light caused by the light emitted from the backlight unit BU from being reflected again, and the improvement of the visibility of the observer. Is desirable.
  • the refractive index of an acrylic resin and a liquid crystal material used for a color filter is in the range of approximately 1.5 to 1.7.
  • the transparent substrate 21 and the first black layer are viewed from the viewer's direction.
  • the light reflectance of the interface between 8 and 8 can be 3% or less. Therefore, an excellent configuration is realized from the viewpoint of visibility.
  • the first black layer 8, the second conductive metal oxide layer 4, the first metal layer 5, and the first conductive metal oxide layer 6 are sequentially stacked on the transparent substrate 21. It has the following structure.
  • a modification of the first touch sensing wiring 3 a structure in which a second black layer is provided on the first conductive metal oxide layer 6 may be adopted.
  • resin with high heat resistance such as an acrylic resin, a polyimide resin, a polyamide resin, an epoxy resin
  • a display capable of responding to high-resolution and high-speed touch input by applying such a transparent resin layer 1 to the embodiment of the present invention, a display using the display substrate, and a color filter A substrate can be provided.
  • the array substrate 200 includes a transparent substrate 22 (second transparent substrate), gate wirings 9 and 10 (first gate wiring 10 and second gate wiring 9) formed on the transparent substrate 22, and a common wiring 36 (see FIG. 10). , The third insulating layer 13 formed on the transparent substrate 22 so as to cover the gate wirings 9 and 10 and the common wiring 36, and the source wirings 14 and 15 (first source formed on the third insulating layer 13).
  • the array substrate 200 includes a plurality of pixel electrodes 17 formed on the first insulating layer 11. That is, the first insulating layer 11 is provided below the pixel electrode 17.
  • the second insulating layer 12 is provided below the first insulating layer 11.
  • the common electrode 20 is provided between the first insulating layer 11 and the second insulating layer 12.
  • the pixel electrode 17 is provided on the surface of the array substrate 200 closest to the liquid crystal layer 300.
  • the pixel electrode 17 is provided in each of the plurality of pixel openings 18 and is connected to an active element described later.
  • the second touch sensing wiring 7 is provided on the surface (surface portion) of the array substrate 200 closest to the liquid crystal layer 300, that is, on the first insulating layer 11.
  • the second touch sensing wiring 7 is orthogonal to the first touch sensing wiring 3 in plan view.
  • the second touch sensing wiring 7 is not shown in FIG. 2 which is a cross section taken along the line AA 'shown in FIG.
  • the second touch sensing wiring 7 is formed in the back of the drawing of FIG. 2 and in parallel with the gate wirings 9 and 10 (see FIG. 3).
  • An area in the Y direction (long side direction of the pixel) located between the second touch sensing wires 7 adjacent to each other is a pixel opening 18.
  • the pixel openings 18 in the X direction are disposed between the adjacent first touch sensing wires 3 shown in FIG. 3 or between the adjacent source wires 14 and 15 shown in FIG. Located in In the present embodiment, the direction in which the second touch sensing wiring 7 and the first touch sensing wiring 3 extend is not limited.
  • One of the first touch sensing wiring 3 and the second touch sensing wiring 7 may be provided so as to overlap the first gate wiring 10 and the second gate wiring 9. In this case, the other of the first touch sensing wiring 3 and the second touch sensing wiring 7 is provided to overlap the first source wiring 14 and the second source wiring 15.
  • the first gate wiring 10 and the second gate wiring 9 are disposed in parallel with each other so as to be located between two pixel openings 18 adjacent to each other among the plurality of pixel openings 18.
  • the pixel electrode 17 and the common electrode 20 can be formed of a conductive metal oxide such as ITO.
  • the shapes of the pixel electrode 17 and the common electrode 20 are rectangular.
  • a slit is provided at the center of the pixel electrode 17.
  • the common electrode 20 and the pixel electrode 17 are disposed so as to overlap in a plan view.
  • the common electrode 20 and the pixel electrode 17 face each other so as to sandwich the first insulating layer 11 in a cross sectional view.
  • the liquid crystal layer 300 includes liquid crystal molecules 39 having positive dielectric anisotropy.
  • the initial alignment of the liquid crystal molecules is horizontal to the display device substrate 100 or the substrate surface of the array substrate 200.
  • the liquid crystal drive according to the first embodiment using the liquid crystal layer 300 may be referred to as a lateral electric field mode because a drive voltage is applied to liquid crystal molecules so as to cross the liquid crystal layer in plan view.
  • an alignment film for giving an initial alignment to the liquid crystal layer 300, a polarizing film, an optical film such as a retardation film, a cover glass for protection, and the like are omitted.
  • a polarizing film is attached to each of the front surface and the back surface of the liquid crystal display device LCD1 so that the optical axis is crossed nicols.
  • FIG. 3 is a plan view partially showing the pixel structure of the liquid crystal display device LCD1 according to the present embodiment as viewed from the observer, showing the structure in which the display device substrate 100 is bonded onto the array substrate 200.
  • the pixels constituting the liquid crystal display device LCD1 have a polygonal shape and have a dog-legged pattern having an angle ⁇ with respect to the direction of alignment processing.
  • alignment processing of the alignment film photo alignment processing or rubbing processing can be employed.
  • the angle ⁇ is, for example, in the range of 3 ° to 15 °.
  • the light alignment treatment is as follows. First, a photosensitive alignment film material is applied to the surface of the display device substrate 100 and the array substrate 200 facing each other, and the alignment film material is lightly dried. Further, a seal portion for sealing the liquid crystal layer 300 is formed on at least one of the display device substrate 100 and the array substrate 200 so as to be located around the display screen. After that, liquid crystal is dropped on one of the display device substrate 100 and the array substrate 200 (ODF: One Drop Filling). The display device substrate 100 and the array substrate 200 are attached to sandwich the dropped liquid crystal (liquid crystal layer 300), and the liquid crystal layer 300 is sealed (cell formation).
  • ODF One Drop Filling
  • ultraviolet light is irradiated to the substrate to cure the alignment film material, and at the same time, the alignment film material is subjected to alignment processing.
  • the ultraviolet light polarized ultraviolet light may be used, or ultraviolet light which is not polarized may be used.
  • the first touch sensing wiring 3 is positioned as the uppermost layer.
  • the first touch sensing wiring 3 extends in the Y direction along a pixel shape having a dog-legged pattern. Since the source wires 14 and 15 shown in FIG. 2 are disposed to overlap with the lower portion of the first touch sensing wire 3, the source wires 14 and 15 are not shown in FIG. It is hidden by the sensing wiring 3.
  • the second touch sensing wiring 7 is one of the top layers (excluding the alignment film) of the plurality of layers constituting the array substrate 200. The second touch sensing wiring 7 extends in the X direction. Under the second touch sensing wiring 7, a first gate wiring 10 and a second gate wiring 9 are provided.
  • the cross-sectional structure including the second touch sensing wiring 7 and the first gate wiring 10 and the second gate wiring 9 will be described later with reference to FIG.
  • the second touch sensing wiring 7 includes at least a metal layer, and the same structure as the first touch sensing wiring 3 can be adopted as the structure of the second touch sensing wiring 7. That is, the second touch sensing wiring 7 has a two-layer structure including a black layer and a metal layer.
  • the light shielding layer 23, the pixel electrode 17, and the common electrode 20 are located in the area surrounded by the second touch sensing wiring 7 and the first touch sensing wiring 3.
  • the light shielding layer 23 (light shielding pattern) can be formed by a metal layer having the same layer configuration as the metal layer constituting the second touch sensing wiring 7.
  • the second touch sensing wiring 7 is electrically independent of the light shielding layer 23.
  • FIG. 5 is a cross-sectional view partially showing the liquid crystal display device LCD1. As shown in FIG. 5, the light shielding layer 23 is disposed so as to cover the upper portion of the channel layer 27 constituting the active element 28 (first active element 28a).
  • the gate electrode 25 (first gate electrode) is provided below the channel layer 27 via the third insulating layer 13. In other words, the channel layer 27 is located between the light shielding layer 23 and the gate electrode 25.
  • the channel layer 27 of the active element 28 overlaps the light shielding layer 23 and overlaps the gate electrode 25.
  • the light L emitted from the backlight unit BU or the reflected light due to the light L is shielded by the light shielding layer 23 and the gate electrode 25, and these lights (stray light) enter the channel layer 27. Is prevented. Therefore, generation of noise in the active element 28 due to stray light entering the channel layer 27 can be avoided, malfunction in the active element 28 can be prevented, and image quality can be improved.
  • a liquid crystal display device provided with high definition pixels such as 300 ppi or more, light is likely to be incident on the active element 28 and the active element 28 is likely to malfunction. As a result, the display quality of the liquid crystal display device is likely to be degraded. Become. By providing the light shielding layer 23, such image quality deterioration can be prevented.
  • FIG. 5 shows a structure in which the channel layer 27 of the first active element 28a is covered by the light shielding layer 23 (first light shielding layer), but the light shielding layer 23 (second light shielding layer) will be described later.
  • the two active elements 28 b are provided so as to cover the channel layer 27.
  • the gate electrode 25 (second gate electrode) is provided under the channel layer 27 of the second active element 28b, and the second active by incidence of stray light on the channel layer 27 of the second active element 28b. Noise generation in the element 28b can be avoided, which contributes to the improvement of the image quality.
  • the channel layer 27 is formed of an oxide semiconductor or a silicon semiconductor such as polysilicon.
  • a metal oxide called IGZO or the like can be used as the oxide semiconductor.
  • the channel layer is formed of an oxide semiconductor containing two or more metal oxides of gallium, indium, zinc, tin, germanium, magnesium, and aluminum such as IGZO, coupling noise generated in dot inversion driving can be obtained. The influence can be almost eliminated. This is because an active element using an oxide semiconductor such as IGZO can process a rectangular signal driven by liquid crystal, which is a video signal, in an extremely short time (for example, 2 msec).
  • such an oxide semiconductor has a memory property capable of holding a voltage applied to a pixel electrode in liquid crystal display after application of a video signal. Therefore, during the voltage holding period, no new noise is generated, and the influence of noise on touch sensing generated by liquid crystal driving can be further reduced.
  • an oxide semiconductor such as IGZO has a high electrical breakdown voltage
  • liquid crystals can be driven at high speed with a higher voltage, and is effective for 3D image display such as 3D.
  • a transistor using an oxide semiconductor such as IGZO for a channel layer has high memory properties, and thus has an advantage that flicker (display flicker) does not occur even when the liquid crystal driving frequency is low as about 0.1 Hz to 60 Hz, for example. Therefore, it is possible to realize a liquid crystal display device with low flicker and a low power consumption as well as a touch sensing function.
  • a transistor having IGZO as a channel layer, dot inversion driving at low frequency and touch sensing driving at a frequency different from this are used in combination to achieve high-quality image display with high power consumption and low power consumption. Both accurate touch sensing can be obtained.
  • a multi-gate structure such as a dual gate structure or a bottom gate structure can be employed.
  • the storage capacitance constant voltage drive for maintaining the voltage of the pixel electrode at a constant voltage (constant potential) ( It is also possible to dispense with storage capacitors or storage capacitors).
  • FIG. 4 is a plan view partially showing the pixel structure of the liquid crystal display device LCD1 according to this embodiment as viewed from the observer, excluding the display device substrate 100, the second touch sensing wiring 7, and the light shielding layer 23.
  • FIG. 6 is a view showing the positional relationship of members provided on the array substrate 200.
  • On the transparent substrate 22 of the array substrate 200 two gate wirings 9 and 10 and two source wirings 14 and 15 are orthogonal to each other. That is, the gate lines 9 and 10 extend in the X direction, and the source lines 14 and 15 extend in the Y direction.
  • the pixel opening 18 is partitioned by the first gate wiring 10, the second gate wiring 9, the first source wiring 14, and the second source wiring 15.
  • the long side of the pixel opening 18 extends in the direction along the first source wire 14 and the second source wire 15. Furthermore, a common wiring 36 extending in parallel with the gate wirings 9 and 10 and positioned at the center of the pixel is provided on the transparent substrate 22. Furthermore, a contact hole (not shown) is provided at the center of each of the plurality of pixels. The plurality of common electrodes 20 arranged in the X direction are electrically connected to the common wiring 36 through the contact holes. Each pixel comprises two active elements 28, namely a first active element 28a and a second active element 28b.
  • the first gate wiring 10 is electrically linked with the first active element 28 a. Specifically, the first gate electrode 25a connected to the first gate wiring 10 and the channel layer 27 of the first active element 28a face each other through the third insulating layer 13. The switching driving is performed in the first active element 28 a according to the scanning signal supplied from the video signal timing control unit 121 to the first gate electrode 25 a.
  • the second gate wiring 9 is electrically linked with the second active element 28 b. Specifically, the second gate electrode 25b connected to the second gate wiring 9 and the channel layer 27 of the second active element 28b face each other via the third insulating layer 13. In accordance with the scanning signal supplied from the video signal timing control unit 121 to the second gate electrode 25b, switching driving is performed in the second active element 28b.
  • the video signal timing control unit 121 applies a voltage as a video signal to the first source wiring 14 and the second source wiring 15.
  • a video signal (first video signal) of positive potential is applied to the first source wiring 14, and a video signal (second video signal) of negative potential is applied to the second source wiring 15.
  • the positive and negative polarities of the video signal in the first source wiring 14 and the second source wiring 15 are fixed, and positive and negative inversion of the video signal in the source wiring 14 and 15 is not performed.
  • the liquid crystal driving in which the positive and negative polarities of the video signal in the source lines 14 and 15 are fixed will be described later with reference to FIGS. 14 and 15.
  • FIG. 6 is a plan view schematically showing the touch sensing wiring according to the first embodiment of the present invention, and is a view for explaining the electrical connection of the second touch sensing wirings 7a and 7b. Moreover, FIG. 6 is a figure for demonstrating the conductive wiring to which reset voltage is applied. 6, the illustration of the array substrate 200 including the pixel electrode 17 and the first insulating layer 11 is omitted, and a red filter R, a green filter G, a blue filter B, and a second touch constituting a color filter described later are omitted. The positional relationship with the sensing wires 7a and 7b is shown. As shown in FIG.
  • the second touch sensing wiring 7 includes a first wiring group including a second touch sensing wiring 7 a (first conductive wiring) and a second touch sensing wiring 7 b (second conductive wiring). And 2 wiring groups.
  • the first wiring group and the second wiring group are formed in a comb-like shape so as to engage with each other.
  • At least one of the red filter R, the green filter G, and the blue filter B is provided on the display device substrate 100 at a position corresponding to the pixel opening 18.
  • Either positive or negative reset voltage Vr is applied to the first wiring group and the second wiring group. That is, reset voltages having opposite polarities are applied to the first wiring group and the second wiring group.
  • Such switching operation of the reset voltage is controlled by the touch sensing / reset signal control unit 122 and the system control unit 123 using a switching element or the like.
  • a voltage is applied to one of the first wiring group and the second wiring group and the other wiring group is grounded, or in one of the wiring groups.
  • Driving is performed such that a positive voltage is applied and a negative voltage is applied to the other wiring group.
  • AC power supply S virtual power supply
  • the reset voltage is an AC voltage It is.
  • the second touch sensing wire 7a functions as an electrode (first conductive electrode).
  • the second touch sensing wire 7b functions as an electrode (second conductive electrode).
  • the present invention does not limit the circuit configuration in which the AC power supply S shown in FIG. 6 is virtually provided between the first wiring group and the second wiring group.
  • one of the first wiring group and the second wiring group may be grounded (dropped to ground), and a positive or negative voltage may be applied to the other wiring group (a wiring group not grounded).
  • the reset voltage applied to such a wiring group may be an alternating current or a direct current rectangular wave.
  • FIG. 6 shows the positional relationship between the stripe-like red filter, green filter, and blue filters (three colors, R, G, B) that constitute the color filter, and the second touch sensing wires 7 a, 7 b.
  • the second touch sensing wires 7a and 7b extend in the direction orthogonal to the extending direction of the stripe-shaped color filter. Any one of a red filter, a green filter, and a blue filter is disposed between the second touch sensing wires 7a and 7b adjacent to each other, and each of the filters of each color between the second touch sensing wires 7a and 7b is It constitutes a pixel.
  • the present invention does not limit the positional relationship between the color filter and the second touch sensing wires 7a and 7b as shown in FIG.
  • FIG. 10 is a cross-sectional view partially showing the liquid crystal display device according to the first embodiment of the present invention, and is a view along the source wiring (line BB ′) shown in FIG. Although FIG. 10 shows a state in which touch sensing drive is performed, this touch sensing drive will be described later.
  • the first touch sensing wiring 3 is provided on the surface of the transparent substrate 21 facing the liquid crystal layer 300.
  • the first touch sensing wiring 3 includes the black layer 8 provided on the first transparent substrate 21 of the display device substrate 100 and the metal layer 5 provided on the black layer 8.
  • a transparent resin layer 1 is provided on the transparent substrate 21 so as to cover the first touch sensing wiring 3.
  • the second touch sensing wiring 7 is provided on the top surface of the array substrate 200 facing the liquid crystal layer 300.
  • the first gate wiring 10, the second gate wiring 9, the common wiring 36, and the above-described second touch sensing wiring 7 are provided on the transparent substrate 22 of the array substrate 200 together with the plurality of insulating layers 11, 12, and 13. It is formed.
  • the distance from the display surface of the display device substrate 100 to the second touch sensing wiring 7 is larger than the distance from the display surface of the display device substrate 100 (the surface facing the observer) to the first touch sensing wiring 3.
  • the second touch sensing wiring 7 is provided at any position among the position on the first insulating layer 11, the position on the second insulating layer 12, and the position below the second insulating layer 12. Good.
  • An insulating layer may be further stacked on the second touch sensing wiring 7.
  • the black layer 8 as a layer to be observed by the observer among a plurality of layers constituting the first touch sensing wiring 3, light reflection generated from the first touch sensing wiring 3 is suppressed and visibility is improved.
  • An inorganic or organic insulating layer may be formed before the metal layer is formed, or an inorganic or organic insulating layer may be formed on the metal layer after the first touch sensing wiring 3 is patterned. .
  • FIG. 14 shows, for example, the polarity for each pixel when the gate wiring 10 of the even line is selected from the plurality of gate wirings 10 (plurality of lines) and the selected gate wiring 10 sends the gate signal to the active element. It shows.
  • the polarity of the first source wiring 14 is positive, and the polarity of the second source wiring 15 is negative.
  • pixels having the same polarity are arranged in the vertical direction.
  • the gate wiring of the odd line is selected in the next frame, and the selected gate wiring 10 sends a gate signal to the active element, the pixel having the opposite polarity to that shown in FIG.
  • Vertical line inversion driving is performed in line with the direction. In the case of inverting the vertical line every frame, the frequency of noise generation is lower.
  • FIG. 15 shows, for example, that every two gate lines 9 and 10 are selected every two lines among a plurality of gate lines 10 (a plurality of lines), and the selected gate lines 9 and 10 are active elements. Shows the polarity of each pixel when the gate signal is sent.
  • the polarity of the first source wiring 14 is positive
  • the polarity of the second source wiring 15 is negative.
  • pixels having positive and negative polarities are alternately arranged in both vertical and horizontal directions.
  • two different sets of gate lines are selected, and the selected gate lines 9 and 10 send gate signals to the active elements, thereby causing pixels having a polarity opposite to that shown in FIG.
  • dot inversion drive is performed alternately.
  • the inversion drive in the pixels shown in FIGS. 14 and 15 is similarly performed in the following embodiments.
  • FIGS. 7 to 9 are plan views partially showing the liquid crystal display device according to the first embodiment of the present invention, wherein liquid crystal molecules and an electrode structure (pixel electrode 17 and common electrode 20 in one pixel of the liquid crystal display device LCD1). ) Is an enlarged view showing the relationship of.
  • FIG. 7 is an enlarged view showing the relationship between the liquid crystal molecules in the initial alignment (black display) state and the electrode structure, and
  • FIG. 8 shows the case where a liquid crystal drive voltage is applied between the pixel electrode 17 and the common electrode 20. It is a figure which shows the rotation operation of the liquid crystal molecule of.
  • FIG. 9 in a state where no liquid crystal drive voltage is applied between the pixel electrode 17 and the common electrode 20 (non-application state), a reset voltage is applied between the second touch sensing wires 7a and 7b, It is a figure explaining generating an electric field between sensing wiring 7a, 7b, and making an alignment state of a liquid crystal return to a black display state in an accelerated manner.
  • the liquid crystal molecules 39 of the liquid crystal layer 300 have an alignment direction R (direction of alignment processing, initial alignment state Orientation direction). That is, the liquid crystal molecules are aligned in the horizontal direction with respect to the display device substrate 100 and the array substrate 200 (initial alignment state).
  • the pixel electrode 17 and the common electrode 20 have a dog-legged pattern, that is, have sides that are inclined at an angle ⁇ with respect to the alignment direction R.
  • the liquid crystal molecules 39 rotate counterclockwise.
  • the liquid crystal drive voltage is on, no voltage is applied to the second touch sensing wires 7a and 7b.
  • the liquid crystal molecules shown in FIG. 8 return to the black display in the initial alignment state shown in FIG.
  • the time for the alignment state of the liquid crystal molecules to return to the initial alignment in this way is called ⁇ off.
  • the white display state is slowly returned to the black display state. That is, as shown in FIG. 13, regarding the change of the transmittance in the conventional liquid crystal display device, the transmittance T rans gradually decreases from the white display state (transmittance T rans : 100%) with the passage of time.
  • the transmittance T rans is in the black display state (transmittance T rans : 0%).
  • the driving voltage for returning the display state of the liquid crystal to the black display is not applied to the liquid crystal molecules 39, so the time ⁇ off can not be shortened.
  • a voltage is applied between the second touch sensing wires 7a and 7b as shown in FIG.
  • a voltage application method for example, there is a method in which the second touch sensing wiring 7b is grounded, and a reset voltage of 5 V is applied to the second touch sensing wiring 7a.
  • the reset electric field B1 is in the direction orthogonal to the second touch sensing wires 7a and 7b (the direction parallel to the display device substrate 100 and the array substrate 200). Will occur.
  • the major axes of the liquid crystal molecules 39 return to accelerate toward the direction of the reset electric field B1.
  • the reset voltage between the second touch sensing wires 7a and 7b the display state of the liquid crystal layer 300 is accelerated back to the black display.
  • image display is performed by applying a liquid crystal drive voltage between the pixel electrode 17 and the common electrode 20. Furthermore, after the image display, a reset voltage is further applied between the second touch sensing wires 7a and 7b to generate a reset electric field. That is, before and after one video display operation, an operation of applying a reset electric field to the liquid crystal layer 300 is performed, and this operation is repeatedly performed.
  • the reset electric field is repeatedly applied to the liquid crystal molecules 39 after the image display, it is preferable to invert the positive or negative of the reset voltage. That is, it is preferable that the reset voltage includes a positive voltage and a negative voltage, and the reset voltage is inverted to positive or negative at regular intervals of the image display.
  • the next video display is performed.
  • the second touch sensing wiring 7a is grounded, and a reset voltage of 5 V is applied to the second touch sensing wiring 7b.
  • a reset electric field B2 is generated in a direction (direction parallel to the display device substrate 100 and the array substrate 200) orthogonal to the second touch sensing wires 7a and 7b.
  • the major axes of the liquid crystal molecules 39 return to accelerate toward the direction of the reset electric field B2.
  • the direction of the reset electric field B2 is opposite to the direction of the above-mentioned reset electric field B1.
  • one display unit period is a minimum unit period of video display by a video signal.
  • dot inversion driving the minimum unit is the inversion period in one pixel.
  • vertical line inversion driving the minimum unit is the inversion period of one line.
  • frame inversion driving the minimum unit is an inversion period in one frame.
  • FIG. 10 partially shows the state of a fringe electric field generated when a touch sensing drive voltage is applied between the touch sensing wiring 3 and the second touch sensing wiring 7.
  • a touch sensing drive voltage is applied between the touch sensing wiring 3 and the second touch sensing wiring 7 and a pointer such as a finger is in contact with the surface of the display device substrate 100 facing the observer or It shows in part the change of the fringe electric field when it approaches.
  • a fringe electric field is generated between the second touch sensing wiring 7 (touch drive wiring) to which the touch sensing drive voltage is applied and the first touch sensing wiring 3 (touch detection wiring), and the electric field lines Are generated from the second touch sensing wiring 7 to the first touch sensing wiring 3.
  • the capacitance C ⁇ b> 1 is held between the second touch sensing wiring 7 and the first touch sensing wiring 3.
  • the first touch sensing wiring 3 detects a change in capacitance as a touch sensing signal.
  • the first touch sensing wiring 3 functions as a touch detection wiring in FIGS. 10 and 11, the first touch sensing wiring 3 may function as a touch drive wiring.
  • the second touch sensing wiring 7 functions as a touch detection wiring.
  • an inorganic film or an organic film having visible light absorbability may be stacked on the second touch sensing wiring 7.
  • the inorganic film is formed of a metal oxide film or a multilayer structure including the oxide film.
  • a black layer described later can be used as the organic film.
  • a part or all of the second touch sensing wiring 7 can be used as a touch drive wiring, or a part or all of the second touch sensing wiring 7 can be used as a touch detection wiring.
  • the second touch sensing wiring 7 When the second touch sensing wiring 7 is used as a touch drive wiring, application of the reset voltage Vr to the second touch sensing wiring 7 and application of the touch sensing drive voltage V touch to the second touch sensing wiring 7 will be described later. In time division.
  • the 1st touch sensing wiring 3 when using the 2nd touch sensing wiring 7 as touch detection wiring, the 1st touch sensing wiring 3 functions as touch drive wiring. In this case, the touch sensing drive voltage V touch is applied to the first touch sensing wiring 3, the reset voltage Vr is applied to the second touch sensing wiring 7, and the second touch sensing wiring 7 detects a touch sensing signal.
  • the potential of a part of the plurality of second touch sensing lines 7 may be a floating potential.
  • the positive voltage and the negative voltage of the reset voltage for example, when changing the electric field generation state (electric field direction) from the state where electric field B1 is generated to the state where electric field B2 is generated in FIG. 9
  • one of the two second touch sensing wires 7 may be dropped to the ground.
  • Second touch sensing such as application of a reset voltage to the second touch sensing wiring 7, changing the potential of the second touch sensing wiring 7 to a floating potential, or connecting (grounding) the second touch sensing wiring 7 to ground
  • the selection of the wiring 7 can be performed by interposing a switching element.
  • all touch sensing wires are divided into a plurality of groups.
  • the number of groups is less than the number of all touch sensing wires. It is assumed that the number of wires forming one group is, for example, six.
  • the number of wirings is six
  • two wirings are selected (the number less than the number of all the wirings, two ⁇ six).
  • touch sensing is performed using two selected wires, and the potentials of the remaining four wires are set to floating potentials (thinning-out drive). Since the liquid crystal display device has a plurality of groups, touch sensing can be performed for each group in which the function of the wiring is defined as described above.
  • the drive frequency of touch sensing will be described.
  • the potential of the transparent electrode which is a common electrode for liquid crystal driving
  • the transparent electrode serves as an electrical shield in liquid crystal driving and touch sensing driving.
  • the touch sensing driving frequency can be set to 60 Hz to several tens of KHz, and the liquid crystal driving frequency can be set to 0.1 Hz to 480 Hz.
  • the liquid crystal driving frequency can be set to 60 Hz or less.
  • touch drive and liquid crystal drive can also be performed in time division.
  • any one of the first touch sensing wiring 3 provided in the display device substrate 100 or the second touch sensing wiring 7 provided in the array substrate 200 is made to function as a touch drive electrode (scanning electrode), the required touch input
  • the scanning frequency for detecting the capacitance can be arbitrarily adjusted in accordance with the speed of.
  • FIG. 12 is a signal timing chart for explaining the liquid crystal display device LCD 1 according to the embodiment of the present invention, showing an example of waveforms of signals etc. in the case of performing liquid crystal drive and touch sensing drive in time division. There is.
  • the display period shown in FIG. 12 is a period (1F) of one frame, for example, a period during which image writing corresponding to 60 Hz is performed.
  • FIG. 12 shows the timing at which white display (liquid crystal drive voltage, on) and black display (liquid crystal drive voltage, off) are performed in one pixel unit period (one display unit period) in this one frame period. .
  • the gate signal is supplied to the first gate wiring 10 among the first gate wiring 10 and the second gate wiring 9, and the first source wiring 14 among the first source wiring 14 and the second source wiring 15.
  • the case where the video signal is supplied to the first active element 28 a and the first active element 28 a is driven to write the video in the pixel electrode 17 will be described.
  • a gate signal is supplied to the second gate wiring 9, a video signal is supplied to the second source wiring 15, and a video is written to the pixel electrode 17.
  • reference symbol Vg indicates a signal (gate signal) supplied to the first gate wiring 10 and a signal waveform.
  • a symbol Vd indicates a signal (video signal) supplied to the first source wiring 14 and a signal waveform.
  • the symbol T rans indicates that the first active element 28 a is performing image writing on the pixel electrode 17, that is, indicates the transmittance of liquid crystal.
  • a symbol Vr indicates a signal and a signal waveform applied to the second touch sensing wiring 7.
  • the symbol V touch indicates the signal and signal waveform of the touch sensing drive voltage.
  • the signal Vg is supplied twice to the first gate wiring 10 at constant intervals.
  • the signal Vd is supplied to the first source wiring 14 in synchronization with the generation of the signal Vg.
  • the first active element 28 a is turned on, and video writing to the pixel electrode 17 is started.
  • the transmittance T rans increases.
  • the signal Vd is continuously supplied to the first source wiring 14 until the transmittance T rans reaches a certain level, and then the white display is maintained.
  • the application time Dt of the signal Vd is the application time of the liquid crystal drive voltage.
  • the transmittance T rans When the transmittance T rans reaches a certain level, then the transmittance T rans is maintained during the white display stabilization period Wr.
  • the white display stable period means a period in which the transmittance of the white display is stable.
  • the reset voltage Vr is applied to the second touch sensing lines 7, returns to the acceleration to the orientation initial alignment of the liquid crystal molecules faces a reset electric field shown in FIG. 9, the transmittance T RANS decreases, then , Black display.
  • the symbol Er shown in FIG. 12 is a black display stable period, and in this period, the transmittance of the black display is stable.
  • the signal V touch is generated in a pulse shape
  • the touch sensing drive voltage is applied to the second touch sensing wiring 7, and the first touch sensing wiring 3 detects the touch sensing signal.
  • the first touch sensing wire 3 functions as a touch drive wire
  • a touch sensing drive voltage is applied to the first touch sensing wire 3 as the signal V touch is generated
  • the second touch sensing wire 7 is Detect touch sensing signal. That is, after the liquid crystal drive voltage is applied to the pixel electrode 17 and the liquid crystal drive voltage is not applied to the pixel electrode 17, the control unit 120 applies the reset voltage to the second touch sensing wiring 7.
  • the white display stable period Wr differs depending on the type of the semiconductor material forming the channel layer 27 of the first active element 28a.
  • the application time of the signal Vd may be short, and the first active element 28a is The voltage can be well maintained, and high transmittance can be maintained.
  • the relationship between the signal Vd and the transmittance T rans will be described later.
  • the timing at which the reset voltage Vr is applied to the second touch sensing wiring 7 is any of the following timings. (1) Timing after video writing in one pixel is performed (after video display in display unit period) (2) Timing after video writing in one horizontal line is performed (3) Video in one vertical line Timing after writing (4) Timing after writing video in one frame
  • the display unit period is a period including writing and resetting of one pixel in the case of dot inversion driving, and is a period including writing and resetting of one horizontal line in the case of one horizontal line driving, and one frame is a frame. In the case of performing inversion, it is a period including writing and resetting of one screen.
  • touch sensing driving can be performed in the white display stable period Wr (stable period of video display). That is, in the present embodiment, the touch sensing drive by the first touch sensing wiring and the second touch sensing wiring is performed in at least one of a stable period of video display and a stable period of black display after video display. Do.
  • one vertical line inversion drive (column inversion drive), etc. are grouped according to the occurrence frequency in dot inversion drive which performs inversion in individual pixels. The frequency of occurrence in the reverse drive to be performed is reduced.
  • one pixel unit period is composed of a period of white display (on) and a period of black display (off).
  • the reset voltage Vr is applied to the second touch sensing wiring 7 in synchronization with the black display (off) signal.
  • a time from the application of the reset voltage Vr to the second touch sensing wiring 7 to the generation of the next Vg signal is a touch sensing period T touch .
  • the touch sensing period T touch is provided between the black display stable period Er after the reset voltage Vr is applied to the second touch sensing wiring 7.
  • any of the timings can be delayed, for example, by about 20 nsec to 2 msec by using a delay circuit.
  • an active element thin film transistor
  • an active element including a channel layer formed of an oxide semiconductor such as IGZO
  • an active element including a channel layer formed of an amorphous silicon semiconductor for example, the pixel (liquid crystal display device)
  • transmittance T rans There is a big difference in terms of transmittance T rans .
  • the transmittance T rans rapidly rises as shown in FIG. 12 after image writing is performed by the active element.
  • the transmittance T rans rises slowly as shown in FIG.
  • the leak current of the transistor is increased.
  • the signal Vd liquid crystal drive voltage
  • the leakage current can be lower by about three digits compared to an amorphous silicon semiconductor, and voltage can be held. Therefore, the application time Dt of the liquid crystal drive voltage may be short.
  • the touch sensing frequency of the touch sensing period T touch needs to be a frequency higher than the liquid crystal driving frequency. This is because the timing of touch sensing is irregular and is short.
  • the touch sensing frequency (detection frequency) be a high frequency.
  • the touch sensing frequency By performing touch sensing driving at a high frequency and obtaining an integral value of the touch sensing signal, stable touch sensing detection can be performed.
  • the touch sensing signal is detected at a high frequency in the black display stable period Er.
  • the black display stable period Er light emission of the light emitting element of the backlight unit BU such as an LED can be stopped.
  • 3D display stereo image display
  • the liquid crystal display device LCD1 it is possible to provide a liquid crystal display device that has a touch sensing function, can be driven with low power consumption, and can reduce the occurrence of flicker. Furthermore, according to the embodiment of the present invention, the potential of the common electrode 20 (common wiring 36) does not need to be reversed, and can be a constant potential such as zero volt. Furthermore, there is no need to invert the potential of the video signal in the source wiring to positive or negative. For this reason, the noise with respect to touch sensing drive can be greatly reduced. In addition, since the light incident on the active element is blocked by the light shielding layer, it is possible to suppress the generation of noise due to the active element.
  • the amplitude (maximum voltage width) of the potential supplied to the source line is only half as compared to the conventional liquid crystal display device in which the potential is inverted positively or negatively. Therefore, the driver cost can be reduced without the need to use a high voltage driver. Since the amplitude of the potential (voltage) supplied to the source wiring is halved, power consumption for touch sensing can be largely reduced.
  • the display device substrate 100 is provided with a transparent electrode
  • the liquid crystal layer 300 is formed of liquid crystal molecules having negative dielectric anisotropy
  • the array substrate 200 is a common electrode 20. Is not provided. Therefore, in the liquid crystal display device LCD2, a vertical electric field method is employed in which the liquid crystal layer 300 is driven by applying a vertical electric field to the liquid crystal layer 300 sandwiched between the transparent electrode and the pixel electrode. Furthermore, liquid crystal driving is controlled by the first active element 28 a and the second active element 28 b connected to the pixel electrode 17.
  • the video signal timing control unit 121 shown in FIG. 1 sets the transparent electrodes 2 (described later, a plurality of transparent electrode patterns) provided on the display device substrate 100 to a constant potential and the array substrate 200 (described later Signals to the gate lines 9 and 10 (to be described later, scan lines) and the source lines 14 and 15 (to be described later, signal lines).
  • the video signal timing control unit 121 drives liquid crystal molecules of the liquid crystal layer 300 by applying a liquid crystal drive voltage for display to the pixel electrode 17 in the stacking direction Z between the transparent electrode 2 and the pixel electrode 17 (described later). Liquid crystal drive is performed. Thus, an image is displayed on the array substrate 200.
  • a video signal having, for example, an alternating rectangular wave is individually applied to each of the plurality of pixel electrodes 17 through the source wiring (signal line).
  • the square wave may be a positive or negative direct current square wave.
  • FIG. 16 is a cross-sectional view partially showing the liquid crystal display device LCD 2 according to the present embodiment.
  • FIG. 16 is a cross-sectional view taken along the short side direction of the pixel opening and taken along the line HH ′ shown in FIG.
  • the liquid crystal display device LCD2 includes a display device substrate 100 (opposite substrate), an array substrate 200 bonded to face the display device substrate 100, and a liquid crystal layer 300 sandwiched by the display device substrate 100 and the array substrate 200. .
  • the display device substrate 100 includes a transparent substrate 21, and a transparent resin layer 1 and a transparent electrode 2 provided on the transparent substrate 21. Furthermore, a first touch sensing wiring 3 (touch detection wiring or touch drive wiring) located on the back side of the paper surface of FIG. 16 is formed on the display device substrate 100.
  • the first touch sensing wiring 3 is indicated by reference numeral 3 in FIGS. 17 and 27.
  • the first touch sensing wiring 3 includes a first black layer 8 (black layer) formed on the transparent substrate 21 and a first metal layer 5 (metal layer) formed on the first black layer 8. Ru.
  • the array substrate 200 covers the transparent substrate 22, the third insulating layer 13 formed on the transparent substrate 22, the source wires 14 and 15 formed on the third insulating layer 13, and the source wires 14 and 15. And a second insulating layer 12 formed on the third insulating layer 13 and a first insulating layer 11 formed on the second insulating layer 12. Furthermore, the array substrate 200 is positioned between the plurality of pixel electrodes 17 formed on the first insulating layer 11 and the plurality of pixel electrodes 17 (having the electrode portions 17 a and 17 b). And a second touch sensing wiring 7 formed thereon.
  • the plurality of pixel electrodes 17 are formed on the surface closest to the liquid crystal layer 300.
  • the second touch sensing wiring 7 is formed to extend in the direction (Y direction) perpendicular to the paper surface of FIG. 16 and in parallel with the source wirings 14 and 15.
  • the second touch sensing wiring 7 includes at least a second metal layer (metal layer).
  • the second metal layer constituting the second touch sensing wiring 7 is a copper-containing layer, and is, for example, a copper layer or a copper alloy layer.
  • the second touch sensing wiring 7 may have a configuration in which the second metal layer is sandwiched between two conductive metal oxide layers.
  • a region in the X direction (a region in the X direction located between the source wires 14 and 15 adjacent to each other) located between the second touch sensing wires 7 adjacent to each other is a pixel opening 18.
  • the pixel openings 18 in the Y direction are located between the first touch sensing wires 3 adjacent to each other, as shown in FIG.
  • an alignment film for giving an initial alignment to the liquid crystal layer 300, a polarizing film, an optical film such as a retardation film, a cover glass for protection, and the like are omitted.
  • a polarizing film is attached to each of the front surface and the back surface of the liquid crystal display device LCD2 so that the optical axis is crossed nicols.
  • the liquid crystal layer 300 includes liquid crystal molecules 138 and 139 having negative dielectric anisotropy.
  • the initial alignment of the liquid crystal molecules 138 and 139 is perpendicular to the display device substrate 100 or the substrate surface of the array substrate 200.
  • the vertical alignment of liquid crystal molecules indicates an inclination in the range of approximately 0 ° to 5 °, that is, a pretilt with respect to the normal direction of the substrate surface.
  • As a method of forming a pretilt alignment is performed on the alignment film material such that liquid crystal molecules have an optional small pretilt angle such as 0.1 ° to 1.5 ° by using the above-described photoalignment treatment. It is possible to process.
  • the inclination (pretilt) of the initial alignment of liquid crystal molecules is preferably a small inclination close to the normal direction.
  • FIG. 17 is a partial plan view of the liquid crystal display device LCD2 according to the present embodiment as viewed from an observer.
  • the transparent electrode 2 is formed of, for example, a conductive metal oxide such as ITO.
  • the transparent electrode 2 is formed to have a stripe pattern (strip shape) in a plan view.
  • a slit 16 is formed between the strip-like transparent electrodes 2 adjacent to each other, and the first touch sensing wiring 3 is located between the strip-like transparent electrodes 2.
  • Gate wires 9 and 10 are located below the first touch sensing wire 3 (in the Z direction) shown in FIG.
  • the gate wirings 9 and 10 are disposed in substantially the same position as the first touch sensing wiring 3 in plan view so as to extend in parallel with the first touch sensing wiring 3.
  • the first touch sensing wiring 3 is disposed on the transparent substrate 21 of the display device substrate 100, and the gate wirings 9 and 10 are disposed on the transparent substrate 22 of the array substrate 200.
  • FIG. 18 is a plan view partially showing the surface of the array substrate 200 when the liquid crystal display device LCD 2 according to the present embodiment is viewed from the observer.
  • the display device substrate 100 and the second touch sensing wiring 7 described above are omitted.
  • the pixel openings 18 are provided with electrode portions 17 a and 17 b constituting the pixel electrode 17.
  • a second touch sensing wiring 7 (not shown, refer to FIG. 16) and a light shielding layer 23 (light shielding pattern) formed of the same layer as the metal layer constituting the second touch sensing wiring 7 are provided. It is equipped. However, the second touch sensing wiring 7 and the light shielding layer 23 are electrically insulated.
  • Source wirings 14 and 15 are located below the second touch sensing wiring 7 (in the Z direction) shown in FIG. 18.
  • the source wires 14 and 15 are disposed in substantially the same position as the second touch sensing wires 7 in plan view so as to extend in parallel with the second touch sensing wires 7.
  • the pixel electrode 17 has a pixel electrode pattern in which the transparent conductive film located at the center of the pixel electrode 17 is removed in a slit shape along the longitudinal direction.
  • the pixel electrode 17 includes electrode portions 17a and 17b having a shape corresponding to the pixel electrode pattern.
  • the electrode portions 17a and 17b constituting the pixel electrode 17 are electrically connected to each other.
  • the electrode portions 17 a and 17 b of the pixel electrode 17 are electrically connected to the drain electrode 26 of the active element 28 shown in FIG. 19 through the contact hole 29.
  • two active elements ie, a first active element 28 a and a second active element 28 b, are connected to the pixel electrode 17. Therefore, two contact holes 29 are provided in the pixel electrode 17 in one pixel, and the drain electrode 26 configuring the first active element 28 a and the drain configuring the second active element 28 b through the contact hole 29.
  • the electrode 26 is connected.
  • FIG. 19 is a plan view partially showing the surface of the array substrate 200 when the liquid crystal display device LCD 2 according to the present embodiment is viewed from the observer.
  • the display device substrate 100 described above, the pixel electrode 17, the second touch sensing wiring 7, and the light shielding layer 23 are not shown. That is, FIG. 19 is a plan view partially showing an example of the arrangement of the active elements 28 (28a, 28b), the gate wirings 9, 10, and the source wirings 14, 15.
  • the position of the light shielding layer 23 is indicated by a two-dot chain line.
  • the pixel opening 18 is formed in a rectangular shape which is one of the polygonal patterns.
  • the source wirings 14 and 15 and the gate wirings 9 and 10 form a matrix pattern which is orthogonal to each other in a plan view and extends along the side of the pixel opening 18.
  • a channel layer 27 is located at the center of the active element (TFT).
  • FIG. 20 is a cross-sectional view partially showing the liquid crystal display device LCD 2 according to the second embodiment of the present invention, and is a view taken along the line GG ′ shown in FIG.
  • the active element 28 is covered with a light shielding layer 23 which is a second metal layer.
  • the active element 28 includes a source layer 24 electrically connected to the source lines 14 and 15, a gate electrode 25 electrically connected to the gate lines 9 and 10, and a channel layer formed of a semiconductor.
  • 27 is a thin film transistor.
  • the width in the X direction of the light shielding layer 23 is set so that the active element 28 is covered with the light shielding layer 23 in a plan view.
  • the second metal layer is a metal layer formed on the surface of the array substrate 200, and forms the second touch sensing wiring 7 and the light shielding layer 23 as described above.
  • the first metal layer is disposed above the display device substrate 100 (on the first black layer 8) to form a first touch sensing wiring 3 (functions as a touch drive wiring or a touch detection wiring).
  • the materials of the first metal layer and the second metal layer may be the same metal material or different metal materials. As a material of the first metal layer and the second metal layer, it is desirable to use a good conductor using copper, aluminum, an alloy containing these metals, or the like.
  • an inorganic insulating layer or an organic insulating layer is formed as a layer (underlayer) located below the first metal layer or the second metal layer. It is also good.
  • an inorganic insulating layer or an organic insulating layer may be formed to cover the first metal layer or the second metal layer.
  • FIG. 21 is a plan view schematically showing a second touch sensing wiring according to an embodiment of the present invention, and is a view for explaining the second touch sensing wiring to which a reset voltage is applied.
  • illustration of the array substrate 200 including the pixel electrode 17 and the first insulating layer 11 is omitted, and a red filter R, a green filter G, a blue filter B, and a second touch that constitute a color filter described later are described.
  • the positional relationship with the sensing wiring 7 is shown.
  • the second touch sensing wiring 7 includes a first wiring group including a first wiring 7 a (first conductive wiring), and a second wiring group including a second wiring 7 d (second conductive wiring). And a dummy wiring group including dummy wirings 7b and 7c provided between the first wiring 7a and the second wiring 7d.
  • the first wiring group and the second wiring group are formed in a comb-like shape so as to engage with each other.
  • Either positive or negative reset voltage Vr is applied to the first wiring group and the second wiring group.
  • a positive voltage is applied to one wiring group
  • a negative voltage is applied to the other wiring group.
  • one of the first wiring group and the second wiring group may be grounded (dropped to ground), and a positive or negative voltage may be applied to the other wiring group (a wiring group not grounded).
  • the reset voltage applied to such a wiring group may be an alternating current or a direct current rectangular wave. For this reason, as shown in FIG. 21, it can be virtually considered that AC power supply S (virtual power supply) is connected to the first wiring group and the second wiring group, and in this case, the reset voltage is AC voltage.
  • the first wire 7a functions as an electrode (first conductive electrode).
  • the second wiring 7d functions as an electrode (second conductive electrode).
  • the dummy interconnections 7 b and 7 c have an electrically floating potential (floating potential).
  • the lower end of the dummy wiring 7b and the lower end of the dummy wiring 7c are electrically connected, and the upper end of the dummy wiring 7b and the upper end of the dummy wiring 7c are electrically connected.
  • the pattern shape of the dummy wirings 7b and 7c can be appropriately adjusted by the noise filter connected to the first wiring 7a and the second wiring 7d, the impedance, the frequency used for touch sensing, and the like. It is necessary to determine the pattern shape of the dummy wirings 7b and 7c in consideration of noise generated due to liquid crystal driving and noise frequency such as noise entering the liquid crystal display LCD 2 from the outside. As shown in FIG. 21, the dummy wirings 7 b and 7 c form a loop antenna.
  • the shape of the dummy wirings 7b and 7c is not limited to such a loop antenna shape.
  • the lower ends of the dummy wirings 7b and 7c may be opened, and a dipole antenna shape may be adopted.
  • a monopole antenna shape may be adopted as the shape of the dummy wires 7 b and 7 c.
  • the line width, length, pitch and the like of the dummy wirings 7b and 7c can be adjusted according to the purpose.
  • the second touch sensing wiring 7 (the first wiring group and the second wiring group) to which the reset voltage is applied may function as a touch detection wiring that detects a touch sensing signal.
  • the shape of the touch detection wiring may not be linear.
  • the touch detection wires (the first wire 7 a and the second wire 7 d) may have an antenna structure as a structure of a touch detection wire that detects a touch sensing signal well while being less susceptible to noise.
  • the first touch sensing wiring 3 when the first touch sensing wiring 3 functions as a touch detection wiring for detecting a touch sensing signal, the first touch sensing wiring 3 may have an antenna structure.
  • a loop antenna shape, a dipole antenna shape, or a monopole antenna shape can be adopted.
  • the design of the line width of the wires forming the antenna, the length of the wires, the pitch of the wires adjacent to each other, and the like can be adjusted in accordance with the conditions of touch sensing detection and noise conditions around touch sensing detection.
  • the touch detection wiring becomes less susceptible to the noise frequency.
  • the distance (for example, the X direction) between the first wiring 7a and the second wiring 7d to which the reset voltage Vr is applied is a red filter R, a green filter G, and a color filter that extend in stripes. It is determined according to the width of the blue filter B. For example, in the color filter design, when the width of the blue filter B is increased more than the width of the green filter G, the distance between the first wiring 7a and the second wiring 7d is set according to the width. .
  • the wiring pattern of the second touch sensing wiring 7 determined relative to the patterns of the red filter R, the green filter G, and the blue filter B shown in FIG. 21 corresponds to the design of the liquid crystal display device LCD2. As appropriate.
  • the present invention does not limit the wiring pattern of the second touch sensing wiring 7.
  • FIG. 27 is a cross-sectional view taken along the line II 'shown in FIG.
  • the first touch sensing wiring 3 at least includes the first black layer 8 and the first metal layer 5 formed on the transparent substrate 21.
  • the first touch sensing wiring 3 includes a first black layer 8 provided on the transparent substrate 21, a second conductive metal oxide layer 4 provided on the first black layer 8, and a second conductive metal oxide.
  • a first metal layer 5 provided on the object layer 4 and a first conductive metal oxide layer 6 provided on the first metal layer 5 are provided.
  • the first metal layer 5 is a copper-containing layer, and is, for example, a copper layer or a copper alloy layer.
  • the first touch sensing wiring 3 has a configuration in which the first metal layer 5 is sandwiched by the second conductive metal oxide layer 4 and the first conductive metal oxide layer 6.
  • a black layer 19 (second black layer) may be formed on the first conductive metal oxide layer 6.
  • FIG. 22 is a cross-sectional view partially showing a terminal portion 33 having a configuration in which the first metal layer 5 is sandwiched by conductive metal oxide layers.
  • FIG. 23 is a cross-sectional view of the touch sensing wiring shown in FIG. 22 and shows the line width of the touch sensing wiring in the Y direction.
  • the second conductive metal oxide layer 4 is formed on the first black layer 8 formed on the transparent substrate 21.
  • the first metal layer 5 (copper alloy layer) and the first conductive metal oxide layer 6 are stacked in this order.
  • the first touch sensing wiring 3 has a three-layer configuration.
  • the transparent resin layer 1 is applied and formed on the transparent substrate 21 so as to have, for example, an area corresponding to a rectangular display surface in plan view.
  • the transparent resin layer 1 is not formed on the terminal portion 33.
  • the surface of the terminal portion 33 is covered with the first conductive metal oxide layer 6, the first conductive metal oxide layer 6 is exposed at the terminal portion 33, and the terminal portion 33 is stable electrical Connection is possible.
  • terminal portions are provided at the end portions of the array substrate 200 so as to correspond to the positions of the terminal portions 33 of the display device substrate 100 in plan view.
  • the terminal portion of the array substrate 200 and the terminal portion 33 of the display device substrate 100 are electrically connected.
  • the electrical connection (conduction) between the two terminal portions of the display device substrate 100 and the array substrate 200 is, for example, in the sealing portion (seal portion) for sealing the liquid crystal layer 300 in a size of several ⁇ m to several tens of ⁇ m. It can implement
  • the first touch sensing wiring 3 is connected to the touch sensing / reset signal control unit 122 as shown in FIG.
  • FIG. 24 is a cross-sectional view partially showing the state of white display when a liquid crystal drive voltage is applied between the transparent electrode 2 and the pixel electrode 17 (when the liquid crystal drive voltage is on).
  • a liquid crystal drive voltage is applied between the electrode portions 17 a and 17 b of the pixel electrode 17 and the transparent electrode 2
  • an electric field is generated between the pixel electrode 17 and the transparent electrode 2.
  • the liquid crystal molecules 139 are inclined and fall parallel to the substrate surface of the array substrate 200, and white display is performed on the liquid crystal display device LCD2.
  • no voltage is applied to the second touch sensing wiring 7.
  • FIG. 25 shows the return of liquid crystal molecules when the reset voltage is applied to the liquid crystal molecules immediately after stopping the application of the liquid crystal drive voltage between the transparent electrode 2 and the pixel electrode 17 (when the liquid crystal drive voltage is off).
  • a reset voltage is applied between the two second touch sensing wires 7, that is, the first wire 7 a and the second wire 7 d.
  • an electric field is generated between the first wiring 7a and the second wiring 7d (the direction from the second wiring 7d toward the first wiring 7a), and the alignment of the liquid crystal molecules which fell parallel to the substrate surface of the array substrate 200 Are accelerated back to the vertical orientation.
  • the liquid crystal display changes from white display to black display.
  • the potential of the first wiring 7a is set to 0 V (ground) and a reset voltage is applied to the second wiring 7d, that is, the first wiring 7a and the first
  • a reset voltage is applied to the second wiring 7d, that is, the first wiring 7a and the first
  • an electric field is generated from the second wiring 7 d toward the first wiring 7 a.
  • the direction in which such an electric field is generated is a direction crossing the liquid crystal layer 300 located between the first wiring 7 a and the second wiring 7 d and the source wirings 14 and 15.
  • the long axis of the molecule is perpendicular to the direction of the applied electric field. Therefore, as shown in FIG. 25, the alignment of the liquid crystal molecules 138 is vertical alignment, which is the initial alignment, and black display can be obtained in a short time.
  • the reset voltage applied between the first wiring 7a and the second wiring 7d may be a voltage lower than the liquid crystal drive voltage (for example, 6 V) or the same voltage as the liquid crystal drive voltage. Since the threshold voltage for operating the liquid crystal molecules is, for example, 0.5 V to 6 V, the reset voltage may be a voltage within the range of 0.5 V to 6 V (the liquid crystal driving voltage).
  • the reset voltage is a voltage for accelerating the alignment of the liquid crystal molecules tilted parallel to the substrate surface to the vertical alignment (initial alignment), and therefore the voltage value may be lowered.
  • FIG. 26 shows liquid crystal molecules when the reset voltage is applied to the liquid crystal molecules immediately after stopping the application of the liquid crystal drive voltage between the transparent electrode 2 and the pixel electrode 17 (when the liquid crystal drive voltage is off). It is sectional drawing which shows return of.
  • the reset voltage is applied between the first wiring 7a and the second wiring 7d, and the alignment of the inclined liquid crystal molecules 138 and 139 is the initial alignment, which is vertical. Returning to the alignment, black display is performed on the liquid crystal display device LCD2.
  • FIG. 26 is different from FIG. 25 in that the reset voltage is applied to the first wiring 7 a and the potential of the second wiring 7 d is set to 0 V (ground). In other words, in FIG.
  • the reset voltage in which the positive and negative of the reset voltage shown in FIG. 25 are reversed is applied between the two wires 7a and 7d (conductive wires).
  • an electric field is generated between the first wiring 7a and the second wiring 7d (in the direction from the first wiring 7a to the second wiring 7d), and alignment of liquid crystal molecules which are fallen parallel to the substrate surface of the array substrate 200 Are accelerated back to the vertical orientation.
  • the liquid crystal display changes from white display to black display.
  • FIG. 27 partially shows the state of a fringe electric field generated when a touch sensing drive voltage is applied between the second touch sensing wiring 7 and the first touch sensing wiring 3.
  • a touch sensing drive voltage is applied between the second touch sensing wiring 7 and the first touch sensing wiring 3 and a pointer such as a finger is on the surface of the display device substrate 100 facing the observer. It partially shows the change of the fringe electric field when it comes in contact or in proximity.
  • the first wiring 7a, the dummy wiring 7b, the dummy wiring 7c, the second wiring 7d, the dummy wiring 7b, the dummy wiring 7c, and the first wiring correspond to the wiring patterns shown in FIG.
  • the wiring 7a, the dummy wiring 7b, the dummy wiring 7c, and the second wiring 7d are arranged from the right to the left.
  • the first touch sensing wiring 3 functions as a touch detection wiring (touch sensing detection wiring) that detects a touch sensing signal.
  • the first wiring 7a and the second wiring 7d function as a touch drive wiring (touch sensing drive wiring).
  • the potentials of the dummy wiring 7 b and the dummy wiring 7 c are floating potentials.
  • a fringe electric field is generated between the second touch sensing wiring 7 (7a, 7d) to which the touch sensing drive voltage is applied and the first touch sensing wiring 3 (touch detection wiring), and the electric line of force is generated.
  • 31 and 32 are generated so as to be directed from the second touch sensing wiring 7 to the first touch sensing wiring 3.
  • the capacitance C 2 is held between the second touch sensing wiring 7 and the first touch sensing wiring 3.
  • the pointer such as a finger contacts or approaches the transparent substrate 21
  • the first touch sensing wiring 3 detects a change in capacitance as a touch sensing signal.
  • the first touch sensing wiring 3 functions as a touch detection wiring, but the first touch sensing wiring 3 may function as a touch drive wiring.
  • the second touch sensing wiring 7 functions as a touch detection wiring.
  • an inorganic film or an organic film having visible light absorbability may be stacked on the second touch sensing wiring 7 (7a, 7b, 7c, 7d).
  • the inorganic film is formed of a metal oxide film or a multilayer structure including the oxide film.
  • a black layer described later can be used as the organic film.
  • a part or all of the second touch sensing wiring 7 (7a, 7b, 7c, 7d) can be used as a touch drive wiring, or a part of the second touch sensing wiring 7 (7a, 7b, 7c, 7d) Alternatively, all can be used as the touch detection wiring.
  • the application of the reset voltage Vr to the second touch sensing wiring 7 and the touch sensing driving to the second touch sensing wiring 7 The application of the voltage V touch is performed by time division as described later.
  • the 1st touch sensing wiring 3 functions as touch drive wiring.
  • the touch sensing drive voltage V touch is applied to the first touch sensing wiring 3
  • the reset voltage Vr is applied to the second touch sensing wiring 7, and the second touch sensing wiring 7 detects a touch sensing signal.
  • the potential of a part of the plurality of second touch sensing lines 7 may be a floating potential.
  • Second touch sensing such as application of a reset voltage to the second touch sensing wiring 7, changing the potential of the second touch sensing wiring 7 to a floating potential, or connecting (grounding) the second touch sensing wiring 7 to ground
  • the selection of the wiring 7 can be performed by interposing a switching element. In the touch sensing, the above-described thinning drive may be performed.
  • the drive frequency of touch sensing is the same as that of the embodiment described above.
  • the reset voltage Vr and the touch sensing drive voltage are applied to the second touch sensing wiring 7 in a time division manner.
  • the black display stable period Er detection of the touch sensing signal is performed at a high frequency.
  • the white display stable period Wr is, for example, a period in which the transmittance T rans after the video signal application is stable.
  • the black display stable period Er is a period in which the transmittance T rans in the black display is stable.
  • a third embodiment of the liquid crystal display device according to the present invention will be described with reference to FIG. 29 to FIG.
  • a color filter is provided on the display device substrate 100 of the liquid crystal display device LCD2 according to the second embodiment described above, and the liquid crystal molecules have negative dielectric anisotropy.
  • a configuration is adopted in which the liquid crystal layer 300 is configured, and a common electrode having a protrusion is provided on the array substrate 200.
  • a vertical electric field method is basically adopted in which the liquid crystal layer 300 is driven by applying a vertical electric field to the liquid crystal layer 300 sandwiched between the transparent electrode and the pixel electrode. .
  • the liquid crystal display device LCD3 not only the liquid crystal layer 300 is driven by the longitudinal electric field, but also the liquid crystal layer 300 is driven by the fringe electric field generated between the pixel electrode and the common electrode.
  • FIG. 29 is a plan view partially showing a liquid crystal display device LCD 3 according to a third embodiment of the present invention, which is directed to the display surface of the display device substrate 100 from the surface where the display device substrate 100 and the liquid crystal layer 300 contact. It is the figure which saw.
  • FIG. 30 is a cross-sectional view partially showing the liquid crystal display device according to the third embodiment of the present invention, and is a view taken along the line DD ′ shown in FIG.
  • a red filter R, a green filter G, and a blue filter B that constitute a color filter are disposed at positions corresponding to the plurality of pixel openings 18.
  • the shape of the pixel opening is, for example, a parallelogram.
  • a polygon having at least two sides parallel to each other, such as a square or a dog-legged pattern, is employed.
  • the red filter R, the green filter G, and the blue filter B are disposed on the transparent substrate 21, and A BM (black matrix layer) is provided.
  • the black matrix BM is located at the boundary between two filters selected from the red filter R, the green filter G, and the blue filter B.
  • a transparent resin layer 1 is formed to cover the black matrix BM, the red filter R, the green filter G, and the blue filter B.
  • the black matrix BM defines the pixel openings 18.
  • the transparent electrode 2 is formed on the transparent resin layer 1 so as to overlap a plurality of pixel openings 18 arranged in the X direction so as to have a stripe pattern parallel to the X direction.
  • ITO openings 35 are formed at positions between adjacent pixel openings (provided with a red filter R, a green filter G, and a blue filter B).
  • a transparent electrode such as ITO is not formed.
  • the ITO opening 35 is a slit provided in the transparent electrode 2, and the center of the ITO opening 35 coincides with the pixel center CL. Since the transparent electrode 2 has a stripe pattern, a plurality of strip-shaped transparent electrodes 2 are arranged in the Y direction in the transparent resin layer 1. Slits 16 are formed between the transparent electrodes 2 adjacent to each other. A transparent electrode such as ITO is not formed at the slit 16 portion.
  • the black matrix BM and the first touch sensing wiring 3 are disposed in the slit 16 in a plan view.
  • the array substrate 200 is provided between the second insulating layer 12 provided under the first insulating layer 11, the second insulating layer 12, and the pixel electrode 17 (electrodes 17a and 17b). And the common electrode 30.
  • the common electrode 30 has an overlapping portion 37 overlapping the pixel electrode 17 and a protrusion 46 (protruding portion) protruding in the X direction from the end 17 c of the pixel electrode 17.
  • the electrode portion 17a, the projecting portion 46 (first projecting portion) located on the left side of the drawing, the overlapping portion 37 (first overlapping portion) located on the left side of the drawing, the electrode portion 17b, the projecting portion 46 located on the right side of the drawing 2) and the overlapping portion 37 (second overlapping portion) located on the right side of the drawing are disposed in line symmetry with respect to the pixel center CL.
  • the protrusion 46 may be disposed not only in the long side direction of the pixel but also in the short side direction.
  • a plurality of second touch sensing wires 7 (7a, 7b, 7c, 7d) are formed on the first insulating layer 11 as in the above embodiment.
  • the functions of the plurality of second touch sensing wires 7 according to the present embodiment are the same as those in the above-described embodiment, and thus the description thereof is omitted.
  • the second touch sensing wiring 7a (the first wiring 7a) and the second touch sensing wiring 7d (the second wiring 7b) to which the reset voltage is applied are not illustrated, and a second wiring that is a dummy wiring is illustrated.
  • Two touch sensing wires 7b and 7c are shown in FIGS.
  • the second touch sensing wires 7 b and 7 c are in an electrically floating state (floating state).
  • an electric field is generated by applying a voltage to the second touch sensing wiring 7 to accelerate the alignment of liquid crystal molecules that are tilted parallel to the substrate surface of the array substrate 200 back to the vertical alignment.
  • the conductive wiring to which a voltage is applied is omitted.
  • the second touch sensing wiring 7 to which the reset voltage is applied is disposed in the pixel adjacent to the pixel shown in FIG. 30 to FIG.
  • FIG. 30 shows a state in which no liquid crystal drive voltage is applied between the transparent electrode 2 and the pixel electrode 17, and a state in which the liquid crystal molecules 138 and 139 are vertically aligned, that is, a black display state.
  • FIG. 31 is a cross-sectional view partially showing the state of white display when a liquid crystal drive voltage is applied between the transparent electrode 2 and the pixel electrode 17 (when the liquid crystal drive voltage is on). When the liquid crystal drive voltage is on, a liquid crystal drive voltage is applied between the pixel electrode 17 and the transparent electrode 2 and between the pixel electrode 17 and the common electrode 30.
  • the liquid crystal molecules 138 at a position close to the projecting portion 46 are rapidly tilted largely due to the generation of a strong electric field generated between the pixel electrode 17 and the common electrode 30 and become parallel to the pixel electrode 17 As oriented.
  • the remaining liquid crystal molecules 139 fall in the direction of line symmetry with respect to the pixel center CL such that the motion of the liquid crystal molecules 138 oriented near the protrusion 46 propagates. For this reason, the liquid crystal molecules 138 and 139 are aligned in a line-symmetrical arrangement (arrangement) from the pixel center CL, and a wide field of view is secured.
  • the reset voltage is applied to the first wiring 7a and the second wiring 7d of adjacent pixels, and the liquid crystal molecules 138 and 139 are vertically aligned. It shows the state of black display that has returned.
  • an electric field from the right to the left
  • the alignment of the liquid crystal molecules tilted parallel to the substrate surface of the array substrate 200 is accelerated back to the vertical alignment.
  • the liquid crystal display changes from white display to black display.
  • ⁇ off is greatly shortened. Since the black display stabilization period Er becomes longer by shortening ⁇ off, the light emission of the backlight unit BU may be stopped during this period.
  • FIG. 33 immediately after the application of the liquid crystal drive voltage is stopped (when the liquid crystal drive voltage is off), the reset voltage is applied to the first wiring 7a and the second wiring 7d of adjacent pixels, and the liquid crystal molecules 138 and 139 are vertically aligned. It shows the state of black display that has returned.
  • FIG. 33 is different from FIG. 32 in the direction of the electric field generated by the application of the reset voltage. In the operation shown in FIG. 33, the same effect as in FIG. 32 can be obtained. Further, by alternately generating the electric field shown in FIG. 32 and the electric field shown in FIG. 33, it is possible to accumulate charges in the liquid crystal cell and to neutralize charges which cause image sticking.
  • the liquid crystal molecules 138 at a position close to the protrusion 46 are immediately enlarged by the strong electric field generated between the pixel electrode 17 and the common electrode 30. You can beat it. That is, the rise time (hereinafter, ⁇ on) when the liquid crystal drive voltage is applied to the liquid crystal molecules (liquid crystal layer) can be shortened. Furthermore, the liquid crystal molecules in the entire liquid crystal layer 300 can be tilted in the direction of line symmetry with respect to the pixel center CL so that the motion of the liquid crystal molecules 138 aligned near the protrusion 46 propagates, ensuring a wide field of view. can do.
  • FIG. 34 is a cross-sectional view taken along the line EE 'shown in FIG.
  • FIG. 35 is a cross-sectional view partially showing a modification of the liquid crystal display device according to the third embodiment of the present invention, taken along the line FF ′ shown in FIG. It is a figure for demonstrating the electrostatic capacitance C3 which arises between the 1st touch sensing wiring 3 and the 2nd touch sensing wiring 7 which functions as a touch drive wiring.
  • the modification of the third embodiment differs from the third embodiment in terms of the position of the black matrix BM with respect to the color filter.
  • the first touch sensing wiring 3 is provided on the black matrix BM and at the position of the ITO opening 35 of the transparent electrode 2.
  • the array substrate 200 includes the common electrode 30 provided between the second insulating layer 12 and the pixel electrode 17 (electrodes 17a and 17b).
  • the common electrode 30 has an overlapping portion 37 overlapping the pixel electrode 17 and a protruding portion 46 (protruding portion) protruding in the X direction from the end 17 c of the pixel electrode 17.
  • the liquid crystal layer 300 has liquid crystal molecules whose initial alignment is vertical alignment, as in the third embodiment.
  • the behavior of the liquid crystal molecules 138 and 139 when the liquid crystal drive voltage is applied to the pixel electrode 17 and the behavior of the liquid crystal molecules 138 and 139 when the reset voltage is applied to the second touch sensing wiring 7. Is the same as in the third embodiment.
  • An electrode structure in which the common electrode 30 includes the protrusion 46 improves the viewing angle and the halftone display.
  • a touch sensing technology using the second touch sensing wiring 7 as a touch sensing wiring will be described with reference to FIG.
  • the dummy wiring 7c is provided to overlap the boundary between the green filter G and the blue filter B in plan view, and the boundary between the blue filter B and the red filter R
  • a second conductive wire 7d is provided to overlap with the second conductive wire 7d.
  • a fringe electric field is generated by applying a touch sensing drive voltage between the second wire 7 d and the first touch sensing wire 3.
  • the generation state of the fringe electric field is shown by electric lines of force 31, 32.
  • the capacitance C2 is held between the second wire 7d and the first touch sensing wire 3.
  • the capacitance C2 changes, and the change in capacitance is detected by the first touch sensing wiring 3 as a touch sensing signal. It is detected.
  • dummy interconnection 7c has an electrically floating potential (floating potential)
  • no fringe electric field is generated.
  • the second touch sensing wiring 7 (the second wiring 7d and the dummy wiring 7c) may be made of an aluminum alloy.
  • FIG. 10 is a circuit diagram partially showing a liquid crystal display device according to a fourth embodiment of the present invention, showing an array structure having two active elements in one pixel.
  • each of the pixels corresponding to the pixel opening has a pixel electrode 17.
  • Two TFTs that is, a first active element 28 a and a second active element 28 b are connected to the pixel electrode 17.
  • a first gate line 10 and a second gate line 9 extending in the X direction are provided between two adjacent pixels (between two pixel openings adjacent to each other), and extend in the Y direction.
  • the odd-numbered second source wires 15 and the even-numbered first source wires 14 are provided.
  • Each of the second source wiring 15 and the first source wiring 14 is connected to a source electrode that constitutes a part of the active element.
  • the second active element 28 b has a source electrode electrically connected to the second source line 15 to which the video signal is supplied as a negative voltage.
  • the first active element 28 a has a source electrode electrically connected to the first source line 14 to which the video signal is supplied as a positive voltage.
  • gate voltage is applied to one of the gate wirings for each frame of image display.
  • This gate voltage is synchronized with either the second source wire 15 in the odd-numbered column or the source wire in the even-numbered column.
  • the first active element 28 a operates when a video signal enters the first source wiring 14 in an even-numbered column in a state where the gate signal is input to the first gate wiring 10.
  • the potential of the pixel electrode 17 is positive.
  • the second active element 28b operates.
  • the potential of the pixel electrode 17 is negative.
  • dot inversion driving or column inversion driving can be performed by using the above-described TFT operation.
  • the potential of the pixel electrode 17 can be made positive or negative without inverting the output polarity of the source wiring.
  • the potential of the pixel electrode 17 can be set positive or negative by a liquid crystal driving method such as dot inversion driving or column inversion driving.
  • the transparent electrode 2 provided on the display device substrate 100 can be set to a constant potential such as zero volt. Since it is not necessary to change the potential of the transparent electrode 2, noise for touch sensing driving can be further suppressed.
  • the potentials of the second source wiring 15 and the first source wiring 14 can be fixed to a negative or positive potential, noise generation can be suppressed when switching the polarity of a signal applied to the source wiring. .
  • the touch sensing can It can eliminate adverse effects.
  • the touch drive electrode can be scanned by touch sensing (thinning-out drive) using a wire selected from a plurality of touch sensing wires.
  • the drive electrode and the detection electrode in touch sensing may be switched, and the transparent electrode may be a drive electrode (scan electrode) for applying a voltage at a constant frequency.
  • the voltage (AC signal) applied to the drive electrode in touch sensing or liquid crystal drive may be an inversion drive method in which positive and negative voltages are inverted.
  • the touch drive and the liquid crystal drive may be performed by time division or may not be time division.
  • the influence on the liquid crystal display can be reduced.
  • the drive frequency of the touch sensing wiring and the timing of signal detection are the driving frequency and timing of the liquid crystal. It can be set without dependency.
  • the drive frequency of the touch drive electrode can be set to a frequency different from the frequency for driving the liquid crystal or to a higher drive frequency.
  • the frequency for driving the liquid crystal is 60 Hz or a driving frequency that is an integral multiple of this frequency.
  • touch sensing electrodes are affected by noise accompanying the frequency of liquid crystal drive.
  • a normal household power supply is an alternating current power supply of 50 Hz or 60 Hz, and the touch sensing electrode is likely to pick up noise generated from an electrical device operated by such an external power supply. Therefore, by setting the touch drive frequency to a frequency different from 50 Hz or 60 Hz or slightly different from an integral multiple of this frequency, the influence of noise generated from liquid crystal drive and external electronic devices is largely reduced. be able to.
  • the application timing of the signal may be shifted on the time axis shown in FIG.
  • the shift amount may be a slight amount, for example, a shift amount of ⁇ 3% to ⁇ 17% from the noise frequency, and interference with the noise frequency can be reduced.
  • different frequencies that do not interfere with the liquid crystal drive frequency or the power supply frequency can be selected from the range of several kHz to several hundreds kHz.
  • the influence of noise such as coupling noise generated in dot inversion drive can be reduced.
  • the present embodiment is particularly useful also in a display with a high touch input frequency such as a finger of a game machine or a cash dispenser.
  • the black display stable period Er after application of the reset voltage Vr may be used for black display inserted when switching the right eye image and the left eye image in 3D (stereoscopic image) display.
  • touch sensing driving power consumption in touch sensing driving can be reduced by detecting the touch position by thinning driving instead of supplying the driving voltage to all the touch sensing wirings.
  • the vertically aligned liquid crystal layer is driven by the longitudinal electric field.
  • liquid crystal drive methods applicable to vertical electric field methods VA (Vertical Alignment) method, HAN (Hybrid-aligned Nematic) method, TN (Twisted Nematic) method, OCB (Optically Compensated Bend) method, CPA (Continuous Pinwheel Alignment) A system, an ECB (Electrically Controlled Birefringence) system, a TBA (Transverse Bent Alignment) system, etc. may be mentioned, and they can be appropriately selected and used.
  • VA Very Alignment
  • HAN Hybrid-aligned Nematic
  • TN Transmission Nematic
  • OCB Optically Compensated Bend
  • CPA Continuous Pinwheel Alignment
  • ECB Electrical Pinwheel Alignment
  • TBA Transverse Bent Alignment
  • the VA mode for driving the liquid crystal with vertical alignment is superior to the FFS mode for driving the liquid crystal with horizontal alignment in terms of the height of front luminance and the height of black level of black display.
  • a liquid crystal material used in the VA mode for example, it is preferable to use a high purity material which realizes a liquid crystal layer having a specific resistivity of 1 ⁇ 10 13 ⁇ cm or more.
  • the liquid crystal driving may be column inversion driving (source inversion driving) in which a transparent electrode which is a common electrode has a constant potential, in addition to dot inversion driving.
  • column inversion driving in which the transparent electrode is at a constant potential and dot inversion driving in which the transparent electrode is at a constant potential may be combined.
  • liquid crystal drive voltages are applied between the pixel electrode 17 and the transparent electrode 2 by liquid crystal drive such as frame inversion and dot inversion, for example. There is less deviation in capacitance at cell touch, and less burn-in on the display.
  • the application of positive and negative reset voltages is performed for each horizontal line inversion or for each frame inversion of one screen after writing an image to each pixel, so that the bias of the capacitance accumulated in touch sensing can be reduced. In addition to alleviation, the accuracy of in-cell touch sensing can be improved.
  • the display device can have various applications.
  • a mobile phone a portable game device, a portable information terminal, a personal computer, an electronic book, a video camera, a digital still camera, a head mounted display, a navigation system Sound reproducing devices (car audios, digital audio players, etc.), copiers, facsimiles, printers, printer multifunction devices, vending machines, automatic teller machines (ATMs), personal identification devices, optical communication devices, etc.
  • ATMs automatic teller machines
  • optical communication devices etc.
  • first transparent substrate transparent substrate 22 ⁇ ⁇ ⁇ Second transparent substrate (transparent substrate) 23 ⁇
  • Light shielding layer light shielding pattern 24:
  • Source electrode 25 Gate electrode 26: Drain electrode 27: Channel layer 28, 28a: First active element 28, 28b: Second active element 29: Contact hole 30 ... common electrode 31, 32 ... electric force line 33 ... terminal part 36 ... common wiring 38, 39 ... liquid crystal molecule 100 ... display device substrate (opposite substrate) 138, 139 ⁇ ⁇ ⁇ liquid crystal molecules 200 ⁇ ⁇ ⁇ array substrate 300 ⁇ ⁇ ⁇ liquid crystal layer R ⁇ ⁇ ⁇ orientation direction (direction of alignment treatment, alignment direction in the initial alignment state) ⁇ : Angle (inclination from the longitudinal direction Y of the pixel aperture)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Human Computer Interaction (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本発明の液晶表示装置(LCD1)は、第1タッチセンシング配線(3)を備えた表示装置基板(100)と、前記第1タッチセンシング配線(3)に直交する第2タッチセンシング配線(7)を備えるアレイ基板(200)と、前記表示装置基板(100)と前記アレイ基板(200)との間に挟持された液晶層(300)と、第1ソース配線(14)に正の第1映像信号を供給し、第2ソース配線(15)に負の第2映像信号を供給し、前記第1映像信号及び前記第2映像信号の供給に同期して画素電極(17)と共通電極(20)との間に液晶駆動電圧を印加することによって前記液晶層(300)を駆動させ、映像表示を行い、映像表示が行われた後に前記第2タッチセンシング配線(7)に電圧を印加する制御部(120)とを備える。

Description

液晶表示装置
 本発明は、安定したタッチセンシングが可能で、かつ、タッチセンシング感度が高い液晶表示装置に関する。本発明は、高速応答が可能な液晶表示装置に関する。
 テレビといった大型ディスプレイ、タブレット、スマートフォン等に、液晶表示装置が用いられている。液晶表示装置は、大まかに、ガラス等の2枚の透明基板間に液晶層が挟持された構成を有する。こうした液晶表示装置における主要な液晶駆動方式は、縦電界方式として知られているVA(Vertical Alignment)モードと、横電界方式として知られているIPS(In-Plane Switching)モード、あるいは、フリンジ電界スイッチングFFS(Fringe Field Switching)モードに大別することができる。
 VAモードにおいては、液晶表示装置の基板面に対して液晶分子を垂直配向させ、液晶層の厚さ方向に沿った縦方向に電界を液晶分子に印加することによって、液晶駆動が行われる。IPSモード又はFFSモードにおいては、液晶表示装置の基板面に対して液晶分子を水平配向させ、基板面に対して略平行な方向に電界を液晶分子に印加することによって、液晶駆動が行われる。このようなVAモード等の垂直配向を用いた液晶表示装置は、黒表示に優れる。IPSモード又はFFSモードは、広い視野角を有する液晶表示装置において用いられる液晶駆動方式である。FFSモードが採用された液晶表示装置は、フリンジ電界を用いることで高速に液晶を駆動することができるといった大きなメリットを有する。
 液晶の駆動方式に関して、液晶表示の焼きつきを抑制するために、所定の映像表示期間が経過した後に液晶層に印加する電圧の正と負を反転させる極性反転駆動(交流反転駆動)が行われている。極性反転駆動の方法としては、複数の画素の各々の極性を個別に反転させるドット反転駆動、画面の横方向に沿って複数の画素が配列されている行単位で画素の極性を反転させる水平ライン反転駆動、画面の縦方向に沿って複数の画素が配列されている列単位で画素の極性を反転させるカラム反転駆動、一画面単位で画素の極性を反転させる、或いは、画面を複数のブロックで区画するとともにブロック単位で画素の極性を反転させるフレーム反転駆動等が知られている。こうした液晶駆動技術は、例えば、特許文献1~5、7に記載、あるいは、示唆されている。
 こうした液晶表示装置として、近時、静電容量を検知する手段を備えたタッチセンシング機能を有する液晶表示装置が多く利用されている。タッチセンシング方式としては、指やペン等のポインターが表示画面に接触あるいは近接したときに発生する静電容量変化を、例えば、X方向とY方向に配列されたタッチセンシング配線(タッチ電極)によって検知する方式が、主に利用されている。
 また、タッチセンシング機能を有する表示装置の構造としては、タッチセンシング機能を備えたタッチパネルが表示装置の表面に貼り付けられたアウトセル方式と、表示装置自体がタッチセンシング機能を備えたインセル方式とが知られている。近年では、アウトセル方式よりも、多くの表示装置がインセル方式を採用している。
 特許文献2~6は、インセル方式を用いたタッチセンシング技術が開示されている。しかしながら、インセル方式においては、これらの特許文献では明らかにされていないタッチセンシング技術の問題が出てきている。換言すれば、タッチパネル外付け方式では問題となりにくかった問題、即ち、液晶セル内部に設けられたアクティブ素子に電気的に連携されたソース配線から発生するノイズを招くといって新たな技術課題がある。
 特許文献1は、液晶駆動に関して、画面の縦方向に沿って複数の画素が配列されている列単位で画素の極性を反転させる技術を開示している。特許文献1は、タッチセンシング技術を含んでいない。
 特許文献2及び特許文献3は、ドット反転駆動に関する記載を含むとともに、タッチセンシング技術を開示している。特許文献3の開示においては、タッチセンシング機能を行う駆動電極及び検出電極が実質的に金属配線で構成されている。このような特許文献3の開示は、特許文献6に記載の請求項2の特徴点に類似している。
 特許文献4は、面内切り替え(IPS)液晶ディスプレイに関し、タッチセンシング駆動電極が、タッチセンシング信号の検出及びディスプレイに使用される電極対を形成する技術を開示している。
 特許文献5は、透明材料で構成されて第1方向に延びる複数のタッチ駆動電極と、第2方向に延びる複数のタッチ検出電極とを備え、タッチ駆動電極及びタッチ検出電極のうち一方が、液晶ディスプレイのカウンタ電極として機能することを開示している。
 特許文献1~6に開示された技術は、各々の映像表示を行うための映像信号が付与されるソース配線に起因するノイズを削減する手段が考慮されておらず、高感度のタッチセンシング技術を提供していない。特許文献1~6に開示された技術においては、液晶駆動に起因するノイズの発生を抑制するには不十分である。
 また、これらの特許文献においては、液晶駆動電圧が液晶に印加された後、タッチセンシング配線を用いて液晶層の表示状態を黒表示(dark state)に加速的に戻らせる手段について開示していない。
 ところで、液晶の応答時間は、液晶駆動電圧が液晶分子(液晶層)に印加された時の立ち上がり時間(以下、τon)と、液晶駆動電圧が液晶分子に印加されない時(液晶駆動電圧オフの時)の立ち下り時間(以下、τoff)との合計の時間である。τonを短くするための液晶駆動方法や液晶装置の構造としては、液晶駆動電圧を高くする、オーバードライブの手法を用いる、液晶層の厚さを薄くする、液晶分子を高速動作させる電極構造を用いる等、種々の方法や構造を採用することができる。しかし、τoffは、通常、無電界状態で初期配向へ戻る時間であるため、τoffは、液晶分子の電気的物性や粘度等、液晶分子の材料物性に依存する。従って、液晶の応答時間を短縮するには、τoffの時間短縮が主題となる。特許文献2~特許文献6においては、τoffの時間短縮を実現する技術を開示していない。
日本国特開平4-22486号公報 日本国特許第5472373号公報 日本国特開2014-109904号公報 日本国特許第4584342号公報 日本国特許第5517611号公報 日本国特開平7-36017号公報 日本国特開2000-20033号公報
 インセル方式を採用するとともにタッチセンシング機能を備えた表示装置において、センシング感度を向上させるには液晶駆動で発生するノイズ対策が不可欠である。
 上述したように、電荷蓄積による表示の焼きつき(sticking)を避けるため、液晶駆動として極性反転駆動が一般的に採用されている。しかしながら、映像信号を伝達するソース配線は、極性反転に起因したノイズを発生させる発生源となっていた。加えて、ソース配線は、映像信号の極性反転に付随する浮遊容量の変化を伴い易い。インセル方式を採用するとともにタッチセンシング機能を備えた表示装置においては、映像信号が伝達されるソース配線に起因するノイズの発生を抑制することが重要となっている。
 液晶駆動に関して、例えば、特許文献2に示されるようなフリンジ電界併用の縦電界方式を用いる液晶表示装置においては、液晶駆動電圧が液晶分子に印加されたとき(液晶駆動電圧オンの時)のτonを大きく短縮することができ、液晶の高速駆動が行われている。あるいは、上記のFFSモードの液晶駆動においても、同様、フリンジ電界を利用する横電界方式であるため、駆動電圧オン時のτonは大きく短縮することができる。しかしながら、駆動電圧をオフにした時に液晶分子に印加される電界がなくなるため、液晶分子は元の垂直配向に戻るのに時間がかかってしまい、液晶分子の立ち下り時間τoffを小さくすることが難しい。液晶の応答時間は、立ち上がり時間τonと立ち下り時間τoffとの合計時間で表されるため、τoffを小さくすることによって、応答性の改善が必要となる。
 また、IGZO等の酸化インジウム、酸化ガリウム、酸化亜鉛等の複合酸化物による酸化物半導体をチャネル層に用いた薄膜トランジスタが知られている。このような薄膜トランジスタは、アモルファスシリコン半導体をチャネル層に用いた従来の薄膜トランジスタよりも、およそ50倍、電子移動度が高く、画素電極への書き込み(映像信号の書き込み)を速く行うことができる。更に、酸化物半導体で形成されたチャネル層を備える薄膜トランジスタにおいては、リーク電流が極めて小さいため、画素電極への書き込みが終了した後の電圧保持が良好で、画像表示保持のために再書き込みを行う必要がない。しかしながら、液晶表示装置の場合、電圧保持が良好であるという特徴は、逆に、画素における焼きつきが生じ易くなる問題を発生させる。
 本発明は、上記の課題に鑑みてなされたものであって、横電界方式あるいは縦電界方式での液晶表示装置の応答時間を短縮し、画素の焼きつきを軽減し、さらに、映像信号が伝達されるソース配線に起因するとともにタッチセンシングに影響を与えるノイズの発生を削減した液晶表示装置を提供する。
 本発明の第1態様に係る液晶表示装置は、第1タッチセンシング配線を備えた表示装置基板と、複数の多角形状の画素開口部と、前記複数の画素開口部の各々に設けられた画素電極と、前記画素電極に電気的に接続された第1及び第2アクティブ素子と、前記第1アクティブ素子に電気的に連携された第1ゲート配線と、前記第2アクティブ素子に電気的に連携された第2ゲート配線と、平面視において前記第1ゲート配線に直交して前記第1アクティブ素子に電気的に連携された第1ソース配線と、平面視において前記第2ゲート配線に直交して前記第2アクティブ素子に電気的に連携された第2ソース配線と、前記画素電極の下に設けられた第1絶縁層と、前記第1絶縁層の下に設けられた第2絶縁層と、前記第1絶縁層と前記第2絶縁層との間に設けられた共通電極と、平面視において前記第1タッチセンシング配線に直交する第2タッチセンシング配線とを備えるアレイ基板と、前記表示装置基板と前記アレイ基板との間に挟持された液晶層と、前記第1ソース配線に正の第1映像信号を供給し、前記第2ソース配線に負の第2映像信号を供給し、前記第1映像信号及び前記第2映像信号の供給に同期して前記画素電極と前記共通電極との間に液晶駆動電圧を印加することによって前記液晶層を駆動させ、映像表示を行い、映像表示が行われた後に前記第2タッチセンシング配線に電圧を印加する制御部とを含む。
 ここで、多角形状の画素開口部の形状パターンとしては、例えば、正方形パターン、長方形パターン、平行四辺形パターン、あるいはくの字形状パターン(dog-legged pattern)が挙げられる。
 また、表示装置基板は、透明基板と、透明基板上に設けられた透明樹脂層を備えてもよい。この場合、第1タッチセンシング配線は、透明基板と透明樹脂層との間に設けられる。また、表示装置基板は、複数の透明樹脂層(第1透明樹脂層、第2透明樹脂層)を備えてもよい。
 上記のように、制御部によって、前記画素電極と前記共通電極との間に液晶駆動電圧を印加することによって前記液晶層が駆動され、映像表示が行われ、映像表示が行われた後に前記第2タッチセンシング配線に電圧が印加される。これによって、第2タッチセンシング配線の間に、平面視において液晶層を横断する方向(透明基板に平行な方向)に向いた電界が発生し、この電界によって、液晶の配向状態を黒表示状態に加速的に戻らせることができる。
 「黒表示への戻り」とは、ノーマリーブラック表示の液晶表示装置において、液晶の配向が、初期配向状態へ戻ることを意味する。
 以下の説明では、液晶の配向状態を黒表示状態に加速的に戻らせる電界を発生させる電圧、即ち、第2タッチセンシング配線に印加される電圧を、「リセット電圧」又は「リセット信号」と称することがある。また、リセット電圧が印加される第2タッチセンシング配線(導電配線)を、「リセット配線」と称することがある。また、リセット電圧の印加によって生じる電界を、「リセット電界」と称することがある。また、上記電界の発生によって液晶分子の配向状態が初期配向となる液晶分子の駆動を、「リセット駆動」と称することがある。
 更に、このリセット電圧は、液晶分子の立ち下り時間(以下、τoff)を短縮するために第2タッチセンシング配線に印加される電圧を意味する。ここで、液晶分子をリセットすることは、液晶分子の配向状態を、黒表示における配向状態(初期配向)に戻すことを意味する。
 本発明の第1態様に係る液晶表示装置においては、平面視において、前記第1ゲート配線、前記第2ゲート配線、前記第1ソース配線、及び前記第2ソース配線によって前記画素開口部が区画されてもよい。
 本発明の第1態様に係る液晶表示装置においては、前記画素開口部の長辺は、前記第1ソース配線及び前記第2ソース配線に沿う方向に延在してもよい。
 本発明の第1態様に係る液晶表示装置においては、平面視において、前記第1タッチセンシング配線及び前記第2タッチセンシング配線のうち一方は、前記第1ゲート配線及び前記第2ゲート配線に重畳するように設けられており、前記第1タッチセンシング配線及び前記第2タッチセンシング配線のうち他方は、前記第1ソース配線及び前記第2ソース配線に重畳するように設けられてもよい。
 本発明の第1態様に係る液晶表示装置においては、前記表示装置基板は、表示面を有し、断面視において、前記表示面から前記第1タッチセンシング配線までの距離よりも、前記表示面から前記第2タッチセンシング配線までの距離が大きく、前記第2タッチセンシング配線は、前記第1絶縁層上の位置、前記第2絶縁層上の位置、及び前記第2絶縁層下の位置のうち、いずれかの位置に設けられてもよい。
 本発明の第1態様に係る液晶表示装置においては、前記第1ゲート配線及び前記第2ゲート配線は、前記複数の画素開口部のうち互いに隣接する2つの画素開口部の間に位置するように、互いに平行に配設されてもよい。
 本発明の第1態様に係る液晶表示装置は、前記アレイ基板の裏面もしくは側面に設けられたバックライトユニットを備え、前記第2タッチセンシング配線に前記電圧が印加されている時には、前記バックライトユニットの発光を停止してもよい。
 本発明の第1態様に係る液晶表示装置においては、前記液晶層は、前記画素電極と前記共通電極との間に生じるフリンジ電界によって駆動されてもよい。
 本発明の第1態様に係る液晶表示装置においては、前記表示装置基板は、透明電極を有し、前記液晶層は、前記画素電極と前記共通電極との間に生じるフリンジ電界によって駆動されるとともに、前記画素電極と前記透明電極との間に生じる前記液晶層の厚み方向における電界で駆動されてもよい。
 ここで、透明電極は、表示装置基板の透明基板の上方に設けられ、第1タッチセンシング配線を覆う透明樹脂層上に設けられてもよい。換言すると、表示装置基板と液晶層との間に位置する複数の透明樹脂層のうちいずれかの透明樹脂層上の位置に設けられてもよい。
 また、前記画素電極と前記透明電極との間に生じる電界によって前記液晶層は駆動されることから、前記液晶層においては、負の誘電率異方性を有するとともに初期配向が垂直配向である液晶分子が用いられる。即ち、縦電界方式を利用した液晶表示装置が実現される。縦電界方式とは、表示装置用基板に設けられた透明電極とアレイ基板に設けられた画素電極との間に配置された液晶層に対し、厚み方向に液晶駆動電圧を印加し、液晶層を駆動する方式である。
 本発明の第1態様に係る液晶表示装置においては、平面視において、前記共通電極は、前記画素電極と重なる重畳部と、前記画素電極の端部から突出している突出部とを有してもよい。
 この構成によれば、液晶分子の立ち上がり時間(以下、τon)が短縮するため電極構造が実現される。具体的に、共通電極の突出部と画素電極との間に印加される液晶駆動電圧がフリンジ電界として用いられ、τonを短縮することができる。
 本発明の第1態様に係る液晶表示装置においては、前記制御部は、前記液晶駆動電圧が前記画素電極に印加された後、かつ、前記液晶駆動電圧が前記画素電極に印加されていない時に、前記第2タッチセンシング配線に前記電圧を印加してもよい。
 本発明の第1態様に係る液晶表示装置においては、前記第2タッチセンシング配線に印加される電圧(リセット電圧)は、正の電圧と、負の電圧とを含み、前記電圧は、映像表示の一定期間毎に、正又は負に反転されてもよい。
 本発明の第1態様に係る液晶表示装置においては、前記第1タッチセンシング配線及び前記第2タッチセンシング配線の各々は、金属層を含んでもよい。
 本発明の第1態様に係る液晶表示装置においては、前記表示装置基板は、第1透明基板を含み、前記第1タッチセンシング配線は、前記第1透明基板の上方に形成された黒色層と、前記黒色層上に積層された前記金属層とによって構成された2層構造を有してもよい。
 本発明の第1態様に係る液晶表示装置においては、前記アレイ基板は、第2透明基板を含み、前記第2タッチセンシング配線は、前記第2透明基板の上方に形成された黒色層と、前記黒色層上に積層された前記金属層とによって構成された2層構造を有してもよい。
 本発明の第1態様に係る液晶表示装置においては、前記金属層は、銅含有層であり、前記金属層は、銅含有層が導電性金属酸化物層で挟持された構成を有してもよい。
 ここで、銅含有層としては、例えば、銅層あるいは銅合金層が挙げられる。
 本発明の第1態様に係る液晶表示装置においては、前記導電性金属酸化物層が、酸化亜鉛、酸化インジウム、及び酸化錫を含む複合酸化物であってもよい。
 本発明の第1態様に係る液晶表示装置においては、前記第1及び第2アクティブ素子は、半導体で構成されたチャネル層を有する薄膜トランジスタであり、平面視において、前記第2タッチセンシング配線の前記金属層の一部が、前記チャネル層を覆う遮光層を形成してもよい。
 本発明の第1態様に係る液晶表示装置においては、前記チャネル層は、酸化物半導体で構成されてもよい。
 チャネル層に適用される酸化物半導体としては、亜鉛、インジウム、スズ、タングステン、マグネシウム、ガリウム、及びゲルマニウムからなる群から選択される2種類以上の元素を含む複合金属酸化物が挙げられる。
 酸化物半導体で形成されるチャネル層の構造としては、単結晶、多結晶、微結晶、結晶とアモルファスとを含む混晶、アモルファスのいずれでもよい。酸化物半導体の膜厚は、5nm~50nmと範囲内とすることができる。
 本発明の第1態様に係る液晶表示装置においては、前記表示装置基板上には、前記画素開口部に対応する位置に、少なくとも、赤フィルタ、緑フィルタ、及び青フィルタのいずれかが設けられてもよい。
 本発明の第1態様に係る液晶表示装置は、前記表示装置基板上には、前記画素開口部を区画するブラックマトリクス層を備えてもよい。
 本発明の第2態様に係る液晶表示装置は、第1タッチセンシング配線を備えた表示装置基板と、複数の多角形状の画素開口部と、前記複数の画素開口部の各々に設けられた画素電極と、前記画素電極に電気的に接続された第1及び第2アクティブ素子と、前記第1アクティブ素子に電気的に連携された第1ゲート配線と、前記第2アクティブ素子に電気的に連携された第2ゲート配線と、平面視において前記第1ゲート配線に直交して前記第1アクティブ素子に電気的に連携された第1ソース配線と、平面視において前記第2ゲート配線に直交して前記第2アクティブ素子に電気的に連携された第2ソース配線と、前記画素電極の下に設けられた第1絶縁層と、前記第1絶縁層の下に設けられた第2絶縁層と、前記第1絶縁層と前記第2絶縁層との間に設けられた共通電極と、平面視において前記第1タッチセンシング配線に直交する第2タッチセンシング配線とを備えるアレイ基板と、前記表示装置基板と前記アレイ基板との間に挟持された液晶層と、前記第1ソース配線に正の第1映像信号を供給し、前記第2ソース配線に負の第2映像信号を供給し、前記第1映像信号及び前記第2映像信号の供給に同期して前記画素電極と前記共通電極との間に液晶駆動電圧を印加することによって前記液晶層を駆動させ、映像表示の安定期間、及び、映像表示後の黒表示安定期間の少なくとも一方の安定期間で、前記第1タッチセンシング配線及び前記第2タッチセンシング配線によるタッチセンシング駆動を行う制御部とを含む。
 本発明の第2態様に係る液晶表示装置においては、前記制御部は、前記タッチセンシング駆動を行う際に、前記第1タッチセンシング配線及び前記第2タッチセンシング配線の一方にタッチセンシング駆動電圧を印加し、前記第1タッチセンシング配線及び前記第2タッチセンシング配線の他方を通じてタッチセンシング信号を検出してもよい。
 本発明の第2態様に係る液晶表示装置においては、前記第2タッチセンシング配線に前記タッチセンシング駆動電圧が印加され、前記第1タッチセンシング配線が前記タッチセンシング信号を検出してもよい。
 この場合、第2タッチセンシング配線がタッチ駆動配線(タッチ駆動電極、タッチセンシング駆動配線)として機能し、第1タッチセンシング配線がタッチ検出配線(タッチ検出電極、タッチセンシング検出配線)として機能する。
 なお、第1タッチセンシング配線がタッチ駆動配線として機能してもよい。この場合、第2タッチセンシング配線がタッチ検出配線として機能する。
 このように、第2タッチセンシング配線は、リセット電圧が印加されるだけでなく、タッチセンシング駆動配線又はタッチセンシング検出配線として機能することもできる。
 また、第2タッチセンシング配線にリセット電圧が印加され、かつ、第2タッチセンシング配線にタッチセンシング駆動電圧が印加される場合、映像表示期間の中で、タッチセンシングの駆動動作と液晶分子のリセット駆動を時分割で行うことができる。
 また、第2タッチセンシング配線にリセット電圧が印加され、かつ、第2タッチセンシング配線がタッチセンシング信号を検出する場合、映像表示期間の中で、タッチセンシングの検出動作と液晶分子のリセット駆動を時分割で行うことができる。
 上記タッチセンシング機能は、前記第1タッチセンシング配線と前記第2タッチセンシング配線との間の静電容量の変化を検出する静電容量方式である。駆動電圧が印加されるタッチセンシング駆動配線と、信号検出に用いるタッチセンシング検出配線は、互いに入れ替えて用いることができる。
 なお、複数のタッチセンシング配線の全てをタッチセンシングに用いる必要はない。例えば、一つの配線グループが複数のタッチセンシング配線で構成されている場合がある。この場合、複数の配線グループが液晶表示装置に設けられている。ここで、一つの配線グループの中で、全ての配線のうち、全ての配線の本数よりも少ない本数の配線における電位をフローティング電位に設定し、残りの本数の配線を用いてタッチセンシングを行ってもよい(間引き駆動)。
 本発明の第2態様に係る液晶表示装置は、前記アレイ基板の裏面もしくは側面に設けられたバックライトユニットを備え、前記黒表示安定期間は、前記バックライトユニットの発光が停止された期間であってもよい。
 この場合、表示単位期間(後述)において白表示等の映像表示の後、黒表示安定期間においては、LED等のバッライトユニットがオフ(発光を停止)になる。
 本発明の第2態様に係る液晶表示装置においては、前記表示装置基板上には、前記画素開口部に対応する位置に、少なくとも、赤フィルタ、緑フィルタ、及び青フィルタのいずれかが設けられてもよい。
 本発明の第2態様に係る液晶表示装置は、前記表示装置基板上に設けられ、前記画素開口部を区画するブラックマトリクス層を備えてもよい。
 本発明の態様に係る液晶表示装置によれば、液晶の配向状態を黒表示状態(dark state)に加速的に戻らせることができ、液晶の応答時間を短縮することができる。更に、本発明の態様に係る液晶表示装置によれば、映像信号が伝達されるソース配線に起因するノイズの発生を抑制でき、高感度のタッチセンシングを提供できる。
 本発明の態様に係る液晶表示装置によれば、第1タッチセンシング配線及び第2タッチセンシング配線として、良好な導電性を有する銅やアルミニウム等の合金を含む金属層を用いることができるので、金属層を用いた場合の時定数を小さくすることができ、タッチセンシングのS/N比を向上することができる。
 加えて、本発明の態様に係る液晶表示装置においては、複数のソース配線の各々は、負の電位(負の極性の映像信号)あるいは正の電位(正の極性の映像信号)に固定され、電位の正負が反転しない。従って、ソース配線に供給される映像信号の電位極性が反転する際に、映像信号の波形が崩れるといったことがなくなる。このため、タッチセンシング機能を実現するだけでなく、表示画質を向上することができる。
 アクティブ素子のチャネル層に用いられる半導体として、IGZO等の酸化物半導体を用いることで、アモルファスシリコン半導体より数十倍速い速度で、画素電極への書き込み(映像信号の書き込み)を行うことができるので、表示画質を更に向上することができる。IGZO等の酸化物半導体を用いたアクティブ素子においては、ポリシリコン半導体より漏れ電流が数桁小さいため、画素電極への書き込みを行った後に、電圧を良好に保持することができる。従って、ポリシリコン半導体が採用されたアクティブ素子の場合には必要であった、画質を一定時間保持するための映像書き込みを再三にわたり行うが必要でなくなる。これにより、アクティブ素子のチャネル層にIGZO等の酸化物半導体を用いることで、再三にわたって画素電極に供給される映像信号に付随するノイズの発生をさらに低減することができる。
 本発明の態様に係る液晶表示装置においては、第2タッチセンシング配線は、アレイ基板上に形成される。この構成では、第2タッチセンシング配線を構成する金属層を用いて、第2タッチセンシング配線とは電気的に独立した遮光層を形成することができ、遮光層の遮光パターンを、TFT(Thin Film Transistor)等のアクティブ素子のチャネル層の上部に重ねることができる。このような遮光層を形成することによって、再反射光等の迷光がチャネル層に入射することを避けることができ、画質向上に寄与する。
本発明の第1実施形態に係る液晶表示装置を示すブロック図である。 本発明の第1実施形態に係る液晶表示装置を部分的に示す断面図であり、図3に示すA-A’線に沿う図である。 本発明の第1実施形態に係る液晶表示装置を観察者方向から見た画素構造を部分的に示す平面図である。 本発明の第1実施形態に係る液晶表示装置を観察者方向から見たアレイ基板を部分的に示す平面図であり、表示装置基板と第2タッチセンシング配線及び遮光層を除いたアレイ構造を示す図である。 本発明の第1実施形態に係る液晶表示装置を部分的に示す断面図であり、図3に示すC-C’線に沿う図であり、アクティブ素子のチャネル層上に遮光層(遮光パターン)を配設させた構造を示す図である。 本発明の第1実施形態に係るタッチセンシング配線を模式的に示す平面図であり、第2タッチセンシング配線7a、7bの電気的接続を説明する図である。 本発明の第1実施形態に係る液晶表示装置を部分的に示す平面図であり、1つの画素の開口部における共通電極と画素電極との間に位置する液晶の動作を説明する図であり、初期配向(黒表示)状態の液晶分子と電極構造との関係を示す図である。 本発明の第1実施形態に係る液晶表示装置を部分的に示す平面図であり、1つの画素の開口部における共通電極と画素電極との間に位置する液晶の動作を説明する図であり、画素電極と共通電極との間に液晶駆動電圧を印加した時の液晶分子の動作を示す図である。 本発明の第1実施形態に係る液晶表示装置を部分的に示す平面図であり、1つの画素の開口部における共通電極と画素電極との間に位置する液晶の動作を説明する図であり、画素電極と共通電極との間に液晶駆動電圧が印加されていない状態(無印加状態)で、第2タッチセンシング配線7a、7b間にリセット電圧を印加し、符号B1に示す方向又は符号B2に示す方向に電界を発生させ、液晶の配向状態を黒表示状態に加速的に戻らせることを説明する図である。 本発明の第1実施形態に係る液晶表示装置を部分的に示す断面図であり、図3に示すB-B’線(ソース配線)に沿う図であり、第1タッチセンシング配線3と第2タッチセンシング配線7との間にタッチセンシング駆動電圧を印加した時に発生するフリンジ電界の状況を示す図である。 本発明の第1実施形態に係る液晶表示装置を部分的に示す断面図であり、図3に示すB-B’線(ソース配線)に沿う図であり、第1タッチセンシング配線3と第2タッチセンシング配線7との間にタッチセンシング駆動電圧を印加し、かつ、指等のポインターが表示装置基板の観察者側の表面に接触あるいは近接した時のフリンジ電界の変化を示す図である。 本発明の第1実施形態に係る液晶表示装置を説明するための信号タイミングチャートであり、液晶駆動電圧のオン/オフのタイミングと、タッチセンシング駆動のタイミングとを説明する図である。 従来例での液晶駆動に係る波形と、本発明の実施形態に係る液晶表示装置における液晶駆動に係る波形とを比較した図であり、液晶駆動電圧のオン/オフのタイミングと、従来のアクティブ素子(例えば、ポリシリコン半導体で構成されたチャネル層を備えるアクティブ素子)の画素透過率Transの変化を説明する図である。 本発明の第1実施形態に係る液晶表示装置を部分的に示す回路図であり、負の極性に固定された複数の第1ソース配線と正の極性に固定された複数の第2ソース配線とが交互の並んだ配線構造を示す図であり、第1ゲート配線のみを選択することでゲート信号をアクティブ素子駆動に用いた場合のカラム反転駆動の例を部分的に示す平面図である。 本発明の第1実施形態に係る液晶表示装置を部分的に示す回路図であり、負の極性に固定された複数の第1ソース配線と正の極性に固定された複数の第2ソース配線とが交互の並んだ配線構造を示す図であり、2本一組のゲート配線を2本おきに選択することでゲート信号をアクティブ素子駆動に用いた場合のドット反転駆動の例を部分的に示す平面図である。 本発明の第2実施形態に係る液晶表示装置を部分的に示す断面図であり、図17に示すH-H’線に沿う図である。 本発明の第2実施形態に係る液晶表示装置を観察者方向から見た画素構造を部分的に示す平面図である。 本発明の第2実施形態に係る液晶表示装置を観察者方向から見たアレイ基板の一例を部分的に示す平面図である。 本発明の第2実施形態に係る液晶表示装置を観察者方向から見たアレイ基板の一例を部分的に示す平面図であり、表示装置基板と第2タッチセンシング配線、遮光層、画素電極が除かれた、アクティブ素子、ゲート配線、ソース配線の配置の一例を示す図である。 本発明の第2実施形態に係る液晶表示装置を部分的に示す断面図であり、図18に示すG-G’線に沿う図であり、アクティブ素子のチャネル層上に遮光層(遮光パターン)を配設させた構造を示す図である。 本発明の第2実施形態に係る第2タッチセンシング配線を模式的に示す平面図であって、リセット電圧が印加される第2タッチセンシング配線を説明するための図である。 本発明の第2実施形態に係る液晶表示装置を部分的に示す断面図であって、第1金属層が導電性金属酸化物層で挟持された構成を有する端子部を部分的に示す図である。 本発明の第2実施形態に係る液晶表示装置を部分的に示す断面図であって、第1タッチセンシング配線の構造を示す図である。 本発明の第2実施形態に係る液晶表示装置を部分的に示す断面図であり、共通電極である透明電極と画素電極との間に液晶駆動電圧を印加したときの、白表示の状態を部分的に示す図である。 本発明の第2実施形態に係る液晶表示装置を部分的に示す断面図であり、液晶駆動電圧の印加を停止した直後(液晶駆動電圧オフ時)に、第2タッチセンシング配線の間にリセット電圧を印加したときの液晶分子の戻りを示す図であり、液晶の状態が黒表示の状態に加速的に戻る状態を部分的に示す図である。 本発明の第2実施形態に係る液晶表示装置を部分的に示す断面図であり、液晶駆動電圧の印加を停止した直後(液晶駆動電圧オフ時)に、第2タッチセンシング配線の間にリセット電圧を印加したときの液晶分子の戻りを示す図であり、図25に示す電界方向とは逆方向に電界が印加された場合において液晶の状態が黒表示の状態に加速的に戻る状態を部分的に示す図である。 本発明の第2実施形態に係る液晶表示装置を部分的に示す断面図であって、第1タッチセンシング配線と第2タッチセンシング配線との間にタッチセンシング駆動電圧を印加した時に発生するフリンジ電界の状況を示す図であり、図17に示すI-I’線に沿う図である。 本発明の第2実施形態に係る液晶表示装置を部分的に示す断面図であって、第1タッチセンシング配線と第2タッチセンシング配線との間にタッチセンシング駆動電圧を印加し、かつ、指等のポインターが表示装置基板に接触あるいは近接した時のフリンジ電界の変化を示す図であり、図17に示すI-I’線に沿う図である。 本発明の第3実施形態に係る液晶表示装置を部分的に示す平面図であり、表示装置基板と液晶層とが接触する面から表示装置基板の表示面に向けて見た図であり、画素開口部に対応する表示装置基板上の位置に設けられた赤フィルタ、緑フィルタ、青フィルタ、及びブラックマトリクスの配列を示す図である。 本発明の第3実施形態に係る液晶表示装置を部分的に示す断面図であって、画素電極の下部に共通電極を備えるアレイ基板と、画素開口部に対応する表示装置基板上の位置に設けられた赤フィルタ、緑フィルタ、青フィルタ、及びブラックマトリクスの配列を示す図である。 本発明の第3実施形態に係る液晶表示装置を部分的に示す断面図であり、透明電極と画素電極との間、画素電極と共通電極との間、に液晶駆動電圧を印加することによって生じた白表示の状態を部分的に示す図である。 本発明の第3実施形態に係る液晶表示装置を部分的に示す断面図であり、液晶駆動電圧の印加を停止した直後(液晶駆動電圧オフ時)にリセット電圧を第2タッチセンシング配線に印加し、液晶層を横断する方向に電界を液晶層に印加して、表示状態を黒表示状態に加速的に戻す液晶分子の動作を示す図である。 本発明の第3実施形態に係る液晶表示装置を部分的に示す断面図であり、液晶駆動電圧の印加を停止した直後(液晶駆動電圧オフ時)にリセット電圧を第2タッチセンシング配線に印加し、液晶層を横断する方向であって図32に示す電界方向とは逆方向に電界を液晶層に印加して、表示状態を黒表示状態に加速的に戻す液晶分子の動作を示す図である。 本発明の第3実施形態に係る液晶表示装置の変形例を部分的に示す断面図であり、図29に示すE-E’線に沿う図である。 本発明の第3実施形態に係る液晶表示装置の変形例を部分的に示す断面図であり、画素電極の下部に共通電極を備えるアレイ基板と、画素開口部に対応する表示装置基板上の位置に設けられた赤フィルタ、緑フィルタ、青フィルタ、及びブラックマトリクスの配列を示す図であり、図29に示すF-F’線に沿う図である。 本発明の第4実施形態に係る液晶表示装置を部分的に示す回路図であって、一画素に2つのアクティブ素子を具備したアレイ構造を示す図である。
 以下、図面を参照しながら本発明の実施形態について説明する。
 以下の説明において、同一又は実質的に同一の機能及び構成要素には、同一の符号を付し、その説明を省略又は簡略化し、或いは、必要な場合のみ説明を行う。各図においては、各構成要素を図面上で認識し得る程度の大きさとするため、各構成要素の寸法及び比率を実際のものとは適宜に異ならせてある。
 以下に述べる各実施形態においては、特徴的な部分について説明し、例えば、通常の表示装置に用いられている構成要素と本実施形態に係る表示装置との差異がない部分については説明を省略する。また、各実施形態においては、液晶表示装置、或いは、表示装置基板の例を説明するが、本実施形態に係る表示装置基板は、有機EL表示装置のような、液晶表示装置以外の表示装置にも適用可能である。
(第1実施形態)
(液晶表示装置LCD1の構成)
 以下、本発明に係る液晶表示装置の第1実施形態を、図1から図15を参照しながら説明する。
 図1は、本発明の第1実施形態に係る液晶表示装置を示すブロック図である。図1に示すように、本実施形態の液晶表示装置LCD1は、表示部110と、表示部110及びタッチセンシング機能を制御するための制御部120とを備えている。
 制御部120は、公知の構成を有し、映像信号タイミング制御部121(第一制御部)と、タッチセンシング・リセット信号制御部122(第二制御部)と、システム制御部123(第三制御部)とを備えている。
 映像信号タイミング制御部121は、アレイ基板200に設けられた共通電極20(後述)を定電位とするとともに、アレイ基板200に設けられたゲート配線9、10(後述、走査線)及びソース配線14、15(後述、信号線)に信号を送る。映像信号タイミング制御部121が共通電極20と画素電極17(後述)との間に表示用の液晶駆動電圧を印加することで、アレイ基板200上でフリンジ電界が発生し、フリンジ電界に沿って液晶分子が回転し、液晶層300が駆動される。これにより、アレイ基板200上に画像が表示される。共通電極20を定電位とし、複数の画素電極17の各々には、ソース配線(信号線)を介して、例えば、交流矩形波を有する映像信号が個別に印加される。また、矩形波としては、正又は負の直流矩形波でもよい。
 映像信号タイミング制御部121は、後述するように、正の第1映像信号及び負の第2映像信号をソース配線に送る。
 タッチセンシング・リセット信号制御部122は、第1タッチセンシング配線3(後述)及び第2タッチセンシング配線7(後述)の一方にタッチセンシング駆動電圧を印加し、第1タッチセンシング配線3及び第2タッチセンシング配線7の他方を通じてタッチセンシング信号を検出する。これによって、第1タッチセンシング配線3と第2タッチセンシング配線7との間に生じる静電容量(フリンジ容量)の変化を検出し、タッチセンシングを行う。更に、タッチセンシング・リセット信号制御部122は、第2タッチセンシング配線7にリセット電圧(後述、リセット信号)を供給することもできる。
 このようなタッチセンシング動作に用いられる第1タッチセンシング配線3の意味は、タッチセンシング駆動電圧が印加されるタッチ駆動配線と、タッチセンシング信号を検出するタッチ検出配線を含む。第2タッチセンシング配線7がタッチ駆動配線として機能する場合、第1タッチセンシング配線3は、タッチ検出配線として機能する。その一方、第2タッチセンシング配線7がタッチ検出配線として機能する場合、第1タッチセンシング配線3は、タッチ駆動配線として機能する。即ち、タッチセンシング機能において、第1タッチセンシング配線3及び第2タッチセンシング配線7の役割を切り換えてもよい。
 システム制御部123は、映像信号タイミング制御部121及びタッチセンシング・リセット信号制御部122を制御し、液晶駆動と静電容量の変化の検出とを交互に、すなわち時分割で行うことが可能である。更に、システム制御部123は、映像信号タイミング制御部121における液晶駆動に同期させて、タッチセンシング・リセット信号制御部122における第1タッチセンシング配線3又は第2タッチセンシング配線7に対する信号供給を制御し、第2タッチセンシング配線7に対するリセット電圧の供給を制御する。
 本発明の実施形態に係る第2タッチセンシング配線7は、第2タッチセンシング配線7に印加されたリセット電圧に伴って液晶層300に電界(平面視において液晶層300を横断する方向に向く電界)を発生させる機能と、タッチ検出やタッチ駆動といったタッチセンシングを行うためのタッチセンシング配線としての機能とを併せ持つ。このような第2タッチセンシング配線7の2つの機能は、時分割で行われ、第2タッチセンシング配線7は、時間の変化(時間軸上)に伴って、種々の役割(2つの機能)を実現することができる。
 第2タッチセンシング配線7に印加されるリセット電圧は、正の電圧と、負の電圧とを含み、前記リセット電圧は、映像信号タイミング制御部121によって制御される映像表示の一定期間毎(映像表示期間毎)に、正又は負に反転されてもよい。これによって、平面視において液晶層300を横断する方向に向く電界が反転するように、電界方向を切り換えることができる。なお、リセット電圧の正負は、グランド電位(0V)に対して正の電位又は負の電位であるかを意味する。このような正負の定義に限らず、平面視において少なくとも2つの異なる第2タッチセンシング配線(導電配線)が互いに逆の電位を有するように、2つの第2タッチセンシング配線の各々の電位を正又は負の電位に切り換えて、2つの第2タッチセンシング配線に電圧を印加してもよい。また、正又は負のリセット電圧にオフセットを加え、リセット電圧を、低電圧側又は高電圧側に、若干、シフトさせてもよい。
 本発明の実施形態に係る第1タッチセンシング配線及び第2タッチセンシング配線は、導電率の良い金属層で形成することができるため、タッチセンシング配線及び第2タッチセンシング配線の抵抗値を下げてタッチ感度を向上させることができる。
 上記構成を有する制御部120は、後述するように、第1映像信号及び第2映像信号の供給に同期して画素電極17と共通電極20との間に液晶駆動電圧を印加することによって液晶層300を駆動させる。更に、映像表示の制御を行い、映像表示が行われた後に第2タッチセンシング配線7に電圧を印加する。
 更に、制御部120は、後述するように、映像表示の安定期間、及び、映像表示後の黒表示安定期間の少なくとも一方の安定期間で、第1タッチセンシング配線3及び第2タッチセンシング配線7によるタッチセンシング駆動を行う。
(液晶表示装置LCD1)
 本実施形態に係る液晶表示装置は、後述する実施形態に係る表示装置基板を具備することができる。また、以下に記載する「平面視」とは、観察者が液晶表示装置の表示面(表示装置用基板の平面)を観察する方向から見た平面を意味する。本発明の実施形態に係る液晶表示装置の表示部の形状、又は画素を規定する画素開口部の形状、液晶表示装置を構成する画素数は限定されない。ただし、以下に詳述する実施形態では、平面視、画素開口部の短辺の方向をX方向と規定し、長辺の方向をY方向と規定し、更に、透明基板の厚さ方向をZ方向と規定し、液晶表示装置を説明する。以下の実施形態において、上記のように規定されたX方向とY方向を切り換えて、液晶表示装置を構成してもよい。
 図2は、本実施形態に係る液晶表示装置LCD1を部分的に示す断面図である。また、図2は、画素開口部の短辺方向に沿う断面図であり、図3のA-A’線に沿う図である。
 液晶表示装置LCD1は、表示装置基板100(対向基板)と、表示装置基板100に向かい合うように貼り合わされたアレイ基板200と、表示装置基板100及びアレイ基板200によって挟持された液晶層300とを備える。
 液晶表示装置LCD1に内部に光Lを供給するバックライトユニットBUは、液晶表示装置LCD1を構成するアレイ基板200の裏面(液晶層300が配置されるアレイ基板200の透明基板の面とは反対面)に設けられている。なお、バックライトユニットは、液晶表示装置LCD1の側面に設けてもよい。この場合、例えば、バックライトユニットBUから出射された光を液晶表示装置LCD1に内部に向けて反射させる反射板、導光板、或いは、光拡散板等がアレイ基板200の透明基板22の裏面に設けられる。
 表示装置基板100は、透明基板21(第1透明基板)と、透明基板21上に設けられた第1タッチセンシング配線3と、第1タッチセンシング配線3を覆うように透明基板21上に設けられた透明樹脂層1とを具備する。第1タッチセンシング配線3(タッチ検出配線、タッチ駆動配線)は、少なくとも黒色層8と金属層5とを含む導電層から形成されている。即ち、第1タッチセンシング配線3は、黒色層8及び金属層5で構成された2層構造を有する。金属層5は、黒色層8上に形成されている。さらに、導電層は、第1導電性金属酸化物層6、金属層5、及び第2導電性金属酸化物層4の3層構成を有する。導電性金属酸化物としては、酸化インジウムや酸化錫を基材とする金属酸化物に、チタン、ジルコニウム、マグネシウム、アルミニウム、ゲルマニウムなどの金属酸化物を少量、添加した複合酸化物を用いることができる。金属層としては、例えば、銅層あるいは銅合金層である銅含有層、あるいは、アルミニウムを含有するアルミニウム合金層(アルミニウム含有層)を採用することができる。第1タッチセンシング配線3上には、透明樹脂層1が具備されている。換言すると、表示装置基板100における液晶層300に近い位置に第1タッチセンシング配線3が形成されている。
 次に、金属層が銅含有層を有する利点について説明する。
 金属層が銅含有層(銅層あるいは銅合金層)を有する場合、この金属層を挟持する導電性金属酸化物層は、酸化亜鉛、酸化インジウム、及び酸化錫を含む複合酸化物層であることが望ましい。理由は、次のとおりである。上記複合酸化物においては、複合酸化物を構成する酸化亜鉛及び酸化錫の組成割合を調整することによって、ウエットエッチングにおけるエッチングレートを容易に調整することができる。このことから、複合酸化物で構成された導電性金属酸化物層によって銅含有層が挟持された3層構成を備える第2タッチセンシング配線7及び第1タッチセンシング配線3の場合、複数層構成であっても、第2タッチセンシング配線7及び第1タッチセンシング配線3のパターンを容易に形成することができる。更に、銅含有層は、カラーフィルタを構成する樹脂や、ガラス等の基板に対する密着性が低く、密着性の観点で、銅含有層は実用レベルに達していない。その一方、酸化亜鉛、酸化インジウム、及び酸化錫で構成される複合酸化物層は、カラーフィルタやガラスに対する密着性を十分に有しており、更に、銅含有層に対する密着性も十分に有している。このように、複合酸化物層は、カラーフィルタ、ガラス、及び銅含有層に対する密着性の観点で、実用レベルを十分に満たしていることから、高い密着性を実現した第2タッチセンシング配線7及び第1タッチセンシング配線3を提供することができる。
 加えて、銅含有層の表面においては、銅酸化物が経時的に形成されることから、銅酸化物は電気的な接続でオーミックコンタクトを得にくいという性質を有する。その一方、酸化亜鉛、酸化インジウム、及び酸化錫の複合酸化物層は、オーミックコンタクトを得ることができ、実装安定性に優れている。このことから、銅含有層が複合酸化物層で挟持された積層構造を第2タッチセンシング配線7及び第1タッチセンシング配線3に採用することで、オーミックコンタクトの点で、優れた配線構造を実現することができる。
 第2タッチセンシング配線7及び第1タッチセンシング配線3に適用可能な金属層について説明する。
 金属層には、銅、銀、金、チタン、モリブデン、アルミニウム、あるいはこれら金属を含む合金が適用可能である。ニッケルは強磁性体であるため、成膜レートが落ちるが、スパッタリング等の真空成膜で形成することができる。クロムは、環境汚染の問題や抵抗値が大きいというマイナス面を有するが、本実施形態に係る金属層として用いることができる。
 金属層を形成する金属材料としては、ガラス基板や樹脂との密着を得るため、銅あるいはアルミニウムに、マグネシウム、カルシウム、チタン、モリブデン、インジウム、錫、亜鉛、ネオジウム、ニッケル、アルミニウムから選択される1以上の金属元素を添加した合金を採用することが好ましい。
 金属層を形成する材料に金属元素を添加する量に関し、添加量が3at%以下であれば、銅合金やアルミニウムの抵抗値を大きく下げることがないので好ましい。銅合金を成膜する工程としては、例えば、スパッタリングによる真空成膜によって銅合金の成膜を実施することができる。銅合金薄膜やアルミニウム合金薄膜の場合、膜厚を100nm以上、あるいは150nm以上とすると、可視光をほとんど透過しなくなる。したがって、本実施形態に係る金属層の膜厚としては、例えば、100nm~300nmの膜厚が採用され、これによって十分な遮光性を得ることができる。
 また、第1タッチセンシング配線3上に、光吸収性を持たせた金属酸化物を形成することで、第1タッチセンシング配線3に用いる金属層の光反射を抑制することができる。本発明の実施形態に適用可能な金属酸化物層と金属層の構成としては、以下の構成が挙げられる。例えば、中心基材として酸化インジウムを含有するITO(Indium Tin Oxide)やIZTO、或いは、IZO(登録商標)において酸素が不足した状態で、例えば、銅合金層の上に金属層を成膜することによって得られる層構成、あるいは、酸化モリブデン、酸化タングステン、酸化ニッケルと酸化銅の混合酸化物、酸化チタン、等をアルミニウム合金や銅合金の上に金属層を積層することによって得られる層構成等が挙げられる。
 金属酸化物層と金属層とによって得られる層構成は、スパッタ装置等の真空成膜装置で、連続成膜できるというメリットがある。
 次に、第1タッチセンシング配線3を構成する黒色層8について説明する。
 黒色層は、例えば、黒色の色材を分散させた着色樹脂で構成されている。銅の酸化物や銅合金の酸化物は、十分な黒色や低い反射率を得られないが、本実施形態に係る黒色層とガラス等の基板との間の界面における可視光の反射率はほぼ3%以下に抑えられ、高い視認性が得られる。
 黒色の色材としては、カーボン、カーボンナノチューブあるいは、複数の有機顔料の混合物が適用可能である。例えば、色材全体の量に対して51質量%以上の割合で、即ち、主な色材としてカーボンを用いる。反射色を調整するため、青もしくは赤等の有機顔料を黒色の色材に添加して用いることができる。例えば、出発材料である感光性黒色塗布液に含まれるカーボンの濃度を調整する(カーボン濃度を下げる)ことにより、黒色層の再現性を向上させることができる。
 表示装置の製造装置である大型露光装置を用いた場合であっても、例えば、1~6μmの線幅(細線)を有するパターンを有する黒色層を形成することができる(パターニング)。なお、本実施形態におけるカーボン濃度の範囲は、樹脂や硬化剤と顔料とを含めた全体の固形分に対して、4以上50以下の質量%の範囲内に設定している。ここで、カーボン量として、カーボン濃度が50質量%を超えてもよいが、全体の固形分に対してカーボン濃度が50質量%を超えると塗膜適性が低下する傾向がある。また、カーボン濃度を4質量%以下に設定した場合、十分な黒色を得ることができず、黒色層下に位置する下地の金属層で生じる反射光が大きく視認され、視認性を低下させることがあった。
 後工程であるフォトリソグラフィにおいて露光処理を行う場合、露光対象の基板と、マスクとの位置合わせ(アライメント)が行われる。この時、アライメントを優先し、例えば、透過測定による黒色層の光学濃度を2以下とすることができる。カーボン以外に、黒色の色調整として複数の有機顔料の混合物を用いて黒色層を形成してもよい。ガラスや透明樹脂等の基材の屈折率(約1.5)を考慮し、黒色層とそれら基材との間の界面における反射率が3%以下となるように、黒色層の反射率が設定される。この場合、黒色色材の含有量、種類、色材に用いられる樹脂、膜厚を調整することが望ましい。これらの条件を最適化することで、屈折率がおよそ1.5であるガラス等の基材と黒色層との間の界面における反射率を、可視光の波長領域内で3%以下にすることができ、低反射率を実現することができる。バックライトユニットBUから出射された光に起因する反射光が再度反射することを防止する必要性、観察者の視認性の向上を配慮して、黒色層の反射率は、3%以下とすることが望ましい。なお、通常、カラーフィルタに用いられるアクリル樹脂、また、液晶材料の屈折率は、おおよそ1.5以上1.7以下の範囲である。
 透明基板21と第2導電性金属酸化物層4との間に第1黒色層8が具備されているため、観察者方向から透明基板21を見たときに、透明基板21と第1黒色層8との間の界面の光の反射率を3%以下とすることができる。このため、視認性観点から優れた構成が実現されている。
 上述した第1タッチセンシング配線3は、第1黒色層8、第2導電性金属酸化物層4、第1金属層5、及び第1導電性金属酸化物層6が透明基板21上に順に積層された構造を有する。第1タッチセンシング配線3の変形例として、第1導電性金属酸化物層6上に第2黒色層が設けられた構造が採用されてもよい。
 透明樹脂層1に用いられる透明樹脂としては、アクリル樹脂、ポリイミド樹脂、ポリアミド樹脂、エポキシ樹脂等の耐熱性の高い樹脂を用いることができる。このような透明樹脂層1を本発明の実施形態に適用することにより、高解像度で、かつ、高速なタッチ入力に応えられる表示装置、及びこれに用いる表示装置基板、カラーフィルタを具備する表示装置基板を提供することができる。
 次に、図2に戻り、液晶表示装置LCD1について説明を続ける。
 アレイ基板200は、透明基板22(第2透明基板)と、透明基板22上に形成されたゲート配線9、10(第1ゲート配線10及び第2ゲート配線9)及びコモン配線36(図10参照)と、ゲート配線9、10及びコモン配線36を覆うように透明基板22上に形成された第3絶縁層13と、第3絶縁層13上に形成されたソース配線14、15(第1ソース配線14及び第2ソース配線15)と、ソース配線14、15を覆うように第3絶縁層13上に形成された第2絶縁層12と、第2絶縁層12上に形成された共通電極20と、共通電極20を覆うように第2絶縁層12上に形成された第1絶縁層11とを備える。更に、アレイ基板200は、第1絶縁層11上に形成された複数の画素電極17を備える。
 即ち、第1絶縁層11は、画素電極17の下に設けられている。第2絶縁層12は、第1絶縁層11の下に設けられている。共通電極20は、第1絶縁層11と第2絶縁層12との間に設けられている。
 換言すると、液晶層300に最も近いアレイ基板200の面に、画素電極17が設けられている。画素電極17は、複数の画素開口部18の各々に設けられており、後述するアクティブ素子に接続されている。
 更に、液晶層300に最も近いアレイ基板200の面(表面部位)には、即ち、第1絶縁層11上には、第2タッチセンシング配線7が設けられている。第2タッチセンシング配線7は、平面視、第1タッチセンシング配線3に直交している。なお、図3に示すA-A’線に沿う断面である図2においては、第2タッチセンシング配線7は図示されていない。第2タッチセンシング配線7は、図2の紙面奥、かつ、ゲート配線9、10と平行に形成されている(図3参照)。
 互いに隣接する第2タッチセンシング配線7の間に位置するY方向(画素の長辺方向)における領域は、画素開口部18である。なお、X方向(画素の短辺方向)における画素開口部18は、図3に示す互いに隣接する第1タッチセンシング配線3の間、或いは、図4に示す互いに隣接するソース配線14、15の間に位置する。
 本実施形態においては、第2タッチセンシング配線7及び第1タッチセンシング配線3が延在する方向を限定しない。第1タッチセンシング配線3及び第2タッチセンシング配線7のうち一方が、第1ゲート配線10及び第2ゲート配線9に重畳するように設けられてもよい。この場合、第1タッチセンシング配線3及び第2タッチセンシング配線7のうち他方は、第1ソース配線14及び第2ソース配線15に重畳するように設けられる。
 第1ゲート配線10及び第2ゲート配線9は、複数の画素開口部18のうち互いに隣接する2つの画素開口部18の間に位置するように、互いに平行に配設されている。
 画素電極17及び共通電極20は、ITO等の導電性金属酸化物で形成することができる。画素電極17及び共通電極20の形状は矩形である。更に、画素電極17の中央には、スリットが設けられている。図4に示すように、平面視において共通電極20と画素電極17とは重なるように配置されている。図2に示すように、断面視において第1絶縁層11を挟むように、共通電極20と画素電極17とは対向している。このような電極構造を採用することにより、共通電極20と画素電極17との間に液晶駆動電圧が印加された際に、画素電極17の周辺領域において、即ち、画素電極17の上方に位置する領域、画素電極17の外側領域、及び、スリット形成領域である画素電極17の内側領域においてフリンジ電界が発生する。
 液晶層300は、正の誘電率異方性を有する液晶分子39を含む。液晶分子の初期配向は、表示装置基板100あるいはアレイ基板200の基板面に対して水平である。液晶層300を用いた第1実施形態に係る液晶駆動は、平面視、液晶層を横断するように駆動電圧が液晶分子に印加されるため、横電界方式と呼称されることがある。
 図2においては、液晶層300に初期配向を付与する配向膜、偏光フィルム、位相差フィルム等の光学フィルム、保護用のカバーガラス等は、省略されている。液晶表示装置LCD1の表面及び裏面の各々には、光軸がクロスニコルとなるように、偏光フィルムが貼付されている。
 図3は、本実施形態に係る液晶表示装置LCD1を観察者から見た画素構造を部分的に示す平面図であり、アレイ基板200上に表示装置基板100を貼り合わせた構造を示す図である。
 液晶表示装置LCD1を構成する画素は、多角形形状を有し、配向処理の方向に対し角度θを有する、くの字形状パターン(dog-legged pattern)を有する。配向膜の配向処理としては、光配向処理あるいはラビング処理が採用できる。角度θは、例えば、3°~15°の範囲である。
 光配向処理とは、具体的に、以下のとおりである。
 まず、表示装置基板100及びアレイ基板200が互いに向かい合う面に感光性の配向膜材料を基板に塗布し、配向膜材料を軽度に乾燥させる。更に、液晶層300を封止するためのシール部を、表示装置基板100及びアレイ基板200の少なくとも一方に、表示画面の周囲に位置するように形成する。その後、液晶を表示装置基板100及びアレイ基板200の一方に滴下(ODF:One Drop Filling)する。滴下された液晶(液晶層300)を挟持するように表示装置基板100及びアレイ基板200を貼り合わせ、液晶層300のシールを行う(セル化)。その後、例えば、液晶を駆動する電圧を液晶層300に印加しながら、紫外線を基板に照射し、配向膜材料を硬化させると同時に配向膜材料が配向処理される。紫外線としては、偏光させた紫外線を用いてもよく、偏光させない紫外線を用いてもよい。
 図3に示す積層構造(Z方向)においては、第1タッチセンシング配線3が最上層として位置する。第1タッチセンシング配線3は、くの字形状パターン(dog-legged pattern)を有する画素形状に沿って、Y方向に向けて延在している。図2に示すソース配線14、15は、第1タッチセンシング配線3の下部に位置するように重なって配置されているため、図3ではソース配線14、15が示されておらず、第1タッチセンシング配線3によって隠れている。
 第2タッチセンシング配線7は、アレイ基板200を構成する複数の層のうちの最上層(配向膜の除く)のひとつである。第2タッチセンシング配線7は、X方向に向けて延在している。第2タッチセンシング配線7の下部には、第1ゲート配線10及び第2ゲート配線9が設けられている。第2タッチセンシング配線7及び第1ゲート配線10及び第2ゲート配線9を含む断面構造については、図10を参照して後述する。第2タッチセンシング配線7は、少なくとも金属層を含み、第2タッチセンシング配線7の構造としては、第1タッチセンシング配線3と同じ構造を採用することができる。即ち、第2タッチセンシング配線7は、黒色層及び金属層で構成された2層構造を有する。
 第2タッチセンシング配線7及び第1タッチセンシング配線3で囲まれた領域に、遮光層23、画素電極17、及び共通電極20が位置している。
 また、第2タッチセンシング配線7を構成する金属層と同じ層構成を有する金属層により、遮光層23(遮光パターン)を形成することができる。第2タッチセンシング配線7は、遮光層23とは電気的に独立している。
 図5は、液晶表示装置LCD1を部分的に示す断面図である。図5に示すように、遮光層23は、アクティブ素子28(第1アクティブ素子28a)を構成するチャネル層27の上部を覆うように配設されている。チャネル層27の下部には、第3絶縁層13を介してゲート電極25(第1ゲート電極)が設けられている。換言すると、遮光層23とゲート電極25との間にチャネル層27が位置している。このように、平面視において、アクティブ素子28のチャネル層27は、遮光層23と重なっており、ゲート電極25と重なっている。このため、バックライトユニットBUから出射された光L、又は、光Lに起因する反射光等は、遮光層23及びゲート電極25によって遮光され、これら光(迷光)がチャネル層27へ入射することが防止される。従って、迷光がチャネル層27に入射することによるアクティブ素子28でのノイズの発生を避けることができ、アクティブ素子28における誤動作を防止することができ、画質の改善に寄与する。
 特に、300ppi以上といった高精細画素を備える液晶表示装置においては、光がアクティブ素子28に入射し易くなり、アクティブ素子28が誤動作し易くなり、結果的に、液晶表示装置の表示品質が低下し易くなる。遮光層23を設けることで、このような画質低下を防ぐことができる。
 なお、図5は、遮光層23(第1遮光層)によって第1アクティブ素子28aのチャネル層27が覆われた構造を示しているが、遮光層23(第2遮光層)は、後述する第2アクティブ素子28bを構成するチャネル層27を覆うように設けられている。同様に、第2アクティブ素子28bのチャネル層27の下部にはゲート電極25(第2ゲート電極)が設けられており、第2アクティブ素子28bのチャネル層27に迷光が入射することによる第2アクティブ素子28bでのノイズの発生を避けることができ、画質の改善に寄与する。
 チャネル層27は、酸化物半導体や、ポリシリコン等のシリコン半導体で形成される。酸化物半導体としては、IGZO等と呼称される金属酸化物を用いることができる。チャネル層を、IGZO等のガリウム、インジウム、亜鉛、錫、ゲルマニウム、マグネシウム、アルミニウムのうちの2種以上の金属酸化物を含む酸化物半導体で形成することで、ドット反転駆動において生じるカップリングノイズの影響をほぼ解消することができる。これは、IGZO等の酸化物半導体を用いたアクティブ素子は、映像信号である液晶駆動の矩形信号を極めて短い時間(例えば、2msec)で処理することができからである。また、このような酸化物半導体は、映像信号印加後の液晶表示において画素電極に印加された電圧を保持することができるメモリー性を有する。このため、電圧保持期間の間では、新たなノイズ発生はなく、液晶駆動で生じるタッチセンシングへのノイズの影響を更に減少させることができる。
 また、IGZO等の酸化物半導体は、電気的な耐圧が高いので、高めの電圧で液晶を高速で駆動させることができ、3D等の3次元映像表示に有力である。IGZO等の酸化物半導体をチャネル層に用いるトランジスタは、メモリー性が高いため、例えば、液晶駆動周波数を0.1Hzから60Hz程度の低周波としてもフリッカー(表示のちらつき)を生じにくいメリットがある。このため、タッチセンシング機能を備えるだけでなく、低消費電力でフリッカーの少ない液晶表示装置を実現することができる。
 また、IGZOをチャネル層とするトランジスタを用い、低周波でのドット反転駆動と、かつ、これと異なる周波数でのタッチセンシング駆動を併用することで、低消費電力で、高画質の映像表示と高精度のタッチセンシングをともに得ることができる。なお、トランジスタの構造としては、デュアルゲート構造等のマルチゲート構造、また、ボトムゲート型構造を採用することができる。
 また、液晶駆動方式としてドット反転駆動を採用するときに、メモリー性の良好なIGZOを用いれば、画素電極の電圧を一定電圧(定電位)に維持するための定電圧駆動に必要な補助容量(ストーレッジキャパシタ、あるいは蓄積コンデンサ)を省くことも可能である。
 図4に戻り、説明を続ける。
 図4は、本実施形態に係る液晶表示装置LCD1を観察者から見た画素構造を部分的に示す平面図であり、表示装置基板100と、第2タッチセンシング配線7及び遮光層23を除いたアレイ基板200上に設けられた部材の位置関係を示す図である。
 アレイ基板200の透明基板22上においては、2本のゲート配線9、10と2本のソース配線14、15が直交している。即ち、ゲート配線9、10は、X方向に延在し、ソース配線14、15は、Y方向に延在している。第1ゲート配線10、第2ゲート配線9、第1ソース配線14、及び第2ソース配線15によって画素開口部18が区画されている。画素開口部18の長辺は、第1ソース配線14及び第2ソース配線15に沿う方向に延在している。
 さらに、ゲート配線9、10と平行に延在し、かつ、画素の中央に位置するコモン配線36が透明基板22上に設けられている。更に、複数の画素の各々の中央には、不図示のコンタクトホールが設けられている。このコンタクトホールを介して、X方向に配列された複数の共通電極20は、コモン配線36と電気的に接続されている。各画素は、2個のアクティブ素子28、即ち、第1アクティブ素子28a及び第2アクティブ素子28bを具備する。
 第1ゲート配線10は、第1アクティブ素子28aと電気的に連携されている。具体的に、第1ゲート配線10に接続されている第1ゲート電極25aと第1アクティブ素子28aのチャネル層27とは、第3絶縁層13を介して対向している。映像信号タイミング制御部121から第1ゲート電極25aに供給される走査信号に応じて第1アクティブ素子28aにおいてスイッチング駆動が行われる。
 第2ゲート配線9は、第2アクティブ素子28bと電気的に連携されている。具体的に、第2ゲート配線9に接続されている第2ゲート電極25bと第2アクティブ素子28bのチャネル層27とは、第3絶縁層13を介して対向している。映像信号タイミング制御部121から第2ゲート電極25bに供給される走査信号に応じて第2アクティブ素子28bにおいてスイッチング駆動が行われる。
 第1ソース配線14及び第2ソース配線15には、映像信号タイミング制御部121から映像信号としての電圧が付与される。第1ソース配線14には、正の電位の映像信号(第1映像信号)が付与され、第2ソース配線15には、負の電位の映像信号(第2映像信号)が付与される。第1ソース配線14及び第2ソース配線15における映像信号の正負の極性は固定されており、ソース配線14、15における映像信号の正と負の反転は行われない。ソース配線14、15における映像信号の正負の極性が固定された液晶駆動については、図14、図15を参照して後述する。
 図6は、本発明の第1実施形態に係るタッチセンシング配線を模式的に示す平面図であり、第2タッチセンシング配線7a、7bの電気的接続を説明する図である。また、図6は、リセット電圧が印加される導電配線を説明するための図である。
 図6においては、画素電極17や第1絶縁層11を含むアレイ基板200の図示が省略されており、後述するカラーフィルタを構成する赤フィルタR、緑フィルタG、及び青フィルタBと第2タッチセンシング配線7a、7bとの位置関係が示されている。
 図6に示すように、第2タッチセンシング配線7は、第2タッチセンシング配線7a(第1導電配線)を含む第1配線グループと、第2タッチセンシング配線7b(第2導電配線)を含む第2配線グループとを有する。第1配線グループ及び第2配線グループは、互いに噛み合うように、櫛歯状に形成されている。
 表示装置基板100上において、画素開口部18に対応する位置に、少なくとも、赤フィルタR、緑フィルタG、及び青フィルタBのいずれかが設けられている。
 第1配線グループ及び第2配線グループには、正負のいずれかのリセット電圧Vrが印加される。即ち、第1配線グループ及び第2配線グループには、互いに逆の極性のリセット電圧が印加される。このようなリセット電圧の切り替え動作は、スイッチング素子等を用いたタッチセンシング・リセット信号制御部122及びシステム制御部123によって制御される。また、リセット電圧の切り替え動作においては、例えば、第1配線グループ及び第2配線グループのうちの一方の配線グループに電圧を印加するとともに他方の配線グループを接地させるといった駆動や、一方の配線グループに正の電圧を印加するとともに他方の配線グループに負の電圧が印加されるといった駆動が行われる。
 図6に示す例においては、仮想的には、交流電源S(仮想電源)が第1配線グループと第2配線グループとに接続されていると考えることができ、この場合、リセット電圧は交流電圧である。
 また、第1配線グループにおいて、複数の第2タッチセンシング配線7aの各々は端部を有していることから、第2タッチセンシング配線7aは電極(第1導電電極)として機能する。同様に、第2配線グループにおいて、複数の第2タッチセンシング配線7bの各々は端部を有していることから、第2タッチセンシング配線7bは電極(第2導電電極)として機能する。
 なお、本発明は、図6に示す交流電源Sが第1配線グループと第2配線グループとの間に仮想的に設けられた回路構成を限定していない。例えば、第1配線グループもしくは第2配線グループのうち一方の配線グループを接地し(グランドに落とす)、他方の配線グループ(接地されていない配線グループ)に正又は負の電圧を印加してもよい。また、このような配線グループに印加されるリセット電圧は、交流であってもよく、直流の矩形波であってもよい。
 また、図6では、カラーフィルタを構成するストライプ状の赤フィルタ、緑フィルタ、及び青フィルタ(3色、R、G、B)と、第2タッチセンシング配線7a、7bとの位置関係を示している。即ち、ストライプ状のカラーフィルタの延在方向に対して直交する方向に、第2タッチセンシング配線7a、7bが延在している。互いに隣接する第2タッチセンシング配線7a、7bの間に赤フィルタ、緑フィルタ、及び青フィルタのいずれかが配置されており、この第2タッチセンシング配線7a、7bの間における各色のフィルタの各々が画素を構成している。本発明は、図6に示すようなカラーフィルタと第2タッチセンシング配線7a、7bとの位置関係を限定していない。
 図10は、本発明の第1実施形態に係る液晶表示装置を部分的に示す断面図であり、図3に示すソース配線(B-B’線)に沿う図である。なお、図10においては、タッチセンシング駆動が行われている状態を示しているが、このタッチセンシング駆動については、後述する。
 図10に示すように、液晶層300に対向する透明基板21の面には、第1タッチセンシング配線3が設けられている。この第1タッチセンシング配線3は、表示装置基板100の第1透明基板21上に設けられた黒色層8と、黒色層8上に設けられた金属層5を含む。また、透明基板21上には、第1タッチセンシング配線3を覆うように透明樹脂層1が設けられている。
 液晶層300に対向するアレイ基板200の最上面には、第2タッチセンシング配線7が具備されている。なお、アレイ基板200の透明基板22上には、複数の絶縁層11、12、13とともに、第1ゲート配線10、第2ゲート配線9、コモン配線36、及び上述した第2タッチセンシング配線7が形成されている。
 表示装置基板100の表示面(観察者に対向する面)から第1タッチセンシング配線3までの距離よりも、表示装置基板100の表示面から第2タッチセンシング配線7までの距離が大きい。また、第2タッチセンシング配線7は、第1絶縁層11上の位置、第2絶縁層12上の位置、及び第2絶縁層12下の位置のうち、いずれかの位置に設けられていればよい。第2タッチセンシング配線7上に、絶縁層がさらに積層されてもよい。
 第2タッチセンシング配線7としては、アルミニウムや銅等の合金層を用いることができる。第1タッチセンシング配線3を構成する複数層のうち、観察者によって観察される層として、黒色層8を設けることで、第1タッチセンシング配線3から生じる光反射を抑え、視認性を改善することができる。なお、金属層の成膜前に、無機や有機の絶縁層を形成してもよく、あるいは第1タッチセンシング配線3をパターニングした後に金属層上に無機や有機の絶縁層を形成してもよい。
(液晶表示装置LCD1の動作)
(1.ゲート配線9、10及びソース配線14、15による反転駆動)
 次に、図14及び図15を参照し、ゲート配線9、10及びソース配線14、15による反転駆動について説明する。
 本実施形態では、一例として、第1ソース配線14の電位が正の極性を有し、第2ソース配線15が負の極性を有しており、各画素において画素反転駆動が行われる。反転駆動の際に選択されるゲート配線は、表示画面の全体でゲート配線を選択するフレーム反転でもよく、全ラインのうちの半分の本数のゲート配線を選択して反転駆動を行ってもよいし、さらに、水平ラインを順次に選択する反転駆動や水平ラインを間欠的に選択して反転駆動を行ってもよい。
 図14は、例えば、複数のゲート配線10(複数ライン)のうち、偶数ラインのゲート配線10を選択し、選択されたゲート配線10がアクティブ素子にゲート信号を送った場合の画素毎の極性を示している。ここで、第1ソース配線14の極性は正であり、第2ソース配線15の極性は負である。この場合、垂直方向に同じ極性を有する画素が並ぶ。例えば、次のフレームで奇数ラインのゲート配線を選択し、選択されたゲート配線10がアクティブ素子にゲート信号を送った場合、図14に示す極性とは反対の極性を有する画素が、同じく、縦方向に並び、垂直ライン反転駆動が行われる。フレーム毎に垂直ラインを反転する場合では、ノイズの発生頻度がより低くなる。
 図15は、例えば、複数のゲート配線10(複数ライン)のうち、2本おきに、かつ、2本一組のゲート配線9、10を選択し、選択されたゲート配線9、10がアクティブ素子にゲート信号を送った場合の画素毎の極性を示している。ここで、第1ソース配線14の極性は正であり、第2ソース配線15の極性は負である。この場合、垂直方向及び水平方向のいずれの方向においても、正と負の極性を有する画素が交互に並ぶ。次のフレームで、異なる2本一組のゲート配線を選択し、選択されたゲート配線9、10がアクティブ素子にゲート信号を送ることで、図15に示す極性とは反対の極性を有する画素が、同じく、交互に並び、ドット反転駆動が行われる。図14及び図15に示す画素おける反転駆動は、以下の実施形態でも同様に行われる。
(2.第2タッチセンシング配線7への電圧印加によって液晶の配向を初期配向に加速的に戻す動作)
 図7から図9は、本発明の第1実施形態に係る液晶表示装置を部分的に示す平面図であり、液晶表示装置LCD1の一画素における液晶分子と電極構造(画素電極17と共通電極20)の関係を示す拡大図である。また、図7は、初期配向(黒表示)状態の液晶分子と電極構造の関係を示す拡大図であり、図8は、画素電極17と共通電極20との間に液晶駆動電圧を印加した時の液晶分子の回転動作を示す図である。図7及び図8においては、一画素を挟むように配置された第2タッチセンシング配線7a、7bが示されている。図9は、画素電極17と共通電極20との間に液晶駆動電圧が印加されていない状態(無印加状態)で、第2タッチセンシング配線7a、7b間にリセット電圧を印加し、第2タッチセンシング配線7a、7b間に電界を発生させ、液晶の配向状態を黒表示状態に加速的に戻らせることを説明する図である。
 図7に示すように、画素電極17と共通電極20との間に液晶駆動電圧が印加されていない状態では、液晶層300の液晶分子39は、配向方向R(配向処理の方向、初期配向状態での配向方向)に向けて配向している。即ち、表示装置基板100及びアレイ基板200に対して水平方向に液晶分子は配向している(初期配向状態)。また、画素電極17及び共通電極20は、くの字形状パターン(dog-legged pattern)を有しており、即ち、配向方向Rに対して角度θで傾斜する辺を有する。
 次に、図8に示すように、画素電極17と共通電極20との間に、液晶駆動電圧を印加すると、画素電極17と共通電極20との間にフリンジ電界が発生する。このような電界の作用によって、液晶分子39は画素電極17上で回転し、液晶表示装置LCD1において映像表示(白表示)が行われる。ここで、画素電極17及び共通電極20は、配向方向Rに対して角度θで傾斜する辺を有することから、図8に示す画素の上方領域(第2タッチセンシング配線7bよりも第2タッチセンシング配線7aに近い領域、第1ドメイン)において、液晶分子39は、時計回りに回転する。一方、画素の下方領域(第2タッチセンシング配線7aよりも第2タッチセンシング配線7bに近い領域、第2ドメイン)において、液晶分子39は、反時計回りに回転する。
 なお、液晶駆動電圧オン時では、第2タッチセンシング配線7a、7bには、電圧が印加されていない。
 次に、画素電極17と共通電極20との間に印加される液晶駆動電圧をオフにすると、図8に示す液晶分子は、図7に示す初期配向状態の黒表示へ戻る。このように液晶分子の配向状態が初期配向に戻るまでの時間は、τoffと称されている。
 特に、従来の液晶表示装置においては、第2タッチセンシング配線7a、7bが設けられていないことから、白表示状態から黒表示状態へゆっくりと戻ることになる。即ち、図13に示すように、従来の液晶表示装置における透過率の変化に関し、時間の経過に伴って、白表示状態(透過率Trans:100%)から透過率Transがゆっくりと減少し、透過率Transは黒表示状態(透過率Trans:0%)となる。
 このように、従来の液晶表示装置においては、液晶の表示状態を黒表示へ戻すための駆動電圧が液晶分子39に印加されないため、時間τoffを短縮することができない。
 本発明の実施形態においては、映像表示の後に、図9に示すように第2タッチセンシング配線7a、7b間に電圧を印加している。電圧印加方法としては、例えば、第2タッチセンシング配線7bを接地し、第2タッチセンシング配線7aに5Vのリセット電圧を印加するといった方法が挙げられる。このように第2タッチセンシング配線7a、7b間に電圧を印加することで、第2タッチセンシング配線7a、7bに直交する方向(表示装置基板100及びアレイ基板200に平行な方向)にリセット電界B1が生じる。液晶分子39の長軸は、リセット電界B1の方向に向くように加速的に戻る。このように、リセット電圧を第2タッチセンシング配線7a、7b間に印加することにより、液晶層300の表示状態が黒表示へ加速的に戻る。
 上記のようにリセット電界B1によって加速的に黒表示が行われた後には、画素電極17と共通電極20との間に液晶駆動電圧を印加することにより映像表示が行われる。更に、映像表示の後、第2タッチセンシング配線7a、7b間に更にリセット電圧を印加し、リセット電界を発生させる。即ち、1回の映像表示動作の前後で、液晶層300にリセット電界が印加される動作が行われ、この動作は、繰り返し行われる。このように、映像表示の後にリセット電界を液晶分子39に繰り返し付与する場合には、リセット電圧の正負を反転させることが好ましい。即ち、リセット電圧は、正の電圧と、負の電圧とを含み、リセット電圧は、映像表示の一定期間毎に、正又は負に反転されることが好ましい。
 具体的に、リセット電界B1によって加速的に黒表示が行われた後には、次の映像表示が行われる。その後、例えば、第2タッチセンシング配線7aを接地し、第2タッチセンシング配線7bに5Vのリセット電圧を印加する。すると、第2タッチセンシング配線7a、7bに直交する方向(表示装置基板100及びアレイ基板200に平行な方向)にリセット電界B2が生じる。液晶分子39の長軸は、リセット電界B2の方向に向くように加速的に戻る。
 このように、第2タッチセンシング配線7a、7bに印加されるリセット電圧の正負を反転させることで、リセット電界B2の方向は、上記のリセット電界B1の方向と逆となる。
 このように、リセット電圧の正負を逆にした場合であっても、同様に、液晶分子39の配向状態を初期配向状態に加速的に戻すことができ、τoffを短縮することができる。リセット電圧の正負を繰り返し反転させる駆動方法は、後述する一表示単位期間毎に行われる。この駆動方法は、液晶表示の焼きつきの軽減に寄与する。ここで、「一表示単位期間」とは、映像信号による映像表示の最小単位期間である。ドット反転駆動の場合、最小単位は一画素における反転期間である。垂直ライン反転駆動の場合、最小単位は一ラインにおける反転期間である。フレーム反転駆動の場合、最小単位は一フレームにおける反転期間である。
(3.第2タッチセンシング配線7を用いてタッチセンシングを行う動作)
 図10及び図11は、図3に示すソース配線(B-B’線)に沿う断面図である。図10は、タッチセンシング配線3と第2タッチセンシング配線7との間にタッチセンシング駆動電圧を印加した時に発生するフリンジ電界の状況を部分的に示している。図11は、タッチセンシング配線3と第2タッチセンシング配線7との間にタッチセンシング駆動電圧を印加し、かつ、観察者に面している表示装置基板100の表面に指等のポインターが接触あるいは近接した時のフリンジ電界の変化を部分的に示している。
 図10においては、タッチセンシング駆動電圧が印加された第2タッチセンシング配線7(タッチ駆動配線)と、第1タッチセンシング配線3(タッチ検出配線)との間にフリンジ電界が発生し、電気力線が第2タッチセンシング配線7から第1タッチセンシング配線3に向くように発生している。この時、静電容量C1は、第2タッチセンシング配線7と第1タッチセンシング配線3との間で保持されている。
 その一方、図11に示すように、指等のポインターが透明基板21に接触あるいは近接した場合、第1タッチセンシング配線3は、静電容量の変化をタッチセンシング信号として検出する。
 なお、図10及び図11では、第1タッチセンシング配線3は、タッチ検出配線として機能しているが、第1タッチセンシング配線3は、タッチ駆動配線として機能してもよい。この場合、第2タッチセンシング配線7は、タッチ検出配線として機能する。このように、第1タッチセンシング配線3の役割は切り換えることができる。
 また、第2タッチセンシング配線7上に、可視光吸収性を持たせた無機膜や有機膜を積層してもよい。可視光吸収性を有する無機膜を用いる場合には、例えば、金属酸化物膜やこの酸化物膜を含む多層構造で無機膜が構成される。可視光吸収性を有する有機膜を用いる場合には、例えば、後述する黒色層を有機膜として用いることができる。第2タッチセンシング配線7の一部あるいは全部をタッチ駆動配線として用いることができ、或いは、第2タッチセンシング配線7の一部あるいは全部をタッチ検出配線として用いることができる。
 第2タッチセンシング配線7をタッチ駆動配線として用いる場合、第2タッチセンシング配線7へのリセット電圧Vrの印加と、第2タッチセンシング配線7へのタッチセンシング駆動電圧Vtouchの印加は、後述するように、時分割で行われる。
 その一方、第2タッチセンシング配線7をタッチ検出配線として用いる場合、第1タッチセンシング配線3は、タッチ駆動配線として機能する。この場合、第1タッチセンシング配線3にタッチセンシング駆動電圧Vtouchが印加され、第2タッチセンシング配線7にリセット電圧Vrが印加され、第2タッチセンシング配線7がタッチセンシング信号を検出する。
 また、複数の第2タッチセンシング配線7のうちの一部の配線の電位を、フローティング電位としてもよい。また、リセット電圧の正電圧と負電圧とを切り換える時(例えば、電界発生状態(電界方向)を、図9における電界B1が発生している状態から電界B2が発生している状態に変える時)に、2つの第2タッチセンシング配線7のうち一方をグランドに落としてもよい。第2タッチセンシング配線7へのリセット電圧の印加、第2タッチセンシング配線7の電位をフローティング電位への変更、あるいは、第2タッチセンシング配線7をグランドに接続(接地)するといった、第2タッチセンシング配線7の選択は、スイッチング素子を介在させて行うことができる。
 なお、上述したタッチセンシングでは、液晶表示装置を構成する全てのタッチセンシング配線をタッチセンシング動作に用いる必要はない。この場合、まず、全てのタッチセンシング配線を複数のグループに区分する。グループの数は、全てのタッチセンシング配線の数より少ない。一つのグループを構成する配線数が、例えば、6本であるとする。ここで、全ての配線(配線数は6本)のうち、例えば、2本の配線を選択する(全ての配線の本数よりも少ない本数、2本<6本)。一つのグループにおいては、選択された2本の配線を用いてタッチセンシングが行われ、残りの4本の配線における電位がフローティング電位に設定される(間引き駆動)。液晶表示装置は、複数のグループを有することから、上記のように配線の機能が定義されているグループ毎にタッチセンシングを行うことができる。
 次に、タッチセンシングの駆動周波数について説明する。
 例えば、液晶駆動の共通電極である透明電極の電位をゼロボルトの定電位とし、複数の画素の各々でドット反転駆動を行う場合、透明電極は、液晶駆動とタッチセンシング駆動とにおいて、電気的シールドとしての役割を有する。
 表示装置基板100に設けられた第1タッチセンシング配線3をタッチ駆動電極として機能させ、アレイ基板200に設けられた第2タッチセンシング配線7をタッチ検出電極として機能させる場合、タッチセンシングの駆動条件と液晶の駆動条件(周波数や電圧等)を異ならせることができる。
 例えば、タッチセンシング駆動周波数を60Hz~数十KHzに設定し、液晶駆動の周波数を0.1Hz~480Hzに設定することができる。アクティブ素子のチャネル層がIGZO等の酸化物半導体で形成されているTFTによって液晶駆動を行う場合、液晶駆動周波数を60Hz以下に設定することもできる。更には、タッチ駆動と液晶駆動を時分割に行うこともできる。
 表示装置基板100に設けられた第1タッチセンシング配線3又はアレイ基板200に設けられた第2タッチセンシング配線7のうちいずれかをタッチ駆動電極(走査電極)として機能させる場合、要求されるタッチ入力の速さに合わせて、静電容量を検出する走査周波数を任意に調整することができる。
(4.第2タッチセンシング配線7への電圧印加及びタッチセンシング動作の時分割駆動)
 次に、リセット電圧Vrが第2タッチセンシング配線7に印加されるタイミングと、タッチセンシング駆動が行われるタイミングと説明する。
 図12は、本発明の実施形態に係る液晶表示装置LCD1を説明するための信号タイミングチャートであって、液晶駆動とタッチセンシング駆動とを時分割で行う場合の信号等の波形の例を示している。
 図12に示された表示期間は、1フレームの期間(1F)であり、例えば、60Hzに相当する映像書き込みを行う期間である。図12は、この1フレームの期間において、一画素単位期間(一表示単位期間)で、白表示(液晶駆動電圧、オン)と黒表示(液晶駆動電圧、オフ)とを行うタイミングを示している。
 また、以下の説明では、第1ゲート配線10及び第2ゲート配線9のうち第1ゲート配線10にゲート信号が供給され、第1ソース配線14及び第2ソース配線15のうち第1ソース配線14に映像信号が供給され、第1アクティブ素子28aが駆動し、画素電極17に映像を書き込む場合を説明する。
 なお、第2アクティブ素子28bが駆動する場合では、第2ゲート配線9にゲート信号が供給され、第2ソース配線15に映像信号が供給され、画素電極17に映像が書き込まれる。
 図12において、符号Vgは第1ゲート配線10に供給される信号(ゲート信号)及び信号波形を示している。符号Vdは第1ソース配線14に供給される信号(映像信号)及び信号波形を示している。符号Transは、第1アクティブ素子28aが画素電極17に映像書き込みを行っている状態に示しており、即ち、液晶の透過率を示している。符号Vrは、第2タッチセンシング配線7に印加される信号及び信号波形を示している。符号Vtouchは、タッチセンシング駆動電圧の信号及び信号波形を示している。
 表示単位期間において、第1ゲート配線10には、一定間隔で、信号Vgが2度供給される。第1アクティブ素子28aを通じて画素電極17に映像を書き込む際には、信号Vgの発生に同期して、第1ソース配線14に信号Vdが供給される。これにより、第1アクティブ素子28aがON状態となり、画素電極17に対する映像書き込みが開始される。水平配向の液晶分子が回転するに従って、透過率Transが増加する。透過率Transが一定レベルに達するまで、信号Vdは第1ソース配線14に供給され続けられ、その後、白表示が保持される。信号Vdの印加時間Dtは、液晶駆動電圧の印加時間である。透過率Transが一定レベルに達すると、その後、透過率Transは、白表示安定期間Wrの間、維持される。ここで、白表示安定期間とは、白表示の透過率が安定している期間を意味する。その後、リセット電圧Vrが第2タッチセンシング配線7に印加されると、図9に示すリセット電界に向くように液晶分子の配向が初期配向に加速的に戻り、透過率Transは減少し、その後、黒表示となる。図12に示す符号Erは、黒表示安定期間であり、この期間においては、黒表示の透過率が安定している。黒表示安定期間Erにおいて、信号Vtouchがパルス状に発生し、タッチセンシング駆動電圧が第2タッチセンシング配線7に印加され、第1タッチセンシング配線3が、タッチセンシング信号を検出する。なお、第1タッチセンシング配線3がタッチ駆動配線として機能する場合には、信号Vtouchの発生に伴って、タッチセンシング駆動電圧が第1タッチセンシング配線3に印加され、第2タッチセンシング配線7がタッチセンシング信号を検出する。
 即ち、制御部120は、液晶駆動電圧が画素電極17に印加された後、かつ、液晶駆動電圧が画素電極17に印加されていない時に、第2タッチセンシング配線7にリセット電圧を印加する。
 なお、白表示安定期間Wrは、第1アクティブ素子28aのチャネル層27を構成する半導体材料の種類によって異なる。例えば、チャネル層27が酸化物半導体で形成されている第1アクティブ素子28aの場合、信号Vdの印加時間は短くてよく、印加時間Dtが経過した後であっても、第1アクティブ素子28aは良好に電圧を保持することができ、高い透過率を維持できる。信号Vdと透過率Transとの関係については、後述する。
 リセット電圧Vrが第2タッチセンシング配線7に印加されるタイミングは、次のいずれかのタイミングである。
(1)一画素における映像書き込みが行われた後(表示単位期間での映像表示の後)のタイミング
(2)一水平ラインにおける映像書き込みが行われた後のタイミング
(3)一垂直ラインにおける映像書き込みが行われた後のタイミング
(4)1フレームにおける映像書き込みが行われた後のタイミング
 ドット反転駆動方式で液晶表示装置を駆動させる場合は、画素電極に映像書き込みを行った後に、画素電極の各々における第2タッチセンシング配線7にリセット電圧を印加することが好ましい。なお、表示単位期間とは、ドット反転駆動の場合は一画素の書き込みとリセットを含む期間であり、一水平ライン駆動の場合は一水平ラインの書き込みとリセットを含む期間であり、一画面でフレーム反転を行う場合は一画面の書き込みとリセットを含む期間である。
 このような表示単位期間が経過した後、かつ、液晶駆動電圧がオフのときに、リセット電圧Vrの印加タイミングを設けることができる(前記液晶駆動電圧が前記画素電極に印加された後、かつ、前記液晶駆動電圧が前記画素電極に印加されていない時に、前記導電配線に電圧を印加する)。或いは、白表示安定期間Wr(映像表示の安定期間)に、タッチセンシング駆動を行うことができる。即ち、本実施形態においては、映像表示の安定期間、及び、映像表示後の黒表示安定期間の少なくとも一方の安定期間で、前記第1タッチセンシング配線及び前記第2タッチセンシング配線によるタッチセンシング駆動を行う。
 なお、画素に対して映像を書き込む際に生じるノイズの発生頻度に関し、例えば、個別画素で反転を行うドット反転駆動における発生頻度より、一垂直ライン反転駆動(カラム反転駆動)等、画素をまとめて行う反転駆動における発生頻度が低くなる。
 上述したように、一画素単位期間は、白表示(on)の期間及び黒表示(off)の期間で構成される。黒表示(off)の信号に同期して、リセット電圧Vrが第2タッチセンシング配線7に印加される。図12では、リセット電圧Vrが第2タッチセンシング配線7に印加された後から次のVg信号が発生するまでの時間が、タッチセンシング期間Ttouchである。換言すると、図12では、リセット電圧Vrが第2タッチセンシング配線7に印加された後の黒表示安定期間Erの間にタッチセンシング期間Ttouchが設けられている。第2タッチセンシング配線7へのリセット電圧の印加タイミング、第1ソース配線14へのソース信号の印加タイミング、及び第1ゲート配線10へのゲート信号の印加タイミングに関し、ノイズ発生がタッチセンシングに重畳しないように、遅延回路を用いて、いずれかのタイミングを、例えば、20nsec~2msec程度遅延させることができる。
 例えば、IGZO等の酸化物半導体で形成されたチャネル層を備えるアクティブ素子(薄膜トランジスタ)と、例えば、アモルファスシリコン半導体で形成されたチャネル層を備えるアクティブ素子とを比較すると、画素(液晶表示装置)の透過率Transの点で、大きな違いがある。
 酸化物半導体で形成されたチャネル層の場合、アクティブ素子によって映像書き込みが行われた後、透過率Transは図12に示すように急速に立ち上がる。
 その一方、アモルファスシリコン半導体で形成されたチャネル層の場合、アクティブ素子によって映像書き込みが行われた後、透過率Transは図13に示すように緩慢に立ち上がる。
 このため、チャネル層がアモルファスシリコン半導体で形成されている場合、トランジスタのリーク電流が大きくなる。リーク電流による電圧の低下を補うためするためには、白表示安定期間Wrの間、信号Vd(液晶駆動電圧)を第1ソース配線14に印加し続ける必要がある。
 その一方、チャネル層が酸化物半導体で形成されている場合は、アモルファスシリコン半導体に比べて、リーク電流が3桁前後低く、電圧保持することができる。このため、液晶駆動電圧の印加時間Dtは短くてよい。タッチセンシング期間Ttouchのタッチセンシング周波数は、液晶駆動周波数より高い周波数である必要がある。なぜなら、タッチセンシングのタイミングは不定期であり、かつ、短時間であるからである。このため、未検出を避けるため、タッチセンシング周波数(検出周波数)は、高い周波数であることが好ましい。
 高い周波数でタッチセンシング駆動を行い、タッチセンシング信号の積分値を得ることで安定したタッチセンシング検出を行うことができる。タッチセンシング信号に対するノイズ量を少なくするため、アクティブ素子に映像書き込みを行うための液晶駆動電圧のオン及びオフの直後のタイミングでタッチセンシング信号を検出するのを避けることが望ましい。従って、白表示の透過率が安定する白表示安定期間Wr、および、黒表示の透過率が安定する黒表示安定期間Erの間で、タッチセンシング信号の検出を行うことができる。
 図12のタイミングチャートに示すように、黒表示安定期間Erにおいて、高い周波数でタッチセンシング信号の検出が行われている。黒表示安定期間Erでは、LED等のバックライトユニットBUの発光素子の発光を停止することができる。
 また、右目用画像と左目用画像との切り替えを行う3D表示(立体画像表示)に関し、リセット電圧Vrが第2タッチセンシング配線7に印加された後の黒表示安定期間Erにおいて、右目用画像と左目用画像との切り替え時に表示される黒表示を行ってもよい。
 上述した液晶表示装置LCD1によれば、タッチセンシング機能を備えるとともに、低消費電力で駆動することができ、かつ、フリッカー発生を少なくすることができる液晶表示装置を提供することができる。
 更に、本発明の実施形態によれば、共通電極20(コモン配線36)の電位を反転させる必要なく、ゼロボルト等の定電位とすることができる。更に、ソース配線における映像信号の電位を正又は負に反転する必要がない。このため、タッチセンシング駆動に対するノイズを大きく軽減することができる。加えて、アクティブ素子に入射する光が遮光層によって遮光していることから、アクティブ素子に起因するノイズの発生を抑制することができる。
 更に、電位を正又は負に反転する従来の液晶表示装置と比較して、ソース配線に供給される電位の振幅(最大電圧の幅)は、半分で済む。このため、高耐圧のドライバを使う必要もなく、ドライバコストを下げることができる。ソース配線に供給される電位(電圧)の振幅が半分となるため、タッチセンシングに係る消費電力を大きく削減することができる。
(第2実施形態)
 第2実施形態に係る液晶表示装置を図1、図12、及び図16から図28を用いて説明する。
 本実施形態に係る液晶表示装置LCD2においては、表示装置基板100に透明電極が設けられ、負の誘電率異方性を有する液晶分子で液晶層300が構成され、アレイ基板200には共通電極20が設けられていない。このため、液晶表示装置LCD2においては、透明電極と画素電極との間に挟持された液晶層300に縦電界を印加することによって液晶層300を駆動させる縦電界方式が採用されている。更に、画素電極17に接続された第1アクティブ素子28a及び第2アクティブ素子28bによって、液晶駆動が制御されている。
 液晶表示装置LCD2において、図1に示す映像信号タイミング制御部121は、表示装置基板100に設けられた透明電極2(後述、複数の透明電極パターン)を定電位とするとともに、アレイ基板200(後述)に設けられたゲート配線9、10(後述、走査線)及びソース配線14、15(後述、信号線)に信号を送る。映像信号タイミング制御部121が透明電極2と画素電極17(後述)との間に積層方向Zに画素電極17に表示用の液晶駆動電圧を印加することで、液晶層300の液晶分子を駆動する液晶駆動が行われる。これにより、アレイ基板200上に画像が表示される。透明電極2を定電位とし、複数の画素電極17の各々には、ソース配線(信号線)を介して、例えば、交流矩形波を有する映像信号が個別に印加される。また、矩形波としては、正又は負の直流矩形波でもよい。
 図16は、本実施形態に係る液晶表示装置LCD2を部分的に示す断面図である。また、図16は、画素開口部の短辺方向に沿う断面図であり、図17に示すH-H’線に沿う図である。
 液晶表示装置LCD2は、表示装置基板100(対向基板)と、表示装置基板100に向かい合うように貼り合わされたアレイ基板200と、表示装置基板100及びアレイ基板200によって挟持された液晶層300とを備える。
 表示装置基板100は、透明基板21と、透明基板21上に設けられた透明樹脂層1と透明電極2を具備する。更に、図16の紙面奥側に位置する第1タッチセンシング配線3(タッチ検出配線又はタッチ駆動配線)が表示装置基板100上に形成されている。また、第1タッチセンシング配線3は、図17及び図27における符号3によって示されている。第1タッチセンシング配線3は、透明基板21上に形成された第1黒色層8(黒色層)と、第1黒色層8上に形成された第1金属層5(金属層)とで構成される。
 アレイ基板200は、透明基板22と、透明基板22上に形成された第3絶縁層13と、第3絶縁層13上に形成されたソース配線14、15と、ソース配線14、15を覆うように第3絶縁層13上に形成された第2絶縁層12と、第2絶縁層12上に形成された第1絶縁層11とを備える。更に、アレイ基板200は、第1絶縁層11上に形成された複数の画素電極17と、複数の画素電極17(電極部17a、17bを有する)の間に位置するように第1絶縁層11上に形成された第2タッチセンシング配線7とを備える。
 複数の画素電極17は、液晶層300に最も近い面に形成されている。第2タッチセンシング配線7は、図16における紙面の垂直方向(Y方向)に、かつ、ソース配線14、15と平行に延在するように形成されている。第2タッチセンシング配線7は、第2金属層(金属層)を少なくとも含む構成である。
 第2タッチセンシング配線7を構成する第2金属層は、銅を含有する含有層であり、例えば、銅層あるいは銅合金層である。第2タッチセンシング配線7は、第2金属層が2つの導電性金属酸化物層で挟持された構成を有してもよい。
 互いに隣接する第2タッチセンシング配線7の間に位置するX方向における領域(互いに隣接するソース配線14、15の間に位置するX方向における領域)は、画素開口部18である。なお、Y方向における画素開口部18は、図17に示すように、互いに隣接する第1タッチセンシング配線3の間に位置する。
 図16においては、液晶層300に初期配向を付与する配向膜、偏光フィルム、位相差フィルム等の光学フィルム、保護用のカバーガラス等は、省略されている。液晶表示装置LCD2の表面及び裏面の各々には、光軸がクロスニコルとなるように、偏光フィルムが貼付されている。
 液晶層300は、負の誘電率異方性を有する液晶分子138、139を含む。液晶分子138、139の初期配向は、表示装置基板100あるいはアレイ基板200の基板面に対して垂直である。なお、液晶分子の垂直配向とは、基板面の法線方向に対して、おおよそ0°から5°の範囲の傾き、即ち、プレチルトを指している。プレチルトを形成する方法としては、上述した光配向処理を用いることによって、液晶分子が、例えば、0.1°から1.5°等の任意の小さなプレチルト角を有するように、配向膜材料に配向処理することが可能である。良質な黒表示を得る観点で、液晶分子の初期配向の傾き(プレチルト)は、法線方向に近い小さな傾きであることが好ましい。
 図17は、本実施形態に係る液晶表示装置LCD2を観察者から見た部分平面図である。図17では、上述した透明基板21及び透明樹脂層1の図示を省いている。
 透明電極2は、例えば、ITO等の導電性金属酸化物で形成されている。平面視において透明電極2は、ストライプパターン(短冊形状)を有するように形成されている。互いに隣接する短冊状の透明電極2の間には、スリット16が形成されており、短冊状の透明電極2の間に第1タッチセンシング配線3が位置している。図17に示す第1タッチセンシング配線3の下部(Z方向)には、ゲート配線9、10が位置している。ゲート配線9、10は、第1タッチセンシング配線3と平行に延在するように、かつ、平面視において第1タッチセンシング配線3とほぼ同じ位置に配設されている。なお、第1タッチセンシング配線3は、表示装置基板100の透明基板21上に配設され、ゲート配線9、10はアレイ基板200の透明基板22上に配設されている。
 図18は、本実施形態に係る液晶表示装置LCD2を観察者から見たアレイ基板200の表面を部分的に示す平面図である。図18では、説明を簡略化するため、上述した表示装置基板100と第2タッチセンシング配線7の図示を省いている。
 画素開口部18には、画素電極17を構成する電極部17a、17bが設けられている。アレイ基板200上には、第2タッチセンシング配線7(不図示、図16参照)、及び、第2タッチセンシング配線7を構成する金属層と同じ層で形成された遮光層23(遮光パターン)が具備されている。ただし、第2タッチセンシング配線7と遮光層23とは電気的に絶縁されている。図18に示す第2タッチセンシング配線7の下部(Z方向)には、ソース配線14、15が位置している。ソース配線14、15は、第2タッチセンシング配線7と平行に延在するように、かつ、平面視において第2タッチセンシング配線7とほぼ同じ位置に配設されている。
 画素電極17は、画素電極17の中央に位置する透明導電膜を長手方向に沿ってスリット状に除去された画素電極パターンを有する。画素電極17は、画素電極パターンに応じた形状を有する電極部17a、17bを含む。画素電極17を構成する電極部17a、17bは互いに電気的に接続されている。画素電極17の電極部17a、17bは、コンタクトホール29を介して、図19に示すアクティブ素子28のドレイン電極26と電気的に接続されている。
 なお、上述した第1実施形態と同様に、画素電極17には、2つのアクティブ素子、即ち、第1アクティブ素子28a及び第2アクティブ素子28bが接続されている。このため、1つの画素において、画素電極17には2つのコンタクトホール29が設けられており、コンタクトホール29を通じて第1アクティブ素子28aを構成するドレイン電極26と、第2アクティブ素子28bを構成するドレイン電極26とが接続されている。
 図19は、本実施形態に係る液晶表示装置LCD2を観察者から見たアレイ基板200の表面を部分的に示す平面図である。図19では、説明を簡略化するため、上述した表示装置基板100と、画素電極17、第2タッチセンシング配線7、及び遮光層23の図示を省いている。即ち、図19は、アクティブ素子28(28a、28b)、ゲート配線9、10、及びソース配線14、15の配置の一例を部分的に示す平面図である。なお、図19においては、遮光層23の位置が2点鎖線で示されている。
 画素開口部18は、多角形パターンの一つである長方形状に形成されている。ソース配線14、15及びゲート配線9、10は、平面視において直交するとともに画素開口部18の辺に沿うマトリクスパターンを形成する。アクティブ素子(TFT)の中央部には、チャネル層27が位置している。
 図20は、本発明の第2実施形態に係る液晶表示装置LCD2を部分的に示す断面図であり、図18に示すG-G’線に沿う図である。
 図20に示されるように、アクティブ素子28は、第2金属層である遮光層23で覆われている。具体的に、アクティブ素子28は、ソース配線14、15に電気的に接続されたソース電極24と、ゲート配線9、10に電気的に接続されたゲート電極25と、半導体で構成されたチャネル層27とを有する薄膜トランジスタである。平面視においてアクティブ素子28が遮光層23で覆われるように、遮光層23のX方向における幅は、設定されている。
 チャネル層27を遮光層23で覆うことで、第1実施形態と同様の効果が得られる。
 第2金属層は、アレイ基板200の表面に形成される金属層であり、上述したように第2タッチセンシング配線7と遮光層23とを形成する。第1金属層は、表示装置基板100の上方(第1黒色層8上)に配設され、第1タッチセンシング配線3(タッチ駆動配線あるいはタッチ検出配線として機能)を形成する。このような第1金属層及び第2金属層の材料は、同じ金属材料でもよく、異なる金属材料であってもよい。第1金属層及び第2金属層の材料としては、銅、アルミニウム、あるいはこれら金属を含有する合金等を用いた良導体を用いることが望ましい。なお、第1金属層及び第2金属層を成膜する前に、第1金属層又は第2金属層の下方に位置する層(下地層)として、無機絶縁層や有機絶縁層を形成してもよい。第1タッチセンシング配線3や第2タッチセンシング配線7をパターニングした後に、第1金属層又は第2金属層を覆うように無機絶縁層や有機絶縁層を形成してもよい。
 図21は、本発明の実施形態に係る第2タッチセンシング配線を模式的に示す平面図であって、リセット電圧が印加される第2タッチセンシング配線を説明するための図である。
 図21においては、画素電極17や第1絶縁層11を含むアレイ基板200の図示が省略されており、後述するカラーフィルタを構成する赤フィルタR、緑フィルタG、及び青フィルタBと第2タッチセンシング配線7との位置関係が示されている。
 図21に示すように、第2タッチセンシング配線7は、第1配線7a(第1導電配線)を含む第1配線グループと、第2配線7d(第2導電配線)を含む第2配線グループと、第1配線7aと第2配線7dとの間に設けられたダミー配線7b、7cを含むダミー配線グループとを有する。第1配線グループ及び第2配線グループは、互いに噛み合うように、櫛歯状に形成されている。
 第1配線グループ及び第2配線グループには、正負のいずれかのリセット電圧Vrが印加される。一方の配線グループに正の電圧が印加されている場合、他方の配線グループに負の電圧が印加される。あるいは、第1配線グループもしくは第2配線グループのうち一方の配線グループを接地し(グランドに落とす)、他方の配線グループ(接地されていない配線グループ)に正又は負の電圧を印加してもよい。また、このような配線グループに印加されるリセット電圧は、交流であってもよく、直流の矩形波であってもよい。
 このため、図21に示すように、仮想的には、交流電源S(仮想電源)が第1配線グループと第2配線グループとに接続されていると考えることができ、この場合、リセット電圧は交流電圧である。
 また、第1配線グループにおいて、複数の第1配線7aの各々は端部を有していることから、第1配線7aは電極(第1導電電極)として機能する。同様に、第2配線グループにおいて、複数の第2配線7dの各々は端部を有していることから、第2配線7dは電極(第2導電電極)として機能する。
 ダミー配線7b、7cは、電気的に浮いた電位(フローティング電位)を有している。ダミー配線グループにおいて、ダミー配線7bの下端とダミー配線7cの下端とは電気的に接続され、ダミー配線7bの上端とダミー配線7cの上端とは電気的に接続されている。
 第1配線7a及び第2配線7dに接続されるノイズフィルタ、インピーダンス、タッチセンシングに用いる周波数等によって、ダミー配線7b、7cのパターン形状を適宜調整することができる。液晶駆動に起因して発生するノイズや、外部から液晶表示装置LCD2内に入るノイズ等のノイズ周波数を考慮して、ダミー配線7b、7cのパターン形状を決定する必要がある。
 図21に示すように、ダミー配線7b、7cは、ループアンテナを形成している。ダミー配線7b、7cの形状は、このようなループアンテナ形状に限定されない。例えば、ダミー配線7b、7cの下端を開放し、ダイポールアンテナ形状が採用されてもよい。また、ダミー配線7b、7cの形状として、モノポールアンテナ形状が採用されてもよい。ダミー配線7b、7cの線幅、長さ、ピッチ等は目的に応じて調整することができる。
 上記のようにリセット電圧が印加される第2タッチセンシング配線7(第1配線グループ及び第2配線グループ)は、タッチセンシング信号を検出するタッチ検出配線として機能する場合がある。この場合、タッチ検出配線の形状は、直線形状でなくてもよい。ノイズの影響を受け難くしながらタッチセンシング信号を良好に検出するタッチ検出配線の構造として、タッチ検出配線(第1配線7a及び第2配線7d)がアンテナ構造を有してもよい。一方、第1タッチセンシング配線3がタッチセンシング信号を検出するタッチ検出配線として機能する場合には、第1タッチセンシング配線3がアンテナ構造を有してもよい。
 タッチ検出配線の形状として、ループアンテナ形状、ダイポールアンテナ形状、モノポールアンテナ形状を採用することができる。アンテナを構成する配線の線幅、配線の長さ、互いに隣接する配線のピッチ等の設計は、タッチセンシング検出の条件やタッチセンシング検出が行われる周囲のノイズ状況に応じて調整することができる。タッチ検出配線の構造としてアンテナ構造が採用されることで、タッチ検出配線がノイズ周波数の影響を受け難くなる。
 更に、リセット電圧Vrが印加される第1配線7aと第2配線7dとの距離(例えば、X方向)は、カラーフィルタを構成するとともにストライプ状に延在する赤フィルタR、緑フィルタG、及び青フィルタBの幅に応じて決定される。例えば、カラーフィルタの設計において、緑フィルタGの幅よりも青フィルタBの幅を増加させた場合には、その幅に応じて、第1配線7aと第2配線7dとの距離が設定される。なお、図21に示す赤フィルタR、緑フィルタG、及び青フィルタBのパターンに対して相対的に決定されている第2タッチセンシング配線7の配線パターンは、液晶表示装置LCD2の設計に応じて、適宜変更される。本発明は、第2タッチセンシング配線7の配線パターンを限定していない。
 次に、図27を参照し、表示装置基板100に設けられた第1タッチセンシング配線3について説明する。図27は、図17に示すI-I’線に沿う断面図である。図27に示すように、第1タッチセンシング配線3は、透明基板21上に形成された第1黒色層8及び第1金属層5を少なくとも含む。
 第1タッチセンシング配線3は、透明基板21上に設けられた第1黒色層8と、第1黒色層8上に設けられた第2導電性金属酸化物層4と、第2導電性金属酸化物層4上に設けられた第1金属層5と、第1金属層5上に設けられた第1導電性金属酸化物層6とを具備している。第1金属層5は、銅を含有する含有層であり、例えば、銅層あるいは銅合金層である。このように第1タッチセンシング配線3は、第1金属層5が第2導電性金属酸化物層4及び第1導電性金属酸化物層6で挟持された構成を有する。また、後述するように、第1導電性金属酸化物層6上には、黒色層19(第2黒色層)が形成される場合がある。
 次に、図22を参照し、表示装置基板100の端部(端子部)における第1タッチセンシング配線3の構造について説明する。図22は、第1金属層5が導電性金属酸化物層で挟持された構成を有する端子部33を部分的に示す断面図である。
 図23は、図22に示すタッチセンシング配線の断面図であり、Y方向におけるタッチセンシング配線の線幅を示している。図22及び図23に示すように、透明基板21の端部に形成された端子部33においては、透明基板21に形成された第1黒色層8上に、第2導電性金属酸化物層4、第1金属層5(銅合金層)、及び第1導電性金属酸化物層6がこの順で積層されている。即ち、第1タッチセンシング配線3は、3層構成を有する。透明樹脂層1は、平面視において、例えば、矩形状の表示面に相当する面積を有するように透明基板21上に塗布形成されている。端子部33の上には、透明樹脂層1は形成されていない。端子部33の表面は、第1導電性金属酸化物層6で覆われており、端子部33にて第1導電性金属酸化物層6が露出しており、端子部33は安定した電気的な接続を行うことが可能である。
 一方、アレイ基板200の端部には、平面視において表示装置基板100の端子部33の位置に対応するように、端子部が設けられている。アレイ基板200の端子部と表示装置基板100の端子部33とは、電気的に接続される。
 表示装置基板100及びアレイ基板200の両端子部間における電気的接続(導通)は、例えば、液晶層300を封止するため封止部(シール部)に、数μmから数十μmの大きさを有する導電柱(接続導電体)を形成することで実現することができる。
 これにより、第1タッチセンシング配線3は、図1に示すように、タッチセンシング・リセット信号制御部122に接続される。即ち、タッチセンシング・リセット信号制御部122から第1タッチセンシング配線3への信号の送受信は、表示装置基板100の端子部33とアレイ基板200の端子部との間に設けられた導電柱を通じて行われる。このため、安定した電気的実装が可能な表示装置基板を提供することができる。
(液晶表示装置LCD2の動作)
(1.ゲート配線9、10及びソース配線14、15による反転駆動)
 液晶表示装置LCD2においても、上述した第1実施形態と同様に、ゲート配線9、10及びソース配線14、15による反転駆動が行われる。
(2.第2タッチセンシング配線7への電圧印加によって液晶の配向を垂直配向に加速的に戻す動作)
 図24は、透明電極2と画素電極17との間に液晶駆動電圧を印加した時(液晶駆動電圧オン時)における白表示の状態を部分的に示す断面図である。
 画素電極17の電極部17a、17bと透明電極2との間に、液晶駆動電圧を印加すると、画素電極17と透明電極2との間に電界が発生する。このような電界の作用によって、液晶分子139は傾斜し、アレイ基板200の基板面に平行に倒れ、液晶表示装置LCD2において白表示が行われる。なお、液晶駆動電圧オン時では、第2タッチセンシング配線7には、電圧が印加されていない。
 一方、図25は、透明電極2と画素電極17との間に対する液晶駆動電圧の印加を停止した直後(液晶駆動電圧オフ時)における液晶分子にリセット電圧を印加したときの液晶分子の戻りを示す断面図である。また、図25では、2つの第2タッチセンシング配線7、即ち、第1配線7aと第2配線7dとの間にリセット電圧を印加している。これによって、第1配線7aと第2配線7dとの間(第2配線7dから第1配線7aに向かう方向)に電界を発生させ、アレイ基板200の基板面に平行に倒れた液晶分子の配向を、垂直配向に加速的に戻らせている。この結果、液晶表示が、白表示から黒表示に変化している。
 具体的に、液晶駆動電圧がオフとなった後、第1配線7aの電位を0V(グランド)に設定するとともに第2配線7dにリセット電圧を印加することによって、即ち、第1配線7aと第2配線7dとの間にリセット電圧を印加することによって、第2配線7dから第1配線7aに向けて電界が発生する。平面視において、このような電界の発生方向は、第1配線7aと第2配線7dとの間に位置する液晶層300、及び、ソース配線14、15を横切る方向である。この場合、負の誘電率異方性を有する液晶分子138においては、印加される電界方向に対して分子の長軸が直角になる。したがって、図25に示すように、液晶分子138の配向は、初期配向である垂直配向となり、短い時間で黒表示が得られる。
 第1配線7aと第2配線7dとの間に印加されるリセット電圧は、液晶駆動電圧(例えば、6V)より低い電圧、或いは、液晶駆動電圧と同じ電圧であってもよい。液晶分子を動作させる閾値電圧が、例えば、0.5V~6Vであることから、リセット電圧は、0.5V~6V(前記液晶駆動電圧)の範囲内の電圧でよい。リセット電圧は、基板面に平行に倒れた液晶分子の配向を垂直配向(初期配向)に加速的に戻らせるための電圧であるので、その電圧値を低くしてもよい。第1配線7aと第2配線7dとの間へのリセット電圧の印加により、τoffを大きく短縮することができる。
 図26は、図25と同様に、透明電極2と画素電極17との間に対する液晶駆動電圧の印加を停止した直後(液晶駆動電圧オフ時)における液晶分子にリセット電圧を印加したときの液晶分子の戻りを示す断面図である。図26では、液晶駆動電圧がオフとなった後、第1配線7aと第2配線7dとの間にリセット電圧を印加し、傾斜していた液晶分子138、139の配向を初期配向である垂直配向に戻し、液晶表示装置LCD2において黒表示を行っている。ただし、第1配線7aにリセット電圧を印加し、第2配線7dの電位を0V(グランド)に設定している点で、図26は図25とは異なる。言い換えると、図26においては、図25に示したリセット電圧の正負が反転したリセット電圧が2つの配線7a、7d(導電配線)間に印加されている。これによって、第1配線7aと第2配線7dとの間(第1配線7aから第2配線7dに向かう方向)に電界を発生させ、アレイ基板200の基板面に平行に倒れた液晶分子の配向を、垂直配向に加速的に戻らせている。この結果、液晶表示が、白表示から黒表示に変化している。
 図25及び図26に示すようにリセット電圧の正電圧及び負電圧を反転させる駆動を交互に行うことによって、第2配線7dから第1配線7aに向かう方向に生じる電界と、第1配線7aから第2配線7dに向かう方向に生じる電界とが時間の経過に伴って交互に発生する。この結果、液晶セル内に蓄積するともに画像の焼きつきの原因となる電荷を中和することができる。
 第2タッチセンシング配線7にリセット電圧を印加するタイミングは、上述した図12に示すタイミングチャートに基づいて行われる。正電圧及び負電圧を反転させる駆動は、制御部120によって制御される。
(3.第2タッチセンシング配線7を用いてタッチセンシングを行う動作)
 図27及び図28は、図17に示すI-I’線に沿う図である。
 図27は、第2タッチセンシング配線7と第1タッチセンシング配線3との間にタッチセンシング駆動電圧を印加した時に発生するフリンジ電界の状況を部分的に示している。
 図28は、第2タッチセンシング配線7と第1タッチセンシング配線3との間にタッチセンシング駆動電圧を印加し、かつ、観察者に面している表示装置基板100の表面に指等のポインターが接触あるいは近接した時のフリンジ電界の変化を部分的に示している。
 なお、図27及び図28においては、図21に示す配線パターンに対応するように、第1配線7a、ダミー配線7b、ダミー配線7c、第2配線7d、ダミー配線7b、ダミー配線7c、第1配線7a、ダミー配線7b、ダミー配線7c、及び第2配線7dが、右側から左側に向けて配列している。図27及び図28では、第1タッチセンシング配線3は、タッチセンシング信号を検出するタッチ検出配線(タッチセンシング検出配線)として機能する。第1配線7a及び第2配線7dは、タッチ駆動配線(タッチセンシング駆動配線)として機能する。ダミー配線7b及びダミー配線7cの電位は、フローティング電位である。
 図27においては、タッチセンシング駆動電圧が印加された第2タッチセンシング配線7(7a、7d)と、第1タッチセンシング配線3(タッチ検出配線)との間にフリンジ電界が発生し、電気力線31、32が第2タッチセンシング配線7から第1タッチセンシング配線3に向くように発生している。この時、静電容量C2は、第2タッチセンシング配線7と第1タッチセンシング配線3との間で保持されている。
 その一方、図28に示すように、指等のポインターが透明基板21に接触あるいは近接した場合、第1タッチセンシング配線3は、静電容量の変化をタッチセンシング信号として検出する。
 なお、図27及び図28では、第1タッチセンシング配線3は、タッチ検出配線として機能しているが、第1タッチセンシング配線3は、タッチ駆動配線として機能してもよい。この場合、第2タッチセンシング配線7は、タッチ検出配線として機能する。このように、第1タッチセンシング配線3の役割は切り換えることができる。
 また、第2タッチセンシング配線7(7a、7b、7c、7d)上に、可視光吸収性を持たせた無機膜や有機膜を積層してもよい。可視光吸収性を有する無機膜を用いる場合には、例えば、金属酸化物膜やこの酸化物膜を含む多層構造で無機膜が構成される。可視光吸収性を有する有機膜を用いる場合には、例えば、後述する黒色層を有機膜として用いることができる。第2タッチセンシング配線7(7a、7b、7c、7d)の一部あるいは全部をタッチ駆動配線として用いることができ、或いは、第2タッチセンシング配線7(7a、7b、7c、7d)の一部あるいは全部をタッチ検出配線として用いることができる。
 本実施形態において、第2タッチセンシング配線7(7a、7d)をタッチ駆動配線として用いる場合、第2タッチセンシング配線7へのリセット電圧Vrの印加と、第2タッチセンシング配線7へのタッチセンシング駆動電圧Vtouchの印加は、後述するように、時分割で行われる。
 その一方、第2タッチセンシング配線7をタッチ検出配線として用いる場合、第1タッチセンシング配線3は、タッチ駆動配線として機能する。この場合、第1タッチセンシング配線3にタッチセンシング駆動電圧Vtouchが印加され、第2タッチセンシング配線7にリセット電圧Vrが印加され、第2タッチセンシング配線7がタッチセンシング信号を検出する。
 また、複数の第2タッチセンシング配線7のうちの一部の配線の電位を、フローティング電位としてもよい。また、リセット電圧の正電圧と負電圧とを切り換える時(例えば、電界発生状態(電界方向)を、図25に示す状態から図26に示す状態に変える時)に、2つの第2タッチセンシング配線7のうち一方をグランドに落としてもよい。第2タッチセンシング配線7へのリセット電圧の印加、第2タッチセンシング配線7の電位をフローティング電位への変更、あるいは、第2タッチセンシング配線7をグランドに接続(接地)するといった、第2タッチセンシング配線7の選択は、スイッチング素子を介在させて行うことができる。なお、タッチセンシングでは、上述した間引き駆動を行ってもよい。タッチセンシングの駆動周波数は、上述した実施形態と同様である。
(4.導電配線への電圧印加及びタッチセンシング動作の時分割駆動)
 本実施形態においては、第1実施形態において説明した図12に示す信号タイミングチャートに基づき、リセット電圧Vr及びタッチセンシング駆動電圧が時分割で第2タッチセンシング配線7に印加される。
 図12に示すように、黒表示安定期間Erにおいて、高い周波数でタッチセンシング信号の検出が行われている。この黒表示安定期間Erでは、LED等のバックライトユニットの発光素子の発光を停止することができる。白表示安定期間Wrは、例えば、映像信号印加後の透過率Transが安定する期間である。同様に、黒表示安定期間Erは、黒表示における透過率Transが安定する期間である。リセット電圧Vrがタッチセンシング信号に与える影響を軽減するために、少なくとも、映像信号がソース配線に印加された後、あるいは、リセット信号(リセット電圧Vr)が第2タッチセンシング配線7に印加された後、1msec~3msec経過したタイミングで、タッチセンシングを行う。
 縦電界方式が採用された液晶表示装置LCD2においても、上述した第1実施形態と同様の効果が得られる。
(第3実施形態)
 次に、本発明に係る液晶表示装置の第3実施形態を、図29から図33を参照しながら説明する。
 本実施形態に係る液晶表示装置LCD3においては、上述した第2実施形態に係る液晶表示装置LCD2の表示装置基板100にカラーフィルタが設けられており、負の誘電率異方性を有する液晶分子で液晶層300が構成され、突出部を有する共通電極がアレイ基板200に設けられている構成が採用されている。このため、液晶表示装置LCD3においては、透明電極と画素電極との間に挟持された液晶層300に縦電界を印加することによって液晶層300を駆動させる縦電界方式が基本的に採用されている。更に、液晶表示装置LCD3においては、縦電界によって液晶層300を駆動させるだけでなく、画素電極と共通電極との間に生じるフリンジ電界によって液晶層300を駆動させている。
 図29は、本発明の第3実施形態に係る液晶表示装置LCD3を部分的に示す平面図であり、表示装置基板100と液晶層300とが接触する面から表示装置基板100の表示面に向けて見た図である。
 図30は、本発明の第3実施形態に係る液晶表示装置を部分的に示す断面図であり、図29に示すD-D’線に沿う図である。
 図29に示すように、カラーフィルタを構成する赤フィルタR、緑フィルタG、及び青フィルタBが複数の画素開口部18に対応する位置に配置されている。画素開口部の形状は、一例として、平行四辺形である。画素開口部の形状としては、四角形、くの字形状パターン(dog-legged pattern)等の、少なくとも2辺が平行な多角形が採用される。
 図29及び図30に示すように、表示装置基板100においては、透明基板21上に、赤フィルタR、緑フィルタG、及び青フィルタBが配設され、フィルタR、G、B上にブラックマトリクスBM(ブラックマトリクス層)が具備されている。平面視において、ブラックマトリクスBMは、赤フィルタR、緑フィルタG、及び青フィルタBから選択される2つのフィルタの境界部に位置している。
 ブラックマトリクスBM、赤フィルタR、緑フィルタG、及び青フィルタBを覆うように透明樹脂層1が形成されている。ブラックマトリクスBMは、画素開口部18を区画する。
 透明電極2は、透明樹脂層1上に、X方向に平行なストライプパターンを有するように、X方向に配列された複数の画素開口部18と重なるように形成されている。透明電極2には、互いに隣接する画素開口部(赤フィルタR、緑フィルタG、及び青フィルタBが具備されている)の間の位置に、ITO開口部35が形成されている。ITO開口部35においては、ITO等の透明電極が形成されていない。ITO開口部35は、透明電極2に設けられたスリットであり、ITO開口部35の中心は、画素中央CLに一致している。
 透明電極2がストライプパターンを有するので、透明樹脂層1には、複数の帯状の透明電極2がY方向に配列している。互いに隣接する透明電極2の間には、スリット16が形成されている。スリット16部分には、ITO等の透明電極は形成されていない。スリット16には、平面視においてブラックマトリクスBMや第1タッチセンシング配線3が配置されている。
 図30に示すように、アレイ基板200は、第1絶縁層11下に設けられた第2絶縁層12と、第2絶縁層12と画素電極17(電極部17a、17b)との間に設けられた共通電極30とを備える。平面視において、共通電極30は、画素電極17と重なる重畳部37と、画素電極17の端部17cからX方向に突出している突出部46(はみ出し部分)とを有する。
 電極部17a、紙面左側に位置する突出部46(第1突出部)、及び紙面左側に位置する重畳部37(第1重畳部)と、電極部17b、紙面右側に位置する突出部46(第2突出部)、及び紙面右側に位置する重畳部37(第2重畳部)とは、画素中央CLに対して、線対称に配置されている。突出部46は、画素の長辺方向だけでなく、短辺方向に配設してもよい。
 ブラックマトリクスBMは、液晶層300により近い位置に配置することで、ブラックマトリクスBM近傍で発生する液晶配向不良領域における迷光や再反射光の漏れを低減することができる。
 液晶層300は、第2実施形態と同様、初期配向が垂直配向である液晶分子を有する。
 本実施形態に係る液晶表示装置LCD3においても、上記実施形態と同様に、第1絶縁層11上に複数の第2タッチセンシング配線7(7a、7b、7c、7d)が形成されている。本実施形態に係る複数の第2タッチセンシング配線7の機能は上記実施形態と同じであるため、説明を省略する。なお、本実施形態では、リセット電圧が印加される第2タッチセンシング配線7a(第1配線7a)及び第2タッチセンシング配線7d(第2配線7b)が図示されておらず、ダミー配線である第2タッチセンシング配線7b、7cが図30から図33に示されている。第2タッチセンシング配線7b、7cは電気的に浮いた状態(フローティング状態)である。
 以下の説明では、第2タッチセンシング配線7に対する電圧印加によって電界を発生させ、アレイ基板200の基板面に平行に倒れた液晶分子の配向を、垂直配向に加速的に戻らせているが、電界の方向のみを示しており、電圧が印加される導電配線は省略されている。なお、リセット電圧が印加される第2タッチセンシング配線7は、図30から図33に示されている画素に隣接する画素に配置されている。
 図30は、透明電極2と画素電極17との間に液晶駆動電圧が印加されていない状態、液晶分子138、139が垂直配向である状態、即ち、黒表示状態を示している。
 一方、図31は、透明電極2と画素電極17との間に液晶駆動電圧を印加した時(液晶駆動電圧オン時)における白表示の状態を部分的に示す断面図である。
 液晶駆動電圧オン時では、画素電極17と透明電極2との間、及び、画素電極17と共通電極30との間に液晶駆動電圧が印加される。電圧印加時、突出部46に近い位置にある液晶分子138は、画素電極17と共通電極30との間に生じる強い電界の発生に起因して、すぐに大きく倒れ、画素電極17と平行となるように配向される。残る液晶分子139は、突出部46の近くで配向された液晶分子138の動作が伝播するように、画素中央CLに対して線対称の方向に倒れる。
 このため、液晶分子138、139は、画素中央CLから線対称の並び(配列)となるように配向され、広い視野が確保される。
 図32は、液晶駆動電圧の印加を停止した直後(液晶駆動電圧オフ時)に、隣接画素の第1配線7a及び第2配線7dにリセット電圧が印加され、液晶分子138、139が垂直配向に戻った黒表示の状態を示している。
 リセット電圧の印加によって電界(右側から左側に向けて)が発生すると、アレイ基板200の基板面に平行に倒れた液晶分子の配向が、垂直配向に加速的に戻る。この結果、液晶表示が、白表示から黒表示に変化している。リセット電圧印加により、τoffは大きく短縮される。τoffの短縮によって、黒表示安定期間Erが長くなることから、この期間中に、バックライトユニットBUの発光を停止してもよい。
 図33は、液晶駆動電圧の印加を停止した直後(液晶駆動電圧オフ時)に、隣接画素の第1配線7a及び第2配線7dにリセット電圧が印加され、液晶分子138、139が垂直配向に戻った黒表示の状態を示している。ただし、リセット電圧の印加によって生じる電界の方向の点で、図33は、図32とは異なる。
 図33に示す動作においては、図32と同様の効果が得られる。更に、図32に示す電界と図33に示す電界とを交互に発生させることで、液晶セル内に蓄積するともに画像の焼きつきの原因となる電荷を中和することができる。
 本実施形態によれば、第2実施形態を同様の効果に加えて、突出部46に近い位置にある液晶分子138を、画素電極17と共通電極30との間に生じる強い電界によってすぐに大きく倒すことができる。即ち、液晶駆動電圧が液晶分子(液晶層)に印加された時の立ち上がり時間(以下、τon)を短縮することができる。更に、突出部46の近くで配向された液晶分子138の動作が伝播するように、液晶層300全体における液晶分子を画素中央CLに対して線対称の方向に倒すことができ、広い視野を確保することができる。
(第3実施形態の変形例)
 次に、本発明の第3実施形態に係る液晶表示装置の変形例を、図29、図30、図34、図35を参照しながら説明する。図34は、図29に示すE-E’線に沿う断面図である。図35は、本発明の第3実施形態に係る液晶表示装置の変形例を部分的に示す断面図であり、図29に示すF-F’線に沿う図であり、タッチ検出配線として機能する第1タッチセンシング配線3とタッチ駆動配線として機能する第2タッチセンシング配線7との間に生じる静電容量C3を説明するための図である。
 カラーフィルタに対するブラックマトリクスBMの位置の点で、第3実施形態の変形例は第3実施形態とは異なる。
 図34に示すように、ブラックマトリクスBM上、かつ、透明電極2のITO開口部35の位置に、第1タッチセンシング配線3が設けられている。
 図29及び図30と同様に、アレイ基板200は、第2絶縁層12と画素電極17(電極部17a、17b)との間に設けられた共通電極30とを備える。共通電極30は、画素電極17と重なる重畳部37と、画素電極17の端部17cからX方向に突出している突出部46(はみ出し部分)とを有する。
 液晶層300は、第3実施形態と同様、初期配向が垂直配向である液晶分子を有する。
 本変形例においては、液晶駆動電圧が画素電極17に印加されている時の液晶分子138、139の挙動と、第2タッチセンシング配線7にリセット電圧を印加した時の液晶分子138、139の挙動は、第3実施形態と同じである。
 共通電極30が突出部46を備えている電極構造は、視野角や中間調表示を向上させる。画素電極17の電極部17a、17bと透明電極2との間に液晶駆動電圧を印加することで、液晶分子138、139が倒れ、白表示が得られる(図31参照)。
 白表示の後、液晶駆動電圧をオフし、リセット電圧を第2タッチセンシング配線7に印加することで、平面視にて、液晶層300及びソース配線を横切るように電界が生じる。この電界の作用により、液晶分子138、139の配向は、加速的に垂直配向(初期配向)に戻る(図32参照)。
 同様に、白表示の後、液晶駆動電圧をオフし、リセット電圧を第2タッチセンシング配線7に印加することで、液晶層300及びソース配線を横切るように電界が生じる。この電界の作用により、液晶分子138、139の配向は、加速的に垂直配向(初期配向)に戻る(図33参照)。ここでは、リセット電圧の正電圧と負電圧とを反転させ、反転されたリセット電圧を第2タッチセンシング配線7に印加している。この結果、向きが異なる電界を液晶層300に与えることができ、図32及び図33の場合と同じ効果が得られる。
 図35を参照し、第2タッチセンシング配線7を、タッチセンシング配線として用いるタッチセンシング技術を説明する。
 図35に示すように、液晶表示装置LCD3においては、平面視、緑フィルタGと青フィルタBとの境界と重なるようにダミー配線7cが設けられており、青フィルタBと赤フィルタRとの境界と重なるように第2導電配線7dが設けられている。
 第2配線7dと第1タッチセンシング配線3との間にタッチセンシング駆動電圧を印加することによってフリンジ電界が発生する。フリンジ電界の発生状態は、電気力線31、32で示されている。静電容量C2は、第2配線7dと第1タッチセンシング配線3との間に保持される。第1実施形態で説明したように、透明基板21に指等のポインターが接触あるいは近接すると、静電容量C2が変化し、この静電容量の変化がタッチセンシング信号として第1タッチセンシング配線3によって検出される。一方、ダミー配線7cは、電気的に浮いた電位(フローティング電位)を有していることから、フリンジ電界は発生していない。
 なお、第2タッチセンシング配線7(第2配線7d及びダミー配線7c)は、アルミニウム合金で構成されてもよい。
(第4実施形態)
 次に、本発明に係る液晶表示装置の第4実施形態を、図36を参照しながら説明する。
 本発明の第4実施形態に係る液晶表示装置を部分的に示す回路図であって、一画素に2つのアクティブ素子を具備したアレイ構造を示す図である。
 図36に示すように、画素開口部に対応する画素の各々は、画素電極17を有している。画素電極17には、2つのTFT、即ち、第1アクティブ素子28a及び第2アクティブ素子28bが接続されている。互いに隣接する2つの画素の間(互いに隣接する2つの画素開口部の間)には、X方向に延在する第1ゲート配線10及び第2ゲート配線9が設けられ、Y方向に延在する奇数列の第2ソース配線15及び偶数列の第1ソース配線14が設けられている。第2ソース配線15及び第1ソース配線14の各々には、アクティブ素子の一部を構成するソース電極が接続されている。
 例えば、映像信号が映像信号タイミング制御部121から出力されてソース配線に入力される際、奇数列の第2ソース配線15には映像信号として負の電圧が供給され、偶数列の第1ソース配線14には映像信号として正の電圧が印加される。
 このことから、第2アクティブ素子28bは、映像信号が負の電圧として供給される第2ソース配線15に電気的に接続されたソース電極を有する。第1アクティブ素子28aは、映像信号が正の電圧として供給される第1ソース配線14に電気的に接続されたソース電極を有する。
 第1ゲート配線10及び第2ゲート配線9に関し、例えば、映像表示のフレーム毎に、一方のゲート配線にゲート電圧が印加される。このゲート電圧は、奇数列の第2ソース配線15あるいは偶数列のソース配線のいずれかに同期する。
 第1アクティブ素子28aは、第1ゲート配線10にゲート信号が入力された状態で偶数列の第1ソース配線14に映像信号が入ったときに動作する。この時、画素電極17の電位は正となる。
 例えば、次のタイミングで、第2ゲート配線9にゲート信号が入力された状態で奇数列の第2ソース配線15に映像信号が入ったとき、第2アクティブ素子28bは動作する。この時、画素電極17の電位は負となる。
 図36に示すアレイ構造においては、上記のようなTFT動作を用いることで、ドット反転駆動あるいはカラム反転駆動を行うことができる。このアレイ構造では、ソース配線の出力極性を反転させずに、画素電極17の電位を正又は負にすることができる。
 ところで、一つの画素電極17に一つのアクティブ素子が対応するように画素が構成されている通常の画素構造では、出力反転に伴って消費電力が増加したり、ノイズが発生したりする。その一方、図36に示すアレイ構造においては、消費電力の低減し、ノイズの発生を大きく削減することができる。従って、タッチセンシングの感度を向上させることができる。
 図36に示すアレイ構造を採用することにより、ドッド反転駆動やカラム反転駆動といった液晶駆動方法により、画素電極17の電位を正あるいは負に設定することができる。このとき、表示装置基板100に設けられた透明電極2は、ゼロボルト等の定電位に設定できる。透明電極2の電位を変動させる必要がないので、タッチセンシング駆動に対するノイズを更に抑制することができる。加えて、第2ソース配線15及び第1ソース配線14の電位を負あるいは正の電位に固定できるので、ソース配線に印加される信号の極性を切り換える際に生じるにノイズ発生を抑制することができる。
 更に、本実施形態に係る構造を有する液晶表示装置が上述したタッチセンシング機能を備えている場合、第2ソース配線15及び第1ソース配線14の電位の極性を固定することにより、タッチセンシングへの悪影響をなくすことができる。
 速い応答性を得るために、複数のタッチセンシング配線のうち選択された配線を用いたタッチセンシング(間引き駆動)によって、タッチ駆動電極を走査することができる。また、タッチセンシングでの駆動電極と検出電極を切り換え、透明電極を一定の周波数での電圧を印加する駆動電極(走査電極)としてもよい。
 なお、タッチセンシングや液晶駆動での、駆動電極に印加する電圧(交流信号)は、正負の電圧を反転する反転駆動方式であってもよい。タッチ駆動と液晶駆動とは時分割で行われてもよく、時分割でなくてもよい。
 また、駆動電極に印加する電圧(交流信号)として、印加する交流信号の電圧幅(振幅)を小さくすることで液晶表示への影響を軽減することができる。
 上記のように、本実施形態に係る液晶表示装置では、第2タッチセンシング配線7の電位を定電位にした場合、タッチセンシング配線の駆動周波数や信号検出のタイミングを、液晶の駆動周波数やタイミングに依存することなく設定できる。タッチ駆動電極の駆動周波数を、液晶駆動の周波数と異なる周波数、あるいは、より高い駆動周波数に設定することができる。
 一般に、液晶駆動の周波数は、60Hz、あるいは、この周波数の整数倍の駆動周波数である。通常、タッチセンシング電極は、液晶駆動の周波数に伴うノイズの影響を受ける。更に、通常の家庭電源は50Hzあるいは60Hzの交流電源であり、こうした外部電源で動作する電気機器から生じるノイズを、タッチセンシング電極が拾い易い。
 従って、タッチ駆動の周波数を50Hzや60Hzの周波数から、あるいは、この周波数の整数倍から若干シフトさせた異なる周波数に設定することで、液晶駆動や外部電子機器から発生するノイズの影響を大きく低減することができる。あるいは、図12に示す時間軸で信号の印加タイミングをシフトさせてもよい。シフト量は、若干量でよく、例えば、ノイズ周波数から±3%~±17%のシフト量でよく、ノイズ周波数との干渉を低減することができる。例えば、タッチ駆動の周波数は、数kHz~数百kHzの範囲から、上記液晶駆動周波数や電源周波数と干渉しない異なる周波数を選択することができる。液晶駆動周波数や電源周波数と干渉しない異なる周波数を選択することで、例えば、ドット反転駆動において生じるカップリングノイズ等のノイズの影響を軽減することができる。
 ところで、3D(立体映像)表示を行う表示装置の場合、通常の2次元画像の表示に加え、3次元的に手前の画像や奥にある画像を表示するために複数の映像信号(例えば、右目用の映像信号と左目用の映像信号)が必要となる。このため、液晶駆動の周波数は、例えば、240Hzあるいは480Hz等の高速駆動及び多くの映像信号が必要となる。
 このとき、タッチセンシング駆動の周波数を液晶駆動の周波数と異ならせることができる本実施形態のメリットは大きくなる。例えば、本実施形態により3D表示のゲーム機器において、高速・高精度のタッチセンシングが可能となる。
 本実施形態では、ゲーム機器や現金自動支払機等の指等のタッチ入力頻度の高いディスプレイにおいても特に有用である。リセット電圧Vr印加後の黒表示安定期間Erを、3D(立体画像)表示の右目用画像と左目用画像の切り換え時に挿入される黒表示に用いてもよい。
 また、タッチセンシング駆動においては、駆動電圧を、タッチセンシング配線の全てに供給するのでなく、間引き駆動によってタッチ位置の検出を行うことで、タッチセンシング駆動における消費電力を低減することができる。
 上述した本発明の実施形態に係る液晶表示装置においては、垂直配向の液晶層を縦電界で駆動している。
 縦電界方式に適用可能な液晶駆動方式としては、VA(Vertical Alignment)方式、HAN(Hybrid-aligned Nematic)方式、TN(Twisted Nematic)方式、OCB(Optically Compensated Bend)方式、CPA(Continuous Pinwheel Alignment)方式、ECB(Electrically Controlled Birefringence)方式、TBA(Transverse Bent Alignment)方式等が挙げられ、適宜選択して用いることができる。なお、VAモードにおいては、優れたノーマリーブラック表示が実現されるため、黒表示を活かすためにVAモードを採用することが好ましい。
 また、垂直配向の液晶を駆動するVAモードは、水平配向の液晶を駆動するFFSモードより正面輝度の高さ、及び黒表示の黒レベルの高さの観点で優れている。VAモードに用いられる液晶材料としては、例えば、1×1013Ωcm以上の固有抵抗率を有する液晶層を実現する高純度材料を用いることが好ましい。液晶駆動は、ドット反転駆動のほか共通電極である透明電極を定電位とするカラム反転駆動(ソース反転駆動)であってもよい。あるいは、透明電極を定電位とするカラム反転駆動と、透明電極を定電位とするドット反転駆動を組み合わせてもよい。
 VA等の縦電界方式は、例えば、フレーム反転やドット反転等の液晶駆動により、画素電極17と透明電極2との間で、正負の液晶駆動電圧が印加されるので、FFSと比較してインセルタッチでの静電容量の偏りが少なく、表示の焼きつきが少ない。加えて、正負のリセット電圧の印加を、それぞれの画素に対する映像書き込みの後、水平ライン反転ごと、もしくは、一画面のフレーム反転ごとに行うことで、タッチセンシングで蓄積された静電容量の偏りの緩和を兼ね、インセル方式のタッチセンシングの精度を向上させることができる。
 本発明の実施形態に係る表示装置は、種々の応用が可能である。本発明の実施形態に係る表示装置が適用可能な電子機器としては、携帯電話、携帯型ゲーム機器、携帯情報端末、パーソナルコンピュータ、電子書籍、ビデオカメラ、デジタルスチルカメラ、ヘッドマウントディスプレイ、ナビゲーションシステム、音響再生装置(カーオーディオ、デジタルオーディオプレイヤ等)、複写機、ファクシミリ、プリンター、プリンター複合機、自動販売機、現金自動預け入れ払い機(ATM)、個人認証機器、光通信機器等が挙げられる。上記の各実施形態は、自由に組み合わせて用いることができる。
 本発明の好ましい実施形態を説明し、上記で説明してきたが、これらは本発明の例示的なものであり、限定するものとして考慮されるべきではないことを理解すべきである。追加、省略、置換、およびその他の変更は、本発明の範囲から逸脱することなく行うことができる。従って、本発明は、前述の説明によって限定されていると見なされるべきではなく、請求の範囲によって制限されている。
1・・・透明樹脂層
2・・・透明電極
3・・・第1タッチセンシング配線
4・・・第2導電性金属酸化物層
5・・・銅合金層
6・・・第1導電性金属酸化物層
7・・・第2タッチセンシング配線
8・・・黒色層(第1黒色層)
9・・・第2ゲート配線
10・・・第1ゲート配線
11・・・第1絶縁層
12・・・第2絶縁層
13・・・第3絶縁層
14・・・第1ソース配線(偶数列のソース配線)
15・・・第2ソース配線(奇数列のソース配線)
16・・・スリット
17・・・画素電極
17a、17b・・・電極部(画素電極)
18・・・画素開口部
19・・・黒色層(第2黒色層)
20、30・・・共通電極
21・・・第1透明基板(透明基板)
22・・・第2透明基板(透明基板)
23・・・遮光層(遮光パターン)
24・・・ソース電極
25・・・ゲート電極
26・・・ドレイン電極
27・・・チャネル層
28、28a・・・第1アクティブ素子
28、28b・・・第2アクティブ素子
29・・・コンタクトホール
30・・・共通電極
31、32・・・電気力線
33・・・端子部
36・・・コモン配線
38、39・・・液晶分子
100・・・表示装置基板(対向基板)
138、139・・・液晶分子
200・・・アレイ基板
300・・・液晶層
R・・・配向方向(配向処理の方向、初期配向状態での配向方向)
θ・・・角度(画素開口の長手方向Yからの傾き)

Claims (27)

  1.  液晶表示装置であって、
     第1タッチセンシング配線を備えた表示装置基板と、
     複数の多角形状の画素開口部と、前記複数の画素開口部の各々に設けられた画素電極と、前記画素電極に電気的に接続された第1及び第2アクティブ素子と、前記第1アクティブ素子に電気的に連携された第1ゲート配線と、前記第2アクティブ素子に電気的に連携された第2ゲート配線と、平面視において前記第1ゲート配線に直交して前記第1アクティブ素子に電気的に連携された第1ソース配線と、平面視において前記第2ゲート配線に直交して前記第2アクティブ素子に電気的に連携された第2ソース配線と、前記画素電極の下に設けられた第1絶縁層と、前記第1絶縁層の下に設けられた第2絶縁層と、前記第1絶縁層と前記第2絶縁層との間に設けられた共通電極と、平面視において前記第1タッチセンシング配線に直交する第2タッチセンシング配線とを備えるアレイ基板と、
     前記表示装置基板と前記アレイ基板との間に挟持された液晶層と、
     前記第1ソース配線に正の第1映像信号を供給し、前記第2ソース配線に負の第2映像信号を供給し、前記第1映像信号及び前記第2映像信号の供給に同期して前記画素電極と前記共通電極との間に液晶駆動電圧を印加することによって前記液晶層を駆動させ、映像表示を行い、映像表示が行われた後に前記第2タッチセンシング配線に電圧を印加する制御部と、
     を含む液晶表示装置。
  2.  平面視において、前記第1ゲート配線、前記第2ゲート配線、前記第1ソース配線、及び前記第2ソース配線によって前記画素開口部が区画されている請求項1に記載の液晶表示装置。
  3.  前記画素開口部の長辺は、前記第1ソース配線及び前記第2ソース配線に沿う方向に延在している請求項1に記載の液晶表示装置。
  4.  平面視において、前記第1タッチセンシング配線及び前記第2タッチセンシング配線のうち一方は、前記第1ゲート配線及び前記第2ゲート配線に重畳するように設けられており、前記第1タッチセンシング配線及び前記第2タッチセンシング配線のうち他方は、前記第1ソース配線及び前記第2ソース配線に重畳するように設けられている請求項1に記載の液晶表示装置。
  5.  前記表示装置基板は、表示面を有し、
     断面視において、前記表示面から前記第1タッチセンシング配線までの距離よりも、前記表示面から前記第2タッチセンシング配線までの距離が大きく、
     前記第2タッチセンシング配線は、前記第1絶縁層上の位置、前記第2絶縁層上の位置、及び前記第2絶縁層下の位置のうち、いずれかの位置に設けられている請求項1に記載の液晶表示装置。
  6.  前記第1ゲート配線及び前記第2ゲート配線は、前記複数の画素開口部のうち互いに隣接する2つの画素開口部の間に位置するように、互いに平行に配設されている請求項1に記載の液晶表示装置。
  7.  前記アレイ基板の裏面もしくは側面に設けられたバックライトユニットを備え、
     前記第2タッチセンシング配線に前記電圧が印加されている時には、前記バックライトユニットの発光を停止する請求項1に記載の液晶表示装置。
  8.  前記液晶層は、前記画素電極と前記共通電極との間に生じるフリンジ電界によって駆動される請求項1に記載の液晶表示装置。
  9.  前記表示装置基板は、透明電極を有し、
     前記液晶層は、前記画素電極と前記共通電極との間に生じるフリンジ電界によって駆動されるとともに、前記画素電極と前記透明電極との間に生じる前記液晶層の厚み方向における電界で駆動される請求項8に記載の液晶表示装置。
  10.  平面視において、前記共通電極は、前記画素電極と重なる重畳部と、前記画素電極の端部から突出している突出部とを有する請求項1に記載の液晶表示装置。
  11.  前記制御部は、前記液晶駆動電圧が前記画素電極に印加された後、かつ、前記液晶駆動電圧が前記画素電極に印加されていない時に、前記第2タッチセンシング配線に前記電圧を印加する請求項1に記載の液晶表示装置。
  12.  前記第2タッチセンシング配線に印加される電圧は、正の電圧と、負の電圧とを含み、
     前記電圧は、映像表示の一定期間毎に、正又は負に反転される請求項1に記載の液晶表示装置。
  13.  前記第1タッチセンシング配線及び前記第2タッチセンシング配線の各々は、金属層を含む請求項1に記載の液晶表示装置。
  14.  前記表示装置基板は、第1透明基板を含み、
     前記第1タッチセンシング配線は、前記第1透明基板の上方に形成された黒色層と、前記黒色層上に積層された前記金属層とによって構成された2層構造を有する請求項13に記載の液晶表示装置。
  15.  前記アレイ基板は、第2透明基板を含み、
     前記第2タッチセンシング配線は、前記第2透明基板の上方に形成された黒色層と、前記黒色層上に積層された前記金属層とによって構成された2層構造を有する請求項13に記載の液晶表示装置。
  16.  前記金属層は、銅含有層であり、
     前記金属層は、銅含有層が導電性金属酸化物層で挟持された構成を有する請求項13に記載の液晶表示装置。
  17.  前記導電性金属酸化物層が、酸化亜鉛、酸化インジウム、及び酸化錫を含む複合酸化物である請求項16に記載の液晶表示装置。
  18.  前記第1及び第2アクティブ素子は、半導体で構成されたチャネル層を有する薄膜トランジスタであり、
     平面視において、前記第2タッチセンシング配線の前記金属層の一部が、前記チャネル層を覆う遮光層を形成している請求項13に記載の液晶表示装置。
  19.  前記チャネル層は、酸化物半導体で構成されている請求項18に記載の液晶表示装置。
  20.  前記表示装置基板上には、前記画素開口部に対応する位置に、少なくとも、赤フィルタ、緑フィルタ、及び青フィルタのいずれかが設けられている請求項1に記載の液晶表示装置。
  21.  前記表示装置基板上には、前記画素開口部を区画するブラックマトリクス層を備える請求項20に記載の液晶表示装置。
  22.  液晶表示装置であって、
     第1タッチセンシング配線を備えた表示装置基板と、
     複数の多角形状の画素開口部と、前記複数の画素開口部の各々に設けられた画素電極と、前記画素電極に電気的に接続された第1及び第2アクティブ素子と、前記第1アクティブ素子に電気的に連携された第1ゲート配線と、前記第2アクティブ素子に電気的に連携された第2ゲート配線と、平面視において前記第1ゲート配線に直交して前記第1アクティブ素子に電気的に連携された第1ソース配線と、平面視において前記第2ゲート配線に直交して前記第2アクティブ素子に電気的に連携された第2ソース配線と、前記画素電極の下に設けられた第1絶縁層と、前記第1絶縁層の下に設けられた第2絶縁層と、前記第1絶縁層と前記第2絶縁層との間に設けられた共通電極と、平面視において前記第1タッチセンシング配線に直交する第2タッチセンシング配線とを備えるアレイ基板と、
     前記表示装置基板と前記アレイ基板との間に挟持された液晶層と、
     前記第1ソース配線に正の第1映像信号を供給し、前記第2ソース配線に負の第2映像信号を供給し、前記第1映像信号及び前記第2映像信号の供給に同期して前記画素電極と前記共通電極との間に液晶駆動電圧を印加することによって前記液晶層を駆動させ、映像表示の安定期間、及び、映像表示後の黒表示安定期間の少なくとも一方の安定期間で、前記第1タッチセンシング配線及び前記第2タッチセンシング配線によるタッチセンシング駆動を行う制御部と、
     を含む液晶表示装置。
  23.  前記制御部は、
     前記タッチセンシング駆動を行う際に、
     前記第1タッチセンシング配線及び前記第2タッチセンシング配線の一方にタッチセンシング駆動電圧を印加し、前記第1タッチセンシング配線及び前記第2タッチセンシング配線の他方を通じてタッチセンシング信号を検出する請求項22に記載の液晶表示装置。
  24.  前記第2タッチセンシング配線に前記タッチセンシング駆動電圧が印加され、前記第1タッチセンシング配線が前記タッチセンシング信号を検出する請求項23に記載の液晶表示装置。
  25.  前記アレイ基板の裏面もしくは側面に設けられたバックライトユニットを備え、
     前記黒表示安定期間は、前記バックライトユニットの発光が停止された期間である請求項22に記載の液晶表示装置。
  26.  前記表示装置基板上には、前記画素開口部に対応する位置に、少なくとも、赤フィルタ、緑フィルタ、及び青フィルタのいずれかが設けられている請求項22に記載の液晶表示装置。
  27.  前記表示装置基板上に設けられ、前記画素開口部を区画するブラックマトリクス層を備える請求項26に記載の液晶表示装置。
PCT/JP2015/063761 2015-05-13 2015-05-13 液晶表示装置 WO2016181524A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2015/063761 WO2016181524A1 (ja) 2015-05-13 2015-05-13 液晶表示装置
JP2015548525A JP6065125B1 (ja) 2015-05-13 2015-05-13 液晶表示装置
CN201580079930.3A CN107533252B (zh) 2015-05-13 2015-05-13 液晶显示装置
KR1020177034974A KR102017410B1 (ko) 2015-05-13 2015-05-13 액정 표시 장치
US15/810,914 US10452221B2 (en) 2015-05-13 2017-11-13 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/063761 WO2016181524A1 (ja) 2015-05-13 2015-05-13 液晶表示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/810,914 Continuation US10452221B2 (en) 2015-05-13 2017-11-13 Liquid crystal display device

Publications (1)

Publication Number Publication Date
WO2016181524A1 true WO2016181524A1 (ja) 2016-11-17

Family

ID=57247924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063761 WO2016181524A1 (ja) 2015-05-13 2015-05-13 液晶表示装置

Country Status (5)

Country Link
US (1) US10452221B2 (ja)
JP (1) JP6065125B1 (ja)
KR (1) KR102017410B1 (ja)
CN (1) CN107533252B (ja)
WO (1) WO2016181524A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108196380A (zh) * 2017-12-29 2018-06-22 昆山龙腾光电有限公司 视角可切换的液晶显示装置及驱动方法
JP6451897B1 (ja) * 2017-09-11 2019-01-16 凸版印刷株式会社 表示装置及び表示装置基板
WO2019031382A1 (ja) * 2017-08-09 2019-02-14 シャープ株式会社 位置入力機能付き表示装置
WO2019058491A1 (ja) * 2017-09-22 2019-03-28 シャープ株式会社 表示装置およびその駆動方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6514593B2 (ja) * 2015-07-17 2019-05-15 パナソニック液晶ディスプレイ株式会社 タッチ検出機能付表示装置
CN105511141B (zh) * 2015-12-31 2019-01-29 上海天马微电子有限公司 一种阵列基板以及触控显示面板
WO2018173113A1 (ja) * 2017-03-21 2018-09-27 凸版印刷株式会社 表示装置及び表示装置基板
TWI673635B (zh) 2017-03-28 2019-10-01 日商日東電工股份有限公司 內置型液晶面板及液晶顯示裝置
CN107195665B (zh) * 2017-06-23 2019-12-03 京东方科技集团股份有限公司 一种阵列基板、其制作方法、显示面板及显示装置
JP2019109721A (ja) * 2017-12-19 2019-07-04 カシオ計算機株式会社 電子機器、電子機器の制御方法及びプログラム
KR102330968B1 (ko) * 2018-01-15 2021-12-01 도판 인사츠 가부시키가이샤 전자 기기
CN108761901A (zh) * 2018-04-28 2018-11-06 武汉华星光电技术有限公司 阵列基板和显示面板
CN108681122B (zh) * 2018-05-16 2020-11-06 深圳市华星光电技术有限公司 面内转换型显示面板和显示装置
US10777150B2 (en) * 2018-05-29 2020-09-15 Wuhan China Star Optoelectronics Technology Co., Ltd. Controlling method of display device and display device
KR102438966B1 (ko) * 2018-06-26 2022-09-05 도판 인사츠 가부시키가이샤 블랙 매트릭스 기판 및 표시 장치
CN113056702B (zh) * 2019-03-25 2023-09-19 Jvc建伍株式会社 相位调制装置以及相位调制方法
CN113258274A (zh) * 2020-02-10 2021-08-13 东友精细化工有限公司 天线堆叠结构和包括天线堆叠结构的显示装置
TWI755028B (zh) * 2020-08-17 2022-02-11 友達光電股份有限公司 內建式觸控顯示面板
US20230409144A1 (en) * 2022-06-15 2023-12-21 Microsoft Technology Licensing, Llc Noise compensation using a spatial noise model

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004354407A (ja) * 2003-05-26 2004-12-16 Hitachi Ltd 液晶表示装置
JP2005129948A (ja) * 2003-10-23 2005-05-19 Samsung Electronics Co Ltd 光感知素子と、これを有するアレイ基板及び液晶表示装置
JP2010170246A (ja) * 2009-01-21 2010-08-05 Semiconductor Energy Lab Co Ltd タッチパネル、電子機器
WO2014203418A1 (ja) * 2013-06-19 2014-12-24 凸版印刷株式会社 表示装置用基板および表示装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5259949A (en) 1975-05-07 1977-05-17 Hitachi Constr Mach Co Ltd Muddy water treating apparatus
JPS6037322B2 (ja) 1977-11-19 1985-08-26 トキコ株式会社 アクチユエ−タ機構
JPS5517611A (en) 1978-07-21 1980-02-07 Hitachi Ltd Carburetor
JPH0422486A (ja) 1990-05-16 1992-01-27 Mitsubishi Heavy Ind Ltd 水中の残留オキシダントの除去方法
JP2653014B2 (ja) 1993-07-26 1997-09-10 日本電気株式会社 アクティブマトリックス液晶ディスプレイ装置
JP2000020033A (ja) 1998-07-03 2000-01-21 Matsushita Electric Ind Co Ltd 液晶表示装置
JP4019697B2 (ja) * 2001-11-15 2007-12-12 株式会社日立製作所 液晶表示装置
TWI340953B (en) 2006-02-03 2011-04-21 Chimei Innolux Corp Systems for displaying images and control methods thereof
CN104965621B (zh) 2006-06-09 2018-06-12 苹果公司 触摸屏液晶显示器及其操作方法
US8243027B2 (en) 2006-06-09 2012-08-14 Apple Inc. Touch screen liquid crystal display
KR101295943B1 (ko) 2006-06-09 2013-08-13 애플 인크. 터치 스크린 액정 디스플레이
KR101297804B1 (ko) * 2006-07-25 2013-08-20 삼성디스플레이 주식회사 어레이 기판 및 이를 갖는 표시패널
US20080167526A1 (en) 2007-01-08 2008-07-10 Crank Justin M Non-Occlusive, Laterally-Constrained Injection Device
TWI376537B (en) * 2008-12-11 2012-11-11 Au Optronics Corp Structure of touch device and touch panel
KR101738570B1 (ko) * 2010-07-23 2017-05-22 엘지디스플레이 주식회사 터치인식 액정표시장치
JP5722573B2 (ja) * 2010-08-24 2015-05-20 株式会社ジャパンディスプレイ タッチ検出機能付き表示装置
US9165948B2 (en) * 2011-10-31 2015-10-20 Sharp Kabushiki Kaisha Thin film transistor array substrate and liquid crystal display device
JP5472373B2 (ja) * 2012-05-17 2014-04-16 凸版印刷株式会社 液晶表示装置
JP6141748B2 (ja) * 2012-10-26 2017-06-07 株式会社ジャパンディスプレイ 表示装置
JP5778119B2 (ja) 2012-11-30 2015-09-16 株式会社ジャパンディスプレイ タッチ検出機能付き表示装置及び電子機器
CN103293750B (zh) * 2012-12-14 2016-05-11 上海天马微电子有限公司 一种内嵌式触摸屏彩膜基板及其制造方法
WO2014156066A1 (ja) * 2013-03-25 2014-10-02 パナソニック株式会社 入力装置
CN103186307B (zh) * 2013-03-26 2015-10-14 合肥京东方光电科技有限公司 一种电容式内嵌触摸屏及显示装置
CN104375729B (zh) * 2014-11-20 2017-08-25 深圳市华星光电技术有限公司 电容式内嵌触控屏及显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004354407A (ja) * 2003-05-26 2004-12-16 Hitachi Ltd 液晶表示装置
JP2005129948A (ja) * 2003-10-23 2005-05-19 Samsung Electronics Co Ltd 光感知素子と、これを有するアレイ基板及び液晶表示装置
JP2010170246A (ja) * 2009-01-21 2010-08-05 Semiconductor Energy Lab Co Ltd タッチパネル、電子機器
WO2014203418A1 (ja) * 2013-06-19 2014-12-24 凸版印刷株式会社 表示装置用基板および表示装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031382A1 (ja) * 2017-08-09 2019-02-14 シャープ株式会社 位置入力機能付き表示装置
JP6451897B1 (ja) * 2017-09-11 2019-01-16 凸版印刷株式会社 表示装置及び表示装置基板
WO2019049360A1 (ja) * 2017-09-11 2019-03-14 凸版印刷株式会社 表示装置及び表示装置基板
WO2019058491A1 (ja) * 2017-09-22 2019-03-28 シャープ株式会社 表示装置およびその駆動方法
CN108196380A (zh) * 2017-12-29 2018-06-22 昆山龙腾光电有限公司 视角可切换的液晶显示装置及驱动方法

Also Published As

Publication number Publication date
JPWO2016181524A1 (ja) 2017-06-01
CN107533252A (zh) 2018-01-02
KR102017410B1 (ko) 2019-09-02
US20180067592A1 (en) 2018-03-08
KR20170142201A (ko) 2017-12-27
JP6065125B1 (ja) 2017-01-25
US10452221B2 (en) 2019-10-22
CN107533252B (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
US10452221B2 (en) Liquid crystal display device
US20210311581A1 (en) Display device and method of manufacturing same
US10437115B2 (en) Liquid crystal display device
KR102142844B1 (ko) 액정 표시 장치 및 표시 장치용 기판
JP6175698B1 (ja) 液晶表示装置
JP5924452B2 (ja) 液晶表示装置
US10175834B2 (en) Position input device and display device
US20150363016A1 (en) Sensor-equipped display device
US11442568B2 (en) Sensor device
JP5333969B2 (ja) 液晶装置、電子機器
JP5489267B2 (ja) 液晶装置、電子機器
JP2007004126A (ja) 液晶装置及び電子機器
CN109073925B (zh) 显示装置
TWI641894B (zh) Liquid crystal display device and substrate for display device
TWI591402B (zh) Liquid crystal display device
TWI603252B (zh) Liquid crystal display device
JP2008134489A (ja) 表示装置
TWI576744B (zh) Liquid crystal display device
TW201741749A (zh) 顯示裝置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015548525

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177034974

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15891848

Country of ref document: EP

Kind code of ref document: A1