WO2016192553A1 - 无线通信系统中的电子设备和无线通信方法 - Google Patents

无线通信系统中的电子设备和无线通信方法 Download PDF

Info

Publication number
WO2016192553A1
WO2016192553A1 PCT/CN2016/083299 CN2016083299W WO2016192553A1 WO 2016192553 A1 WO2016192553 A1 WO 2016192553A1 CN 2016083299 W CN2016083299 W CN 2016083299W WO 2016192553 A1 WO2016192553 A1 WO 2016192553A1
Authority
WO
WIPO (PCT)
Prior art keywords
prs
small cell
base station
cell base
information
Prior art date
Application number
PCT/CN2016/083299
Other languages
English (en)
French (fr)
Inventor
田辉
刘洋
柯希
李明阳
吕昕晨
张轶
Original Assignee
索尼公司
田辉
刘洋
柯希
李明阳
吕昕晨
张轶
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 田辉, 刘洋, 柯希, 李明阳, 吕昕晨, 张轶 filed Critical 索尼公司
Priority to JP2017560570A priority Critical patent/JP2018517357A/ja
Priority to US15/574,613 priority patent/US10368195B2/en
Priority to EP16802476.8A priority patent/EP3310102A4/en
Publication of WO2016192553A1 publication Critical patent/WO2016192553A1/zh
Priority to US16/416,273 priority patent/US10638263B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present disclosure relates to the technical field of wireless communications, and in particular to an electronic device in a wireless communication system and a method for wireless communication in a wireless communication system
  • SCN Small Cell Network
  • DRS Discovery Reference Signal
  • the small cell does not transmit the PRS in the off state. If the OTDOA is based only on the traditional PRS, this results in a decrease in the positioning accuracy of the user equipment when the large number of small cells are in the off state.
  • An object of the present disclosure is to provide an electronic device in a wireless communication system and a method for wireless communication in a wireless communication system, such that the small cell on/off technology and the OTDOA technology can be compatible to improve the positioning accuracy of the user equipment and Accelerate the positioning process.
  • an electronic device in a wireless communication system comprising: one or more processing circuits configured to perform an operation of acquiring a small within a predetermined geographic area And an on/off state of the cell base station; and generating reconfiguration information for the positioning reference signal PRS of the small cell base station within the predetermined geographical area based on the acquired on/off state of the small cell base station, to prepare the reservation User equipment within the geographic area is located.
  • an electronic device in a wireless communication system comprising: one or more processing circuits configured to perform an operation of determining a positioning reference from a control device Reconfiguration information of the signal PRS, wherein the reconfiguration information of the PRS includes integration information indicating that the PRS is configured in the discovery reference signal DRS; and reconfiguring the DRS based on the integration information to the user equipment Positioning.
  • an electronic device in a wireless communication system comprising: one or more processing circuits configured to perform an operation of determining a positioning reference from a control device Reconfiguration information of the signal PRS, wherein the reconfiguration information of the PRS includes PRS configuration assistance information of the dormant small cell base station; and reconfiguring the PRS based on the PRS configuration assistance information to utilize the location as an idle resource
  • the time-frequency resource of the transmitting PRS of the sleeping small cell base station locates the user equipment.
  • an electronic device in a wireless communication system comprising: one or more processing circuits configured to perform an operation of determining a location for a user equipment Measuring auxiliary data, the auxiliary data including reconfiguration information of a positioning reference signal PRS of the small cell base station; performing positioning measurement on the PRS transmitted by the small cell base station based on the auxiliary data; and transmitting based on the small cell base station The result of the positioning measurement by the PRS generates positioning information to locate the user equipment.
  • a method for wireless communication in a wireless communication system comprising: acquiring an on/off state of a small cell base station within a predetermined geographic area; and The on/off state of the cell base station generates reconfiguration information for the positioning reference signal PRS of the small cell base station within the predetermined geographical area to locate the user equipment within the predetermined geographical area.
  • a method for wireless communication in a wireless communication system comprising: determining reconfiguration information from a positioning reference signal PRS of a control device, wherein the PRS is re Configuration information includes instructions to find reference letters Configuring the integration information of the PRS in the DRS; and reconfiguring the DRS based on the integration information to locate the user equipment.
  • a method for wireless communication in a wireless communication system comprising: determining reconfiguration information from a positioning reference signal PRS of a control device, wherein the PRS is re
  • the configuration information includes PRS configuration assistance information of the dormant small cell base station; and reconfiguring the PRS based on the PRS configuration assistance information to utilize the time-frequency resource of the PRS of the dormant small cell base station as the idle resource to the user
  • the device is positioned.
  • a method for wireless communication in a wireless communication system comprising: determining positioning measurement assistance data for a user equipment, the assistance data including positioning of a small cell base station Reconfiguring information of the reference signal PRS; performing positioning measurement on the PRS transmitted by the small cell base station based on the auxiliary data; and generating positioning information based on a result of performing positioning measurement on the PRS sent by the small cell base station, to User equipment is positioned.
  • the existing PRS signal can be reconfigured, thereby enabling the positioning accuracy to be improved and accelerated The purpose of the positioning process.
  • FIG. 1 is a block diagram illustrating a structure of an electronic device in a wireless communication system according to an embodiment of the present disclosure
  • FIG. 2 is a block diagram illustrating a structure of an electronic device in a wireless communication system according to another embodiment of the present disclosure
  • FIG. 3 is a block diagram illustrating a structure of an electronic device in a wireless communication system according to another embodiment of the present disclosure
  • FIG. 4 illustrates an electronic device in a wireless communication system according to another embodiment of the present disclosure. Block diagram of the structure
  • 5(a) to 5(d) are diagrams illustrating an example of PRS time-frequency resource block reallocation
  • FIG. 6 is a sequence diagram illustrating a method for wireless communication in a wireless communication system, in accordance with an embodiment of the present disclosure
  • FIG. 7 is a sequence diagram illustrating a method for wireless communication in a wireless communication system, according to another embodiment of the present disclosure.
  • FIG. 8 is a sequence diagram illustrating a method for performing wireless communication in a wireless communication system, according to another embodiment of the present disclosure.
  • FIG. 9 is a block diagram showing an example of a schematic configuration of a server suitable for the present disclosure.
  • FIG. 10 is a block diagram showing a first example of a schematic configuration of an eNB (evolution Node Base Station) applicable to the present disclosure
  • FIG. 11 is a block diagram showing a second example of a schematic configuration of an eNB suitable for the present disclosure
  • FIG. 12 is a block diagram showing an example of a schematic configuration of a smartphone suitable for the present disclosure.
  • FIG. 13 is a block diagram showing an example of a schematic configuration of a car navigation device applicable to the present disclosure.
  • Example embodiments are provided so that this disclosure will be thorough, and the scope will be fully conveyed by those skilled in the art. Numerous specific details, such as specific components, devices, and methods, are set forth to provide a thorough understanding of the embodiments of the present disclosure. It will be apparent to those skilled in the art that ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; In some examples In the examples, well-known processes, well-known structures, and well-known techniques have not been described in detail.
  • a UE User Equipment
  • a terminal having a wireless communication function such as a mobile terminal, a computer, an in-vehicle device, or the like.
  • the UE involved in the present disclosure may also be the UE itself or a component thereof such as a chip.
  • the base station involved in the present disclosure may be, for example, an eNB (evolution Node Base Station) or a component such as a chip in an eNB.
  • the OTDOA Observed Time Difference Of Arrival
  • OTDOA positioning is a downlink positioning method defined in LTE (Long Term Evolution) Rel-9.
  • the UE User Equipment
  • the TOA Time of Arrival
  • the difference in arrival time between each neighboring cell and the reference cell yields a hyperbola on a two-dimensional plane.
  • two hyperbolas can be obtained, thereby obtaining the position (latitude and longitude) of the UE in two-dimensional coordinates.
  • the OTDOA is performed based on the time difference between the neighboring cell and the serving cell reference signal observed by the UE, which is called RSTD (Reference Signal Time Difference).
  • RSTD Reference Signal Time Difference
  • the downlink signal sent by the neighboring cell is generally inferior to the UE that is not in its service range, which seriously affects the positioning accuracy and positioning success rate of the OTDOA.
  • a synchronization signal of a neighboring cell such as a Primary Synchronization Signal (PSS) or a Secondary Synchronization Signal (SSS)
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the OTDOA obtains better positioning reliability
  • the PLS Positioning Reference Signal
  • the PRS has many similarities with the CRS (Cell-specific reference signal) defined in LTE Rel-8.
  • the PRS uses a pseudo-random QPSK (Quadrature Phase Shift Keying) sequence and is mapped diagonally by staggered time and frequency to avoid collision with the CRS.
  • the PRS signal can only be transmitted on the 6th port of the antenna. It cannot be mapped to resource blocks occupied by PBCH (Physical Broadcast Channel), PSS, and SSS.
  • the bandwidth of the PRS is defined as 15 kHz.
  • the positioning subframe is designed as a low-interference subframe and is not transmitted on a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the PRS signal is only interfered by the PRS signal of the same transmission mode in other cells, and is not interfered by the data signal.
  • the PRS is transmitted in a pre-defined positioning subframe, and the positioning subframe is composed of NPRS consecutive subframes, which is called a “positioning interval”.
  • the positioning interval occurs with a periodic TPRS defined in 3GPP TS 36.211, which may be equal to 160, 320, 640 or 1280 subframes, and the consecutive subframe number NPRS may be 1, 2, 4 or 6 subframes.
  • the parameters TPRS and ⁇ PRS can be obtained from the PRS configuration indicator IPRS.
  • the PRS is transmitted at a constant power during each positioning interval. In some positioning intervals, the PRS can also be transmitted at zero power, which is called "PRS silence.” After the silence of the strong PRS signal received by the UE (e.g., received from the serving cell), the PRS signal with less power of the neighboring cell (having the same frequency offset) is more easily detected by the UE.
  • the silence message of the PRS is identified by a bit string of length 2, 4, 8, or 16 bits (corresponding to a different TREP), and each bit in the bit string can take a value of 0 or 1. If a bit of the PRS silence message is set to 0, the PRS will be silenced during the corresponding PRS transmission interval.
  • the core network element of the OTDOA positioning method is LS (Location Server).
  • the positioning server plays the role of the E-SMLC (Evolved Serving Mobile Location Centre); in the UP (User Plane) positioning, the positioning server It is equivalent to SUPL (Secure User Plane Location) SLP (SUPL Location Platform).
  • GMLC Global Mobile Location Center
  • MME Mobility Management Entity
  • the positioning server sends the positioning assistance data to the UE, and the UE reports the RSTD measurement result to the positioning server to complete the OTDOA positioning of the terminal device.
  • the location server can also calculate (UE assisted) or verify (based on UE) final location estimates.
  • the MME receives a positioning service request for a specific UE from another entity (such as a GMLC, UE), or the MME itself initiates a positioning initialization work for a specific UE.
  • the MME then sends a location service request to the E-SMLC, and the E-SMLC processes the location service request and transmits the OTDOA location assistance data to the target UE.
  • the E-SMLC then returns the location service result information to the MME. If it is not the location service request initiated by the MME, the MME sends the location result to the entity that initiated the request.
  • the SLP is a SUPL entity responsible for user plane positioning, and the SLP communicates directly with the UE in the user plane through data bearers.
  • the function of the SLP in the OTDOA positioning process is the same as that of the E-SMLC.
  • the positioning protocol flow between the positioning server usually includes three parts: bearer transmission; auxiliary data transmission; and positioning information transmission.
  • the UE performs the RSTD measurement and needs to acquire the time when the PRS signal arrives at the UE and the accurate PRS configuration information. Therefore, in order to better ensure RSTD measurements, the positioning server in the network transmits OTDOA assistance data to the UE.
  • the OTDOA auxiliary data contains two elements:
  • OTDOA Reference Cell Info This element contains the parameters of the reference cell, and the parameters in the OTDOA neighbor cell list are set according to this element.
  • This element contains the parameters of each neighboring cell and is arranged in descending order of measurement priority. The order is determined by the server, and the UE performs RSTD measurement in the order provided by the positioning server.
  • the OTDOA Reference Cell Info element includes the identifier of the reference cell, the PRS configuration information, and the like, as shown in Table 1, where “M” indicates that the element necessarily appears in the measurement information, and “O” indicates whether the element appears in the measurement information or not. It is optional, and “C” indicates that the element appears in the measurement information under certain conditions, and the condition is described in the definition of the element.
  • the OTDOA Neighbour Cell Info element includes the identifier of each neighboring cell, the PRS configuration information, and the RSTD measurement window, as shown in Table 2.
  • the neighbor cell information list may contain information of up to 72 cells.
  • the reference cell information element and the neighbor cell information element both contain configuration information of the PRS.
  • the PRS information element contains information such as the configuration and timing of the PRS, as shown in Table 3.
  • the base station is the main energy-consuming device in the wireless communication network.
  • the number of users and the communication capacity of the cellular system communication system increases, the number of base stations will increase rapidly. Therefore, reducing the energy consumption of the base station is the key to realizing green communication.
  • the base station side can also dynamically switch according to the actual capacity requirements, so as to allocate power consumption reasonably to achieve the goal of saving energy.
  • the small cell switch means that the network end adaptively turns on and off the small cell according to the actual network load and inter-cell interference, thereby achieving the purpose of improving network throughput and saving base station energy consumption.
  • a cell When a cell is turned on, it transmits to the UE various signals required for its normal communication, such as reference signals for cell measurement or data demodulation.
  • DRS Discovery Reference Signal
  • the specific implementation of the small cell switch is mainly focused on the semi-static switch scheme.
  • the small cell is switched semi-statically.
  • the semi-static cell on/off may be based on an increase/decrease in traffic load, a user's arrival/departure, and a call packet arrival/completion.
  • the semi-static cell switching transition time is several hundred milliseconds to several seconds. If the related process is enhanced, the state transition time can be shortened.
  • a closed small cell may be re-enabled.
  • an open cell may be closed.
  • the small cell may be turned off. If the network decides to switch some users, the closed cell may be re-opened.
  • the user's cell affiliation is determined by the network based on user measurement and load balancing mechanisms.
  • the semi-static small cell switching scheme can not only be more easily implemented from a standardized perspective, but also can improve network performance and coordinate inter-cell interference.
  • DRS Downlink Reference Signal
  • the DRS signal mainly includes PSS/SSS and CRS, and whether CSI-RS (channel state information reference signal) is included in the DRS depends on:
  • the DRS includes the PSS/SSS, the CRS, and the CSI-RS;
  • the DRS includes the PSS/SSS and the CRS;
  • the DRS contains PSS/SSS, CRS, and CSI-RS.
  • the UE will only focus on DRS, ignoring the existence of any other signals and channels.
  • the DRS can only be transmitted in the DwPTS (Downlink Pilot Time Slot) area of the downlink subframe or the subframe.
  • a DRS may have multiple RE configurations of CSI-RS, and the CSI-RS subframe has a certain offset with respect to the SSS subframe.
  • the DRS is transmitted every M milliseconds, and the values that M can take include 40, 80, and 160.
  • the UE For the DRS measurement process, the UE mainly performs measurement according to the DMTC sent by the base station. the amount.
  • the specific configuration of the DMTC is as follows:
  • the candidate value is [40, 80, 160]; for the offset "L” of the DMTC, the candidate value is [0, 1, ..., M-1];
  • the UE will also be notified by RRC (Radio Resource Control) of the following frequency: measuring bandwidth, the UE can consider this measurement bandwidth to be the same as the system bandwidth;
  • RRC Radio Resource Control
  • the length of the DMTC is specified to be 6 milliseconds.
  • the DRS and CRS measurement configurations can be simultaneously configured to the UE, and the UE can perform both measurements in parallel.
  • CRS-based and DRS-based measurements can be directly compared or converted to a certain degree (depending on whether CSI-RS is included in the DRS signal).
  • the UE will continue to perform DRS measurements regardless of whether it is in DRX or not.
  • the DRS sounding and RRM measurement process can be configured for UEs in a cell that is turned on or dormant.
  • the UE measures the RSTD of the cell in the list and the serving cell according to the Neighbour Cell Info list provided by the positioning server, and then reports it to the positioning server to achieve positioning.
  • the through-wall loss will cause a large attenuation of the signal strength. Therefore, the PRS is required to make corresponding enhancements against the indoor environment.
  • the PRS is required to make corresponding enhancements against the indoor environment.
  • the introduction of the small cell on/off will also affect the related configuration of the PRS. Therefore, the introduction of the OTDOA technology into the indoor scenario requires solving the following problems.
  • a small cell sleeps or turns on from time to time.
  • the proportion of the dormant cell is larger, the interference between the PRS signals transmitted by the on cell is reduced. Since the period of the PRS will also affect the detection of the PRS of each small cell by the UE, when the number of off cells changes, the period of the PRS is adjusted to change the sparseness of the PRS, which helps to improve the testability of the PRS. Therefore, it is necessary to solve the configuration problem of the PRS cycle according to the long-term on/off of the small cell.
  • the same frequency may be used between small cells.
  • the coincidence of the transmission frequency of the PRS will cause an increase in the PRS interference between the small cells, so it is necessary to use the PRS muting technique to cope with the interference problem between the PRSs.
  • the time-frequency resource for transmitting the PRS becomes an idle resource. If not used, the PRS time-frequency resource is wasted, and the location coverage problem of the PRS is also affected, resulting in the UE not being able to obtain better. Positioning effect. Therefore, this resource can be used by the unclosed cell to improve the coverage and testability of its PRS.
  • the allocation problem of the frequency resource needs to be solved at this time.
  • the present disclosure considers adding the PRS to the DRS to ensure the transmission of the PRS.
  • how to add PRS to DRS without affecting each other will be a problem that needs to be solved.
  • the selection of the dormant small cell that transmits the PRS will also be a problem to be considered.
  • the present disclosure proposes an OTDOA positioning technology solution based on reconfigured PRS, which aims to solve the compatibility problem between the small cell switching technology and the OTDOA technology, so as to achieve a better positioning effect. Moreover, the present disclosure is particularly suitable for indoor positioning scenarios such as intensive deployment of small cells.
  • FIG. 1 illustrates a structure of an electronic device 100 in a wireless communication system according to an embodiment of the present disclosure.
  • electronic device 100 can include processing circuitry 110. It should be noted that the electronic device 100 may include one processing circuit 110 or multiple processing circuits 110. In addition, the electronic device 100 may further include a communication unit 120 and the like.
  • processing circuitry 110 may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and differently named units may be implemented by the same physical entity.
  • the processing circuit 110 may include an acquisition unit 111 and a generation unit 112.
  • the obtaining unit 111 can acquire an on/off state of the small cell base station within the predetermined geographical area.
  • the generating unit 112 may generate reconfiguration information for the PRS of the small cell base station within the predetermined geographic area to locate the UE within the predetermined geographical area.
  • the PRS may be reconfigured based on the on/off state of the small cell base station to locate the UE.
  • the small cell base station that converts the small cell base station between the on state and the off state and the off state does not send the PRS, and may also use the reconfigured PRS to perform positioning, so that the existing system working mode is not greatly affected,
  • the compatibility problem between the small cell switching technology and the OTDOA technology is solved, and a better indoor positioning effect is achieved, for example.
  • the reconfiguration information of the PRS may include a PRS transmission period of the small cell base station in an active state (ie, in an on state). Further, processing circuit 110 (e.g., generation unit 112) may adjust the PRS transmission period of the active state small cell base station based on the proportion of small cell base stations within the predetermined geographic area within the predetermined geographic area.
  • the processing circuit 110 may reduce the PRS transmission period of the active small cell base station, and when the ratio is less than the second threshold, the processing circuit 110 may increase the PRS transmission of the active small cell base station. cycle.
  • the periodic configuration of the PRS may be related to the proportion of the number of off cells in the macro cell.
  • the proportion of the dormant cell increases to a certain threshold.
  • the proportion of the dormant cell decreases to a certain threshold, the period of the PRS signal is increased.
  • the proportion of the dormant cells in the macro cell is the result of averaging over a long period of time. For a long period of time, each small cell switches more frequently. However, if the macro cell is viewed as a whole, the proportion of the dormant cells does not change too much. At this time, the period of the PRS does not change frequently.
  • the proportion of dormant cells will be greatly reduced to below a certain threshold and maintained for a long time.
  • the PRS period is adjusted and notified to all small cells under its coverage.
  • the reconfiguration information of the PRS may include configuration assistance information of the PRS of the dormant small cell base station within the predetermined geographical area.
  • the processing circuit 110 eg, the generating unit 112 may allocate the time-frequency resource of the transmitting PRS of the dormant small cell base station as an idle resource to the active state small cell base station.
  • processing circuit 110 may allocate idle resources to active state small cell base stations based on the priority of the active state small cell base station.
  • processing circuitry 110 may determine a priority by determining an active state small cell base station for positioning each UE based on a coarse geographic location of each UE; at a predetermined time The number of occurrences of the activated-state small-cell base station for locating each UE is counted therein; and the priority is determined based on the result of the counting.
  • the reconfiguration information of the PRS may include integration information indicating that the PRS is configured in the DRS.
  • processing circuitry 110 e.g., generation unit 112 may generate the merging information based on the number of occurrences of the dormant small cell base station for locating each UE within a predetermined time.
  • the integration information may include location information indicating a configuration location of the PRS in the DRS.
  • the processing circuit 110 eg, the generating unit 112 may generate location information based on the configuration information of the DRS.
  • the wireless communication system as described above may be an LTE-A (Long Term Evolution-Advanced) cellular communication system
  • the electronic device 100 may be a positioning server in a core network.
  • the electronic device 100 may further include a communication unit 120 or the like.
  • the communication unit 120 can, for example, receive relevant information from the base station and/or transmit relevant information to the base station.
  • FIG. 2 illustrates a structure of an electronic device 200 in a wireless communication system according to an embodiment of the present disclosure.
  • electronic device 200 can include processing circuitry 210. It should be noted that the electronic device 200 may include one processing circuit 210 or multiple processing circuits 210. In addition, the electronic device 200 may further include a communication unit 220 and the like.
  • processing circuit 210 may also include various discrete functional units to perform various different functions and/or operations. These functional units may be physical entities or logical entities, and differently named units may be implemented by the same physical entity.
  • the processing circuit 210 may include a determining unit 211 and a reconfiguration unit 212.
  • the determining unit 211 can determine reconfiguration information of the PRS from the control device.
  • the reconfiguration information of the PRS may include integration information indicating that the PRS is configured in the DRS.
  • the reconfiguration unit 212 can reconfigure the DRS based on the merging information to locate the UE.
  • the integration information may include location information indicating a configuration location of the PRS in the DRS.
  • processing circuit 210 eg, reconfiguration unit 212 may reconfigure the DRS based on the location information.
  • processing circuitry 210 may configure the PRS to occupy 1, 2, or 4 subframes in the DRS.
  • processing circuit 210 may configure the period of the PRS to be n times the period of the DRS, where n is a natural number.
  • the wireless communication system as described above may be an LTE-A cellular communication system
  • the electronic device 200 may be a small cell base station in a closed state in the wireless communication system
  • the electronic device 200 A transceiver e.g., communication unit 220
  • the wireless communication system as described above may be an LTE-A cellular communication system
  • the electronic device 200 may be a small cell base station in a closed state in the wireless communication system
  • the electronic device 200 A transceiver e.g., communication unit 220
  • the wireless communication system as described above may be an LTE-A cellular communication system
  • the electronic device 200 may be a small cell base station in a closed state in the wireless communication system
  • the electronic device 200 A transceiver e.g., communication unit 220
  • FIG. 3 illustrates a structure of an electronic device 300 in a wireless communication system according to an embodiment of the present disclosure.
  • electronic device 300 can include processing circuitry 310. It should be noted that the electronic device 300 may include one processing circuit 310 or multiple processing circuits 310. In addition, the electronic device 300 may further include a communication unit 320 and the like.
  • processing circuit 310 may also include various discrete functional units to perform various different functions and/or operations. These functional units may be physical entities or logical entities, and differently named units may be implemented by the same physical entity.
  • the processing circuit 310 can include a determining unit 311 and a PRS reconfiguration unit 312.
  • the determining unit 311 can determine reconfiguration information of the PRS from the control device.
  • the reconfiguration information of the PRS may include PRS configuration assistance information of the sleeping small cell base station.
  • the PRS reconfiguration unit 312 may reconfigure the PRS based on the PRS configuration assistance information of the dormant small cell base station to locate the UE by using the time-frequency resources of the PRS of the dormant small cell base station that is the idle resource.
  • the PRS configuration assistance information may be specific location information about resource particles that the PSM base station transmits the PRS.
  • the PRS configuration assistance information may be a PRS configuration regarding the dormant small cell base station information.
  • the processing circuit 310 may further perform the operations of: determining resource release information from the control device, wherein the resource release information indicates that the dormant small cell base station has been turned on; and the PRS based on the resource release information Reconfiguration is performed to release the time-frequency resources of the transmitting PRS of the sleeping small cell base station.
  • the wireless communication system as described above may be an LTE-A cellular communication system
  • the electronic device 300 may be a small cell base station in an open state in the wireless communication system
  • the electronic device 300 A transceiver e.g., communication unit 320
  • the wireless communication system as described above may be an LTE-A cellular communication system
  • the electronic device 300 may be a small cell base station in an open state in the wireless communication system
  • the electronic device 300 A transceiver e.g., communication unit 320
  • the wireless communication system as described above may be an LTE-A cellular communication system
  • the electronic device 300 may be a small cell base station in an open state in the wireless communication system
  • the electronic device 300 A transceiver e.g., communication unit 320
  • FIG. 4 illustrates a structure of an electronic device 400 in a wireless communication system according to an embodiment of the present disclosure.
  • electronic device 400 can include processing circuitry 410. It should be noted that the electronic device 400 may include one processing circuit 410 or multiple processing circuits 410. In addition, the electronic device 400 may further include a communication unit 420 or the like.
  • processing circuit 410 may also include various discrete functional units to perform various different functions and/or operations. These functional units may be physical entities or logical entities, and differently named units may be implemented by the same physical entity.
  • the processing circuit 410 may include a determining unit 411, a measuring unit 412, and a generating unit 413.
  • the determining unit 411 can determine positioning measurement assistance data for the UE.
  • the assistance data may include reconfiguration information of the PRS of the small cell base station.
  • the measuring unit 412 can perform positioning measurement on the PRS transmitted by the small cell base station based on the auxiliary data.
  • the generating unit 413 may generate positioning information based on a result of performing positioning measurement on the PRS transmitted by the small cell base station to locate the UE.
  • the reconfiguration information of the PRS may include a PRS transmission period of the active state small cell base station.
  • the reconfiguration information of the PRS may include the integration information indicating that the PRS is configured in the DRS transmitted by the dormant small cell base station.
  • processing circuit 410 may also detect the DRS of the dormant small cell base station and extract the PRS therefrom for positioning measurements.
  • the wireless communication system as described above may be an LTE-A cellular communication system
  • the electronic device 400 may be a UE in a wireless communication system
  • the electronic device 400 may further include a transceiver (
  • the communication unit 420) receives the positioning measurement assistance data from the network device and transmits the positioning information to the network device.
  • FIGS. 1 through 4 An electronic device in a wireless communication system according to an embodiment of the present disclosure is generally described above in conjunction with FIGS. 1 through 4. The technical solution of the present disclosure will be further described in detail in conjunction with specific embodiments.
  • the present disclosure introduces a resource coordination mechanism when a small cell is on/off, and allocates idle resources to other on cells (that is, cells in an on state), thereby increasing the coverage of the PRS and improving the UE.
  • the receiving rate of the PRS helps to ensure the coverage of the UE, so that the UE can achieve a better positioning effect.
  • the specific steps of this resource coordination mechanism are as follows.
  • the positioning server creates a set of cells within a certain range (may be a set formed by multiple macro cells, and may also be a small cell cluster, and the following mainly describes a small cell set as an example), and configures the cell set as follows:
  • the configuration is such that one of the other cells in the same mode when the PRS is transmitted (or when the PRS should be transmitted) remains PRS silent (PRS silence mechanism).
  • the PRS mode is related to the cell ID, for example, the cell with the same cell ID modulo 6 has the same PRS mode. This ensures that other cells do not cause strong interference when multiplexing the time-frequency resources of the PRS signal of the off cell (that is, the cell in the off state).
  • the positioning server needs to determine the measurement small cell corresponding to the UE, and then sends the information of the measurement small cell to the UE through the OTDOA Neighbour Cell Info list.
  • the measurement cell of the UE can be determined, for example, by the following method:
  • the serving cell of the UE passes the E-CID (Enhanced Cell-ID, Enhanced Cell ID) to determine the approximate location of the UE and the orientation relative to the serving cell, and the serving cell sends the approximate geographic information to the positioning server;
  • E-CID Enhanced Cell-ID, Enhanced Cell ID
  • the positioning server can select a suitable measurement cell of the UE according to the geographic location information of the UE, so that the UE is located in the geometric center of all the measurement cells as much as possible, and select as many measurements as possible. Cell to further improve positioning accuracy;
  • the positioning server sends the selected measurement cell to the UE through the OTDOA Neighbour Cell Info list.
  • the positioning server can also check whether the positioning result of the UE is reasonable by using the previously obtained geographic information location of the UE. If it is unreasonable, the positioning server can select the measurement cell again and notify the UE to perform relocation.
  • the positioning server After obtaining the OTDOA Neighbour Cell Info list for each positioning UE, the positioning server creates and maintains a cell priority list for transmitting the PRS for this small cell set.
  • the priority of the small cell transmitting the PRS signal is affected by the number of times each small cell ID appears in the OTDOA Neighbour Cell Info list of all UEs within the coverage of the small cell set within a predetermined time window. It can be seen that the more times a small cell appears in the OTDOA Neighbour Cell Info list of all UEs, the higher the priority of sending PRS.
  • a list of time-frequency resource pools of PRS signals of an off cell may be maintained by a positioning server or, for example, a macro base station managing a plurality of cells.
  • the PRS information in the Neighbour Cell Info list may include information such as PRS bandwidth, PRS configuration indicator, PRS downlink frame number, and silence information.
  • the PRS time-frequency resource block of each cell can be obtained, that is, the precise time and carrier frequency at which each cell transmits the PRS.
  • Figure 5 (a) shows a PMS, CRS, PCFICH (Physical Control Format Indicator Channel) / PHICH (Physical Hybrid ARQ Indicator Channel) / PDCCH at a certain time in a certain cell. (Physical Downlink Control Channel) The location of a resource block in a positioning sub-frame, where no data is included in the blank area.
  • the PRS resource block can be extracted therefrom, as shown in Figure 5(b).
  • All the PRS time-frequency resource blocks of the extracted off cell may be stored in the PRS signal time-frequency resource pool of the dormant cell. Once a new cell goes to sleep, its PRS time-frequency resource block is placed in this resource pool. On the other hand, once the dormant cell is enabled, the PRS time-frequency resource block belonging to the resource pool is released, and the opened cell is re-according to the previous PRS mode. Send a PRS.
  • the on cell in the small cell set can utilize the PRS time-frequency resource in the resource pool.
  • the PRS time-frequency resources in the resource pool are allocated to the on cell in the small cell set according to the PRS transmission cell priority list defined in step 3). Its allocation scheme can be, for example, as follows:
  • the first PRS time-frequency resource in the resource pool is allocated to the small cell ranked first in the priority list, and the cell is marked as allocated;
  • the second PRS time-frequency resource in the resource pool is allocated to the small cell ranked second in the priority list and marked;
  • FIG. 5(c) and 5(d) A schematic diagram of allocating PRS time-frequency resource blocks is shown in Figures 5(c) and 5(d). It is assumed that the positioning subframe when an additional PRS time-frequency resource block is not allocated in an on cell in the small cell set is as shown in FIG. 5(c). It is further assumed that the on cell obtains one PRS time-frequency resource block in the resource pool, and the schematic diagram of the PRS time-frequency resource block is as shown in FIG. 5(b).
  • the original PMS transmission time of the off cell is in the same subframe as the PRS signal of the on cell, and the positioning subframe after the PRS time-frequency resource block is allocated is as shown in FIG. 5(d).
  • the PRS muting mechanism is adopted.
  • the PRS modes of the two cells are the same.
  • the time corresponding to the PRS time-frequency resource block of the off cell and the PRS signal of the on cell may be in different subframes.
  • the PRS time-frequency resource block of the off cell is allocated to the same on cell of the PRS mode, and the number of positioning subframes of the on cell may increase, and the PRS testability may also be enhanced.
  • step 1) since the small cells with the same PRS mode transmit the PRS in the small cell set, the PRS muting mechanism is adopted, so the on cell does not cause strong time when multiplexing the time-frequency resources of the off cell PRS signal. Interference.
  • the resource coordination mechanism avoids the waste of time-frequency resources caused by the small cell sleep, increases the transmission resource of the on-cell PRS, improves the UE's reception rate to the PRS, and ensures the coverage of the UE to some extent, thus enhancing The measurability of the PRS signal improves the positioning accuracy and positioning speed of the UE.
  • the PRS signal When a small cell enters a dormant state, the PRS signal is not transmitted, and in some cases, some UEs just need the PRS signal of the cell to be accurately located. Therefore, the present disclosure considers that the PRS is incorporated into the DRS signal to satisfy the certain conditions, so as to achieve the purpose of assisting positioning. Moreover, the CRS in the DRS can also assist in positioning.
  • the first subframe in one radio frame transmits the PSS/SSS, and the CSI-RS may or may not be sent in the 2-5th subframe.
  • the positioning server determines the switch, period and location configuration of the dormant small cell PRS according to certain rules, and then transmits the information to the dormant small cell by, for example, S1 signaling (directly or indirectly through the macro base station).
  • the location server may maintain, for example, a counter in the memory for each off-cell, which counts the number N of occurrences of the small cell in all of the Neighbor Cell Info lists of the location server for a certain period of time.
  • N0 is, for example, a natural number determined according to an empirical value
  • the positioning server sends the small cell to stop transmitting PRS signaling, and the small cell stops transmitting the PRS in the next signal cycle.
  • ⁇ N is a fixed constant (for example, a natural number determined based on empirical values).
  • the configuration scheme for transmitting the PRS may be as follows:
  • the configuration of the PRS in each DRS occasion is 1 subframe;
  • the PRS is configured as 2 subframes;
  • the PRS configuration When N ⁇ N2 and the dormant small cell does not transmit the CSI-RS, the PRS configuration will be 4 subframes; when N ⁇ N2 and the dormant small cell transmits the CSI-RS, the PRS is configured as 2 subframes.
  • the more UEs are suitable for positioning by the PRS of the off small cell, the more the PRS positioning subframes that the configured small DRS includes, and vice versa, so that each UE can be improved.
  • the reception rate of the PRS of the cell, and the interference caused thereby can be balanced.
  • PRS can be placed in subframes other than PSS/SSS, CRS, and CSI-RS (if any) Other sub-frames.
  • One of the configuration methods is that the off small cell base station sequentially places the PRS into each empty subframe from the 0th subframe of the DRS until all the PRS subframes are configured.
  • the PRS period can be configured as M (M ⁇ 1) times the DRS period.
  • the duration of the DRS is extended to at most 5 ms, so the 6 ms configuration of the DMTC can be maintained unchanged.
  • the UE that needs to perform positioning signal measurement measures the off cell, its measurement configuration is consistent with the DMTC configuration.
  • the CRS signal can be used as a positioning signal together with the PRS signal.
  • the mechanism described above fills in the defect that the UE cannot be located when the small cell is closed too much, and while the indoor positioning performance of the UE is satisfied, the sleeping small cell can still obtain better energy saving effect.
  • the flow of signal interaction between the base station side and the user side in the wireless communication system according to an embodiment of the present disclosure is described in detail below with reference to FIGS. 6 through 8.
  • FIG. 6 is a sequence diagram illustrating a method for wireless communication in a wireless communication system, in accordance with an embodiment of the present disclosure.
  • the signaling flow of the idle resource coordination mechanism is shown in FIG.
  • the positioning server may maintain a priority list in which the small cell transmits the PRS and a PRS time-frequency resource pool in the small cell set.
  • the small cell base station (sleeping small cell base station in FIG. 6) performs small cell shutdown for some reason (as mentioned above), and then transmits small cell off information to the positioning server.
  • the positioning server After receiving the small cell off information from the small cell base station, the positioning server adds the time-frequency resource block of the off small cell to the PRS to the time-frequency resource pool, and allocates the idle resources in the resource pool according to the small cell priority list.
  • the positioning server may provide the active state small cell base station with PRS configuration assistance information of the small cell to which the idle resource has been allocated.
  • the information may be the symbol of the off-cell time-frequency resource and the specific location of the sub-carrier (explicitly indicating the resource), or may be the PCID of the allocated off-cell, muting, etc. (implicitly passing the PCID, etc. with the corresponding resource)
  • the predetermined relationship indicates the resource).
  • the active state small cell base station to which the idle resource has been allocated may transmit the PRS measurement assistance information to the UE (for example, transmitted in the form of data carried by the PDSCH).
  • the corresponding active state small cell base station can transmit the PRS signal according to the new configuration.
  • the UE can measure the PRS of the corresponding active small cell base station according to the new measurement assistance information.
  • the dormant small cell base station may transmit the information of the small cell on to the positioning server.
  • the positioning server may notify the on-small cell that occupies the resource of the off-small cell and the re-opened small cell to send according to the original PRS configuration, that is, the PRS of the small cell that is re-opened on the small cell release.
  • the resource is transmitted for continued use by the re-opened small cell.
  • the active small cell base station may transmit the corresponding small cell PRS measurement assistance information or a reset indication to the UE (data form).
  • the corresponding active small cell may transmit the PRS signal according to the configuration when the idle resource is not received before, and the reopened small cell may send the PRS signal according to the initial configuration.
  • the UE may also measure the PRS of the corresponding small cell according to the new measurement assistance information or the original configuration.
  • FIG. 7 is a sequence diagram illustrating a method for wireless communication in a wireless communication system, according to another embodiment of the present disclosure.
  • An example of a signaling flow for a dormant small cell assisted positioning mechanism is shown in FIG.
  • the dormant small cell assisted positioning mechanism and the idle resource coordination mechanism shown in FIG. 6 are different application scenarios. Specifically, the idle resource coordination mechanism is directed to a scenario in which the small cell is closed for a long time and the time-frequency resource is wasted, and the dormant small cell-assisted positioning mechanism is directed to a scenario in which some UEs need the PRS signal of the dormant small cell to be accurately located.
  • the dormant small cell assisted positioning mechanism or the idle resource coordination mechanism may be used alone, or the two mechanisms may be used in combination, and the disclosure is not particularly limited.
  • the positioning server may maintain a counter for the off small cell to determine whether the off small cell incorporates the PRS in the DRS.
  • the macro cell base station transmits a DRS configuration to the dormant small cell base station.
  • the dormant small cell base station can then transmit a DRS signal.
  • the location server may, for example, determine that a certain off cell satisfies the PRS on condition. Then, the positioning server may send an open PRS request to the sleeping small cell base station, and provide configuration information such as the number of consecutive subframes and the period of the PRS.
  • the dormant small cell base station can insert a corresponding PRS into the DRS signal according to the configuration. Then, the dormant small cell base station can confirm the integration of the PRS in the DRS and provide the DRS measurement assistance information to the positioning server.
  • the UE when it generates a positioning requirement, it may request a positioning auxiliary data signal (data form) to its serving base station, for example, referring to the small cell base station.
  • the reference small cell base station can in turn request the positioning of the auxiliary data signal to the positioning server.
  • the positioning server can transmit positioning assistance data to the reference small cell base station.
  • the reference small cell base station can in turn send positioning assistance data (data form) to the UE.
  • the following positioning measurement signaling procedure is well known to those skilled in the art and will not be described herein.
  • the positioning server may also decide to turn off the transmission of the PRS according to the statistical value of the counter.
  • the positioning server may send a signaling to turn off the PRS to the sleeping small cell base station.
  • the PRS will no longer be included in the DRS signal transmitted by the dormant small cell base station.
  • FIG. 8 is a sequence diagram illustrating a method for wireless communication in a wireless communication system, according to another embodiment of the present disclosure. Another example of a signaling flow for a sleepy small cell assisted positioning mechanism is shown in FIG. It should be noted that, in the dormant small cell assisted positioning mechanism shown in FIG. 7, the positioning server can directly communicate with the dormant small cell base station; and in the dormant small cell assisted positioning mechanism as shown in FIG. 8, the positioning server The communication may be performed by the macro cell base station and the dormant small cell base station, and the present disclosure is not particularly limited thereto.
  • the positioning server may maintain a counter for the off small cell to determine whether the off small cell turns on the PRS in the DRS.
  • the macro cell base station transmits a DRS configuration to the dormant small cell base station.
  • the dormant small cell base station can then transmit a DRS signal.
  • the location server can, for example, determine that an off-small cell satisfies the PRS-on condition. Then, the positioning server may send signaling to enable the PRS to the macro cell base station, and provide configuration information such as the number of consecutive subframes and the period of the PRS.
  • the macro cell base station may provide the DRS configuration information after the PRS is inserted to the dormant small cell base station, and may provide the DRS measurement assistance information to the positioning server.
  • the dormant small cell base station can insert a corresponding PRS into the DRS signal according to the configuration.
  • the positioning auxiliary data signal (data form) may be requested from the reference small cell base station.
  • the reference small cell base station can in turn request the positioning of the auxiliary data signal to the positioning server.
  • the positioning server can transmit positioning assistance data to the reference small cell base station.
  • the reference small cell base station can in turn send positioning assistance data (data form) to the UE.
  • the following positioning measurement signaling procedure is well known to those skilled in the art and will not be described herein.
  • the positioning server may also decide to turn off the transmission of the PRS according to the statistical value of the counter.
  • the positioning server may send a signaling to turn off the PRS to the macro cell base station.
  • the macro cell base station may provide DSR configuration information that does not insert the PRS to the dormant small cell base station.
  • the dormant small cell base station can transmit the DRS according to the configuration.
  • a method for performing wireless communication in a wireless communication system may include: acquiring an on/off state of a small cell base station within a predetermined geographical area; and based on an on/off state of the acquired small cell base station And generating reconfiguration information for the positioning reference signal PRS of the small cell base station within the predetermined geographical area to locate the user equipment within the predetermined geographical area.
  • the reconfiguration information of the PRS may include a PRS transmission period of the active state small cell base station.
  • the method may further include: adjusting a PRS transmission period of the active small cell base station based on a proportion of the small cell base station within the predetermined geographical area within the predetermined geographic area.
  • the PRS transmission period of the active small cell base station may be reduced, and when the ratio is less than the second threshold, the PRS transmission period of the active small cell base station may be increased.
  • the reconfiguration information of the PRS may include configuration assistance information of the PRS of the dormant small cell base station within the predetermined geographical area.
  • the method may further include: allocating a time-frequency resource of the PRS of the dormant small cell base station to the active state small cell base station as the idle resource.
  • the idle resource may be allocated to the active state small cell base station based on the priority of the active state small cell base station.
  • the priority may be determined by determining an active state small cell base station for positioning each user equipment based on a rough geographic location of each user equipment; and for positioning each user equipment within a predetermined time The number of occurrences of the active small cell base station is counted; and the priority is determined based on the result of the counting.
  • the reconfiguration information of the PRS may include integration information indicating that the PRS is configured in the discovery reference signal DRS. Further, the method may further include generating the integration information based on the number of occurrences of the dormant small cell base station for positioning the respective user equipment within a predetermined time.
  • the integration information may include location information indicating a configuration location of the PRS in the DRS.
  • the method may further include: generating location information based on the configuration information of the DRS.
  • a method for wireless communication in a wireless communication system may include determining reconfiguration information of a positioning reference signal PRS from a control device, wherein reconfiguration of the PRS The information includes integration information indicating that the PRS is configured in the discovery reference signal DRS; and reconfiguring the DRS based on the integration information to locate the user equipment.
  • the integration information may include location information indicating a configuration location of the PRS in the DRS.
  • the method may further include: reconfiguring the DRS based on the location information.
  • the PRS can be configured to occupy 1, 2 or 4 subframes in the DRS.
  • the period of the PRS can be configured to be n times the period of the DRS, where n is a natural number.
  • a method for wireless communication in a wireless communication system may include determining reconfiguration information of a positioning reference signal PRS from a control device, wherein reconfiguration of the PRS The information includes PRS configuration assistance information of the dormant small cell base station; and reconfiguring the PRS based on the PRS configuration assistance information to utilize the time-frequency resource of the PRS that is the idle resource of the dormant small cell base station to the user equipment Positioning.
  • the PRS configuration assistance information may be specific location information about resource particles that the PSM base station transmits the PRS.
  • the PRS configuration assistance information may be PRS configuration information about the sleeping small cell base station.
  • the method may further comprise: determining resource release information from the control device, wherein the resource release information indicates that the dormant small cell base station has been turned on; and reconfiguring the PRS based on the resource release information to release A time-frequency resource for transmitting a PRS of a small cell base station.
  • a method for wireless communication in a wireless communication system may include determining positioning measurement assistance data for a user equipment, the assistance data including a positioning reference of a small cell base station a reconfiguration information of the signal PRS; performing positioning measurement on the PRS sent by the small cell base station based on the auxiliary data; and generating positioning information based on a result of performing positioning measurement on the PRS sent by the small cell base station, to the user The device is positioned.
  • the reconfiguration information of the PRS may include a PRS transmission period of the active state small cell base station.
  • the reconfiguration information of the PRS may include the integration information indicating that the PRS is configured in the discovery reference signal DRS transmitted by the dormant small cell base station.
  • the method may further comprise: detecting a DRS of the dormant small cell base station, and extracting a PRS therefrom for performing positioning measurement.
  • the location server mentioned in this disclosure can be implemented as any type of server, such as a tower server, a rack server, and a blade server.
  • the location server can be a control module mounted on the server (such as an integrated circuit module including a single wafer, and a card or blade inserted into a slot of the blade server).
  • the base stations mentioned in this disclosure may be implemented as any type of evolved Node B (eNB), such as a macro eNB and a small eNB.
  • the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station can be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • the base station can include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRHs) disposed at a different location than the body.
  • RRHs remote wireless headends
  • the UE mentioned in the present disclosure may be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router, and a digital camera device) or an in-vehicle terminal. (such as car navigation equipment).
  • the UE may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the UE may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the above terminals.
  • FIG. 9 is a block diagram showing an example of a schematic configuration of a server 900 to which the technology of the present disclosure can be applied.
  • the server 900 includes a processor 901, a memory 902, a storage device 903, a network interface 904, and a bus 906.
  • the processor 901 can be, for example, a central processing unit (CPU) or a digital signal processor (DSP) and controls the functionality of the server 900.
  • the memory 902 includes random access memory (RAM) and read only memory (ROM), and stores data and programs executed by the processor 901.
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • Network interface 904 is a wired communication interface for connecting server 900 to wired communication network 705.
  • the wired communication network 705 can be a core network such as an Evolved Packet Core Network (EPC) or a packet data network (PDN) such as the Internet.
  • EPC Evolved Packet Core Network
  • PDN packet data network
  • the bus 906 connects the processor 901, the memory 902, the storage device 903, and the network interface 904 to each other.
  • Bus 906 can include two or more buses (such as a high speed bus and a low speed bus) each having a different speed.
  • the processing circuit 110 described by using FIG. 1 and the acquisition unit 111 and the generation unit 112 therein can be realized by the processor 901, and by using the communication unit 120 described in FIG. Network interface 904 is implemented.
  • the processor 901 can perform an on/off state acquisition function and a PRS reconfiguration information generation function of the small cell base station by executing an instruction stored in the memory 902 or the storage device 903.
  • FIG. 10 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • the eNB 1000 includes one or more antennas 1010 and a base station device 1020.
  • the base station device 1020 and each antenna 1010 may be connected to each other via an RF cable.
  • Each of the antennas 1010 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station device 1020 to transmit and receive wireless signals.
  • the eNB 1000 may include a plurality of antennas 1010.
  • multiple antennas 1010 can be compatible with multiple frequency bands used by eNB 1000.
  • FIG. 10 illustrates an example in which the eNB 1000 includes a plurality of antennas 1010, the eNB 1000 may also include a single antenna 1010.
  • the base station device 1020 includes a controller 1021, a memory 1022, a network interface 1023, and a wireless communication interface 1025.
  • the controller 1021 can be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 1020. For example, controller 1021 generates data packets based on data in signals processed by wireless communication interface 1025 and communicates the generated packets via network interface 1023. The controller 1021 can bundle data from a plurality of baseband processors to generate bundled packets and deliver the generated bundled packets. The controller 1021 may have a logical function that performs control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 1022 includes a RAM and a ROM, and stores programs executed by the controller 1021 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • Network interface 1023 is a communication interface for connecting base station device 1020 to core network 1024. Controller 1021 can communicate with a core network node or another eNB via network interface 1023. In this case, the eNB 1000 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface. Network interface 1023 may also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If network interface 1023 is a wireless communication interface, network interface 1023 can use a higher frequency band for wireless communication than the frequency band used by wireless communication interface 1025.
  • the wireless communication interface 1025 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in cells of the eNB 1000 via the antenna 1010.
  • Wireless communication interface 1025 may typically include, for example, a baseband (BB) processor 1026 and RF circuitry 1027.
  • the BB processor 1026 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
  • BB processor 1026 may have some or all of the above described logic functions.
  • the BB processor 1026 may be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
  • the update program can cause the functionality of the BB processor 1026 to change.
  • the module can be a card or blade that is inserted into a slot of base station device 1020. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1027 may include, for example, a mixer, a filter, and an amplifier, and via the antenna 1010. To transmit and receive wireless signals.
  • the wireless communication interface 1025 can include a plurality of BB processors 1026.
  • multiple BB processors 1026 can be compatible with multiple frequency bands used by eNB 1000.
  • the wireless communication interface 1025 can include a plurality of RF circuits 1027.
  • multiple RF circuits 1027 can be compatible with multiple antenna elements.
  • FIG. 10 illustrates an example in which the wireless communication interface 1025 includes a plurality of BB processors 1026 and a plurality of RF circuits 1027, the wireless communication interface 1025 may also include a single BB processor 1026 or a single RF circuit 1027.
  • the eNB 11 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied.
  • the eNB 1130 includes one or more antennas 1140, a base station device 1150, and an RRH 1160.
  • the RRH 1160 and each antenna 1140 may be connected to each other via an RF cable.
  • the base station device 1150 and the RRH 1160 may be connected to each other via a high speed line such as a fiber optic cable.
  • Each of the antennas 1140 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 1160 to transmit and receive wireless signals.
  • the eNB 1130 may include a plurality of antennas 1140.
  • multiple antennas 1140 can be compatible with multiple frequency bands used by eNB 1130.
  • FIG. 11 illustrates an example in which the eNB 1130 includes multiple antennas 1140, the eNB 1130 may also include a single antenna 1140.
  • the base station device 1150 includes a controller 1151, a memory 1152, a network interface 1153, a wireless communication interface 1155, and a connection interface 1157.
  • the controller 1151, the memory 1152, and the network interface 1153 are the same as the controller 1021, the memory 1022, and the network interface 1023 described with reference to FIG.
  • the wireless communication interface 1155 supports any cellular communication scheme (such as LTE and LTE-Advanced) and provides wireless communication to terminals located in sectors corresponding to the RRH 1160 via the RRH 1160 and the antenna 1140.
  • Wireless communication interface 1155 can generally include, for example, BB processor 1156.
  • the BB processor 1156 is identical to the BB processor 1026 described with reference to FIG. 10 except that the BB processor 1156 is connected to the RF circuit 1164 of the RRH 1160 via the connection interface 1157.
  • the wireless communication interface 1155 can include a plurality of BB processors 1156.
  • multiple BB processors 1156 can be compatible with multiple frequency bands used by eNB 1130.
  • FIG. 11 illustrates an example in which the wireless communication interface 1155 includes a plurality of BB processors 1156, the wireless communication interface 1155 may also include a single BB processor 1156.
  • connection interface 1157 is an interface for connecting the base station device 1150 (wireless communication interface 1155) to the RRH 1160.
  • the connection interface 1157 may also be a communication mode for communication in the above-described high-speed line for connecting the base station device 1150 (wireless communication interface 1155) to the RRH 1160. Piece.
  • the RRH 1160 includes a connection interface 1161 and a wireless communication interface 1163.
  • connection interface 1161 is an interface for connecting the RRH 1160 (wireless communication interface 1163) to the base station device 1150.
  • the connection interface 1161 may also be a communication module for communication in the above high speed line.
  • the wireless communication interface 1163 transmits and receives wireless signals via the antenna 1140.
  • Wireless communication interface 1163 can generally include, for example, RF circuitry 1164.
  • the RF circuit 1164 can include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 1140.
  • the wireless communication interface 1163 can include a plurality of RF circuits 1164.
  • multiple RF circuits 1164 can support multiple antenna elements.
  • FIG. 11 illustrates an example in which the wireless communication interface 1163 includes a plurality of RF circuits 1164, the wireless communication interface 1163 may also include a single RF circuit 1164.
  • the processing circuit 210 described in FIG. 2 and the determination unit 211 and the reconfiguration unit 212 therein and the processing circuit 310 described by using FIG. 3 and therein are used.
  • the determining unit 311 and the PRS reconfiguration unit 312 may be implemented by the controller 1021 and/or the controller 1151, and may be configured by the wireless communication interface 1025 by using the communication unit 220 described in FIG. 2 and the communication unit 320 described by FIG.
  • wireless communication interface 1155 and/or wireless communication interface 1163 is implemented.
  • controller 1021 and controller 1151 can perform a PRS reconfiguration information determining function and a DRS/PRS reconfiguration function by executing an instruction stored in a corresponding memory.
  • FIG. 12 is a block diagram showing an example of a schematic configuration of a smartphone 1200 to which the technology of the present disclosure can be applied.
  • the smart phone 1200 includes a processor 1201, a memory 1202, a storage device 1203, an external connection interface 1204, an imaging device 1206, a sensor 1207, a microphone 1208, an input device 1209, a display device 1210, a speaker 1211, a wireless communication interface 1212, and one or more An antenna switch 1215, one or more antennas 1216, a bus 1217, a battery 1218, and an auxiliary controller 1219.
  • the processor 1201 may be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and the other layers of the smartphone 1200.
  • the memory 1202 includes a RAM and a ROM, and stores data and programs executed by the processor 1201.
  • the storage device 1203 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 1204 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 1200.
  • the imaging device 1206 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • CCD charge coupled device
  • CMOS complementary metal oxide semiconductor
  • Sensor 1207 can include a set of sensors, such as a measurement sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 1208 converts the sound input to the smartphone 1200 into an audio signal.
  • the input device 1209 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 1210, and receives an operation or information input from a user.
  • the display device 1210 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 1200.
  • the speaker 1211 converts the audio signal output from the smartphone 1200 into sound.
  • the wireless communication interface 1212 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 1212 may generally include, for example, BB processor 1213 and RF circuitry 1214.
  • the BB processor 1213 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 1214 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 1216.
  • the wireless communication interface 1212 can be a chip module on which the BB processor 1213 and the RF circuit 1214 are integrated. As shown in FIG.
  • the wireless communication interface 1212 can include a plurality of BB processors 1213 and a plurality of RF circuits 1214.
  • FIG. 12 illustrates an example in which the wireless communication interface 1212 includes a plurality of BB processors 1213 and a plurality of RF circuits 1214, the wireless communication interface 1212 may also include a single BB processor 1213 or a single RF circuit 1214.
  • wireless communication interface 1212 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 1212 can include a BB processor 1213 and RF circuitry 1214 for each wireless communication scheme.
  • Each of the antenna switches 1215 switches the connection destination of the antenna 1216 between a plurality of circuits included in the wireless communication interface 1212, such as circuits for different wireless communication schemes.
  • Each of the antennas 1216 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 1212 to transmit and receive wireless signals.
  • smart phone 1200 can include multiple antennas 1216.
  • FIG. 12 illustrates an example in which smart phone 1200 includes multiple antennas 1216, smart phone 1200 may also include a single antenna 1216.
  • smart phone 1200 can include an antenna 1216 for each wireless communication scheme.
  • the antenna switch 1215 can be omitted from the configuration of the smartphone 1200.
  • the bus 1217 stores the processor 1201, the memory 1202, the storage device 1203, the external connection interface 1204, the imaging device 1206, the sensor 1207, the microphone 1208, the input device 1209, the display device 1210, the speaker 1211, the wireless communication interface 1212, and the auxiliary controller 1219 with each other. connection.
  • Battery 1218 provides power to various blocks of smart phone 1200 shown in FIG. 12 via feeders, which are partially shown as dashed lines in the figure.
  • the secondary controller 1219 operates the minimum required functions of the smartphone 1200, for example, in a sleep mode.
  • the processing circuit 410 described by using FIG. 4 and the determining unit 411, the measuring unit 412, and the generating unit 413 therein can be implemented by the processor 1201 or the auxiliary controller 1219, and by using The communication unit 420 depicted in FIG. 4 can be implemented by the wireless communication interface 1212. At least a portion of the functionality may also be implemented by processor 1201 or secondary controller 1219.
  • the processor 1201 or the auxiliary controller 1219 may perform a positioning measurement assistance data determination function, a positioning measurement function, and a positioning information generation function by executing an instruction stored in the memory 1202 or the storage device 1203.
  • FIG. 13 is a block diagram showing an example of a schematic configuration of a car navigation device 1320 to which the technology of the present disclosure can be applied.
  • the car navigation device 1320 includes a processor 1321, a memory 1322, a global positioning system (GPS) module 1324, a sensor 1325, a data interface 1326, a content player 1327, a storage medium interface 1328, an input device 1329, a display device 1330, a speaker 1331, and a wireless device.
  • the processor 1321 can be, for example, a CPU or SoC and controls the navigation functions and additional functions of the car navigation device 1320.
  • the memory 1322 includes a RAM and a ROM, and stores data and programs executed by the processor 1321.
  • the GPS module 1324 measures the position (such as latitude, longitude, and altitude) of the car navigation device 1320 using GPS signals received from GPS satellites.
  • Sensor 1325 can include a set of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 1326 is connected to, for example, the in-vehicle network 1341 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 1327 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 1328.
  • the input device 1329 includes, for example, a touch sensor, a button or a switch configured to detect a touch on the screen of the display device 1330, and receives an operation or information input from a user.
  • Display device 1330 includes, for example, an LCD or The screen of the OLED display, and displays the image of the navigation function or the content of the reproduction.
  • the speaker 1331 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 1333 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 1333 may generally include, for example, BB processor 1334 and RF circuitry 1335.
  • the BB processor 1334 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 1335 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 1337.
  • the wireless communication interface 1333 can also be a chip module on which the BB processor 1334 and the RF circuit 1335 are integrated. As shown in FIG.
  • the wireless communication interface 1333 may include a plurality of BB processors 1334 and a plurality of RF circuits 1335.
  • FIG. 13 illustrates an example in which the wireless communication interface 1333 includes a plurality of BB processors 1334 and a plurality of RF circuits 1335, the wireless communication interface 1333 may also include a single BB processor 1334 or a single RF circuit 1335.
  • the wireless communication interface 1333 can support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near-field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 1333 may include a BB processor 1334 and an RF circuit 1335 for each wireless communication scheme.
  • Each of the antenna switches 1336 switches the connection destination of the antenna 1337 between a plurality of circuits included in the wireless communication interface 1333, such as circuits for different wireless communication schemes.
  • Each of the antennas 1337 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 1333 to transmit and receive wireless signals.
  • car navigation device 1320 can include a plurality of antennas 1337.
  • FIG. 13 illustrates an example in which the car navigation device 1320 includes a plurality of antennas 1337, the car navigation device 1320 may also include a single antenna 1337.
  • car navigation device 1320 can include an antenna 1337 for each wireless communication scheme.
  • the antenna switch 1336 can be omitted from the configuration of the car navigation device 1320.
  • Battery 1338 provides power to various blocks of car navigation device 1320 shown in FIG. 13 via a feeder, which is partially shown as a dashed line in the figure. Battery 1338 accumulates power supplied from the vehicle.
  • the processing circuit 410 described by using FIG. 4 and the determining unit 411, the measuring unit 412, and the generating unit 413 therein may be
  • the processor 1321 is implemented and can be implemented by the wireless communication interface 1333 by using the communication unit 420 described with reference to FIG. At least a portion of the functionality can also be implemented by processor 1321.
  • the processor 1321 can perform a positioning measurement assistance data determination function, a positioning measurement function, and a positioning information generation function by executing an instruction stored in the memory 1322.
  • the technology of the present disclosure may also be implemented as an onboard system (or vehicle) 1340 that includes one or more of the car navigation device 1320, the in-vehicle network 1341, and the vehicle module 1342.
  • vehicle module 1342 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 1341.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及无线通信系统中的电子设备和无线通信方法。该电子设备包括:一个或多个处理电路,所述处理电路被配置为执行以下操作:获取预定地理区域之内的小小区基站的开启/关闭状态;以及基于获取的小小区基站的开启/关闭状态,生成用于所述预定地理区域之内的小小区基站的定位参考信号PRS的重新配置信息,以对所述预定地理区域之内的用户设备进行定位。使用根据本公开的电子设备和无线通信方法,可以对现有的PRS信号进行重新配置,从而能够起到提高定位精度的作用,并且达到加速定位过程的目的。

Description

无线通信系统中的电子设备和无线通信方法 技术领域
本公开涉及无线通信的技术领域,具体地涉及无线通信系统中的电子设备和用于在无线通信系统中进行无线通信的方法
背景技术
这个部分提供了与本公开有关的背景信息,这不一定是现有技术。
SCN(Small Cell Network,小小区网络)被认为是应对数据流量迅速增长的有效手段。在无线通信的标准化讨论中,一个新的参考信号——DRS(Discovery Reference Signal,发现参考信号),被用来支持small cell on/off(小小区开启/关闭)机制。在小小区关闭状态下,小小区基站只发送DRS。
室内定位是无线通信技术标准化的重点工作之一。现有的OTDOA(Observed Time Difference Of Arrival,观测到达时间差)技术将作为室内定位技术中重点考虑的技术。由于在只基于小区特定参考信号的情形下OTDOA仍无法达到足够的精度,所以引入了PRS(Positioning Reference Signal,定位参考信号)。
然而,小小区在关闭状态下并不发送PRS。如果OTDOA只基于传统的PRS,这样导致当大量小小区处于关闭状态时,用户设备的定位精度有所下降甚至无法定位。
因此,有必要提出一种新的无线通信技术方案以达到提高定位精度并且加速定位过程的目的。
发明内容
这个部分提供了本公开的一般概要,而不是其全部范围或其全部特征的全面披露。
本公开的目的在于提供一种无线通信系统中的电子设备和用于在无线通信系统中进行无线通信的方法,使得小小区开启/关闭技术和OTDOA技术能够兼容,以提高用户设备的定位精度并加速定位过程。
根据本公开的一方面,提供了一种无线通信系统中的电子设备,该电子设备包括:一个或多个处理电路,所述处理电路被配置为执行以下操作:获取预定地理区域之内的小小区基站的开启/关闭状态;以及基于获取的小小区基站的开启/关闭状态,生成用于所述预定地理区域之内的小小区基站的定位参考信号PRS的重新配置信息,以对所述预定地理区域之内的用户设备进行定位。
根据本公开的另一方面,提供了一种无线通信系统中的电子设备,该电子设备包括:一个或多个处理电路,所述处理电路被配置为执行以下操作:确定来自控制设备的定位参考信号PRS的重新配置信息,其中,所述PRS的重新配置信息包括指示在发现参考信号DRS中配置所述PRS的融入信息;以及基于所述融入信息对所述DRS进行重新配置,以对用户设备进行定位。
根据本公开的另一方面,提供了一种无线通信系统中的电子设备,该电子设备包括:一个或多个处理电路,所述处理电路被配置为执行以下操作:确定来自控制设备的定位参考信号PRS的重新配置信息,其中,所述PRS的重新配置信息包括休眠小小区基站的PRS配置辅助信息;以及基于所述PRS配置辅助信息对所述PRS进行重新配置,以利用作为空闲资源的所述休眠小小区基站的发射PRS的时频资源对用户设备进行定位。
根据本公开的另一方面,提供了一种无线通信系统中的电子设备,该电子设备包括:一个或多个处理电路,所述处理电路被配置为执行以下操作:确定用于用户设备的定位测量辅助数据,所述辅助数据包括小小区基站的定位参考信号PRS的重新配置信息;基于所述辅助数据对所述小小区基站发送的PRS进行定位测量;以及基于对所述小小区基站发送的PRS进行定位测量的结果生成定位信息,以对所述用户设备进行定位。
根据本公开的另一方面,提供了一种用于在无线通信系统中进行无线通信的方法,该方法包括:获取预定地理区域之内的小小区基站的开启/关闭状态;以及基于获取的小小区基站的开启/关闭状态,生成用于所述预定地理区域之内的小小区基站的定位参考信号PRS的重新配置信息,以对所述预定地理区域之内的用户设备进行定位。
根据本公开的另一方面,提供了一种用于在无线通信系统中进行无线通信的方法,该方法包括:确定来自控制设备的定位参考信号PRS的重新配置信息,其中,所述PRS的重新配置信息包括指示在发现参考信 号DRS中配置所述PRS的融入信息;以及基于所述融入信息对所述DRS进行重新配置,以对用户设备进行定位。
根据本公开的另一方面,提供了一种用于在无线通信系统中进行无线通信的方法,该方法包括:确定来自控制设备的定位参考信号PRS的重新配置信息,其中,所述PRS的重新配置信息包括休眠小小区基站的PRS配置辅助信息;以及基于所述PRS配置辅助信息对所述PRS进行重新配置,以利用作为空闲资源的所述休眠小小区基站的发射PRS的时频资源对用户设备进行定位。
根据本公开的另一方面,提供了一种用于在无线通信系统中进行无线通信的方法,该方法包括:确定用于用户设备的定位测量辅助数据,所述辅助数据包括小小区基站的定位参考信号PRS的重新配置信息;基于所述辅助数据对所述小小区基站发送的PRS进行定位测量;以及基于对所述小小区基站发送的PRS进行定位测量的结果生成定位信息,以对所述用户设备进行定位。
使用根据本公开的无线通信系统中的电子设备和用于在无线通信系统中进行无线通信的方法,可以对现有的PRS信号进行重新配置,从而能够起到提高定位精度的作用,并且达到加速定位过程的目的。
从在此提供的描述中,进一步的适用性区域将会变得明显。这个概要中的描述和特定例子只是为了示意的目的,而不旨在限制本公开的范围。
附图说明
在此描述的附图只是为了所选实施例的示意的目的而非全部可能的实施,并且不旨在限制本公开的范围。在附图中:
图1是图示根据本公开的实施例的无线通信系统中的电子设备的结构的框图;
图2是图示根据本公开的另一实施例的无线通信系统中的电子设备的结构的框图;
图3是图示根据本公开的另一实施例的无线通信系统中的电子设备的结构的框图;
图4图示根据本公开的另一实施例的无线通信系统中的电子设备的 结构的框图;
图5(a)至5(d)是图示PRS时频资源块重新分配的例子的示意图;
图6是图示根据本公开的实施例的用于在无线通信系统中进行无线通信的方法的序列图;
图7是图示根据本公开的另一实施例的用于在无线通信系统中进行无线通信的方法的序列图;
图8是图示根据本公开的另一实施例的用于在无线通信系统中进行无线通信的方法的序列图;
图9是示出适用于本公开的服务器的示意性配置的示例的框图;
图10是示出适用于本公开的eNB(evolution Node Base Station,演进节点基站)的示意性配置的第一示例的框图;
图11是示出适用于本公开的eNB的示意性配置的第二示例的框图;
图12是示出适用于本公开的智能电话的示意性配置的示例的框图;以及
图13是示出适用于本公开的汽车导航设备的示意性配置的示例的框图。
虽然本公开容易经受各种修改和替换形式,但是其特定实施例已作为例子在附图中示出,并且在此详细描述。然而应当理解的是,在此对特定实施例的描述并不打算将本公开限制到公开的具体形式,而是相反地,本公开目的是要覆盖落在本公开的精神和范围之内的所有修改、等效和替换。要注意的是,贯穿几个附图,相应的标号指示相应的部件
具体实施方式
现在参考附图来更加充分地描述本公开的例子。以下描述实质上只是示例性的,而不旨在限制本公开、应用或用途。
提供了示例实施例,以便本公开将会变得详尽,并且将会向本领域技术人员充分地传达其范围。阐述了众多的特定细节如特定部件、装置和方法的例子,以提供对本公开的实施例的详尽理解。对于本领域技术人员而言将会明显的是,不需要使用特定的细节,示例实施例可以用许多不同的形式来实施,它们都不应当被解释为限制本公开的范围。在某些示例实 施例中,没有详细地描述众所周知的过程、众所周知的结构和众所周知的技术。
本公开所涉及的UE(User Equipment,用户设备)包括但不限于移动终端、计算机、车载设备等具有无线通信功能的终端。进一步,本公开所涉及的UE还可以是UE本身或其中的部件如芯片。此外,本公开中所涉及的基站可以例如是eNB(evolution Node Base Station,演进节点基站)或者是eNB中的部件如芯片。
下面首先简要地介绍发明人已知的OTDOA(Observed Time Difference Of Arrival,观测到达时间差)技术,这不一定是现有技术。
OTDOA定位是在LTE(Long Term Evolution,长期演进)Rel-9中定义的一种下行定位方式。在OTDOA中,UE(User Equipment,用户设备)测量多个基站的参考信号的TOA(Time of Arrival,到达时间),并计算邻小区与参考小区的到达时间差。从几何上看,每个相邻小区与参考小区的到达时间差都会在二维平面上得出一条双曲线。那么,通过至少测量三个基站的参考信号的TOA,就可以得到两条双曲线,从而得出UE在二维坐标下的位置(经纬度)。
OTDOA是基于UE所观测到的对邻小区及服务小区参考信号时间差来进行的,这被称作RSTD(Reference Signal Time Difference,参考信号时间差)。
然而,通常邻小区发送的下行信号对于不在其服务范围内的UE而言“可听性”较差,会严重影响OTDOA的定位精度及定位成功率。
例如,邻小区的同步信号(如PSS(Primary Synchronization Signal,主同步信号)或SSS(Secondary Synchronization Signal,辅同步信号))或可被利用进行测量,然而UE很难检测到足够的邻小区来进行精确的定位。
因此,为了增加UE检测到邻小区的概率,使OTDOA获得较好的定位可靠性,LTE Rel-9中专门定义了PRS(Positioning Reference Signal,定位参考信号)。
PRS与LTE Rel-8中定义的CRS(Cell-specific reference signal,小区特定参考信号)有很多相似之处。PRS使用伪随机的QPSK(Quadrature Phase Shift Keying,正交相移键控)序列,并通过时间和频率的错开映射成对角状,来避免与CRS的碰撞。PRS信号只能在天线的6端口发射, 并且不能被映射到被PBCH(Physical Broadcast Channel,物理广播信道)、PSS和SSS占用的资源块上。PRS的带宽定义为15kHz。
定位子帧被设计为低干扰子帧,不在PDSCH(Physical Downlink Shared Channel,物理下行共享信道)上传输。在完全同步网络中,PRS信号只被其他小区具有相同传输模式的PRS信号所干扰,不被数据信号所干扰。
PRS在预先定义的定位子帧中传输,定位子帧由NPRS个连续子帧组成,被称作“定位间隔”。定位间隔以周期TPRS出现,其中TPRS在3GPP TS 36.211中定义,可以等于160、320、640或者1280个子帧,连续子帧数NPRS可以是1、2、4或者6个子帧。
表征PRS传输时序的第三个参数是小区特定子帧偏移ΔPRS,它定义了相对于SFN(System Frame Number,系统帧号)=0(可以根据每个PRS周期的起始位置推断出来)而言PRS开始传输的子帧号。参数TPRS和ΔPRS可由PRS配置指标IPRS得到。
在每个定位间隔内PRS以恒定功率传输。在某些定位间隔内,PRS也可以以零功率传输,被称作“PRS静默”。当UE接收的强PRS信号(例如从服务小区接收到的)静默之后,邻小区(有相同的频率偏移)的功率小一些的PRS信号就更容易被UE检测到。
根据3GPP TS 36.355规定,一个小区内PRS的静默配置由一个周期为TREP的静默序列定义,其中TREP=2、4、8或者16个定位间隔。PRS的静默消息由一个长度为2、4、8或者16比特的比特串来标识(对应于不同的TREP),比特串中的每个比特可以取值0或者1。如果PRS静默消息的某个比特被置为0,那么在相应的PRS传输间隔中PRS将被静默。PRS静默序列的第一个比特对应于辅助数据参考小区SFN=0开始后的第一个PRS传输间隔。
OTDOA定位方法的核心网络元素是LS(Location Server,定位服务器)。在CP(Control Plane,控制平面)定位中,定位服务器扮演E-SMLC(Evolved Serving Mobile Location Centre,演进服务移动定位中心)的角色;而在UP(User Plane,用户平面)定位中,定位服务器则相当于SUPL(Secure User Plane Location,安全用户平面定位)SLP(SUPL Location Platform,SUPL定位平台)。
GMLC(Gateway Mobile Location Center,网关移动定位中心)是 外部客户端访问控制平面定位的第一个节点。它在进行登记和授权之后,向MME(Mobility Management Entity,移动管理实体)发送定位请求并从MME接收最终定位结果估计。
定位服务器向UE发送定位辅助数据,并且UE上报RSTD测量结果给定位服务器,使其完成对终端设备的OTDOA定位。定位服务器还可以计算(UE辅助)或者验证(基于UE)最终位置估计。
在控制平面方案中,MME接收来自另一实体(如GMLC、UE)的关于特定UE的定位服务请求,或者MME自身发起针对特定UE的定位初始化工作。之后MME向E-SMLC发送定位服务请求,并且E-SMLC处理定位服务请求,并把OTDOA定位辅助数据传送给目标UE。然后E-SMLC将定位服务结果信息返回给MME。如果不是MME发起的定位服务请求,则MME将定位结果发送给发起请求的实体。
SLP是负责用户平面定位的SUPL实体,并且SLP通过数据承载在用户平面直接与UE进行通信。SLP在OTDOA定位流程中的功能与E-SMLC相同。
定位服务器(E-SMLC或SUPL SLP)之间的定位协议流程通常包括三部分:承载传送;辅助数据传送;以及定位信息传送。
UE执行RSTD测量需要获取PRS信号到达UE的时间以及精确的PRS配置信息。因此,为了更好地保证RSTD测量,网络中的定位服务器传送OTDOA辅助数据给UE。OTDOA辅助数据包含两个元素:
1.OTDOA Reference Cell Info(OTDOA参考小区信息):这个元素包含参考小区的参数,OTDOA邻小区列表中的参数根据此元素进行设置。
2.OTDOA Neighbour Cell Info(OTDOA邻小区信息):这个元素包含每个邻小区的参数,并且按照测量优先权的降序排列,顺序由服务器确定,UE按照定位服务器提供的顺序进行RSTD的测量。
根据3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)TS(Technical Specification,技术规范)36.355,OTDOA Reference Cell Info和OTDOA Neighbour Cell Info包含在“ProvideAssistanceData”消息中,而“ProvideAssistanceData”消息和“RequestAssistanceData”消息包含在”LPP message”中。根据3GPP TS 24.171,“LPP messages”由“Uplink/Downlink Generic NAS Transport message”发送,即“LPP  messages”包含在NAS协议中。
OTDOA Reference Cell Info元素包含参考小区的标识、PRS配置信息等,如表1所示,其中,“M”表示该元素在测量信息中必然出现,“O”表示该元素在测量信息中出现与否是可选的,而“C”表示该元素在一定条件下才在测量信息中出现,条件在该元素的定义中描述。
表1 OTDOA参考小区辅助信息
Figure PCTCN2016083299-appb-000001
OTDOA Neighbour Cell Info元素包含每个邻小区的标识、PRS配置信息、RSTD测量窗等,如表2所示。邻小区信息列表中最多可包含72个小区的信息。
表2 OTDOA邻小区辅助信息
Figure PCTCN2016083299-appb-000002
Figure PCTCN2016083299-appb-000003
Figure PCTCN2016083299-appb-000004
参考小区信息元素与邻小区信息元素中都包含有PRS的配置信息。PRS信息元素包含PRS的配置、时序等信息,如表3所示。
表3 PRS信息元素
Figure PCTCN2016083299-appb-000005
上面已介绍了OTDOA技术。接下来简要地介绍发明人已知的小小区开启/关闭技术,这不一定是现有技术。
随着网络覆盖与数据需求的飞速发展,移动网络的规模不断扩大, 网络设备、基站及动力系统数量成倍增加,无线通信网络的能耗问题已经成为业界关注的焦点。基站是无线通信网络中主要的耗能设备,随着蜂窝系统通信系统的用户数目和通信容量日剧增大,基站的数目还会快速增加,因此降低基站的能量消耗是实现绿色通信的关键。
对于基站侧的节能,如终端侧的DRX(Discontinuous Reception,非连续接收)机制一样,基站侧也可以根据实际的容量需求,进行动态开关,从而合理地分配功耗,以达到节约能源的目标。
小小区开关意味着网络端根据实际的网络负载、小区间的干扰等情况,自适应地对小小区进行开启与关闭,从而达到提高网络吞吐量、节约基站端能耗等目的。
当一个小区开启时,它向UE发送其正常通信时所需要的各种信号,例如用于小区测量或者数据解调的参考信号。
当一个小区关闭时,出于节能的目的,它将关闭大部分的射频功能,不再发送如上所述的参考信号。因此,对于用户来说,需要设计一些机制来发现这样的小区,例如,使用专用的小区发现信号DRS(Discovery Reference Signal,发现参考信号),在关闭时刻也会继续发送。但是,这些机制很可能不再兼容传统的用户。
根据Rel-12中的讨论,小小区开关的具体实现主要集中在半静态开关的方案上。
在此方案中,小小区半静态地进行开关。半静态的小区开/关可以基于流量负载的增加/减少、用户的到达/离开、呼叫包到达/完成。基于传统的流程,半静态的小区开关转换时间为几百毫秒到几秒。若对相关过程进行增强,则状态转换时间可以缩短。
在基于业务负载的场景下,如果邻小区或者本小区的业务负载上升到一定的门限,则一个关闭的小小区可能将重新开启。同样的,如果邻小区或者本小区的负载下降到一定的门限,那么一个开启的小区可能会关闭。
在基于用户的小区从属关系的场景下,如果小区内没有用户,那么小小区可能会关闭。如果网络端决定将某些用户切换过来,那么这个关闭的小区可能又会重新开启。用户的小区从属关系由网络端基于用户的测量以及负载均衡等机制进行判决。
在基于数据包的到达/完成的场景下,如果有个数据包到来了,那么一 个关闭的小小区可能会重新开启。如果这个数据包已经发送完,那么这个小小区可能会关闭。
从上述描述中可以看到,半静态的小小区开关方案不仅可以更容易从标准化的角度进行实现,同时也可以提升网络性能并协调小区间的干扰。
由于小小区的密集部署,小区间的同步信号和参考信号将受到严重的干扰。并且由于小小区开启/关闭技术的提出,需要一种更加有效的小区发现机制来减少小小区开启/关闭的转换时间,因此3GPP提出设计一种新的参考信号——DRS。与此同时,DRS的提出将有助于密集小小区间负载均衡、干扰协调、RRM(Radio Resource Management,无线资源管理)测量以及小区识别等。由此可以看出,DRS的提出将会带来一系列收益。
DRS信号主要包括PSS/SSS以及CRS,CSI-RS(channel state information reference signal,信道状态信息参考信号)是否被包含在DRS里取决于:
如果配置基于CSI-RS的RSRP(Reference Signal Receiving Power,参考信号接收功率)/RSRQ(Reference Signal Receiving Quality,参考信号接收质量)测量上报,则DRS包含PSS/SSS、CRS以及CSI-RS;
如果配置基于CRS的RSRP/RSRQ测量上报,则DRS包含PSS/SSS以及CRS;以及
如果两种上报都被配置,则DRS包含PSS/SSS、CRS以及CSI-RS。
其次,对于同频和异频测量,如果UE在一个给定的频率内只配置了基于DRS测量上报,而且在此频率内UE没有被配置给任何激活的服务小区,那么在DMTC(DRS measurement timing configuration,DRS测量时序配置)持续时间内,UE将只关注DRS,而忽视其他任何信号和信道的存在。
另外,DRS只能在下行子帧或者子帧的DwPTS(Downlink Pilot Time Slot,下行导频时隙)区域传输。DRS由N(N<=5)个连续子帧组合而成,包括一个PSS/SSS,并且CRS跟SSS处于同一子帧。一个DRS可以有多种CSI-RS的RE配置,CSI-RS子帧相对于SSS子帧有一定偏移。DRS每隔M毫秒传输一次,M可取的值包括40、80和160。
对于DRS测量过程,主要是UE根据基站发送的DMTC来进行测 量。DMTC的具体配置如下:
为UE在每一个频率上配置一个DMTC,其偏移的基准时间为主小区的时间;
对于DMTC的周期“M”,备选值为[40,80,160];对于DMTC的偏移“L”,备选值为[0,1,…,M-1];
除了周期与偏移,UE还将被RRC(Radio Resource Control,无线资源控制)告知如下频率:测量带宽,UE可认为这个测量带宽与系统带宽相同;以及
DMTC的长度规定为6毫秒。
为了兼容传统的CRS测量,DRS与CRS测量配置可被同时配置于UE,UE可以并行地执行两种测量。在RAN2最新的讨论中,基于CRS与基于DRS的测量可直接相比较或经过一定转化变得可比较(视DRS信号中是否包括CSI-RS而定)。
另外,如果DRS测量配置信号被发送,UE将持续执行DRS测量,而不论自己是否处于DRX。DRS探测与RRM测量过程可被配置于在开启或者休眠的小区中的UE。
上面已介绍了小小区开启/关闭技术的相关内容。接下来介绍本公开将要面对的技术问题。
根据调研可知,OTDOA技术中,UE根据定位服务器提供的邻小区列表信息(Neighbour Cell Info list)测量列表中小区与服务小区的RSTD,进而上报给定位服务器以实现定位。而在室内场景中,穿墙损耗将会对信号的强度造成较大的衰减。因此,需要PRS做出相应的增强来对抗室内环境。另外,在室内小小区密集部署场景中,还需要解决PRS的干扰协调问题。同时,小小区on/off的引入也会对PRS的相关配置造成影响,因此将OTDOA技术引入室内场景,需要解决如下问题。
在小小区on/off场景下,不时会有小小区休眠或者打开。当休眠小区所占比例越大时,on小区所发送的PRS信号之间干扰会减小。由于PRS的周期也将影响UE对各个小小区PRS的检测,off小区数变化时,调整PRS的周期,使PRS稀疏程度相应改变,有助于提高PRS的可测性。因此,需要根据小小区长期on/off的情况,解决PRS周期的配置问题。
另外,在室内小小区部署场景中,小小区之间可能使用相同的频率。 然而,PRS的发送频率重合将造成各个小小区之间的PRS干扰增大,因此需要借助PRS muting技术来应对PRS之间的干扰问题。此外,当有小小区关闭时,其发送PRS的时频资源便成为空闲资源,如果不利用,会造成PRS时频资源的浪费,同时还将影响PRS的定位覆盖问题,导致UE无法获得较好的定位效果。因此,此资源可以被未关闭小区使用来提高其PRS的覆盖范围和可测性,然而此时频资源的分配问题需要解决。
另外,当小小区关闭较多时,可能会造成某些UE由于无法测量到足够多小小区的PRS而定位失败。所以这种情况下,某些关闭状态的小小区需要在发送DRS的同时也发送PRS来辅助定位。但是,让off小小区发送PRS不仅会影响off小区的能耗,还将对现有小小区off机制造成冲击,因此,本公开考虑将PRS加进DRS来保证PRS的发送。然而,如何将PRS加进DRS而互不影响将是需要解决的问题。同时,发送PRS的休眠小小区的选取也将是需要考虑的问题。
本公开提出了一种基于重新配置的PRS的OTDOA定位技术方案,旨在解决小小区开关技术和OTDOA技术的兼容性问题,以实现更好的定位效果。而且本公开尤其适合于小小区密集部署的例如室内定位场景。
图1图示了根据本公开的实施例的无线通信系统中的电子设备100的结构。如图1所示,电子设备100可以包括处理电路110。需要说明的是,电子设备100既可以包括一个处理电路110,也可以包括多个处理电路110。另外,电子设备100还可以包括通信单元120等。
进一步,处理电路110可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
例如,如图1所示,处理电路110可以包括获取单元111和生成单元112。
获取单元111可以获取预定地理区域之内的小小区基站的开启/关闭状态。
基于获取单元111获取的小小区基站的开启/关闭状态,生成单元112可以生成用于预定地理区域之内的小小区基站的PRS的重新配置信息,以对预定地理区域之内的UE进行定位。
使用根据本公开的实施例的电子设备100,可以基于小小区基站的开启/关闭状态对PRS进行重新配置,以对UE进行定位。这样一来,即 使小小区基站在开启状态和关闭状态之间转换并且关闭状态的小小区基站不发送PRS,也可以利用重新配置的PRS来进行定位,从而在不需大幅影响现有系统工作模式的情况下,解决了小小区开关技术和OTDOA技术的兼容性问题,并且实现了更好的例如室内定位效果。
根据本公开的实施例,PRS的重新配置信息可以包括激活态(亦即处于开启状态)小小区基站的PRS发射周期。进一步,处理电路110(例如生成单元112)可以基于预定地理区域之内的休眠小小区基站占预定地理区域之内的小小区基站的比例来调整激活态小小区基站的PRS发射周期。
优选地,当上述比例大于第一阈值时,处理电路110可以缩小激活态小小区基站的PRS发射周期,并且当上述比例小于第二阈值时,处理电路110可以增加激活态小小区基站的PRS发射周期。
具体地,在小小区on/off场景下,PRS的周期配置可以与宏小区内off小区数目所占比例有关。休眠小区所占比例越大,则on小区所发送的PRS信号之间干扰越小。由于传统的PRS周期是基于所有小区均是always-on状态下的,这样当休眠小区数量达到一定数目时,PRS周期将会显得设置得过大,造成资源的浪费。因而小小区PRS周期的设置可以考虑宏小区范围内小小区on/off的情况。
例如,可以考虑当休眠小区所占比例增加到一定阈值时,缩小PRS信号的周期。同样地,当休眠小区所占比例减小到一定阈值时,增大PRS信号的周期。这里需要注意的是,宏小区内休眠小区所占比例是在一个较长时间内进行平均后的结果。对于一段较长的时间,各个小小区开关次数较多,然而将宏小区作为一个整体来看的话,其休眠小区所占比例变化并不会太大,此时PRS的周期不会频繁地变化。
然而,在某些特殊的情况下,比如某栋大厦突然召开为期几天的重大会议,此时,休眠小区所占比例将会大大减小到低于一定阈值,并维持较长一段时间。宏小区检测到这类长期的休眠小区所占比例有较大变化的时候,将对PRS周期进行调整,并通知给其覆盖范围下的所有小小区。
根据本公开的优选实施例,PRS的重新配置信息可以包括预定地理区域之内的休眠小小区基站的PRS的配置辅助信息。进一步,处理电路110(例如生成单元112)可以将休眠小小区基站的发射PRS的时频资源作为空闲资源分配给激活态小小区基站。
根据本公开的优选实施例,处理电路110(例如生成单元112)可以基于激活态小小区基站的优先级将空闲资源分配给激活态小小区基站。
根据本公开的优选实施例,处理电路110(例如生成单元112)可以通过以下来确定优先级:基于各个UE的粗略地理位置确定用于对各个UE进行定位的激活态小小区基站;在预定时间之内对用于对各个UE进行定位的激活态小小区基站的出现次数进行计数;以及基于计数的结果来确定优先级。
根据本公开的优选实施例,PRS的重新配置信息可以包括指示在DRS中配置PRS的融入信息。进一步,处理电路110(例如生成单元112)可以基于预定时间之内的用于对各个UE进行定位的休眠小小区基站的出现次数来生成融入信息。
根据本公开的优选实施例,融入信息可以包括指示PRS在DRS中的配置位置的位置信息。进一步,处理电路110(例如生成单元112)可以基于DRS的配置信息来生成位置信息。
需要说明的是,根据本公开的实施例,如上所述的无线通信系统可以是LTE-A(Long Term Evolution-Advanced,高级长期演进)蜂窝通信系统,电子设备100可以是核心网中的定位服务器,并且电子设备100还可以包括通信单元120等。通信单元120例如可以从基站接收相关信息以及/或者向基站发送相关信息。
接下来详细地描述无线通信系统中的基站侧的电子设备。图2图示了根据本公开的实施例的无线通信系统中的电子设备200的结构。
如图2所示,电子设备200可以包括处理电路210。需要说明的是,电子设备200既可以包括一个处理电路210,也可以包括多个处理电路210。另外,电子设备200还可以包括通信单元220等。
如上面提到的那样,同样地,处理电路210也可以包括各种分立的功能单元以执行各种不同的功能和/或操作。这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
如图2所示,处理电路210可以包括确定单元211和重新配置单元212。
确定单元211可以确定来自控制设备的PRS的重新配置信息。这里,PRS的重新配置信息可以包括指示在DRS中配置PRS的融入信息。
重新配置单元212可以基于融入信息对DRS进行重新配置,以对UE进行定位。
优选地,融入信息可以包括指示PRS在DRS中的配置位置的位置信息。进一步,处理电路210(例如重新配置单元212)可以基于位置信息对DRS进行重新配置。
优选地,处理电路210(例如重新配置单元212)可以将PRS配置为在DRS中占据1、2或4个子帧。
优选地,处理电路210(例如重新配置单元212)可以将PRS的周期配置为DRS的周期的n倍,其中n为自然数。
需要说明的是,根据本公开的实施例,如上所述的无线通信系统可以是LTE-A蜂窝通信系统,电子设备200可以是无线通信系统中的处于关闭状态的小小区基站,并且电子设备200还可以包括收发机(例如通信单元220)以通过空中接口发射DRS。
图3图示了根据本公开的实施例的无线通信系统中的电子设备300的结构。
如图3所示,电子设备300可以包括处理电路310。需要说明的是,电子设备300既可以包括一个处理电路310,也可以包括多个处理电路310。另外,电子设备300还可以包括通信单元320等。
如上面提到的那样,同样地,处理电路310也可以包括各种分立的功能单元以执行各种不同的功能和/或操作。这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
如图3所示,处理电路310可以包括确定单元311和PRS重新配置单元312。
确定单元311可以确定来自控制设备的PRS的重新配置信息。这里,PRS的重新配置信息可以包括休眠小小区基站的PRS配置辅助信息。
PRS重新配置单元312可以基于休眠小小区基站的PRS配置辅助信息对PRS进行重新配置,以利用作为空闲资源的休眠小小区基站的发射PRS的时频资源对UE进行定位。
优选地,PRS配置辅助信息可以是关于休眠小小区基站发射PRS的资源粒子的具体位置信息。
优选地,PRS配置辅助信息可以是关于休眠小小区基站的PRS配置 信息。
优选地,处理电路310(例如PRS重新配置单元312)可以进一步执行以下操作:确定来自控制设备的资源释放信息,其中,资源释放信息指示休眠小小区基站已被开启;以及基于资源释放信息对PRS进行重新配置,以释放休眠小小区基站的发射PRS的时频资源。
需要说明的是,根据本公开的实施例,如上所述的无线通信系统可以是LTE-A蜂窝通信系统,电子设备300可以是无线通信系统中的处于开启状态的小小区基站,并且电子设备300还可以包括收发机(例如通信单元320)以通过空中接口发射PRS。
接下来详细地描述无线通信系统中的UE侧的电子设备。图4图示了根据本公开的实施例的无线通信系统中的电子设备400的结构。
如图4所示,电子设备400可以包括处理电路410。需要说明的是,电子设备400既可以包括一个处理电路410,也可以包括多个处理电路410。另外,电子设备400还可以包括通信单元420等。
如上面提到的那样,同样地,处理电路410也可以包括各种分立的功能单元以执行各种不同的功能和/或操作。这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
如图4所示,处理电路410可以包括确定单元411、测量单元412和生成单元413。
确定单元411可以确定用于UE的定位测量辅助数据。这里,辅助数据可以包括小小区基站的PRS的重新配置信息。
测量单元412可以基于辅助数据对小小区基站发送的PRS进行定位测量。
生成单元413可以基于对小小区基站发送的PRS进行定位测量的结果生成定位信息,以对UE进行定位。
优选地,PRS的重新配置信息可以包括激活态小小区基站的PRS发射周期。
优选地,PRS的重新配置信息可以包括指示在休眠小小区基站发射的DRS中配置PRS的融入信息。
优选地,处理电路410(例如测量单元412)还可以对休眠小小区基站的DRS进行探测,并从中提取PRS以进行定位测量。
需要说明的是,根据本公开的实施例,如上所述的无线通信系统可以是LTE-A蜂窝通信系统,电子设备400可以是无线通信系统中的UE,并且电子设备400还可以包括收发机(例如通信单元420),以从网络设备接收定位测量辅助数据以及向网络设备发送定位信息。
上面结合图1至4概括地描述了根据本公开的实施例的无线通信系统中的电子设备。接下来结合具体的实施例来进一步详细地描述本公开的技术方案。
首先来描述小小区on/off时的资源协调机制。
当一个或多个小小区关闭时,其发送PRS的时频资源便处于空闲状态。如果小小区长期关闭,将会造成时频资源的浪费。因此,本公开引入了一种在小小区on/off时的资源协调机制,将空闲的资源分配给其他on小区(亦即处于开启状态的小区)使用,进而增加其PRS的覆盖范围、提升UE对其PRS的接收率,有助于保证对UE的覆盖,使UE能达到较好的定位效果。这种资源协调机制的具体步骤如下。
1)小区集合的初始协调。首先,例如定位服务器创建一定范围内的小区集合(可以是多个宏小区形成的集合,也可以是小小区簇,下文主要以小小区集合作为示例描述),并且对小区集合进行如下配置:在这种小区集合内,对于PRS模式相同(即PRS具有相同的频率偏移)的小区,配置使得其中一个发送PRS时(或者应当发送PRS时)模式相同的其他小区保持PRS静默(PRS静默机制)。其中PRS模式与小区ID有关,例如小区ID模6相同的小区具有相同的PRS模式。借此保证其他小区在复用off小区(亦即处于关闭状态的小区)PRS信号的时频资源时不造成强烈的干扰。
2)Neighbour Cell Info list(邻小区信息列表)的确定。当例如小小区簇范围内有UE需要定位时,UE周围或许存在较多可用于测量PRS的小区,并且不同的测量小区拓扑将对UE的定位精度产生影响。因此,定位服务器需要确定UE对应的测量小小区,然后将测量小小区的信息通过OTDOA Neighbour Cell Info list发送给UE。UE的测量小区例如可以通过如下方法确定:
首先,UE的服务小区通过E-CID(Enhanced Cell-ID,增强小区ID)以确定UE的大致位置和相对于服务小区的方位,同时,服务小区将这些大概地理信息发送给定位服务器;
由于定位服务器可获得每个小小区的地理位置,因此定位服务器可以根据UE的地理位置信息选取此UE合适的测量小区,使得UE尽可能位于所有测量小区的几何中心,并且选取尽可能多的测量小区以进一步提高定位精度;以及
定位服务器将选取的测量小区通过OTDOA Neighbour Cell Info list发送给UE。
值得注意的是,UE定位结束后,定位服务器还可以借助之前获取的UE大概地理信息定位来检验UE定位结果是否合理。如果不合理,定位服务器可以再次选取测量小区,并通知UE进行重新定位。
3)小区优先列表的建立。定位服务器获得每个定位UE的OTDOA Neighbour Cell Info list后,对这个小小区集合创建并维护一个发送PRS的小区优先列表。
这里,小小区发送PRS信号的优先级由各小小区ID在一段预定的时间窗内,出现在小小区集合覆盖范围内所有UE的OTDOA Neighbour Cell Info list中的次数所影响。可以看到,小小区出现在所有UE的OTDOA Neighbour Cell Info list中的次数越多,其发送PRS的优先级越高。
4)时频资源池列表的维护。可以由定位服务器或管理多个小区的例如宏基站维护一个off小区的PRS信号时频资源池列表。
Neighbour Cell Info列表中的PRS信息可以包括PRS带宽、PRS配置指标、PRS下行帧数和静默信息等信息。根据PRS信息可以得到各小区的PRS时频资源块,即各小区发送PRS的精确时刻和载波频率。图5(a)示出了某小区某时刻承载PRS、CRS、PCFICH(Physical control format indicator channel,物理控制格式指示信道)/PHICH(Physical Hybrid ARQ Indicator Channel,物理混合自动重传指示信道)/PDCCH(Physical Downlink Control Channel,物理下行控制信道)等资源块在定位子帧中的位置,其中空白区域内不包含任何数据。可以从中提取出PRS资源块,如图5(b)所示。
可以将提取出的off小区的PRS时频资源块全部存储在休眠小区的PRS信号时频资源池中。一旦有新的小区进入休眠,则将其PRS时频资源块放入此资源池中。另一方面,一旦休眠小区开启,则将资源池本属于该小区的PRS时频资源块释放,开启后的小区重新按照之前的PRS模式 发送PRS。
5)休眠小区PRS时频资源块的协调。只要本小小区集合的off小区PRS信号时频资源池不为空,此小小区集合内的on小区就可以利用此资源池内的PRS时频资源。资源池内的PRS时频资源依据步骤3)中定义的PRS发送小区优先列表分配给小小区集合中的on小区。其分配方案例如可以如下:
首先,将资源池内第一个PRS时频资源分配给排在优先列表第一位的小小区,同时,将此小区标记为已分配;
然后,将资源池内第二个PRS时频资源分配给排在优先列表第二位的小小区并标记;以及
重复以上步骤,直到资源池内的PRS时频资源被分配完毕为止。
分配PRS时频资源块的示意图如图5(c)和5(d)所示。假设小小区集合内某on小区未分配额外PRS时频资源块时的定位子帧如图5(c)所示。进一步假定该on小区获得资源池内的一个PRS时频资源块,且该PRS时频资源块示意图如图5(b)所示。
在一个示例中,该off小区原本的PRS的发射时刻与该on小区的PRS信号处于同一子帧,则分配PRS时频资源块后的定位子帧如图5(d)所示。
由于不同小区之间的PRS信号一般情况下都是同步的,所以上述情况应占大多数。如果on小区与off小区发送PRS时采用了PRS muting机制,例如这两个小区的PRS模式相同,此时off小区的PRS时频资源块对应的时刻与on小区的PRS信号可能处于不同子帧。在本公开的示例中将该off小区的PRS时频资源块分配给PRS模式相同的on小区,则该on小区的定位子帧数可能会增加,也将达到增强PRS可测性的目的。
根据步骤1)中的定义,由于在小小区集合内,PRS模式相同的小小区发送PRS时彼此采取了PRS muting机制,所以on小区在复用off小区PRS信号的时频资源时不会造成强烈的干扰。
此资源协调机制避免了因小小区休眠而产生的时频资源浪费,同时增加了on小小区PRS的传输资源,提高了UE对PRS的接收率,一定程度上保证了对UE的覆盖,因此增强了PRS信号的可测性,从而提高UE定位准确性与定位速度。
接下来描述休眠小小区的辅助定位机制。
当某个小小区进入休眠状态时,不发送PRS信号,而在某些情况下一些UE恰好需要该小区的PRS信号才能精确定位。因此,本公开考虑在满足一定条件的情况下,将PRS融入DRS信号中,以达到辅助定位的目的。并且,DRS中的CRS亦可以辅助进行定位。
在小小区休眠状态下,一个无线帧中的第1个子帧发送PSS/SSS,CSI-RS可能在第2-5个子帧中发送,也可能不发送。定位服务器根据一定的规则决定该休眠小小区PRS的开关、周期及位置配置,然后将该信息通过例如S1信令传送(直接地或通过宏基站间接地)给该休眠小小区。
定位服务器例如在存储器中可以为每个off小小区维护一个计数器,该计数器统计在一定时间内该小小区在定位服务器的所有的Neighbour Cell Info list中出现的次数N。
就PRS的开关条件而言,当某个未发送PRS的off小小区满足N≥N0(N0例如为根据经验值而确定的自然数)时,定位服务器发送给此小小区PRS配置信令。该小小区在下一周期开始发送PRS。
进一步,当发送PRS的某个off小小区满足N<N0-ΔN时,定位服务器发送给该小小区停止发送PRS信令,该小小区在下一信号周期停止发送PRS。其中ΔN为一固定常数(例如为根据经验值而确定的自然数)。
当某个off小小区满足PRS的发送条件时,则其发送PRS的配置方案例如可以如下:
当N0≤N<N1(N1为根据经验值而确定的自然数)时,PRS在每个DRS场合内的配置为1个子帧;
当N1≤N<N2(N2为根据经验值而确定的自然数)时,PRS配置为2个子帧;以及
当N≥N2且该休眠小小区不发送CSI-RS时,PRS配置将为4个子帧;当N≥N2且该休眠小小区发送CSI-RS时,PRS配置为2个子帧。
根据上述示例,越多的UE适合于通过该off小小区的PRS进行定位,该off小小区被配置的DRS包含的PRS定位子帧越多,反之亦然,从而可以提升各个UE对该off小小区的PRS的接收率,并且可以平衡由此带来的干扰。
PRS可放在除PSS/SSS、CRS及CSI-RS(如果有的话)所在子帧 之外的其他子帧。其中一种配置方法为off小小区基站从DRS的第0个子帧开始将PRS按序放入各个空的子帧当中,直到所有的PRS子帧配置完毕。
此外,PRS周期可配置为DRS周期的M(M≥1)倍。根据本公开的技术方案最多将DRS的持续时间扩展到5ms,所以DMTC的6ms配置可维持不变。
需要进行定位信号测量的UE在对off小区进行测量时,其测量配置与DMTC配置一致。当测量到足够强的CRS信号时,该CRS信号能够与PRS信号一起作为定位信号。
如上所述的机制填补了小小区关闭过多时UE无法定位的缺陷,在满足UE室内定位性能的同时,休眠小小区仍然可获得较好的节能效果。[167]下面进一步结合图6至8来详细地描述根据本公开的实施例的无线通信系统中的基站侧和用户侧之间的信号交互流程。
图6是图示根据本公开的实施例的用于在无线通信系统中进行无线通信的方法的序列图。在图6中示出了空闲资源协调机制的信令流程。
如图6所示,首先,定位服务器可以维护小小区发送PRS的优先列表以及小小区集合的PRS时频资源池。
接下来,小小区基站(图6中的休眠小小区基站)因为某种原因(如上文中提到的那样)而进行小小区关闭,然后将小小区off(关闭)信息发送到定位服务器。
在接收到来自小小区基站的小小区off信息之后,定位服务器将off小小区发送PRS的时频资源块加入时频资源池,并且将资源池中的空闲资源按照小小区优先列表进行分配。
接下来,定位服务器可以向激活态小小区基站提供已分配空闲资源的小小区的PRS配置辅助信息。此信息可以是off小小区时频资源的符号和子载波的具体位置(显式地指示资源),也可以是所分配off小小区的PCID、muting等信息(隐式地通过PCID等与相应资源的预定关系指示资源)。
接下来,已分配空闲资源的激活态小小区基站可以将PRS测量辅助信息发送给UE(例如通过PDSCH承载的数据形式发送)。另外,对应的激活态小小区基站可以根据新的配置来发送PRS信号。
然后,UE就可以根据新的测量辅助信息来测量对应激活态小小区基站的PRS。
其间,当休眠小小区基站重新打开时,休眠小小区基站可以向定位服务器发送小小区on的信息。
在接收到小小区on的信息之后,定位服务器可以通知占用此off小小区的资源的on小小区以及重新打开的小小区按照原PRS配置进行发送,即on小小区释放重新开启的小小区的PRS传输资源以由该重新开启的小小区继续使用。
接下来,激活态小小区基站可以将对应小小区PRS测量辅助信息或重置指示发送给UE(数据形式)。
接下来,对应激活态小小区可以根据之前未接受空闲资源时的配置来发送PRS信号,而重新打开的小小区则可以根据最初的配置来发送PRS信号。
接下来,UE也可以根据新的测量辅助信息或原始配置来测量对应小小区的PRS。
图7是图示根据本公开的另一实施例的用于在无线通信系统中进行无线通信的方法的序列图。在图7中示出了休眠小小区辅助定位机制的信令流程的例子。需要说明的是,如图7所示的休眠小小区辅助定位机制和如图6所示的空闲资源协调机制针对的是不同的应用场景。具体地,空闲资源协调机制针对的是小小区长期关闭而造成时频资源浪费的场景,而休眠小小区辅助定位机制则针对的是一些UE恰好需要休眠小小区的PRS信号才能精确定位的场景。在本公开的技术方案中,既可以单独使用休眠小小区辅助定位机制或空闲资源协调机制,也可以对这两种机制进行组合使用,本公开对此并没有特殊限制。
如图7所示,定位服务器可以为off小小区维护一个计数器,以此决定off小小区是否在DRS中融入PRS。
其间,宏小区基站向休眠小小区基站发送DRS配置。然后,休眠小小区基站可以发送DRS信号。
在这之后,定位服务器例如可以确定某个off(休眠)小小区满足PRS开启条件。然后,定位服务器可以向该休眠小小区基站发送开启PRS请求,并且提供PRS的连续子帧数和周期等配置信息。
接下来,休眠小小区基站可以根据配置而在DRS信号中插入相应的PRS。然后,休眠小小区基站可以确认在DRS中融入PRS,并且向定位服务器提供DRS测量辅助信息。
其间,当UE产生定位需求时,可以向其服务基站例如参考小小区基站要求定位辅助数据信号(数据形式)。参考小小区基站转而可以向定位服务器要求定位辅助数据信号。
接下来,定位服务器可以向参考小小区基站发送定位辅助数据。参考小小区基站转而可以向UE发送定位辅助数据(数据形式)。接下来的定位测量信令流程对于本领域技术人员而言是众所周知的,在此不再赘述。
另外,定位服务器也可以根据计数器的统计值来决定关闭PRS的发送。当决定关闭PRS的发送时,定位服务器可以向休眠小小区基站发送关闭PRS的信令。
然后,休眠小小区基站发送DRS信号中将不再包含PRS。
图8是图示根据本公开的另一实施例的用于在无线通信系统中进行无线通信的方法的序列图。在图8中示出了休眠小小区辅助定位机制的信令流程的另一个例子。需要说明的是,在如图7所示的休眠小小区辅助定位机制中,定位服务器可以直接与休眠小小区基站进行通信;而在如图8所示的休眠小小区辅助定位机制中,定位服务器可以经由宏小区基站与休眠小小区基站进行通信,本公开对此并没有特殊限制。
如图8所示,定位服务器可以为off小小区维护一个计数器,以此决定off小小区是否在DRS中开启PRS。
其间,宏小区基站向休眠小小区基站发送DRS配置。然后,休眠小小区基站可以发送DRS信号。
在这之后,定位服务器例如可以确定某个off小小区满足PRS开启条件。然后,定位服务器可以向宏小区基站发送开启PRS的信令,并且提供PRS的连续子帧数和周期等配置信息。
接下来,宏小区基站可以向休眠小小区基站提供插入PRS后的DRS配置信息,并且可以向定位服务器提供DRS测量辅助信息。
接下来,休眠小小区基站可以根据配置而在DRS信号中插入相应的PRS。
其间,当UE产生定位需求时,可以向参考小小区基站要求定位辅助数据信号(数据形式)。参考小小区基站转而可以向定位服务器要求定位辅助数据信号。
接下来,定位服务器可以向参考小小区基站发送定位辅助数据。参考小小区基站转而可以向UE发送定位辅助数据(数据形式)。接下来的定位测量信令流程对于本领域技术人员而言是众所周知的,在此不再赘述。
另外,定位服务器也可以根据计数器的统计值来决定关闭PRS的发送。当决定关闭PRS的发送时,定位服务器可以向宏小区基站发送关闭PRS的信令。
接下来,宏小区基站可以向休眠小小区基站提供不插入PRS的DRS配置信息。
接下来,休眠小小区基站可以按照该配置来发送DRS。
接下来描述根据本公开的实施例的用于在无线通信系统中进行无线通信的方法。
根据本公开的实施例的用于在无线通信系统中进行无线通信的方法可以包括:获取预定地理区域之内的小小区基站的开启/关闭状态;以及基于获取的小小区基站的开启/关闭状态,生成用于所述预定地理区域之内的小小区基站的定位参考信号PRS的重新配置信息,以对所述预定地理区域之内的用户设备进行定位。
优选地,PRS的重新配置信息可以包括激活态小小区基站的PRS发射周期。进一步,该方法还可以包括:基于预定地理区域之内的休眠小小区基站占预定地理区域之内的小小区基站的比例来调整激活态小小区基站的PRS发射周期。
优选地,当上面提到的比例大于第一阈值时,可以缩小激活态小小区基站的PRS发射周期,并且当该比例小于第二阈值时,可以增加激活态小小区基站的PRS发射周期。
优选地,PRS的重新配置信息可以包括预定地理区域之内的休眠小小区基站的PRS的配置辅助信息。进一步,该方法还可以包括:将休眠小小区基站的发射PRS的时频资源作为空闲资源分配给激活态小小区基站。
优选地,可以基于激活态小小区基站的优先级将空闲资源分配给激活态小小区基站。
优选地,可以通过以下来确定优先级:基于各个用户设备的粗略地理位置确定用于对各个用户设备进行定位的激活态小小区基站;在预定时间之内对用于对各个用户设备进行定位的激活态小小区基站的出现次数进行计数;以及基于计数的结果来确定优先级。
优选地,PRS的重新配置信息可以包括指示在发现参考信号DRS中配置PRS的融入信息。进一步,该方法还可以包括:基于预定时间之内的用于对各个用户设备进行定位的休眠小小区基站的出现次数来生成融入信息。
优选地,融入信息可以包括指示PRS在DRS中的配置位置的位置信息。进一步,该方法还可以包括:基于DRS的配置信息来生成位置信息。
另一方面,根据本公开的另一实施例的用于在无线通信系统中进行无线通信的方法可以包括:确定来自控制设备的定位参考信号PRS的重新配置信息,其中,所述PRS的重新配置信息包括指示在发现参考信号DRS中配置所述PRS的融入信息;以及基于所述融入信息对所述DRS进行重新配置,以对用户设备进行定位。
优选地,融入信息可以包括指示PRS在DRS中的配置位置的位置信息。进一步,该方法还可以包括:基于位置信息对DRS进行重新配置。
优选地,可以将PRS配置为在DRS中占据1、2或4个子帧。
优选地,可以将PRS的周期配置为DRS的周期的n倍,其中n为自然数。
另一方面,根据本公开的另一实施例的用于在无线通信系统中进行无线通信的方法可以包括:确定来自控制设备的定位参考信号PRS的重新配置信息,其中,所述PRS的重新配置信息包括休眠小小区基站的PRS配置辅助信息;以及基于所述PRS配置辅助信息对所述PRS进行重新配置,以利用作为空闲资源的所述休眠小小区基站的发射PRS的时频资源对用户设备进行定位。
优选地,PRS配置辅助信息可以是关于休眠小小区基站发射PRS的资源粒子的具体位置信息。
优选地,PRS配置辅助信息可以是关于休眠小小区基站的PRS配置信息。
优选地,该方法可以进一步包括执行以下操作:确定来自控制设备的资源释放信息,其中,所述资源释放信息指示休眠小小区基站已被开启;以及基于资源释放信息对PRS进行重新配置,以释放休眠小小区基站的发射PRS的时频资源。
另一方面,根据本公开的另一实施例的用于在无线通信系统中进行无线通信的方法可以包括:确定用于用户设备的定位测量辅助数据,所述辅助数据包括小小区基站的定位参考信号PRS的重新配置信息;基于所述辅助数据对所述小小区基站发送的PRS进行定位测量;以及基于对所述小小区基站发送的PRS进行定位测量的结果生成定位信息,以对所述用户设备进行定位。
优选地,PRS的重新配置信息可以包括激活态小小区基站的PRS发射周期。
优选地,PRS的重新配置信息可以包括指示在休眠小小区基站发射的发现参考信号DRS中配置PRS的融入信息。
优选地,该方法还可以包括:对休眠小小区基站的DRS进行探测,并从中提取PRS以进行定位测量。
根据本公开的实施例的用于在无线通信系统中进行无线通信的方法的上述各个步骤的各种具体实施方式前面已经作过详细描述,在此不再重复说明。
本公开的技术能够应用于各种产品。例如,本公开中提到的定位服务器可以被实现为任何类型的服务器,诸如塔式服务器、机架式服务器以及刀片式服务器。定位服务器可以为安装在服务器上的控制模块(诸如包括单个晶片的集成电路模块,以及插入到刀片式服务器的槽中的卡或刀片(blade))。
例如,本公开中提到的基站可以被实现为任何类型的演进型节点B(eNB),诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,下面 将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
例如,本公开中提到的UE可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。UE还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,UE可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
图9是示出可以应用本公开的技术的服务器900的示意性配置的示例的框图。服务器900包括处理器901、存储器902、存储装置903、网络接口904以及总线906。
处理器901可以为例如中央处理单元(CPU)或数字信号处理器(DSP),并且控制服务器900的功能。存储器902包括随机存取存储器(RAM)和只读存储器(ROM),并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。
网络接口904为用于将服务器900连接到有线通信网络705的有线通信接口。有线通信网络705可以为诸如演进分组核心网(EPC)的核心网或者诸如因特网的分组数据网络(PDN)。
总线906将处理器901、存储器902、存储装置903和网络接口904彼此连接。总线906可以包括各自具有不同速度的两个或更多个总线(诸如高速总线和低速总线)。
在图9所示的服务器900中,通过使用图1所描述的处理电路110以及其中的获取单元111和生成单元112可以由处理器901实现,并且通过使用图1所描述的通信单元120可以由网络接口904实现。例如,处理器901可以通过执行存储器902或存储装置903中存储的指令而执行小小区基站的开启/关闭状态获取功能和PRS重新配置信息生成功能。
图10是示出可以应用本公开的技术的eNB的示意性配置的第一示例的框图。eNB 1000包括一个或多个天线1010以及基站设备1020。基站设备1020和每个天线1010可以经由RF线缆彼此连接。
天线1010中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1020发送和接收无线信号。如图10所示,eNB 1000可以包括多个天线1010。 例如,多个天线1010可以与eNB 1000使用的多个频带兼容。虽然图10示出其中eNB 1000包括多个天线1010的示例,但是eNB 1000也可以包括单个天线1010。
基站设备1020包括控制器1021、存储器1022、网络接口1023以及无线通信接口1025。
控制器1021可以为例如CPU或DSP,并且操作基站设备1020的较高层的各种功能。例如,控制器1021根据由无线通信接口1025处理的信号中的数据来生成数据分组,并经由网络接口1023来传递所生成的分组。控制器1021可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1021可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器1022包括RAM和ROM,并且存储由控制器1021执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1023为用于将基站设备1020连接至核心网1024的通信接口。控制器1021可以经由网络接口1023而与核心网节点或另外的eNB进行通信。在此情况下,eNB 1000与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1023还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1023为无线通信接口,则与由无线通信接口1025使用的频带相比,网络接口1023可以使用较高频带用于无线通信。
无线通信接口1025支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1010来提供到位于eNB 1000的小区中的终端的无线连接。无线通信接口1025通常可以包括例如基带(BB)处理器1026和RF电路1027。BB处理器1026可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1021,BB处理器1026可以具有上述逻辑功能的一部分或全部。BB处理器1026可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1026的功能改变。该模块可以为插入到基站设备1020的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1027可以包括例如混频器、滤波器和放大器,并且经由天线1010 来传送和接收无线信号。
如图10所示,无线通信接口1025可以包括多个BB处理器1026。例如,多个BB处理器1026可以与eNB 1000使用的多个频带兼容。如图10所示,无线通信接口1025可以包括多个RF电路1027。例如,多个RF电路1027可以与多个天线元件兼容。虽然图10示出其中无线通信接口1025包括多个BB处理器1026和多个RF电路1027的示例,但是无线通信接口1025也可以包括单个BB处理器1026或单个RF电路1027。
图11是示出可以应用本公开的技术的eNB的示意性配置的第二示例的框图。eNB 1130包括一个或多个天线1140、基站设备1150和RRH1160。RRH 1160和每个天线1140可以经由RF线缆而彼此连接。基站设备1150和RRH 1160可以经由诸如光纤线缆的高速线路而彼此连接。
天线1140中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1160发送和接收无线信号。如图11所示,eNB 1130可以包括多个天线1140。例如,多个天线1140可以与eNB 1130使用的多个频带兼容。虽然图11示出其中eNB 1130包括多个天线1140的示例,但是eNB 1130也可以包括单个天线1140。
基站设备1150包括控制器1151、存储器1152、网络接口1153、无线通信接口1155以及连接接口1157。控制器1151、存储器1152和网络接口1153与参照图10描述的控制器1021、存储器1022和网络接口1023相同。
无线通信接口1155支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 1160和天线1140来提供到位于与RRH 1160对应的扇区中的终端的无线通信。无线通信接口1155通常可以包括例如BB处理器1156。除了BB处理器1156经由连接接口1157连接到RRH 1160的RF电路1164之外,BB处理器1156与参照图10描述的BB处理器1026相同。如图11所示,无线通信接口1155可以包括多个BB处理器1156。例如,多个BB处理器1156可以与eNB 1130使用的多个频带兼容。虽然图11示出其中无线通信接口1155包括多个BB处理器1156的示例,但是无线通信接口1155也可以包括单个BB处理器1156。
连接接口1157为用于将基站设备1150(无线通信接口1155)连接至RRH 1160的接口。连接接口1157还可以为用于将基站设备1150(无线通信接口1155)连接至RRH 1160的上述高速线路中的通信的通信模 块。
RRH 1160包括连接接口1161和无线通信接口1163。
连接接口1161为用于将RRH 1160(无线通信接口1163)连接至基站设备1150的接口。连接接口1161还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1163经由天线1140来传送和接收无线信号。无线通信接口1163通常可以包括例如RF电路1164。RF电路1164可以包括例如混频器、滤波器和放大器,并且经由天线1140来传送和接收无线信号。如图11所示,无线通信接口1163可以包括多个RF电路1164。例如,多个RF电路1164可以支持多个天线元件。虽然图11示出其中无线通信接口1163包括多个RF电路1164的示例,但是无线通信接口1163也可以包括单个RF电路1164。
在图10和图11所示的eNB 1000和eNB 1130中,通过使用图2所描述的处理电路210以及其中的确定单元211和重新配置单元212以及通过使用图3所描述的处理电路310以及其中的确定单元311和PRS重新配置单元312可以由控制器1021和/或控制器1151实现,并且通过使用图2所描述的通信单元220以及通过图3所描述的通信单元320可以由无线通信接口1025以及无线通信接口1155和/或无线通信接口1163实现。功能的至少一部分也可以由控制器1021和控制器1151实现。例如,控制器1021和/或控制器1151可以通过执行相应的存储器中存储的指令而执行PRS重新配置信息确定功能和DRS/PRS重新配置功能。
图12是示出可以应用本公开的技术的智能电话1200的示意性配置的示例的框图。智能电话1200包括处理器1201、存储器1202、存储装置1203、外部连接接口1204、摄像装置1206、传感器1207、麦克风1208、输入装置1209、显示装置1210、扬声器1211、无线通信接口1212、一个或多个天线开关1215、一个或多个天线1216、总线1217、电池1218以及辅助控制器1219。
处理器1201可以为例如CPU或片上系统(SoC),并且控制智能电话1200的应用层和另外层的功能。存储器1202包括RAM和ROM,并且存储数据和由处理器1201执行的程序。存储装置1203可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1204为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1200的接口。 [248]摄像装置1206包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1207可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1208将输入到智能电话1200的声音转换为音频信号。输入装置1209包括例如被配置为检测显示装置1210的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1210包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1200的输出图像。扬声器1211将从智能电话1200输出的音频信号转换为声音。
无线通信接口1212支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1212通常可以包括例如BB处理器1213和RF电路1214。BB处理器1213可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1214可以包括例如混频器、滤波器和放大器,并且经由天线1216来传送和接收无线信号。无线通信接口1212可以为其上集成有BB处理器1213和RF电路1214的一个芯片模块。如图12所示,无线通信接口1212可以包括多个BB处理器1213和多个RF电路1214。虽然图12示出其中无线通信接口1212包括多个BB处理器1213和多个RF电路1214的示例,但是无线通信接口1212也可以包括单个BB处理器1213或单个RF电路1214。
此外,除了蜂窝通信方案之外,无线通信接口1212可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1212可以包括针对每种无线通信方案的BB处理器1213和RF电路1214。
天线开关1215中的每一个在包括在无线通信接口1212中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1216的连接目的地。
天线1216中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1212传送和接收无线信号。如图12所示,智能电话1200可以包括多个天线1216。虽然图12示出其中智能电话1200包括多个天线1216的示例,但是智能电话1200也可以包括单个天线1216。
此外,智能电话1200可以包括针对每种无线通信方案的天线1216。 在此情况下,天线开关1215可以从智能电话1200的配置中省略。
总线1217将处理器1201、存储器1202、存储装置1203、外部连接接口1204、摄像装置1206、传感器1207、麦克风1208、输入装置1209、显示装置1210、扬声器1211、无线通信接口1212以及辅助控制器1219彼此连接。电池1218经由馈线向图12所示的智能电话1200的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1219例如在睡眠模式下操作智能电话1200的最小必需功能。
在图12所示的智能电话1200中,通过使用图4所描述的处理电路410以及其中的确定单元411、测量单元412和生成单元413可以由处理器1201或辅助控制器1219实现,并且通过使用图4所描述的通信单元420可以由无线通信接口1212实现。功能的至少一部分也可以由处理器1201或辅助控制器1219实现。例如,处理器1201或辅助控制器1219可以通过执行存储器1202或存储装置1203中存储的指令而执行定位测量辅助数据确定功能、定位测量功能和定位信息生成功能。
图13是示出可以应用本公开的技术的汽车导航设备1320的示意性配置的示例的框图。汽车导航设备1320包括处理器1321、存储器1322、全球定位系统(GPS)模块1324、传感器1325、数据接口1326、内容播放器1327、存储介质接口1328、输入装置1329、显示装置1330、扬声器1331、无线通信接口1333、一个或多个天线开关1336、一个或多个天线1337以及电池1338。
处理器1321可以为例如CPU或SoC,并且控制汽车导航设备1320的导航功能和另外的功能。存储器1322包括RAM和ROM,并且存储数据和由处理器1321执行的程序。
GPS模块1324使用从GPS卫星接收的GPS信号来测量汽车导航设备1320的位置(诸如纬度、经度和高度)。传感器1325可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口1326经由未示出的终端而连接到例如车载网络1341,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器1327再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口1328中。输入装置1329包括例如被配置为检测显示装置1330的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置1330包括诸如LCD或 OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器1331输出导航功能的声音或再现的内容。
无线通信接口1333支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1333通常可以包括例如BB处理器1334和RF电路1335。BB处理器1334可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1335可以包括例如混频器、滤波器和放大器,并且经由天线1337来传送和接收无线信号。无线通信接口1333还可以为其上集成有BB处理器1334和RF电路1335的一个芯片模块。如图13所示,无线通信接口1333可以包括多个BB处理器1334和多个RF电路1335。虽然图13示出其中无线通信接口1333包括多个BB处理器1334和多个RF电路1335的示例,但是无线通信接口1333也可以包括单个BB处理器1334或单个RF电路1335。
此外,除了蜂窝通信方案之外,无线通信接口1333可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口1333可以包括BB处理器1334和RF电路1335。
天线开关1336中的每一个在包括在无线通信接口1333中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线1337的连接目的地。
天线1337中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1333传送和接收无线信号。如图13所示,汽车导航设备1320可以包括多个天线1337。虽然图13示出其中汽车导航设备1320包括多个天线1337的示例,但是汽车导航设备1320也可以包括单个天线1337。
此外,汽车导航设备1320可以包括针对每种无线通信方案的天线1337。在此情况下,天线开关1336可以从汽车导航设备1320的配置中省略。
电池1338经由馈线向图13所示的汽车导航设备1320的各个块提供电力,馈线在图中被部分地示为虚线。电池1338累积从车辆提供的电力。
在图13示出的汽车导航设备1320中,通过使用图4所描述的处理电路410以及其中的确定单元411、测量单元412和生成单元413可以由 处理器1321实现,并且通过使用图4所描述的通信单元420可以由无线通信接口1333实现。功能的至少一部分也可以由处理器1321实现。例如,处理器1321可以通过执行存储器1322中存储的指令而执行定位测量辅助数据确定功能、定位测量功能和定位信息生成功能。
本公开的技术也可以被实现为包括汽车导航设备1320、车载网络1341以及车辆模块1342中的一个或多个块的车载系统(或车辆)1340。车辆模块1342生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络1341。
在本公开的系统和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。

Claims (28)

  1. 一种无线通信系统中的电子设备,包括:
    一个或多个处理电路,所述处理电路被配置为执行以下操作:
    获取预定地理区域之内的小小区基站的开启/关闭状态;以及
    基于获取的小小区基站的开启/关闭状态,生成用于所述预定地理区域之内的小小区基站的定位参考信号PRS的重新配置信息,以对所述预定地理区域之内的用户设备进行定位。
  2. 根据权利要求1所述的电子设备,其中,所述PRS的重新配置信息包括激活态小小区基站的PRS发射周期,并且所述处理电路进一步被配置为基于所述预定地理区域之内的休眠小小区基站占所述预定地理区域之内的小小区基站的比例来调整所述激活态小小区基站的PRS发射周期。
  3. 根据权利要求2所述的电子设备,其中,当所述比例大于第一阈值时,所述处理电路缩小所述激活态小小区基站的PRS发射周期,并且当所述比例小于第二阈值时,所述处理电路增加所述激活态小小区基站的PRS发射周期。
  4. 根据权利要求1所述的电子设备,其中,所述PRS的重新配置信息包括所述预定地理区域之内的休眠小小区基站的PRS的配置辅助信息,并且所述处理电路进一步被配置为将所述休眠小小区基站的发射PRS的时频资源作为空闲资源分配给激活态小小区基站。
  5. 根据权利要求4所述的电子设备,其中,所述处理电路基于所述激活态小小区基站的优先级将所述空闲资源分配给所述激活态小小区基站。
  6. 根据权利要求5所述的电子设备,其中,所述处理电路通过以下来确定所述优先级:
    基于各个用户设备的粗略地理位置确定用于对各个用户设备进行定位的激活态小小区基站;
    在预定时间之内对用于对各个用户设备进行定位的激活态小小区基站的出现次数进行计数;以及
    基于计数的结果来确定所述优先级。
  7. 根据权利要求1所述的电子设备,其中,所述PRS的重新配置信息包括指示在发现参考信号DRS中配置所述PRS的融入信息,并且所述处理电路进一步被配置为基于预定时间之内的用于对各个用户设备进行定位的休眠小小区基站的出现次数来生成所述融入信息。
  8. 根据权利要求7所述的电子设备,其中,所述融入信息包括指示所述PRS在所述DRS中的配置位置的位置信息,并且所述处理电路进一步被配置为基于所述DRS的配置信息来生成所述位置信息。
  9. 根据权利要求1至8中任一项所述的电子设备,其中,所述电子设备为核心网中的定位服务器。
  10. 一种无线通信系统中的电子设备,包括:
    一个或多个处理电路,所述处理电路被配置为执行以下操作:
    确定来自控制设备的定位参考信号PRS的重新配置信息,其中,所述PRS的重新配置信息包括指示在发现参考信号DRS中配置所述PRS的融入信息;以及
    基于所述融入信息对所述DRS进行重新配置,以对用户设备进行定位。
  11. 根据权利要求10所述的电子设备,其中,所述融入信息包括指示所述PRS在所述DRS中的配置位置的位置信息,并且所述处理电路进一步被配置为基于所述位置信息对所述DRS进行重新配置。
  12. 根据权利要求10所述的电子设备,其中,所述处理电路将所述PRS配置为在所述DRS中占据1、2或4个子帧。
  13. 根据权利要求10所述的电子设备,其中,所述处理电路将所述PRS的周期配置为所述DRS的周期的n倍,其中n为自然数。
  14. 根据权利要求10至13中任一项所述的电子设备,其中,所述电子设备为处于关闭状态的小小区基站,并且还包括收发机,所述收发机被配置为通过空中接口发射所述DRS。
  15. 一种无线通信系统中的电子设备,包括:
    一个或多个处理电路,所述处理电路被配置为执行以下操作:
    确定来自控制设备的定位参考信号PRS的重新配置信息,其中,所 述PRS的重新配置信息包括休眠小小区基站的PRS配置辅助信息;以及
    基于所述PRS配置辅助信息对所述PRS进行重新配置,以利用作为空闲资源的所述休眠小小区基站的发射PRS的时频资源对用户设备进行定位。
  16. 根据权利要求15所述的电子设备,其中,所述PRS配置辅助信息是关于所述休眠小小区基站发射PRS的资源粒子的具体位置信息。
  17. 根据权利要求15所述的电子设备,其中,所述PRS配置辅助信息是关于所述休眠小小区基站的PRS配置信息。
  18. 根据权利要求15所述的电子设备,其中,所述处理电路进一步被配置为执行以下操作:
    确定来自所述控制设备的资源释放信息,其中,所述资源释放信息指示所述休眠小小区基站已被开启;以及
    基于所述资源释放信息对所述PRS进行重新配置,以释放所述休眠小小区基站的发射PRS的时频资源。
  19. 根据权利要求15至18中任一项所述的电子设备,其中,所述电子设备为处于开启状态的小小区基站,并且还包括收发机,所述收发机被配置为通过空中接口发射所述PRS。
  20. 一种无线通信系统中的电子设备,包括:
    一个或多个处理电路,所述处理电路被配置为执行以下操作:
    确定用于用户设备的定位测量辅助数据,所述辅助数据包括小小区基站的定位参考信号PRS的重新配置信息;
    基于所述辅助数据对所述小小区基站发送的PRS进行定位测量;以及
    基于对所述小小区基站发送的PRS进行定位测量的结果生成定位信息,以对所述用户设备进行定位。
  21. 根据权利要求20所述的电子设备,其中,所述PRS的重新配置信息包括激活态小小区基站的PRS发射周期。
  22. 根据权利要求20所述的电子设备,其中,所述PRS的重新配置信息包括指示在休眠小小区基站发射的发现参考信号DRS中配置所述PRS的融入信息。
  23. 根据权利要求22所述的电子设备,其中,所述处理电路还被配置为对所述休眠小小区基站的DRS进行探测,并从中提取PRS以进行定位测量。
  24. 根据权利要求20至23中任一项所述的电子设备,其中,所述电子设备为所述用户设备,并且还包括收发机,所述收发机被配置为通过空中接口从网络设备接收所述定位测量辅助数据以及向所述网络设备发送所述定位信息。
  25. 一种用于在无线通信系统中进行无线通信的方法,包括:
    获取预定地理区域之内的小小区基站的开启/关闭状态;以及
    基于获取的小小区基站的开启/关闭状态,生成用于所述预定地理区域之内的小小区基站的定位参考信号PRS的重新配置信息,以对所述预定地理区域之内的用户设备进行定位。
  26. 一种用于在无线通信系统中进行无线通信的方法,包括:
    确定来自控制设备的定位参考信号PRS的重新配置信息,其中,所述PRS的重新配置信息包括指示在发现参考信号DRS中配置所述PRS的融入信息;以及
    基于所述融入信息对所述DRS进行重新配置,以对用户设备进行定位。
  27. 一种用于在无线通信系统中进行无线通信的方法,包括:
    确定来自控制设备的定位参考信号PRS的重新配置信息,其中,所述PRS的重新配置信息包括休眠小小区基站的PRS配置辅助信息;以及基于所述PRS配置辅助信息对所述PRS进行重新配置,以利用作为空闲资源的所述休眠小小区基站的发射PRS的时频资源对用户设备进行定位。
  28. 一种用于在无线通信系统中进行无线通信的方法,包括:
    确定用于用户设备的定位测量辅助数据,所述辅助数据包括小小区基站的定位参考信号PRS的重新配置信息;
    基于所述辅助数据对所述小小区基站发送的PRS进行定位测量;以及
    基于对所述小小区基站发送的PRS进行定位测量的结果生成定位信 息,以对所述用户设备进行定位。
PCT/CN2016/083299 2015-06-01 2016-05-25 无线通信系统中的电子设备和无线通信方法 WO2016192553A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017560570A JP2018517357A (ja) 2015-06-01 2016-05-25 無線通信システムにおける電子デバイス及び無線通信方法
US15/574,613 US10368195B2 (en) 2015-06-01 2016-05-25 Electronic device in wireless communication system and wireless communication method
EP16802476.8A EP3310102A4 (en) 2015-06-01 2016-05-25 ELECTRONIC DEVICE IN WIRELESS COMMUNICATION SYSTEM AND WIRELESS COMMUNICATION METHOD
US16/416,273 US10638263B2 (en) 2015-06-01 2019-05-20 Electronic device in wireless communication system and wireless communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510292840.4 2015-06-01
CN201510292840.4A CN106304328B (zh) 2015-06-01 2015-06-01 无线通信系统中的电子设备和无线通信方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/574,613 A-371-Of-International US10368195B2 (en) 2015-06-01 2016-05-25 Electronic device in wireless communication system and wireless communication method
US16/416,273 Continuation US10638263B2 (en) 2015-06-01 2019-05-20 Electronic device in wireless communication system and wireless communication method

Publications (1)

Publication Number Publication Date
WO2016192553A1 true WO2016192553A1 (zh) 2016-12-08

Family

ID=57440017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083299 WO2016192553A1 (zh) 2015-06-01 2016-05-25 无线通信系统中的电子设备和无线通信方法

Country Status (5)

Country Link
US (2) US10368195B2 (zh)
EP (1) EP3310102A4 (zh)
JP (1) JP2018517357A (zh)
CN (1) CN106304328B (zh)
WO (1) WO2016192553A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200003853A (ko) * 2017-05-04 2020-01-10 샤프 가부시키가이샤 라디오 시스템을 위한 동기화 신호 송신 및 수신

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3448099B1 (en) * 2016-05-03 2020-07-22 Huawei Technologies Co., Ltd. Allocation of reference signals to unoccupied resource elements
WO2018025794A1 (ja) * 2016-08-04 2018-02-08 シャープ株式会社 基地局装置、ロケーションサーバーおよび通信方法
CN108811007B (zh) * 2017-05-05 2022-04-26 中兴通讯股份有限公司 Otdoa定位的辅助数据配置方法、装置及系统
CN109391925A (zh) * 2017-08-10 2019-02-26 索尼公司 无线通信系统中的电子设备以及无线通信方法
US11388572B2 (en) * 2017-09-15 2022-07-12 Here Global B.V. Configuration of a communication connection
US10440500B2 (en) * 2017-11-30 2019-10-08 Futurewei Technologies, Inc. System and method for configuring and managing on-demand positioning reference signals
CN110749877B (zh) 2018-07-23 2024-04-09 中兴通讯股份有限公司 一种定位系统及定位信号的生成和发送方法
CN112586024A (zh) * 2018-08-24 2021-03-30 华为技术有限公司 数据传输方法和装置
CN110881203A (zh) * 2018-09-05 2020-03-13 电信科学技术研究院有限公司 一种定位资源协调方法、装置、网络节点、终端及基站
US11297589B2 (en) 2018-09-28 2022-04-05 Qualcomm Incorporated Systems and methods for network procedures for on-demand random access channel (RACH)
CN111435887B (zh) * 2019-01-11 2022-02-08 大唐移动通信设备有限公司 一种定位处理方法、装置及设备
US11812284B2 (en) 2019-01-21 2023-11-07 Telefonaktiebolaget Lm Ericsson (Publ) Provision of radio coverage in a wireless communication network for serving wireless communication devices
EP3911051B1 (en) * 2019-02-15 2024-08-28 LG Electronics Inc. Positioning method in wireless communication system and device supporting same
JP7270751B2 (ja) 2019-02-15 2023-05-10 ソニーグループ株式会社 連携上りリンクベース測位の方法及びデバイス
CN111669819A (zh) * 2019-03-07 2020-09-15 广州慧睿思通信息科技有限公司 空地协同的定位方法、设备、系统及存储介质
CN113796131B (zh) * 2019-05-02 2024-06-14 三星电子株式会社 无线通信网络中用于测量位置的方法和装置
CN112398595A (zh) * 2019-08-16 2021-02-23 索尼公司 电子设备、无线通信方法和计算机可读存储介质
CN113015204B (zh) * 2019-12-20 2024-03-22 中国移动通信集团陕西有限公司 网络小区负载均衡方法及装置
US11812277B2 (en) * 2020-02-07 2023-11-07 Qualcomm Incorporated Interference mitigation through silencing signals in shared radio frequency spectrum
US20230097008A1 (en) * 2020-02-12 2023-03-30 Qualcomm Incorporated Dormant secondary cell positioning signaling
CN113271186B (zh) * 2020-02-14 2023-04-28 大唐移动通信设备有限公司 一种信息处理方法、装置、设备及计算机可读存储介质
CN113543203B (zh) * 2020-04-14 2023-10-24 海能达通信股份有限公司 一种通信资源分配和通信节点唤醒的方法
EP4106426A4 (en) 2020-04-20 2023-07-26 LG Electronics Inc. METHOD FOR TRANSMITTING AND RECEIVING A SIGNAL AND APPARATUS FOR SUPPORTING THEREOF IN A WIRELESS COMMUNICATION SYSTEM
CN114374494B (zh) * 2020-10-15 2024-09-06 维沃移动通信有限公司 定位方法、终端及网络侧设备
US20220124458A1 (en) * 2020-10-15 2022-04-21 Qualcomm Incorporated Prs reports with distributed antenna system
US20230422202A1 (en) * 2021-01-17 2023-12-28 Qualcomm Incorporated Facilitating time-aligned measurements for user equipments (ues) and base stations for positioning
US20240251377A1 (en) * 2021-05-25 2024-07-25 Nokia Technologies Oy Positioning of terminal devices
US11812383B2 (en) * 2021-06-29 2023-11-07 Qualcomm Incorporated Apparatus and method for positioning enhancements with wake-up signal (WUS) configurations

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103096324A (zh) * 2011-10-31 2013-05-08 中兴通讯股份有限公司 一种小区动态频率规划方法
CN103209475A (zh) * 2012-01-16 2013-07-17 华为技术有限公司 定位方法、定位服务器、终端和基站
WO2013137645A1 (ko) * 2012-03-13 2013-09-19 엘지전자 주식회사 무선 접속 시스템에서 단말의 위치 측정을 위한 방법 및 이를 위한 장치
CN104519555A (zh) * 2013-09-27 2015-04-15 电信科学技术研究院 一种信息传输方法及设备
CN104661241A (zh) * 2015-01-05 2015-05-27 中国科学院计算技术研究所 一种小区休眠决策方法、实现方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120053941A (ko) * 2010-11-17 2012-05-29 엘지전자 주식회사 무선 통신 시스템에서 위치 결정 방법 및 장치
EP2673654B1 (en) * 2011-02-11 2020-12-02 Telefonaktiebolaget LM Ericsson (publ) Network-side removal of positioning assistance ambiguity via selective delay of assistance data transmission
CN104619027B (zh) * 2013-11-01 2020-01-14 中兴通讯股份有限公司 一种发现信号处理方法和基站
US9674727B2 (en) * 2014-01-17 2017-06-06 Qualcomm Incorporated Indication of cell mode and CSI feedback rules for cell on-off procedure
CN106211312B (zh) * 2015-04-30 2020-06-26 索尼公司 无线通信系统中的电子设备和无线通信方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103096324A (zh) * 2011-10-31 2013-05-08 中兴通讯股份有限公司 一种小区动态频率规划方法
CN103209475A (zh) * 2012-01-16 2013-07-17 华为技术有限公司 定位方法、定位服务器、终端和基站
WO2013137645A1 (ko) * 2012-03-13 2013-09-19 엘지전자 주식회사 무선 접속 시스템에서 단말의 위치 측정을 위한 방법 및 이를 위한 장치
CN104519555A (zh) * 2013-09-27 2015-04-15 电信科学技术研究院 一种信息传输方法及设备
CN104661241A (zh) * 2015-01-05 2015-05-27 中国科学院计算技术研究所 一种小区休眠决策方法、实现方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3310102A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200003853A (ko) * 2017-05-04 2020-01-10 샤프 가부시키가이샤 라디오 시스템을 위한 동기화 신호 송신 및 수신
KR102583644B1 (ko) * 2017-05-04 2023-10-04 샤프 가부시키가이샤 라디오 시스템을 위한 동기화 신호 송신 및 수신

Also Published As

Publication number Publication date
US10368195B2 (en) 2019-07-30
US20190342705A1 (en) 2019-11-07
CN106304328B (zh) 2020-10-16
EP3310102A4 (en) 2019-03-20
US20180167775A1 (en) 2018-06-14
US10638263B2 (en) 2020-04-28
JP2018517357A (ja) 2018-06-28
EP3310102A1 (en) 2018-04-18
CN106304328A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2016192553A1 (zh) 无线通信系统中的电子设备和无线通信方法
JP6652138B2 (ja) 無線通信システムにおける電子機器及び無線通信方法
US10602473B2 (en) Facilitated positioning of wireless communication devices
EP3448099B1 (en) Allocation of reference signals to unoccupied resource elements
CN104350779B (zh) 管理不确定的测量时机
US9661601B2 (en) Crowdsourcing information in a communication network using small cells
CN103154765B (zh) 用于增强定位的节点和方法
US20190393970A1 (en) Positioning reference signal (prs) measurement considerations for user equipments without further enhanced inter-cell coordination interference cancellation (feicic) support in interference scenarios
AU2017262128A1 (en) Electronic apparatus, information processing device and information processing method
WO2019218940A1 (zh) 无线通信系统中的用户设备、电子设备、方法及存储介质
KR20230119131A (ko) 다수의 대역폭 부분들을 갖는 5g 뉴 라디오에서의 사용자 장비 (ue) 중심 포지션 기법들
WO2011124941A1 (en) Wireless device assisted self-positioning
WO2021033282A1 (ja) 端末装置、基地局装置、及び無線通信方法
KR20240120718A (ko) 서로 다른 무선 액세스 기술의 준 공동 위치된 신호

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16802476

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15574613

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017560570

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE