WO2016169477A1 - 一种y型多缩乙二醇衍生物及其制备方法 - Google Patents

一种y型多缩乙二醇衍生物及其制备方法 Download PDF

Info

Publication number
WO2016169477A1
WO2016169477A1 PCT/CN2016/079747 CN2016079747W WO2016169477A1 WO 2016169477 A1 WO2016169477 A1 WO 2016169477A1 CN 2016079747 W CN2016079747 W CN 2016079747W WO 2016169477 A1 WO2016169477 A1 WO 2016169477A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
derivative
integer
polyglycol
type
Prior art date
Application number
PCT/CN2016/079747
Other languages
English (en)
French (fr)
Inventor
主辉
林美娜
陈晓萌
朱振刚
赵宣
Original Assignee
北京键凯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京键凯科技有限公司 filed Critical 北京键凯科技有限公司
Publication of WO2016169477A1 publication Critical patent/WO2016169477A1/zh
Priority to US15/791,405 priority Critical patent/US10464882B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/02Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C217/04Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C217/28Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having one amino group and at least two singly-bound oxygen atoms, with at least one being part of an etherified hydroxy group, bound to the carbon skeleton, e.g. ethers of polyhydroxy amines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/06Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton from hydroxy amines by reactions involving the etherification or esterification of hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/02Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C217/04Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C217/06Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted
    • C07C217/08Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted the oxygen atom of the etherified hydroxy group being further bound to an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2618Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33303Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing amino group
    • C08G65/33306Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing amino group acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33396Polymers modified by chemical after-treatment with organic compounds containing nitrogen having oxygen in addition to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/30Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type branched
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/50Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing nitrogen, e.g. polyetheramines or Jeffamines(r)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/334Polymers modified by chemical after-treatment with organic compounds containing sulfur
    • C08G65/3344Polymers modified by chemical after-treatment with organic compounds containing sulfur containing oxygen in addition to sulfur

Definitions

  • the present invention relates to a Y-type polyglycol derivative and a process for the preparation thereof, and in particular to a polyglycol derivative having a branched structure in which N is a branching node.
  • PEG Polyethylene glycol
  • PEG has unique advantages in the field of drug modification, it still has some shortcomings: 1) PEG is a polymerization product, a mixture, which itself has heterogeneous defects, which not only limits the application of PEG, such as Characterization of the heterogeneity of polyethylene glycol-modified superoxide dismutase by chromatographic and electrophoretic techniques (JSnider et.
  • Polyethylene glycol has the same chemical formula as PEG, but the two are not consistent, such as PEG 12 and EG 12 (undecylene glycol), the former is EG 11 , EG 12 , EG 13 and longer or more A mixture of short polyglycols, which is a defined compound containing only EG 12 .
  • linear polyethylene glycol solves the defect of PEG itself, it brings new problems. It is prepared in such a way that one end of the polyglycol is first protected and then subjected to Williamson synthesis under stringent anhydrous conditions and then deprotected to give a longer segment polyglycol.
  • the synthesis method has many steps, the operation is complicated, and the conditions are harsh, and it is necessary to use strict anhydrous conditions to obtain sodium alkoxide and deprotection requires hydrogen reduction, which limits its further promotion. And the use of a large area, and the short-chain linear polyglycol loading capacity has been improved, but the water solubility is also significantly reduced, so that its application range is greatly reduced.
  • the present invention provides a Y-type polyethylene glycol derivative and a preparation method thereof.
  • Another object of the present invention is to solve the problem of insufficient water solubility due to an increase in the amount of loading when a polyglycolic acid-modified insoluble drug is used.
  • one aspect of the invention provides a Y-type polyglycol derivative having the structure of formula (I):
  • n is an integer from 0 to 30;
  • A, B are the same or different Y-X-structures
  • X is a linking group, chosen from :-( CH 2) i -, - (CH 2) i NH -, - (CH 2) i OCOO -, - (CH 2) i OCONH -, - (CH 2) i NHCONH-, -OC(CH 2 ) i COO-, -(CH 2 ) i COO-, -(CH 2 ) i CONH-, i is an integer from 0-10;
  • Y is a reactive end group selected from the group consisting of: a C1-C6 alkoxy group, a hydroxyl group, an amino group, an aminomethyl group, a maleimide, a carboxyl group, a decyl group, a succinimide carbonate, a succinimide acetate, Succinimide propionate, succinimide succinate, succinimide, dithiopyridyl, propionate, aldehyde, n-pyridinedithio, decyl, acrylate, azide, Glutaric acid group, hydrazide group, alkynyl group, p-nitrophenyl carbonate group, isocyanate group, o-dithiopyridyl group, silane group, carboxymethyl group;
  • E 1 is a polyglycol group having a structure of: (CH 2 CH 2 O) j , and j is an integer of 0-100;
  • E 2 is a polyglycol group having a structure of (OCH 2 CH 2 ) k and k is an integer of 0-100.
  • n is an integer of from 2 to 10; more preferably, m is 2, 3, 4 or 5, and n is 2 , 3, 4 or 5.
  • i in the linking group X is an integer from 0 to 6, more preferably i is 0, 1, 2, 3 or 4; the linking group X is preferably -(CH 2 ) i -, -(CH 2 ) i NH-, (CH 2 ) i CONH-.
  • the reactive group Y is selected from the group consisting of: a methoxy group, a hydroxyl group, an amino group, Mercapto, carboxyl, ester, aldehyde, acrylate or maleimide groups.
  • j in the polyglycol group E 1 is an integer from 0 to 20, more preferably, j is an integer from 1 to 12, and most preferably j is 1, 2 3, 4, 5, 6, 7 or 8.
  • k in the polyglycol group E 2 is an integer from 0 to 20, more preferably, k is an integer from 0 to 12, and most preferably k is 0, 1. 2, 3, 4, 5, 6, 7 or 8.
  • the Y-type polyethylene glycol derivative has the following structure (II):
  • the Y-type polyethylene glycol derivative has the following structure (III):
  • the Y-type polyglycol derivative has the following structure (IV):
  • the Y-type polyglycol derivative has the following structure (V):
  • the Y-type polyglycol derivative has the following structure (VI):
  • the Y-type polyethylene glycol derivative has the following structure (VII):
  • the Y-type polyglycolgide derivative has the following structure (VIII):
  • Another aspect of the present invention provides a process for preparing a Y-type polyglycolethane derivative of the structure of the formula (I), the steps of which comprise:
  • step (1) subjecting a terminal modified polyglycol derivative, such as methoxypolyethylene glycol, to halogenation or sulfonation; (2) the product of step (1) and one end group Reaction of the polyglycolethane derivative of the amino group, (3) optionally, the terminal group of the product of the step (2) is modified to give a structure.
  • a terminal modified polyglycol derivative such as methoxypolyethylene glycol
  • the terminal modified polyglycol derivative has a structure of ZXE 1 -(CH 2 ) n - OH,
  • n is an integer from 0 to 30;
  • X is a linking group, chosen from :-( CH 2) i -, - (CH 2) i NH -, - (CH 2) i OCOO -, - (CH 2) i OCONH -, - (CH 2) i NHCONH-, -OC(CH 2 ) i COO-, -(CH 2 ) i COO-, -(CH 2 ) i CONH-, i is an integer from 0-10;
  • Z is a living end group defined by Y in the structure of the formula (I) according to the invention or Z is selected from the group consisting of methyl ester, ethyl ester, tert-butyl ester, acetal group, benzyloxy group;
  • the Y is: C1-C6 alkoxy group, hydroxyl group, amino group, aminomethyl group, maleimide, carboxyl group, mercapto group, propionaldehyde, succinimide carbonate, succinimide acetate, amber Imid propionate, succinimide succinate, succinimide, dithiopyridyl, propionate, aldehyde, n-pyridinedithio, decyl, acrylate, azide, pentyl Diacid group, hydrazide group, alkynyl group, p-nitrophenyl carbonate group, isocyanate group, o-dithiopyridyl group, silane group, carboxymethyl group.
  • the Z is a methyl ester, an ethyl ester, a tert-butyl ester, an azide group, an acetal group or a benzyloxy group.
  • E 1 is a polyglycol group having a structure of (CH 2 CH 2 O) j and j is an integer of 0-100.
  • the step (1) may be: adding 1-100 times, preferably 1-20 times by volume to a polyglycol derivative modified with a terminal group. Further, it is selected to be 1-10 times of dichloromethane (DCM) and 1-5 times the molar ratio, preferably 1-3 times of triethylamine (TEA), and then the molar ratio is 1-3 times, preferably 1-2 times of methanesulfonyl chloride (MsCl) or p-toluenesulfonyl chloride is dissolved in 1 to 30 times, preferably 1 to 20 times, more preferably 1 to 10 times, in a volume ratio of dichloromethane.
  • DCM dichloromethane
  • TAA triethylamine
  • the reaction is 2-48 hours, preferably 2-10 hours, after the reaction is completed, organic The phase is washed 1-3 times with brine, and the crude product is evaporated to dryness, and then purified by column chromatography to obtain a product.
  • the lithium halide is lithium bromide and the halogenated product is a bromination product.
  • the step (1) of sulfonating the terminal modified polyglycol derivative is as follows:
  • R is methyl or p-tolyl.
  • the structural formula of the polyglycol derivative having an amino group at one end can be expressed as: NH 2 -(CH 2 ) m -E 2 -XZ;
  • n is an integer from 0 to 30;
  • E 2 is a polyglycol group, and its structure can be expressed as: (CH 2 CH 2 O) j , wherein j is an integer from 0-100;
  • X is a linking group, chosen from :-( CH 2) i -, - (CH 2) i NH -, - (CH 2) i OCOO -, - (CH 2) i OCONH -, - (CH 2) i NHCONH-, -OC(CH 2 ) i COO-, -(CH 2 ) i COO-, -(CH 2 ) i CONH-,i is an integer from 0-10,
  • Z is a living end group defined by Y in the structure of the formula (I) according to the invention or Z is selected from the group consisting of a methyl ester, an ethyl ester, a tert-butyl ester, an acetal group, and a benzyloxy group.
  • the Y is: C1-C6 alkoxy group, hydroxyl group, amino group, aminomethyl group, maleimide, carboxyl group, mercapto group, propionaldehyde, succinimide carbonate, succinimide acetate, amber Imid propionate, succinimide succinate, succinimide, dithiopyridyl, propionate, aldehyde, n-pyridinedithio, decyl, acrylate, azide, pentyl Diacid group, hydrazide group, alkynyl group, p-nitrophenyl carbonate group, isocyanate group, o-dithiopyridyl group, silane group, carboxymethyl group.
  • the Z is a methyl ester, an ethyl ester, a tert-butyl ester, an azide group, an acetal group or a benzyloxy group.
  • the step (2) of the preparation method of the Y-type polyethylene glycol derivative comprises: adding a molar ratio of 1 to a polyglycol derivative having an amino group at one end. -5 times the product of the step (1) and the ratio by volume of 1-100 times, preferably 1-20 times, more preferably 1-10 times of tetrahydrofuran (THF) or N,N-dimethylformamide
  • THF tetrahydrofuran
  • reaction of the step (2) of the preparation method of the Y-type polyethylene glycol derivative is as follows:
  • reaction of the step (2) of the preparation method of the Y-polyethylene glycol derivative is as follows:
  • the step (3) of the production method of the present invention can be carried out according to the different groups of A or B in the Y-type polyglycolethane derivative to be prepared.
  • the synthesized Y-type derivative that is, to modify the 1-3 end groups of the Y-type derivative into the desired reactive group.
  • This modification can be carried out before the first step: for example, first synthesizing a polyglycidyl derivative having a terminal group as a protected reactive group, methanesulfonating it, deprotecting after Y-formation, and obtaining two ends A Y-type derivative based on a reactive group.
  • the Y-type polyglycol compound according to the present invention has the advantages of uniform molecular weight and high drug loading, and the Y-type polyglycol compound of the present invention is linked to the poorly soluble drug molecule, and the drug molecule As well as the linear polyethylene glycol derivative of the drug molecule, the water solubility can be significantly improved.
  • the preparation method of the Y-type polyglycol compound described in the present invention is simple in steps, mild in conditions, and easy to industrialize.
  • Figure 1 is a synthetic route diagram of a Y-type polyglycolide derivative (mEG 3 ) 2 NC 3 H 6 -OH.
  • FIG. 2 is a synthetic route diagram of a Y-type polyglycolide derivative (mEG 5 ) 2 NC 3 H 6 -OH.
  • Figure 3 is a synthetic route diagram of a Y-polyethylene glycol derivative (HO-EG 4 ) 2 NC 3 H 6 -OH.
  • FIG. 4 is a synthetic route diagram of a Y-type polyethylene glycol derivative (NH 2 -EG 4 ) 2 NC 3 H 6 -OH.
  • Figure 5 is a synthetic route diagram of Y-type polyglycolide derivative (HOOC-EG 4 ) 2 NC 2 H 4 -NH 2 .
  • Figure 6 is a synthetic route diagram of a Y-type polyglycolide derivative (mEG 3 ) 2 N-EG 4 -OH.
  • Figure 7 is a comparison test of the dispersibility of cholesterol and cholesterol derivatives in aqueous solution (from left to right, (mEG 3 ) 2 NC 3 H 6 -OH cholesterol derivative, mEG 7 -OH cholesterol derivative and cholesterol The same concentration of aqueous solution).
  • TEA was added in mEG 3 -OH (32mL, 200mmol) (32mL, 230mmol) and 150mL DCM, the reaction flask was placed in an ice-water bath. MsCl (17.5 mL, 220 mmol) was dissolved in DCM (50 mL), and then dissolved, and then taken to the reaction flask in an ice water bath. The reaction was carried out for 3 hours at room temperature. The reaction was detected by thin layer chromatography (TLC). Wash three times with water (150 mL). The organic phase was dried over anhydrous sodium sulfate and filtered and evaporated. Concentration gave about 52 g of product.
  • TLC thin layer chromatography
  • TEA was added in mEG 5 -OH (10.08g, 40mmol) (6.86mL, 48mmol) and DCM (60mL), the reaction flask was placed in an ice-water bath. MsCl (3.56 mL, 46 mmol) was dissolved in DCM (40 mL). Add dropwise to the reaction flask in the ice water bath. The reaction was carried out for 3 hours at room temperature. The reaction was complete by TLC. Wash three times with water (150 mL). The organic phase was dried over anhydrous sodium sulfate and filtered and evaporated. Concentration gave about 10 g of product.
  • N 3 - EG 4 - OH 11 g, 50.2 mmol obtained from the above step 1 was added TEA (8.6 mL, 60.3 mmol, 1.2 eq) and DCM (150 mL). Ice water bath. MsCl (4.5 mL, 57.8 mmol, 1.15 eq) was dissolved in DCM (50 mL). Add dropwise to the reaction flask in the ice water bath. The reaction was carried out at room temperature overnight. The reaction was complete by TLC. Wash three times with water (100 mL). The organic phase was dried over anhydrous sodium sulfate and filtered and evaporated. Concentration gave the product.
  • Example 9 Comparative test of dispersibility of cholesterol and cholesterol derivatives in water
  • the cholesterol derivative of (mEG 3 ) 2 NC 3 H 6 -OH obtained in Example 7 was prepared, and the cholesterol derivative of mEG 7 -OH obtained in Example 8 and 20 mg of cholesterol were placed in a 50 mL volumetric flask, and water was added. To the scale. It was placed in a 20 ° C water bath and shaken vigorously for 5 min every 5 min. After 30 min, the dispersion of the two cholesterol derivatives and cholesterol in water is shown in Figure 7, from left to right (mEG 3 ) 2 NC A cholesterol derivative of 3 H 6 -OH, a cholesterol derivative of mEG 7 -OH, and cholesterol.
  • the (mEG 3 ) 2 NC 3 H 6 -OH cholesterol derivative dispersion was translucent and light blue, and the writing behind the volumetric flask was clearly visible; the mEG 7 -OH cholesterol derivative was white. The emulsion, while the cholesterol is completely insoluble.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyethers (AREA)
  • Medicinal Preparation (AREA)
  • Steroid Compounds (AREA)

Abstract

本发明公开了一种Y型多缩乙二醇衍生物及其制备方法,具有分子量和链段数确定的优点,能够避免PEG衍生物本身不均一的不足,同时制备方法步骤简单,条件温和,不需要严格的无水环境,也不需要进行保护和脱保护的步骤。另外,本发明所述的Y型多缩乙二醇增加了多缩乙二醇的水溶性,能够解决多缩乙二醇修饰不溶性药物时,由于负载量的提高造成水溶性不足的问题。

Description

一种Y型多缩乙二醇衍生物及其制备方法 技术领域
本发明涉及一种Y型多缩乙二醇衍生物及其制备方法,特别是,本发明涉及一种以N为分支节点的具有支化结构的多缩乙二醇衍生物。
背景技术
聚乙二醇(PEG)被认为是已知聚合物中蛋白和细胞吸收水平最低的聚合物,而且,其具有良好的水溶性和生物相容性,无毒,无免疫性,无致畸性且无抗原性的优势,被广泛应用于药物修饰、制剂制备与医疗器械材料等领域。从1991年开始,第一种用PEG修饰的药物PEG-ADA被FDA批准上市后,各大制药公司对PEG在药物领域的研发投入了极大的兴趣。近几年来,上市的产品有PEG-生长抑素、PEG-干扰素、PEG-粒细胞集落因子等。目前,尚有几十种PEG修饰药物处于研究或临床试验阶段。
虽然PEG在药物修饰等领域具有独特的优势,但其还存在一些不足之处:1)PEG是聚合产物,是一种混合物,其本身存在不均一的缺陷,这不但限制了PEG的应用,如在用PEG对超氧化物歧化酶进行修饰时,会产生一系列不均一的产物(Characterization of the heterogeneity of polyethylene glycol-modified superoxide dismutase by chromatographic and electrophoretic techniques,JSnider et.al.,Journal of Chromatography A 1992,599,141-155);而且给药物合成时不同批次产物的统一性以及最终的产品检测带来了一定困难;2)线性PEG分子本身分子量较高,但其只有两端可以连接药物,不可避免的造成了载药量的下降。
为了克服PEG所带来的不利影响,Dhawan等人(Synthesis of polyamide oligomers based on 14-amino-3,6,9,12-tetraoxatetradecanoic acid,Dhawan et.al.,Bioconjugate Chemistry 2000,11,14-21)用有机合成的方法,通过醇钠与磺酸酯的反应制备了与PEG结构相同的线性多缩乙二醇(即有确定分子量的PEG)及其衍生物。多缩乙二醇与PEG具有相同的化学式,但两者并不一致,例如PEG12与EG12(十一缩十二乙二醇),前者是EG11、EG12、EG13及更长或更短的多缩乙二醇所组成的混合物,而后者是一个确定的化合物,只含有EG12
线性多缩乙二醇虽然解决了PEG本身不均一的缺陷,但其本身又带来了新的问题。其制备方式需要首先保护多缩乙二醇的一端,然后在严格的无水条件下进行Williamson合成,然后脱保护得到更长链段多缩乙二醇。该合成方法步骤较多,操作复杂,而且条件苛刻,需要用到严格的无水条件得到醇钠且脱保护时需用氢气还原,限制了其进一步推广 和大面积的使用,而且,链段较短的直链多缩乙二醇的负载量虽然有所提高,但水溶性也因此显著降低,使其应用范围大大缩减。
为解决现有技术中的缺陷,本发明提供了一种Y型多缩乙二醇衍生物及其制备方法。
发明内容
本发明的一个目的是提供一种Y型多缩乙二醇化合物,能够解决现有聚乙二醇产物不均一的问题,同时可以增加药物的负载量。
本发明的另一个目的是解决了多缩乙二醇修饰不溶性药物时由于负载量的提高造成水溶性不足的问题。
本发明的还一个目的是提供一种多缩乙二醇化合物的制备方法,其步骤简单,条件温和,不需要严格的无水环境,也不需要进行保护和脱保护的步骤。
因而,本发明一方面提供了一种Y型多缩乙二醇衍生物,其具有式(Ⅰ)的结构:
Figure PCTCN2016079747-appb-000001
其中:
m,n为0-30的整数;
A、B为相同或不同的Y-X-结构;
X为连接基团,选自:-(CH2)i-、-(CH2)iNH-、-(CH2)iOCOO-、-(CH2)iOCONH-、-(CH2)iNHCONH-、-OC(CH2)iCOO-、-(CH2)iCOO-、-(CH2)iCONH-,i为从0-10的整数;
Y为活性端基,选自:C1-C6的烷氧基、羟基、氨基、氨甲基、马来酰亚胺、羧基、巯基、琥珀酰亚胺碳酸酯、琥珀酰亚胺乙酸酯、琥珀酰亚胺丙酸酯、琥珀酰亚胺琥珀酸酯、琥珀酰亚胺、二硫吡啶基、丙酸基、醛基、正吡啶二硫基、巯酯基、丙烯酸基、叠氮基、戊二酸基、酰肼基、炔基、对硝基苯碳酸酯基、异氰酸基、邻二硫吡啶基、硅烷基、羧甲基;
E1为多缩乙二醇基团,其结构为:(CH2CH2O)j,j为0-100的整数;
E2为多缩乙二醇基团,其结构为:(OCH2CH2)k,k为0-100的整数。
优选地,本发明所述的式(Ⅰ)的结构中,m为2-10的整数,n为2-10的整数;更为优选的,m为2、3、4或5,n为2、3、4或5。
优选地,本发明所述的式(Ⅰ)的结构中,连接基团X中i为0-6的整数,更优选的i为0、1、2、3或4;连接基团X优选为-(CH2)i-、-(CH2)iNH-、(CH2)iCONH-。
优选地,本发明所述的式(Ⅰ)的结构中,活性基团Y选自:甲氧基、羟基、氨基、 巯基、羧基、酯基、醛基、丙烯酸基或马来酰亚胺基。
优选地,式(Ⅰ)的结构中,多缩乙二醇基团E1中j为0-20的整数,更优选地,j为1-12的整数,最为优选的j为1、2、3、4、5、6、7或8。
优选地,式(Ⅰ)的结构中,多缩乙二醇基团E2中k为0-20的整数,更优选地,k为0-12的整数,最为优选的k为0、1、2、3、4、5、6、7或8。
在本发明的一个实施方式中,所述的Y型多缩乙二醇衍生物具有以下的结构(Ⅱ):
Figure PCTCN2016079747-appb-000002
在本发明的一个实施方式中,所述的Y型多缩乙二醇衍生物具有以下的结构(Ⅲ):
Figure PCTCN2016079747-appb-000003
在本发明的一个实施方式中,所述的Y型多缩乙二醇衍生物,具有以下的结构(Ⅳ):
Figure PCTCN2016079747-appb-000004
在本发明的一个实施方式中,所述的Y型多缩乙二醇衍生物,具有以下的结构(Ⅴ):
Figure PCTCN2016079747-appb-000005
在本发明的一个实施方式中,所述的Y型多缩乙二醇衍生物,具有以下的结构(Ⅵ):
Figure PCTCN2016079747-appb-000006
在本发明的一个实施方式中,所述Y型多缩乙二醇衍生物具有以下的结构(Ⅶ):
Figure PCTCN2016079747-appb-000007
在本发明的一个实施方式中,所述的Y型多缩乙二醇衍生物具有以下的结构(Ⅷ):
Figure PCTCN2016079747-appb-000008
本发明的另一方面提供了一种式(Ⅰ)结构的Y型多缩乙二醇衍生物的制备方法,其步骤包括:
(1)将端基已修饰的多缩乙二醇衍生物,例如是甲氧基多缩乙二醇,进行卤化或磺酸酯化;(2)将步骤(1)的产物与一端端基为氨基的多缩乙二醇衍生物反应,(3)任选的,对步骤(2)产物的端基基团进行改造制备得到结构。
本发明所述Y型多缩乙二醇衍生物的制备方法步骤(1)中,所述的端基已修饰的多缩乙二醇衍生物,其结构为Z-X-E1-(CH2)n-OH,
其中:
n为0-30的整数;
X为连接基团,选自:-(CH2)i-、-(CH2)iNH-、-(CH2)iOCOO-、-(CH2)iOCONH-、-(CH2)iNHCONH-、-OC(CH2)iCOO-、-(CH2)iCOO-、-(CH2)iCONH-,i为从0-10的整数;
Z为本发明所述的式(Ⅰ)结构中Y所定义的活性端基或者Z选自以下基团:甲酯、乙酯、叔丁酯、缩醛基、苄氧基;
所述Y为:C1-C6的烷氧基、羟基、氨基、氨甲基、马来酰亚胺、羧基、巯基、丙醛、琥珀酰亚胺碳酸酯、琥珀酰亚胺乙酸酯、琥珀酰亚胺丙酸酯、琥珀酰亚胺琥珀酸酯、琥珀酰亚胺、二硫吡啶基、丙酸基、醛基、正吡啶二硫基、巯酯基、丙烯酸基、叠氮基、戊二酸基、酰肼基、炔基、对硝基苯碳酸酯基、异氰酸基、邻二硫吡啶基、硅烷基、羧甲基。
优选的,所述的Z为甲酯、乙酯、叔丁酯、叠氮基、缩醛基或苄氧基。
E1为多缩乙二醇基团,其结构为:(CH2CH2O)j,j为0-100的整数。
在本发明的一个具体实施方式中,所述的步骤(1)可以为:在一个端基已修饰的多缩乙二醇衍生物中加入按体积比1-100倍,优选为1-20倍,更有选为1-10倍的二氯甲烷(DCM)及按摩尔比1-5倍,优选为1-3倍的三乙胺(TEA),然后将按摩尔比1-3倍,优选为1-2倍的甲磺酰氯(MsCl)或对甲苯磺酰氯溶于按体积比1-30倍,优选为1-20倍,更有选为1-10倍的二氯甲烷里,并滴加至反应瓶中,室温反应1-48小时,优选为2-10小时后,将反应液用水洗涤1-3次,蒸干溶剂得到产物,即端基已修饰的多缩乙二醇衍生物的磺酰化产物。
进一步,上述步骤后,还包括:在一个端基已修饰的多缩乙二醇衍生物的磺酸酯衍生物中加入按体积比1-100倍,优选为1-20倍,更有选为1-10倍的二甲基甲酰胺(DMF)及1-5倍摩尔比的卤化锂,然后加热至30-80℃,反应2-48小时,优选为2-10小时,反应完毕后,有机相用盐水洗涤1-3次,粗品蒸干后,柱层析纯化得到产物,即得一个端基已 修饰的多缩乙二醇的卤化产物。优选的,所述的卤化锂为溴化锂,所述的卤化产物为溴化产物。
在本发明的一个优选的实施方式中,所述的步骤(1)将端基已修饰的多缩乙二醇衍生物进行磺酸酯化的反应如下所示:
Figure PCTCN2016079747-appb-000009
其中,所述的R为甲基或对甲苯基。
本发明所述Y型多缩乙二醇衍生物的制备方法步骤(2)中,一端端基为氨基的多缩乙二醇衍生物结构式可表示为:NH2-(CH2)m-E2-X-Z;
其中:
m为0-30的整数;
E2为多缩乙二醇基团,其结构可以表示为:(CH2CH2O)j,其中,j为从0-100的整数;
X为连接基团,选自:-(CH2)i-、-(CH2)iNH-、-(CH2)iOCOO-、-(CH2)iOCONH-、-(CH2)iNHCONH-、-OC(CH2)iCOO-、-(CH2)iCOO-、-(CH2)iCONH-,i为从0-10的整数,
Z为本发明所述的式(Ⅰ)结构中Y所定义的活性端基或者Z选自以下基团:甲酯、乙酯、叔丁酯、缩醛基、苄氧基。
所述Y为:C1-C6的烷氧基、羟基、氨基、氨甲基、马来酰亚胺、羧基、巯基、丙醛、琥珀酰亚胺碳酸酯、琥珀酰亚胺乙酸酯、琥珀酰亚胺丙酸酯、琥珀酰亚胺琥珀酸酯、琥珀酰亚胺、二硫吡啶基、丙酸基、醛基、正吡啶二硫基、巯酯基、丙烯酸基、叠氮基、戊二酸基、酰肼基、炔基、对硝基苯碳酸酯基、异氰酸基、邻二硫吡啶基、硅烷基、羧甲基。
优选的,所述的Z为甲酯、乙酯、叔丁酯、叠氮基、缩醛基或苄氧基。
在本发明一个具体实施方式中,所述Y型多缩乙二醇衍生物的制备方法步骤(2)包括:将一端端基为氨基的多缩乙二醇衍生物中加入按摩尔比为1-5倍的步骤(1)的产物及按体积比为1-100倍,优选为1-20倍,更有选为1-10倍的四氢呋喃(THF)或N,N-二甲基甲酰胺,在70-90℃下反应5-72小时,优选为2-10小时,蒸干溶剂后,粗品进行柱层析纯化得到产物。
在本发明的一个优选的实施方式中,所述Y型多缩乙二醇衍生物的制备方法步骤(2)的反应如下所示:
Figure PCTCN2016079747-appb-000010
或者,
Figure PCTCN2016079747-appb-000011
在本发明的另一个优选的实施方式中,所述Y型多缩乙二醇衍生物的制备方法步骤(2)的反应如下所示:
Figure PCTCN2016079747-appb-000012
或者,
Figure PCTCN2016079747-appb-000013
本发明所述制备方法步骤(3)可以根据所要制备得到所述的Y型多缩乙二醇衍生物中A或B的不同基团进行。根据Y型多缩乙二醇衍生物所应用的领域及方式,有时需要对所合成的Y型衍生物进行改造,即将Y型衍生物的1-3个端基改造成所需的活性基团。这种改造可在第一步之前进行:例如先合成一个端基为被保护的活性基团的多缩乙二醇衍生物,将其甲磺酸化,Y型化后脱保护,得到两个端基为活性基团的Y型衍生物。也可先合成Y型衍生物,然后针对A或B端基进行改造,得到一个端基为活性基团的Y型衍生物。也可以同时应用上述两种方式,得到三个端基都被改造的Y型衍生物。具体的改造方式有很多种,可以采用本领域可很容易获得其相关的合成方法,如羧基化及接下来的NHS化、胺基化、醛基化、巯基化、马来酰亚胺化、丙烯酸化等。
本发明所述的Y型多缩乙二醇化合物具有分子量均一,药物负载量高的优点,并且采用本发明所述的Y型多缩乙二醇化合物与难溶性药物分子连接后,与药物分子以及药物分子的直链聚乙二醇衍生物相比能够明显的改善水溶性。另外,本发明所述的Y型多缩乙二醇化合物的制备方法步骤简单,条件温和,易于工业化操作。
附图说明
图1是Y型多缩乙二醇衍生物(mEG3)2N-C3H6-OH的合成路线图。
图2是Y型多缩乙二醇衍生物(mEG5)2N-C3H6-OH的合成路线图。
图3是Y型多缩乙二醇衍生物(HO-EG4)2N-C3H6-OH的合成路线图。
图4是Y型多缩乙二醇衍生物(NH2-EG4)2N-C3H6-OH的合成路线图。
图5是Y型多缩乙二醇衍生物(HOOC-EG4)2N-C2H4-NH2的合成路线图。
图6是Y型多缩乙二醇衍生物(mEG3)2N-EG4-OH的合成路线图。
图7是胆固醇及胆固醇衍生物在水溶液中的分散性对比试验结果(由左至右分别为(mEG3)2N-C3H6-OH的胆固醇衍生物,mEG7-OH的胆固醇衍生物及胆固醇相同浓度的水溶液)。
具体实施方式
实施例1:(mEG3)2N-C3H6-OH的合成
其合成路线如图1所示。
1、mEG3-OMs的合成
在mEG3-OH(32mL,200mmol)中加入TEA(32mL,230mmol)及150mL DCM,置于冰水浴中的反应瓶内。用DCM(50mL)溶解MsCl(17.5mL,220mmol),溶解完全后,滴加至冰水浴中的反应瓶内。室温反应3小时。通过薄层色谱(TLC)检测反应完全。用水(150mL)洗三遍。有机相用无水硫酸钠干燥,过滤除去硫酸钠。浓缩得到产物约52g。
2、Y型小分子PEG的合成
氨基丙醇(3.1g,41.3mmol)中加入由上述步骤1制得的mEG3-OMs(21.6g,89.3mmol)及THF(150mL)。加热回流过夜后,倒出上层液,蒸干得粗品。柱纯化(取250g硅胶,流动相为MeOH/DCM体系,MeOH/DCM=3-7%),得到产品,产率:2.5g(16%)。
NMR(CDCl3)δ:3.5-3.8(m,22H,OCH2),3.37(s,6H,CH3O),2.7-2.8(m,6H,N(CH2)3,1.6-1.7(m,2H,NCH2CH2CH2OH);ESI-MS:368.3(M+H)+,390.2(M+Na)+
实施例2:(mEG5)2N-C3H6-OH的合成
其合成路线如图2所示。
1、mEG5-OMs的合成
在mEG5-OH(10.08g,40mmol)中加入TEA(6.86mL,48mmol)及DCM(60mL),置于冰水浴中的反应瓶内。用DCM(40mL)溶解MsCl(3.56mL,46mmol)。滴加至冰水浴中的反应瓶内。室温反应3小时。TLC检测反应完全。用水(150mL)洗三遍。有机相用无水硫酸钠干燥,过滤除去硫酸钠。浓缩得到产物约10g。
2、Y型小分子PEG的合成
在上述步骤1制得的mEG5-OMs(4g,12.1mmol)中加入氨基丙醇(0.45g,6.06mmol)、TEA(1mL)及THF(100mL),加热回流过夜后,倒出上层液。蒸干得粗品。柱纯化(流动相为MeOH/DCM体系,MeOH/DCM=3-7%),得到产品,产率:0.3g(9.1%)。
NMR(CDCl3)δ:3.5-3.8(m,38H,OCH2),3.37(s,6H,CH3O),2.7-2.8(m,6H,N(CH2)3,1.6-1.7(m,2H,NCH2CH2CH2OH);ESI-MS:544.4(M+H)+,566.3(M+Na)+
实施例3:(HO-EG4)2-C3H6-OH的合成
其合成路线如图3所示。
在HO-EG4-Br(21g,81.7mmol)中加入氨基丙醇(3.06g,40.9mmol)及THF(150mL)加热回流过夜,冷却后蒸干溶剂得粗品。柱纯化(流动相为MeOH/DCM体系,MeOH/DCM=0-10%),得到产品,产率:2.3g(13.1%)。
NMR(CDCl3,盐酸盐)δ:3.4-3.9(m,28H,-OCH2-),3.3(m,2H,-CH2CH2CH2OH),3.1-3.2(m,6H,-NCH2-),2.0(m,2H,-CH2CH2CH2OH);ESI-MS:428.4(M+H)+
实施例4:(NH2-EG4)2N-C3H6-OH的合成
其合成路线如图4所示。
1、N3-EG4-OH的合成
在反应瓶中加入EG4(36mL,210mmol)、DCM(100mL)及TEA(25mL)。冰水浴。滴加含MsCl(5.81mL,75mmol)的DCM溶液(100mL)。室温反应4小时。加入水(100mL)洗涤一次,蒸干得到粗品。
将上一步粗品中加入95%乙醇(150mL)及叠氮钠(6.5g,100mmol)。室温回流16小时。过滤除去固体。蒸干溶液。加入DCM(150mL)并用水(100mL)洗涤三次。DCM相蒸干得到粗品14g。柱纯化(取250g硅胶,流动相为PE/EA体系,PE/EA=50-0%),得到产品,产率:12.3g(26.7%)。
2、N3-EG4-OMs的合成
向上述步骤1制得的N3-EG4-OH(11g,50.2mmol)中加入TEA(8.6mL,60.3mmol,1.2 eq)及DCM(150mL)。冰水浴。用DCM(50mL)溶解MsCl(4.5mL,57.8mmol,1.15eq)。滴加至冰水浴中的反应瓶内。室温反应过夜。TLC检测反应完全。用水(100mL)洗三遍。有机相用无水硫酸钠干燥,过滤除去硫酸钠。浓缩得到产物。
3、(N3-EG4)2N-C3H6-OH的合成
向上述步骤2制得的N3-EG4-OMs(14.5g,48.8mmol)中加入氨基丙醇(1.86mL,24.4mmol)及DMF(130mL),加热回流过夜后。蒸干得粗品。柱纯化(流动相为MeOH/DCM体系,MeOH/DCM=3-7%),得到产品,产率:1.2g(10.3%)。
4、(NH2-EG4)2N-C3H6-OH的合成
向上述步骤3制得的(N3-EG4)2N-OH(400mg,0.84mmol)中加入DMF(20mL)及三苯基膦(615mg,2.35mmol,1.4eq*2),室温反应过夜后,加入水(0.1mL),反应过夜。蒸干DMF,加入水(50mL),依次用甲苯(40mL)洗涤2次及DCM(30mL)洗涤2次,蒸干水分得到产物,产率:300mg(84.0%)。
NMR(D2O)δ:3.5-3.8(m,38H,OCH2),2.4-2.8(m,10H,N(CH2)3及NH2CH2,1.6-1.7(m,2H,NCH2CH2CH2OH);ESI-MS:448.4(M+Na)+
实施例5:(HOOC-EG4)2N-C2H4-NH2的合成
其合成路线如图5所示。
1、MsO-EG4-OtBu的合成
在HO-EG4-tBu(39.4g,0.122mol)中加入DCM(350mL)及TEA(22.7mL,0.159mol,1.3eq)。冰水浴下加入MsCl(11.4mL,0.146mol,1.2eq)的DCM(150mL)溶液。室温反应过夜。依次用水(200mL)洗涤3次,无水硫酸钠干燥,过滤,蒸除溶剂得产物。
2、(tBuO-EG4)2N-C2H4-NH-Boc的合成
向上述步骤1制得的tBu-EG4-OMs(20g,50mmol)中加入NH2-C2H4-NH-Boc(4g,25mmol)及THF(200mL),室温搅拌过夜。浓缩得粗品。柱纯化(MeOH/DCM=0-10%)得到产品,产率:2.3g(12.0%)。
3、(HOOC-EG4)2N-C2H4-NH2的合成
向上述步骤2制得的(tBuO-EG4)2N-C2H6-NH-Boc(2.3g,3.0mmol)中加入DCM(20mL)及三氟乙酸(TFA)(8mL),室温反应过夜,蒸干溶剂,蒸干溶剂得到产品,产率:2.2g(94.0%)。NMR(CDCl3)δ:2.6-2.7(t,4H,CH2COO);3.5-3.8(m,40H,其他氢);ESI-MS:557.4(M+H)+,595.3(M+Na)+
实施例6:(mEG3)2N-EG4-OH的合成
1、NH2-EG4-OH的合成
在N3-EG4-OH(9.2g,42.0mmol)中加入THF(50mL)。冰水浴。滴加含三苯基膦(13.21g,50.4mmol,1.2eq)的THF(75mL)。室温反应24小时。加入水(1965uL,109.2mmol,2.6eq)。室温反应过夜。蒸干溶剂,加入水(150mL)。用甲苯(150mL)及DCM(100mL)洗涤。蒸干水相得产品8g。
2、(mEG3)2N-EG4-OH的合成
向EG3-OMs(10.8g,44.6mmol)中加入由步骤1制得的NH2-EG4-OH(4.3g,22.3mmol)及THF(150mL),回流搅拌过夜。蒸干溶剂得到粗品。柱纯化(流动相为MeOH/DCM体系,MeOH/DCM=3-7%),得到产品2.1g(19.4%)。NMR(CDCl3)δ:3.5-3.8(m,34H,OCH2),3.37(s,6H,CH3O),2.7-2.8(m,6H,N(CH2)3;ESI-MS:486.4(M+H)+,508.4(M+Na)+
实施例7:(mEG3)2N-C3H6-OH的胆固醇衍生物合成
取实施例1制备得到的(mEG3)2N-C3H6-OH(2g,5.45mmol)中加入DCM(20mL)及TEA(0.905mL,6.53mmol),然后将胆固醇氯甲酸酯(2.57g,5.72mmol)溶于DCM(30mL)中,滴加至反应瓶中。室温搅拌过夜。TLC检测反应完全,水洗一遍,旋干得粗品。柱纯化(流动相为MeOH/DCM体系,MeOH/DCM=0-7%),得到产品1.4g(32.4%)。
NMR(CDCl3)δ:5.55-5.45(m,1H),4.65-4.50(m,1H),4.1-4.0(m,2H),3.5-3.8(m,20H),3.37(s,6H),2.7-2.8(m,6H),2.50-0.80(m,42H),0.65-0.60(m,3H)。
实施例8:mEG7-OH的胆固醇衍生物合成
取市售获得的mEG7-OH,按照实施例7相同条件制备mEG7-OH的胆固醇衍生物。
NMR(CDCl3)δ:5.55-5.45(m,1H),4.65-4.50(m,1H),4.1-4.0(m,2H),3.5-3.8(m,26H),3.37(s,3H),2.50-0.80(m,40H),0.65-0.60(m,3H)。
实施例9:胆固醇及胆固醇衍生物在水中的分散性比较试验
分别将实施例7制备获得的(mEG3)2N-C3H6-OH的胆固醇衍生物,实施例8制备获得的mEG7-OH的胆固醇衍生物及胆固醇各20mg放置于50mL容量瓶中,加水至刻度。将其置于20℃水浴中,每隔5min剧烈震摇30min,30min后,两种胆固醇衍生物与胆固醇在水中的分散状况如图7所示,从左至右依次为(mEG3)2N-C3H6-OH的胆固醇衍生物,mEG7-OH的胆固醇衍生物及胆固醇。肉眼观察结果,(mEG3)2N-C3H6-OH的胆固醇衍生物分散液呈半透明的淡蓝色,可清晰看到容量瓶背后的字迹;mEG7-OH的胆固醇衍生物则是白色乳浊液,而胆固醇完全不溶解。
实施例10:胆固醇衍生物在水中溶解度比较试验
按《中国药典》方法测定胆固醇衍生物在水中溶解度:
将实施例7制备得到的(mEG3)2N-C3H6-OH的胆固醇衍生物21.3mg分散于50mL水中,从中取出5mL,加入1.5mL水,将其置于20℃水浴中,每隔5min剧烈震摇30min,30min后,又加入1.5mL水,同样置于20℃水浴中以相同操作进行溶解,直至加入9mL水,溶液澄清。
将实施例8制备得到的mEG7的胆固醇衍生物24.2mg分散于50mL水中,从中取出5mL,加入5mL水,将其置于20℃水浴中,每隔5min剧烈震摇30min,30min后,又加入5mL水,同样置于20℃水浴中以相同操作进行溶解,直至加入25mL水。再从稀释溶液中取出5mL溶液,同样操作直至加入10mL水,溶液澄清。
由结果分析可知,(mEG3)2N-C3H6-OH的胆固醇衍生物溶解度为15.2mg/100g,是mEG7-OH的胆固醇衍生物的溶解度4.61mg/100g的3.3倍,是胆固醇溶解度(<0.2mg/100g)的76倍。

Claims (14)

  1. 一种Y型多缩乙二醇衍生物,其特征在于,具有式(I)的结构:
    Figure PCTCN2016079747-appb-100001
    其中:
    m,n为0-30的整数;
    A、B为相同或不同的Y-X-结构;
    X为连接基团,选自:-(CH2)i-、-(CH2)iNH-、-(CH2)iOCOO-、-(CH2)iOCONH-、-(CH2)iNHCONH-、-OC(CH2)iCOO-、-(CH2)iCOO-、-(CH2)iCONH-,i为从0-10的整数;
    Y为活性端基,选自:C1-C6的烷氧基、羟基、氨基、氨甲基、马来酰亚胺、羧基、巯基、琥珀酰亚胺碳酸酯、琥珀酰亚胺乙酸酯、琥珀酰亚胺丙酸酯、琥珀酰亚胺琥珀酸酯、琥珀酰亚胺、二硫吡啶基、丙酸基、醛基、正吡啶二硫基、巯酯基、丙烯酸基、叠氮基、戊二酸基、酰肼基、炔基、对硝基苯碳酸酯基、异氰酸基、邻二硫吡啶基、硅烷基、羧甲基;
    E1为多缩乙二醇基团,其结构为:(CH2CH2O)j,j为0-100的整数;
    E2为多缩乙二醇基团,其结构为:(OCH2CH2)k,k为0-100的整数。
  2. 如权利要求1所述的Y型多缩乙二醇衍生物,其特征在于,所述的m为2-10的整数,n为2-10的整数;更为优选的,m为2、3、4或5,n为2、3、4或5。
  3. 如权利要求1所述的Y型多缩乙二醇衍生物,其特征在于,所述的连接基团X为-(CH2)i-、-(CH2)iNH-、(CH2)iCONH-。
  4. 如权利要求1所述的Y型多缩乙二醇衍生物,其特征在于,所述连接基团X中i为0、1、2、3或4。
  5. 如权利要求1所述的Y型多缩乙二醇衍生物,其特征在于,活性基团Y选自甲氧基、羟基、氨基、巯基、羧基、酯基、醛基、丙烯酸基或马来酰亚胺基。
  6. 如权利要求1所述的Y型多缩乙二醇衍生物,其特征在于,多缩乙二醇基团E1中j为0-20的整数,更优选地,j为1-12的整数,最为优选的j为1、2、3、4、5、6、7或8。
  7. 如权利要求1所述的Y型多缩乙二醇衍生物,其特征在于,多缩乙二醇基团E2中k为0-20的整数,更优选地,k为0-12的整数,最为优选的k为0、1、2、3、4、5、6、7或8。
  8. 如权利要求1所述的Y型多缩乙二醇衍生物,其特征在于,所述的Y型多缩乙二醇 衍生物具有如下结构:
    Figure PCTCN2016079747-appb-100002
  9. 一种如权利要求1所述的Y型多缩乙二醇衍生物的制备方法,其特征在于:(1)将端基已修饰的多缩乙二醇衍生物进行卤化或磺酸酯化;(2)将步骤(1)的产物与一端端基为氨基的多缩乙二醇衍生物反应,(3)任选的,对步骤(2)产物的端基基团进行改造制备得到结构。
  10. 权利要求9所述的Y型多缩乙二醇衍生物的制备方法,其特征在于,步骤(1)中所述的端基已修饰的多缩乙二醇衍生物,其结构为Z-X-E1-(CH2)n-OH,
    其中:
    n为0-30的整数;
    X为连接基团,选自:-(CH2)i-、-(CH2)iNH-、-(CH2)iOCOO-、-(CH2)iOCONH-、-(CH2)iNHCONH-、-OC(CH2)iCOO-、-(CH2)iCOO-、-(CH2)iCONH-,i为从0-10的整数;
    Z选自:C1-C6的烷氧基、羟基、氨基、氨甲基、马来酰亚胺、羧基、巯基、丙醛、琥珀酰亚胺碳酸酯、琥珀酰亚胺乙酸酯、琥珀酰亚胺丙酸酯、琥珀酰亚胺琥珀酸酯、琥珀酰亚胺、二硫吡啶基、丙酸基、醛基、正吡啶二硫基、巯酯基、丙烯酸基、叠氮基、戊二酸基、酰肼基、炔基、对硝基苯碳酸酯基、异氰酸基、邻二硫吡啶基、硅烷基、羧甲基、甲酯、乙酯、叔丁酯、缩醛基、苄氧基;
    E1为多缩乙二醇基团,其结构为:(CH2CH2O)j,j为0-100的整数。
  11. 权利要求9所述的Y型多缩乙二醇衍生物的制备方法,其特征在于,所述的步骤(1)为:在端基已修饰的多缩乙二醇衍生物中加入按体积比1-100倍的二氯甲烷及按摩尔比1-5倍的三乙胺,然后将按摩尔比1-3倍的甲磺酰氯或对甲苯磺酰氯溶于按体积比1-30倍的二氯甲烷里,并滴加至反应瓶中,室温反应1-48小时,将反应液用水洗涤1-3次,蒸干溶剂得到产物,即端基已修饰的多缩乙二醇衍生物的磺酰化产物。
  12. 权利要求11所述Y型多缩乙二醇衍生物的制备方法,其特征在于,所述的步骤(1)还包括:在一个端基已修饰的多缩乙二醇衍生物的磺酸酯衍生物中加入按体积比1-100倍的二甲基甲酰胺及1-5倍摩尔比的卤化锂,然后加热至30-80℃,反应2-48小时,反应完毕后,有机相用盐水洗涤1-3次,粗品蒸干后,柱层析纯化得到产物,即得一个端基已修饰的多缩乙二醇的卤化产物。
  13. 权利要求9所述的Y型多缩乙二醇衍生物的制备方法,其特征在于,所述的步骤(2)中,一端端基为氨基的多缩乙二醇衍生物结构式可表示为:NH2-(CH2)m-E2-X-Z;
    其中:
    m为0-30的整数;
    E2为多缩乙二醇基团,其结构可以表示为:(CH2CH2O)j,其中,j为从0-100的整数;
    X为连接基团,选自:-(CH2)i-、-(CH2)iNH-、-(CH2)iOCOO-、-(CH2)iOCONH-、-(CH2)iNHCONH-、-OC(CH2)iCOO-、-(CH2)iCOO-、-(CH2)iCONH-,i为从0-10的整数;
    Z选自C1-C6的烷氧基、羟基、氨基、氨甲基、马来酰亚胺、羧基、巯基、丙醛、琥珀酰亚胺碳酸酯、琥珀酰亚胺乙酸酯、琥珀酰亚胺丙酸酯、琥珀酰亚胺琥珀酸酯、琥珀酰亚胺、二硫吡啶基、丙酸基、醛基、正吡啶二硫基、巯酯基、丙烯酸基、叠氮基、戊二酸基、酰肼基、炔基、对硝基苯碳酸酯基、异氰酸基、邻二硫吡啶基、硅烷基、羧甲基、甲 酯、乙酯、叔丁酯、缩醛基、苄氧基。
  14. 权利要求9所述的Y型多缩乙二醇衍生物的制备方法,其特征在于,所述的步骤(2)包括:将一端端基为氨基的多缩乙二醇衍生物中加入按摩尔比为1-5倍的步骤(1)的产物及按体积比为1-100倍的四氢呋喃或N,N-二甲基甲酰胺,在70-90℃下反应5-72小时,蒸干溶剂后,粗品进行柱层析纯化得到产物。
PCT/CN2016/079747 2015-04-24 2016-04-20 一种y型多缩乙二醇衍生物及其制备方法 WO2016169477A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/791,405 US10464882B2 (en) 2015-04-24 2017-10-23 Y-type discrete polyethylene glycol derivative and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510202435.9 2015-04-24
CN201510202435.9A CN106146325B (zh) 2015-04-24 2015-04-24 一种y型多缩乙二醇衍生物及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/791,405 Continuation US10464882B2 (en) 2015-04-24 2017-10-23 Y-type discrete polyethylene glycol derivative and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2016169477A1 true WO2016169477A1 (zh) 2016-10-27

Family

ID=57143720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079747 WO2016169477A1 (zh) 2015-04-24 2016-04-20 一种y型多缩乙二醇衍生物及其制备方法

Country Status (3)

Country Link
US (1) US10464882B2 (zh)
CN (1) CN106146325B (zh)
WO (1) WO2016169477A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2512540B1 (en) 2009-12-15 2019-08-07 Incept, LLC Implants and biodegradable fiducial markers
CN108530636B (zh) * 2017-03-05 2021-05-28 厦门赛诺邦格生物科技股份有限公司 一种单一官能化支化聚乙二醇
CN108530637B (zh) * 2017-03-05 2021-03-30 厦门赛诺邦格生物科技股份有限公司 一种单一功能化支化聚乙二醇的制备方法
WO2019001473A1 (zh) * 2017-06-28 2019-01-03 北京键凯科技股份有限公司 一种树状多缩乙二醇衍生物及其制备方法和应用
CN107254043A (zh) * 2017-07-03 2017-10-17 湖南华腾制药有限公司 一种端巯基聚乙二醇氨基的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003076490A1 (fr) * 2002-03-13 2003-09-18 Beijing Jiankai Technology Co., Ltd. Derive polymere hydrophile a ramification de type y et procede de preparation d'un composite medical contenant le compose precite
WO2009030066A1 (fr) * 2007-09-04 2009-03-12 Biosteed Gene Expression Tech. Co., Ltd. Interféron alpha 2b modifié par du polyethylèneglycol et procédé de préparation et applications associés
WO2009086656A1 (zh) * 2007-12-29 2009-07-16 Biosteed Gene Expression Tech. Co., Ltd. Y型聚乙二醇修饰的g-csf及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB897163A (en) * 1959-07-02 1962-05-23 Ciba Ltd New aminoalcohols and process for their manufacture
CN1003516B (zh) * 1986-06-17 1989-03-08 武汉大学 相转移催化法合成多缩乙二醇双环氧丙基醚
CN104292454B (zh) * 2013-07-17 2017-12-01 北京键凯科技股份有限公司 聚乙二醇‑环辛炔衍生物
CN104448296B (zh) * 2013-12-02 2018-01-05 北京键凯科技股份有限公司 炔基多臂聚乙二醇衍生物
CN104448295B (zh) * 2013-12-02 2018-01-23 北京键凯科技股份有限公司 聚乙二醇‑多爪寡肽键合的雷帕霉素衍生物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003076490A1 (fr) * 2002-03-13 2003-09-18 Beijing Jiankai Technology Co., Ltd. Derive polymere hydrophile a ramification de type y et procede de preparation d'un composite medical contenant le compose precite
WO2009030066A1 (fr) * 2007-09-04 2009-03-12 Biosteed Gene Expression Tech. Co., Ltd. Interféron alpha 2b modifié par du polyethylèneglycol et procédé de préparation et applications associés
WO2009086656A1 (zh) * 2007-12-29 2009-07-16 Biosteed Gene Expression Tech. Co., Ltd. Y型聚乙二醇修饰的g-csf及其制备方法和应用

Also Published As

Publication number Publication date
US10464882B2 (en) 2019-11-05
CN106146325B (zh) 2019-01-29
US20180044280A1 (en) 2018-02-15
CN106146325A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
WO2016169477A1 (zh) 一种y型多缩乙二醇衍生物及其制备方法
US9714328B2 (en) Sugar chain-capturing substance and use thereof
JP5480257B2 (ja) 実質的に単分散のオリゴマー混合物の合成方法
JP7232780B2 (ja) リフィテグラスト及びその中間体を調製するための方法
WO2017107823A1 (zh) Y型多缩乙二醇衍生物及其制备方法
US9630903B2 (en) Process for preparing and separating monodisperse polyethylene glycol
CN110407749B (zh) 一种含有二硫键的光亲和链接体及制备方法和应用
JP5612467B2 (ja) Fmocをベースとした加水分解性リンカーの調製方法
JP5399422B2 (ja) 市販の安価な化学薬品からのpeg−6成分の合成
WO2023143374A1 (zh) 一种配体、其制备方法及应用
EP3932912A1 (en) Protein and/or peptide modification molecule
JPS63245406A (ja) 固相ペプチド合成用樹脂
CN114085233A (zh) 一种用于蛋白质修饰的聚乙二醇链接剂及其合成方法
US20210147344A1 (en) Amorphous solid succinylated 3-(fatty acid amido)-2-hydroxy-1-(protected hydroxy)-propane salts and methods of making the same
TWI724651B (zh) 貝前列素-314d單水合物晶體及其製備方法
WO2019001473A1 (zh) 一种树状多缩乙二醇衍生物及其制备方法和应用
US20240043573A1 (en) Polymerizable unsaturated group-containing cyclodextrin derivative
KR101456526B1 (ko) 사이클로덱스트린 유도체 및 이를 포함하는 저굴절률 소재
KR102042741B1 (ko) 영상화용 링커 화합물
JP4381726B2 (ja) 反応性多分岐多糖誘導体
JP2012513391A (ja) 修飾ポリエチレングリコール中間体を得るための合成法
JP2003508450A (ja) 分子のカップリング方法
JPS5939851A (ja) エステル化方法
JPS62267248A (ja) アミノ基含有ジアセチレン化合物
JPWO2015050199A1 (ja) 新規化合物、その製造方法及びその用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16782624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16782624

Country of ref document: EP

Kind code of ref document: A1