WO2016178421A1 - ループ流式バブル発生ノズルを備えた液体供給装置 - Google Patents

ループ流式バブル発生ノズルを備えた液体供給装置 Download PDF

Info

Publication number
WO2016178421A1
WO2016178421A1 PCT/JP2016/063522 JP2016063522W WO2016178421A1 WO 2016178421 A1 WO2016178421 A1 WO 2016178421A1 JP 2016063522 W JP2016063522 W JP 2016063522W WO 2016178421 A1 WO2016178421 A1 WO 2016178421A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid
flow type
loop flow
chamber
Prior art date
Application number
PCT/JP2016/063522
Other languages
English (en)
French (fr)
Inventor
大 松永
大介 松永
Original Assignee
有限会社オーケー・エンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社オーケー・エンジニアリング filed Critical 有限会社オーケー・エンジニアリング
Priority to JP2017516614A priority Critical patent/JP6492386B2/ja
Priority to CN201680025133.1A priority patent/CN107960075B/zh
Publication of WO2016178421A1 publication Critical patent/WO2016178421A1/ja
Priority to HK18107031.6A priority patent/HK1247603A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D1/00Apparatus or devices for dispensing beverages on draught
    • B67D1/07Cleaning beverage-dispensing apparatus

Definitions

  • the present invention relates to a liquid supply apparatus including a loop flow type bubble generating nozzle that generates bubbles (bubbles) including fine bubbles (nano bubbles and micro bubbles).
  • the beer server which is a liquid supply device for handling beer as a beverage, naturally needs to be placed under strict hygiene management, but as the number of days of use increases, the remaining beer liquid adheres and becomes soiled with organic substances. And accumulate. Therefore, this beer server needs to be regularly cleaned in order to maintain good hygiene.
  • the beer server usually has a structure that passes through a passage through the cooling tank to cool the beer that is a beverage, and the cooling passage is complicated in structure such as a meandering shape or a coil shape. The shape makes cleaning difficult.
  • containers, parts or pipes made of stainless steel are conventionally cleaned by inserting a chemical or detergent and inserting a long thin brush in order to remove the dirt attached to the surface. Then, a method of rinsing with water is used to remove the drug. Moreover, since the thing with long shapes, such as piping, may remain
  • JP 62-125299 A Japanese Patent Laid-Open No. 11-171298
  • the object of the present invention is to provide a self-cleaning function that enables the internal pipes and the like to be washed less frequently than before, and that allows continuous operation without maintenance for a long time. It is providing the liquid supply apparatus which has.
  • the liquid supply apparatus of the present invention includes a storage chamber capable of storing liquid therein, a pressurization unit provided upstream of the storage chamber and capable of applying pressure to the storage chamber, and the storage chamber A liquid temperature control pipe capable of transferring or absorbing heat to the liquid sent from the storage chamber, and a liquid temperature control unit for heating or cooling the liquid temperature control pipe, A liquid flow control chamber having a loop flow type bubble generating nozzle in the middle, a pipe connecting the storage chamber and the liquid temperature control pipe, and a downstream of the liquid temperature control chamber. And a jet part that can freely jet and stop the liquid sent from the liquid temperature control chamber by the operation, and the loop flow type bubble generating nozzle stirs and mixes the liquid and gas by a loop-like flow.
  • Gas-liquid to be mixed fluid A flow-type stirring and mixing chamber, a liquid supply hole provided at one end of the gas-liquid loop flow type stirring and mixing chamber, and supplying pressurized liquid to the gas-liquid loop flow type stirring and mixing chamber;
  • One or more gas inflow holes that can be adjusted, and the other end of the gas-liquid loop flow type stirring and mixing chamber, and the gas flowing in from the gas inflow holes is centered on the central axis of the liquid supply hole
  • a gas supply chamber that supplies the gas-liquid loop flow type stirring and mixing chamber from one or more portions of the circumference toward one end side of the gas-liquid loop flow type stirring and mixing chamber while circulating, and the liquid supply hole Provided at the other end of the gas-liquid loop flow type stirring and mixing chamber so as to coincide with the central axis, and having a hole diameter larger than the hole diameter of the liquid supply hole, the mixed fluid is supplied to the gas-liquid loop flow type stirring and mixing chamber And a gas-liquid loop flow type stirring from the jet hole.
  • a tapered portion provided to continuously enlarged in the direction of the mixing chamber characterized in that it has a.
  • means capable of adjusting the gas inflow amount in the gas inflow hole include providing a valve in the gas inflow hole itself, or connecting a valve member to the gas inflow hole. Thereby, the inflow of gas can be stopped or the amount of inflow of gas can be adjusted. The same applies to the following means.
  • the liquid is supplied to the gas-liquid loop flow type stirring and mixing chamber through the liquid supply hole, and the gas is supplied to the gas-liquid loop type stirring and mixing chamber through the gas supply chamber.
  • the loop flow flows along the flow of the liquid from the liquid supply hole to the ejection hole, and then reverses by the inflow of external gas and / or external liquid from the ejection hole in the vicinity of the ejection hole. It refers to a series of flows that flow along the inner wall of the loop flow type stirring and mixing chamber and flow again along the flow of the liquid supplied from the liquid supply hole.
  • the speed of the generated loop flow can be controlled to some extent from low speed to high speed by the supply amount and pressure of the liquid and gas. Therefore, it is possible to form a high-speed loop flow by adjusting the supply amount and pressure of the liquid and gas and further increasing the speed of the loop flow.
  • the gas-liquid loop flow type stirring and mixing chamber becomes negative pressure, so that gas flows in from the gas inflow hole through the gas supply chamber.
  • the diameter of the ejection hole is larger than the diameter of the liquid supply hole, the external gas or / and the external liquid is generated between the inner wall of the ejection hole and the periphery of the mixed fluid. It flows into the liquid loop flow type stirring and mixing chamber (external gas and / or external liquid flows in depending on the external environment).
  • the gas supplied from the gas supply chamber to the gas-liquid loop flow type stirring and mixing chamber is subdivided by the turbulent flow generated at the boundary between the gas supply chamber and the gas-liquid loop flow type stirring and mixing chamber,
  • B) While being stirred and sheared in the loop flow (c) a part is further subdivided by the generation of turbulent flow when colliding with the liquid supplied from the liquid supply hole, and is ejected from the ejection hole.
  • the gas in the loop flow is further subdivided by the external gas or the external liquid flowing into the gas-liquid loop flow type stirring and mixing chamber from the ejection holes.
  • the bubble generation mechanism refined in the steps (a) to (d) is a feature of the loop flow type bubble generation nozzle, which is an excellent point not found in other nozzles.
  • the gas flowing in from the gas inflow hole is circulated around the central axis of the liquid supply hole in the gas supply chamber, and from the whole or a part of the circumference,
  • the gas-liquid loop flow type stirring and mixing chamber is supplied toward one end side.
  • bubbles having an average diameter of less than 100 ⁇ m in particular, fine bubbles including microbubbles and nanobubbles having an average diameter of around 20 ⁇ m, although the configuration is simpler than that of the conventional product.
  • the amount of gas inflow is reduced to 0 using a valve or the like in the gas inflow hole (the gas inflow is stopped), naturally, the gas does not self-suck, but even in this case, cavitation occurs inside the nozzle. Fine bubbles are generated.
  • the fine bubbles are always used to wash the pipes and the like downstream of the loop flow type bubble generating nozzle, it is possible to prevent dirt from adhering to the inner wall of the pipe. Therefore, according to the liquid supply apparatus having the above configuration (1), the frequency of cleaning the pipes and the like downstream of the loop flow type bubble generating nozzle can be reduced as compared with the prior art. As a result, it is possible to provide a liquid supply apparatus having a self-cleaning function that enables continuous operation without maintenance for a long period of time.
  • the liquid supply apparatus of the present invention includes a storage chamber capable of storing liquid therein, and a pressurizing unit that is provided upstream of the storage chamber and can apply pressure to the storage chamber.
  • a liquid temperature control pipe provided downstream of the storage chamber and capable of transferring or absorbing heat to the liquid sent from the storage chamber, and a liquid for heating or cooling the liquid temperature control pipe
  • a liquid temperature control chamber having a temperature control section, a loop flow type bubble generating nozzle provided in the middle, a pipe connecting the storage chamber and the liquid temperature control pipe, and the liquid temperature control chamber And a jet part that can freely jet and stop the liquid sent from the liquid temperature control chamber by operation, and the loop flow type bubble generating nozzle loops the liquid and gas in a loop shape.
  • a gas-liquid loop flow type stirring and mixing chamber as a body, and a liquid supply hole provided at one end of the gas-liquid loop type stirring and mixing chamber and supplying pressurized liquid to the gas-liquid loop flow type stirring and mixing chamber
  • One or more gas inflow holes capable of adjusting the amount of gas inflow and the other end side of the gas-liquid loop flow type stirring and mixing chamber, and the gas flowing in from the gas inflow hole is supplied to the liquid supply hole
  • a gas supply chamber that supplies the gas-liquid loop flow type stirring and mixing chamber to one end side of the gas-liquid loop flow type stirring and mixing chamber from the whole or a part of the circumference while rotating around the central axis
  • the gas-liquid loop flow type stirring and mixing chamber is provided at the other end of the gas-liquid loop flow type stirring and mixing chamber so as to coincide with the central axis of the liquid supply hole, and has a larger hole diameter than the liquid supply hole.
  • a jet hole to be ejected from the flow stirring and mixing chamber, and the front of the gas supply chamber It provided the gas-liquid loop flow stirrer mixing chamber side, and the gas supply chamber in the circumferential all or gas reservoir of formed on a part of the portion concave, preferably has a.
  • the amount of gas flowing in from the gas inflow hole can be further increased by the gas reservoir, and the generation of bubbles is promoted.
  • a splash liquid that has entered the gas supply chamber due to a splash phenomenon caused by cavitation that occurs at a gas-liquid boundary portion that is a boundary between the gas supply chamber and the gas-liquid loop flow type stirring and mixing chamber (a) Fine bubbles near the gas-liquid boundary are dried, concentrated, or agglomerated near the gas-liquid boundary, and the wall of the gas supply chamber (for example, several millimeters from the gas-liquid loop flow type stirring and mixing chamber in the gas supply chamber) Even if scales such as calcium or / and sludge are deposited and fixed in a ring shape, a sufficient space is secured by the gas reservoir, so that the gas supply chamber is not blocked.
  • the bubble generation efficiency does not decrease even when a liquid containing impurities is used.
  • the gas which flowed in from the gas inflow hole is stably supplied to the gas-liquid loop flow type stirring and mixing chamber, the high-speed loop flow in the gas-liquid loop flow type stirring and mixing chamber can be stabilized.
  • the fine bubbles are always used to wash the pipes and the like downstream of the loop flow type bubble generating nozzle, it is possible to prevent dirt from adhering to the inner wall of the pipe. Therefore, according to the liquid supply apparatus having the configuration (2), it is possible to reduce the frequency of cleaning the pipes and the like downstream of the loop flow type bubble generating nozzle. As a result, it is possible to provide a liquid supply apparatus having a self-cleaning function that enables continuous operation without maintenance for a long period of time.
  • a loop flow can be further formed, so that the mixed fluid in the gas-liquid loop flow type stirring and mixing chamber can be further stirred and mixed. Thereby, fine bubbles can be generated more efficiently.
  • the liquid supply device of the present invention includes a storage chamber capable of storing a liquid therein, and a pressurizing unit that is provided upstream of the storage chamber and can apply pressure to the storage chamber.
  • a liquid temperature control pipe provided downstream of the storage chamber and capable of transferring or absorbing heat to the liquid sent from the storage chamber, and a liquid for heating or cooling the liquid temperature control pipe
  • a liquid temperature control chamber having a temperature control section, a loop flow type bubble generating nozzle provided in the middle, a pipe connecting the storage chamber and the liquid temperature control pipe, and the liquid temperature control chamber And a jet part that can freely jet and stop the liquid sent from the liquid temperature control chamber by operation, and the loop flow type bubble generating nozzle loops the liquid and gas in a loop shape.
  • a gas-liquid loop flow type stirring and mixing chamber as a body, and a liquid supply hole provided at one end of the gas-liquid loop type stirring and mixing chamber and supplying pressurized liquid to the gas-liquid loop flow type stirring and mixing chamber
  • One or more gas inflow holes capable of adjusting the amount of gas inflow and the other end side of the gas-liquid loop flow type stirring and mixing chamber, and the gas flowing in from the gas inflow hole is supplied to the liquid supply hole
  • a gas supply chamber that supplies the gas-liquid loop flow type stirring and mixing chamber to one end side of the gas-liquid loop flow type stirring and mixing chamber from the whole or a part of the circumference while rotating around the central axis
  • the gas-liquid loop flow type stirring and mixing chamber is provided at the other end of the gas-liquid loop flow type stirring and mixing chamber so as to coincide with the central axis of the liquid supply hole, and has a larger hole diameter than the liquid supply hole.
  • a jet hole for jetting from a flow-type stirring and mixing chamber, and the gas-liquid loop flow type Provided on the inner wall of ⁇ mixing chamber preferably has an a concave stirring mixer further mixed by stirring the gas-liquid loop-flow stirred mixture mixed fluid of the room.
  • the fine bubbles are always used to wash the pipes and the like downstream of the loop flow type bubble generating nozzle, it is possible to prevent dirt from adhering to the inner wall of the pipe. Therefore, according to the liquid supply device having the above configuration (4), it is possible to reduce the frequency of cleaning the pipes and the like downstream of the loop flow type bubble generating nozzle. As a result, it is possible to provide a liquid supply apparatus having a self-cleaning function that enables continuous operation without maintenance for a long period of time.
  • FIG. 1 is a schematic configuration diagram illustrating a liquid supply apparatus according to a first embodiment of the present invention.
  • A is a schematic cross-sectional view showing a bubble generating nozzle in the liquid supply apparatus of FIG. 1
  • (b) is a cross-sectional view taken along the line II of (a)
  • (c) is a cross-sectional view taken along the line II-II of (a).
  • FIG. 4D is a cross-sectional view taken along the line III-III in FIG. It is operation
  • (A) is schematic sectional drawing which shows the modification of the loop flow type bubble generation nozzle in the liquid supply apparatus of 1st Embodiment, (b) is II sectional view taken on the line of (a), (c) is It is II-II arrow sectional drawing of (a).
  • (A) is schematic sectional drawing which shows the bubble generation nozzle in the liquid supply apparatus which concerns on 2nd Embodiment, (b) is II sectional view taken on the line of (a), (c) is II of (a). It is -II arrow sectional drawing. It is a photograph which shows the liquid supply apparatus which concerns on Example 1 of this invention. It is an enlarged photograph of tap water containing dirt in piping obtained by observation of a comparative example.
  • FIG. 2 It is the photograph at the time of pouring the liquid discharged using the liquid supply apparatus of a comparative example to a mug. 2 is an enlarged photograph of tap water containing dirt in a pipe obtained by observation of Example 1.
  • FIG. It is the photograph at the time of pouring the liquid discharged using the liquid supply apparatus of Example 1 to a mug. It is an enlarged photograph of the tap water containing the dirt in the piping obtained by observation of Example 2. It is the photograph at the time of pouring the liquid discharged using the liquid supply apparatus of Example 2 to a mug. It is an enlarged photograph of the tap water containing the dirt in the piping obtained by observation of Example 3. It is the photograph at the time of pouring the liquid discharged using the liquid supply apparatus of Example 3 to a mug.
  • FIG. 1 is a schematic configuration diagram showing a liquid supply apparatus according to the first embodiment of the present invention.
  • 2A is a schematic cross-sectional view showing the loop flow type bubble generating nozzle 10 in the liquid supply apparatus of FIG. 1
  • FIG. 2B is a cross-sectional view taken along the line II in FIG. (C) is a cross-sectional view taken along the line II-II in FIG. 2 (a)
  • FIG. 2 (d) is a cross-sectional view taken along the line III-III in FIG. 2 (a).
  • FIG. 3 is an explanatory diagram of the operation of the loop flow type bubble generating nozzle 10.
  • the liquid supply apparatus 100 mainly includes a gas cylinder 60 (pressurization unit), a pressurization pipe 61, a beverage container 62 (storage chamber), a liquid feed pipe 63, and a cooling chamber 64.
  • the gas cylinder 60 can enclose gas (gas) in a pressurized state.
  • gas gas
  • the internal gas can be discharged to the gas reservoir in the beverage container 62 through the pressurizing pipe 61 by operating the valve.
  • the gas in the gas cylinder 60 may be anything other than air as long as it is harmless to the human body. For example, carbon dioxide gas, nitrogen gas, or the like is used.
  • the beverage container 62 is a container capable of hermetically storing a liquid 70 for beverages such as alcoholic beverages such as beer, carbonated beverages or soft drinks such as juice, or water.
  • the beverage container 62 is provided with a pressurizing pipe 61 and a liquid flow pipe 63 inserted from above.
  • a loop flow type bubble generating nozzle 10 to be described later is provided in the middle of the liquid feed pipe 63.
  • the downstream end of the pressurizing pipe 61 is disposed so as not to contact the liquid surface of the liquid 70, and the upstream end of the liquid feed pipe 63 is inserted into the liquid 70.
  • a cooling unit 65 liquid temperature control
  • a liquid temperature control pipe 66 In the cooling chamber 64, a cooling unit 65 (liquid temperature control) and a liquid temperature control pipe 66 are provided.
  • the cooling unit 65 is a device having a function of cooling the liquid temperature control pipe 66, and uses a so-called gas compression cooler, gas absorption cooler, or Peltier effect using a refrigerant. Any one such as an electronic cooler may be used.
  • ice instead of the cooling unit 65, ice may be put into the cooling chamber 64 to cool the liquid temperature control pipe 66.
  • the liquid temperature control pipe 66 is provided to meander in the cooling chamber 64 from the upstream side to the downstream side.
  • the upstream end of the liquid temperature control pipe 66 is connected to the downstream end of the liquid flow pipe 63, and the liquid sent from the liquid flow pipe 63 is the liquid temperature control pipe 66. It is sent inside. Further, the downstream end of the liquid temperature control pipe 66 is connected to the ejection part 67, and the beverage can be poured out from the spout 67b while adjusting the ejection amount by operating the lever 67a.
  • the liquid temperature control pipe 66 may be spiral in the cooling chamber 64. At this time, if the cooling unit 65 is disposed so as to be surrounded by the spiral liquid temperature control pipe 66, the cooling chamber 64 can be reduced in size.
  • the loop flow type bubble generating nozzle 10 is fitted into the bottomed member 1 as a first member having a circular bottom section and the other end side of the bottomed member 1. It has the cylindrical member 2 as a 2nd member. A substantially cylindrical space surrounded by the bottomed member 1 and the cylindrical member 2 is a gas-liquid loop flow type stirring and mixing chamber 6.
  • the bottomed member 1 has, on its side, a gas inflow hole 3 through which the outside and the inside of the loop flow type bubble generating nozzle 10 communicate with each other and into which gas flows. Two or more gas inflow holes 3 may be provided.
  • the bottomed member 1 is supplied with liquid pressurized from the outside (liquid in a state where pressure is applied even a little. Hereinafter, it may be referred to as “pressurized liquid”).
  • the first liquid supply hole 5a and the second liquid supply hole 5b are provided.
  • the pressurized liquid supplied from the outside passes through the first liquid supply hole 5a and the second liquid supply hole 5b in this order, and is supplied to the gas-liquid loop flow type stirring and mixing chamber 6.
  • the central axes of the first liquid supply hole 5 a and the second liquid supply hole 5 b intersect with the central axis of the gas inflow hole 3.
  • the second liquid supply hole 5b is formed in a tapered shape having a diameter continuously increased from the first liquid supply hole 5a toward the gas-liquid loop flow type stirring and mixing chamber 6.
  • the second liquid supply hole 5b merges the high-speed loop flow with the flow of the pressurized liquid from the direction opposite to the flow of the pressurized liquid, thereby causing a turbulent flow. Plays a role to wake up.
  • the cylindrical member 2 has an inflow hole 7 through which liquid and gas can flow, and a first injection hole 8a and a second injection hole 8b through which liquid and gas can be injected.
  • the central axes of the inflow hole 7, the first ejection hole 8a, and the second ejection hole 8b coincide with the central axes of the first liquid supply hole 5a and the second liquid supply hole 5b.
  • the inflow hole 7 is formed in a tapered shape that is continuously expanded from the first ejection hole 8 a toward the gas-liquid loop flow type stirring and mixing chamber 6.
  • the inflow hole 7 plays a role of accelerating the high-speed loop flow in the gas-liquid loop flow type stirring and mixing chamber 6.
  • the first ejection hole 8a is formed so that one end is connected to one end of the inflow hole 7 and the other end is connected to one end of the second ejection hole 8b.
  • the second ejection hole 8b is formed in a taper shape having a diameter continuously increased from the first ejection hole 8a in a direction opposite to the direction of the gas-liquid loop flow type stirring and mixing chamber 6.
  • the second ejection hole 8b adjusts the amount of external gas and / or external liquid flowing into the gas-liquid loop flow type stirring / mixing chamber 6 from the first ejection hole 8a, and is arranged outside the first ejection hole 8a. It plays the role of stabilizing the flow around the side (jetting of the mixed fluid from the first jetting holes 8a and inflow of external gas or / and external liquid).
  • the cylindrical member 2 has a groove portion 4 b that is continuous in the circumferential direction at an outer peripheral position facing the gas inflow hole 3.
  • a ring-shaped space surrounded by the groove 4 b and the inner wall surface of the bottomed member 1 is a gas supply chamber 4.
  • the gas supply chamber 4 is communicated with the gas-liquid loop flow type stirring / mixing chamber 6 through a gap 4a.
  • the gas inflow hole 3 and the gas supply chamber 4 are communicated with each other through a gap 4a.
  • the gas flowing in from the gas inflow hole 3 passes through the gap 4a from all or part of the circumference in the gas supply chamber 4 while being circulated around the central axis of the first liquid supply hole 5a.
  • the gas-liquid loop flow type stirring and mixing chamber 6 is supplied toward one end side of the loop flow type stirring and mixing chamber 6. Thereby, a gas film, bubbles, and / or microbubbles are generated on the inner wall of the gas-liquid loop flow type stirring and mixing chamber 6, and the high-speed loop flow is accelerated.
  • the gas flowing in from the gas inflow hole 3 may be anything other than air as long as it is harmless to the human body. For example, carbon dioxide gas, nitrogen gas, or the like may be used.
  • the bottomed member 1 and the cylindrical member 2 can be made of metal such as SUS304 and SUS316, resin, wood, glass, ceramic, ceramics, etc., but any solid material can be used. Also good. Moreover, you may select the material of the right place for every component. In addition, if resin, glass, ceramics, etc. are selected, since it is strong against corrosion, the bubble generation nozzle 10 can be extended in life.
  • the gas-liquid loop flow type stirring and mixing chamber 6 is a space in which the liquid supplied from the second liquid supply hole 5b and the gas supplied from the gas supply chamber 4 are stirred and mixed by a loop-like flow.
  • a second liquid supply hole 5 b is provided at one end of the gas-liquid loop flow type stirring and mixing chamber 6, and an inflow hole 7 is provided at the other end of the gas-liquid loop type stirring and mixing chamber 6.
  • a gas supply chamber 4 and a gas inflow hole 3 are provided on the other end side of the gas-liquid loop flow type agitation / mixing chamber 6.
  • the inner wall of the gas-liquid loop flow type agitation and mixing chamber 6 has an uneven shape (for example, a so-called scabbard, a ceramic sprayed skin, or / and a simple protrusion shape). It does not need to be applied to the whole, and may be formed only partially.
  • the uneven shape of the inner wall plays a role of accelerating the high-speed loop flow and increasing the degree of vacuum in the gas-liquid loop flow type stirring and mixing chamber 6.
  • FIG. 3 shows the loop flow type bubble generation nozzle 10 of FIG. 2, the hose 11 connected to one end of the bottomed member 1 of the loop flow type bubble generation nozzle 10, and the tubular member of the loop flow type bubble generation nozzle 10. 2, a shower head 12 connected to the other end side, a gas supply pipe 13 connected to the gas inflow hole 3 of the bottomed member 1 of the loop flow type bubble generating nozzle 10, and an external to the gas supply pipe 13 It is the figure which showed the throttle valve 14 which adjusts the inflow amount of gas.
  • loop flow type bubble generating nozzle 10 is shown in a schematic sectional view.
  • one end of the gas supply pipe 13 can take in outside air, and a check valve 13a is provided inside the gas supply pipe 13 so that bubbles can be stably generated. Yes.
  • pressurized liquid is supplied from the hose 11 to the gas-liquid loop flow type stirring and mixing chamber 6 through the first liquid supply hole 5a and the second liquid supply hole 5b.
  • the pressurized liquid flows along a line connecting the first liquid supply hole 5a, the second liquid supply hole 5b, the inflow hole 7 and the first ejection hole 8a in FIG.
  • a part of the high-speed loop flows (the gas-liquid loop of FIG. 3) due to the inflow of external gas and / or external liquid from the second ejection hole 8b through the first ejection hole 8a.
  • the speed of the high-speed loop flow is further increased by a part of the pressurized liquid.
  • the gas supplied from the gas supply chamber 4 into the gas-liquid loop flow type stirring and mixing chamber 6 is (a) turbulent flow generated at the boundary between the gas supply chamber 4 and the gas-liquid loop type stirring and mixing chamber 6.
  • the liquid collides with the external gas and / or external liquid, and is further refined, and is ejected from the second ejection hole 8b as a mixed fluid containing fine bubbles such as bubbles or microbubbles.
  • the gas flowing in from the gas inflow hole 3 is circulated around the central axis of the first liquid supply hole 5a in the gas supply chamber 4 while flowing from the whole or a part of the circumference. It is supplied into the gas-liquid loop flow type stirring and mixing chamber 6 toward one end side of the mixing and mixing chamber 6. Thereby, since the degree of vacuum in the gas-liquid loop flow type stirring and mixing chamber 6 is improved, the amount of gas flowing in from the gas inflow hole 3 can be further increased, and the generation of bubbles is promoted. .
  • fine bubbles such as bubbles and / or microbubbles are continuously generated from one to the next.
  • the gas in the gas-liquid loop flow type stirring and mixing chamber 6 is allowed to flow. It can be further subdivided.
  • the amount of external gas and / or external liquid flowing into the gas-liquid loop flow type stirring / mixing chamber 6 from the first jet hole 8a is adjusted by the second jet hole 8b formed in a tapered shape.
  • the flow around the outside of the first ejection hole 8a (the ejection of the mixed fluid from the first ejection hole 8a and the inflow of external gas or / and external liquid) is stabilized.
  • the gas-liquid loop flow type stirring and mixing chamber 6 is a substantially cylindrical space, a high-speed loop flow can be easily formed, and the above-described operation can be easily obtained.
  • corrugated shape is formed in the inner wall of the gas-liquid loop flow type stirring and mixing chamber 6, when the mixed fluid of the liquid and gas which are flowing in a high-speed loop collides with the uneven
  • the above-described operation is performed, so that it is possible to generate fine bubbles such as microbubbles having a diameter equal to or less than the conventional one (around 20 ⁇ m).
  • the pressurized liquid is supplied to the gas-liquid loop flow type stirring and mixing chamber 6 through the first liquid supply hole 5a and the second liquid supply hole 5b in this order.
  • the pressurized liquid is supplied to the gas-liquid loop flow type stirring and mixing chamber 6 through the first liquid supply hole 5a and the second liquid supply hole 5b in this order.
  • FIG. 4 is a schematic cross-sectional view showing a loop flow type bubble generation nozzle 20 according to a modification of the loop flow type bubble generation nozzle 10 in the liquid supply apparatus 100 according to the first embodiment.
  • the loop flow type bubble generating nozzle 20 is fitted into a bottomed member 21 as a bottomed tubular first member having a circular cross section and the other end of the bottomed member 21. It has the cylindrical member 22 as a 2nd member. A substantially cylindrical space surrounded by the bottomed member 21 and the cylindrical member 22 is a gas-liquid loop flow type stirring and mixing chamber 26.
  • the cylindrical member 22 has a groove portion 24 b that is continuous in the circumferential direction at an outer peripheral position facing the gas inflow hole 23.
  • a ring-shaped space surrounded by the groove 24 b and the inner surface of the cylindrical member 22 is a gas supply chamber 24.
  • the gas supply chamber 24 is communicated with the gas-liquid loop flow type stirring / mixing chamber 26 through a gap 24a.
  • a concave gas reservoir 24c is provided along the entire circumference of the gap 24a on the gas-liquid loop flow type stirring and mixing chamber 26 side of the gap 24a.
  • the gas inflow hole 23 and the gas supply chamber 24 are communicated with each other through a gap 24a.
  • the gas flowing in from the gas inflow hole 23 passes through the gap 24a from all or a part of the circumference while circulating around the central axis of the first liquid supply hole 25a in the gas supply chamber 24.
  • the gas-liquid loop flow type stirring and mixing chamber 26 is supplied toward one end side of the loop flow type stirring and mixing chamber 26. Accordingly, a gas film, bubbles, and / or microbubbles are generated on the inner wall of the gas-liquid loop flow type stirring and mixing chamber 26, and the high-speed loop flow is accelerated.
  • the amount of gas flowing in from the gas inflow hole 23 can be further increased by the gas reservoir 24c in the vicinity of the gas supply chamber 24, and the generation of bubbles is promoted.
  • B) Fine bubbles near the gas-liquid boundary portion are dried, concentrated, or aggregated near the gas-liquid boundary portion, and calcium is formed on the outer surface of the cylindrical member 22 and / or the inner surface of the bottomed member 21 in the gap 24a.
  • the loop flow type bubble generating nozzles 10 and 20 of the present embodiment have the gas-liquid loop flow type stirring and mixing chambers 6 and 26 that mix and mix liquid and gas by a loop flow to form a mixed fluid.
  • the first liquid supply holes 5a, 25a and the second liquid are provided at one end of the gas-liquid loop flow type agitation mixing chambers 6, 26 and supply pressurized liquid to the gas-liquid loop flow type agitation mixing chambers 6, 26.
  • gas inflow holes 3 and 23 into which gas flows in, and the gas-liquid loop flow type stirring and mixing chambers 6 and 26, and flows in from the gas inflow holes 3 and 23
  • the gas-liquid loop is made to circulate around the central axis of the first liquid supply holes 5a, 25a toward one end side of the gas-liquid loop flow type agitation mixing chambers 6, 26 from all or a part of the circumference.
  • the first ejection holes 8a and 28a and the second ejection holes 8b and 28b that are ejected from the mixing chambers 6 and 26 are configured.
  • the liquid is supplied to the gas-liquid loop flow type stirring and mixing chambers 6 and 26 through the first liquid supply holes 5a and 25a and the second liquid supply holes 5b and 25b, and the gas supply chamber 4 , 24 is supplied to the gas-liquid loop flow type agitation mixing chambers 6 and 26 through 24.
  • the mixed fluid in the gas-liquid loop flow type stirring and mixing chambers 6 and 26 is ejected from the second ejection holes 8b and 28b, gas is contained in the gas-liquid loop type stirring and mixing chambers 6 and 26.
  • a liquid loop-like flow (sometimes referred to as “loop flow” or “loop flow”) is generated.
  • the gas-liquid loop flow agitating and mixing chambers 6 and 26 When the mixed fluid in the gas-liquid loop flow agitating and mixing chambers 6 and 26 is ejected from the second ejection holes 8b and 28b, the gas-liquid loop flow agitating and mixing chambers 6 and 26 have a negative pressure. Gas flows from the holes 3 and 23 through the gas supply chambers 4 and 24, and the diameters of the first ejection holes 8a and 28a are larger than the diameters of the first liquid supply holes 5a and 25a. From the space between the inner walls of the first ejection holes 8a and 28a and the surroundings of the mixed fluid, the external gas or / and the external liquid flows into the gas-liquid loop flow type stirring and mixing chambers 6 and 26 in the first ejection holes 8a and 28a. Inflow.
  • the gas supplied from the gas supply chambers 4 and 24 into the gas-liquid loop flow type stirring and mixing chambers 6 and 26 includes (a) the gas supply chambers 4 and 24 and the gas-liquid loop flow type stirring and mixing chambers 6 and 26. (B) stirring and shearing in a high-speed loop flow accelerated by the inflow holes 7 and 27 and the second liquid supply holes 5b and 25b, and (c) a gas-liquid loop flow Due to the turbulent flow generated when colliding with the uneven shape of the inner walls of the mixing and mixing chambers 6 and 26, and (d) partly colliding with the pressurized liquid supplied from the first liquid supply holes 5a and 25a.
  • the first ejection holes 8a and 28a collide with the flowing-in external gas and / or external liquid and are further refined, and the second ejection is performed as a mixed fluid containing bubbles or / and microbubbles. It is ejected from the holes 8b and 28b.
  • the mechanism of bubble generation refined in these steps (a) to (e) is a feature of the loop flow type bubble generation nozzles 10 and 20 and is an excellent point not found in other nozzles.
  • the gas flowing in from the gas inflow holes 3 and 23 circulates around the central axis of the first liquid supply holes 5a and 25a in the gas supply chambers 4 and 24, while all or part of the circumference.
  • the gas-liquid loop flow type stirring and mixing chambers 6 and 26 are supplied into the gas-liquid loop flow type stirring and mixing chambers 6 and 26 from one point toward one end side of the gas-liquid loop flow type stirring and mixing chambers 6 and 26.
  • bubbles having an average diameter of less than 100 ⁇ m in particular, microbubbles having an average diameter of about 20 ⁇ m and a diameter equal to or smaller than that of the conventional one.
  • the gas-liquid loop flow type stirring and mixing chamber 6 , 26 can be further subdivided.
  • the second ejection holes 8b and 28b formed in a tapered shape allow the external gas and / or the external liquid flowing into the gas-liquid loop flow type stirring and mixing chambers 6 and 26 from the first ejection holes 8a and 28a.
  • the amount is adjusted and the flow around the outside of the first ejection holes 8a, 28a (the ejection of the mixed fluid from the first ejection holes 8a, 28a and the inflow of external gas or / and external liquid) is stable. Has been.
  • the concavo-convex shape is formed on the inner walls of the gas-liquid loop flow type agitating and mixing chambers 6 and 26, the mixed fluid of the liquid and the gas in the high-speed loop flow collides with the concavo-convex shape.
  • the gas in the loop flow type stirring and mixing chambers 6 and 26 can be further subdivided, and the high-speed loop flow can be accelerated to increase the degree of vacuum in the gas-liquid loop type stirring and mixing chambers 6 and 26. .
  • the liquid supply apparatus provided with the loop flow type bubble generation nozzle 10 or the loop flow type bubble generation nozzle 20 as described above always cleans the pipes etc. downstream of the loop flow type bubble generation nozzle with the fine bubbles. Therefore, it is possible to suppress the dirt from adhering to the inner wall of the pipe. Therefore, according to the liquid supply apparatus provided with the loop flow type bubble generation nozzle of the above modification, the frequency of cleaning the pipes and the like downstream of the loop flow type bubble generation nozzle can be reduced as compared with the conventional case. As a result, it is possible to provide a liquid supply apparatus having a self-cleaning function that enables continuous operation without maintenance for a long period of time.
  • FIG. 5 is a schematic cross-sectional view showing the loop flow type bubble generating nozzle 30 used in the liquid supply apparatus according to the second embodiment.
  • description since it is the same as that of 1st Embodiment except the point which used the loop flow type bubble generation nozzle 30, description may be abbreviate
  • the loop flow type bubble generating nozzle 30 is fitted into the bottomed member 31 as the bottomed tubular first member having a circular cross section and the other end of the bottomed member 31. It has the cylindrical member 32 as a 2nd member.
  • a substantially cylindrical space surrounded by the bottomed member 31 and the cylindrical member 32 is a gas-liquid loop flow type stirring and mixing chamber 36.
  • a stirring and mixing unit 55c for further stirring and mixing the mixed fluid in the gas-liquid loop type stirring and mixing chamber 56 is provided.
  • the cylindrical member 32 has an inflow hole 37 through which liquid and gas can flow, and a first injection hole 38a and a second injection hole 38b through which liquid and gas can be injected.
  • the inflow hole 37 is formed in a tapered shape having a diameter continuously increased from the first ejection hole 38 a toward the gas-liquid loop flow type stirring and mixing chamber 36. Further, a plurality of notches 37a are provided on the end surface of the inflow hole 37 on the gas-liquid loop flow type agitation / mixing chamber 36 side, and the notches 37b are supplied from the notches 37a to gas at appropriate locations. It extends toward the chamber 34.
  • the inflow hole 37 plays a role of accelerating the high-speed loop flow in the gas-liquid loop flow type stirring and mixing chamber 36.
  • the plurality of notches 37a and 37b of the inflow hole 37 serve to agitate and shear the gas in the high-speed loop flow and further subdivide it. Further, due to a splash phenomenon due to cavitation that occurs at the gas-liquid boundary that is the boundary between the gas supply chamber 34 and the gas-liquid loop flow type stirring and mixing chamber 36, the splash liquid that has entered the gap 34 a is dried, concentrated, or aggregated. Even if scales such as calcium or sludge are deposited on the outer surface of the cylindrical member 32 in the gap 34a and / or the inner surface of the bottomed member 31, and are fixed in a ring shape, a plurality of notches 37a and 37b are formed.
  • the stirring and mixing unit 35c is a concave groove provided in a ring shape with the central axis substantially the same in the middle of the second liquid supply hole 35b.
  • a mini-size loop flow is generated as compared with the loop flow generated in the gas-liquid loop flow type stirring and mixing chamber 36, thereby further mixing fluid in the gas-liquid loop flow type stirring and mixing chamber 36.
  • the liquid supply apparatus provided with the loop flow type bubble generation nozzle 30 as described above always cleans the pipes and the like downstream of the loop flow type bubble generation nozzle with the fine bubbles, so that dirt adheres to the inner wall of the pipe. Can be suppressed. Therefore, according to the liquid supply apparatus provided with the loop flow type bubble generation nozzle of the above modification, the frequency of cleaning the pipes and the like downstream of the loop flow type bubble generation nozzle can be reduced as compared with the conventional case. As a result, it is possible to provide a liquid supply apparatus having a self-cleaning function that enables continuous operation without maintenance for a long period of time.
  • the loop flow type bubble generating nozzle may be formed of a member whose surface is coated with a resin, or may be formed of only a resin.
  • the surface of the member is coated with the resin, or the loop flow type bubble generating nozzle itself is molded with the resin, so that corrosion can be prevented.
  • the loop flow type bubble generating nozzle is configured to have a gas inflow hole, but when the gas is dissolved in the liquid supplied from the liquid supply hole, The structure which does not have a gas inflow hole may be sufficient. In this case, the gas dissolved in the liquid is bubbled in the gas-liquid loop flow type stirring and mixing chamber.
  • a bottomed member having a gas inflow hole is formed on the peripheral surface of the gas / liquid loop flow type stirring / mixing chamber on the peripheral surface of the gas / liquid loop flow type stirring / mixing chamber.
  • the gas inflow hole may be formed closer to the ejection hole. Moreover, inflow of gas from the gas inflow hole may not be necessary. That is, a valve or the like may be provided in the gas inflow hole, and the gas inflow may be set to 0 (the gas inflow may be stopped). Even at this time, cavitation occurs inside the nozzle, and fine bubbles necessary for self-cleaning are generated.
  • the present invention is not limited to this, and a heater capable of transferring heat to the liquid temperature control pipe instead of the cooling chamber.
  • the liquid may be heated using a heating chamber having a heating unit (liquid temperature control) such as.
  • a heated liquid such as hot water may be put into the heating chamber to heat the liquid temperature control pipe.
  • the loop flow type bubble generating nozzle in the liquid supply apparatus in the above embodiment or the modification may be provided anywhere in the middle of the liquid flow pipe. Further, the loop flow type bubble generating nozzle in the liquid supply device in the embodiment or the modification may be provided at the upstream end of the liquid flow pipe, or the downstream end of the liquid flow pipe and the liquid temperature control. You may provide in the connection part with the upstream edge part of piping for construction.
  • a bubble adjusting unit that can adjust the amount of bubbles contained in the liquid to be poured out may be provided in the ejection unit of the liquid supply device in the embodiment or the modification.
  • gas cylinder is used as the pressurizing unit in the liquid supply device of the above embodiment or the modification, a pressurizer (compressor) such as a compressor may be used instead.
  • the liquid flow pipe is divided into two systems, and a loop flow type bubble generating nozzle is arranged in the middle of one system for controlling the liquid temperature in the cooling chamber. It may be connected to a pipe, and a loop flow type bubble generating nozzle may not be provided in the other system, but may be connected to a liquid temperature control pipe in the cooling chamber and switched to each system.
  • a system that has a loop flow type bubble generating nozzle in the middle, and if you want to supply the original draft beer, use the loop flow type bubble.
  • a system in which no generating nozzle is arranged is used. In particular, when using a system that does not have a loop flow type bubble generating nozzle, there is little foaming, so the cooling part in the cooling chamber has just started, and it is easy to cool when heat exchange is not enough effective.
  • An experimental liquid supply apparatus including the configuration of the liquid supply apparatus according to the first embodiment is assembled, and a pipe (liquid feed) arranged downstream of the loop flow type bubble generating nozzle in the apparatus.
  • Example 1 First, in the liquid supply apparatus shown in FIG. 6, using the loop flow type bubble generating nozzle shown in Example 1 of Table 1 below, draft beer (20L of draft beer is consumed in two weeks) For 3 days. After that, the beverage container (draft beer tank) of the liquid supply apparatus in FIG. 6 is removed, a sponge piece is inserted into the liquid delivery pipe, and is replaced with a washing tank containing tap water, and tap water is supplied from the washing tank. Pour into the liquid feed pipe and push the sponge piece downstream of the pipe. At this time, the ejection part is removed from the cooling chamber and pushed out until the sponge piece is discharged. After the sponge piece is discharged, the liquid delivery pipe is further washed away with tap water. The tap water containing dirt in the piping thus obtained was observed with a digital microscope (Leica DMS1000: manufactured by Leica Microsystems).
  • Examples 2 and 3 In the liquid supply apparatus shown in FIG. 6, an experiment was performed in the same manner as in Example 1 except that each of the loop flow type bubble generating nozzles shown in Examples 2 and 3 in Table 1 below was used.
  • Example 2 In the liquid supply apparatus shown in FIG. 6, the same experiment as in Example 1 was performed without using the loop flow type bubble generating nozzle.
  • a pressure gauge for measuring the pressure value before passing through the nozzle and the pressure value after passing through the nozzle are measured.
  • the pressure gauge In the comparative liquid supply apparatus in which the pressure gauge is attached to the liquid supply apparatus but the loop flow type bubble generating nozzle is not attached, the pressure gauge is attached to the same position as in Examples 1 to 3, and piping The pressure inside can be measured.
  • Example 1 (Experimental result of Example 1) In FIG. 9, the enlarged photograph of the tap water containing the dirt in the piping obtained by observation of Example 1 is shown. As can be seen from the photograph in FIG. 9, almost no contamination (contamination) is seen. Specifically, only small stains (contamination) were found just above the portion labeled “62.234 ⁇ m” in FIG. 9, which may be significantly different from the photograph of FIG. 7 of the comparative example. Recognize. Other round spheres are fine bubbles and not dirty. Therefore, the evaluation of “amount of dirt” in the column of Table 1 was “almost none”.
  • the amount of foam was just right with respect to the amount of liquid (beer) to be discharged (which was almost the same as that provided at the store) (see FIG. 10), it was not necessary to adjust the amount of foam after discharging the liquid (beer). Therefore, the evaluation of “the state of beer poured into the mug” in the column of Table 1 was “the amount of foam is just right for the amount of liquid”.
  • Example 2 (Experimental result of Example 2)
  • FIG. 11 the enlarged photograph of the tap water containing the dirt in the piping obtained by observation of Example 2 is shown. As can be seen from the photograph in FIG. 11, some contamination (contamination) is seen from Example 1, but not as much as the comparative example. Therefore, the evaluation of “amount of dirt” in the column of Table 1 is “slightly little to little”.
  • the amount of foam was slightly larger than the amount of liquid to be ejected. (See FIG. 12). Therefore, the evaluation of “the state of the beer poured into the mug” in the column of Table 1 was “the amount of foam is slightly larger than the amount of liquid—the amount of foam is just right for the amount of liquid”.
  • Example 3 (Experimental result of Example 3)
  • the enlarged photograph of the tap water containing the dirt in the piping obtained by observation of Example 3 is shown.
  • dirt similar to that in the comparative example was observed. Therefore, the evaluation of “amount of dirt” in the column of Table 1 is “slightly more to slightly less”.
  • the amount of foam was slightly larger than the amount of liquid to be discharged, but it was not the amount of foam that concerned so much, but it seemed to be just right (See FIG. 14). Therefore, the evaluation of “the state of the beer poured into the mug” in the column of Table 1 was “the amount of foam is slightly larger than the amount of liquid—the amount of foam is just right for the amount of liquid”.
  • Example 3 the same contamination as in the comparative example was observed, but the pressure value downstream of the loop flow type bubble generating nozzle was lower than that in the comparative example, that is, the flow velocity was small. However, it can be seen that only the same dirt as in the comparative example is produced. Therefore, it turns out that the self-cleaning function is exhibited also in Example 3.
  • the inside of the pipe liquid feed pipe, pipe for controlling the liquid temperature in the cooling chamber
  • the inside of the part has a function of self-cleaning dirt (contamination) due to organic substances (yeast, tartar, etc.) that adhere and accumulate.

Abstract

【課題】内部の配管などを洗浄する頻度を従来よりも少なくすることが可能となる自浄機能を有した液体供給装置を提供する。【解決手段】ループ流式バブル発生ノズル(10)は、断面円形の有底管状の有底部材(1)と、有底部材(1)の他端側に嵌め込まれた筒状部材(2)とを有している。有底部材(1)及び筒状部材(2)で囲まれた略円柱型の空間が、気液ループ流式撹拌混合室(6)とされている。筒状部材(2)は、その中央に、液体及び気体を流入可能な流入孔(7)と、液体及び気体を噴出可能な第1噴出孔(8a)と第2噴出孔(8b)とを有している。流入孔(7)は、第1噴出孔(8a)から気液ループ流式撹拌混合室(6)の方向に向かって連続的に拡径されたテーパ状に形成されている。このようなループ流式バブル発生ノズル(10)によって発生したファインバブルによって、運転中の液体供給装置内部に設けられた冷却用配管内壁の汚れを落とす又は付着しないようにする。

Description

ループ流式バブル発生ノズルを備えた液体供給装置
 本発明は、ファインバブル(ナノバブル及びマイクロバブル)を含むバブル(気泡)を発生させるループ流式バブル発生ノズルを備えた液体供給装置に関する。
 飲料であるビールを扱うための液体供給装置であるビールサーバは、当然に厳しい衛生管理下に置く必要があるが、使用日数が進むにつれて、ビールの残液が付着し、有機物質による汚れとなって堆積する。したがって、このビールサーバは衛生状態を良好に保つため定期的に洗浄される必要がある。ビールサーバは、通常、飲料であるビールを冷却するために冷却槽内を通る通路内を通す構造となっているとともに、この冷却用の通路は、蛇行状又はコイル状のような構造上複雑な形状となっており、洗浄を困難にしている。
 また、ビールサーバに限らず、ステンレス材料で製造された容器、部品或いは配管などは、従来、表面に付着した汚れを落とすために、薬剤又は洗剤を投入して長細いブラシを挿入して洗浄し、その後薬剤を除去するため水によるすすぎ行う方法もとられている。また、配管などの長い形状のものは、内部に液が残ることがあったため、空圧を配管の内部に送ることを行っている。
 上述のようなビールサーバの冷却通路内を洗浄する方法については、これまで、いくつかの技術が公知となっている。例えば、水道水を利用して冷却コイル内に水と共に洗剤を供給するようにしたもの(下記特許文献1)、炭酸ガスの圧力を利用してビールサーバの冷却通路に洗浄液を供給するもの(下記特許文献2)などがある。
特開昭62-125299号公報 特開平11-171298号公報
 しかしながら、薬剤又は洗剤を使用すると、その後に水によるすすぎの工程が必要となり、入り組んだ複雑な形状の容器又は配管においては、薬剤に浸漬しただけでは容易に汚れを除去できず、洗浄のための時間が長くなるという問題があった。
 その他、上記方法以外に、超音波を使って汚れを除去する方法が知られている。この方法では配管などの複雑な形状の部品であっても超音波振動によって配管内部に入った薬剤と汚れ部位とが振動によって接触し、汚れを除去することができる。超音波洗浄は水槽内に部品を入れて行うため、複数の部品を同時に洗浄することができるが、洗浄後には、薬剤のすすぎ、残留水の除去などが必要となり、上記と同様に作業時間が長くなるなどの問題がある。
 そこで、本発明の目的は、内部の配管などを洗浄する頻度を従来よりも極端に少なくすることが可能となり、引いては、長期間メンテナンスすることなく連続運転することが可能となる自浄機能を有した液体供給装置を提供することである。
(1) 本発明の液体供給装置は、内部に液体を貯留可能な貯留室と、前記貯留室の上流に設けられ、前記貯留室内に圧力をかけることが可能な加圧部と、前記貯留室の下流に設けられ、内部に、前記貯留室から送流された前記液体に伝熱又は吸熱可能な液体温度制御用配管と、前記液体温度制御用配管を加熱又は冷却する液体温度制御部と、を有した液体温度制御室と、途中にループ流式バブル発生ノズルが設けられており、前記貯留室と前記液体温度制御用配管とを接続する配管と、前記液体温度制御室の下流に設けられ、操作により前記液体温度制御室から送流された前記液体の噴出と停止とが自在な噴出部と、を備え、前記ループ流式バブル発生ノズルが、液体及び気体をループ状の流れによって撹拌混合して混合流体とする気液ループ流式撹拌混合室と、前記気液ループ流式撹拌混合室の一端に設けられ、加圧された液体を前記気液ループ流式撹拌混合室に供給する液体供給孔と、気体の流入量の調整が可能な1つ以上の気体流入孔と、前記気液ループ流式撹拌混合室の他端側に設けられ、前記気体流入孔から流入した気体を前記液体供給孔の中心軸を中心に周回させながら、周の全部または一部の箇所から前記気液ループ流式撹拌混合室の一端側に向かって前記気液ループ流式撹拌混合室に供給する気体供給室と、前記液体供給孔の中心軸と一致するように前記気液ループ流式撹拌混合室の他端に設けられ、前記液体供給孔の孔径よりも大きな孔径を有し、前記混合流体を前記気液ループ流式撹拌混合室から噴出させる噴出孔と、前記噴出孔から前記気液ループ流式撹拌混合室の方向に向かって連続的に拡径するように設けられたテーパ部と、を有していることを特徴とする。ここで、気体流入孔における気体の流入量の調整が可能な手段の例としては、気体流入孔自体に弁を設けたり、又は、気体流入孔に弁部材を接続したりすることが挙げられる。これにより、気体の流入を停止したり、気体の流入量を調整したりすることができる。以下の手段においても同様である。
 上記ループ流式バブル発生ノズルによって、液体供給孔を介して液体が気液ループ流式撹拌混合室に供給されるとともに、気体供給室を介して気体が気液ループ流式撹拌混合室に供給される。これにより、気液ループ流式撹拌混合室内の混合流体が噴出孔から噴出されると、気液ループ流式撹拌混合室内において、気体を含んだ液体のループ状の流れ(「ループ流れ」又は「ループ流」と表現することがある)が発生される。
 ここで、ループ流れとは、液体供給孔から噴出孔へ向う液体の流れに沿って流れた後、噴出孔付近で、噴出孔からの外部気体又は/及び外部液体の流入により反転して気液ループ流式撹拌混合室の内壁に沿って流れ、再び、液体供給孔から供給された液体の流れに沿って流れるという一連の流れのことをいう。なお、発生するループ流れの速度は、液体及び気体の供給量及び圧力によって、低速から高速まで、ある程度コントロールすることが可能である。したがって、液体及び気体の供給量および圧力を調整し、さらにループ流れの速度を増加させることで、高速ループ流れを形成することも可能である。
 気液ループ流式撹拌混合室内の混合流体が噴出孔から噴出されると、気液ループ流式撹拌混合室内が負圧となるので、気体流入孔から気体供給室を介して気体が流入してくるとともに、噴出孔の孔径が液体供給孔の孔径よりも大きく形成されていることから、噴出孔において、噴出孔の内壁と混合流体の周囲との間から、外部気体又は/及び外部液体が気液ループ流式撹拌混合室に流入してくる(外部環境によって、外部気体又は/及び外部液体が流入してくる。)。なお、気体流入孔において弁などを用いて気体の流入量を0にした(気体流入を停止した)場合、当然、気体を自吸することはないが、この場合でも、ノズル内部でキャビテーションが起こりファインバブルは発生する。
 ここで、(a)気体供給室から気液ループ流式撹拌混合室に供給された気体は、気体供給室と気液ループ流式撹拌混合室との境界で発生した乱流により細分化され、(b)ループ流れにおいて撹拌、剪断されながら、(c)一部が液体供給孔から供給された液体と衝突した際の乱流の発生によりさらに細分化され、噴出孔から噴出される。(d)なお、噴出孔から気液ループ流式撹拌混合室内に流入してくる外部気体又は外部液体によって、ループ流れ中の気体は、さらに細分化されることになる。これらの(a)~(d)の工程で微細化される気泡発生のメカニズムが、ループ流式バブル発生ノズルの特徴であり、他のノズルにない優れた点である。
 更に、(e)気体流入孔から流入してきた気体は、気体供給室において液体供給孔の中心軸を中心に周回されながら、周の全部または一部の箇所から気液ループ流式撹拌混合室の一端側に向かって気液ループ流式撹拌混合室内に供給される。この(e)の工程によって、気液ループ流式撹拌混合室内の真空度が向上されるため、気体流入孔から流入してくる気体の量を更に増加させることができて、気泡の発生が促進される。
 したがって、従来品よりも簡易な構成でありながら、平均直径が100μm未満のバブル、特に、平均直径が20μm前後のマイクロバブル及びナノバブルを含むファインバブルを発生させることができる。なお、気体流入孔において弁などを用いて気体の流入量を0にした(気体流入を停止した)場合、当然、気体を自吸することはないが、この場合でも、ノズル内部でキャビテーションが起こりファインバブルは発生する。
 すなわち、上記ファインバブルによってループ流式バブル発生ノズルの下流にある配管などを常時洗浄することになるので、汚れが配管内壁に付着することを抑制できる。したがって、上記(1)の構成の液体供給装置によれば、ループ流式バブル発生ノズルの下流にある配管などを洗浄する頻度を従来よりも少なくすることができる。引いては、長期間メンテナンスすることなく連続運転することが可能となる自浄機能を有した液体供給装置を提供できる。
(2) 別の観点として、本発明の液体供給装置は、内部に液体を貯留可能な貯留室と、前記貯留室の上流に設けられ、前記貯留室内に圧力をかけることが可能な加圧部と、前記貯留室の下流に設けられ、内部に、前記貯留室から送流された前記液体に伝熱又は吸熱可能な液体温度制御用配管と、前記液体温度制御用配管を加熱又は冷却する液体温度制御部と、を有した液体温度制御室と、途中にループ流式バブル発生ノズルが設けられており、前記貯留室と前記液体温度制御用配管とを接続する配管と、前記液体温度制御室の下流に設けられ、操作により前記液体温度制御室から送流された前記液体の噴出と停止とが自在な噴出部と、を備え、前記ループ流式バブル発生ノズルが、液体及び気体をループ状の流れによって撹拌混合して混合流体とする気液ループ流式撹拌混合室と、前記気液ループ流式撹拌混合室の一端に設けられ、加圧された液体を前記気液ループ流式撹拌混合室に供給する液体供給孔と、気体の流入量の調整が可能な1つ以上の気体流入孔と、前記気液ループ流式撹拌混合室の他端側に設けられ、前記気体流入孔から流入した気体を前記液体供給孔の中心軸を中心に周回させながら、周の全部または一部の箇所から前記気液ループ流式撹拌混合室の一端側に向かって前記気液ループ流式撹拌混合室に供給する気体供給室と、前記液体供給孔の中心軸と一致するように前記気液ループ流式撹拌混合室の他端に設けられ、前記液体供給孔の孔径よりも大きな孔径を有し、前記混合流体を前記気液ループ流式撹拌混合室から噴出させる噴出孔と、前記気体供給室の前記気液ループ流式撹拌混合室側に設けられ、前記気体供給室の周の全部または一部の箇所に形成された凹形状の気体溜まり部と、を有していることが好ましい。
 上記(2)の構成によれば、上記(1)のループ流式バブル発生ノズルと同様、従来品よりも簡易な構成でありながら、平均直径が100μm未満のバブル、特に、平均直径が20μm前後のマイクロバブル及びナノバブルを含むファインバブルを発生させることができる。
 また、気体溜まり部によって、気体流入孔から流入してくる気体の量を更に増加させることができ、気泡の発生が促進される。また、(a)気体供給室と気液ループ流式撹拌混合室との境界である気液境界部において発生するキャビテーションによるスプラッシュ現象により、気体供給室内に入り込んだ飛沫液体、又は/及び、(b)気液境界部近傍のファインバブル、が気液境界部近傍で乾燥、濃縮、又は凝集し、気体供給室の壁部(例えば、気体供給室において気液ループ流式撹拌混合室から数mm程度の位置)にカルシウムなどのスケール又は/及びスラッジが析出しリング状に固着しても、気体溜まり部により十分な空間が確保されているので、気体供給室が閉塞されてしまうことがない。その結果として、上記(2)のループ流式バブル発生ノズルにおいては、不純物を含む液体を用いてもバブル発生効率が低下しない。これにより、気体流入孔から流入した気体は、気液ループ流式撹拌混合室に安定して供給されるので、気液ループ流式撹拌混合室内の高速ループ流れを安定させることができる。
 すなわち、上記ファインバブルによってループ流式バブル発生ノズルの下流にある配管などを常時洗浄することになるので、汚れが配管内壁に付着することを抑制できる。したがって、上記(2)の構成の液体供給装置によれば、ループ流式バブル発生ノズルの下流にある配管などを洗浄する頻度を従来よりも少なくすることができる。引いては、長期間メンテナンスすることなく連続運転することが可能となる自浄機能を有した液体供給装置を提供できる。
(3) 上記(1)又は(2)の液体供給装置においては、前記気液ループ流式撹拌混合室の内壁に、前記気液ループ流式撹拌混合室内の混合流体をさらに撹拌混合する凹形状の重撹拌混合部を設けたものであってもよい。
 上記(3)の構成によれば、さらにループ流を形成することができるので、気液ループ流式撹拌混合室内の混合流体をさらに撹拌混合することが可能となる。これにより、さらに効率よくファインバブルを発生させることができる。
(4) 他の観点として、本発明の液体供給装置は、内部に液体を貯留可能な貯留室と、前記貯留室の上流に設けられ、前記貯留室内に圧力をかけることが可能な加圧部と、前記貯留室の下流に設けられ、内部に、前記貯留室から送流された前記液体に伝熱又は吸熱可能な液体温度制御用配管と、前記液体温度制御用配管を加熱又は冷却する液体温度制御部と、を有した液体温度制御室と、途中にループ流式バブル発生ノズルが設けられており、前記貯留室と前記液体温度制御用配管とを接続する配管と、前記液体温度制御室の下流に設けられ、操作により前記液体温度制御室から送流された前記液体の噴出と停止とが自在な噴出部と、を備え、前記ループ流式バブル発生ノズルが、液体及び気体をループ状の流れによって撹拌混合して混合流体とする気液ループ流式撹拌混合室と、前記気液ループ流式撹拌混合室の一端に設けられ、加圧された液体を前記気液ループ流式撹拌混合室に供給する液体供給孔と、気体の流入量の調整が可能な1つ以上の気体流入孔と、前記気液ループ流式撹拌混合室の他端側に設けられ、前記気体流入孔から流入した気体を前記液体供給孔の中心軸を中心に周回させながら、周の全部または一部の箇所から前記気液ループ流式撹拌混合室の一端側に向かって前記気液ループ流式撹拌混合室に供給する気体供給室と、前記液体供給孔の中心軸と一致するように前記気液ループ流式撹拌混合室の他端に設けられ、前記液体供給孔の孔径よりも大きな孔径を有し、前記混合流体を前記気液ループ流式撹拌混合室から噴出させる噴出孔と、前記気液ループ流式撹拌混合室の内壁に設けられ、前記気液ループ流式撹拌混合室内の混合流体をさらに撹拌混合する凹形状の撹拌混合部と、を有していることが好ましい。
 上記(4)の構成によれば、上記(1)のループ流式バブル発生ノズルと同様、従来品よりも簡易な構成でありながら、平均直径が100μm未満のバブル、特に、平均直径が20μm前後のマイクロバブル及びナノバブルを含むファインバブルを効率よく発生させることができる。
 すなわち、上記ファインバブルによってループ流式バブル発生ノズルの下流にある配管などを常時洗浄することになるので、汚れが配管内壁に付着することを抑制できる。したがって、上記(4)の構成の液体供給装置によれば、ループ流式バブル発生ノズルの下流にある配管などを洗浄する頻度を従来よりも少なくすることができる。引いては、長期間メンテナンスすることなく連続運転することが可能となる自浄機能を有した液体供給装置を提供できる。
本発明の第1の実施の形態に係る液体供給装置を示した概略構成図である。 (a)が図1の液体供給装置におけるバブル発生ノズルを示す概略断面図、(b)が(a)のI-I矢視断面図、(c)が(a)のII-II矢視断面図、(d)が(a)のIII-III矢視断面図である。 図2のループ流式バブル発生ノズルの動作説明図である。 (a)が第1の実施の形態の液体供給装置におけるループ流式バブル発生ノズルの変形例を示す概略断面図、(b)が(a)のI-I矢視断面図、(c)が(a)のII-II矢視断面図である。 (a)が第2の実施の形態に係る液体供給装置におけるバブル発生ノズルを示す概略断面図、(b)が(a)のI-I矢視断面図、(c)が(a)のII-II矢視断面図である。 本発明の実施例1に係る液体供給装置を示す写真である。 比較例の観察で得られた配管内の汚れを含んだ水道水の拡大写真である。 比較例の液体供給装置を用いて吐出した液体をジョッキに注いだ際の写真である。 実施例1の観察で得られた配管内の汚れを含んだ水道水の拡大写真である。 実施例1の液体供給装置を用いて吐出した液体をジョッキに注いだ際の写真である。 実施例2の観察で得られた配管内の汚れを含んだ水道水の拡大写真である。 実施例2の液体供給装置を用いて吐出した液体をジョッキに注いだ際の写真である。 実施例3の観察で得られた配管内の汚れを含んだ水道水の拡大写真である。 実施例3の液体供給装置を用いて吐出した液体をジョッキに注いだ際の写真である。
[第1の実施の形態]
 本発明の第1の実施の形態を図1~図3に基づいて以下に説明する。図1は、本発明の第1の実施の形態に係る液体供給装置を示した概略構成図である。図2(a)は、図1の液体供給装置におけるループ流式バブル発生ノズル10を示す概略断面図、図2(b)は、図2(a)のI-I矢視断面図、図2(c)は、図2(a)のII-II矢視断面図、図2(d)は、図2(a)のIII-III矢視断面図である。図3は、ループ流式バブル発生ノズル10の動作説明図である。
(液体供給装置100の全体構成)
 液体供給装置100は、ガスボンベ60(加圧部)と、加圧用配管61と、飲料容器62(貯留室)と、液体送流用配管63と、冷却室64と、を主に備えている。
 ガスボンベ60は、内部に加圧状態でガス(気体)を封入することが可能なものである。また、図示しないが、バルブの操作を行うことにより内部のガスを、加圧用配管61を介して飲料容器62内のガス溜まりに放出することができるようになっている。なお、ガスボンベ60内におけるガスは、空気の他、人体に無害なものであれば、どのようなものでもよく、例えば、炭酸ガス、窒素ガス等が用いられる。
 飲料容器62は、ビールなどのアルコール飲料、ジュースなどの炭酸飲料若しくは清涼飲料、又は、水、などの飲料用の液体70を密閉貯留しておくことが可能な容器である。また、飲料容器62は、上部から挿入された加圧用配管61及び液体送流用配管63が設けられている。なお、液体送流用配管63の途中には、後述するループ流式バブル発生ノズル10が設けられている。加圧用配管61の下流側先端部は、液体70の液面に接触しないように配設され、液体送流用配管63の上流側先端部は、液体70の液体中に挿入されている。
 冷却室64内には、冷却部65(液体温度制御)と、液体温度制御用配管66と、が設けられている。冷却部65は、液体温度制御用配管66を冷却することができる機能を有した装置であって、冷媒を用いるいわゆるガス圧縮式冷却器、ガス吸収式冷却器、又は、ペルチェ効果などを利用する電子式冷却器など、いずれを用いてもよい。ここで、一変形例として、冷却部65の代わりに、氷を冷却室64内に投入して、液体温度制御用配管66を冷却してもよい。
 液体温度制御用配管66は、冷却室64内において上流側から下流側にかけて蛇行するように設けられている。また、液体温度制御用配管66の上流側端部は、液体送流用配管63の下流側端部と接続されており、液体送流用配管63から送られてきた液体は、液体温度制御用配管66内部に送られるようになっている。また、液体温度制御用配管66の下流側端部は、噴出部67に接続されており、レバー67aの操作により噴出量を調整しながら、注ぎ口67bから飲料を注ぎ出すことができる。ここで、図示しないが、一変形例として、冷却室64内において、液体温度制御用配管66を螺旋状のものにしてもよい。このとき、螺旋状の液体温度制御用配管66に周囲を囲まれるように冷却部65を配設すると、冷却室64を小型化できる。
(ループ流式バブル発生ノズル10の構成)
 図2(a)に示すように、ループ流式バブル発生ノズル10は、断面円形の有底管状の第1の部材としての有底部材1と、有底部材1の他端側に嵌め込まれた第2の部材としての筒状部材2とを有している。そして、有底部材1及び筒状部材2で囲まれた略円柱型の空間が、気液ループ流式撹拌混合室6とされている。
 有底部材1は、その側部に、ループ流式バブル発生ノズル10の外部と内部とが連通されて、気体が流入される気体流入孔3を有している。なお、気体流入孔3は2つ以上あってもよい。また、有底部材1は、その底部中央に、外部から加圧された液体(圧力が少しでも加えられている状態の液体。以下では、「加圧液体」とすることがある。)が供給される第1液体供給孔5aと第2液体供給孔5bとを有している。外部から供給された加圧液体は、第1液体供給孔5a、第2液体供給孔5bを順に通って気液ループ流式撹拌混合室6に供給される。第1液体供給孔5a及び第2液体供給孔5bの各中心軸は、気体流入孔3の中心軸と交差されている。
 第2液体供給孔5bは、第1液体供給孔5aから気液ループ流式撹拌混合室6の方向に向かって連続的に拡径されたテーパ状に形成されている。この第2液体供給孔5bは、気液ループ流式撹拌混合室6内において、高速ループ流れを加圧液体の流れとは逆の方向から加圧液体の流れに合流させて、乱流を激しく起こさせる役割を果たしている。
 筒状部材2は、その中央に、液体及び気体を流入可能な流入孔7と、液体及び気体を噴出可能な第1噴出孔8aと第2噴出孔8bとを有している。流入孔7、第1噴出孔8a及び第2噴出孔8bの各中心軸は、第1液体供給孔5a及び第2液体供給孔5bの各中心軸と一致されている。
 流入孔7は、第1噴出孔8aから気液ループ流式撹拌混合室6の方向に向かって連続的に拡径されたテーパ状に形成されている。この流入孔7は、気液ループ流式撹拌混合室6内における高速ループ流れを加速させる役割を果たしている。第1噴出孔8aは、一端が流入孔7の一端に接続されると共に、他端が第2噴出孔8bの一端に接続されるように形成されている。第2噴出孔8bは、第1噴出孔8aから気液ループ流式撹拌混合室6の方向とは逆の方向に向かって連続的に拡径されたテーパ状に形成されている。この第2噴出孔8bは、第1噴出孔8aから気液ループ流式撹拌混合室6内に流入してくる外部気体及び/又は外部液体の量を調節すると共に、第1噴出孔8aの外部側周辺の流れ(第1噴出孔8aからの混合流体の噴出、並びに、外部気体又は/及び外部液体の流入)を安定させる役割を果たしている。
 また、筒状部材2は、気体流入孔3に対向する外周位置に、周方向に連続した溝部4bを有している。そして、溝部4bと有底部材1の内壁面とで囲まれたリング状の空間が、気体供給室4とされている。気体供給室4は、隙間4aによって気液ループ流式撹拌混合室6に連通されている。
 図2(d)に示すように、気体流入孔3と気体供給室4とは隙間4aによって連通されている。気体流入孔3から流入した気体は、気体供給室4において、第1液体供給孔5aの中心軸を中心に周回されながら、周の全部または一部の箇所から隙間4aを通過して、気液ループ流式撹拌混合室6の一端側に向かって気液ループ流式撹拌混合室6に供給されることとなる。これにより、気液ループ流式撹拌混合室6の内壁に、気体の膜、気泡、又は/及び、マイクロバブルが発生されると共に、高速ループ流れが加速される。気体流入孔3から流入する気体は、空気の他、人体に無害なものであれば、どのようなものでもよく、例えば、炭酸ガス、窒素ガス等を用いてもよい。
 なお、有底部材1及び筒状部材2には、SUS304、SUS316などの金属、樹脂、木、ガラス、セラミック、陶磁器などを用いることができるが、固体材料であればどのようなものを用いてもよい。また、部品毎に、適材適所の素材を選択してもよい。なお、樹脂、ガラス、セラミックスなどを選択すれば、腐食に強いので、バブル発生ノズル10を長寿命化することができる。
 気液ループ流式撹拌混合室6は、第2液体供給孔5bから供給された液体と、気体供給室4から供給された気体とを、ループ状の流れによって撹拌混合する空間である。気液ループ流式撹拌混合室6の一端には第2液体供給孔5bが設けられており、気液ループ流式撹拌混合室6の他端には流入孔7が設けられている。また、気液ループ流式撹拌混合室6の他端側には、気体供給室4と気体流入孔3とが設けられている。なお、気液ループ流式撹拌混合室6の内壁には、凹凸形状(例えば、いわゆる鮫肌、セラミックの溶射肌と同様のもの、又は/及び、単なる突起形状など)が形成されているが、内壁全体に施されている必要はなく、一部に形成されているだけでもよい。この内壁の凹凸形状は、高速ループ流れを加速させ、気液ループ流式撹拌混合室6内の真空度を高くする役割を果たしている。
(ループ流式バブル発生ノズル10の動作)
 次に、図3を用いて、ループ流式バブル発生ノズル10の動作について説明する。図3は、図2のループ流式バブル発生ノズル10と、ループ流式バブル発生ノズル10の有底部材1の一端側に接続されたホース11と、ループ流式バブル発生ノズル10の筒状部材2の他端側に接続されたシャワーヘッド12と、ループ流式バブル発生ノズル10の有底部材1の気体流入孔3に接続された気体用供給管13と、気体用供給管13への外部気体の流入量を調整する絞り弁14とを示した図である。なお、簡便のため、ループ流式バブル発生ノズル10のみ概略断面図で示している。また、気体用供給管13の一端は外気を取り込めるようになっており、気体用供給管13の内部には、バブルを安定して発生させることができるように、逆止弁13aが設けられている。
 まず、ホース11から第1液体供給孔5a、第2液体供給孔5bを介して、加圧液体を気液ループ流式撹拌混合室6に供給する。このとき、加圧液体は、図3の第1液体供給孔5a、第2液体供給孔5bと、流入孔7及び第1噴出孔8aとを結ぶ線上に沿って流れた後、その大半が第1噴出孔8aから拡がりながら噴出すると共に、第2噴出孔8bから第1噴出孔8aを介して外部気体及び/又は外部液体の流入によって、その一部が高速ループ流れ(図3の気液ループ流式撹拌混合室6内の略楕円状部分)を形成する。このとき、加圧液体の一部によって、高速ループ流れの速度が更に増加される。
 また、気液ループ流式撹拌混合室6内は負圧となっているので、気体用供給管13から気体供給室4を介して、気液ループ流式撹拌混合室6内に気体が流入してくる。
 ここで、気体供給室4から気液ループ流式撹拌混合室6内に供給された気体は、(a)気体供給室4と気液ループ流式撹拌混合室6との境界で発生した乱流により細分化され、(b)流入孔7及び第2液体供給孔5bによって加速された高速ループ流れにおいて撹拌、剪断され、(c)気液ループ流式撹拌混合室6の内壁の凹凸形状と衝突し、(d)途中で一部が第1液体供給孔5aから供給された加圧液体と衝突した際に発生した乱流により更に細分化され、(e)第1噴出孔8aにおいて、流入してきた外部気体及び/又は外部液体と衝突して、更に微細化され、バブル又は/及びマイクロバブルなどのファインバブルを含む混合流体として第2噴出孔8bから噴出される。
 更に、(f)気体流入孔3から流入してきた気体は、気体供給室4において第1液体供給孔5aの中心軸を中心に周回されながら、周の全部または一部の箇所から気液ループ流式撹拌混合室6の一端側に向かって気液ループ流式撹拌混合室6内に供給される。これにより、気液ループ流式撹拌混合室6内の真空度が向上されるため、気体流入孔3から流入してくる気体の量を更に増加させることができて、気泡の発生が促進される。
 これらのような一連の動作によって、バブル又は/及びマイクロバブルなどのファインバブルが、次から次へと連続的に発生する。
 また、テーパ状に形成された流入孔7によって、高速ループ流れが加速されると共に、第2液体供給孔5bによって激しい乱流が起こされるため、気液ループ流式撹拌混合室6内の気体を更に細分化することができる。
 また、テーパ状に形成された第2噴出孔8bによって、第1噴出孔8aから気液ループ流式撹拌混合室6内に流入してくる外部気体及び/又は外部液体の量が調節されていると共に、第1噴出孔8aの外部側周辺の流れ(第1噴出孔8aからの混合流体の噴出、並びに、外部気体又は/及び外部液体の流入)が安定されている。
 また、気液ループ流式撹拌混合室6が略円柱型の空間であるので、高速ループ流れを容易に形成することができ、上述の動作を容易に得ることができる。そして、気液ループ流式撹拌混合室6の内壁には、凹凸形状が形成されているので、高速ループ流れをしている液体と気体との混合流体が凹凸形状に衝突することによって、気液ループ流式撹拌混合室6内の気体を更に細分化することができると共に、高速ループ流れを加速させ、気液ループ流式撹拌混合室6内の真空度を高くすることができる。
 上記の構成のループ流式バブル発生ノズル10によれば、上述したような動作が行われるので、従来と同等以下(20μm前後)の径のマイクロバブルなどのファインバブルを発生させることができる。
 なお、上述したループ流式バブル発生ノズル10の動作では、加圧液体を第1液体供給孔5a、第2液体供給孔5bを順に通って気液ループ流式撹拌混合室6に供給した場合について説明したが、これに限られず、不純物を含んだ汚泥水若しくは海水、又は水道水を供給しても、マイクロバブルなどのファインバブルを発生させることができる。
[第1の実施の形態の液体供給装置100の変形例]
 次に、本発明の第1の実施の形態の液体供給装置100におけるループ流式バブル発生ノズルの変形例について説明する。図4は、第1の実施の形態の液体供給装置100におけるループ流式バブル発生ノズル10の変形例に係るループ流式バブル発生ノズル20を示す概略断面図である。
(ループ流式バブル発生ノズル20の構成)
 図4(a)に示すように、ループ流式バブル発生ノズル20は、断面円形の有底管状の第1の部材としての有底部材21と、有底部材21の他端側に嵌め込まれた第2の部材としての筒状部材22とを有している。そして、有底部材21及び筒状部材22で囲まれた略円柱型の空間が、気液ループ流式撹拌混合室26とされている。
 筒状部材22は、気体流入孔23に対向する外周位置に、周方向に連続した溝部24bを有している。そして、溝部24bと筒状部材22の内面とで囲まれたリング状の空間が、気体供給室24とされている。気体供給室24は、隙間24aによって気液ループ流式撹拌混合室26に連通されている。また、隙間24aの気液ループ流式撹拌混合室26側には、凹形状の気体溜まり部24cが隙間24aの周の全部に沿って設けられている。
 図4(a)に示すように、気体流入孔23と気体供給室24とは隙間24aによって連通されている。気体流入孔23から流入した気体は、気体供給室24において、第1液体供給孔25aの中心軸を中心に周回されながら、周の全部または一部の箇所から隙間24aを通過して、気液ループ流式撹拌混合室26の一端側に向かって気液ループ流式撹拌混合室26に供給されることとなる。これにより、気液ループ流式撹拌混合室26の内壁に、気体の膜、気泡、又は/及び、マイクロバブルが発生されると共に、高速ループ流れが加速される。また、気体供給室24の近傍の気体溜まり部24cによって、気体流入孔23から流入してくる気体の量を更に増加させることができ、気泡の発生が促進される。また、(a)気体供給室24と気液ループ流式撹拌混合室26との境界である気液境界部において発生するキャビテーションによるスプラッシュ現象により、隙間24a内に入り込んだ飛沫液体、又は/及び、(b)気液境界部近傍のファインバブル、が気液境界部近傍で乾燥、濃縮、又は凝集し、隙間24a内の筒状部材22の外表面又は/及び有底部材21の内表面にカルシウムなどのスケール又は/及びスラッジが析出しリング状に固着しても、気体溜まり部24cにより十分な空間が確保されているので、隙間24a(気体供給室24)が閉塞されてしまうことがない。その結果として、本変形例に係るループ流式バブル発生ノズル20においては、不純物を含む液体を用いてもバブル発生効率が低下しない。これにより、気体流入孔23から流入した気体は、気液ループ流式撹拌混合室26に安定して供給されるので、気液ループ流式撹拌混合室26内の高速ループ流れを安定させることができる。
 その他の構成及び動作は、第1の実施の形態と同じであるため、その説明を省略する。
(本実施の形態の概要)
 以上のように、本実施の形態のループ流式バブル発生ノズル10,20は、液体及び気体をループ状の流れによって撹拌混合して混合流体とする気液ループ流式撹拌混合室6、26と、気液ループ流式撹拌混合室6、26の一端に設けられ、加圧された液体を気液ループ流式撹拌混合室6、26に供給する第1液体供給孔5a、25a及び第2液体供給孔5b、25bと、気体が流入する1つ以上の気体流入孔3,23と、気液ループ流式撹拌混合室6、26の他端側に設けられ、気体流入孔3,23から流入した気体を第1液体供給孔5a、25aの中心軸を中心に周回させながら、周の全部または一部の箇所から気液ループ流式撹拌混合室6、26の一端側に向かって気液ループ流式撹拌混合室6、26に供給する気体供給室4、24と、第1液体供給孔5a、25aの中心軸と一致するように気液ループ流式撹拌混合室6、26の他端に設けられ、流入孔7、27と、混合流体を気液ループ流式撹拌混合室6、26から噴出させる第1噴出孔8a、28a及び第2噴出孔8b、28bとを有する構成にされている。
 上記の構成によれば、第1液体供給孔5a、25a及び第2液体供給孔5b、25bを介して液体が気液ループ流式撹拌混合室6、26に供給されると共に、気体供給室4、24を介して気体が気液ループ流式撹拌混合室6、26に供給される。これにより、気液ループ流式撹拌混合室6、26内の混合流体が第2噴出孔8b、28bから噴出されると、気液ループ流式撹拌混合室6、26内において、気体を含んだ液体のループ状の流れ(「ループ流れ」又は「ループ流」と表現することがある)が発生される。
 気液ループ流式撹拌混合室6、26内の混合流体が第2噴出孔8b、28bから噴出されると、気液ループ流式撹拌混合室6、26内が負圧となるので、気体流入孔3,23から気体供給室4、24を介して気体が流入してくると共に、第1噴出孔8a、28aの孔径が第1液体供給孔5a、25aの孔径よりも大きく形成されていることから、第1噴出孔8a、28aにおいて、第1噴出孔8a、28aの内壁と混合流体の周囲との間から、外部気体又は/及び外部液体が気液ループ流式撹拌混合室6、26に流入してくる。
 ここで、気体供給室4、24から気液ループ流式撹拌混合室6、26内に供給された気体は、(a)気体供給室4、24と気液ループ流式撹拌混合室6、26との境界で発生した乱流により細分化され、(b)流入孔7、27及び第2液体供給孔5b、25bによって加速された高速ループ流れにおいて撹拌、剪断され、(c)気液ループ流式撹拌混合室6、26の内壁の凹凸形状と衝突し、(d)途中で一部が第1液体供給孔5a、25aから供給された加圧液体と衝突した際に発生した乱流により更に細分化され、(e)第1噴出孔8a、28aにおいて、流入してきた外部気体及び/又は外部液体と衝突して、更に微細化され、バブル又は/及びマイクロバブルを含む混合流体として第2噴出孔8b、28bから噴出される。これらの(a)~(e)の工程で微細化される気泡発生のメカニズムが、ループ流式バブル発生ノズル10、20の特徴であり、他のノズルにない優れた点である。
 更に、(f)気体流入孔3、23から流入してきた気体は、気体供給室4、24において第1液体供給孔5a、25aの中心軸を中心に周回されながら、周の全部または一部の箇所から気液ループ流式撹拌混合室6、26の一端側に向かって気液ループ流式撹拌混合室6、26内に供給される。この(f)の工程によって、気液ループ流式撹拌混合室6、26内の真空度が向上されるため、気体流入孔3、23から流入してくる気体の量を更に増加させることができて、気泡の発生が促進される。
 したがって、平均直径が100μm未満のバブル、特に、平均直径が20μm前後の従来と同等以下の径のマイクロバブルを発生させることができる。
 また、テーパ状に形成された流入孔7、27によって、高速ループ流れが加速されると共に、第2液体供給孔5b、25bによって激しい乱流が起こされるため、気液ループ流式撹拌混合室6、26内の気体を更に細分化することができる。
 また、テーパ状に形成された第2噴出孔8b、28bによって、第1噴出孔8a、28aから気液ループ流式撹拌混合室6、26内に流入してくる外部気体及び/又は外部液体の量が調節されていると共に、第1噴出孔8a、28aの外部側周辺の流れ(第1噴出孔8a、28aからの混合流体の噴出、並びに、外部気体又は/及び外部液体の流入)が安定されている。
 また、気液ループ流式撹拌混合室6、26の内壁に凹凸形状が形成されているので、高速ループ流れをしている液体と気体との混合流体が凹凸形状に衝突することによって、気液ループ流式撹拌混合室6、26内の気体を更に細分化することができると共に、高速ループ流れを加速させ、気液ループ流式撹拌混合室6、26内の真空度を高くすることができる。
 また、上述のようなループ流式バブル発生ノズル10又はループ流式バブル発生ノズル20を備えた液体供給装置は、上記ファインバブルによってループ流式バブル発生ノズルの下流にある配管などを常時洗浄することになるので、汚れが配管内壁に付着することを抑制できる。したがって、上記変形例のループ流式バブル発生ノズルを備えた液体供給装置によれば、ループ流式バブル発生ノズルの下流にある配管などを洗浄する頻度を従来よりも少なくすることができる。引いては、長期間メンテナンスすることなく連続運転することが可能となる自浄機能を有した液体供給装置を提供できる。
[第2の実施の形態]
 本発明の第2の実施の形態に係る液体供給装置(図示せず)を以下に説明する。図5は、第2の実施の形態に係る液体供給装置に用いたループ流式バブル発生ノズル30を示す概略断面図である。なお、ループ流式バブル発生ノズル30を用いた点以外は、第1の実施の形態と同様であるので、説明を省略する場合がある。
(ループ流式バブル発生ノズル30の構成)
 図5(a)に示すように、ループ流式バブル発生ノズル30は、断面円形の有底管状の第1の部材としての有底部材31と、有底部材31の他端側に嵌め込まれた第2の部材としての筒状部材32とを有している。そして、有底部材31及び筒状部材32で囲まれた略円柱型の空間が、気液ループ流式撹拌混合室36とされている。なお、気液ループ流式撹拌混合室56内には、気液ループ流式撹拌混合室56内の混合流体をさらに撹拌混合する撹拌混合部55cが設けられている。
 筒状部材32は、その中央に、液体及び気体を流入可能な流入孔37と、液体及び気体を噴出可能な第1噴出孔38aと第2噴出孔38bとを有している。流入孔37は、第1噴出孔38aから気液ループ流式撹拌混合室36の方向に向かって連続的に拡径されたテーパ状に形成されている。また、流入孔37の気液ループ流式撹拌混合室36側の端面には、複数の切欠き部37aが設けられ、このうち適数箇所に切欠き部37bが、切欠き部37aから気体供給室34に向かって延設されている。この流入孔37は、気液ループ流式撹拌混合室36内における高速ループ流れを加速させる役割を果たしている。また、流入孔37の複数の切欠き部37a及び37bは、高速ループ流れにおける気体を撹拌、剪断し、更に細分化する役割を果たしている。また、気体供給室34と気液ループ流式撹拌混合室36との境界である気液境界部において発生するキャビテーションによるスプラッシュ現象により、隙間34a内に入り込んだ飛沫液体が乾燥、濃縮、又は凝集し、隙間34a内の筒状部材32の外表面又は/及び有底部材31の内表面にカルシウムなどのスケール又は/及びスラッジが析出しリング状に固着しても、複数の切欠き部37a及び37bの部分は空間のまま存在する(切欠き部37a及び37bの空間部分にカルシウムなどが析出し固着することはない)ので、隙間34aが閉塞されてしまうことがない。その結果として、本実施形態に係るループ流式バブル発生ノズル30においては、不純物を含む液体を用いてもバブル発生効率が低下しない。これにより、気体流入孔33から流入した気体は、気液ループ流式撹拌混合室36に安定して供給されるので、気液ループ流式撹拌混合室36内の高速ループ流れを安定させることができる。
 撹拌混合部35cは、第2液体供給孔35bの途中において、中心軸を略同一としたリング状に設けられた凹形状の溝である。この撹拌混合部35cにおいて、気液ループ流式撹拌混合室36内で発生するループ流に比べてミニサイズのループ流を生じさせることで、さらに気液ループ流式撹拌混合室36内の混合流体を撹拌混合し、気泡を効率よく発生させる。
 その他の構成及び動作は、第1の実施の形態のループ流式バブル発生ノズル10と同じであるため、その説明を省略する。
 上述のようなループ流式バブル発生ノズル30を備えた液体供給装置は、上記ファインバブルによってループ流式バブル発生ノズルの下流にある配管などを常時洗浄することになるので、汚れが配管内壁に付着することを抑制できる。したがって、上記変形例のループ流式バブル発生ノズルを備えた液体供給装置によれば、ループ流式バブル発生ノズルの下流にある配管などを洗浄する頻度を従来よりも少なくすることができる。引いては、長期間メンテナンスすることなく連続運転することが可能となる自浄機能を有した液体供給装置を提供できる。
(他の変形例)
 以上、本発明の実施の形態を説明したが、具体例を例示したに過ぎず、特に本発明を限定するものではなく、具体的構成などは、適宜設計変更可能である。また、発明の実施の形態に記載された、作用及び効果は、本発明から生じる最も好適な作用及び効果を列挙したに過ぎず、本発明による作用及び効果は、本発明の実施の形態に記載されたものに限定されるものではない。
 例えば、各実施の形態及び各変形例において、ループ流式バブル発生ノズルは、表面が樹脂で被覆された部材からなるもの、若しくは、樹脂だけで成形されたものであってもよい。これにより、汚泥水又は海水などの劣悪な環境中においても、部材表面が樹脂で被覆されている、若しくは、ループ流式バブル発生ノズル自体が樹脂で成形されているので、腐食を防止できる。その結果として、使用寿命が長く、安価なループ流式バブル発生ノズルを提供することができる。
 また、各実施の形態及び各変形例において、ループ流式バブル発生ノズルは、気体流入孔を有する構成にされているが、液体供給孔から供給される液体に気体が溶け込んでいる場合には、気体流入孔を有しない構成であってもよい。この場合、液体に溶け込んだ気体は、気液ループ流式撹拌混合室内で気泡化される。
 また、各実施の形態のループ流式バブル発生ノズルにおいて、気体流入孔を有する有底部材が、気液ループ流式撹拌混合室の周面に、気液ループ流式撹拌混合室の周面の接線と平行な方向に開口されて外部と連通する外部連通孔を更に有していてもよい。これによれば、外部連通孔から外部液体及び/又は外部気体が気液ループ流式撹拌混合室内に流入してくるので、ループ流の他に、気液ループ流式撹拌混合室における周面に沿って流れる旋回流を発生させることができて、液体供給孔から供給される液体の供給方向に対して、ループ流の流れ方向を傾斜させることができる。その結果として、ループ流の一周当りの距離を長くすることができることから、ループ流により発生する乱流によって気体の剪断の機会が多くなるので、より気液ループ流式撹拌混合室内の気体を細分化することができる。
 また、各実施の形態及び各変形例において、気体流入孔は、噴出孔寄りに形成されていてもよい。また、気体流入孔からの気体の流入は、なくてもよい場合がある。すなわち、気体流入孔に弁などを設け、気体の流入を0にしても(気体流入を停止しても)よい。このときでも、ノズル内部ではキャビテーションが起こり、自浄に必要な程度のファインバブルは発生する。
 また、上記実施形態又は変形例における液体供給装置においては、液体を冷却して供給する場合を示したが、これに限られず、冷却室の代わりに、液体温度制御用配管に伝熱可能なヒータなどの加熱部(液体温度制御)を有した加熱室を用いて、液体を加熱するものであってもよい。なお、該加熱部の代わりに、熱湯などの加熱された液体を加熱室内に投入して、液体温度制御用配管を加熱してもよい。
 また、上記実施形態又は変形例における液体供給装置におけるループ流式バブル発生ノズルは、液体送流用配管の途中のどこに設けてもよい。また、上記実施形態又は変形例における液体供給装置におけるループ流式バブル発生ノズルは、液体送流用配管の上流側端部に設けてもよいし、液体送流用配管の下流側端部と液体温度制御用配管の上流側端部との接続部に設けてもよい。
 また、上記実施形態又は変形例における液体供給装置における噴出部には、注ぎ出される液体に含まれる泡の量を調整できる泡調整部が設けられていてもよい。
 また、上記実施形態又は変形例の液体供給装置における加圧部として、ガスボンベを使用したが、この代わりに、コンプレッサーなどの加圧器(圧縮機)を用いてもよい。
 また、上記実施形態又は変形例における液体供給装置においては、液体送流用配管を2系統に分けて、一方の系統の途中にループ流式バブル発生ノズルを配設して冷却室内の液体温度制御用配管に接続させ、他方の系統にはループ流式バブル発生ノズルを配設しないようにして、冷却室内の液体温度制御用配管に接続させ、各系統に切り替えることができるようにしてもよい。これにより、洗浄をしつつ液体供給装置を使用したい場合には、途中にループ流式バブル発生ノズルを配設してある系統を使用し、元々の生ビールを供給したい場合には、ループ流式バブル発生ノズルを配設していない系統を使用するということができる。特に、ループ流式バブル発生ノズルを配設していない系統を使用する場合には泡立ちが少ないので、冷却室内の冷却部が始動したばかりなどで、熱交換がまだ十分でないときに冷却しやすいという効果がある。
 上記第1の実施の形態に係る液体供給装置の構成を含む実験用の液体供給装置(図6参照)を組み上げ、該装置におけるループ流式バブル発生ノズルの下流に配置されている配管(液体送流用配管、冷却室内の液体温度制御用配管)の内部及び噴出部(レバー、注ぎ口)の内部に、付着、堆積などする有機物質(酵母菌、酒石等)による汚れ(コンタミネーション)を自浄する機能について検証する実験を行った。
<実験方法>
(実施例1)
 まず、図6に示した液体供給装置において、下記表1の実施例1に示したループ流式バブル発生ノズルを用いて、中ジョッキ5杯/日の生ビール(生ビール20Lを2週間で消費することになる量)を3日間吐出させる。その後、図6の液体供給装置の飲料容器(生ビールタンク)を外して、液体送流用配管内にスポンジ片を挿入し、水道水の入った洗浄用タンクに付け替え、該洗浄用タンクから水道水を液体送流用配管内に流しこみ、スポンジ片を配管の下流に押し出す。このとき、噴出部を冷却室から外しておき、スポンジ片が吐出されるまで押し出す。スポンジ片が吐出された後に、水道水でさらに液体送流用配管を洗い流す。このようにして得られた配管内の汚れを含んだ水道水を、デジタルマイクロスコープ(ライカDMS1000:ライカマイクロシステムズ株式会社製)によって観察した。
(実施例2、3)
 図6に示した液体供給装置において、下記表1の実施例2、3に示したループ流式バブル発生ノズルのそれぞれを用いること以外、実施例1と同様の方法で実験した。
(比較例)
 図6に示した液体供給装置において、ループ流式バブル発生ノズルを用いずに、実施例1と同様の実験を行った。なお、実施例1~3においてループ流式バブル発生ノズルを液体供給装置に取り付けた場合において、該ノズルの通過前の圧力値を測定する圧力計と、該ノズルの通過後の圧力値を測定する圧力計とを液体供給装置に取り付けているが、ループ流式バブル発生ノズルを取り付けていない比較例の液体供給装置においても、実施例1~3の場合と同様の位置に圧力計を取り付け、配管内の圧力を測定できるようにしている。
Figure JPOXMLDOC01-appb-T000001
 
<実験結果>
(比較例の実験結果)
 図7に、比較例の観察で得られた配管内の汚れを含んだ水道水の拡大写真を示す。図7の写真からわかるように、汚れ(コンタミネーション)がやや多く見られる。したがって、表1の欄の「汚れの量」の評価は「やや多い~やや少ない」とした。なお、図7中の数値と「μm」の単位が記載されている四角で囲まれた部分の直上にある白点のように見えるものが汚れ(コンタミネーション)であるが、この汚れの大きさをデジタルマイクロスコープで計測し、図中に記載している。下記実施例も同様である。
 また、本比較例の液体供給装置の通常使用5回において、泡量は吐出される液体(ビール)の量に対してほとんどない状態で(図8参照)、後に泡を作って吐出する必要があった。したがって、表1の欄の「ジョッキに注いだビールの状態」の評価は「泡量が液量に対し非常に少ない」とした。
(実施例1の実験結果)
 図9に、実施例1の観察で得られた配管内の汚れを含んだ水道水の拡大写真を示す。図9の写真からわかるように、ほとんど汚れ(コンタミネーション)が見られない。具体的には、図9中の「62.234μm」と表記した部分の直上においてのみ小さな汚れ(コンタミネーション)が発見できただけであり、比較例の図7の写真と大きな違いがあることがわかる。なお、他の丸い球体のようなものはファインバブルであり、汚れではない。したがって、表1の欄の「汚れの量」の評価は「ほとんどなし」とした。
 また、本実施例の液体供給装置の通常使用4回において、泡量は吐出される液体(ビール)の量に対してちょうどよかった(店舗にて提供する場合とほぼ同様であった)ので(図10参照)、液体(ビール)吐出後に泡量を調整する必要がなかった。したがって、表1の欄の「ジョッキに注いだビールの状態」の評価は「泡量が液量に対しちょうどよい」とした。
(実施例2の実験結果)
 図11に、実施例2の観察で得られた配管内の汚れを含んだ水道水の拡大写真を示す。図11の写真からわかるように、実施例1よりは多少の汚れ(コンタミネーション)が見られるが、比較例ほどは見られない。したがって、表1の欄の「汚れの量」の評価は「やや少ない~少ない」とした。
 液体供給装置の通常使用5回においては、吐出される液体の量に対して泡量がやや多いことがあったが、それほど気になるような泡量ではなく、ほぼちょうどよいと思われるものであった(図12参照)。したがって、表1の欄の「ジョッキに注いだビールの状態」の評価は「泡量が液量に対しやや多い~泡量が液量に対しちょうどよい」とした。
(実施例3の実験結果)
 図13に、実施例3の観察で得られた配管内の汚れを含んだ水道水の拡大写真を示す。図13の写真からわかるように、比較例とほぼ同様の汚れが見られた。したがって、表1の欄の「汚れの量」の評価は「やや多い~やや少ない」とした。
 液体供給装置の通常使用においては、吐出される液体の量に対して泡量がやや多いことがあったが、それほど気になるような泡量ではなく、ほぼちょうどよいと思われるものであった(図14参照)。したがって、表1の欄の「ジョッキに注いだビールの状態」の評価は「泡量が液量に対しやや多い~泡量が液量に対しちょうどよい」とした。
 なお、本実施例においては、比較例とほぼ同様の汚れが見られたが、ループ流式バブル発生ノズルの下流の圧力値は、比較例の場合と比べ低くなる、すなわち、流速が小さくなっていても、比較例の場合と同様の汚れしか出ていないことがわかる。したがって、実施例3においても自浄機能が発揮されていることがわかる。
 上記実施例1~3により、本発明に係る液体供給装置において、ループ流式バブル発生ノズルの下流に配置されている配管(液体送流用配管、冷却室内の液体温度制御用配管)の内部及び噴出部(レバー、注ぎ口)の内部に、付着、堆積などする有機物質(酵母菌、酒石等)による汚れ(コンタミネーション)を自浄する機能があることが実証された。
1、21、31  有底部材
2、22、32  筒状部材
3、23、33  気体流入孔
4、24、34  気体供給室
4a、24a、34a  隙間
4b、24b、34b  溝部
5a、25a、25a  第1液体供給孔
5b、25b、25b  第2液体供給孔
6、26、36  気液ループ流式撹拌混合室
7、27、37  流入孔
8a、28a、38a  第1噴出孔
8b、28b、38b  第2噴出孔
10、20、30  ループ流式バブル発生ノズル
11  ホース
12  シャワーヘッド
13  気体用供給管
13a  逆止弁
14  絞り弁
24c  気体溜まり部
35c  撹拌混合部
60  ガスボンベ
61  加圧用配管
62  飲料容器
63  液体送流用配管
64  冷却室
65  冷却部
66  液体温度制御用配管
67  噴出部
100  液体供給装置
 

Claims (4)

  1.  内部に液体を貯留可能な貯留室と、
     前記貯留室の上流に設けられ、前記貯留室内に圧力をかけることが可能な加圧部と、
     前記貯留室の下流に設けられ、内部に、前記貯留室から送流された前記液体を冷却可能な冷却用配管と、前記冷却用配管を冷却する冷却部と、を有した冷却室と、
     途中にループ流式バブル発生ノズルが設けられており、前記貯留室と前記冷却用配管とを接続する配管と、
     前記冷却室の下流に設けられ、操作により前記冷却室から送流された前記液体の噴出と停止とが自在な噴出部と、
    を備え、
     前記ループ流式バブル発生ノズルが、
     液体及び気体をループ状の流れによって撹拌混合して混合流体とする気液ループ流式撹拌混合室と、
     前記気液ループ流式撹拌混合室の一端に設けられ、加圧された液体を前記気液ループ流式撹拌混合室に供給する液体供給孔と、
     気体の流入量の調整が可能な1つ以上の気体流入孔と、
     前記気液ループ流式撹拌混合室の他端側に設けられ、前記気体流入孔から流入した気体を前記液体供給孔の中心軸を中心に周回させながら、周の全部または一部の箇所から前記気液ループ流式撹拌混合室の一端側に向かって前記気液ループ流式撹拌混合室に供給する気体供給室と、
     前記液体供給孔の中心軸と一致するように前記気液ループ流式撹拌混合室の他端に設けられ、前記液体供給孔の孔径よりも大きな孔径を有し、前記混合流体を前記気液ループ流式撹拌混合室から噴出させる噴出孔と、
     前記噴出孔から前記気液ループ流式撹拌混合室の方向に向かって連続的に拡径するように設けられたテーパ部と、を有していることを特徴とする液体供給装置。
  2.  内部に液体を貯留可能な貯留室と、
     前記貯留室の上流に設けられ、前記貯留室内に圧力をかけることが可能な加圧部と、
     前記貯留室の下流に設けられ、前記貯留室から送流された前記液体を冷却可能な冷却用配管と、前記配管を冷却する冷却部とを有した冷却室と、
     途中にループ流式バブル発生ノズルが設けられており、前記貯留室と前記冷却用配管とを接続する配管と、
     前記冷却室の下流に設けられ、操作により前記冷却室から送流された前記液体の噴出と停止とが自在な噴出部と、
    を備え、
     前記ループ流式バブル発生ノズルが、
     液体及び気体をループ状の流れによって撹拌混合して混合流体とする気液ループ流式撹拌混合室と、
     前記気液ループ流式撹拌混合室の一端に設けられ、加圧された液体を前記気液ループ流式撹拌混合室に供給する液体供給孔と、
     気体の流入量の調整が可能な1つ以上の気体流入孔と、
     前記気液ループ流式撹拌混合室の他端側に設けられ、前記気体流入孔から流入した気体を前記液体供給孔の中心軸を中心に周回させながら、周の全部または一部の箇所から前記気液ループ流式撹拌混合室の一端側に向かって前記気液ループ流式撹拌混合室に供給する気体供給室と、
     前記液体供給孔の中心軸と一致するように前記気液ループ流式撹拌混合室の他端に設けられ、前記液体供給孔の孔径よりも大きな孔径を有し、前記混合流体を前記気液ループ流式撹拌混合室から噴出させる噴出孔と、
     前記気体供給室の前記気液ループ流式撹拌混合室側に設けられ、前記気体供給室の周の全部または一部の箇所に形成された凹形状の気体溜まり部と、を有していることを特徴とする液体供給装置。
  3.  前記気液ループ流式撹拌混合室の内壁に、前記気液ループ流式撹拌混合室内の混合流体をさらに撹拌混合する凹形状の重撹拌混合部を設けたことを特徴とする請求項1又は2のいずれか1項に記載の液体供給装置。
  4.  内部に液体を貯留可能な貯留室と、
     前記貯留室の上流に設けられ、前記貯留室内に圧力をかけることが可能な加圧部と、
     前記貯留室の下流に設けられ、前記貯留室から送流された前記液体を冷却可能な冷却用配管と、前記配管を冷却する冷却部とを有した冷却室と、
     途中にループ流式バブル発生ノズルが設けられており、前記貯留室と前記冷却用配管とを接続する配管と、
     前記冷却室の下流に設けられ、操作により前記冷却室から送流された前記液体の噴出と停止とが自在な噴出部と、
    を備え、
     前記ループ流式バブル発生ノズルが、
     液体及び気体をループ状の流れによって撹拌混合して混合流体とする気液ループ流式撹拌混合室と、
     前記気液ループ流式撹拌混合室の一端に設けられ、加圧された液体を前記気液ループ流式撹拌混合室に供給する液体供給孔と、
     気体の流入量の調整が可能な1つ以上の気体流入孔と、
     前記気液ループ流式撹拌混合室の他端側に設けられ、前記気体流入孔から流入した気体を前記液体供給孔の中心軸を中心に周回させながら、周の全部または一部の箇所から前記気液ループ流式撹拌混合室の一端側に向かって前記気液ループ流式撹拌混合室に供給する気体供給室と、
     前記液体供給孔の中心軸と一致するように前記気液ループ流式撹拌混合室の他端に設けられ、前記液体供給孔の孔径よりも大きな孔径を有し、前記混合流体を前記気液ループ流式撹拌混合室から噴出させる噴出孔と、
     前記気液ループ流式撹拌混合室の内壁に設けられ、前記気液ループ流式撹拌混合室内の混合流体をさらに撹拌混合する凹形状の撹拌混合部と、を有していることを特徴とする液体供給装置。
PCT/JP2016/063522 2015-05-01 2016-04-30 ループ流式バブル発生ノズルを備えた液体供給装置 WO2016178421A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017516614A JP6492386B2 (ja) 2015-05-01 2016-04-30 ループ流式バブル発生ノズルを備えた液体供給装置
CN201680025133.1A CN107960075B (zh) 2015-05-01 2016-04-30 具备环流式气泡产生喷嘴的液体供给装置
HK18107031.6A HK1247603A1 (zh) 2015-05-01 2018-05-30 具備環流式氣泡產生噴嘴的液體供給裝置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015094467 2015-05-01
JP2015-094467 2015-05-01

Publications (1)

Publication Number Publication Date
WO2016178421A1 true WO2016178421A1 (ja) 2016-11-10

Family

ID=57218007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063522 WO2016178421A1 (ja) 2015-05-01 2016-04-30 ループ流式バブル発生ノズルを備えた液体供給装置

Country Status (4)

Country Link
JP (1) JP6492386B2 (ja)
CN (1) CN107960075B (ja)
HK (1) HK1247603A1 (ja)
WO (1) WO2016178421A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018122294A (ja) * 2017-02-03 2018-08-09 トスレック株式会社 バブル生成ノズルおよび、これを備えるバブル含有液製造システム
WO2019022171A1 (ja) * 2017-07-28 2019-01-31 株式会社Ppl Next 簡易ナノバブル発生ノズル
TWI711488B (zh) * 2019-07-24 2020-12-01 日商旭燦納克股份有限公司 噴嘴以及液體噴射裝置
CN113369033A (zh) * 2021-07-26 2021-09-10 中原康 一种微纳米气泡喷头

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108408233A (zh) * 2018-05-14 2018-08-17 刘棠萍 一种喷雾瓶

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63281992A (ja) * 1987-05-14 1988-11-18 株式会社 インダック ビ−ルかす洗浄方法およびその装置
JP5002480B2 (ja) * 2008-02-15 2012-08-15 有限会社オーケー・エンジニアリング ループ流式バブル発生ノズル
JP2015124007A (ja) * 2013-12-27 2015-07-06 日立国分機器エンジニアリング株式会社 炭酸ガス含有機能付飲料サーバー装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1015798B (zh) * 1988-03-19 1992-03-11 可口可乐公司 饮料分装器
JPH0716640Y2 (ja) * 1991-08-12 1995-04-19 麒麟麦酒株式会社 樽用ディスペンスヘッド
JPH10203594A (ja) * 1997-01-17 1998-08-04 Fuji Electric Co Ltd 飲料ディスペンサ
CA2507681A1 (en) * 2002-11-29 2004-06-17 Interbrew S.A. Cooling system for a beverage dispensing apparatus
JP4549037B2 (ja) * 2003-06-16 2010-09-22 サントリーフーズ株式会社 飲料供給装置及び飲料供給方法
JP2006264716A (ja) * 2005-03-23 2006-10-05 Fic:Kk ディスペンスヘッド、飲料通路洗浄装置
JP2008062151A (ja) * 2006-09-06 2008-03-21 Nishida Marine Boiler Co Ltd 気泡発生装置
JP2008114098A (ja) * 2006-10-31 2008-05-22 Sanyo Facilities Industry Co Ltd マイクロバブル生成ノズル及びマイクロバブル生成設備
WO2008068828A1 (ja) * 2006-12-03 2008-06-12 Shinichi Kawamoto アスピレータおよび混合装置および混合方法
CN201063184Y (zh) * 2007-07-23 2008-05-21 汕头经济特区和通电讯有限公司 啤酒销售机
JP2009273966A (ja) * 2008-05-12 2009-11-26 Kyoritsu Gokin Co Ltd 微細気泡発生ノズル及びそれを備えた装置
WO2012169085A1 (ja) * 2011-06-07 2012-12-13 麒麟麦酒株式会社 泡持ち向上剤
JP6167321B2 (ja) * 2014-04-11 2017-07-26 有限会社オーケー・エンジニアリング ループ流式バブル発生ノズル

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63281992A (ja) * 1987-05-14 1988-11-18 株式会社 インダック ビ−ルかす洗浄方法およびその装置
JP5002480B2 (ja) * 2008-02-15 2012-08-15 有限会社オーケー・エンジニアリング ループ流式バブル発生ノズル
JP2015124007A (ja) * 2013-12-27 2015-07-06 日立国分機器エンジニアリング株式会社 炭酸ガス含有機能付飲料サーバー装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018122294A (ja) * 2017-02-03 2018-08-09 トスレック株式会社 バブル生成ノズルおよび、これを備えるバブル含有液製造システム
WO2019022171A1 (ja) * 2017-07-28 2019-01-31 株式会社Ppl Next 簡易ナノバブル発生ノズル
TWI711488B (zh) * 2019-07-24 2020-12-01 日商旭燦納克股份有限公司 噴嘴以及液體噴射裝置
CN113369033A (zh) * 2021-07-26 2021-09-10 中原康 一种微纳米气泡喷头

Also Published As

Publication number Publication date
JPWO2016178421A1 (ja) 2018-03-15
HK1247603A1 (zh) 2018-09-28
JP6492386B2 (ja) 2019-04-03
CN107960075A (zh) 2018-04-24
CN107960075B (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
JP6492386B2 (ja) ループ流式バブル発生ノズルを備えた液体供給装置
JP6167321B2 (ja) ループ流式バブル発生ノズル
CN102639220B (zh) 气泡发生器
JP2010075838A (ja) 気泡発生ノズル
JP2010172786A (ja) 被洗浄配管洗浄装置及び被洗浄配管洗浄方法
JP4158515B2 (ja) 洗浄用2流体ノズル及び洗浄方法
JP2006346611A (ja) 洗浄液噴射装置
JP2008142707A (ja) 気液噴射装置
KR101921604B1 (ko) 세척 모듈 통합형 음료 분배 헤드
JP2014033999A (ja) バブル発生ノズル、及び、ループ流式バブル発生ノズル
JP2014057915A (ja) マイクロバブル発生ノズル
RU2207449C2 (ru) Устройство для воздействия на поток текучей среды
CN109944021B (zh) 配有容器壁用的内部清洁设备的洗衣机以及其运行方法
JP2018176145A (ja) 微細気泡形成装置
JP2000205200A (ja) 気泡ポンプ装置
JP3141961U (ja) 微細気泡混合器
US20200156018A1 (en) Fine bubble generating method and fine bubble generating apparatus
JP2008178780A (ja) 微細気泡発生装置
JP7269031B2 (ja) 気液溶解タンク
JP2012050939A (ja) 洗浄ノズル、これを用いた洗浄装置、および洗浄方法
JP2006239601A (ja) オゾン溶解装置
JP2011183350A (ja) 気液混合装置
JP2020171903A (ja) 多孔ノズル及び噴霧方法
JP2008093166A (ja) 洗剤吐出装置
JP2017043385A (ja) 飲料ディスペンサ洗浄方法および洗浄器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789557

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017516614

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16789557

Country of ref document: EP

Kind code of ref document: A1