WO2016173494A1 - 无线通信系统中的电子设备和无线通信方法 - Google Patents

无线通信系统中的电子设备和无线通信方法 Download PDF

Info

Publication number
WO2016173494A1
WO2016173494A1 PCT/CN2016/080336 CN2016080336W WO2016173494A1 WO 2016173494 A1 WO2016173494 A1 WO 2016173494A1 CN 2016080336 W CN2016080336 W CN 2016080336W WO 2016173494 A1 WO2016173494 A1 WO 2016173494A1
Authority
WO
WIPO (PCT)
Prior art keywords
edrs
base station
cell base
small cell
drs
Prior art date
Application number
PCT/CN2016/080336
Other languages
English (en)
French (fr)
Inventor
许晓东
李明阳
刘洋
柯希
张轶
吕昕晨
Original Assignee
索尼公司
许晓东
李明阳
刘洋
柯希
张轶
吕昕晨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 许晓东, 李明阳, 刘洋, 柯希, 张轶, 吕昕晨 filed Critical 索尼公司
Priority to EP16785925.5A priority Critical patent/EP3291583B1/en
Priority to KR1020177032814A priority patent/KR20170140273A/ko
Priority to JP2017554005A priority patent/JP6652138B2/ja
Priority to AU2016253904A priority patent/AU2016253904A1/en
Priority to US15/568,565 priority patent/US10594414B2/en
Publication of WO2016173494A1 publication Critical patent/WO2016173494A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/27Monitoring; Testing of receivers for locating or positioning the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/12Messaging; Mailboxes; Announcements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B

Definitions

  • the present disclosure relates to the technical field of wireless communications, and in particular to electronic devices in wireless communication systems and methods for wireless communication in wireless communication systems.
  • SCN Small Cell Network
  • DRS Discovery Reference Signal
  • the small cell does not transmit the PRS in the off state. If the OTDOA is based only on the PRS, this results in a decrease in the positioning accuracy of the user equipment when the large number of small cells are in the off state.
  • An object of the present disclosure is to provide an electronic device in a wireless communication system and a method for wireless communication in a wireless communication system, such that the small cell on/off technology and the OTDOA technology can be compatible to improve the positioning accuracy of the user equipment and Accelerate the positioning process.
  • an electronic device on a user equipment side comprising one or more processing circuits, the processing circuit being configured to perform an operation of determining a positioning measurement for the user equipment Assisting data
  • the auxiliary data includes configuration information of an enhanced discovery reference signal eDRS transmitted by the at least one dormant small cell base station; performing positioning measurement on the eDRS sent by the at least one dormant small cell base station based on the auxiliary data; The result of the positioning measurement performed by the eDRS sent by the at least one dormant small cell base station generates positioning information to locate the user equipment, where the eDRS has a larger transmitting power than the discovery reference signal DRS.
  • a small cell base station side electronic device in a wireless communication system including one or more processing circuits, the processing circuit configured to perform an operation of determining from a control Transmitting configuration information of the enhanced discovery reference signal eDRS of the device; and performing power control on the discovery reference signal DRS of the small cell managed by the small cell base station based on the configuration information to generate the eDRS, wherein the eDRS ratio
  • the DRS has a larger transmit power.
  • an electronic device in a wireless communication system including one or more processing circuits configured to perform an operation based on a pending within a predetermined geographic area Determining whether to activate at least one dormant small cell base station within the predetermined geographic area to transmit an enhanced discovery reference signal eDRS to locate the user equipment; and determining based on at least one of a number and a number of user equipments As a result, transmission configuration information for the eDRS of the corresponding dormant small cell base station is generated, wherein the eDRS has a larger transmission power than the discovery reference signal DRS.
  • a method for wireless communication in a wireless communication system comprising: determining positioning measurement assistance data for a user equipment, the assistance data comprising at least one dormant small cell
  • the configuration information of the enhanced discovery reference signal eDRS sent by the base station comprising at least one dormant small cell
  • positioning based on the eDRS sent by the at least one dormant small cell base station The result of the measurement generates positioning information to locate the user equipment, wherein the eDRS has a greater transmit power than the discovery reference signal DRS.
  • a method for wireless communication in a wireless communication system comprising: determining transmission configuration information of an enhanced discovery reference signal eDRS from a control device; and based on the configuration The information performs power control on the discovery reference signal DRS of the small cell managed by the small cell base station to generate the eDRS, wherein the eDRS has a larger transmission power than the DRS.
  • a method for wireless communication in a wireless communication system comprising: based on at least one of a number and a location of user equipment to be located within a predetermined geographic area, Determining whether to activate at least one dormant small cell base station within the predetermined geographical area to transmit an enhanced discovery reference signal eDRS to locate the user equipment; and generate an eDRS for the corresponding dormant small cell base station based on the determination result Configuration information, wherein the eDRS has a larger transmit power than the discovery reference signal DRS.
  • the existing DRS signal can be fully utilized and appropriately enhanced, thereby improving positioning accuracy
  • the role and the purpose of accelerating the positioning process can be fully utilized and appropriately enhanced.
  • FIG. 1 is a block diagram illustrating a structure of an electronic device in a wireless communication system according to an embodiment of the present disclosure
  • FIG. 2 is a block diagram illustrating a structure of an electronic device in a wireless communication system according to another embodiment of the present disclosure
  • FIG. 3 is a block diagram illustrating a structure of an electronic device in a wireless communication system according to another embodiment of the present disclosure
  • FIG. 4 is a schematic diagram illustrating an example of a configuration mode of an eDRS (enhanced DRS);
  • FIG. 5 is a sequence diagram illustrating a method for wireless communication in a wireless communication system, in accordance with an embodiment of the present disclosure
  • FIG. 6 is a sequence diagram illustrating a method for wireless communication in a wireless communication system, according to another embodiment of the present disclosure.
  • FIG. 7 is a sequence diagram illustrating a method for wireless communication in a wireless communication system, according to another embodiment of the present disclosure.
  • FIG. 8 is a flowchart illustrating a method for wireless communication in a wireless communication system, in accordance with an embodiment of the present disclosure
  • FIG. 9 is a block diagram showing an example of a schematic configuration of a server suitable for the present disclosure.
  • FIG. 10 is a block diagram showing a first example of a schematic configuration of an eNB (evolution Node Base Station) applicable to the present disclosure
  • FIG. 11 is a block diagram showing a second example of a schematic configuration of an eNB suitable for the present disclosure
  • FIG. 12 is a block diagram showing an example of a schematic configuration of a smartphone suitable for the present disclosure.
  • FIG. 13 is a block diagram showing an example of a schematic configuration of a car navigation device applicable to the present disclosure.
  • Example embodiments are provided so that this disclosure will be thorough, and the scope will be fully conveyed by those skilled in the art. Numerous specific details, such as specific components, devices, and methods, are set forth to provide a thorough understanding of the embodiments of the present disclosure. It will be apparent to those skilled in the art that ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; In some example embodiments, well-known processes, well-known structures, and well-known techniques are not described in detail.
  • a UE User Equipment
  • a terminal having a wireless communication function such as a mobile terminal, a computer, an in-vehicle device, or the like.
  • the UE involved in the present disclosure may also be the UE itself or a component thereof such as a chip.
  • the base station involved in the present disclosure may be, for example, an eNB (evolution Node Base Station) or a component such as a chip in an eNB.
  • the OTDOA Observed Time Difference Of Arrival
  • OTDOA positioning is a downlink positioning method defined in LTE (Long Term Evolution) Rel-9.
  • the UE User Equipment
  • the TOA Time of Arrival
  • the difference in arrival time between each neighboring cell and the reference cell yields a hyperbola on a two-dimensional plane.
  • two hyperbolas can be obtained, thereby obtaining the position (latitude and longitude) of the UE in two-dimensional coordinates.
  • the OTDOA is performed based on the time difference between the neighboring cell and the serving cell reference signal observed by the UE, which is called RSTD (Reference Signal Time Difference).
  • RSTD Reference Signal Time Difference
  • the downlink signal sent by the neighboring cell is generally inferior to the UE that is not in its service range, which seriously affects the positioning accuracy and positioning success rate of the OTDOA.
  • a synchronization signal of a neighboring cell such as a Primary Synchronization Signal (PSS) or a Secondary Synchronization Signal (SSS)
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the OTDOA obtains better positioning reliability
  • the PLS Positioning Reference Signal
  • the PRS has many similarities with the CRS (Cell-specific reference signal) defined in LTE Rel-8.
  • the PRS uses a pseudo-random QPSK (Quadrature Phase Shift Keying) sequence and is mapped diagonally by staggered time and frequency to avoid collision with the CRS.
  • the PRS signal can only be transmitted on the 6th port of the antenna and cannot be mapped to resource blocks occupied by PBCH (Physical Broadcast Channel), PSS and SSS.
  • the bandwidth of the PRS is defined as 15 kHz.
  • the downlink EPRE (Energy Per Resource Element) is kept constant over the bandwidth of the PRS.
  • the power offset (Power Offset) is used to indicate the difference between the PRS and CRS transmit power, which is used to adjust the transmit power of the PRS on each resource block.
  • the core network element of the OTDOA positioning method is LS (Location Server).
  • the positioning server plays the E-SMLC (Evolved Serving Mobile Location Centre) role; in UP (User Plane) positioning, the positioning server is equivalent to SUPL (Secure User Plane Location) SLP (SUPL Location) Platform, SUPL positioning platform).
  • E-SMLC Evolved Serving Mobile Location Centre
  • SUPL Secure User Plane Location
  • SUPL Secure Location
  • the GMLC Global Mobile Location Center
  • MME Mobility Management Entity
  • the positioning server sends the positioning assistance data to the UE, and the UE reports the RSTD measurement result to the positioning server to complete the OTDOA positioning of the terminal device.
  • the location server can also calculate (UE assisted) or verify (based on UE) final location estimates.
  • the MME receives a positioning service request for a specific UE from another entity (such as a GMLC, UE), or the MME itself initiates a positioning initialization work for a specific UE.
  • the MME then sends a location service request to the E-SMLC, and the E-SMLC processes the location service request and transmits the OTDOA location assistance data to the target UE.
  • the E-SMLC then returns the location service result information to the MME. If it is not the location service request initiated by the MME, the MME sends the location result to the entity that initiated the request.
  • the SLP is a SUPL entity responsible for user plane positioning, and the SLP communicates directly with the UE in the user plane through data bearers.
  • the function of the SLP in the OTDOA positioning process is the same as that of the E-SMLC.
  • the positioning protocol flow between the positioning server usually includes three parts: bearer transmission; auxiliary data transmission; and positioning information transmission.
  • DRS Discovery Reference Signal, found Reference signal
  • RRM Radio Resource Management
  • DRS signals mainly include PSS/SSS and CRS
  • CSI-RS channel state Whether the information reference signal, channel state information reference signal) is included in the DRS depends on:
  • the DRS includes the PSS/SSS, the CRS, and the CSI-RS;
  • the DRS includes the PSS/SSS and the CRS;
  • the DRS contains PSS/SSS, CRS, and CSI-RS.
  • the UE will only focus on DRS, ignoring the existence of any other signals and channels.
  • the DRS can only be transmitted in the DwPTS (Downlink Pilot Time Slot) area of the downlink subframe or the subframe.
  • a DRS may have multiple RE configurations of CSI-RS, and the CSI-RS subframe has a certain offset with respect to the SSS subframe.
  • the DRS is transmitted every M milliseconds, and the values that M can take include 40, 80, and 160.
  • the UE For the DRS measurement process, the UE mainly performs measurement according to the DMTC sent by the base station.
  • the specific configuration of the DMTC is as follows:
  • the candidate value is [40, 80, 160]; for the offset "L” of the DMTC, the candidate value is [0, 1, ..., M-1];
  • the UE will also be notified by RRC (Radio Resource Control) of the following frequency: measuring bandwidth, the UE can consider this measurement bandwidth to be the same as the system bandwidth;
  • RRC Radio Resource Control
  • the length of the DMTC is specified to be 6 milliseconds.
  • the DRS and CRS measurement configurations can be simultaneously configured to the UE, and the UE can perform both measurements in parallel.
  • CRS-based and DRS-based measurements can be directly compared or transformed to become comparable (see DRS). Whether the signal includes CSI-RS depends).
  • the UE will continue to perform DRS measurement regardless of whether it is in DRX (Discontinuous Reception).
  • the DRS sounding and RRM measurement process can be configured for UEs in a cell that is turned on or dormant.
  • the UE first needs to obtain the Neighbour Cell Info list provided by the positioning server by using the OTDOA technology, and then the UE measures the RSTD of the cell in the list and the serving cell, and then reports it to the positioning server to implement the UE positioning.
  • 3GPP has previously proposed a small cell on/off technology to achieve energy saving and reduce interference between small cells. Therefore, when there are many UEs that need to be located indoors, the suitable measurement base station required by the UE is likely to be in the off state. Since the base station in the off state does not transmit the PRS in the current standard, the UE cannot perform measurement. If the cell base station is taken as the priority measurement but enters the off state, the positioning accuracy of some UEs will be greatly reduced, and even the OTDOA cannot be used for positioning.
  • the present disclosure contemplates measuring the RSTD using the DRS as a reference signal.
  • DRS DRS
  • DRS when using traditional DRS for measurement, the DRS of the neighboring cell may cause measurement accuracy to be inaccurate or impossible to measure due to a low signal-to-noise ratio. Therefore, DRS needs to be enhanced to make DRS-based OTDOA technology achieve better measurement accuracy.
  • the period of the DRS (40, 80 or 160 ms) is shorter than the period of the PRS (160, 320, 640 or 1280 ms)
  • the interference between the DRSs may be enhanced, instead Reduced the measurability of DRS. Therefore, it is preferable to introduce a coordination mechanism for the enhanced DRS to reduce the interference between the DRSs and improve the accuracy of the measurement.
  • the timing of transmission of enhanced DRS is also worth investigating, because in some cases, better RSTD measurements can be achieved without transmitting enhanced DRS. Moreover, not sending enhanced DRS is also beneficial to energy savings. Therefore, preferably, the opening and closing conditions of the enhanced DRS can also be designed.
  • the network side needs to provide corresponding auxiliary information to the UE to ensure the measurement of the UE.
  • the DRS itself is also used as a measurement signal based on cell discovery.
  • the enhanced DRS signal may affect the traditional DRS signal, for example, causing measurement based on cell discovery. The result is inaccurate and the wrong event is reported. Therefore, preferably, in order to make the measured enhanced DRS signal comparable to the signal strength (RSRP) of a conventional DRS signal, the enhanced DRS signal measurement result can also be corrected.
  • RSRP signal strength
  • the present disclosure proposes an OTDOA indoor positioning technology solution based on enhanced DRS (eDRS) for indoor positioning scenarios, aiming at solving the compatibility problem between small cell switching technology and OTDOA technology, so as to achieve better indoor positioning effect.
  • eDRS enhanced DRS
  • FIG. 1 illustrates a structure of an electronic device 100 in a wireless communication system according to an embodiment of the present disclosure.
  • electronic device 100 can include processing circuitry 110. It should be noted that the electronic device 100 may include one processing circuit 110 or multiple processing circuits 110. In addition, the electronic device 100 may further include a communication unit 120 and the like.
  • processing circuitry 110 may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and differently named units may be implemented by the same physical entity.
  • the processing circuit 110 may include a determining unit 111, a measuring unit 112, and a generating unit 113.
  • the determining unit 111 can determine positioning measurement assistance data for the UE.
  • the auxiliary data may include configuration information of the eDRS transmitted by the at least one sleeping small cell base station.
  • the measuring unit 112 may perform positioning measurement on the eDRS transmitted by the at least one sleeping small cell base station based on the auxiliary data.
  • the generating unit 113 may generate positioning information based on a result of performing positioning measurement on the eDRS transmitted by the at least one sleeping small cell base station to locate the UE.
  • the eDRS has a larger transmit power than the DRS, thereby ensuring that the UE can detect enough neighbor cells for positioning.
  • positioning information may be generated based on a result of performing positioning measurement on the eDRS transmitted by the sleeping small cell base station to locate the UE.
  • the eDRS sent by the dormant small cell base station can be used for positioning, thereby solving the small cell switching technology and the OTDOA without greatly affecting the working mode of the existing system.
  • the information carried by the eDRS and the DRS is the same in some examples, and thus the eDRS can be regarded as a DRS in a specific state (for example, transmitted at a higher power), for example, the DRS that the conventional DRS can represent as the first state.
  • eDRS can be expressed as the DRS of the second state, and the conversion of the eDRS/DRS can be understood as the transmission of the DRS State transition.
  • DRS refers to the traditional DRS.
  • the assistance data may include configuration information of the eDRS transmitted by the first dormant small cell base station and configuration information of the reference signals for positioning measurement transmitted by the other two cell base stations.
  • the processing circuit 110 (for example, the measuring unit 112) may perform positioning measurement on the eDRS transmitted by the first dormant small cell base station and the reference signals transmitted by the other two cell base stations based on the auxiliary data, and (for example, the generating unit 113) may be based on the measurement result.
  • the RSTD is calculated to generate positioning information.
  • one of the other two cell base stations mentioned above and the first dormant small cell base station may be a positioning reference cell base station, and the remaining two may be neighboring cell base stations participating in positioning.
  • the processing circuit 110 eg, the determining unit 111 may read offset information between the reference signal of the neighboring cell base station and the reference signal of the reference cell base station in the auxiliary data, and (eg, the measuring unit 112) may perform based on the offset information. measuring.
  • At least one of the other two cell base stations mentioned above is an active cell base station, and the reference signal of the active cell base station is a PRS.
  • the active cell base station can be either a small cell base station or a macro cell base station.
  • the processing circuit 110 eg, the generating unit 113 may calculate the RSTD based on the measurement results of the eDRS and the PRS.
  • the configuration information of the eDRS may include at least one of a power configuration, a bandwidth, a period, a time offset, and a silence information of the eDRS.
  • the period of the eDRS may be an integer multiple of the DRS period greater than one.
  • the above configuration information is provided to the electronic device 100 by a network device such as a base station in some examples.
  • a network device such as a base station in some examples.
  • the power configuration of the eDRS may be, for example, a power level or a power compensation with respect to the DRS or the like.
  • the configuration information of the eDRS may further include at least one of cell base station identification information, frequency information, antenna port configuration information, and cyclic prefix length information of the at least one dormant small cell base station for transmitting the eDRS.
  • processing circuitry 110 may perform radio resource management measurements on DRS in a radio environment in which the UE is located to discover neighboring dormant small cell base stations. It can be appreciated by those skilled in the art that the processing circuit 110 may only have the above-mentioned function of locating the UE, or may only have the function of discovering the neighboring dormant small cell base station mentioned herein, or may also Have this Two features.
  • processing circuit 110 may identify the eDRS based on the measured signal strength, and (eg, a correction unit, not shown) may correct the small cell discovery in response to the identification of the eDRS.
  • the processing circuit 110 may compare the measured signal strength with a preset threshold to identify the eDRS; or the processing circuit 110 may compare the measured signal strength with the currently measured signal strength of other cell DRSs, In the event that the gap is outside the predetermined range, it is identified as an eDRS; or alternatively, processing circuit 110 may compare the measured signal strength to the historical signal strength (eg, mean) of the DRS to identify the eDRS.
  • a preset threshold to identify the eDRS
  • processing circuit 110 may compare the measured signal strength with the currently measured signal strength of other cell DRSs, In the event that the gap is outside the predetermined range, it is identified as an eDRS; or alternatively, processing circuit 110 may compare the measured signal strength to the historical signal strength (eg, mean) of the DRS to identify the eDRS.
  • the processing circuit 110 may compare the measured signal strength to the historical signal strength (eg, mean) of the DRS to identify the eDRS.
  • the processing circuit 110 (e.g., the correction unit) correcting the small cell discovery may include ignoring the eDRS when determining the radio resource management measurement.
  • the processing circuit 110 e.g., the correction unit
  • the processing circuit 110 may include ignoring the eDRS when determining the radio resource management measurement.
  • an adjacent one of the DRSs before the eDRS may be used in determining the radio resource management measurement result.
  • the difference between the transmit power of the eDRS and the DRS can also be subtracted from the received power of the eDRS.
  • the wireless communication system as described above may be an LTE-A (Long Term Evolution-Advanced) cellular communication system
  • the electronic device 100 may be a UE in a wireless communication system. (eg, the UE being located above), and the electronic device 100 may further include a communication unit 120 or the like.
  • the communication unit 120 can, for example, receive positioning measurement assistance data from the network device over the air interface and/or transmit the positioning information to the network device.
  • FIG. 2 illustrates a structure of an electronic device 200 in a wireless communication system according to an embodiment of the present disclosure.
  • electronic device 200 can include processing circuitry 210. It should be noted that the electronic device 200 may include one processing circuit 210 or multiple processing circuits 210. In addition, the electronic device 200 may further include a communication unit 220 and the like.
  • processing circuit 210 may also include various discrete functional units to perform various different functions and/or operations. These functional units may be physical entities or logical entities, and differently named units may be implemented by the same physical entity.
  • the processing circuit 210 may include a determining unit 211 and a power control unit 212.
  • the determining unit 211 can determine the transmission configuration information of the eDRS from the control device.
  • the power control unit 212 may perform power control on the DRS of the small cell managed by the small cell base station based on the configuration information to generate an eDRS.
  • the eDRS has a larger transmission power than the DRS.
  • the above-mentioned configuration information may include an indication of an enhancement value of the transmission power and a transmission period.
  • the enhanced value indication of the transmit power may include the transmit power itself, or just the extra enhancement value (eg, power compensation relative to the DRS).
  • processing circuit 210 e.g., power control unit 212 may enhance the transmit power of the DRS based on the transmit period to generate an eDRS signal having the transmit period.
  • the emission period of the eDRS may be n times the transmission period of the DRS, where n is an integer greater than one.
  • the above mentioned configuration information may also include a time offset.
  • the UE is configured with one eDRS measurement time configuration (eDMTC) on each frequency, and the period is an integer multiple of DMTC greater than 1, and the time offset indicates that the eDRS is transmitted from the first DMTC.
  • processing circuit 210 e.g., power control unit 212 may enhance the transmit power of the respective DRS within each eDMTC period based on the time offset. Thereby, as few as possible base stations in the same DMTC can transmit eDRS to reduce interference.
  • the wireless communication system as described above may be an LTE-A cellular communication system
  • the electronic device 200 may be a small cell base station in a wireless communication system (eg, a small cell base station transmitting an eDRS).
  • the electronic device 200 can also include a transceiver (eg, communication unit 220) to transmit the eDRS over the air interface.
  • FIG. 3 illustrates a structure of an electronic device 300 in a wireless communication system according to another embodiment of the present disclosure.
  • electronic device 300 can include processing circuitry 310. It should be noted that the electronic device 300 may include one processing circuit 310 or multiple processing circuits 310. In addition, the electronic device 300 may further include a communication unit 320 and the like.
  • processing circuit 310 may also include various discrete functional units to perform various different functions and/or operations. These functional units may be physical entities or logical entities, and differently named units may be implemented by the same physical entity.
  • the processing circuit 310 may include a determining unit 311 and a generating unit 312.
  • the determining unit 311 may determine whether to initiate transmission of the eDRS by the at least one dormant small cell base station within the predetermined geographic area to locate the UE.
  • the generating unit 312 may generate transmission configuration information for the eDRS of the corresponding sleeping small cell base station based on the determination result.
  • the eDRS has a larger transmission power than the DRS.
  • the time at which the adjacent dormant small cell base stations within the predetermined geographical area mentioned above transmit the eDRS may be different from each other.
  • the processing circuit 310 may determine whether to stop at least one of the sleep within the predetermined geographic area.
  • the cell base station transmits an eDRS.
  • processing circuit 310 may be a predetermined geographic area based on at least one of the number of dormant small cell base stations within the predetermined geographic area and the coverage of each dormant small cell base station.
  • Each dormant small cell base station within the configuration configures the transmit parameters of the eDRS.
  • the transmission parameters of the above mentioned eDRS may include transmission power.
  • the processing circuit 310 eg, the generating unit 312 may configure the transmit power of the eDRS with respect to the enhanced value of the transmit power of the DRS to decrease as the number of dormant small cell base stations within the predetermined geographic area increases, and/or As the coverage of the sleeping small cell base station increases, it increases.
  • the transmission parameters of the above mentioned eDRS may include a transmission period.
  • processing circuit 310 e.g., generation unit 312 can configure the transmission period to increase (i.e., extend) as the number of dormant small cell base stations within the predetermined geographic area increases.
  • the emission period of the eDRS may be n times the transmission period of the DRS, where n is an integer greater than one.
  • the transmission parameters of the above mentioned eDRS may further comprise a transmission mode within a transmission period.
  • processing circuitry 310 e.g., generation unit 312 may configure different transmit modes with different time offsets for different sleepy small cell base stations within a predetermined geographic area.
  • the wireless communication system as described above may be an LTE-A cellular communication system
  • the electronic device 300 may be an Acer in a wireless communication system.
  • the station, the predetermined geographical area mentioned above may be the coverage of the macro base station, and the electronic device 300 may further include a transceiver (eg, the communication unit 320) to transmit the transmission configuration information of the eDRS to the corresponding sleeping small cell base station.
  • a transceiver eg, the communication unit 320
  • electronic device 300 can also be a location server in the core network.
  • FIGS. 1 through 3 An electronic device in a wireless communication system according to an embodiment of the present disclosure is generally described above in conjunction with FIGS. 1 through 3. The technical solution of the present disclosure will be further described in detail in conjunction with specific embodiments.
  • each macro base station (or location server) with a small cell base station under its coverage (ie, management range) can maintain a counter that maintains a two-dimensional number (p, b).
  • the p counts the number of all UEs that need to be located in the coverage of the macro base station within a time window of a predefined length (including UEs served by the small cell within the coverage of the macro base station).
  • b characterizes the transmission of eDRS. When b is 1, the small cell under the coverage of the macro base station transmits the eDRS. When b is 0, the small cell under the coverage of the macro base station does not transmit the eDRS.
  • the entry condition for the dormant base station to transmit the eDRS is based on the number of UEs that need to be located.
  • the macro base station modifies b to 1, and transmits eDRS configuration information to all small cell base stations within its coverage through the X2 interface (S1 interface). .
  • the dormant small cell base station in the coverage of the macro base station starts to transmit the eDRS signal in the next signal period of receiving the signaling, wherein the macro base station can set the eDRS period according to the network deployment situation.
  • the exit conditions for the dormant small cell base station to exit the eDRS state are mainly divided into the following two types:
  • p is below a predefined lower limit pl and b is 1;
  • the interference condition in the small interval is large and b is 1.
  • the inter-cell interference status may be expressed as: the small cell base station reports the interference information of the neighboring cell DRS by using the DRS measurement of the UE. If a large number of UEs report a large amount of interference to the DRS during the coverage of the macro cell, the small cell base station under the coverage of the macro cell should stop transmitting the eDRS signal and send the DRS signal instead.
  • the entry condition for the dormant base station to transmit the eDRS is based on the location of the UE that needs to be located.
  • the coarse location of the UE to be located can first be determined.
  • the approximate location of the UE may be determined according to the prior art such as the UE uplink arrival angle, the timing advance, and the like.
  • the eDRS proposed by the present disclosure is an enhancement of the original DRS in an indoor positioning scenario, and needs to reconfigure information such as the period and measurement of the eDRS.
  • the feature of eDRS is the periodic enhancement of power to the DRS.
  • the size of the power boost is coarsely adjusted by the macro base station (or the positioning server) according to factors such as the number of cells and coverage of the eDRS, and then sent to the corresponding cell, and each cell is finely adjusted according to the coverage size. The larger the coverage, the greater the power boost.
  • Factors considered for coarse adjustment include:
  • the number of cells that enable eDRS the more the number of eDRS cells is enabled, the smaller the enhanced power, and the number of cells and the enhanced power can be converted into an e-based logarithmic relationship;
  • the number of UEs to be located in the coverage of the macro cell The more the number of UEs, the greater the enhanced power.
  • the transmission period of the eDRS may be set to n times of the DRS transmission period (n is an integer greater than 1), and is also determined by the macro base station (or the positioning server) according to actual conditions, and then transmitted to the corresponding cell by, for example, X2 signaling.
  • Factors to consider include:
  • n can be increased accordingly to reduce the interference of eDRS on other signals.
  • the present disclosure devises a coordination mechanism that shifts the eDRS between adjacent cells in time to reduce interference.
  • the transmission period of the eDRS is n times of the DRS transmission period, there may be n+1 types of configuration modes that do not conflict with each other.
  • the time when the DRS is transmitted is "0"
  • the time when the eDRS is transmitted is "1”.
  • Different modes can be recorded according to the position where "1" is in the configuration mode. When “1" is in the first digit of the left, the mode is marked as 1, and so on. When 1 is the nth digit in the left, the mode is marked as n, and when "1" is not displayed in the configuration mode, it is recorded as 0.
  • the positioning server sends a specific eDRS configuration mode to each cell that needs to configure the eDRS according to the priority of each cell.
  • the location server can maintain a list of the priority of each cell based on the number x of cells in the first three cells of the neighbor cell info list in an eDRS period. The larger the value of each cell x, the higher its priority; when the x of the cell is the same, the larger the PCI of the cell is, the higher the priority is.
  • the priorities of the cells in the small cell cluster are sequentially assigned from high to low: 1, 2, ..., m;
  • the priorities of the respective cells are sequentially assigned 1, 2, ..., n, 0, 0, ... from high to low.
  • the number of 0 is m-n.
  • the array a ⁇ 1, 2, ..., n, 0, 0, ... ⁇ , every time an eDRS cycle, a right shift m-n bits to ensure that each cell can send eDRS.
  • the macro base station (or the positioning server) transmits m, n and the eDRS configuration mode of each cell to each cell, and each cell can calculate the eDRS transmission mode of each period according to the above rules.
  • eDRS transmissions between adjacent small cell base stations 1, small cell base stations 2, and small cell base stations 3 are staggered in time, thereby reducing interference.
  • the eDRS measurement configuration can be represented by a measurement configuration table.
  • OTDOA ancillary data about eDRS contains two elements:
  • OTDOA Reference Cell Info This element contains the parameters of the reference cell, and the parameters in the OTDOA neighbor cell list are set according to this element.
  • OTDOA Neighbour Cell Info This element contains the parameters of each neighboring cell and is arranged in descending order of measurement priority. The order is determined by the macro base station or the positioning server, and the UE performs RSTD in the order provided by the network side. Measurement.
  • the OTDOA Reference Cell Info and the OTDOA Neighbour Cell Info regarding the eDRS are included in the "ProvideAssistance Data” message of the 3GPP (3rd Generation Partnership Project) standard, and the "ProvideAssistanceData” message and The “RequestAssistanceData” message is included in the "LPP message”.
  • "LPP messages" are sent by "Uplink/Downlink Generic NAS Transport message", that is, "LPP messages” are included in the NAS protocol.
  • the OTDOA Reference Cell Info element includes the identifier of the reference cell, the eDRS configuration information, and the like, as shown in Table 1, where "M” indicates that the element necessarily appears in the measurement information, and “O” indicates whether the element appears in the measurement information or not. It is optional, and “C” indicates that the element appears in the measurement information under certain conditions, and the condition is described in the definition of the element.
  • the OTDOA Neighbour Cell Info element includes the identifier of each neighboring cell, the eDRS configuration information, and the RSTD measurement window, as shown in Table 2.
  • the neighbor cell information list may contain information of up to 72 cells.
  • the UE When the base station transmits the eDRS, the UE will measure it.
  • the measurement results are mainly used for two purposes: measurements for OTDOA positioning and measurements for small cell discovery. These two measurement events will be discussed below.
  • the auxiliary information in the list will include the DRS subframe offset and the eDRS Info.
  • the UE will measure the eDRS signal of the corresponding cell based on the information.
  • the UE will use the time difference between the two detected positioning signals (eDRS and eDRS or PRS and eDRS) as the RSTD value for the positioning server to calculate.
  • the server records the configured transmission time of each positioning signal, and processes the RSTD value reported by the UE to obtain an actual reception time difference.
  • the UE will subtract an integer multiple of 1 ms according to the time difference between the two detected positioning signals, so that the time difference is less than 1 ms, because in the indoor scene, between the two positioning signals The time difference cannot be greater than 1 ms (ie, the distance cannot be greater than 300 m).
  • the measurement result (RSTD) can be reported to the positioning server through the serving base station.
  • the eDRS signal when the UE measures the reference signal, the eDRS signal necessarily affects the DRS signal. Since the eDRS power is larger than the traditional DRS signal by a certain offset value, in order to make the measured signal strength of the eDRS and the DRS comparable, the impact on the small cell discovery is not affected, and the reference signal measured by the UE needs to be detected on the UE side before entering the L3 filtering. The eDRS signal is output and the eDRS detection result is corrected.
  • the UE When the UE detects that the deviation of the RSRP measurement result of two consecutive DRSs of a certain cell is greater than a certain threshold ⁇ P, it may be considered that the UE detects the eDRS signal, and the trigger event Aj of the corrected eDRS is triggered. The UE will correct the larger DRS measurement.
  • the threshold ⁇ P is positively correlated with the difference between the power of the eDRS and the DRS of the cell.
  • the above un-enhanced DRS sample value is used as an input to the sample value at that time;
  • FIG. 5 is a sequence diagram illustrating a method for wireless communication in a wireless communication system, in accordance with an embodiment of the present disclosure.
  • the location server is used as the control center.
  • the positioning server can maintain counter (p, b) periodic statistics to determine whether to enable eDRS.
  • the location server may request the macro base station to provide eDRS configuration assistance information.
  • the macro base station Upon receiving the request from the location server, the macro base station can provide its location server with its eDRS configuration assistance information.
  • the positioning server may configure the eDRS information according to conditions such as the number of on/off cells, the coverage of the cell, the number of UEs to be located in a single small cell, and the like.
  • the positioning server may send the eDRS power, the period, and the eDRS configuration information of each cell to the corresponding small cell base station.
  • the small cell base station can then transmit the eDRS signal according to the configuration.
  • the UE when it generates a positioning requirement, it may request a positioning assistance data signal (data form) to its current serving base station, such as a macro base station.
  • the macro base station can in turn request positioning of the auxiliary data signal to the positioning server.
  • the positioning requirement may be initiated by the UE, or may be initiated by the serving base station of the UE or the positioning server itself.
  • the network side initiates, the auxiliary data may be directly sent by the network side without requesting the UE, and the network side does not necessarily need to feed back the specific positioning result to the UE after calculating the location of the UE.
  • the positioning server can send positioning assistance data to the macro base station.
  • the macro base station can in turn send positioning assistance data (data form) to the UE.
  • the UE can then measure the eDRS, PRS and calculate the RSTD value.
  • the UE may send an RSTD value (data form) to the macro base station.
  • the macro base station can in turn send an RSTD value to the positioning server.
  • the location server can calculate the UE location and then transmit the calculated UE location information to the macro base station.
  • the macro base station can in turn transmit the UE location information to the corresponding UE (data form). In this way, UE positioning is achieved.
  • the positioning server may also decide to stop transmitting the eDRS signal according to the value of (p, b). After that, the positioning server can send a signaling to stop transmitting the eDRS signal to the small cell base station. After receiving the signaling, the small cell base station may stop transmitting the eDRS.
  • FIG. 6 is a sequence diagram illustrating a method for wireless communication in a wireless communication system, according to another embodiment of the present disclosure.
  • the macro base station is used as a control center.
  • the RRC signaling is exchanged between the UE and the small cell base station, and the X2 interface is exchanged between the small cell base station and the macro base station.
  • the macro base station can maintain counter (p, b) periodic statistics to determine whether to enable eDRS.
  • the macro base station may configure eDRS information according to conditions such as the number of on/off cells, the coverage of the cell, and the number of UEs to be located in a single small cell.
  • the macro base station may transmit the eDRS power, the period, and the eDRS configuration information of each cell to the corresponding small cell base station.
  • the small cell base station can then transmit the eDRS signal according to the configuration.
  • the positioning assistance data signal (in the form of RRC signaling) may be requested from the macro base station.
  • the macro base station can transmit positioning assistance data (in the form of RRC signaling) to the UE.
  • positioning assistance data in the form of RRC signaling
  • the UE can then measure the eDRS, PRS and calculate the RSTD value.
  • the UE may send an RSTD value to the macro base station.
  • the macro base station can calculate the UE location and then transmit the calculated UE location information (in the form of RRC signaling) to the corresponding UE. In this way, UE positioning is achieved.
  • the macro base station may also decide to stop transmitting the eDRS signal according to the value of (p, b). After that, the macro base station can transmit a signaling to stop sending eDRS signals to the small cell base station. After receiving the signaling, the small cell base station may stop transmitting the eDRS.
  • FIG. 7 is a sequence diagram illustrating a method for wireless communication in a wireless communication system, according to another embodiment of the present disclosure.
  • the macro base station and the positioning server are used as a hybrid control center.
  • the UE and the small cell base station may optionally interact in the form of RRC signaling or data.
  • the macro base station can maintain counter (p, b) periodic statistics to determine whether to enable eDRS.
  • the macro base station can provide its eDRS configuration assistance information to the location server.
  • the positioning server may configure the eDRS information according to conditions such as the number of on/off cells, the coverage of the cell, the number of UEs to be located in a single small cell, and the like.
  • the positioning server may send the eDRS power, the period, and the eDRS configuration information of each cell to the corresponding small cell base station.
  • the small cell base station can then transmit the eDRS signal according to the configuration.
  • the positioning assistance data signal may be requested from the macro base station.
  • the macro base station can in turn request positioning of the auxiliary data signal to the positioning server.
  • the positioning server can send positioning assistance data to the macro base station.
  • the macro base station can in turn send positioning assistance data to the UE.
  • the UE can then measure the eDRS, PRS and calculate the RSTD value.
  • the UE may send an RSTD value to the macro base station.
  • the macro base station can in turn send an RSTD value to the positioning server.
  • the location server can calculate the UE location and then transmit the calculated UE location information to the macro base station.
  • the macro base station can in turn transmit the UE location information to the corresponding UE. In this way, UE positioning is achieved.
  • the positioning server may also decide to stop transmitting the eDRS signal according to the value of (p, b). After that, the positioning server can send a signaling to stop transmitting the eDRS signal to the small cell base station. After receiving the signaling, the small cell base station may stop transmitting the eDRS.
  • step S810 positioning measurement assistance data for the UE is determined, the auxiliary data including configuration information of the eDRS transmitted by the at least one sleeping small cell base station.
  • step S820 the positioning measurement is performed on the eDRS transmitted by the at least one sleeping small cell base station based on the auxiliary data.
  • step S830 positioning information is generated based on the result of performing positioning measurement on the eDRS sent by the at least one dormant small cell base station to locate the UE.
  • the eDRS has a larger transmission power than the DRS.
  • the assistance data may include configuration information of the eDRS transmitted by the first dormant small cell base station and configuration information of the reference signals used by the other two cell base stations for positioning measurement.
  • the method may further include: performing positioning measurement on the eDRS sent by the first dormant small cell base station and the reference signals sent by the other two cell base stations based on the auxiliary data, and calculating the RSTD according to the measurement result to generate positioning information.
  • one of the other two cell base stations mentioned above and the first dormant small cell base station may be a positioning reference cell base station, and the remaining two may be neighbor cell base stations participating in positioning.
  • the method may further include: reading offset information between the reference signal of the neighboring cell base station and the reference signal of the reference cell base station in the auxiliary data, and performing measurement based on the offset information.
  • At least one of the other two cell base stations mentioned above may be an active cell base station, and the reference signal of the active cell base station may be a PRS.
  • the method may further include: calculating the RSTD based on the measurement results of the eDRS and the PRS.
  • the configuration information of the eDRS may include power configuration, bandwidth, period, and At least one of a time offset and a silence information, wherein the period of the eDRS is an integer multiple of the DRS period greater than one.
  • the configuration information of the eDRS may further include at least one of cell base station identification information, frequency information, antenna port configuration information, and cyclic prefix length information of the at least one dormant small cell base station.
  • the method may further comprise: performing radio resource management measurement on the DRS in the radio environment in which the user equipment is located to discover the neighboring dormant small cell base station; and identifying the eDRS based on the measured signal strength, and responding to the eDRS Identify corrections for small cell discovery.
  • correcting the small cell discovery may include: when determining the radio resource management measurement result: ignoring the eDRS; using the adjacent one DRS before the eDRS instead of the eDRS; or subtracting the transmit power of the eDRS and the DRS from the received power of the eDRS The difference.
  • a method for wireless communication in a wireless communication system may include: determining transmission configuration information of an eDRS from a control device; and managing small cell base stations based on configuration information The DRS of the cell performs power control to generate an eDRS, wherein the eDRS has a larger transmit power than the DRS.
  • the configuration information may include an indication of the enhancement value of the transmission power and a transmission period.
  • the method may further include: enhancing a transmit power of the DRS based on a transmit period to generate an eDRS signal having a transmit period.
  • the emission period of the eDRS may be n times the transmission period of the DRS, where n is an integer greater than one.
  • the configuration information may also include a time offset.
  • the method may further include: enhancing the transmit power of the corresponding DRS in each transmission period based on the time offset.
  • a method for wireless communication in a wireless communication system may include determining, based on at least one of a number and a location of user equipments to be located within a predetermined geographic area. Whether to activate at least one dormant small cell base station within the predetermined geographical area to transmit an eDRS to locate the user equipment; and generate transmission configuration information for the eDRS of the corresponding dormant small cell base station based on the determination result, wherein the eDRS has more than the DRS Large transmit power.
  • the time at which the adjacent dormant small cell base stations within the predetermined geographical area transmit the eDRS may be different from each other.
  • the method may further comprise: based on a small cell within a predetermined geographic area
  • the interference condition of the eDRS and the DRS between the base stations determines whether to stop transmitting the eDRS by the at least one sleeping small cell base station within the predetermined geographical area.
  • the method may further comprise: each of the dormant small cell base stations within the predetermined geographic area based on at least one of the number of dormant small cell base stations within the predetermined geographic area and the coverage of each of the dormant small cell base stations Configure the transmit parameters of the eDRS.
  • the transmit parameters of the eDRS may include transmit power.
  • the method may further include: configuring an enhancement value of the transmit power of the eDRS with respect to the transmit power of the DRS to decrease as the number of sleepy small cell base stations within the predetermined geographic area increases, and/or with small sleep The coverage of the cell base station increases with an increase in coverage.
  • the transmission parameters of the eDRS may include a transmission period.
  • the method may further include configuring the transmission period to increase as the number of sleeping small cell base stations within the predetermined geographic area increases.
  • the emission period of the eDRS may be n times the transmission period of the DRS, where n is an integer greater than one.
  • the transmit parameters of the eDRS may further comprise a transmit mode within the transmit period.
  • the method may further comprise configuring different transmit modes with different time offsets for different dormant small cell base stations within the predetermined geographic area.
  • the location server mentioned in this disclosure can be implemented as any type of server, such as a tower server, a rack server, and a blade server.
  • the location server can be a control module mounted on the server (such as an integrated circuit module including a single wafer, and a card or blade inserted into a slot of the blade server).
  • the base stations mentioned in this disclosure may be implemented as any type of evolved Node B (eNB), such as a macro eNB and a small eNB.
  • the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station can be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • the base station can include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRHs) disposed at a different location than the body.
  • RRHs remote wireless headends
  • various types of terminals which will be described below, can perform base station functions temporarily or semi-persistently. And work as a base station.
  • the UE mentioned in the present disclosure may be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router, and a digital camera device) or an in-vehicle terminal. (such as car navigation equipment).
  • the UE may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the UE may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the above terminals.
  • FIG. 9 is a block diagram showing an example of a schematic configuration of a server 900 to which the technology of the present disclosure can be applied.
  • the server 900 includes a processor 901, a memory 902, a storage device 903, a network interface 904, and a bus 906.
  • the processor 901 can be, for example, a central processing unit (CPU) or a digital signal processor (DSP) and controls the functionality of the server 900.
  • the memory 902 includes random access memory (RAM) and read only memory (ROM), and stores data and programs executed by the processor 901.
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • Network interface 904 is a wired communication interface for connecting server 900 to wired communication network 705.
  • the wired communication network 705 can be a core network such as an Evolved Packet Core Network (EPC) or a packet data network (PDN) such as the Internet.
  • EPC Evolved Packet Core Network
  • PDN packet data network
  • the bus 906 connects the processor 901, the memory 902, the storage device 903, and the network interface 904 to each other.
  • Bus 906 can include two or more buses (such as a high speed bus and a low speed bus) each having a different speed.
  • FIG. 10 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • the eNB 1000 includes one or more antennas 1010 and a base station device 1020.
  • the base station device 1020 and each antenna 1010 may be connected to each other via an RF cable.
  • Each of the antennas 1010 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station device 1020 to transmit and receive wireless signals.
  • the eNB 1000 may include a plurality of antennas 1010.
  • multiple antennas 1010 can be compatible with multiple frequency bands used by eNB 1000.
  • FIG. 10 illustrates an example in which the eNB 1000 includes multiple antennas 1010, the eNB 1000 may also include a single antenna 1010.
  • the base station device 1020 includes a controller 1021, a memory 1022, a network interface 1023, and a wireless communication interface 1025.
  • the controller 1021 can be, for example, a CPU or a DSP, and operates the base station device 1020. Various functions of the upper level. For example, controller 1021 generates data packets based on data in signals processed by wireless communication interface 1025 and communicates the generated packets via network interface 1023. The controller 1021 can bundle data from a plurality of baseband processors to generate bundled packets and deliver the generated bundled packets. The controller 1021 may have a logical function that performs control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 1022 includes a RAM and a ROM, and stores programs executed by the controller 1021 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • Network interface 1023 is a communication interface for connecting base station device 1020 to core network 1024. Controller 1021 can communicate with a core network node or another eNB via network interface 1023. In this case, the eNB 1000 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface. Network interface 1023 may also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If network interface 1023 is a wireless communication interface, network interface 1023 can use a higher frequency band for wireless communication than the frequency band used by wireless communication interface 1025.
  • the wireless communication interface 1025 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in cells of the eNB 1000 via the antenna 1010.
  • Wireless communication interface 1025 may typically include, for example, a baseband (BB) processor 1026 and RF circuitry 1027.
  • the BB processor 1026 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
  • BB processor 1026 may have some or all of the above described logic functions.
  • the BB processor 1026 may be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
  • the update program can cause the functionality of the BB processor 1026 to change.
  • the module can be a card or blade that is inserted into a slot of base station device 1020. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1027 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 1010.
  • the wireless communication interface 1025 can include a plurality of BB processors 1026.
  • multiple BB processors 1026 can be compatible with multiple frequency bands used by eNB 1000.
  • the wireless communication interface 1025 can include a plurality of RF circuits 1027.
  • multiple RF circuits 1027 can be compatible with multiple antenna elements.
  • FIG. 10 shows an example in which the wireless communication interface 1025 includes a plurality of BB processors 1026 and a plurality of RF circuits 1027, the wireless communication The letter interface 1025 may also include a single BB processor 1026 or a single RF circuit 1027.
  • the eNB 11 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied.
  • the eNB 1130 includes one or more antennas 1140, a base station device 1150, and an RRH 1160.
  • the RRH 1160 and each antenna 1140 may be connected to each other via an RF cable.
  • the base station device 1150 and the RRH 1160 may be connected to each other via a high speed line such as a fiber optic cable.
  • Each of the antennas 1140 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 1160 to transmit and receive wireless signals.
  • the eNB 1130 may include a plurality of antennas 1140.
  • multiple antennas 1140 can be compatible with multiple frequency bands used by eNB 1130.
  • FIG. 11 illustrates an example in which the eNB 1130 includes multiple antennas 1140, the eNB 1130 may also include a single antenna 1140.
  • the base station device 1150 includes a controller 1151, a memory 1152, a network interface 1153, a wireless communication interface 1155, and a connection interface 1157.
  • the controller 1151, the memory 1152, and the network interface 1153 are the same as the controller 1021, the memory 1022, and the network interface 1023 described with reference to FIG.
  • the wireless communication interface 1155 supports any cellular communication scheme (such as LTE and LTE-Advanced) and provides wireless communication to terminals located in sectors corresponding to the RRH 1160 via the RRH 1160 and the antenna 1140.
  • Wireless communication interface 1155 can generally include, for example, BB processor 1156.
  • the BB processor 1156 is identical to the BB processor 1026 described with reference to FIG. 10 except that the BB processor 1156 is connected to the RF circuit 1164 of the RRH 1160 via the connection interface 1157.
  • the wireless communication interface 1155 can include a plurality of BB processors 1156.
  • multiple BB processors 1156 can be compatible with multiple frequency bands used by eNB 1130.
  • FIG. 11 illustrates an example in which the wireless communication interface 1155 includes a plurality of BB processors 1156, the wireless communication interface 1155 may also include a single BB processor 1156.
  • connection interface 1157 is an interface for connecting the base station device 1150 (wireless communication interface 1155) to the RRH 1160.
  • the connection interface 1157 may also be a communication module for communicating the base station device 1150 (wireless communication interface 1155) to the above-described high speed line of the RRH 1160.
  • the RRH 1160 includes a connection interface 1161 and a wireless communication interface 1163.
  • connection interface 1161 is an interface for connecting the RRH 1160 (wireless communication interface 1163) to the base station device 1150.
  • the connection interface 1161 may also be a communication module for communication in the above high speed line.
  • the wireless communication interface 1163 transmits and receives wireless signals via the antenna 1140.
  • Wireless communication The signaling interface 1163 can typically include, for example, an RF circuit 1164.
  • the RF circuit 1164 can include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 1140.
  • the wireless communication interface 1163 can include a plurality of RF circuits 1164.
  • multiple RF circuits 1164 can support multiple antenna elements.
  • FIG. 11 illustrates an example in which the wireless communication interface 1163 includes a plurality of RF circuits 1164, the wireless communication interface 1163 may also include a single RF circuit 1164.
  • the communication unit 220 described using FIG. 2 and the communication unit 320 described by FIG. 3 may be utilized by the wireless communication interface 1025 and the wireless communication interface 1155 and/or The wireless communication interface 1163 is implemented. At least a portion of the functionality can also be implemented by controller 1021 and controller 1151.
  • FIG. 12 is a block diagram showing an example of a schematic configuration of a smartphone 1200 to which the technology of the present disclosure can be applied.
  • the smart phone 1200 includes a processor 1201, a memory 1202, a storage device 1203, an external connection interface 1204, an imaging device 1206, a sensor 1207, a microphone 1208, an input device 1209, a display device 1210, a speaker 1211, a wireless communication interface 1212, and one or more An antenna switch 1215, one or more antennas 1216, a bus 1217, a battery 1218, and an auxiliary controller 1219.
  • the processor 1201 may be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and the other layers of the smartphone 1200.
  • the memory 1202 includes a RAM and a ROM, and stores data and programs executed by the processor 1201.
  • the storage device 1203 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 1204 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 1200.
  • USB universal serial bus
  • the imaging device 1206 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 1207 can include a set of sensors, such as a measurement sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 1208 converts the sound input to the smartphone 1200 into an audio signal.
  • the input device 1209 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 1210, and receives an operation or information input from a user.
  • the display device 1210 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 1200.
  • the speaker 1211 converts the audio signal output from the smartphone 1200 into sound.
  • the wireless communication interface 1212 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 1212 may generally include, for example, BB processor 1213 and RF circuitry 1214.
  • the BB processor 1213 can perform, for example, encoding/decoding, modulation / Demodulation and multiplexing/demultiplexing, and performing various types of signal processing for wireless communication.
  • the RF circuit 1214 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 1216.
  • the wireless communication interface 1212 can be a chip module on which the BB processor 1213 and the RF circuit 1214 are integrated. As shown in FIG.
  • the wireless communication interface 1212 can include a plurality of BB processors 1213 and a plurality of RF circuits 1214.
  • FIG. 12 illustrates an example in which the wireless communication interface 1212 includes a plurality of BB processors 1213 and a plurality of RF circuits 1214, the wireless communication interface 1212 may also include a single BB processor 1213 or a single RF circuit 1214.
  • wireless communication interface 1212 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 1212 can include a BB processor 1213 and RF circuitry 1214 for each wireless communication scheme.
  • Each of the antenna switches 1215 switches the connection destination of the antenna 1216 between a plurality of circuits included in the wireless communication interface 1212, such as circuits for different wireless communication schemes.
  • Each of the antennas 1216 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 1212 to transmit and receive wireless signals.
  • smart phone 1200 can include multiple antennas 1216.
  • FIG. 12 illustrates an example in which smart phone 1200 includes multiple antennas 1216, smart phone 1200 may also include a single antenna 1216.
  • smart phone 1200 can include an antenna 1216 for each wireless communication scheme.
  • the antenna switch 1215 can be omitted from the configuration of the smartphone 1200.
  • the bus 1217 stores the processor 1201, the memory 1202, the storage device 1203, the external connection interface 1204, the imaging device 1206, the sensor 1207, the microphone 1208, the input device 1209, the display device 1210, the speaker 1211, the wireless communication interface 1212, and the auxiliary controller 1219 with each other. connection.
  • Battery 1218 provides power to various blocks of smart phone 1200 shown in FIG. 12 via feeders, which are partially shown as dashed lines in the figure.
  • the secondary controller 1219 operates the minimum required functions of the smartphone 1200, for example, in a sleep mode.
  • the communication unit 120 described by using FIG. 1 can be implemented by the wireless communication interface 1212. At least a portion of the functionality may also be implemented by processor 1201 or secondary controller 1219.
  • FIG. 13 is a schematic diagram showing a car navigation device 1320 to which the technology of the present disclosure may be applied.
  • the car navigation device 1320 includes a processor 1321, a memory 1322, a global positioning system (GPS) module 1324, a sensor 1325, a data interface 1326, a content player 1327, a storage medium interface 1328, an input device 1329, a display device 1330, a speaker 1331, and a wireless device.
  • the processor 1321 can be, for example, a CPU or SoC and controls the navigation functions and additional functions of the car navigation device 1320.
  • the memory 1322 includes a RAM and a ROM, and stores data and programs executed by the processor 1321.
  • the GPS module 1324 measures the position (such as latitude, longitude, and altitude) of the car navigation device 1320 using GPS signals received from GPS satellites.
  • Sensor 1325 can include a set of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 1326 is connected to, for example, the in-vehicle network 1341 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 1327 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 1328.
  • the input device 1329 includes, for example, a touch sensor, a button or a switch configured to detect a touch on the screen of the display device 1330, and receives an operation or information input from a user.
  • the display device 1330 includes a screen such as an LCD or OLED display, and displays an image of the navigation function or reproduced content.
  • the speaker 1331 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 1333 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 1333 may generally include, for example, BB processor 1334 and RF circuitry 1335.
  • the BB processor 1334 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 1335 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 1337.
  • the wireless communication interface 1333 can also be a chip module on which the BB processor 1334 and the RF circuit 1335 are integrated. As shown in FIG.
  • the wireless communication interface 1333 may include a plurality of BB processors 1334 and a plurality of RF circuits 1335.
  • FIG. 13 illustrates an example in which the wireless communication interface 1333 includes a plurality of BB processors 1334 and a plurality of RF circuits 1335, the wireless communication interface 1333 may also include a single BB processor 1334 or a single RF circuit 1335.
  • the wireless communication interface 1333 can support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near-field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 1333 may be packaged for each wireless communication scheme.
  • a BB processor 1334 and an RF circuit 1335 are included.
  • Each of the antenna switches 1336 switches the connection destination of the antenna 1337 between a plurality of circuits included in the wireless communication interface 1333, such as circuits for different wireless communication schemes.
  • Each of the antennas 1337 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 1333 to transmit and receive wireless signals.
  • car navigation device 1320 can include a plurality of antennas 1337.
  • FIG. 13 illustrates an example in which the car navigation device 1320 includes a plurality of antennas 1337, the car navigation device 1320 may also include a single antenna 1337.
  • car navigation device 1320 can include an antenna 1337 for each wireless communication scheme.
  • the antenna switch 1336 can be omitted from the configuration of the car navigation device 1320.
  • Battery 1338 provides power to various blocks of car navigation device 1320 shown in FIG. 13 via a feeder, which is partially shown as a dashed line in the figure. Battery 1338 accumulates power supplied from the vehicle.
  • the communication unit 120 described by using FIG. 1 can be implemented by the wireless communication interface 1333. At least a portion of the functionality can also be implemented by processor 1321.
  • the technology of the present disclosure may also be implemented as an onboard system (or vehicle) 1340 that includes one or more of the car navigation device 1320, the in-vehicle network 1341, and the vehicle module 1342.
  • vehicle module 1342 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 1341.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及无线通信系统中的电子设备和无线通信方法。该电子设备包括:一个或多个处理电路,被配置为执行以下操作:确定用于用户设备的定位测量辅助数据,所述辅助数据包括至少一个休眠小小区基站发送的增强型发现参考信号eDRS的配置信息;基于辅助数据对至少一个休眠小小区基站发送的eDRS进行定位测量;以及基于对至少一个休眠小小区基站发送的eDRS进行定位测量的结果生成定位信息,以对用户设备进行定位,其中,eDRS比发现参考信号DRS具有更大的发射功率。使用根据本公开的电子设备和无线通信方法,可以充分利用现有的DRS信号,并对其做适当的增强,从而能够起到提高定位精度的作用,并且达到加速定位过程的目的。

Description

无线通信系统中的电子设备和无线通信方法 技术领域
本公开涉及无线通信的技术领域,具体地涉及无线通信系统中的电子设备和用于在无线通信系统中进行无线通信的方法。
背景技术
这个部分提供了与本公开有关的背景信息,这不一定是现有技术。
SCN(Small Cell Network,小小区网络)被认为是应对数据流量迅速增长的有效手段。在无线通信的标准化讨论中,一个新的参考信号——DRS(Discovery Reference Signal,发现参考信号),被用来支持small cell on/off(小小区开启/关闭)机制。在小小区关闭状态下,小小区基站只发送DRS。
室内定位是无线通信技术标准化的重点工作之一。现有的OTDOA(Observed Time Difference Of Arrival,观测到达时间差)技术将作为室内定位技术中重点考虑的技术。由于在只基于小区特定参考信号的情形下OTDOA仍无法达到足够的精度,所以引入了PRS(Positioning Reference Signal,定位参考信号)。
然而,小小区在关闭状态下并不发送PRS。如果OTDOA只基于PRS,这样导致当大量小小区处于关闭状态时,用户设备的定位精度有所下降甚至无法定位。
因此,有必要提出一种新的无线通信技术方案以达到提高定位精度并且加速定位过程的目的。
发明内容
这个部分提供了本公开的一般概要,而不是其全部范围或其全部特征的全面披露。
本公开的目的在于提供一种无线通信系统中的电子设备和用于在无线通信系统中进行无线通信的方法,使得小小区开启/关闭技术和OTDOA技术能够兼容,以提高用户设备的定位精度并加速定位过程。
根据本公开的一方面,提供了一种用户设备侧的电子设备,该电子设备包括一个或多个处理电路,所述处理电路被配置为执行以下操作:确定用于所述用户设备的定位测量辅助数据,所述辅助数据包括至少一个休眠小小区基站发送的增强型发现参考信号eDRS的配置信息;基于所述辅助数据对所述至少一个休眠小小区基站发送的eDRS进行定位测量;以及基于对所述至少一个休眠小小区基站发送的eDRS进行定位测量的结果生成定位信息,以对所述用户设备进行定位,其中,所述eDRS比发现参考信号DRS具有更大的发射功率。
根据本公开的另一方面,提供了一种无线通信系统中的小小区基站侧的电子设备,该电子设备包括一个或多个处理电路,所述处理电路被配置为执行以下操作:确定来自控制设备的增强型发现参考信号eDRS的发射配置信息;以及基于所述配置信息对所述小小区基站管理的小小区的发现参考信号DRS进行功率控制,以生成所述eDRS,其中,所述eDRS比所述DRS具有更大的发射功率。
根据本公开的另一方面,提供了一种无线通信系统中的电子设备,该电子设备包括一个或多个处理电路,所述处理电路被配置为执行以下操作:基于预定地理区域之内的待定位的用户设备的数目与位置中至少之一,确定是否启动所述预定地理区域之内的至少一个休眠小小区基站发送增强型发现参考信号eDRS,以对所述用户设备进行定位;以及基于确定结果生成用于相应休眠小小区基站的eDRS的发射配置信息,其中,所述eDRS比发现参考信号DRS具有更大的发射功率。
根据本公开的另一方面,提供了一种用于在无线通信系统中进行无线通信的方法,该方法包括:确定用于用户设备的定位测量辅助数据,所述辅助数据包括至少一个休眠小小区基站发送的增强型发现参考信号eDRS的配置信息;基于所述辅助数据对所述至少一个休眠小小区基站发送的eDRS进行定位测量;以及基于对所述至少一个休眠小小区基站发送的eDRS进行定位测量的结果生成定位信息,以对所述用户设备进行定位,其中,所述eDRS比发现参考信号DRS具有更大的发射功率。
根据本公开的另一方面,提供了一种用于在无线通信系统中进行无线通信的方法,该方法包括:确定来自控制设备的增强型发现参考信号eDRS的发射配置信息;以及基于所述配置信息对小小区基站管理的小小区的发现参考信号DRS进行功率控制,以生成所述eDRS,其中,所述eDRS比所述DRS具有更大的发射功率。
根据本公开的另一方面,提供了一种用于在无线通信系统中进行无线通信的方法,该方法包括:基于预定地理区域之内的待定位的用户设备的数目与位置中至少之一,确定是否启动所述预定地理区域之内的至少一个休眠小小区基站发送增强型发现参考信号eDRS,以对所述用户设备进行定位;以及基于确定结果生成用于相应休眠小小区基站的eDRS的发射配置信息,其中,所述eDRS比发现参考信号DRS具有更大的发射功率。
使用根据本公开的无线通信系统中的电子设备和用于在无线通信系统中进行无线通信的方法,可以充分利用现有的DRS信号,并对其做适当的增强,从而能够起到提高定位精度的作用,并且达到加速定位过程的目的。
从在此提供的描述中,进一步的适用性区域将会变得明显。这个概要中的描述和特定例子只是为了示意的目的,而不旨在限制本公开的范围。
附图说明
在此描述的附图只是为了所选实施例的示意的目的而非全部可能的实施,并且不旨在限制本公开的范围。在附图中:
图1是图示根据本公开的实施例的无线通信系统中的电子设备的结构的框图;
图2是图示根据本公开的另一实施例的无线通信系统中的电子设备的结构的框图;
图3是图示根据本公开的另一实施例的无线通信系统中的电子设备的结构的框图;
图4是图示eDRS(enhanced DRS,增强型DRS)的配置模式的例子的示意图;
图5是图示根据本公开的实施例的用于在无线通信系统中进行无线通信的方法的序列图;
图6是图示根据本公开的另一实施例的用于在无线通信系统中进行无线通信的方法的序列图;
图7是图示根据本公开的另一实施例的用于在无线通信系统中进行无线通信的方法的序列图;
图8是图示根据本公开的实施例的用于在无线通信系统中进行无线通信的方法的流程图;
图9是示出适用于本公开的服务器的示意性配置的示例的框图;
图10是示出适用于本公开的eNB(evolution Node Base Station,演进节点基站)的示意性配置的第一示例的框图;
图11是示出适用于本公开的eNB的示意性配置的第二示例的框图;
图12是示出适用于本公开的智能电话的示意性配置的示例的框图;以及
图13是示出适用于本公开的汽车导航设备的示意性配置的示例的框图。
虽然本公开容易经受各种修改和替换形式,但是其特定实施例已作为例子在附图中示出,并且在此详细描述。然而应当理解的是,在此对特定实施例的描述并不打算将本公开限制到公开的具体形式,而是相反地,本公开目的是要覆盖落在本公开的精神和范围之内的所有修改、等效和替换。要注意的是,贯穿几个附图,相应的标号指示相应的部件。
具体实施方式
现在参考附图来更加充分地描述本公开的例子。以下描述实质上只是示例性的,而不旨在限制本公开、应用或用途。
提供了示例实施例,以便本公开将会变得详尽,并且将会向本领域技术人员充分地传达其范围。阐述了众多的特定细节如特定部件、装置和方法的例子,以提供对本公开的实施例的详尽理解。对于本领域技术人员而言将会明显的是,不需要使用特定的细节,示例实施例可以用许多不同的形式来实施,它们都不应当被解释为限制本公开的范围。在某些示例实施例中,没有详细地描述众所周知的过程、众所周知的结构和众所周知的技术。
本公开所涉及的UE(User Equipment,用户设备)包括但不限于移动终端、计算机、车载设备等具有无线通信功能的终端。进一步,本公开所涉及的UE还可以是UE本身或其中的部件如芯片。此外,本公开中所涉及的基站可以例如是eNB(evolution Node Base Station,演进节点基站)或者是eNB中的部件如芯片。
下面首先简要地介绍发明人已知的OTDOA(Observed Time Difference Of Arrival,观测到达时间差)技术,这不一定是现有技术。
OTDOA定位是在LTE(Long Term Evolution,长期演进)Rel-9中定义的一种下行定位方式。在OTDOA中,UE(User Equipment,用户设备)测量多个基站的参考信号的TOA(Time of Arrival,到达时间),并计算邻小区与参考小区的到达时间差。从几何上看,每个相邻小区与参考小区的到达时间差都会在二维平面上得出一条双曲线。那么,通过至少测量三个基站的参考信号的TOA,就可以得到两条双曲线,从而得出UE在二维坐标下的位置(经纬度)。
OTDOA是基于UE所观测到的对邻小区及服务小区参考信号时间差来进行的,这被称作RSTD(Reference Signal Time Difference,参考信号时间差)。
然而,通常邻小区发送的下行信号对于不在其服务范围内的UE而言“可听性”较差,会严重影响OTDOA的定位精度及定位成功率。
例如,邻小区的同步信号(如PSS(Primary Synchronization Signal,主同步信号)或SSS(Secondary Synchronization Signal,辅同步信号))或可被利用进行测量,然而UE很难检测到足够的邻小区来进行精确的定位。
因此,为了增加UE检测到邻小区的概率,使OTDOA获得较好的定位可靠性,LTE Rel-9中专门定义了PRS(Positioning Reference Signal,定位参考信号)。
PRS与LTE Rel-8中定义的CRS(Cell-specific reference signal,小区特定参考信号)有很多相似之处。PRS使用伪随机的QPSK(Quadrature Phase Shift Keying,正交相移键控)序列,并通过时间和频率的错开映射成对角状,来避免与CRS的碰撞。PRS信号只能在天线的6端口发射,并且不能被映射到被PBCH(Physical Broadcast Channel,物理广播信道)、PSS和SSS占用的资源块上。PRS的带宽定义为15kHz。
下行EPRE(Energy Per Resource Element,每资源块能量)在PRS的带宽上保持为常数。用功率补偿(Power Offset)表示PRS与CRS发射功率差值,用来调节PRS在每个资源块上的发射功率。
OTDOA定位方法的核心网络元素是LS(Location Server,定位服务器)。在CP(Control Plane,控制平面)定位中,定位服务器扮演E-SMLC (Evolved Serving Mobile Location Centre,演进服务移动定位中心)的角色;而在UP(User Plane,用户平面)定位中,定位服务器则相当于SUPL(Secure User Plane Location,安全用户平面定位)SLP(SUPL Location Platform,SUPL定位平台)。
GMLC(Gateway Mobile Location Center,网关移动定位中心)是外部客户端访问控制平面定位的第一个节点。它在进行登记和授权之后,向MME(Mobility Management Entity,移动管理实体)发送定位请求并从MME接收最终定位结果估计。
定位服务器向UE发送定位辅助数据,并且UE上报RSTD测量结果给定位服务器,使其完成对终端设备的OTDOA定位。定位服务器还可以计算(UE辅助)或者验证(基于UE)最终位置估计。
在控制平面方案中,MME接收来自另一实体(如GMLC、UE)的关于特定UE的定位服务请求,或者MME自身发起针对特定UE的定位初始化工作。之后MME向E-SMLC发送定位服务请求,并且E-SMLC处理定位服务请求,并把OTDOA定位辅助数据传送给目标UE。然后E-SMLC将定位服务结果信息返回给MME。如果不是MME发起的定位服务请求,则MME将定位结果发送给发起请求的实体。
SLP是负责用户平面定位的SUPL实体,并且SLP通过数据承载在用户平面直接与UE进行通信。SLP在OTDOA定位流程中的功能与E-SMLC相同。
定位服务器(E-SMLC或SUPL SLP)之间的定位协议流程通常包括三部分:承载传送;辅助数据传送;以及定位信息传送。
上面已介绍了OTDOA技术。接下来简要地介绍发明人已知的小小区开启/关闭技术,这不一定是现有技术。
由于小小区的密集部署,小区间的同步信号和参考信号将受到严重的干扰。并且由于小小区开启/关闭技术的提出,需要一种更加有效的小区发现机制来减少小小区开启/关闭的转换时间,因此3GPP提出设计一种新的参考信号——DRS(Discovery Reference Signal,发现参考信号)。与此同时,DRS的提出将有助于密集小小区间负载均衡、干扰协调、RRM(Radio Resource Management,无线资源管理)测量以及小区识别等。由此可以看出,DRS的提出将会带来一系列收益。
DRS信号主要包括PSS/SSS以及CRS,CSI-RS(channel state  information reference signal,信道状态信息参考信号)是否被包含在DRS里取决于:
如果配置基于CSI-RS的RSRP(Reference Signal Receiving Power,参考信号接收功率)/RSRQ(Reference Signal Receiving Quality,参考信号接收质量)测量上报,则DRS包含PSS/SSS、CRS以及CSI-RS;
如果配置基于CRS的RSRP/RSRQ测量上报,则DRS包含PSS/SSS以及CRS;以及
如果两种上报都被配置,则DRS包含PSS/SSS、CRS以及CSI-RS。
其次,对于同频和异频测量,如果UE在一个给定的频率内只配置了基于DRS测量上报,而且在此频率内UE没有被配置给任何激活的服务小区,那么在DMTC(DRS measurement timing configuration,DRS测量时序配置)持续时间内,UE将只关注DRS,而忽视其他任何信号和信道的存在。
另外,DRS只能在下行子帧或者子帧的DwPTS(Downlink Pilot Time Slot,下行导频时隙)区域传输。DRS由N(N<=5)个连续子帧组合而成,包括一个PSS/SSS,并且CRS跟SSS处于同一子帧。一个DRS可以有多种CSI-RS的RE配置,CSI-RS子帧相对于SSS子帧有一定偏移。DRS每隔M毫秒传输一次,M可取的值包括40、80和160。
对于DRS测量过程,主要是UE根据基站发送的DMTC来进行测量。DMTC的具体配置如下:
为UE在每一个频率上配置一个DMTC,其偏移的基准时间为主小区的时间;
对于DMTC的周期“M”,备选值为[40,80,160];对于DMTC的偏移“L”,备选值为[0,1,…,M-1];
除了周期与偏移,UE还将被RRC(Radio Resource Control,无线资源控制)告知如下频率:测量带宽,UE可认为这个测量带宽与系统带宽相同;以及
DMTC的长度规定为6毫秒。
为了兼容传统的CRS测量,DRS与CRS测量配置可被同时配置于UE,UE可以并行地执行两种测量。在RAN2最新的讨论中,基于CRS与基于DRS的测量可直接相比较或经过一定转化变得可比较(视DRS 信号中是否包括CSI-RS而定)。
另外,如果DRS测量配置信号被发送,UE将持续执行DRS测量,而不论自己是否处于DRX(Discontinuous Reception,非连续接收)。DRS探测与RRM测量过程可被配置于在开启或者休眠的小区中的UE。
上面已介绍了小小区开启/关闭技术的相关内容。接下来介绍本公开将要面对的技术问题。
通过调研可知,使用OTDOA技术,UE首先需要获取定位服务器提供的邻小区列表信息(Neighbour Cell Info list),然后UE测量列表中小区与服务小区的RSTD,进而上报给定位服务器以实现UE定位。然而,3GPP此前又提出小小区的on/off技术,来达到节约能源以及减少小小区间的干扰的目的。因此,当室内需要定位的UE较多时,UE所需的合适测量基站很可能处在off状态。由于目前标准中,off状态的基站不会发送PRS,使得UE无法进行测量。如果小区基站被作为优先测量的小区却进入off状态,则将会使部分UE定位准确性大大降低,甚至导致无法使用OTDOA进行定位。
针对这种情况,本公开希望利用DRS作为参考信号来测量RSTD。然而,将DRS作为参考信号将会带来一些问题。
例如,利用传统DRS进行测量时,可能会造成邻小区的DRS由于信噪比过低而造成测量精度不准确或者无法测量的情况。因此需要对DRS进行增强,使得基于DRS的OTDOA技术能达到更好的测量精度。
其次,由于DRS的周期(40、80或160ms)相对于PRS的周期(160、320、640或1280ms)而言较短,如果对每个DRS都增强,可能造成DRS之间的干扰增强,反而降低了DRS的可测量性。因此较佳地,需要为增强型DRS引入协调机制,以减少DRS之间的干扰,提高测量的准确性。
同时,增强型DRS的发送时机也值得研究,因为在某些情况下,不发送增强型DRS就能达到较好的RSTD测量结果。并且,不发送增强型DRS也有利于能源的节约。因此,较佳地,还可以设计增强型DRS的开启和关闭条件。
当使用DRS作为RSTD测量的参考信号时,网络侧需要向UE提供相应的辅助信息以保证UE的测量。
此外,DRS本身还要作为基于小区发现的测量信号,增强的DRS信号可能会对传统的DRS信号产生影响,例如导致基于小区发现的测量 结果不准确,产生错误的事件上报。因此,较佳地,为了使测得的增强型DRS信号与传统的DRS信号的信号强度(RSRP)可比,还可以对增强型DRS信号测量结果进行校正。
本公开针对室内定位场景,提出了一种基于增强型DRS(eDRS)的OTDOA室内定位技术方案,旨在解决小小区开关技术和OTDOA技术的兼容性问题,以实现更好的室内定位效果。
图1图示了根据本公开的实施例的无线通信系统中的电子设备100的结构。如图1所示,电子设备100可以包括处理电路110。需要说明的是,电子设备100既可以包括一个处理电路110,也可以包括多个处理电路110。另外,电子设备100还可以包括通信单元120等。
进一步,处理电路110可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
例如,如图1所示,处理电路110可以包括确定单元111、测量单元112和生成单元113。
确定单元111可以确定用于UE的定位测量辅助数据。这里,辅助数据可以包括至少一个休眠小小区基站发送的eDRS的配置信息。
测量单元112可以基于辅助数据对至少一个休眠小小区基站发送的eDRS进行定位测量。
生成单元113可以基于对至少一个休眠小小区基站发送的eDRS进行定位测量的结果生成定位信息,以对UE进行定位。这里,eDRS比DRS具有更大的发射功率,从而保证UE能够检测到足够的邻小区用以进行定位。
使用根据本公开的实施例的电子设备100,可以基于对休眠小小区基站发送的eDRS进行定位测量的结果生成定位信息,以对UE进行定位。这样一来,即使off状态的基站不发送PRS,也可以利用休眠小小区基站发送的eDRS来进行定位,从而在不需大幅影响现有系统工作模式的情况下,解决了小小区开关技术和OTDOA技术的兼容性问题,并且实现了更好的室内定位效果。可以理解,在一些示例中eDRS与DRS承载的信息是相同的,因而可以将eDRS视为是特定状态下(例如以较高功率传输)的DRS,例如传统的DRS可以表示为第一状态的DRS,而eDRS可以表示为第二状态的DRS,对eDRS/DRS的转换则可以理解为DRS的发送状 态转换。为了表述简练,在下文中DRS泛指传统的DRS。
根据本公开的优选实施例,辅助数据可以包括第一休眠小小区基站发送的eDRS的配置信息以及其他两个小区基站发送的用于定位测量的参考信号的配置信息。进一步,处理电路110(例如测量单元112)可以基于辅助数据对第一休眠小小区基站发送的eDRS以及其他两个小区基站发送的参考信号进行定位测量,并且(例如生成单元113)可以根据测量结果计算RSTD以生成定位信息。
根据本公开的优选实施例,上面提到的其他两个小区基站以及第一休眠小小区基站中的一个可以是定位参考小区基站,而余下的两个可以是参与定位的邻小区基站。进一步,处理电路110(例如确定单元111)可以读取辅助数据中邻小区基站的参考信号与参考小区基站的参考信号之间的偏移信息,并且(例如测量单元112)可以基于偏移信息进行测量。
根据本公开的优选实施例,上面提到的其他两个小区基站中的至少一个为活动小区基站,并且该活动小区基站的参考信号为PRS。该活动小区基站既可以是小小区基站,也可以是宏小区基站。进一步,处理电路110(例如生成单元113)可以基于eDRS和PRS的测量结果来计算RSTD。
根据本公开的优选实施例,eDRS的配置信息可以包括eDRS的功率配置、带宽、周期、时间偏移以及静默信息中至少之一。这里,eDRS的周期可以为DRS周期的大于1的整数倍。上述配置信息在一些示例中由基站等网络设备提供给电子设备100。而例如在eDRS的功率配置、带宽、周期、时间偏移以及静默信息当中的一个或多个是系统预设(例如设置具体数值或确定规则)的情况下,电子设备100读取预存的设定以获取这些配置信息。这里,eDRS的功率配置例如可以是功率大小或者相对于DRS的功率补偿等。
根据本公开的优选实施例,eDRS的配置信息还可以包括用于发送eDRS的至少一个休眠小小区基站的小区基站标识信息、频率信息、天线端口配置信息以及循环前缀长度信息中至少之一。
根据本公开的实施例,优选地或者代替地,处理电路110(例如测量单元112)可以对UE所处的无线电环境中的DRS进行无线资源管理测量,以发现邻近的休眠小小区基站。本领域技术人员可以意识到的是,处理电路110可以仅具有上面提到的对UE进行定位的功能,也可以仅具有这里提到的对邻近的休眠小小区基站进行发现的功能,或者也可以具有这 两个功能。
在电子设备100需要基于DRS对邻近的休眠小小区基站进行发现的情况下,eDRS的引入可能会影响电子设备100的小小区发现结果。因此,处理电路110(例如识别单元,未示出)可以基于测量到的信号强度识别eDRS,并且(例如校正单元,未示出)可以响应于eDRS的识别对小小区发现进行校正。具体地,处理电路110可以将测量到的信号强度与预设阈值相比较,以识别eDRS;或者,处理电路110可以将测量到的信号强度与当前测量到的其他小区DRS的信号强度相比较,在差距超出预定范围的情况下,识别为eDRS;又或者,处理电路110可以将测量到的信号强度与DRS的历史信号强度(例如均值)比较以识别eDRS。
根据本公开的优选实施例,处理电路110(例如校正单元)对小小区发现进行校正可以包括在确定无线资源管理测量结果时忽略eDRS。代替地,也可以在确定无线资源管理测量结果时使用eDRS之前的相邻一个DRS来代替eDRS。另外,也可以从eDRS的接收功率中减去eDRS与DRS的发射功率的差值。
需要说明的是,根据本公开的实施例,如上所述的无线通信系统可以是LTE-A(Long Term Evolution-Advanced,高级长期演进)蜂窝通信系统,电子设备100可以是无线通信系统中的UE(例如上述被定位的UE),并且电子设备100还可以包括通信单元120等。通信单元120例如可以通过空中接口从网络设备接收定位测量辅助数据以及/或者向网络设备发送定位信息。
上面描述了无线通信系统中的UE侧的电子设备。接下来详细地描述无线通信系统中的基站侧的电子设备。图2图示了根据本公开的实施例的无线通信系统中的电子设备200的结构。
如图2所示,电子设备200可以包括处理电路210。需要说明的是,电子设备200既可以包括一个处理电路210,也可以包括多个处理电路210。另外,电子设备200还可以包括通信单元220等。
如上面提到的那样,同样地,处理电路210也可以包括各种分立的功能单元以执行各种不同的功能和/或操作。这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
如图2所示,处理电路210可以包括确定单元211和功率控制单元212。
确定单元211可以确定来自控制设备的eDRS的发射配置信息。
功率控制单元212可以基于配置信息对小小区基站管理的小小区的DRS进行功率控制,以生成eDRS。这里,eDRS比DRS具有更大的发射功率。
优选地,上面提到的配置信息可以包括发射功率的增强值指示以及发射周期。这里,发射功率的增强值指示可以包括发射功率本身,或者仅仅是多出来的增强值(例如相对于DRS的功率补偿)。进一步,处理电路210(例如功率控制单元212)可以基于发射周期对DRS的发射功率进行增强,以生成具有该发射周期的eDRS信号。
优选地,eDRS的发射周期可以是DRS的发射周期的n倍,其中n为大于1的整数。借此,可以满足小小区发现的需求,同时减小eDRS对其他DRS的干扰并在一定程度上节省能源。
优选地,上面提到的配置信息还可以包括时间偏移。例如,为UE在每个频率上配置一个eDRS测量时间配置(eDMTC),周期为DMTC的大于1的整数倍,时间偏移指示从第几个DMTC开始发送eDRS。进一步,处理电路210(例如功率控制单元212)可以基于时间偏移对每一eDMTC周期内的相应DRS的发射功率进行增强。借此,可以使得同一个DMTC内有尽量少的基站发送eDRS而降低干扰。
需要说明的是,根据本公开的实施例,如上所述的无线通信系统可以是LTE-A蜂窝通信系统,电子设备200可以是无线通信系统中的小小区基站(例如发射eDRS的小小区基站),并且电子设备200还可以包括收发机(例如通信单元220)以通过空中接口发射eDRS。
上面描述了无线通信系统中的用于执行eDRS的配置/发射的基站侧的电子设备。接下来详细地描述无线通信系统中的为例如电子设备200提供中央控制的电子设备。图3图示了根据本公开的另一实施例的无线通信系统中的电子设备300的结构。
如图3所示,电子设备300可以包括处理电路310。需要说明的是,电子设备300既可以包括一个处理电路310,也可以包括多个处理电路310。另外,电子设备300还可以包括通信单元320等。
如上面提到的那样,同样地,处理电路310也可以包括各种分立的功能单元以执行各种不同的功能和/或操作。这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
如图3所示,处理电路310可以包括确定单元311和生成单元312。
基于预定地理区域之内的待定位的UE的数目与位置中至少之一,确定单元311可以确定是否启动预定地理区域之内的至少一个休眠小小区基站发送eDRS,以对UE进行定位。
生成单元312可以基于确定结果生成用于相应休眠小小区基站的eDRS的发射配置信息。这里,eDRS比DRS具有更大的发射功率。
优选地,上面提到的预定地理区域之内的相邻的休眠小小区基站发送eDRS的时间可以是彼此不同的。
优选地,基于上面提到的预定地理区域之内的小小区基站之间的eDRS和DRS的干扰状况,处理电路310(例如确定单元311)可以确定是否停止预定地理区域之内的至少一个休眠小小区基站发送eDRS。
优选地,基于上面提到的预定地理区域之内的休眠小小区基站的数目和每个休眠小小区基站的覆盖范围中的至少一个,处理电路310(例如生成单元312)可以为预定地理区域之内的每个休眠小小区基站配置eDRS的发射参数。
优选地,上面提到的eDRS的发射参数可以包括发射功率。进一步,处理电路310(例如生成单元312)可以将eDRS的发射功率相对于DRS的发射功率的增强值配置为随着预定地理区域之内的休眠小小区基站的数目的增加而降低,并且/或者随着休眠小小区基站的覆盖范围的增加而增加。
优选地,上面提到的eDRS的发射参数可以包括发射周期。进一步,处理电路310(例如生成单元312)可以将发射周期配置为随着预定地理区域之内的休眠小小区基站的数目的增加而增加(亦即延长)。
优选地,eDRS的发射周期可以是DRS的发射周期的n倍,其中n为大于1的整数。
优选地,上面提到的eDRS的发射参数可以进一步包括发射周期之内的发射模式。进一步,处理电路310(例如生成单元312)可以为预定地理区域之内的不同休眠小小区基站配置具有不同时间偏移的不同发射模式。
需要说明的是,根据本公开的实施例,如上所述的无线通信系统可以是LTE-A蜂窝通信系统,电子设备300可以是无线通信系统中的宏基 站,上面提到的预定地理区域可以是宏基站的覆盖范围,并且电子设备300还可以包括收发机(例如通信单元320),以向相应休眠小小区基站发送eDRS的发射配置信息。代替地,电子设备300也可以是核心网中的定位服务器。
上面结合图1至3概括地描述了根据本公开的实施例的无线通信系统中的电子设备。接下来结合具体的实施例来进一步详细地描述本公开的技术方案。
首先来描述休眠小小区基站发送eDRS的开关条件。
例如,每个其覆盖范围(亦即管理范围)下有小小区基站的宏基站(或者定位服务器)可以维护一个计数器,该计数器维护一个二维数(p,b)。p统计一个预定义长度的时间窗内宏基站覆盖范围内所有需要定位的UE的数目(包括宏基站覆盖范围内被小小区服务的UE)。b表征eDRS的发送与否。当b为1时,该宏基站覆盖范围下的小小区发送eDRS。当b为0时,该宏基站覆盖范围下的小小区不发送eDRS。
就开启条件而言,在本公开的一个示例中,休眠基站发送eDRS的进入条件是基于需要定位的UE数目。
当p大于一个预定义的上限ph且b为0时,宏基站(或者定位服务器)将b修改为1,且通过X2接口(S1接口)向其覆盖范围内的所有小小区基站发送eDRS配置信息。该宏基站覆盖范围下的休眠小小区基站在收到该信令的下一个信号周期开始发送eDRS信号,其中,该宏基站可以根据网络部署情况设置eDRS的周期。
就关闭条件而言,休眠小小区基站退出发送eDRS状态的退出条件主要分为以下两种:
p低于一个预定义的下限pl且b为1;以及
小区间的干扰状况大且b为1。
其中,小区间的干扰状况可以表述为:小小区基站通过UE的DRS测量上报邻小区DRS的干扰信息。若宏小区覆盖范围内在一段时间内有大量UE向基站上报测量到DRS有较大干扰,该宏小区覆盖范围下的小小区基站应当停止发送eDRS信号,改为发送DRS信号。
在本公开的另一个示例中,休眠基站发送eDRS的进入条件是基于需要定位的UE的位置。例如,首先可以确定待定位的UE的粗略位置。 具体地,例如可以根据UE上行方向到达角、时间提前量等现有技术确定UE的大致位置。然后,可以确定在该UE的邻小区中具有较高优先级的小区是否处于休眠状态。如果是,则可以向相应休眠小区发送eDRS配置信息以要求其发送eDRS以供定位测量。例如在完成该UE的定位后(例如预定时段后),可以通知休眠小区退出发送eDRS状态。
接下来详细地描述eDRS配置方法。
本公开提出的eDRS是对原有的DRS在室内定位场景下的增强,需要对eDRS的周期、测量等信息进行重新配置。
eDRS的特征是对DRS进行功率的周期性增强。其中,例如功率增强的数值大小由宏基站(或者定位服务器)根据开启eDRS的小区数量及覆盖范围等因素进行粗调整,然后发送给相应的小区,各个小区再根据其覆盖范围大小进行微调整。覆盖范围越大,增强的功率越大。粗调整考虑的因素包括:
开启eDRS的小区的数量,开启eDRS小区的数量越多,增强的功率越小,小区数量与增强功率可成以e为底的对数关系;以及
宏小区覆盖范围下的待定位UE数量,UE数量越多,增强的功率越大。
eDRS的发送周期可设为DRS发送周期的n倍(n为大于1的整数),亦由宏基站(或者定位服务器)根据实际情况确定,然后通过例如X2信令发送给相对应的小区。考虑的因素包括:
当网络部署密集,开启eDRS的小区增多时,n可相应增大,以减少eDRS对其他信号的干扰。
对DRS进行增强之后,可导致相邻小区之间的干扰增强,特别是当两个相邻的小区在相同时刻发送eDRS。故本公开设计了一种协调机制,将相邻小区之间的eDRS在时间上错开,以减少干扰。
当eDRS的发送周期为DRS发送周期的n倍时,可以有n+1种相互不冲突的配置模式。为了方便表述,本文将发送DRS的时刻记为“0”,发送eDRS的时候记为“1”。这样一来,n=4的配置模式就可以包括“0000”、“0001”、“0010”、“0100”和“1000”。可以根据“1”在配置模式中所处的位置记录不同的模式。当“1”在左数第一位时模式记为1,以此类推,当1在左数第n位时模式记为n,当配置模式中不出现“1”时记为0。
当一个小小区簇中的m个小区需要配置eDRS发送模式时,由定位服务器根据每个小区的优先级给需要配置eDRS的每个小区发送特定的eDRS配置模式。定位服务器可以维护一个列表,根据在一个eDRS周期中每个小区出现在neighbour cell info list前三个小区的数量x来统计每个小区的优先级。每个小区x的值越大,其优先级越高;当小区的x相同时,小区的PCI越大优先级越高。
以下分两种情况讨论eDRS的配置模式:
当m≤n时,对小小区簇中的小区的优先级从高到低依次分配:1,2,…,m;以及
当m>n时,对各个小区的优先级从高到低依次分配1,2,…,n,0,0,…。其中0的个数为m-n。记数组a={1,2,…,n,0,0,…},每过一个eDRS周期时,对a右移m-n位,以保证每个小区都能够发送eDRS。
宏基站(或者定位服务器)发送m、n及每个小区的eDRS配置模式给每个小区,则每个小区可根据以上规则计算出其每个周期的eDRS发送模式。
图4示出了当m=3、n=3时的eDRS配置模式。如图4所示,相邻的小小区基站1、小小区基站2和小小区基站3之间的eDRS发射在时间上被错开,从而减少了干扰。
eDRS测量配置可以由测量配置表格所表示。
例如,有关eDRS的OTDOA辅助数据包含两个元素:
1.OTDOA Reference Cell Info(OTDOA参考小区信息):这个元素包含参考小区的参数,OTDOA邻小区列表中的参数根据此元素进行设置。
2.OTDOA Neighbour Cell Info(OTDOA邻小区信息):这个元素包含每个邻小区的参数,并且按照测量优先权的降序排列,顺序由宏基站或定位服务器确定,UE按照网络侧提供的顺序进行RSTD的测量。
根据本发明的一个设计示例,有关eDRS的OTDOA Reference Cell Info和OTDOA Neighbour Cell Info包含在3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)标准的“ProvideAssistanceData”消息中,而“ProvideAssistanceData”消息和“RequestAssistanceData”消息包含在”LPP message”中。根据3GPP TS 24.171,“LPP messages”由“Uplink/Downlink Generic NAS Transport message”发送,即“LPP messages”包含在NAS协议中。
OTDOA Reference Cell Info元素包含参考小区的标识、eDRS配置信息等,如表1所示,其中,“M”表示该元素在测量信息中必然出现,“O”表示该元素在测量信息中出现与否是可选的,而“C”表示该元素在一定条件下才在测量信息中出现,条件在该元素的定义中描述。
表1 OTDOA参考小区辅助信息
Figure PCTCN2016080336-appb-000001
OTDOA Neighbour Cell Info元素包含每个邻小区的标识、eDRS配置信息、RSTD测量窗等,如表2所示。邻小区信息列表中最多可包含72个小区的信息。
表2 OTDOA邻小区辅助信息
Figure PCTCN2016080336-appb-000002
Figure PCTCN2016080336-appb-000003
Figure PCTCN2016080336-appb-000004
eDRS具体参数如表4所示。
表4 eDRS-Info
Figure PCTCN2016080336-appb-000005
基站发送eDRS时,UE会对其进行测量。测量结果主要用于两种用途:用于OTDOA定位的测量和用于小小区发现的测量。下面将对这两个测量事件进行讨论。
在用于OTDOA定位的情况下,当定位服务器通过基站给UE发送的OTDOA-NeighbourCellInfo列表中的小区如果在发送eDRS,则列表中的辅助信息将包括DRS子帧偏移和eDRS Info。UE将根据这些信息测量对应小区的eDRS信号。对于eDRS与eDRS、PRS与eDRS之间的RSTD计算,UE将根据检测到的两个定位信号(eDRS与eDRS或者PRS与eDRS)之间的时间差,作为RSTD值以供定位服务器计算。例如在定位信号不同步的情况下,服务器记录有各个定位信号的配置发射时间,对UE上报的RSTD值进行处理而获得实际的接收时间差。在一个示例中, 两个定位信号被配置为同步发送的,则UE将根据检测到的两个定位信号之间的时间差减去1ms的整数倍,使得时间差小于1ms,因为在室内场景下,两个定位信号之间的时间差不可能大于1ms(即距离不可能大于300m)。同时,可以将测量结果(RSTD)通过服务基站上报给定位服务器。
在用于小小区发现的情况下,当UE测量参考信号时,eDRS信号必然会对DRS信号产生影响。由于eDRS功率比传统的DRS信号大一定偏移值,为了使得测得的eDRS与DRS的信号强度可比,不对小小区发现产生影响,在UE测量的参考信号进入L3滤波之前,需要在UE侧检测出eDRS信号,并对eDRS检测结果进行校正。
当UE检测出某个小区两个连续DRS的RSRP测量结果偏差大于一定阈值ΔP时,可以认为UE检测到了eDRS信号,校正eDRS的触发事件Aj将被触发。UE将对较大的那个DRS测量结果给予校正。其中阈值ΔP与该小区eDRS和DRS的功率之差呈正相关。
当校正eDRS的触发事件Aj被触发时,有以下方法对eDRS检测结果进行校正:
忽略该eDRS信号的测量结果,不作为L3滤波器的输入;
以上一个未增强的DRS样本值作为该时刻样本值的输入;或者
减去该时刻增加的DRS信号功率之后,作为L3滤波器的输入。
下面进一步结合图5至7来详细地描述根据本公开的实施例的无线通信系统中的基站侧和用户侧之间的信号交互流程。
图5是图示根据本公开的实施例的用于在无线通信系统中进行无线通信的方法的序列图。在图5中以定位服务器为控制中心。
如图5所示,首先,定位服务器可以维护计数器(p,b)周期性统计,以决定是否开启eDRS。
接下来,定位服务器可以要求宏基站提供eDRS配置辅助信息。
在接收到来自定位服务器的请求之后,宏基站可以向定位服务器提供其eDRS配置辅助信息。
接下来,定位服务器可以根据on/off小区数量、小区覆盖范围、单个小小区内需要定位的UE的数量等条件来配置eDRS信息。
接下来,定位服务器可以发送eDRS功率、周期及每个小区的eDRS配置信息给对应的小小区基站。
然后,小小区基站可以根据配置发送eDRS信号。
其间,当UE产生定位需求时,可以向其当前服务基站,例如宏基站要求定位辅助数据信号(数据形式)。宏基站转而可以向定位服务器要求定位辅助数据信号。需要说明的是,定位需求既可能是UE发起的,也可能是UE的服务基站或定位服务器本身发起的。如果是网络侧发起的,则可以不需要UE请求而直接由网络侧发送辅助数据,并且网络侧在计算出UE位置后也不一定需要向UE反馈具体定位结果。
接下来,定位服务器可以向宏基站发送定位辅助数据。宏基站转而可以向UE发送定位辅助数据(数据形式)。
然后,UE可以测量eDRS、PRS并计算出RSTD值。
接下来,UE可以向宏基站发送RSTD值(数据形式)。宏基站转而可以向定位服务器发送RSTD值。
接下来,定位服务器可以计算出UE位置,然后将计算出的UE位置信息发送给宏基站。宏基站转而可以将UE位置信息发送给相应的UE(数据形式)。这样一来就实现了UE定位。
另外,定位服务器还可以根据(p,b)的值决定停止发送eDRS信号。在这之后,定位服务器可以向小小区基站发送停止发送eDRS信号信令。在接收到该信令之后,小小区基站可以停止发送eDRS。
图6是图示根据本公开的另一实施例的用于在无线通信系统中进行无线通信的方法的序列图。在图6中以宏基站为控制中心。
如图6所示,在UE和小小区基站之间以RRC信令进行交互,而在小小区基站和宏基站之间则以X2接口进行交互。
首先,宏基站可以维护计数器(p,b)周期性统计,以决定是否开启eDRS。
接下来,宏基站可以根据on/off小区数量、小区覆盖范围、单个小小区内需要定位的UE的数量等条件来配置eDRS信息。
接下来,宏基站可以发送eDRS功率、周期及每个小区的eDRS配置信息给对应的小小区基站。
然后,小小区基站可以根据配置发送eDRS信号。
其间,当UE产生定位需求时,可以向宏基站要求定位辅助数据信号(RRC信令形式)。
接下来,宏基站可以向UE发送定位辅助数据(RRC信令形式)。
然后,UE可以测量eDRS、PRS并计算出RSTD值。
接下来,UE可以向宏基站发送RSTD值。
接下来,宏基站可以计算出UE位置,然后将计算出的UE位置信息(RRC信令形式)发送给相应的UE。这样一来就实现了UE定位。
另外,宏基站还可以根据(p,b)的值决定停止发送eDRS信号。在这之后,宏基站可以向小小区基站发送停止发送eDRS信号信令。在接收到该信令之后,小小区基站可以停止发送eDRS。
图7是图示根据本公开的另一实施例的用于在无线通信系统中进行无线通信的方法的序列图。在图7中以宏基站和定位服务器为混合控制中心。
如图7所示,在UE和小小区基站之间可以可选地以RRC信令或者数据形式进行交互。
首先,宏基站可以维护计数器(p,b)周期性统计,以决定是否开启eDRS。
接下来,宏基站可以向定位服务器提供其eDRS配置辅助信息。
接下来,定位服务器可以根据on/off小区数量、小区覆盖范围、单个小小区内需要定位的UE的数量等条件来配置eDRS信息。
接下来,定位服务器可以发送eDRS功率、周期及每个小区的eDRS配置信息给对应的小小区基站。
然后,小小区基站可以根据配置发送eDRS信号。
其间,当UE产生定位需求时,可以向宏基站要求定位辅助数据信号。宏基站转而可以向定位服务器要求定位辅助数据信号。
接下来,定位服务器可以向宏基站发送定位辅助数据。宏基站转而可以向UE发送定位辅助数据。
然后,UE可以测量eDRS、PRS并计算出RSTD值。
接下来,UE可以向宏基站发送RSTD值。宏基站转而可以向定位服务器发送RSTD值。
接下来,定位服务器可以计算出UE位置,然后将计算出的UE位置信息发送给宏基站。宏基站转而可以将UE位置信息发送给相应的UE。这样一来就实现了UE定位。
另外,定位服务器还可以根据(p,b)的值决定停止发送eDRS信号。在这之后,定位服务器可以向小小区基站发送停止发送eDRS信号信令。在接收到该信令之后,小小区基站可以停止发送eDRS。
接下来参考图8来描述根据本公开的实施例的用于在无线通信系统中进行无线通信的方法。
如图8所示,在步骤S810中,确定用于UE的定位测量辅助数据,所述辅助数据包括至少一个休眠小小区基站发送的eDRS的配置信息。
然后,在步骤S820中,基于辅助数据对至少一个休眠小小区基站发送的eDRS进行定位测量。
最后,在步骤S830中,基于对至少一个休眠小小区基站发送的eDRS进行定位测量的结果生成定位信息,以对UE进行定位。这里,eDRS比DRS具有更大的发射功率。
优选地,辅助数据可以包括第一休眠小小区基站发送的eDRS的配置信息以及其他两个小区基站发送的用于定位测量的参考信号的配置信息。进一步,该方法还可以包括:基于辅助数据对第一休眠小小区基站发送的eDRS以及其他两个小区基站发送的参考信号进行定位测量,并且根据测量结果计算RSTD以生成定位信息。
优选地,上面提到的其他两个小区基站以及第一休眠小小区基站中的一个可以是定位参考小区基站,余下的两个可以是参与定位的邻小区基站。进一步,该方法还可以包括:读取辅助数据中邻小区基站的参考信号与参考小区基站的参考信号之间的偏移信息,并且基于偏移信息进行测量。
优选地,上面提到的其他两个小区基站中的至少一个可以是活动小区基站,该活动小区基站的参考信号可以是PRS。进一步,该方法还可以包括:基于eDRS和PRS的测量结果来计算RSTD。
优选地,eDRS的配置信息可以包括eDRS的功率配置、带宽、周期、 时间偏移以及静默信息中至少之一,其中,eDRS的周期为DRS周期的大于1的整数倍。
优选地,eDRS的配置信息还可以包括至少一个休眠小小区基站的小区基站标识信息、频率信息、天线端口配置信息以及循环前缀长度信息中至少之一。
优选地,该方法还可以包括:对用户设备所处的无线电环境中的DRS进行无线资源管理测量,以发现邻近的休眠小小区基站;以及基于测量到的信号强度识别eDRS,并响应于eDRS的识别对小小区发现进行校正。
优选地,对小小区发现进行校正可以包括在确定无线资源管理测量结果时:忽略eDRS;使用eDRS之前的相邻一个DRS来代替eDRS;或者从eDRS的接收功率中减去eDRS与DRS的发射功率的差值。
另一方面,根据本公开的另一实施例的用于在无线通信系统中进行无线通信的方法可以包括:确定来自控制设备的eDRS的发射配置信息;以及基于配置信息对小小区基站管理的小小区的DRS进行功率控制,以生成eDRS,其中,eDRS比DRS具有更大的发射功率。
优选地,配置信息可以包括发射功率的增强值指示以及发射周期。进一步,该方法还可以包括:基于发射周期对DRS的发射功率进行增强,以生成具有发射周期的eDRS信号。
优选地,eDRS的发射周期可以是DRS的发射周期的n倍,其中n为大于1的整数。
优选地,配置信息还可以包括时间偏移。进一步,该方法还可以包括:基于时间偏移对每一发射周期内的相应DRS的发射功率进行增强。
另一方面,根据本公开的另一实施例的用于在无线通信系统中进行无线通信的方法可以包括:基于预定地理区域之内的待定位的用户设备的数目与位置中至少之一,确定是否启动预定地理区域之内的至少一个休眠小小区基站发送eDRS,以对用户设备进行定位;以及基于确定结果生成用于相应休眠小小区基站的eDRS的发射配置信息,其中,eDRS比DRS具有更大的发射功率。
优选地,预定地理区域之内的相邻的休眠小小区基站发送eDRS的时间可以彼此不同。
优选地,该方法可以进一步包括:基于预定地理区域之内的小小区 基站之间的eDRS和DRS的干扰状况,确定是否停止预定地理区域之内的至少一个休眠小小区基站发送eDRS。
优选地,该方法可以进一步包括:基于预定地理区域之内的休眠小小区基站的数目和每个休眠小小区基站的覆盖范围中的至少一个,为预定地理区域之内的每个休眠小小区基站配置eDRS的发射参数。
优选地,eDRS的发射参数可以包括发射功率。进一步,该方法还可以包括:将eDRS的发射功率相对于DRS的发射功率的增强值配置为随着预定地理区域之内的休眠小小区基站的数目的增加而降低,并且/或者随着休眠小小区基站的覆盖范围的增加而增加。
优选地,eDRS的发射参数可以包括发射周期。进一步,该方法还可以包括:将发射周期配置为随着预定地理区域之内的休眠小小区基站的数目的增加而增加。
优选地,eDRS的发射周期可以是DRS的发射周期的n倍,其中n为大于1的整数。
优选地,eDRS的发射参数可以进一步包括发射周期之内的发射模式。进一步,该方法还可以包括:为预定地理区域之内的不同休眠小小区基站配置具有不同时间偏移的不同发射模式。
根据本公开的实施例的用于在无线通信系统中进行无线通信的方法的上述各个步骤的各种具体实施方式前面已经作过详细描述,在此不再重复说明。
本公开的技术能够应用于各种产品。例如,本公开中提到的定位服务器可以被实现为任何类型的服务器,诸如塔式服务器、机架式服务器以及刀片式服务器。定位服务器可以为安装在服务器上的控制模块(诸如包括单个晶片的集成电路模块,以及插入到刀片式服务器的槽中的卡或刀片(blade))。
例如,本公开中提到的基站可以被实现为任何类型的演进型节点B(eNB),诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能 而作为基站工作。
例如,本公开中提到的UE可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。UE还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,UE可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
图9是示出可以应用本公开的技术的服务器900的示意性配置的示例的框图。服务器900包括处理器901、存储器902、存储装置903、网络接口904以及总线906。
处理器901可以为例如中央处理单元(CPU)或数字信号处理器(DSP),并且控制服务器900的功能。存储器902包括随机存取存储器(RAM)和只读存储器(ROM),并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。
网络接口904为用于将服务器900连接到有线通信网络705的有线通信接口。有线通信网络705可以为诸如演进分组核心网(EPC)的核心网或者诸如因特网的分组数据网络(PDN)。
总线906将处理器901、存储器902、存储装置903和网络接口904彼此连接。总线906可以包括各自具有不同速度的两个或更多个总线(诸如高速总线和低速总线)。
图10是示出可以应用本公开的技术的eNB的示意性配置的第一示例的框图。eNB 1000包括一个或多个天线1010以及基站设备1020。基站设备1020和每个天线1010可以经由RF线缆彼此连接。
天线1010中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1020发送和接收无线信号。如图10所示,eNB 1000可以包括多个天线1010。例如,多个天线1010可以与eNB 1000使用的多个频带兼容。虽然图10 示出其中eNB 1000包括多个天线1010的示例,但是eNB 1000也可以包括单个天线1010。
基站设备1020包括控制器1021、存储器1022、网络接口1023以及无线通信接口1025。
控制器1021可以为例如CPU或DSP,并且操作基站设备1020的较 高层的各种功能。例如,控制器1021根据由无线通信接口1025处理的信号中的数据来生成数据分组,并经由网络接口1023来传递所生成的分组。控制器1021可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1021可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器1022包括RAM和ROM,并且存储由控制器1021执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1023为用于将基站设备1020连接至核心网1024的通信接口。控制器1021可以经由网络接口1023而与核心网节点或另外的eNB进行通信。在此情况下,eNB 1000与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1023还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1023为无线通信接口,则与由无线通信接口1025使用的频带相比,网络接口1023可以使用较高频带用于无线通信。
无线通信接口1025支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1010来提供到位于eNB 1000的小区中的终端的无线连接。无线通信接口1025通常可以包括例如基带(BB)处理器1026和RF电路1027。BB处理器1026可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1021,BB处理器1026可以具有上述逻辑功能的一部分或全部。BB处理器1026可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1026的功能改变。该模块可以为插入到基站设备1020的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1027可以包括例如混频器、滤波器和放大器,并且经由天线1010来传送和接收无线信号。
如图10所示,无线通信接口1025可以包括多个BB处理器1026。例如,多个BB处理器1026可以与eNB 1000使用的多个频带兼容。如图10所示,无线通信接口1025可以包括多个RF电路1027。例如,多个RF电路1027可以与多个天线元件兼容。虽然图10示出其中无线通信接口1025包括多个BB处理器1026和多个RF电路1027的示例,但是无线通 信接口1025也可以包括单个BB处理器1026或单个RF电路1027。
图11是示出可以应用本公开的技术的eNB的示意性配置的第二示例的框图。eNB 1130包括一个或多个天线1140、基站设备1150和RRH 1160。RRH 1160和每个天线1140可以经由RF线缆而彼此连接。基站设备1150和RRH 1160可以经由诸如光纤线缆的高速线路而彼此连接。
天线1140中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1160发送和接收无线信号。如图11所示,eNB 1130可以包括多个天线1140。例如,多个天线1140可以与eNB 1130使用的多个频带兼容。虽然图11示出其中eNB 1130包括多个天线1140的示例,但是eNB 1130也可以包括单个天线1140。
基站设备1150包括控制器1151、存储器1152、网络接口1153、无线通信接口1155以及连接接口1157。控制器1151、存储器1152和网络接口1153与参照图10描述的控制器1021、存储器1022和网络接口1023相同。
无线通信接口1155支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 1160和天线1140来提供到位于与RRH 1160对应的扇区中的终端的无线通信。无线通信接口1155通常可以包括例如BB处理器1156。除了BB处理器1156经由连接接口1157连接到RRH 1160的RF电路1164之外,BB处理器1156与参照图10描述的BB处理器1026相同。如图11所示,无线通信接口1155可以包括多个BB处理器1156。例如,多个BB处理器1156可以与eNB 1130使用的多个频带兼容。虽然图11示出其中无线通信接口1155包括多个BB处理器1156的示例,但是无线通信接口1155也可以包括单个BB处理器1156。
连接接口1157为用于将基站设备1150(无线通信接口1155)连接至RRH 1160的接口。连接接口1157还可以为用于将基站设备1150(无线通信接口1155)连接至RRH 1160的上述高速线路中的通信的通信模块。
RRH 1160包括连接接口1161和无线通信接口1163。
连接接口1161为用于将RRH 1160(无线通信接口1163)连接至基站设备1150的接口。连接接口1161还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1163经由天线1140来传送和接收无线信号。无线通 信接口1163通常可以包括例如RF电路1164。RF电路1164可以包括例如混频器、滤波器和放大器,并且经由天线1140来传送和接收无线信号。如图11所示,无线通信接口1163可以包括多个RF电路1164。例如,多个RF电路1164可以支持多个天线元件。虽然图11示出其中无线通信接口1163包括多个RF电路1164的示例,但是无线通信接口1163也可以包括单个RF电路1164。
在图10和图11所示的eNB 1000和eNB 1130中,通过使用图2所描述的通信单元220以及通过图3所描述的通信单元320可以由无线通信接口1025以及无线通信接口1155和/或无线通信接口1163实现。功能的至少一部分也可以由控制器1021和控制器1151实现。
图12是示出可以应用本公开的技术的智能电话1200的示意性配置的示例的框图。智能电话1200包括处理器1201、存储器1202、存储装置1203、外部连接接口1204、摄像装置1206、传感器1207、麦克风1208、输入装置1209、显示装置1210、扬声器1211、无线通信接口1212、一个或多个天线开关1215、一个或多个天线1216、总线1217、电池1218以及辅助控制器1219。
处理器1201可以为例如CPU或片上系统(SoC),并且控制智能电话1200的应用层和另外层的功能。存储器1202包括RAM和ROM,并且存储数据和由处理器1201执行的程序。存储装置1203可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1204为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1200的接口。
摄像装置1206包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1207可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1208将输入到智能电话1200的声音转换为音频信号。输入装置1209包括例如被配置为检测显示装置1210的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1210包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1200的输出图像。扬声器1211将从智能电话1200输出的音频信号转换为声音。
无线通信接口1212支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1212通常可以包括例如BB处理器1213和RF电路1214。BB处理器1213可以执行例如编码/解码、调制 /解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1214可以包括例如混频器、滤波器和放大器,并且经由天线1216来传送和接收无线信号。无线通信接口1212可以为其上集成有BB处理器1213和RF电路1214的一个芯片模块。如图12所示,无线通信接口1212可以包括多个BB处理器1213和多个RF电路1214。虽然图12示出其中无线通信接口1212包括多个BB处理器1213和多个RF电路1214的示例,但是无线通信接口1212也可以包括单个BB处理器1213或单个RF电路1214。
此外,除了蜂窝通信方案之外,无线通信接口1212可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1212可以包括针对每种无线通信方案的BB处理器1213和RF电路1214。
天线开关1215中的每一个在包括在无线通信接口1212中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1216的连接目的地。
天线1216中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1212传送和接收无线信号。如图12所示,智能电话1200可以包括多个天线1216。虽然图12示出其中智能电话1200包括多个天线1216的示例,但是智能电话1200也可以包括单个天线1216。
此外,智能电话1200可以包括针对每种无线通信方案的天线1216。在此情况下,天线开关1215可以从智能电话1200的配置中省略。
总线1217将处理器1201、存储器1202、存储装置1203、外部连接接口1204、摄像装置1206、传感器1207、麦克风1208、输入装置1209、显示装置1210、扬声器1211、无线通信接口1212以及辅助控制器1219彼此连接。电池1218经由馈线向图12所示的智能电话1200的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1219例如在睡眠模式下操作智能电话1200的最小必需功能。
在图12所示的智能电话1200中,通过使用图1所描述的通信单元120可以由无线通信接口1212实现。功能的至少一部分也可以由处理器1201或辅助控制器1219实现。
图13是示出可以应用本公开的技术的汽车导航设备1320的示意性 配置的示例的框图。汽车导航设备1320包括处理器1321、存储器1322、全球定位系统(GPS)模块1324、传感器1325、数据接口1326、内容播放器1327、存储介质接口1328、输入装置1329、显示装置1330、扬声器1331、无线通信接口1333、一个或多个天线开关1336、一个或多个天线1337以及电池1338。
处理器1321可以为例如CPU或SoC,并且控制汽车导航设备1320的导航功能和另外的功能。存储器1322包括RAM和ROM,并且存储数据和由处理器1321执行的程序。
GPS模块1324使用从GPS卫星接收的GPS信号来测量汽车导航设备1320的位置(诸如纬度、经度和高度)。传感器1325可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口1326经由未示出的终端而连接到例如车载网络1341,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器1327再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口1328中。输入装置1329包括例如被配置为检测显示装置1330的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置1330包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器1331输出导航功能的声音或再现的内容。
无线通信接口1333支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1333通常可以包括例如BB处理器1334和RF电路1335。BB处理器1334可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1335可以包括例如混频器、滤波器和放大器,并且经由天线1337来传送和接收无线信号。无线通信接口1333还可以为其上集成有BB处理器1334和RF电路1335的一个芯片模块。如图13所示,无线通信接口1333可以包括多个BB处理器1334和多个RF电路1335。虽然图13示出其中无线通信接口1333包括多个BB处理器1334和多个RF电路1335的示例,但是无线通信接口1333也可以包括单个BB处理器1334或单个RF电路1335。
此外,除了蜂窝通信方案之外,无线通信接口1333可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口1333可以包 括BB处理器1334和RF电路1335。
天线开关1336中的每一个在包括在无线通信接口1333中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线1337的连接目的地。
天线1337中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1333传送和接收无线信号。如图13所示,汽车导航设备1320可以包括多个天线1337。虽然图13示出其中汽车导航设备1320包括多个天线1337的示例,但是汽车导航设备1320也可以包括单个天线1337。
此外,汽车导航设备1320可以包括针对每种无线通信方案的天线1337。在此情况下,天线开关1336可以从汽车导航设备1320的配置中省略。
电池1338经由馈线向图13所示的汽车导航设备1320的各个块提供电力,馈线在图中被部分地示为虚线。电池1338累积从车辆提供的电力。
在图13示出的汽车导航设备1320中,通过使用图1所描述的通信单元120可以由无线通信接口1333实现。功能的至少一部分也可以由处理器1321实现。
本公开的技术也可以被实现为包括汽车导航设备1320、车载网络1341以及车辆模块1342中的一个或多个块的车载系统(或车辆)1340。车辆模块1342生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络1341。
在本公开的系统和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。

Claims (27)

  1. 一种用户设备侧的电子设备,包括:
    一个或多个处理电路,所述处理电路被配置为执行以下操作:
    确定用于所述用户设备的定位测量辅助数据,所述辅助数据包括至少一个休眠小小区基站发送的增强型发现参考信号eDRS的配置信息;
    基于所述辅助数据对所述至少一个休眠小小区基站发送的eDRS进行定位测量;以及
    基于对所述至少一个休眠小小区基站发送的eDRS进行定位测量的结果生成定位信息,以对所述用户设备进行定位,
    其中,所述eDRS比发现参考信号DRS具有更大的发射功率。
  2. 根据权利要求1所述的电子设备,其中,所述辅助数据包括第一休眠小小区基站发送的eDRS的配置信息以及其他两个小区基站发送的用于定位测量的参考信号的配置信息,并且所述处理电路被配置为基于所述辅助数据对所述第一休眠小小区基站发送的eDRS以及其他两个小区基站发送的参考信号进行定位测量,并且根据测量结果计算参考信号时间差RSTD以生成所述定位信息。
  3. 根据权利要求2所述的电子设备,其中,所述其他两个小区基站以及所述第一休眠小小区基站中的一个为定位参考小区基站,余下的两个为参与定位的邻小区基站,并且所述处理电路被配置为读取所述辅助数据中邻小区基站的参考信号与参考小区基站的参考信号之间的偏移信息,并且基于所述偏移信息进行测量。
  4. 根据权利要求2或3所述的电子设备,其中,所述其他两个小区基站中的至少一个为活动小区基站,该活动小区基站的参考信号为定位参考信号PRS,并且所述处理电路被配置为基于所述eDRS和所述PRS的测量结果来计算RSTD。
  5. 根据权利要求1所述的电子设备,其中,所述eDRS的配置信息包括eDRS的功率配置、带宽、周期、时间偏移以及静默信息中至少之一,其中,eDRS的周期为DRS周期的大于1的整数倍。
  6. 根据权利要求4所述的电子设备,其中,所述eDRS的配置信息还包括该至少一个休眠小小区基站的小区基站标识信息、频率信息、天线 端口配置信息以及循环前缀长度信息中至少之一。
  7. 根据权利要求1所述的电子设备,其中,所述处理电路进一步被配置为对所述用户设备所处的无线电环境中的DRS进行无线资源管理测量,以发现邻近的休眠小小区基站,并且其中,所述处理电路基于测量到的信号强度识别eDRS,并响应于eDRS的识别对小小区发现进行校正。
  8. 根据权利要求7所述的电子设备,其中,对小小区发现进行校正包括在确定无线资源管理测量结果时:
    忽略eDRS;
    使用eDRS之前的相邻一个发现参考信号DRS来代替eDRS;或者
    从eDRS的接收功率中减去eDRS与DRS的发射功率的差值。
  9. 根据权利要求1至8中任一项所述的电子设备,其中,所述电子设备为所述用户设备,并且还包括收发机,所述收发机被配置为通过空中接口从网络设备接收所述定位测量辅助数据以及向所述网络设备发送所述定位信息。
  10. 一种无线通信系统中的小小区基站侧的电子设备,包括:
    一个或多个处理电路,所述处理电路被配置为执行以下操作:
    确定来自控制设备的增强型发现参考信号eDRS的发射配置信息;以及
    基于所述配置信息对所述小小区基站管理的小小区的发现参考信号DRS进行功率控制,以生成所述eDRS,
    其中,所述eDRS比所述DRS具有更大的发射功率。
  11. 根据权利要求10所述的电子设备,其中,所述配置信息包括发射功率的增强值指示以及发射周期,并且所述处理电路被配置为基于所述发射周期对DRS的发射功率进行增强,以生成具有所述发射周期的eDRS信号。
  12. 根据权利要求10所述的电子设备,其中,eDRS的发射周期是DRS的发射周期的n倍,其中n为大于1的整数。
  13. 根据权利要求11或12所述的电子设备,其中,所述配置信息还包括时间偏移,并且所述处理电路被配置为基于所述时间偏移对每一发射周期内的相应DRS的发射功率进行增强。
  14. 根据权利要求10至13中任一项所述的电子设备,其中,所述电子设备为小小区基站,并且还包括收发机,所述收发机被配置为通过空中接口发射所述eDRS。
  15. 一种无线通信系统中的电子设备,包括:
    一个或多个处理电路,所述处理电路被配置为执行以下操作:
    基于预定地理区域之内的待定位的用户设备的数目与位置中至少之一,确定是否启动所述预定地理区域之内的至少一个休眠小小区基站发送增强型发现参考信号eDRS,以对所述用户设备进行定位;以及
    基于确定结果生成用于相应休眠小小区基站的eDRS的发射配置信息,
    其中,所述eDRS比发现参考信号DRS具有更大的发射功率。
  16. 根据权利要求15所述的电子设备,其中,所述预定地理区域之内的相邻的休眠小小区基站发送eDRS的时间彼此不同。
  17. 根据权利要求15所述的电子设备,其中,所述一个或多个处理电路进一步被配置为:基于所述预定地理区域之内的小小区基站之间的eDRS和DRS的干扰状况,确定是否停止所述预定地理区域之内的至少一个休眠小小区基站发送eDRS。
  18. 根据权利要求15所述的电子设备,其中,所述处理电路进一步被配置为:基于所述预定地理区域之内的休眠小小区基站的数目和每个休眠小小区基站的覆盖范围中的至少一个,为所述预定地理区域之内的每个休眠小小区基站配置eDRS的发射参数。
  19. 根据权利要求18所述的电子设备,其中,eDRS的发射参数包括发射功率,并且所述处理电路将eDRS的发射功率相对于DRS的发射功率的增强值配置为随着所述预定地理区域之内的休眠小小区基站的数目的增加而降低,并且/或者随着休眠小小区基站的覆盖范围的增加而增加。
  20. 根据权利要求18所述的电子设备,其中,eDRS的发射参数包括发射周期,并且所述处理电路将所述发射周期配置为随着所述预定地理区域之内的休眠小小区基站的数目的增加而增加。
  21. 根据权利要求20所述的电子设备,其中,eDRS的发射周期是发现参考信号DRS的发射周期的n倍,其中n为大于1的整数。
  22. 根据权利要求20所述的电子设备,其中,eDRS的发射参数进一 步包括所述发射周期之内的发射模式,并且所述处理电路为所述预定地理区域之内的不同休眠小小区基站配置具有不同时间偏移的不同发射模式。
  23. 根据权利要求15至22中任一项所述的电子设备,其中,所述电子设备为宏基站,所述预定地理区域为所述宏基站的覆盖范围,并且所述电子设备还包括收发机,所述收发机被配置为向所述相应休眠小小区基站发送eDRS的发射配置信息。
  24. 根据权利要求15至22中任一项所述的电子设备,其中,所述电子设备为核心网中的定位服务器。
  25. 一种用于在无线通信系统中进行无线通信的方法,包括:
    确定用于用户设备的定位测量辅助数据,所述辅助数据包括至少一个休眠小小区基站发送的增强型发现参考信号eDRS的配置信息;
    基于所述辅助数据对所述至少一个休眠小小区基站发送的eDRS进行定位测量;以及
    基于对所述至少一个休眠小小区基站发送的eDRS进行定位测量的结果生成定位信息,以对所述用户设备进行定位,
    其中,所述eDRS比发现参考信号DRS具有更大的发射功率。
  26. 一种用于在无线通信系统中进行无线通信的方法,包括:
    确定来自控制设备的增强型发现参考信号eDRS的发射配置信息;以及
    基于所述配置信息对小小区基站管理的小小区的发现参考信号DRS进行功率控制,以生成所述eDRS,
    其中,所述eDRS比所述DRS具有更大的发射功率。
  27. 一种用于在无线通信系统中进行无线通信的方法,包括:
    基于预定地理区域之内的待定位的用户设备的数目与位置中至少之一,确定是否启动所述预定地理区域之内的至少一个休眠小小区基站发送增强型发现参考信号eDRS,以对所述用户设备进行定位;以及
    基于确定结果生成用于相应休眠小小区基站的eDRS的发射配置信息,
    其中,所述eDRS比发现参考信号DRS具有更大的发射功率。
PCT/CN2016/080336 2015-04-30 2016-04-27 无线通信系统中的电子设备和无线通信方法 WO2016173494A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16785925.5A EP3291583B1 (en) 2015-04-30 2016-04-27 Electron device and wireless communication method in wireless communication system
KR1020177032814A KR20170140273A (ko) 2015-04-30 2016-04-27 무선 통신 시스템에서의 전자 디바이스 및 무선 통신 방법
JP2017554005A JP6652138B2 (ja) 2015-04-30 2016-04-27 無線通信システムにおける電子機器及び無線通信方法
AU2016253904A AU2016253904A1 (en) 2015-04-30 2016-04-27 Electron device and wireless communication method in wireless communication system
US15/568,565 US10594414B2 (en) 2015-04-30 2016-04-27 Electron device and wireless communication method in wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510218007.5 2015-04-30
CN201510218007.5A CN106211312B (zh) 2015-04-30 2015-04-30 无线通信系统中的电子设备和无线通信方法

Publications (1)

Publication Number Publication Date
WO2016173494A1 true WO2016173494A1 (zh) 2016-11-03

Family

ID=57198178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/080336 WO2016173494A1 (zh) 2015-04-30 2016-04-27 无线通信系统中的电子设备和无线通信方法

Country Status (7)

Country Link
US (1) US10594414B2 (zh)
EP (1) EP3291583B1 (zh)
JP (1) JP6652138B2 (zh)
KR (1) KR20170140273A (zh)
CN (1) CN106211312B (zh)
AU (1) AU2016253904A1 (zh)
WO (1) WO2016173494A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018517357A (ja) * 2015-06-01 2018-06-28 ソニー株式会社 無線通信システムにおける電子デバイス及び無線通信方法
CN108462516A (zh) * 2016-12-12 2018-08-28 智邦科技股份有限公司 无线网络适应装置及方法
JP2021510042A (ja) * 2018-01-11 2021-04-08 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. マルチコネクティビティネットワークにおける測位方法、端末装置、及び測位管理機能エンティティ
CN114073116A (zh) * 2019-07-08 2022-02-18 索尼集团公司 电子装置、无线通信方法和计算机可读介质

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6639650B2 (ja) * 2015-08-25 2020-02-05 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて位置決定のための参照信号の受信又は送信方法、及びそのための装置
EP3411959B1 (en) * 2016-02-05 2021-03-31 Sony Corporation Terminal device, infrastructure equipment, methods and integrated circuitry
CN110663269A (zh) * 2017-03-24 2020-01-07 瑞典爱立信有限公司 用于控制不同类型的频内测量之间的间隙共享的方法和系统
CN106936558B (zh) * 2017-04-19 2021-03-30 北京佰才邦技术有限公司 一种增强的探测参考信号映射的方法及装置
CN108989001B (zh) * 2017-05-31 2021-03-26 北京佰才邦技术有限公司 一种eDRS的发送及接收方法、基站及移动通信终端
CN107911203B (zh) * 2017-08-11 2023-11-14 华为技术有限公司 发送和接收参考信号的方法、网络设备、终端设备和系统
CN110635876B (zh) * 2018-06-22 2020-11-06 维沃移动通信有限公司 Nr系统的定位参考信号配置、接收方法和设备
CN110749877B (zh) * 2018-07-23 2024-04-09 中兴通讯股份有限公司 一种定位系统及定位信号的生成和发送方法
CN111343579B (zh) 2018-12-19 2021-08-06 大唐移动通信设备有限公司 一种定位方法和相关设备
TWI767144B (zh) * 2019-09-27 2022-06-11 財團法人資訊工業策進會 用於無線通訊系統之威脅偵測裝置及其威脅偵測方法
CN112583564B (zh) * 2019-09-29 2022-03-08 维沃移动通信有限公司 定位参考信号的映射方法、终端及网络侧设备
EP4111766A4 (en) * 2020-02-25 2023-11-22 Nokia Technologies Oy TRANSMIT POWER CONTROL FOR POSITIONING A REFERENCE SIGNAL
CN112469118A (zh) * 2020-11-11 2021-03-09 南京熊猫电子股份有限公司 一种基于lte小基站的室内定位系统和方法
CN112512108B (zh) * 2020-12-02 2022-09-02 中国联合网络通信集团有限公司 功率控制方法及通信装置
JP2024520980A (ja) * 2021-05-19 2024-05-28 インテル コーポレイション Rstd測定精度要件適用可能性
KR20230054168A (ko) * 2021-10-15 2023-04-24 삼성전자주식회사 무선 통신 시스템에서 단말의 포지셔닝을 위한 도움 데이터의 기 설정 방법 및 장치
KR20230106464A (ko) 2022-01-06 2023-07-13 정지민 야간조명 기능을 갖춘 스마트 워치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101616360A (zh) * 2009-07-24 2009-12-30 中兴通讯股份有限公司 一种定位参考信号的发送方法及系统
WO2014181850A2 (en) * 2013-05-07 2014-11-13 Nec Corporation Communication system
WO2015043503A1 (en) * 2013-09-27 2015-04-02 Mediatek Inc. Methods of discovery and measurements for small cells in ofdm/ofdma systems

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101593702B1 (ko) * 2009-03-22 2016-02-15 엘지전자 주식회사 무선 통신 시스템에서 참조 신호 전송 방법 및 장치
AU2014307151A1 (en) * 2013-08-12 2016-02-25 Telefonaktiebolaget L M Ericsson (Publ) Positioning in a shared cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101616360A (zh) * 2009-07-24 2009-12-30 中兴通讯股份有限公司 一种定位参考信号的发送方法及系统
WO2014181850A2 (en) * 2013-05-07 2014-11-13 Nec Corporation Communication system
WO2015043503A1 (en) * 2013-09-27 2015-04-02 Mediatek Inc. Methods of discovery and measurements for small cells in ofdm/ofdma systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3291583A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018517357A (ja) * 2015-06-01 2018-06-28 ソニー株式会社 無線通信システムにおける電子デバイス及び無線通信方法
CN108462516A (zh) * 2016-12-12 2018-08-28 智邦科技股份有限公司 无线网络适应装置及方法
CN108462516B (zh) * 2016-12-12 2021-02-19 智邦科技股份有限公司 无线网络适应装置及方法
JP2021510042A (ja) * 2018-01-11 2021-04-08 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. マルチコネクティビティネットワークにおける測位方法、端末装置、及び測位管理機能エンティティ
US11160127B2 (en) 2018-01-11 2021-10-26 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Locating method in multi-connectivity network, terminal device and location management function entity
JP7047104B2 (ja) 2018-01-11 2022-04-04 オッポ広東移動通信有限公司 マルチコネクティビティネットワークにおける測位方法、端末装置、及び測位管理機能エンティティ
CN114073116A (zh) * 2019-07-08 2022-02-18 索尼集团公司 电子装置、无线通信方法和计算机可读介质
CN114073116B (zh) * 2019-07-08 2024-04-16 索尼集团公司 电子装置、无线通信方法和计算机可读介质

Also Published As

Publication number Publication date
US20180159641A1 (en) 2018-06-07
EP3291583B1 (en) 2020-04-01
EP3291583A1 (en) 2018-03-07
JP2018515023A (ja) 2018-06-07
CN106211312B (zh) 2020-06-26
JP6652138B2 (ja) 2020-02-19
AU2016253904A1 (en) 2017-10-12
CN106211312A (zh) 2016-12-07
US10594414B2 (en) 2020-03-17
EP3291583A4 (en) 2019-01-23
KR20170140273A (ko) 2017-12-20

Similar Documents

Publication Publication Date Title
WO2016173494A1 (zh) 无线通信系统中的电子设备和无线通信方法
WO2016192553A1 (zh) 无线通信系统中的电子设备和无线通信方法
EP3678406B1 (en) Electronic device and method for wireless communications
US9253677B2 (en) Methods and apparatus for enhancing network positioning measurement performance by managing uncertain measurement occasions
KR20220131922A (ko) 다수의 불연속 수신 그룹들을 갖는 포지셔닝 측정/리포팅을 위한 방법 및 장치들
EP4118896A1 (en) Physical layer considerations for ue positioning
AU2017262128A1 (en) Electronic apparatus, information processing device and information processing method
US20220201676A1 (en) User equipment (ue) centric position techniques in 5g new radio with multiple bandwidth parts
WO2019218940A1 (zh) 无线通信系统中的用户设备、电子设备、方法及存储介质
TW202133638A (zh) 基於NR-Light使用者設備的具有往返時間程序的定位
CN114830754A (zh) 利用往返时间过程的用户设备辅助nr轻型用户设备定位
US11722978B2 (en) Signaling timing error group updates for positioning
US20230097008A1 (en) Dormant secondary cell positioning signaling
US20220386262A1 (en) Positioning and timing advance determination
JPWO2019159777A1 (ja) 通信装置、基地局装置、方法およびプログラム
WO2023192744A1 (en) Secure ranging sequence generation
KR20240008313A (ko) 온-디맨드 포지셔닝 참조 신호 스케줄링
KR20240020734A (ko) 포지셔닝 방법, 장치 및 관련 기기
WO2023075977A1 (en) Coupled resource pools

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16785925

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016253904

Country of ref document: AU

Date of ref document: 20160427

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017554005

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15568565

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177032814

Country of ref document: KR

Kind code of ref document: A