WO2016175154A1 - ガスシールドアーク溶接用フラックス入りワイヤ及び溶接方法 - Google Patents

ガスシールドアーク溶接用フラックス入りワイヤ及び溶接方法 Download PDF

Info

Publication number
WO2016175154A1
WO2016175154A1 PCT/JP2016/062843 JP2016062843W WO2016175154A1 WO 2016175154 A1 WO2016175154 A1 WO 2016175154A1 JP 2016062843 W JP2016062843 W JP 2016062843W WO 2016175154 A1 WO2016175154 A1 WO 2016175154A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
metal
wire
cored wire
flux
Prior art date
Application number
PCT/JP2016/062843
Other languages
English (en)
French (fr)
Inventor
実 宮田
励一 鈴木
圭 山▲崎▼
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to KR1020177031078A priority Critical patent/KR102039878B1/ko
Priority to EP16786431.3A priority patent/EP3290148A4/en
Priority to CN201680024019.7A priority patent/CN107530838B/zh
Priority to US15/567,833 priority patent/US10702955B2/en
Publication of WO2016175154A1 publication Critical patent/WO2016175154A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3073Fe as the principal constituent with Mn as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/368Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys

Definitions

  • the present invention relates to a flux-cored wire for gas shielded arc welding and a welding method using the flux-cored wire. More specifically, the present invention relates to a flux-cored wire for gas shielded arc welding used for applications in which painting is performed after welding and a welding method using the same.
  • Automotive parts such as automobile parts are usually painted to improve corrosion resistance and aesthetics after welding. At this time, if slag is generated on the weld bead, the paint is repelled by the slag, which causes poor coating. For this reason, conventionally, welding wires with a small amount of slag generation, such as solid wires and metal-based flux-cored wires, have been used for welding thin steel plates such as automobile parts.
  • welding is a method of joining by melting metals, so an oxide film is inevitably formed in the welded part exposed to the atmosphere at high temperature, but the oxide film has good chemical conversion treatment and coating. In order to inhibit the paint adhesion. In addition, if the adhesion of the oxide film formed on the weld bead is not sufficient, the oxide film can be easily peeled off when an impact is applied to the part painted with stepping stones, and the coating provided on it is peeled off. End up.
  • the flux-cored wire described in Patent Document 1 contains a specific amount of one or more of C, Si, Mn, Nb, V, and P, and the slag agent content.
  • the ratio of FeO to SiO 2 in the slag agent (FeO / SiO 2 ) to 1.0 or more and 1.0 mass% or less, adhesion between the slag, the coating film, and the weld bead is improved.
  • the flux-cored wire described in Patent Document 2 reduces the amount of slag generation by adding graphite to the flux. Graphite reacts with oxygen in the weld metal and vaporizes as CO or CO 2 . Thereby, since the weld metal is deoxidized, the deoxidation action by Si, Mn, etc. is suppressed, and as a result, the generation amount of slag is reduced.
  • the flux-cored wire described in Patent Document 2 can reduce the location of poor coating, but adding graphite to the flux leads to an increase in the amount of spatter generated and deterioration in hot crack resistance.
  • the coating adhesion is improved by reducing the amount of slag generated in the welded portion, and the decrease in the coating adhesion due to the oxide film is studied. Not.
  • the main object of the present invention is to provide a flux-cored wire that can provide a welded portion with good hot cracking resistance and excellent paint adhesion, and a welding method using the same.
  • the metal-based flux-cored wire for gas shielded arc welding is a metal-based flux-cored wire in which a steel-based sheath is filled with a metal-based flux, and C is 0.02 to 0.00 per total mass of the wire.
  • C is 0.02 to 0.00 per total mass of the wire.
  • the total amount is 0.3 mass% or less, and the balance is composed of Fe and inevitable impurities.
  • the metal-based flux-cored wire for gas shield arc welding may have a P content of 0.020% by mass or less per total mass of the wire.
  • S content of the said metal type flux can be 0.025 mass% or less per said metal type flux total mass.
  • the metal-based flux-cored wire for gas shield arc welding of the present invention can have a Ti content of 0.5% by mass or less per total mass of the wire.
  • the metal-based flux-cored wire for gas shielded arc welding of the present invention can have an S content of 0.009% by mass or less per total mass of the wire.
  • the welding method according to the present invention uses the above-described metal-based flux-cored wire and performs gas shield arc welding of a material to be welded made of steel containing 0.1 to 1.0 mass% of Si per total mass of the steel.
  • a shielding gas composed of Ar 95 to 100% by volume and oxidizing gas 0 to 5% by volume can be used per whole shielding gas volume.
  • the oxidizing gas may be at least one of CO 2 and O 2 .
  • the present invention by adding a very small amount of oxide to a metal-based flux-cored wire, it is possible to obtain a weld zone having both good hot crack resistance and excellent paint adhesion.
  • FIG. 1 is a conceptual diagram of oxide film formation.
  • FIG. 2 is a conceptual diagram showing a welding method using a metal-based flux-cored wire according to an embodiment of the present invention.
  • FIG. 1 is a conceptual diagram of oxide film formation.
  • the shield gas 3 or oxygen (O 2 ) in the atmosphere after the molten metal (molten pool 2) is solidified the shield gas Even if welding is performed using a rare gas such as Ar, the oxide film 4 having a thickness of about several ⁇ m is inevitably generated.
  • zinc phosphate treatment has been performed as a pretreatment, but for example, if an oxide film is present on the steel sheet surface, this oxide film inhibits the formation of the zinc phosphate film, A dense zinc phosphate film cannot be formed. And in such a part, the adhesiveness of an electrodeposition coating film falls.
  • the oxide film 4 inevitably generated on the surface of the weld metal 1 is usually very brittle and easily peeled off.
  • the welded portion has the worst coating adhesion and is a location causing corrosion. Therefore, as a result of intensive experiments to solve the above-mentioned problems, the present inventors added a specific amount of at least one oxide selected from the group consisting of Si, Cr and Ni to the metal-based wire, It has been found that a highly adherent oxide film such as firelite can be formed on the surface of the bead after welding.
  • the metal-based flux-cored wire of this embodiment is a steel outer shell filled with flux and used for gas shielded arc welding.
  • C is 0.02 to 0.30 mass%
  • Si is 0.3 to 1.5 mass%
  • the total amount of Al, Ca, Mg, K and Na contained in 020 mass% or less and in the form of metal or alloy is 0.3 mass% or less.
  • the metal-based flux-cored wire of this embodiment may contain P, Ti, or the like in addition to the components described above.
  • P content is 0.020 mass% or less as an upper limit per wire total mass.
  • Ti content is 0.5 mass% or less.
  • the metal-based flux has an S content of 0.025 mass% or less as the upper limit value based on the total mass of the flux. The S content is preferably 0.009% by mass or less per the total mass of the wire.
  • components other than the above in the metal-based flux-cored wire of the present embodiment, that is, the balance is Fe and inevitable impurities.
  • the outer diameter of the metal-based flux-cored wire of this embodiment is not particularly limited, but is, for example, 0.8 to 2.0 mm.
  • the flux filling rate can be set to any value as long as each component in the wire is within the above-mentioned range, but from the viewpoint of wire drawability and workability (feedability, etc.) during welding. Therefore, the content is preferably 10 to 25% by mass of the total mass of the wire.
  • each component contained in the metal-based flux-cored wire of this embodiment will be described.
  • the content of each component shown below can be determined by dissolving the wire in an acid or the like and measuring it by an ICP (Inductively Coupled Plasma) method.
  • C has an effect of improving the strength of the weld metal.
  • the C content is less than 0.02% by mass with respect to the total mass of the wire, the effect cannot be sufficiently obtained, and the strength of the welded portion is insufficient.
  • the C content exceeds 0.30% by mass, the amount of spatter generated increases, the strength becomes excessive, and cracking tends to occur.
  • the C content is set to 0.02 to 0.30 mass% with respect to the total mass of the wire. From the viewpoint of improving coating adhesion, the C content is preferably 0.02 to 0.15% by mass.
  • Si has the effect of improving the fatigue strength by smoothing the toe shape of the weld bead, and also has the function of reacting with oxygen in the atmosphere to form a firelight on the weld bead.
  • Si content is less than 0.3% by mass with respect to the total mass of the wire, these effects cannot be sufficiently obtained, and the adhesion of the oxide film is lowered.
  • Si content exceeds 1.5% by mass with respect to the total mass of the wire, hot cracking is likely to occur.
  • the Si content is 0.3 to 1.5% by mass per the total mass of the wire.
  • the Si content is preferably 0.6 to 1.2% by mass, whereby an oxide film with higher adhesion can be formed, and in addition, hot cracking can be suppressed.
  • Mn increases the strength of the weld metal and has an effect of suppressing hot cracking by fixing S, which affects the hot crack resistance of the weld metal, as MnS.
  • MnS the hot crack resistance of the weld metal
  • Silicon oxide, chromium oxide, and nickel oxide 0.01 to 0.30 mass%
  • a dense oxide film layer is formed on the surface of the weld bead, preventing paint peeling and welding. The effect which improves the corrosion resistance of a part is acquired.
  • the total content of silicon oxide, chromium oxide and nickel oxide is less than 0.01% by mass based on the total mass of the wire, an oxide film with a sufficient thickness cannot be obtained, and these effects can be sufficiently obtained. Absent.
  • the excess forms slag separated from the oxide film, and slag removal work is necessary after welding.
  • the oxide film becomes thicker than necessary and easily peels off, which adversely affects the paint adhesion.
  • the total content of silicon oxide, chromium oxide and nickel oxide is 0.01 to 0.30% by mass with respect to the total mass of the wire. From the viewpoint of improving coating film adhesion, the total content of silicon oxide, chromium oxide and nickel oxide is preferably 0.015 to 0.15% by mass with respect to the total mass of the wire. In addition, the effect mentioned above will be acquired if at least 1 sort (s) of silicon oxide, chromium oxide, and nickel oxide is contained.
  • the flux contains at least one oxide among silicon oxide, chromium oxide, and nickel oxide. From the viewpoint of improving coating film adhesion, the total content of these oxides is preferably 0.1 to 1.0% by mass per total mass of the flux. Thereby, coating-film adhesiveness can further be improved, reducing the slag produced
  • S 0.020% by mass or less (including 0% by mass)
  • S is an element that generates a low melting point compound at the interface between the oxide film and the weld metal to deteriorate the adhesion of the oxide film and induces high temperature cracking.
  • S content exceeds 0.020 mass% per wire total mass, coating-film adhesiveness will fall and it will become easy to generate
  • S is mainly contained in the flux, and from the viewpoint of improving the adhesion of the coating film, the amount of S contained in the flux is preferably regulated to 0.025% by mass or less per total flux mass. It is more preferable to regulate to 020 mass% or less. Thereby, coating-film adhesiveness can further be improved.
  • At least one selected from the group consisting of aluminum, alkali metals and alkaline earth metals can be added as a deoxidizer in the form of a metal or an alloy.
  • these deoxidizers not only react with the oxidizing gas in the shielding gas, but also deprive oxygen from the silicon oxide, chromium oxide and nickel oxide described above.
  • the oxidized deoxidizer becomes a part of the oxide film, and silicon oxide, chromium oxide, and nickel oxide become metal when deoxidized, and move to a weld metal instead of staying on the oxide film.
  • the total content of Al, Ca, Mg, K, and Na is 0.3 mass% or less per total mass of the wire. regulate.
  • P 0.020% by mass or less (including 0% by mass)
  • the content is preferably as low as possible. Specifically, when the P content exceeds 0.020% by mass with respect to the total mass of the wire, the hot cracking resistance of the weld metal decreases. Therefore, it is preferable to regulate the P content to 0.020% by mass or less per the total mass of the wire. In consideration of the influence on the toughness and ductility of the weld metal, it is more preferable to regulate the amount to 0.015% by mass or less.
  • Ti 0.5% by mass or less (including 0% by mass)
  • Ti may be added as an arc stabilizer, but if its content exceeds 0.5% by mass with respect to the total mass of the wire, it may affect the oxide film formed on the bead. Therefore, it is preferable to restrict the Ti content to 0.5% by mass or less per the total mass of the wire. Further, the Ti content is a total including not only the metal Ti but also the Ti equivalent amount of a form other than the metal (for example, titanium oxide).
  • the balance in the component composition of the metal-based flux-cored wire of this embodiment is Fe and inevitable impurities.
  • Examples of inevitable impurities in the metal-based flux-cored wire of this embodiment include Nb and B.
  • Mo, W, metal Ni, metal Cr, and the like may be added to the metal-based flux-cored wire of this embodiment as long as the above-described effects are not hindered.
  • the metal-based flux-cored wire of this embodiment is used for gas shielded arc welding using, for example, argon gas or a mixed gas of argon and carbon dioxide or oxygen as a shielding gas.
  • FIG. 2 is a conceptual diagram showing a welding method using the metal-based flux-cored wire of this embodiment. As shown in FIG. 2, as the cause of the generation of the slag 5 generated on the weld bead (welded metal 1), dirt adhered to the steel plate (base material 6), oxide (oxygen) in the welding wire 7, and Oxygen in the shield gas 3 is mentioned.
  • a metal-based flux-cored wire with a very small amount of oxide is used for the welding wire 7, and the Ar content per shield gas total volume is 95 vol% or more in the shielding gas 3. It is preferable to use these gases. Thereby, the amount of slag generation can be significantly reduced.
  • the oxidizing gas If the oxidizing gas is excessively contained in the shield gas, the flux component, mainly deoxidizer, is oxidized and slag is generated. When this slag is absorbed by the oxide film, the composition of the oxide film changes. Specifically, when the amount of the oxidizing gas in the shielding gas exceeds 5% by volume per total shielding gas volume, the coating film adhesion deteriorates. Therefore, when gas shielded arc welding is performed using the metal-based flux-cored wire of this embodiment, the ratio of each component in the shielding gas is set to 95 to 100% by volume of Ar per shield gas total volume, and the oxidizing gas is set to 0%. It is preferable that the content be ⁇ 5% by volume.
  • the oxidizing gas mentioned above, for example, CO 2, O 2 means mixed gas of CO 2 and O 2, at least one kind of gases CO 2 and O 2 is preferred.
  • the material to be welded (base material 6 in FIGS. 1 and 2) in the welding method of the present embodiment is not particularly limited, but contains Si in an amount of 0.1 to 1.0 mass% per total mass of the steel. What consists of the steel to do is suitable. Examples of the steel having such a component composition include high-tensile steel having a tensile strength of 440 MPa class or higher. Use of the metal-based flux-cored wire of this embodiment for gas shielded arc welding of these steel materials is particularly effective in improving the corrosion resistance of the heat affected zone.
  • the metal-based flux-cored wire of this embodiment has an element content that affects oxide film formation in a specific range, an oxide film with high adhesion can be formed on the surface of the weld bead. As a result, compared with the conventional welding method, the coating adhesion of the welded portion is improved, and the corrosion life of the weld bead portion after coating can be extended.
  • the flux-cored wires of Examples and Comparative Examples having the compositions shown in Table 1 and Table 2 below are used, and the following table is used for a steel sheet having a composition shown in Table 3 and a thickness of 2.3 mm.
  • the shielding gas having the composition shown in No. 4 lap fillet welding by gas shield arc welding was performed, and the welded portion was evaluated. At that time, the welding conditions were a welding current of 240 A and a welding speed of 100 cm / min.
  • the remainder in the wire composition shown in following Table 1 and Table 2 and the steel plate composition shown in following Table 3 is Fe and an unavoidable impurity.
  • the wire composition (mass%) shown in Table 1 and Table 2 is the ratio of the mass to the total mass of the wire
  • the S amount (mass%) in the flux is the ratio of the mass to the total mass of the flux.
  • the steel plate composition (mass%) shown in Table 3 is the ratio of the mass to the total mass of the steel plate.
  • the shield gas composition (volume%) shown in Table 4 is the ratio of the volume to the total volume of the shield gas.
  • the 35 metal flux cored wire had a C content of more than 0.3% by mass of the total mass of the wire, so that hot cracking occurred in the weld metal.
  • the 36 metal-based flux-cored wire had a Si content of less than 0.3% by mass, and therefore the adhesion of the oxide film was lowered.
  • no. in the metal-based flux-cored wire No. 37 the Si content per total mass of the wire exceeded 1.5% by mass, so that hot cracking occurred in the weld metal.
  • the metal-based flux-cored wire of 38 has a Mn content per total mass of the wire exceeding 2.5% by mass, hot cracking occurred in the weld metal.
  • the total content of Al, Ca, Mg, K and Na contained in the form of metal or alloy per total mass of the wire exceeds 0.3% by mass. Therefore, in any case, the adhesion of the oxide film was lowered.
  • metal-based flux-cored wire has a total content of Si oxide, Cr oxide and Ni oxide of less than 0.01% by mass of the total mass of the wire, so that the adhesion of the oxide film was lowered.
  • the metal-based flux-cored wires 44 to 46 have a total content of Si oxide, Cr oxide and Ni oxide exceeding 0.30% by mass per total mass of the wire. Slag was generated at both toes.
  • the 47 metal-based flux-cored wire had a C content per total mass of the wire of less than 0.02% by mass, so that the adhesion of the oxide film was lowered.
  • no. 1 to 34 metal-based flux-cored wires had good hot cracking resistance and excellent paint adhesion at the welds.
  • no. No. 33 uses a shielding gas containing O 2 in an amount exceeding 5% by volume per total shielding gas volume.
  • No. 34 used shield gas containing CO 2 in an amount exceeding 5% by volume per shield gas total volume, so that slag was intermittently generated although the length was 1 mm or less.
  • Embodiments of the present invention can be configured as follows.
  • a metal-based flux-cored wire in which a steel outer sheath is filled with a flux, C is 0.02 to 0.30% by mass, 0.3 to 1.5 mass% of Si, 0.3 to 2.5% by mass of Mn, and 0.01 to 0.30% by mass in total of at least one oxide selected from the group consisting of silicon oxide, chromium oxide and nickel oxide, And containing S is 0.020% by mass or less, and The total amount of Al, Ca, Mg, K and Na contained in the form of metal or alloy is 0.3 mass% or less,
  • [2] The metal-based flux-cored wire for gas shield arc welding according to [1], wherein the P content is 0.020% by mass or less per total mass of the wire.
  • [3] The metal-based flux-cored wire for gas shielded arc welding according to [1] or [2], wherein the S content in the metal-based flux is 0.025% by mass or less per the total mass of the metal-based flux. .
  • [4] The metal-based flux-cored wire for gas shielded arc welding according to any one of [1] to [3], wherein the Ti content is 0.5% by mass or less per total mass of the wire.
  • a welded wire comprising the metal-based flux-cored wire according to any one of [1] to [5] and made of steel containing 0.1 to 1.0% by mass of Si per total mass of the steel.
  • a shielding gas composed of 95 to 100% by volume of Ar and 0 to 5% by volume of oxidizing gas is used per total volume of the shielding gas.
  • the oxidizing gas is at least one of CO 2 and O 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Nonmetallic Welding Materials (AREA)
  • Arc Welding In General (AREA)

Abstract

本発明は耐高温割れ性が良好で、かつ、塗装密着性が優れた溶接部が得られるフラックス入りワイヤを提供することを目的とする。本発明は、ワイヤ全質量あたり、Cを0.02~0.30質量%、Siを0.3~1.5質量%、Mnを0.3~2.5質量%、Si、Cr及びNiからなる群から選択される少なくとも1種の酸化物を総量で0.01~0.30質量%、Sを0.020質量%以下、並びに金属又は合金の形態でAl、Ca、Mg、K及びNaを総量で0.3質量%以下含み、残部がFe及び不可避的不純物からなるガスシールドアーク溶接用メタル系フラックス入りワイヤに関する。

Description

ガスシールドアーク溶接用フラックス入りワイヤ及び溶接方法
 本発明は、ガスシールドアーク溶接用フラックス入りワイヤ及びこのフラックス入りワイヤを用いた溶接方法に関する。より詳しくは、溶接後に塗装が施される用途に用いられるガスシールドアーク溶接用フラックス入りワイヤ及びそれを用いた溶接方法に関する。
 自動車部品などの車両用部品は、通常、溶接後に耐食性や美観を向上させるために塗装が施される。その際、溶接ビード上にスラグが発生していると、スラグにより塗料がはじかれ、塗装不良の原因となる。このため、従来、自動車部品などの薄鋼板の溶接には、ソリッドワイヤやメタル系フラックス入りワイヤなどのスラグ発生量が少ない溶接ワイヤが用いられている。
 一方、溶接は、金属を溶融することにより接合する方法であるため、大気に高温の状態でさらされた溶接部には不可避的に酸化皮膜が生成するが、酸化皮膜は良好な化成処理及び塗装を阻害するため、塗装密着性を低下させる原因となる。また、溶接ビード上に生成した酸化皮膜の密着性が十分でない場合は、飛び石などによって塗装された部分に衝撃が加わった際に酸化皮膜が剥落しやすく、その上に設けられた塗装ごと剥離してしまう。
 このように、溶接部は、溶接ビード上に生成するスラグや酸化皮膜により、鋼板と同等の塗装性を得ることが困難である。そして、塗装の剥がれは、耐食性及び腐食寿命の低下を招くため、溶接部は特に耐食性が劣る部分とされている。そこで、従来、溶接部の塗装性などを改善するために、種々の検討がなされている(例えば、特許文献1~3参照。)。
 例えば、特許文献1に記載のフラックス入りワイヤは、ワイヤ組成を、Cと、Siと、Mnと、Nb、V及びPのうち1種又は2種以上を特定量含有し、スラグ剤含有量が1.0質量%以下、スラグ剤中のFeOとSiOとの比(FeO/SiO)が1.0以上にすることで、スラグと塗膜及び溶接ビードの密着性改善を図っている。
 また、特許文献2に記載のフラックス入りワイヤは、フラックスにグラファイトを添加することで、スラグ生成量を低減している。グラファイトは、溶接金属中の酸素と反応してCOやCOとなって気化する。これにより溶接金属が脱酸されるため、SiやMnなどによる脱酸作用が抑制され、その結果、スラグの発生量が低減する。
 一方、特許文献3に記載の溶接用ワイヤでは、溶接ワイヤ中にNiやCrを添加することにより、溶接ビード表面に薄くて密着力のある酸化皮膜を形成し、酸化皮膜及び塗膜の耐剥離性向上を図っている。
日本国特開平8-281475号公報 日本国特開2006-272405号公報 日本国特開2004-268056号公報
 車両用部品の塗装部には、塗装不良箇所をなくすだけでなく、塗装密着性が要求される。しかしながら、特許文献1に記載のフラックス入りワイヤは、スラグの密着性向上には寄与するが、酸化皮膜の密着性については考慮されていないため、この方法によってスラグ部以外の溶接ビード上の塗装密着性を向上させることは難しい。
 特許文献2に記載のフラックス入りワイヤは、塗装不良の箇所を低減することはできるが、フラックスにグラファイトを添加すると、スパッタ発生量の増加及び耐高温割れ性の劣化を招く。また、特許文献2に記載のフラックス入りワイヤでは、溶接部におけるスラグ発生量を低減することで塗装密着性の改善を図っており、酸化皮膜に起因する塗膜密着性低下については、検討がなされていない。
 一方、特許文献3に記載の溶接ワイヤは、CrやNiを積極的に添加しているため、耐高温割れ性の劣化が懸念される。また、Ar濃度が高いシールドガスを用いる場合は、合金元素としてCrを添加しても、これらが酸化被膜やその近傍に集まるとは限らないため、酸化皮膜の密着性改善効果を、安定的かつ十分に得られるとは限らない。
 そこで、本発明は、耐高温割れ性が良好で、かつ、塗装密着性が優れた溶接部が得られるフラックス入りワイヤ及びそれを用いた溶接方法を提供することを主目的とする。
 本発明に係るガスシールドアーク溶接用メタル系フラックス入りワイヤは、鋼製外皮内にメタル系フラックスが充填されたメタル系フラックス入りワイヤであって、ワイヤ全質量あたり、Cを0.02~0.30質量%、Siを0.3~1.5質量%、Mnを0.3~2.5質量%、並びにシリコン酸化物、クロム酸化物及びニッケル酸化物からなる群から選択される少なくとも1種の酸化物を総量で0.01~0.30質量%を含有すると共に、Sが0.020質量%以下、並びに金属の形態又は合金の形態で含有されるAl、Ca、Mg、K及びNaの総量が0.3質量%以下であり、残部がFe及び不可避的不純物からなる組成のものである。
 このガスシールドアーク溶接用メタル系フラックス入りワイヤは、P含有量が、ワイヤ全質量あたり0.020質量%以下であってもよい。
 また、前記メタル系フラックスのS含有量は、前記メタル系フラックス全質量あたり0.025質量%以下とすることができる。
 さらに、本発明のガスシールドアーク溶接用メタル系フラックス入りワイヤは、Ti含有量を、ワイヤ全質量あたり0.5質量%以下とすることができる。
 またさらに、本発明のガスシールドアーク溶接用メタル系フラックス入りワイヤは、S含有量を、ワイヤ全質量あたり0.009質量%以下とすることができる。
 本発明に係る溶接方法は、前述したメタル系フラックス入りワイヤを使用し、鋼全質量あたりSiを0.1~1.0質量%含有する鋼からなる被溶接材を、ガスシールドアーク溶接する。
 この溶接方法では、例えば、シールドガス全体積あたり、Ar95~100体積%及び酸化性ガス0~5体積%からなるシールドガスを用いることができる。
 酸化性ガスは、CO及びOの少なくともいずれか1種のガスでもよい。
 本発明によれば、メタル系フラックス入りワイヤにごく少量の酸化物を添加することで、良好な耐高温割れ性と、優れた塗装密着性とが両立した溶接部が得られる。
図1は、酸化皮膜形成の概念図である。 図2は、本発明の実施形態に係るメタル系フラックス入りワイヤ用いた溶接方法を示す概念図である。
 以下、本発明を実施するための形態について、詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。
 本明細書において“重量%”と“質量%”とは同義である。また、数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。
(酸化皮膜の密着性向上機構)
 図1は酸化皮膜形成の概念図である。図1に示すように、溶接ビード(溶接金属1)の表面は、溶融金属(溶融池2)が凝固した後でシールドガス3や大気中の酸素(O)により酸化されるため、シールドガス3にArのような希ガスを用いて溶接を行っても、厚さ数μm程度の酸化皮膜4が不可避的に生成してしまう。従来、電着塗装処理を行う場合、前処理として燐酸亜鉛処理が行われているが、例えば鋼板表面に酸化皮膜が存在していると、この酸化皮膜が燐酸亜鉛皮膜の生成を阻害するため、緻密な燐酸亜鉛皮膜を形成することができない。そして、そのような箇所では、電着塗装膜の密着性が低下する。
 また、溶接金属1の表面に不可避的に生成する酸化皮膜4は、通常、非常に脆く、剥落しやすい。このような理由から、溶接部は塗装密着性が最も悪く、腐食の原因となる箇所であると認識されている。
 そこで、本発明者は、前述した問題を解決するために鋭意実験検討を行った結果、メタル系ワイヤにSi、Cr及びNiからなる群より選ばれる少なくとも1種の酸化物を特定量添加すると、溶接後のビード表面にファイアライトなどの密着性の高い酸化皮膜を形成できることを見出した。
(メタル系フラックス入りワイヤ)
 本実施形態のメタル系フラックス入りワイヤは、鋼製外皮にフラックスを充填したものであり、ガスシールドアーク溶接に用いられる。そして、本実施形態のメタル系フラックス入りワイヤは、ワイヤ全質量あたり、Cを0.02~0.30質量%、Siを0.3~1.5質量%、Mnを0.3~2.5質量%、並びにシリコン酸化物、クロム酸化物及びニッケル酸化物からなる群から選択される少なくとも1種の酸化物を総量で0.01~0.30質量%を含有すると共に、Sが0.020質量%以下、並びに金属の形態又は合金の形態で含有されるAl、Ca、Mg、K及びNaの総量が0.3質量%以下とする。
 また、本実施形態のメタル系フラックス入りワイヤは、前述した各成分以外にPやTiなどを含有していてもよい。その場合、ワイヤ全質量あたり、上限値として、P含有量が0.020質量%以下であることが好ましい。また、Ti含有量が0.5質量%以下であることが好ましい。
 さらに、メタル系フラックスは、上限値として、前記フラックス全質量あたりS含有量が0.025質量%以下であることが好ましい。また、S含有量はワイヤ全質量あたり、0.009質量%以下が好ましい。
 なお、本実施形態のメタル系フラックス入りワイヤにおける上記以外の成分、即ち、残部はFe及び不可避的不純物である。
 本実施形態のメタル系フラックス入りワイヤの外径は、特に限定されるものではないが、例えば0.8~2.0mmである。また、フラックス充填率は、ワイヤ中の各成分が前述した範囲内であれば、任意の値に設定することができるが、ワイヤの伸線性及び溶接時の作業性(送給性など)の観点から、ワイヤ全質量の10~25質量%とすることが好ましい。
 次に、本実施形態のメタル系フラックス入りワイヤに含有される各成分の数値限定理由について説明する。なお、下記に示す各成分の含有量は、ワイヤを酸などに溶解させた上でICP(Inductively Coupled Plasma:誘導結合プラズマ)法により測定することで求めることができる。
[C:0.02~0.30質量%]
 Cは、溶接金属の強度を向上させる効果があるが、C含有量がワイヤ全質量あたり0.02質量%未満の場合、その効果が十分に得られず、溶接部の強度が不足する。一方、C含有量が0.30質量%を超えると、スパッタの発生量が増加すると共に、強度過多になり割れが発生しやすくなる。なお、付着したスパッタ近傍において、鋼板の塗装密着性が低下することが分かっており、スパッタの発生量は塗装密着性に大きな影響を与える。
 よって、C含有量は、ワイヤ全質量あたり0.02~0.30質量%とする。なお、塗装密着性向上の観点から、C含有量は0.02~0.15質量%とすることが好ましい。
[Si:0.3~1.5質量%]
 Siは、溶接ビードの止端形状を滑らかにし疲労強度を向上させる効果があると共に、大気中の酸素と反応してファイアライトを溶接ビード上に形成する働きがある。しかしながら、Si含有量がワイヤ全質量あたり0.3質量%未満の場合、これらの効果が十分に得られず、酸化皮膜の密着性が低下する。一方、Si含有量がワイヤ全質量あたり1.5質量%を超えると、高温割れが発生しやすくなる。
 よって、Si含有量は、ワイヤ全質量あたり0.3~1.5質量%とする。なお、Si含有量は0.6~1.2質量%とすることが好ましく、これにより更に密着性の高い酸化皮膜を形成し、加えて高温割れを抑制することができる。
[Mn:0.3~2.5質量%]
 Mnは、溶接金属の強度を高めると共に、溶接金属の耐高温割れ性に影響を及ぼすSをMnSとして固定し、高温割れを抑制する効果がある。Mn含有量がワイヤ全質量あたり0.3質量%未満の場合、これらの効果が十分に得られない。一方、Mn含有量がワイヤ全質量あたり2.5質量%を超えると、溶接金属が過度に硬化し、高温割れが発生しやすくなると共に靭性も低下する。よって、Mn含有量は、ワイヤ全質量あたり0.3~2.5質量%とする。
[シリコン酸化物、クロム酸化物、及びニッケル酸化物:0.01~0.30質量%]
 シリコン酸化物、クロム酸化物及びニッケル酸化物からなる群より選ばれる少なくとも1種の酸化物をワイヤに添加することにより、溶接ビード表面に緻密な酸化皮膜層が形成され、塗装の剥離防止及び溶接部の耐食性を向上させる効果が得られる。しかしながら、シリコン酸化物、クロム酸化物及びニッケル酸化物の総含有量が、ワイヤ全質量あたり0.01質量%未満の場合、十分な厚さの酸化被膜とならずこれらの効果が十分に得られない。また、シリコン酸化物、クロム酸化物及びニッケル酸化物の総含有量が0.30質量%を超えると、余剰分が酸化被膜から分離したスラグを形成し、溶接後にスラグ除去の作業が必要となる、あるいは、酸化被膜が必要以上の厚さとなり剥がれやすくなり、塗装密着性に悪影響を及ぼす。
 よって、シリコン酸化物、クロム酸化物及びニッケル酸化物の総含有量は、ワイヤ全質量あたり0.01~0.30質量%とする。また、塗膜密着性向上の観点から、シリコン酸化物、クロム酸化物及びニッケル酸化物の総含有量は、ワイヤ全質量あたり0.015~0.15質量%とすることが好ましい。なお、シリコン酸化物、クロム酸化物及びニッケル酸化物は、少なくとも1種が含まれていれば、前述した効果が得られる。
 シリコン酸化物、クロム酸化物及びニッケル酸化物は、そのほとんどがフラックスに含有されている。即ち、フラックスは、シリコン酸化物、クロム酸化物及びニッケル酸化物のうち少なくとも1種の酸化物を含有している。そして、塗膜密着性向上の観点から、これらの酸化物の総含有量は、フラックス全質量あたり0.1~1.0質量%にすることが好ましい。これにより、溶接ビード上に生成するスラグを低減しつつ、塗膜密着性を更に向上させることができる。
[S:0.020質量%以下(0質量%を含む。)]
 Sは、酸化皮膜と溶接金属の界面に低融点化合物を生成して酸化皮膜の密着性を劣化させると共に、高温割れを誘起する元素である。S含有量がワイヤ全質量あたり0.020質量%を超えると、塗膜密着性が低下し、高温割れも発生しやすくなる。
 よって、S含有量はワイヤ全質量あたり0.020質量%以下に規制する。なお、S含有量をワイヤ全質量あたり0.009質量%以下に規制することで、酸化被膜と溶接金属の密着性とがより良好となるため、より好ましい。
 また、Sは主にフラックスに含有されており、塗膜密着性向上の観点から、フラックス中に含まれるS量を、フラックス全質量あたり0.025質量%以下に規制することが好ましく、0.020質量%以下に規制することがより好ましい。これにより、塗膜密着性を更に向上させることができる。
[Al、Ca、Mg、K、及びNa:0.3質量%以下(0質量%を含む。)]
 フラックス入りワイヤではアルミニウム、アルカリ金属及びアルカリ土類金属からなる群より選ばれる少なくとも1種を脱酸剤として、金属の形態又は合金の形態で添加することができる。しかしながら、これら脱酸剤はシールドガス中の酸化性ガスと反応するだけでなく、前述したシリコン酸化物、クロム酸化物及びニッケル酸化物からも酸素を奪う。酸化された脱酸剤は酸化被膜の一部になるほか、シリコン酸化物、クロム酸化物及びニッケル酸化物は脱酸されると金属となり、酸化被膜に留まらず溶接金属に移行する。このように、脱酸剤が過剰に存在すると酸化皮膜の組成および厚さへの影響が大きい。
 そこで、本実施形態のメタル系フラックス入りワイヤでは、密着性の高い酸化皮膜を形成するため、Al、Ca、Mg、K及びNaの総含有量を、ワイヤ全質量あたり0.3質量%以下に規制する。なお、Al、Ca、Mg、K及びNaの総含有量は、塗膜密着性向上の観点から、ワイヤ全質量あたり0.2質量%以下に規制することが好ましい。
[P:0.020質量%以下(0質量%を含む。)]
 Pは、高温割れを誘起する元素であるため、その含有量は低い程が好ましい。具体的には、P含有量がワイヤ全質量あたり0.020質量%を超えると、溶接金属の耐高温割れ性が低下する。
 よって、P含有量を、ワイヤ全質量あたり0.020質量%以下に規制することが好ましい。また、溶接金属の靱性や延性に与える影響も考慮すると、0.015質量%以下に規制することがより好ましい。
[Ti:0.5質量%以下(0質量%を含む。)]
 Tiは、アーク安定剤として添加されることがあるが、その含有量がワイヤ全質量あたり0.5質量%を超えると、ビード上に形成される酸化皮膜に影響を及ぼすことがある。よって、Ti含有量を、ワイヤ全質量あたり0.5質量%以下に規制することが好ましい。また、Ti含有量は金属Tiだけでなく、金属以外の形態(例えば酸化チタン)のTi換算量も含めた合計とする。
[残部]
 本実施形態のメタル系フラックス入りワイヤの成分組成における残部は、Fe及び不可避的不純物である。本実施形態のメタル系フラックス入りワイヤにおける不可避的不純物としては、Nb及びBなどが挙げられる。また、本実施形態のメタル系フラックス入りワイヤには、前述した各成分の他に、前述した効果が阻害されない範囲で、Mo、W、金属Ni及び金属Crなどが添加されていてもよい。
(溶接方法)
 本実施形態のメタル系フラックス入りワイヤは、例えばシールドガスとしてアルゴンガス又はアルゴンと二酸化炭素若しくは酸素との混合ガスを用いたガスシールドアーク溶接に用いられる。
 図2は本実施形態のメタル系フラックス入りワイヤ用いた溶接方法を示す概念図である。図2に示すように、溶接ビード(溶接金属1)上に生成するスラグ5の発生原因としては、鋼板(母材6)に付着している汚れや溶接ワイヤ7中の酸化物(酸素)及びシールドガス3中の酸素が挙げられる。
 そこで、本実施形態の溶接方法では、溶接ワイヤ7に酸化物量が非常に少ないメタル系のフラックス入りワイヤを使用し、シールドガス3には、シールドガス全体積あたり、Ar含有量が95体積%以上のガスを使用することが好ましい。これにより、スラグ発生量を大幅に低減することができる。
[シールドガス]
 シールドガス中に酸化性ガスが過剰に含まれていると、フラックス成分、主に脱酸剤を酸化し、スラグを発生させる。このスラグが酸化被膜に吸収されると酸化被膜の組成が変化する。具体的には、シールドガス中の酸化性ガスの量が、シールドガス全体積あたり、5体積%を超えると、塗膜密着性が悪化する。
 よって、本実施形態のメタル系フラックス入りワイヤによりガスシールドアーク溶接する場合は、シールドガス中の各成分の割合を、シールドガス全体積あたり、Arを95~100体積%とし、酸化性ガスを0~5体積%とすることが好ましい。なお、上述の酸化性ガスとは、例えば、CO、O、COとOとの混合ガス等を意味し、CO及びOの少なくともいずれか1種のガスが好ましい。
[被溶接材]
 本実施形態の溶接方法における被溶接材(図1及び図2における母材6)は、特に限定されるものではないが、鋼全質量あたり、Siを0.1~1.0質量%で含有する鋼からなるものが好適である。このような成分組成を有する鋼としては、例えば、引張強さが440MPa級以上の高張力鋼などが挙げられる。
 本実施形態のメタル系フラックス入りワイヤを、これらの鋼材のガスシールドアーク溶接に用いると、特に、熱影響部の耐食性向上に効果がある。
 本実施形態のメタル系フラックス入りワイヤは、酸化皮膜形成に影響する元素の含有量を特定の範囲にしているため、溶接ビードの表面に密着性が高い酸化皮膜を形成することができる。その結果、従来の溶接方法に比べて溶接部の塗装密着性が向上し、塗装後の溶接ビード部の腐食寿命を長くすることができる。
 以下、本発明の実施例及び比較例を挙げて、本発明の効果について具体的に説明する。本実施例においては、下記表1及び表2に示す組成の実施例及び比較例の各フラックス入りワイヤを使用し、下記表3に示す組成で厚さ2.3mmの鋼板に対して、下記表4に示す組成のシールドガスを用いて、ガスシールドアーク溶接による重ね隅肉溶接を行い、その溶接部を評価した。その際、溶接条件は、溶接電流を240A、溶接速度を100cm/分とした。
 なお、下記表1及び表2に示すワイヤ組成及び下記表3に示す鋼板組成における残部は、Fe及び不可避的不純物である。また、表1及び表2に示す、ワイヤ組成(質量%)はワイヤ全質量に対する質量の割合であり、フラックス中のS量(質量%)はフラックス全質量に対する質量の割合である。また、表3に示す鋼板組成(質量%)は鋼板全質量に対する質量の割合である。さらに、表4に示すシールドガス組成(体積%)はシールドガス全体積に対する体積の割合である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例及び比較例の各試験体の評価は、以下に示す方法で行った。
<スラグの有無>
 溶接直後の試験体を目視及びマイクロスコープで観察し、ビードの際にスラグが生成していなかったものを○(良)、長さ1mm以下のスラグが断続的に生成していたものを△(可)、長さが1mmを超えるスラグが断続的又は連続的に生成していたものを×(不可)とした。
<酸化皮膜密着性>
 溶接後24時間以上経過した試験体の溶接部に、積水化学工業株式会社 セロテープ(登録商標)No.252を、目視で気泡が発生しない状態に密着させた後、1秒以内に全て剥がれる速度で引き剥がし、テープに付着している酸化皮膜の面積を計測した。ビード上の評価は、テープと密着しているビードの面積に対して、酸化皮膜の剥離面積が5%未満であったものを○(良)、5%以上10%以下のものを△(可)、10%を超えるものを×(不良)とした。また、HAZ(熱影響部)については剥離箇所が2か所以下のものを○(良)、3か所以上のものを×(不良)とした。
<高温割れ>
 JIS Z3155:1993に基づいて、C型拘束割れ試験を実施した。その際、溶接電流を280A、溶接速度を70、100又は120cm/分とした。その後、X線透過試験を行い、割れが生じていたものを×(不良)、割れがなかったものを○(良)として、評価した。
 以上の結果を、下記表5にまとめて示す。
Figure JPOXMLDOC01-appb-T000005
 上記表5に示すように、No.35のメタル系フラックス入りワイヤは、ワイヤ全質量あたりのC含有量が0.3質量%を超えていたため、溶接金属に高温割れが発生した。また、No.36のメタル系フラックス入りワイヤは、ワイヤ全質量あたりのSi含有量が0.3質量%に満たないため、酸化皮膜の密着性が低下した。一方、No.37のメタル系フラックス入りワイヤは、ワイヤ全質量あたりのSi含有量が1.5質量%を超えていたため、溶接金属に高温割れが発生した。
 No.38のメタル系フラックス入りワイヤは、ワイヤ全質量あたりのMn含有量が2.5質量%を超えているため、溶接金属に高温割れが発生した。No.39~42のメタル系フラックス入りワイヤは、ワイヤ全質量あたりの、金属の形態又は合金の形態で含有されるAl、Ca、Mg、K及びNaの合計の含有量が0.3質量%を超えているため、いずれも酸化皮膜の密着性が低下した。
 No.43のメタル系フラックス入りワイヤは、Si酸化物、Cr酸化物及びNi酸化物の合計の含有量が、ワイヤ全質量あたり、0.01質量%に満たないため、酸化皮膜の密着性が低下した。一方、No.44~46のメタル系フラックス入りワイヤは、Si酸化物、Cr酸化物及びNi酸化物の合計の含有量が、ワイヤ全質量あたり、0.30質量%を超えているため、ビード中央部及びビード止端部の両方にスラグが生成した。また、No.47のメタル系フラックス入りワイヤは、ワイヤ全質量あたりのC含有量が0.02質量%に満たないため、酸化皮膜の密着性が低下した。
 これに対して、No.1~34のメタル系フラックス入りワイヤは、耐高温割れ性が良好であり、かつ溶接部の塗装密着性も優れていた。ただし、No.33は、シールドガス全体積あたり5体積%を超える量のOを含むシールドガスを用いており、No.34はシールドガス全体積あたり5体積%を超える量のCOを含むシールドガスを用いているため、長さ1mm以下ではあるが、断続的にスラグが生成した。
 以上の結果から、本発明によれば、耐高温割れ性が良好で、塗装密着性が優れた溶接部が得られることが確認された。
 本発明の実施形態は、以下のような構成をとることができる。
 [1]鋼製外皮内にフラックスが充填されたメタル系フラックス入りワイヤであって、ワイヤ全質量あたり、
 Cを0.02~0.30質量%、
 Siを0.3~1.5質量%、
 Mnを0.3~2.5質量%、並びに
 シリコン酸化物、クロム酸化物及びニッケル酸化物からなる群から選択される少なくとも1種の酸化物を総量で0.01~0.30質量%、
を含有すると共に、
 Sが0.020質量%以下、並びに、
 金属の形態又は合金の形態で含有されるAl、Ca、Mg、K及びNaの総量が0.3質量%以下であり、
 残部がFe及び不可避的不純物からなる、ガスシールドアーク溶接用メタル系フラックス入りワイヤ。
 [2]P含有量が、ワイヤ全質量あたり0.020質量%以下である、前記[1]に記載のガスシールドアーク溶接用メタル系フラックス入りワイヤ。
 [3]前記メタル系フラックスにおけるS含有量が、前記メタル系フラックス全質量あたり0.025質量%以下である、前記[1]又は[2]に記載のガスシールドアーク溶接用メタル系フラックス入りワイヤ。
 [4]Ti含有量が、ワイヤ全質量あたり0.5質量%以下である、前記[1]~[3]のいずれか1つに記載のガスシールドアーク溶接用メタル系フラックス入りワイヤ。
 [5]S含有量が、ワイヤ全質量あたり0.009質量%以下である、前記[1]~[4]のいずれか1つに記載のガスシールドアーク溶接用メタル系フラックス入りワイヤ。
 [6]前記[1]~[5]のいずれか1つに記載のメタル系フラックス入りワイヤを使用し、鋼全質量あたりSiを0.1~1.0質量%含有する鋼からなる被溶接材を、ガスシールドアーク溶接する溶接方法。
 [7]シールドガス全体積あたり、Ar95~100体積%及び酸化性ガス0~5体積%からなるシールドガスを用いる、前記[6]に記載の溶接方法。
 [8]前記酸化性ガスが、CO及びOの少なくともいずれか1種のガスである、前記[7]に記載の溶接方法。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2015年4月28日出願の日本特許出願(特願2015-091985)に基づくものであり、その内容はここに参照として取り込まれる。
1 溶接金属
2 溶融池
3 シールドガス
4 酸化皮膜
5 スラグ
6 母材
7 溶接ワイヤ

Claims (8)

  1.  鋼製外皮内にメタル系フラックスが充填されたメタル系フラックス入りワイヤであって、
     ワイヤ全質量あたり、
     Cを0.02~0.30質量%、
     Siを0.3~1.5質量%、
     Mnを0.3~2.5質量%、並びに
     シリコン酸化物、クロム酸化物及びニッケル酸化物からなる群から選択される少なくとも1種の酸化物を総量で0.01~0.30質量%、
    を含有すると共に、
     Sが0.020質量%以下、並びに、
     金属の形態又は合金の形態で含有されるAl、Ca、Mg、K及びNaの総量が0.3質量%以下であり、
     残部がFe及び不可避的不純物からなる、ガスシールドアーク溶接用メタル系フラックス入りワイヤ。
  2.  P含有量が、ワイヤ全質量あたり0.020質量%以下である、請求項1に記載のガスシールドアーク溶接用メタル系フラックス入りワイヤ。
  3.  前記メタル系フラックスにおけるS含有量が、前記メタル系フラックス全質量あたり0.025質量%以下である、請求項1に記載のガスシールドアーク溶接用メタル系フラックス入りワイヤ。
  4.  Ti含有量が、ワイヤ全質量あたり0.5質量%以下である、請求項1に記載のガスシールドアーク溶接用メタル系フラックス入りワイヤ。
  5.  S含有量が、ワイヤ全質量あたり0.009質量%以下である、請求項1に記載のガスシールドアーク溶接用メタル系フラックス入りワイヤ。
  6.  請求項1~5のいずれか1項に記載のメタル系フラックス入りワイヤを使用し、鋼全質量あたりSiを0.1~1.0質量%含有する鋼からなる被溶接材を、ガスシールドアーク溶接する、溶接方法。
  7.  シールドガス全体積あたり、Ar95~100体積%及び酸化性ガス0~5体積%からなるシールドガスを用いる、請求項6に記載の溶接方法。
  8.  前記酸化性ガスが、CO及びOの少なくともいずれか1種のガスである、請求項7に記載の溶接方法。
PCT/JP2016/062843 2015-04-28 2016-04-22 ガスシールドアーク溶接用フラックス入りワイヤ及び溶接方法 WO2016175154A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177031078A KR102039878B1 (ko) 2015-04-28 2016-04-22 가스 쉴드 아크 용접용 플럭스 코어드 와이어 및 용접 방법
EP16786431.3A EP3290148A4 (en) 2015-04-28 2016-04-22 Flux cored wire for gas-shielded arc welding and welding method
CN201680024019.7A CN107530838B (zh) 2015-04-28 2016-04-22 气体保护电弧焊用药芯焊丝和焊接方法
US15/567,833 US10702955B2 (en) 2015-04-28 2016-04-22 Flux-cored wire for gas-shielded arc welding and welding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-091985 2015-04-28
JP2015091985A JP6476058B2 (ja) 2015-04-28 2015-04-28 ガスシールドアーク溶接用フラックス入りワイヤ及び溶接方法

Publications (1)

Publication Number Publication Date
WO2016175154A1 true WO2016175154A1 (ja) 2016-11-03

Family

ID=57198351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062843 WO2016175154A1 (ja) 2015-04-28 2016-04-22 ガスシールドアーク溶接用フラックス入りワイヤ及び溶接方法

Country Status (6)

Country Link
US (1) US10702955B2 (ja)
EP (1) EP3290148A4 (ja)
JP (1) JP6476058B2 (ja)
KR (1) KR102039878B1 (ja)
CN (1) CN107530838B (ja)
WO (1) WO2016175154A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6762131B2 (ja) * 2016-04-28 2020-09-30 株式会社神戸製鋼所 フラックス入りワイヤ
CN110497115B (zh) * 2018-05-16 2022-08-09 林肯环球股份有限公司 具有碱土金属的焊接电极焊丝
JP7244340B2 (ja) * 2019-04-22 2023-03-22 株式会社神戸製鋼所 Ni基合金フラックス入りワイヤ
CN110280923B (zh) * 2019-06-13 2021-05-11 江苏大学 800H合金焊接用Fe-Ni基合金焊丝及其制备方法、800H合金的焊接方法
CN114367723A (zh) * 2022-03-02 2022-04-19 中石化石油工程技术服务有限公司 一种x80钢管道半自动焊气保护药芯焊丝下向焊接方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012081514A (ja) * 2010-10-14 2012-04-26 Nippon Steel Corp 亜鉛めっき鋼板の隅肉アーク溶接方法
JP2014195832A (ja) * 2013-03-08 2014-10-16 株式会社神戸製鋼所 溶接金属
JP2015047604A (ja) * 2013-08-30 2015-03-16 株式会社神戸製鋼所 フラックス入りワイヤ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57202981A (en) * 1981-06-05 1982-12-13 Nippon Steel Corp Highly tenacious ac mig welding method
JPH08281475A (ja) 1995-04-06 1996-10-29 Nippon Steel Weld Prod & Eng Co Ltd 塗装仕上げ鋼板用のガスシールドアーク溶接用フラックス入りワイヤ
AU736035B2 (en) * 1997-07-28 2001-07-26 Exxonmobil Upstream Research Company Ultra-high strength, weldable steels with excellent ultra-low temperature toughness
JP2004268056A (ja) 2003-03-05 2004-09-30 Jfe Steel Kk 酸化皮膜耐剥離性に優れるmag溶接用ワイヤ
JP4603399B2 (ja) 2005-03-29 2010-12-22 新日本製鐵株式会社 メタル系フラックス入りワイヤおよび溶接方法
DE102008006557A1 (de) * 2008-01-29 2009-07-30 Linde Aktiengesellschaft Verfahren zum Lichtbogenfügen
JP5205115B2 (ja) * 2008-04-16 2013-06-05 株式会社神戸製鋼所 純Arシールドガス溶接用MIGフラックス入りワイヤ及びMIGアーク溶接方法
JP5022428B2 (ja) * 2009-11-17 2012-09-12 株式会社神戸製鋼所 硬化肉盛用migアーク溶接ワイヤおよび硬化肉盛用migアーク溶接方法
JP5607002B2 (ja) * 2011-02-02 2014-10-15 株式会社神戸製鋼所 耐水素脆化感受性に優れた溶接金属
JP6338593B2 (ja) * 2012-12-27 2018-06-06 ポスコPosco 衝撃靱性に優れた超高強度フラックスコアードアーク溶接継手を製造するための溶接ワイヤ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012081514A (ja) * 2010-10-14 2012-04-26 Nippon Steel Corp 亜鉛めっき鋼板の隅肉アーク溶接方法
JP2014195832A (ja) * 2013-03-08 2014-10-16 株式会社神戸製鋼所 溶接金属
JP2015047604A (ja) * 2013-08-30 2015-03-16 株式会社神戸製鋼所 フラックス入りワイヤ

Also Published As

Publication number Publication date
KR102039878B1 (ko) 2019-11-04
EP3290148A4 (en) 2018-09-19
JP6476058B2 (ja) 2019-02-27
JP2016203247A (ja) 2016-12-08
EP3290148A1 (en) 2018-03-07
CN107530838B (zh) 2020-11-10
CN107530838A (zh) 2018-01-02
US10702955B2 (en) 2020-07-07
US20180104773A1 (en) 2018-04-19
KR20170128603A (ko) 2017-11-22

Similar Documents

Publication Publication Date Title
WO2016175154A1 (ja) ガスシールドアーク溶接用フラックス入りワイヤ及び溶接方法
US20160008906A1 (en) Solid wire for gas shielded arc welding, weld metal by gas shielded arc welding, welded joint, weldment, welding method, and production method of welded joint
WO2015005002A1 (ja) 肉盛溶接用フラックス入りワイヤ
JP2009255125A (ja) 純Arシールドガス溶接用MIGフラックス入りワイヤ及びMIGアーク溶接方法
CN106392369B (zh) Ni基合金药芯焊丝
JP2012081514A (ja) 亜鉛めっき鋼板の隅肉アーク溶接方法
JP2008149341A (ja) ガスシールドアーク溶接用フラックス入りワイヤ
US6573476B2 (en) Flux cored wire for gas-shielded arc welding
JP6017406B2 (ja) セルフシールドアーク溶接用ステンレス鋼フラックス入りワイヤ
JP4838100B2 (ja) 耐候性鋼用水平すみガスシールドアーク溶接用フラックス入りワイヤ
JP3559806B2 (ja) 低温用鋼用塩基性フラックス入りワイヤ
JP3170165B2 (ja) Ni基高Cr合金用被覆アーク溶接棒
WO2018047881A1 (ja) ガスシールドアーク溶接用フラックス入りワイヤ及び溶接金属
JPH08257785A (ja) 鋼溶接部の耐低温割れ性を改善するアーク溶接用フラックス入りワイヤ
WO2020012925A1 (ja) 2相ステンレス鋼溶接用フラックス入りワイヤ、溶接方法および溶接金属
JP2010064087A (ja) ガスシールドアーク溶接用フラックス入りワイヤ
JP2005230912A (ja) 耐液体金属脆化割れ性に優れたアーク溶接用フラックス入りワイヤおよびアーク溶接方法
JP2017170515A (ja) ガスシールドアーク溶接用フラックス入りワイヤ
JP5337665B2 (ja) Mag溶接用ソリッドワイヤ
JP3513382B2 (ja) 亜鉛めっき鋼板のアーク溶接方法
JP6728806B2 (ja) ガスシールドアーク溶接用高Niフラックス入りワイヤ及び溶接継手の製造方法
JP6747629B1 (ja) フラックス入りワイヤ、及び溶接継手の製造方法
JP2020015092A (ja) 2相ステンレス鋼溶接用フラックス入りワイヤ、溶接方法および溶接金属
JP2020131234A (ja) セルフシールドアーク溶接用ステンレス鋼フラックス入りワイヤ
JPH08174267A (ja) アーク溶接用フラックス入りワイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16786431

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15567833

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177031078

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016786431

Country of ref document: EP