WO2016167349A1 - 繊維強化複合材料成形品及びその製造方法 - Google Patents

繊維強化複合材料成形品及びその製造方法 Download PDF

Info

Publication number
WO2016167349A1
WO2016167349A1 PCT/JP2016/062120 JP2016062120W WO2016167349A1 WO 2016167349 A1 WO2016167349 A1 WO 2016167349A1 JP 2016062120 W JP2016062120 W JP 2016062120W WO 2016167349 A1 WO2016167349 A1 WO 2016167349A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
layer
composite material
volume
reinforcing fibers
Prior art date
Application number
PCT/JP2016/062120
Other languages
English (en)
French (fr)
Inventor
正雄 冨岡
石川 健
章亘 佐々木
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to CN201680022123.2A priority Critical patent/CN107530926A/zh
Priority to JP2016528043A priority patent/JP6245362B2/ja
Priority to EP16780140.6A priority patent/EP3284574A4/en
Priority to US15/565,730 priority patent/US11084187B2/en
Publication of WO2016167349A1 publication Critical patent/WO2016167349A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14631Coating reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0078Measures or configurations for obtaining anchoring effects in the contact areas between layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/20Making multilayered or multicoloured articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/52Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • B29C70/081Combinations of fibres of continuous or substantial length and short fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • B29C45/561Injection-compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres

Definitions

  • the present invention relates to a fiber-reinforced composite material molded article and a method for producing the same.
  • fiber-reinforced composite materials containing reinforcing fibers and thermoplastic resins and shaped into a predetermined shape are widely used.
  • a method for producing the fiber-reinforced composite material for example, the following methods are known.
  • a compressible fiber base formed using reinforcing fibers having a fiber length of about 50 mm is placed in the mold, and after injecting the thermoplastic resin, the volume in the mold is reduced and compressed into the fiber base.
  • a fiber-reinforced composite material is obtained by impregnating a thermoplastic resin (Patent Document 1). According to this method, a fiber-reinforced composite material having a complicated shape can be produced.
  • the fiber reinforced composite material is combined with another member such as a thermoplastic resin molded article, it is difficult to sufficiently increase the adhesive strength at the interface between them.
  • Patent Document 2 discloses the following method using insert molding. A fiber reinforced resin sheet that is impregnated with the thermoplastic resin (A) on one side in the thickness direction of the nonwoven fabric made of reinforcing fibers and is not impregnated on the other side is placed in the mold.
  • Patent Document 2 also discloses that a reinforcing fiber is contained in an injection molded part.
  • the boundary between the thermoplastic resin (A) portion and the thermoplastic resin (B) portion has an uneven shape, and the adhesive strength is enhanced by the anchor effect.
  • the adhesive strength at the boundary portion between the insert portion and the injection molded portion may be insufficient.
  • the present invention relates to a fiber reinforced composite material molded article having a high adhesive strength at a boundary portion between an insert portion made of a fiber reinforced resin base material and an integrally molded portion formed integrally with the portion, and the fiber reinforced composite material molded product. It aims at providing the manufacturing method of.
  • a method for producing a fiber-reinforced composite material molded article by integrally molding a resin composition (Y) containing less than reinforcing fibers (y2) in a mold The ratio of the total volume of the reinforcing fibers (x2) to the total volume of the reinforcing fibers present in the fiber reinforced resin substrate (X) is 67% by volume or more, and the fiber volume of the fiber reinforced resin substrate (X) The content is 15-50% by volume, The ratio of the total volume of the reinforcing fibers (y2) to the total volume of reinforcing fibers present in the resin composition (Y) is 67% by volume or more, and the fiber volume content of the resin composition (Y) is 5%.
  • the fiber reinforced resin base (X) and the resin composition (Y) are integrally molded with the reinforcing fibers (x2) exposed at least part of the surface of the fiber reinforced resin base (X).
  • the manufacturing method of a fiber reinforced composite material molded article which has a shaping
  • a fiber-reinforced composite material molded article comprising a reinforced fiber and a thermoplastic resin, and comprising a first layer, a second layer, and a third layer in this order,
  • the first layer has a layer thickness of 300 ⁇ m or more, and the ratio of the total volume of reinforcing fibers (x2) having a fiber length of 3 mm or more and less than 100 mm to the total volume of reinforcing fibers present in the layer is 67% by volume.
  • the above is a layer having a fiber volume content Vf1 of 15 to 50% by volume
  • the second layer has a layer thickness of 100-1500 ⁇ m, a ratio of the total volume of the reinforcing fibers (x2) to the total volume of reinforcing fibers present in the layer is more than 33% by volume, and A layer having a fiber volume of 0.02 mm or more and less than 3 mm and a total volume ratio of reinforcing fibers (y2) of less than 67% by volume;
  • the third layer has a layer thickness of 300 ⁇ m or more, and the ratio of the total volume of the reinforcing fibers (y2) to the total volume of the reinforcing fibers present in the layer is 67% by volume or more.
  • a fiber-reinforced composite material molded article which is a layer having a content Vf3 of 5 to 25% by volume.
  • the fiber volume content Vf1 of the first layer, the fiber volume content Vf2 of the second layer, and the fiber volume content Vf3 of the third layer satisfy the condition of the following formula (1): 8] or [9], a fiber-reinforced composite material molded article.
  • a fiber-reinforced composite having a high adhesive strength at a boundary portion between an insert portion made of a fiber-reinforced resin base material and an integrally molded portion formed integrally with the portion.
  • a molded material can be produced.
  • the adhesive strength at the boundary portion between the insert portion made of the fiber reinforced resin base material and the integrally molded portion formed integrally with the portion is high.
  • the insert portion means a portion where the fiber reinforced resin base material (X) is present in the fiber reinforced composite material molded article.
  • the integrally molded part means a part molded only with the resin composition (Y).
  • a portion in which the exposed portion of the reinforcing fiber (x2) in the fiber reinforced resin substrate (X) is filled with the resin composition (Y) is an insert portion.
  • the fiber-reinforced composite material molded article of the present invention is a fiber-reinforced composite material molded article that contains reinforcing fibers and a thermoplastic resin and includes a first layer, a second layer, and a third layer in this order.
  • the fiber-reinforced composite material molded product of the present invention can be manufactured, for example, by the method for manufacturing a fiber-reinforced composite material molded product of the present invention described later.
  • the fiber-reinforced composite material molded article produced by the production method of the present invention comprises an insert part formed of a fiber-reinforced resin base material (X) and a resin composition (Y), and the insert part formed of the resin composition (Y). And an integrally formed portion formed integrally with the first and second portions.
  • the first layer and the second layer are present in the insert part, and the third layer is present in the integrally molded part.
  • the fiber-reinforced composite material molded article 1 of the present embodiment is formed by an insert portion 2 including a fiber-reinforced resin base material (X) 10 and a resin composition (Y) 12. And an integrally molded portion 3. Further, in the fiber reinforced composite material molded product 1, a flat plate portion 4 and side plate portions 5 and 5 rising from both ends of the flat plate portion 4 are formed by the insert portion 2 and the integrally formed portion 3.
  • the first layer 23, the second layer 22, and the third layer 21 are formed from the insert portion 2 toward the integrally molded portion 3 in the thickness direction.
  • the first layer 23 and the second layer 22 are present in the insert part 2, and the third layer 21 is present in the integrally molded part 3.
  • the first layer 23 is a layer including a thermoplastic resin and reinforcing fibers (x2) having a fiber length of 3 mm or more and less than 100 mm.
  • the thermoplastic resin is not particularly limited.
  • polyamide resin nylon 6, nylon 66, nylon 12, nylon MXD6, etc.
  • polyolefin resin low density polyethylene, high density polyethylene, polypropylene, etc.
  • modified polyolefin resin modified Polypropylene resin, etc.
  • polyester resin polyethylene terephthalate, polybutylene terephthalate, etc.
  • polycarbonate resin polyamideimide resin, polyphenylene oxide resin, polysulfone resin, polyethersulfone resin, polyetheretherketone resin, polyetherimide resin, polystyrene resin, ABS resin, polyphenylene sulfide resin, liquid crystal polyester resin, copolymer of acrylonitrile and styrene, copolymer of nylon 6 and nylon 66, etc.
  • the modified polyolefin resin include a resin obtained by modifying a polyolefin resin with an acid such as maleic acid.
  • a thermoplastic resin 1
  • the reinforcing fiber (x2) is a reinforcing fiber having a fiber length of 3 mm or more and less than 100 mm.
  • the reinforcing fiber (x2) is not particularly limited as long as it is usually used in a fiber reinforced composite material molded article.
  • inorganic fiber, organic fiber, metal fiber, or a hybrid reinforcing fiber having a combination thereof is used.
  • the inorganic fiber include carbon fiber, graphite fiber, silicon carbide fiber, alumina fiber, tungsten carbide fiber, boron fiber, and glass fiber.
  • organic fibers include aramid fibers.
  • metal fibers include fibers such as stainless steel and iron, and carbon fibers coated with metal may be used.
  • carbon fibers are preferable in consideration of mechanical properties such as strength of the fiber-reinforced composite material molded article.
  • the reinforcing fiber (x2) one type of reinforcing fiber may be used alone, or two or more types of reinforcing fibers may be used in combination.
  • the fiber length of the reinforcing fiber (x2) is 3 mm or more and less than 100 mm, preferably 3 to 75 mm, more preferably 5 to 50 mm. If the fiber length of the reinforcing fiber (x2) is not less than the lower limit value, a fiber-reinforced composite material molded article having excellent mechanical properties can be obtained. If the fiber length of the reinforcing fiber (x2) is not more than the upper limit value, the shapeability at the time of production is excellent.
  • the first layer may contain reinforcing fibers other than the reinforcing fibers (x2).
  • the reinforcing fiber other than the reinforcing fiber (x2) is not particularly limited, and examples thereof include a reinforcing fiber (y2) described in the second layer and a reinforcing fiber having a fiber length of 100 mm or more.
  • the thickness of the first layer is 300 ⁇ m or more, preferably 500 ⁇ m or more. If the thickness of the first layer is not less than the lower limit value, a fiber-reinforced composite material molded article having excellent mechanical properties can be obtained.
  • the upper limit value of the thickness of the first layer is not particularly limited and can be appropriately set. For example, the upper limit value is, for example, about 50 mm.
  • the ratio of the total volume of reinforcing fibers (x2) to the total volume of reinforcing fibers present in the first layer is 67% by volume or more, preferably 75 to 100% by volume, more preferably 80 to 100% by volume. If there are too many reinforcing fibers having a long fiber length, the formability tends to decrease, and if there are too many reinforcing fibers having a short fiber length, the mechanical properties of the fiber-reinforced composite material molded product tend to decrease. If the said ratio is in the said range, the balance of a shaping property and intensity
  • the fiber volume content Vf1 in the first layer is 15 to 50% by volume, preferably 20 to 45% by volume, and more preferably 25 to 40% by volume. If fiber volume content Vf1 is more than a lower limit, the fiber reinforced composite material molded article which has sufficient mechanical characteristics will be obtained. If fiber volume content Vf1 is below an upper limit, the shaping property at the time of manufacture will become sufficient.
  • the second layer 22 is a layer including a thermoplastic resin, reinforcing fibers (x2), and reinforcing fibers (y2) having a fiber length of 0.02 mm or more and less than 3 mm.
  • the second layer may contain reinforcing fibers other than the reinforcing fibers (x2) and the reinforcing fibers (y2).
  • thermoplastic resin contained in the second layer is not particularly limited, and examples thereof include the same ones listed as the thermoplastic resin contained in the first layer.
  • the thermoplastic resin contained in the second layer may be one type or two or more types.
  • the reinforcing fiber (y2) is a reinforcing fiber having a fiber length of 0.02 mm or more and less than 3 mm.
  • Examples of the type of the reinforcing fiber (y2) include the same as those mentioned for the reinforcing fiber (x2).
  • the reinforcing fiber (y2) is preferably carbon fiber in view of mechanical properties such as strength of the fiber-reinforced composite material molded product.
  • the fiber length of the reinforcing fiber (y2) is 0.02 mm or more and less than 3 mm, preferably 0.04 to 1.5 mm, more preferably 0.07 to 1.3 mm.
  • the fiber length of the reinforcing fiber (y2) is equal to or longer than the lower limit value, the adhesive strength between the insert part of the fiber-reinforced composite material molded article and the boundary part of the integrally molded part is increased. If the fiber length of the reinforcing fiber (y2) is equal to or less than the upper limit value, the reinforcing fiber (y2) is likely to enter the exposed portion of the reinforcing fiber (x2) of the fiber-reinforced resin base material (X) in the molding step described later.
  • the reinforcing fiber (y2) is contained in a state where it is pierced It becomes easy to be done. Therefore, the adhesive strength between the first layer and the third layer via the second layer, that is, the adhesive strength at the boundary portion between the insert portion and the integrally molded portion is increased.
  • the thickness of the second layer is 100 to 1500 ⁇ m, preferably 200 to 1250 ⁇ m, and more preferably 300 to 1000 ⁇ m. If the thickness of the second layer is equal to or greater than the lower limit value, the adhesive strength between the insert part of the fiber-reinforced composite material molded product and the boundary part of the integrally molded part is excellent. On the other hand, since the second layer has a relatively short fiber length as compared with the first layer, when the second layer is extremely thick, there is a concern that the mechanical properties of the fiber-reinforced composite material molded product are deteriorated. However, if the thickness of the second layer is equal to or less than the upper limit value, a fiber-reinforced composite material molded article having excellent mechanical properties can be obtained.
  • the ratio of the total volume of reinforcing fibers (x2) to the total volume of reinforcing fibers present in the second layer is more than 33% by volume, preferably 36 to 64% by volume, more preferably 40 to 60% by volume.
  • the ratio of the total volume of the reinforcing fibers (y2) to the total volume of the reinforcing fibers present in the second layer is less than 67% by volume, preferably 36 to 64% by volume, more preferably 40 to 60% by volume. If the ratio of the total volume of the reinforcing fibers (x2) and the ratio of the total volume of the reinforcing fibers (y2) are within the above ranges, the bond strength between the insert part of the fiber-reinforced composite material molded article and the boundary part of the integrally molded part is excellent. .
  • the fiber volume content Vf2 in the second layer is preferably 8 to 42% by volume, more preferably 12 to 37% by volume, and still more preferably 15 to 33% by volume. If fiber volume content Vf2 is more than a lower limit, the fiber reinforced composite material molded article which is excellent in a mechanical characteristic will be obtained. If the fiber volume content Vf2 is less than or equal to the upper limit value, the reinforcing fiber (x2) and the reinforcing fiber (y2) are likely to be entangled with each other in the second layer, and the boundary portion between the insert part and the integrally molded part of the fiber-reinforced composite material molded product Adhesive strength is further improved.
  • the third layer 21 is a layer containing a thermoplastic resin and reinforcing fibers (y2).
  • the third layer may contain reinforcing fibers other than the reinforcing fibers (y2). Examples of the reinforcing fiber other than the reinforcing fiber (y2) include the reinforcing fiber (x2).
  • the thickness of the third layer is 300 ⁇ m or more, preferably 500 ⁇ m or more. If the thickness of the third layer is equal to or greater than the lower limit value, a fiber-reinforced composite material molded article having excellent mechanical properties can be obtained.
  • the upper limit value of the thickness of the third layer is not particularly limited, and can be set as appropriate.
  • the ratio of the total volume of reinforcing fibers (y2) to the total volume of reinforcing fibers present in the third layer is 67% by volume or more, preferably 75 to 100% by volume, more preferably 80 to 100% by volume.
  • the ratio of the total volume of reinforcing fibers (y2) to the total volume of reinforcing fibers present in the third layer is 67% by volume or more, preferably 75 to 100% by volume, more preferably 80 to 100% by volume.
  • the adhesive strength at the boundary portion between the insert portion and the integrally formed portion of the fiber reinforced composite material molded product is lowered. Tend. If the said ratio is in the said range, it will be excellent in the adhesive strength of the boundary part of the insert part of a fiber reinforced composite material molded product, and an integrally molded part.
  • the fiber volume content Vf3 in the third layer is 5 to 25% by volume, preferably 8 to 22% by volume, and more preferably 10 to 20% by volume. If fiber volume content Vf3 is more than a lower limit, the fiber reinforced composite material molded article which is excellent in a mechanical characteristic will be obtained. If fiber volume content Vf3 is below an upper limit, it will be excellent in the adhesive strength of the boundary part of the insert part and integral molding part of a fiber reinforced composite material molded article.
  • the fiber volume content Vf1 of the first layer, the fiber volume content Vf2 of the second layer, and the fiber volume content Vf3 of the third layer are an insert part made of a fiber reinforced resin base material, and the part integrally therewith. It is preferable that the condition of the following formula (1) is satisfied from the viewpoint that the adhesive strength at the boundary portion with the integrally molded portion to be molded becomes higher. Vf3 ⁇ Vf2 ⁇ Vf1 (1)
  • the first layer, the second layer, and the third layer in the fiber-reinforced composite material molded product can be determined by the method described in the examples.
  • the first layer and the third layer are preferably connected via the second layer. That is, there is no other layer between the first layer and the second layer, and between the second layer and the third layer, and the first layer, the second layer, and the third layer are continuously formed in contact with each other. It is preferable that It is particularly preferable that the fiber-reinforced composite material molded article of the present invention has a three-layer structure including the first layer, the second layer, and the third layer in this order.
  • the method for producing a fiber-reinforced composite material molded article of the present invention comprises a thermoplastic resin (x1), a fiber-reinforced resin base material (X) containing reinforcing fibers (x2) having a fiber length of 3 mm or more and less than 100 mm, and a thermoplastic resin (S1), a fiber-reinforced resin base material (X) containing reinforcing fibers (x2) having a fiber length of 3 mm or more and less than 100 mm, and a thermoplastic resin ( This is a method for producing a fiber-reinforced composite material molded article by integrally molding y1) and a resin composition (Y2) containing reinforcing fibers (y2) having a fiber length of 0.02 mm or more and less than 3 mm in a mold.
  • the fiber-reinforced composite material molded article manufactured by the manufacturing method of the present invention includes an insert portion formed of the fiber-reinforced resin base material (X) and an integrally molded portion integrated with the insert portion.
  • the method for producing a fiber-reinforced composite material molded article according to the present invention includes a fiber-reinforced resin substrate (X) and a resin in a state where the reinforcing fibers (x2) are exposed on at least part of the surface of the fiber-reinforced resin substrate (X).
  • the fiber reinforced resin substrate (X) is a substrate including a thermoplastic resin (x1) and a reinforced fiber (x2).
  • a fiber reinforced resin base material (X) the base material by which the fiber base material containing a reinforced fiber (x2) was impregnated with the thermoplastic resin (x1) is mentioned, for example.
  • a fiber base material composed of reinforcing fibers (x2) and fibers made of a thermoplastic resin (x1) may be used.
  • at least a part of the thermoplastic resin (x1) may be in a fibrous form.
  • the reinforcing fiber (x2) is exposed at a portion where the thermoplastic resin (x1) is not impregnated and the reinforcing fiber (x2) and the fibrous thermoplastic resin (X2) are mixed. ing.
  • fibers made of the thermoplastic resin (x1) are not included in the reinforcing fibers.
  • a plurality of reinforcing fibers (x2) and fibers made of a thermoplastic resin (x1), or a plurality of reinforcing fibers (x2) and fibers made of a thermoplastic resin (x1) were bundled.
  • a nonwoven fabric in which a large number of reinforcing fiber bundles (strands) are formed into a sheet shape can be mentioned.
  • the embodiment of the nonwoven fabric is not particularly limited, and examples thereof include a chopped strand mat, a continuous strand mat, a papermaking mat, a carding mat, and an airlaid mat.
  • the fiber made of the thermoplastic resin (x1) is generally more flexible than the reinforcing fiber (x2) such as carbon fiber. Therefore, by using the combination of the reinforcing fiber (x2) and the fiber made of the thermoplastic resin (x1), the fibers are easily entangled with each other, and the reinforcing fiber (x2) is produced during the production of the fiber-reinforced resin base material (X). ) Is less likely to break or break.
  • the reinforcing fibers (x2) When using a combination of reinforcing fibers (x2) and fibers made of thermoplastic resin (x1), after forming the substrate, some or all of the fibers made of thermoplastic resin (x1) are once melted and then solidified It is preferable that the reinforcing fibers (x2) are bonded to each other by the thermoplastic resin (x1) forming the fibers. Thereby, it becomes difficult for the reinforcing fiber (x2) to fall off from the fiber-reinforced resin base material (X).
  • thermoplastic resin fiber (x1) is not particularly limited, and examples thereof include the thermoplastic resins mentioned in the description of the fiber-reinforced composite material molded product.
  • thermoplastic resin fiber (x1) 1 type may be sufficient and 2 or more types may be sufficient.
  • the fiber length of the fiber made of the thermoplastic resin (x1) is not particularly limited, and can be, for example, 1 to 100 mm.
  • the fibers made of the thermoplastic resin (x1) are preferably crimped from the viewpoint that the fibers are easily entangled with each other.
  • 1 type may be used independently and 2 or more types may be used in combination.
  • the ratio of the reinforced fibers (x2) to the total amount of fibers in the fiber reinforced resin substrate (X) is 15 to 95 volumes. % Is preferable, and 20 to 90% by volume is more preferable. If the ratio of the reinforcing fibers (x2) is equal to or higher than the lower limit value, a fiber-reinforced composite material molded product having excellent mechanical properties can be easily obtained. If the ratio of the reinforcing fibers (x2) is equal to or less than the upper limit value, it is easy to obtain the effect of the fibers made of the thermoplastic resin (x1).
  • thermoplastic resin base material (X) impregnated with the thermoplastic resin (x1) a base material obtained by impregnating the thermoplastic resin (x1) into a fiber base material formed only of the reinforced fiber (x2), or a reinforcing fiber
  • the fiber reinforced resin substrate (X) may contain reinforcing fibers other than the reinforcing fibers (x2) as long as the effects of the present invention are not impaired. That is, the fiber reinforced resin substrate (X) may contain reinforcing fibers having a fiber length of less than 3 mm or reinforcing fibers having a fiber length of more than 100 mm.
  • the fiber reinforced resin substrate (X) has a flame retardant, a weather resistance improver, an antioxidant, a heat stabilizer, an ultraviolet absorber, a plasticizer, and a lubricant depending on the required characteristics of the target fiber reinforced composite material molded product.
  • additives such as a colorant, a compatibilizing agent, and a conductive filler may be contained.
  • the ratio of the total volume of the reinforcing fibers (x2) to the total volume of the reinforcing fibers present in the fiber reinforced resin substrate (X) is 67% by volume or more, preferably 75 to 100% by volume, and 80 to 100% by volume. Is more preferable. If there are too many reinforcing fibers having a long fiber length, the formability tends to decrease, and if there are too many reinforcing fibers having a short fiber length, the mechanical properties of the fiber-reinforced composite material molded product tend to decrease. If the said ratio is in the said range, the balance of a shaping property and intensity
  • the fiber volume content of the fiber reinforced resin substrate (X) is 15 to 50% by volume, preferably 20 to 45% by volume, more preferably 25 to 40% by volume. If the fiber volume content of the fiber reinforced resin substrate (X) is not less than the lower limit value, a fiber reinforced composite material molded article having sufficient mechanical properties can be obtained. If the fiber volume content of the fiber reinforced resin substrate (X) is less than or equal to the upper limit, the formability at the time of production will be sufficient.
  • the reinforced fiber (x2) is exposed at least at a part of the surface.
  • the resin composition (Y) is exposed by integrally molding the resin composition (Y) in a state where the fiber reinforced resin base material (X) in which the reinforcing fibers (x2) are partially exposed is disposed in the mold. The filled part is easily filled.
  • the fiber reinforced resin base material (X) in which the reinforcing fibers (x2) are exposed at least at a part of the surface is not particularly limited.
  • the thermoplastic resin (x1) is provided on one side in the thickness direction of the fiber base material. Is impregnated and the other side is an unimpregnated portion not impregnated with resin.
  • the fiber reinforced resin base material (X) in which the reinforced fiber (x2) is exposed at least at a part of the surface is a fiber base material formed only of fibers made of the reinforced fiber (x2) and the thermoplastic resin (x1). Also good.
  • the fiber reinforced resin substrate (X) it is preferable to use a fiber reinforced resin substrate (X1) that is compressible in the thickness direction. Thereby, it becomes easy to obtain a fiber-reinforced composite material molded article having high adhesive strength at the boundary portion between the insert portion and the integrally molded portion.
  • the thickness direction compressible fiber-reinforced resin base, at 23 ° C., the compression ratio P A when compressed at 2MPa means a fiber reinforced plastic substrate is 30% or more. Compression ratio P A in the case where some of the fiber-reinforced resin base material (X1) to the thermoplastic resin (x1) is impregnated, the value calculated excluding resin-impregnated portion, i.e.
  • the compression rate is defined as the compression rate P in accordance with JIS L1913.
  • T 0 When the initial load of the fiber reinforced resin base material (X1) in JIS L1913 is applied, T 0 is applied, and an arbitrary pressure is applied.
  • T 1 T 1
  • P (T 0 ⁇ T 1 ) / T 0 ⁇ 100.
  • Compression rate when a part in the thermoplastic resin of the fiber-reinforced resin base material (X1) (x1) is impregnated, the thickness of the impregnated portion of the thermoplastic resin (x1) as T 2, P (T 0 ⁇ T 1 ) / (T 0 ⁇ T 2 ) ⁇ 100.
  • the thickness T 2 of the impregnated portion of the thermoplastic resin (x1) is fiber-reinforced resin base a cross-section of (X1) after mirror polishing, it can be measured by light microscopy.
  • Compression ratio P A of the fiber-reinforced resin base material (X1) is preferably 30% or more, more preferably 40 to 80%. If the compression ratio P A is less than the lower limit, the adhesion strength at the boundary portion of the insert portion integrally molded portion is high, also the reinforcing fibers of the resin composition (Y) is a fiber reinforced resin substrate (X1) (x2) is It is easy to obtain a fiber-reinforced composite material molded article with excellent mechanical properties, in which the exposed portion is sufficiently filled. On the other hand, when the extremely high compression ratio P A, the fiber-reinforced resin base of the insert portion in the fiber-reinforced composite material molded article (X1) becomes less abundance from the mechanical properties of the insert portion may be decreased. However, if the compression ratio P A is equal to or less than the upper limit value, without impairing the mechanical properties of the insert part, excellent fiber-reinforced composite material molded article can be easily obtained in the mechanical properties.
  • the compression rate P B when compressed at 10 MPa in the fiber reinforced resin substrate (X1) is preferably 98% or less, more preferably 45 to 97%. If the compression ratio P B is equal to or greater than the lower limit, the resin composition has high adhesive strength at the boundary portion between the insert portion and the integrally molded portion, and the portion where the reinforcing fiber (x2) of the fiber reinforced resin base material (X1) is exposed. It is easy to obtain a fiber-reinforced composite material molded article that is sufficiently filled with (Y) and excellent in mechanical properties.
  • the compression rate P B when the thermoplastic resin (x1) is impregnated in a part of the fiber reinforced resin substrate (X1) means a value calculated excluding the resin-impregnated portion.
  • the fiber reinforced resin base material (X1) a fiber reinforced resin base material (X11) that can be compressed in the thickness direction by swelling by a spring back by heating may be used.
  • Fiber-reinforced resin base (X11) the pre-heating is the compression ratio P A is less than 70%, in which the compression ratio P A is 70% or more by heating.
  • the fiber reinforced resin base material (X1) partially impregnated with the thermoplastic resin (x1) is used, and the fiber reinforced resin base material (X1) is heated above the softening temperature of the thermoplastic resin (x1) in the mold.
  • a fiber reinforced resin base material (X11) that can be compressed in the thickness direction by the heating can be used.
  • a well-known method is employable.
  • Examples of a method for producing a fiber substrate made of a nonwoven fabric using a combination of reinforcing fiber (x2) or fibers made of reinforcing fiber (x2) and thermoplastic resin (x1) include, for example, an airlaid method, a carding method, Examples include a papermaking method.
  • thermoplastic resin (x1) As a method for impregnating a thermoplastic resin (x1) into a fiber substrate made of a nonwoven fabric, for example, a resin film formed of a thermoplastic resin (x1) is laminated on one surface side of the nonwoven fabric, and a thermoplastic resin (x1 And a method of impregnating by heating with a compression molding machine while heating and melting.
  • the compression molding machine include a double belt press and a calendar roll.
  • the resin composition (Y) is a resin composition containing a thermoplastic resin (y1) and reinforcing fibers (y2).
  • thermoplastic resin (y1)) It does not specifically limit as a thermoplastic resin (y1), for example, the thermoplastic resin quoted in description of the fiber reinforced composite material molded article is mentioned.
  • the thermoplastic resin (y1) is the same resin as the thermoplastic resin fiber (x1) contained in the fiber reinforced resin base material (X) because the adhesive strength at the boundary portion between the insert portion and the integrally molded portion is increased. It is preferable.
  • the thermoplastic resin (y1) one type may be used alone, or two or more types may be used in combination.
  • the resin composition (Y) may contain reinforcing fibers other than the reinforcing fibers (y2).
  • the resin composition (Y) may contain reinforcing fibers having a fiber length of less than 0.02 mm or more than 3 mm together with the thermoplastic resin (y1) and the reinforcing fibers (y2).
  • the ratio of the total volume of the reinforcing fibers (y2) to the total volume of the reinforcing fibers present in the resin composition (Y) is 67% by volume or more, preferably 75 to 100% by volume, more preferably 80 to 100% by volume. preferable.
  • the fiber reinforced composite material molded article excellent in the adhesive strength of the boundary part of an insert part and an integrally molded part will be obtained.
  • the resin composition (Y ) Can be estimated from the ratio of the total volume of reinforcing fibers (y2) to the total volume of reinforcing fibers measured for the third layer of the fiber-reinforced composite material molded article.
  • the fiber volume content of the resin composition (Y) is 5 to 25% by volume, preferably 8 to 22% by volume, and more preferably 10 to 20% by volume. If the fiber volume content of the resin composition (Y) is at least the lower limit value, a fiber-reinforced composite material molded article having excellent mechanical properties can be obtained. If the fiber volume content of the resin composition (Y) is equal to or less than the upper limit value, the adhesive strength between the insert part of the fiber-reinforced composite material molded part and the boundary part of the integrally molded part is excellent.
  • the content of the reinforcing fiber (y2) in the resin composition (Y) is preferably 5 to 50 parts by mass and more preferably 10 to 35 parts by mass with respect to 100 parts by mass of the thermoplastic resin (y1). If the content of the reinforcing fiber (y2) is equal to or higher than the lower limit value, a fiber-reinforced composite material molded article having a high adhesive strength at the boundary portion between the insert portion and the integrally molded portion is easily obtained. If the content of the reinforcing fiber (y2) is not more than the upper limit value, the resin composition (Y) is easily filled in the exposed portion of the reinforcing fiber (x2) in the fiber-reinforced resin base material (X), and the mechanical properties are excellent. A fiber-reinforced composite material molded product is easily obtained.
  • Resin composition (Y) can be produced by kneading thermoplastic resin (y1) and reinforcing fiber (y2) by a known method such as biaxial extrusion kneading. Moreover, you may injection-mold the fiber reinforced thermoplastic resin pellet of a commercial item as a resin composition (Y).
  • the resin composition (Y) has a flame retardant, a weather resistance improver, an antioxidant, a heat stabilizer, an ultraviolet absorber, a plasticizer, a lubricant, and a color depending on the required characteristics of the target fiber reinforced composite material molded product. You may mix
  • the fiber reinforced resin base (X) is disposed in the mold, and the fiber reinforced resin (x2) is exposed at least part of the surface of the fiber reinforced resin base (X).
  • the resin substrate (X) and the resin composition (Y) are molded integrally.
  • the fiber reinforced resin base material (X) in which the reinforced fiber (x2) is not exposed is used, and the reinforced fiber is formed on at least a part of the surface of the fiber reinforced resin base material (X) before the molding step. You may process so that (x2) may be exposed. Specifically, before the molding step, the fiber reinforced resin base material (X) where the reinforcing fibers (x2) are not exposed is heated and reinforced at least on a part of the surface of the fiber reinforced resin base material (X). You may perform the exposure process which exposes a fiber (x2). In this case, the exposing step may be performed outside the mold, or may be performed after disposing the fiber reinforced resin base material (X) in which the reinforcing fibers (x2) are not exposed in the mold.
  • Examples of a method of integrally molding the fiber reinforced resin base material (X) and the resin composition (Y) include injection molding. That is, in a state where the reinforcing fiber (x2) is exposed on at least a part of the surface of the fiber reinforced resin base material (X), the resin composition (Y) is injected into the mold, and the fiber reinforced resin base material (X) A method of molding the resin composition (Y) integrally with the fiber reinforced resin substrate (X) while impregnating the resin composition (Y) in a portion where the reinforcing fibers (x2) of the resin are exposed.
  • the fiber length of the reinforcing fiber in the resin composition supplied to the injection machine is preferably longer than the fiber length of the reinforcing fiber (y2).
  • the fiber length of the reinforcing fiber supplied to the injection machine is preferably 0.1 to 10.0 mm, more preferably 0.2 to 6.0 mm, and still more preferably 0.3 to 3.0 mm.
  • the fiber reinforced resin base material (X) it is preferable to shape the fiber reinforced resin base material (X) with a mold for injection molding. Specifically, the resin composition (Y) is injected while shaping the fiber reinforced resin substrate (X) or after shaping the fiber reinforced resin substrate (X) in the mold. Then, it is preferable to perform molding. This eliminates the need to separately shape the fiber-reinforced resin base material (X) in advance, which increases productivity and is advantageous in terms of cost.
  • gold is injected while injecting the resin composition (Y) in a state where the fiber reinforced resin base material (X) is placed in the mold.
  • examples include a mode in which the mold is closed, a mode in which the mold is closed after the resin composition (Y) is injected in a state where the fiber reinforced resin base material (X) is disposed in the mold.
  • the mold is closed and the fiber reinforced resin substrate
  • injection molding As an aspect of performing injection molding after shaping the fiber reinforced resin substrate (X), for example, in a state where the fiber reinforced resin substrate (X) is disposed in the mold, the mold is closed and the fiber reinforced resin substrate
  • molding material (X) is mentioned.
  • the mold is once opened, the resin composition (Y) is injected in this state, the mold is closed again, and the resin is closed.
  • the composition (Y) is preferably molded integrally with the fiber reinforced resin base material (X) while being pressurized.
  • press molding may be used as a method for integrally molding the fiber reinforced resin base material (X) and the resin composition (Y). That is, with the reinforcing fiber (x2) exposed at least part of the surface of the fiber reinforced resin substrate (X), the resin composition (Y) is placed in the mold, and the fiber reinforced resin substrate is formed by press molding. Even if the resin composition (Y) is formed integrally with the fiber reinforced resin base material (X) while the resin composition (Y) is impregnated into the exposed portion of the reinforcing fiber (x2) of (X). Good. Also when performing press molding, it is preferable to shape the fiber reinforced resin base material (X) with a die for performing press molding.
  • the fiber reinforced resin substrate (X) is heated to a temperature equal to or higher than the softening temperature of the thermoplastic resin (x1).
  • the fiber reinforced resin substrate (X) may be heated to the softening temperature or higher and then placed in the mold.
  • the fiber reinforced resin base material (X) is heated to the softening temperature or higher. You may heat.
  • the method for heating the fiber reinforced resin substrate (X) is not particularly limited, and examples thereof include an infrared heater.
  • the relationship between the temperature T (° C.) of the fiber reinforced resin base material (X) during shaping and the softening temperature T A (° C.) of the thermoplastic resin (x1) is T A ⁇ T, and T A +10 ( °C) ⁇ T ⁇ T A +150 (°C) are preferred, T A +30 (°C) ⁇ T ⁇ T A +100 (°C) is more preferable.
  • T T is equal to or higher than the lower limit, a fiber-reinforced composite material molded article having a high adhesive strength at the interface between the insert portion and the integrally molded portion can be easily obtained, and the molding time is shortened.
  • the temperature T is too high, the time until the thermoplastic resin (x1) is solidified after mold clamping becomes long, and the productivity may be lowered, or the thermoplastic resin (x1) may be thermally decomposed. There is. However, if the temperature T is equal to or lower than the upper limit, there is no problem in the time until the thermoplastic resin (x1) after mold clamping is solidified, and the thermal decomposition of the thermoplastic resin (x1) is easily suppressed.
  • the mold temperature at the time of clamping is preferably 5 ° C. or more lower than the lowest softening temperature among the softening temperatures of the thermoplastic resin (y1) and the thermoplastic resin (x1), and more preferably 15 ° C. or more. .
  • the mold 100 includes a lower mold 110 in which a concave portion 112 is formed on the upper surface side, and an upper mold 120 in which a convex portion 122 protruding downward is provided.
  • the upper mold 120 is formed with a resin flow path 124 for injecting resin from the lower surface of the convex portion 122.
  • the fiber reinforced resin base material (X) 10 is disposed in the recess 112 in the lower mold 110.
  • the fiber reinforced resin base material (X) 10 is impregnated with the thermoplastic resin (x1) 10b on one side in the thickness direction of the base material in which the reinforcing fiber (x2) 10a is formed into a sheet shape, and the other side is not yet formed. This is an exposed portion 10c of the reinforcing fiber (x2) that is impregnated.
  • the fiber reinforced resin base material (X) 10 is disposed in the recess 112 of the lower mold 110 so that the exposed portion 10c faces upward.
  • the fiber reinforced resin substrate (X) 10 is heated to a temperature equal to or higher than the softening temperature of the thermoplastic resin (x1) 10b by an infrared heater or the like. Thereafter, as shown in FIG. 2, the resin composition (Y) containing the thermoplastic resin (y1) and the reinforcing fibers (y2) from the resin flow path 124 of the upper mold 120 onto the fiber reinforced resin base material (X) 10. 12 is injected. Next, as shown in FIG. 3, the upper mold 120 is brought close to the lower mold 110, the mold 100 is closed, and the fiber reinforced resin substrate (X) 10 is shaped, while the resin composition (Y) 12 is made of fibers. The reinforced resin substrate (X) 10 is molded integrally while being impregnated in the exposed portion 10c. After the thermoplastic resin (x1) and the thermoplastic resin (y1) are solidified, the mold 100 is opened and the fiber-reinforced composite material molded article 1 is taken out.
  • the fiber reinforced composite material molded article 1 obtained in this example is an integral part formed of an insert portion 2 containing a fiber reinforced resin base material (X) 10 and a resin composition (Y) 12.
  • the molding part 3 is integrated.
  • a flat plate portion 4 and side plate portions 5 and 5 rising from both ends of the flat plate portion 4 are formed by the insert portion 2 and the integrally formed portion 3.
  • a first layer 23, a second layer 22, and a third layer 21 are formed from the insert portion 2 toward the integrally molded portion 3.
  • thermoplastic resin (x2) is exposed on the exposed portion of the reinforcing fiber (x2) of the fiber-reinforced resin substrate (X) in the mold. While being impregnated with the reinforcing fiber (y2) together with y1), it is molded integrally with the fiber-reinforced resin base material (X). Therefore, as shown also in FIG. 5, in the second layer located at the boundary portion between the insert portion and the integrally molded portion, the reinforcing fiber (y2) is stuck between the reinforcing fibers (x2). Exists. Thereby, the adhesive strength of the boundary part of an insert part and an integrally molded part becomes high.
  • the reinforcing fiber (y2) having a fiber length of 0.02 to 3.0 mm in the molding process because the voids in the base material are large. Can easily enter the exposed portion of the reinforcing fiber (x2), and the effect of increasing the adhesive strength at the boundary portion between the insert portion and the integrally formed portion can be sufficiently obtained.
  • the manufacturing method of the fiber reinforced composite material molded article of the present invention is not limited to the above-described method.
  • it may be a method of manufacturing a fiber-reinforced composite material molded article using a mold including a lower mold provided with a projecting portion protruding upward and an upper mold formed with a concave portion on the lower surface side.
  • a pre-shaped fiber-reinforced resin base material (X) is placed in a mold, and injection molding or press molding of a resin composition (Y) is performed. May be.
  • the shape of the fiber-reinforced composite material molded article produced by the production method of the present invention is not particularly limited. For example, you may form a rib, a boss
  • 0.63 kg of chopped polypropylene fiber was added to 115 kg of a polyethylene oxide aqueous solution having a mass concentration of 0.12%, and the mixture was sufficiently stirred using a stirrer. Subsequently, 0.54 kg of chopped carbon fiber was added and stirred for 10 seconds to obtain a dispersion.
  • the obtained dispersion was poured into a 100 cm square mesh frame, and after the polyethylene oxide aqueous solution was filtered, moisture was completely removed in a dryer at 120 ° C., and the fiber volume content was 30% by volume (fiber mass content: 46 %) And a basis weight of 1.17 kg / m 2 was obtained.
  • the ratio of the total volume of the reinforcing fibers (x2) to the total volume of the reinforcing fibers present in the fiber-reinforced resin substrate (X-1) is 100% by volume.
  • the theoretical thickness calculated from the specific gravity and basis weight of the fiber reinforced resin substrate (X-1) is 1.0 mm.
  • Example A1 A fiber-reinforced composite material molded article was manufactured using the mold 200 illustrated in FIG. 6, a mobile IR heater, and an injection molding apparatus ET-80HR2 manufactured by Toyo Machine Metal Co., Ltd.
  • the mold 200 includes an upper mold 210 having a recess 212 formed on the lower surface side, and a lower mold 220 having a protrusion 222 protruding upward.
  • the lower mold 220 is formed with a resin flow path 224 for injecting resin from the upper surface of the convex portion 222.
  • the shape of the target fiber-reinforced composite material molded product is complementary between the concave portion 212 and the convex portion 222 in the mold 200.
  • a shaped cavity (cavity thickness 2 mm) is formed.
  • the fiber reinforced resin base material (X-1) obtained in Production Example A1 was placed on the convex portion 222 of the lower mold 220.
  • the fiber reinforced resin substrate (X-1) is heated for 15 seconds with a mobile IR heater until the surface temperature of the fiber reinforced resin substrate (X-1) reaches 185 ° C. or more, and the polypropylene fiber on the upper part of the fiber reinforced resin substrate (X-1) is melted. I let you.
  • the resin composition (Y-1) heated to 210 ° C.
  • carbon fiber reinforced polypropylene resin pellets (trade name “Pyrofil pellets PP-C-20A”) containing carbon fibers (average fiber length: 0.6 mm) as reinforcing fibers (y2), Made by Mitsubishi Rayon Co., Ltd., fiber volume content: 11 volume% (fiber mass content: 20 mass%, softening temperature: 165 ° C.) was used.
  • the ratio of the total volume of the reinforcing fibers (y2) to the total volume of the reinforcing fibers present in the resin composition (Y-1) is 100% by volume.
  • the test piece Using an X-ray CT measuring machine with a focal size of 1 ⁇ m, place the test piece so that the thickness direction is the Z-axis direction, fix the XY plane, and move it along the Z-axis direction. (Unit area of XY plane: measured in a 10 mm ⁇ 10 mm region). At this time, the measurement dot pitch was set to 1 ⁇ m or less from the viewpoint of measurement accuracy.
  • the scan image obtained by the measurement was subjected to three-dimensional display conversion using analysis software. By image processing, only the reinforcing fibers were displayed, and the reinforcing fibers were color-coded according to the fiber length.
  • the reinforcing fiber having a fiber length of 100 mm or more is displayed in yellow
  • the reinforcing fiber having a fiber length of 3 mm or more and less than 100 mm is displayed in red
  • the reinforcing fiber having a fiber length of 0.02 mm or more and less than 3 mm is displayed in blue. The fiber was ignored.
  • Each of the color-coded reinforcing fibers was subjected to a treatment of cutting every 40 ⁇ m in length from both ends of the fibers. Specifically, for example, a reinforcing fiber having a fiber length of 176 ⁇ m was divided from one end so that the fiber length was 40 ⁇ m, 40 ⁇ m, 16 ⁇ m, 40 ⁇ m, and 40 ⁇ m. At this time, the portion where the fiber length was less than 40 ⁇ m was always processed so that the portion was positioned at the center of the reinforcing fiber before the division.
  • the difference in the number of portions with a fiber length of 40 ⁇ m was set to 1 on both sides of the portion with a fiber length of less than 40 ⁇ m.
  • a reinforcing fiber having a fiber length of 65 ⁇ m was subjected to a cutting treatment so that the fiber length was 40 ⁇ m and 25 ⁇ m from any one end.
  • the reinforcing fiber having a fiber length of 130 ⁇ m was subjected to a cutting process so that the fiber length was 40 ⁇ m, 40 ⁇ m, 10 ⁇ m, and 40 ⁇ from any one end.
  • the fiber having a fiber length of 20 ⁇ m or more and less than 40 ⁇ m was left without being cut, and the portion having a fiber length after splitting of less than 20 ⁇ m was deleted.
  • the reinforced fibers having a fiber length of 20 ⁇ m or more and 40 ⁇ m or less after the splitting were converted into a dot display at the midpoint position in the length direction of the reinforcing fibers.
  • the color of the dot display was the same color as the original reinforcing fiber.
  • the measurement range of the test piece (space of 10 mm ⁇ 10 mm ⁇ thickness direction Hmm) was divided every 25 ⁇ m in the thickness direction from the side where the reinforcing fiber base (X) is located. That is, in the case of a test piece having a thickness of Hmm, the measurement range of the test piece was divided into H ⁇ 1000 ⁇ 25 sections in the thickness direction.
  • the existence ratio of the number of points of each color of yellow, red, and blue was calculated.
  • the existence ratio of the number of each point is a reinforcing fiber (yellow) having a fiber length of 100 mm or more in each space, a reinforcing fiber (x2) (blue) having a fiber length of 3 mm or more and less than 100 mm, and a fiber length of 0.02 mm or more and less than 3 mm. It coincides with the respective volume-based existence ratios of the reinforcing fibers (y2) (red).
  • Vf 40 ⁇ m ⁇ (fiber radius) ⁇ (fiber radius) ⁇ (circumferential ratio) ⁇ (number of points existing in the unit space) ⁇ (volume of the unit space) ⁇ 100
  • a carbon fiber nonwoven fabric containing carbon fibers having an average fiber length of 25 mm as reinforcing fibers (x2) and having a basis weight of 300 g / m 2 is produced by a carding method.
  • a film having a basis weight of 200 g / m 2 using acid-modified polypropylene resin (trade name “Modic P958V”, manufactured by Mitsubishi Chemical Co., Ltd., softening temperature: 165 ° C.) as the thermoplastic resin (x1) is provided on one side of the carbon fiber nonwoven fabric.
  • the carbon fiber nonwoven fabric is impregnated with heat and pressure by passing through a calender roll a plurality of times and impregnated with a resin to obtain a fiber reinforced resin substrate (X1-1) having a thickness of 470 ⁇ m.
  • the side opposite to the side impregnated with the thermoplastic resin (x1) in the thickness direction is an unimpregnated portion not impregnated with resin, and the reinforcing fiber ( x2) is exposed.
  • the thickness of the portion impregnated with the thermoplastic resin (x1) in the fiber reinforced resin substrate (X1-1) is 330 ⁇ m, and the thickness of the non-impregnated portion is 140 ⁇ m.
  • the fiber-reinforced resin base material (X1-1) is a compressible substrate, the compression ratio P A is 50%, the compression ratio P B is 57%.
  • the ratio of the total volume of the reinforcing fibers (y2) to the total volume of the reinforcing fibers present in the fiber-reinforced resin substrate (X1-1) is 100% by volume.
  • Example B1 A fiber-reinforced composite material molded article is manufactured using the mold 100 illustrated in FIG. In the recess 112 of the lower mold 110, the fiber reinforced resin base material (X1-1) obtained in Production Example B1 is placed with the unimpregnated portion facing upward. Next, the fiber reinforced resin substrate (X1-1) is heated to 210 ° C. by an infrared heater, and then the mold 100 is closed to mold the fiber reinforced resin substrate (X1-1).
  • Carbon fiber reinforced polypropylene resin pellets (trade name “Pyrofil Pellet PP-C-10A”, manufactured by Mitsubishi Rayon Co., Ltd., carbon fiber content: 10 mass%, softening temperature: 165 ° C., average fiber length: 0.6 mm) It is set as a composition (Y-2).
  • the ratio of the total volume of the reinforcing fibers (y2) to the total volume of the reinforcing fibers present in the resin composition (Y-2) is 100% by volume.
  • the resin composition (Y-2) is heated to 210 ° C. to be in a molten state and injected from the resin flow path 124 of the upper mold 120 into the space in the mold 100, and the fiber reinforced resin base material (X-1).
  • the impregnated exposed portion of the reinforcing fiber (x2) is impregnated and molded integrally with the fiber reinforced resin base material (X-1) to obtain a 2 mm thick fiber reinforced composite material molded product (F-4).
  • the fiber length of the carbon fiber which is the reinforcing fiber (y2) in this fiber-reinforced composite material molded product (F-4) is 0.2 to 0.75 mm, and the average fiber length is 0.5 mm.
  • thermoplastic resin (y1) polypropylene resin (trade name “NOVATEC SA06GA”, manufactured by Nippon Polypro Co., Ltd., softening temperature: 165 ° C.) 85 parts by mass, carbon fiber having a fiber length of 25 mm (trade name “Pyrofil carbon fiber tow TR 50S” “Mitsubishi Rayon Co., Ltd.) 15 parts by mass is biaxially extruded and kneaded to obtain a resin composition (Y-3).
  • the average fiber length of the carbon fibers that are the reinforcing fibers (y2) in this resin composition (Y-3) is 0.75 mm.
  • the ratio of the total volume of the reinforcing fibers (y2) to the total volume of the reinforcing fibers present in the resin composition (Y-3) is 100% by volume.
  • the fiber reinforced resin base material (X1-1) obtained in Production Example B1 is placed with the exposed portion of the reinforcing fiber (x2) facing upward.
  • the fiber reinforced resin base material (X1-1) is heated to 210 ° C. with an infrared heater, and then heated to 210 ° C. in a molten state with the mold 100 being slightly opened.
  • (Y-3) is injected from the resin flow path 124 of the upper mold 120 onto the fiber reinforced resin substrate (X1-1).
  • the mold 100 is closed, and while the fiber reinforced resin base material (X1-1) is shaped, the resin composition (Y-3) is reinforced with fibers of the fiber reinforced resin base material (X1-1) ( x2) is molded integrally with the fiber reinforced resin base material (X1-1) while impregnating the exposed portion of x2) to obtain a 2 mm thick fiber reinforced composite material molded product (F-5).
  • the fiber length of the carbon fiber which is the reinforcing fiber (y2) in this fiber-reinforced composite material molded product (F-5) is 0.1 to 1.3 mm, and the average fiber length is 0.6 mm.
  • thermoplastic resin (y1) polypropylene resin (trade name “NOVATEC SA06GA”, manufactured by Nippon Polypro Co., Ltd., softening temperature: 165 ° C.) 75 parts by mass, carbon fiber having a fiber length of 25 mm (trade name “Pyrofil carbon fiber tow TR 50S” "Mitsubishi Rayon Co., Ltd.) 25 parts by mass is biaxially extruded and kneaded to obtain a resin composition (Y-4).
  • the average fiber length of the carbon fibers that are the reinforcing fibers (y2) in the resin composition (Y-4) is 0.75 mm.
  • the ratio of the total volume of the reinforcing fibers (y2) to the total volume of the reinforcing fibers present in the resin composition (Y-4) is 100% by volume.
  • the fiber reinforced resin base material (X1-1) obtained in Production Example B1 is placed with the unimpregnated portion facing upward.
  • the fiber reinforced resin substrate (X1-1) is heated to 210 ° C. by an infrared heater, and then the mold 100 is closed to mold the fiber reinforced resin substrate (X1-1).
  • the mold 100 is opened slightly, and in this state, the resin composition (Y-4) heated to 210 ° C.
  • the mold 100 is closed, and while the fiber reinforced resin base material (X1-1) is shaped, the resin composition (Y-4) is reinforced with fibers of the fiber reinforced resin base material (X1-1) ( x2) is molded integrally with the fiber reinforced resin base material (X1-1) while impregnating the exposed portion of x2) to obtain a 2 mm thick fiber reinforced composite material molded product (F-6).
  • the fiber length of the carbon fiber which is the reinforcing fiber (y2) in this fiber-reinforced composite material molded product (F-6) is 0.07 to 1.3 mm, and the average fiber length is 0.6 mm.
  • the average fiber length of the reinforcing fiber (y2) in the fiber-reinforced composite material molded article is measured by the following method.
  • the fiber reinforced composite material molded article is placed in an oven and baked at 500 ° C. for 2 hours to burn off the resin, and then the obtained ash is uniformly dispersed in water.
  • the dispersed water is taken in a petri dish, dried and then observed with an optical microscope, and the fiber length of the reinforcing fiber (y2) is randomly measured at 1000.
  • the mass mean value is computed by the following formula, and it is set as the average fiber length of the reinforcing fiber (y2).
  • Average fiber length ⁇ (Mi 2 ⁇ Ni) / ⁇ (Mi ⁇ Ni)
  • Mi is the measured fiber length (mm)
  • Ni is the number of reinforcing fibers (y2) having the fiber length Mi (mm).
  • the adhesive strength at the boundary surface between the insert portion and the integrally molded portion of the molded body in each example is evaluated as follows. A test piece is cut out from the fiber-reinforced composite material molded product to 12.7 mm width ⁇ 120 mm length, and a bending test based on JIS K7074 is performed. In the strain-stress curve obtained from the test, the initial stress yield point is “ ⁇ ”, and the interfacial debonding at the interface between the insert part and the integrally formed part is “X”. The evaluation results are shown in Table 2.
  • the fiber-reinforced composite material molded products of Examples B1 to B3 manufactured using the manufacturing method of the present invention are fibers of Comparative Example B1 that do not contain the reinforcing fiber (y2) in the thermoplastic resin composition.
  • the adhesive strength at the boundary portion between the insert portion and the integrally molded portion is high. This is a state in which, in the fiber-reinforced composite material molded products of Examples B1 to B3, the reinforcing fiber (y2) is pierced into the portion that was the unimpregnated portion of the fiber-reinforced resin base material (X) in the insert portion. It is thought that this is because it exists.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

 繊維強化樹脂基材からなるインサート部分と、該部分と一体に成形される一体成形部分との境界部分における接着強度が高い繊維強化複合材料成形品を得ることを目的とする。強化繊維及び熱可塑性樹脂を含有し、第1層(23)、第2層(22)及び第3層(21)をこの順に備え、それら各層において、層の厚さ、層内に存在する強化繊維の総体積に対する、繊維長3mm以上100mm未満の強化繊維(x2)の合計体積の割合、繊維長0.02mm以上3mm未満の強化繊維(y2)の合計体積の割合、繊維体積含有率が特定の範囲に制御されている繊維強化複合材料成形品(1)。

Description

繊維強化複合材料成形品及びその製造方法
 本発明は、繊維強化複合材料成形品及びその製造方法に関する。
 本願は、2015年4月17日に、日本に出願された特願2015-084918号に基づき優先権を主張し、その内容をここに援用する。
 自動車用部品、コンピュータ用部品等の様々な用途において、強化繊維及び熱可塑性樹脂を含有し、所定の形状に賦形された繊維強化複合材料が広く用いられている。
 該繊維強化複合材料の製造方法としては、例えば、以下の方法が知られている。繊維長50mm程度の強化繊維を用いて形成した圧縮可能な繊維基材を金型内に配置し、熱可塑性樹脂を射出した後に金型内の容積を縮小して、圧縮しつつ繊維基材に熱可塑性樹脂を含浸させて繊維強化複合材料を得る(特許文献1)。該方法によれば、複雑な形状の繊維強化複合材料を製造できる。しかし、該繊維強化複合材料は、熱可塑性樹脂成形品等の別の部材と組み合わせる場合に、それらの境界面の接着強度を充分に高めることが難しい。
 また、繊維強化複合材料成形品として、強化繊維及び熱可塑性樹脂を含有し、所定の形状に賦形された繊維強化複合材料に、熱可塑性樹脂が射出成形されて一体とされた繊維強化複合材料成形品が提案されている。該繊維強化複合材料成形品の製造方法としては、例えば、特許文献2に、インサート成形を用いた以下の方法が開示されている。強化繊維からなる不織布の厚さ方向の一方の側に熱可塑性樹脂(A)が含浸され、もう一方の側は樹脂が含浸されていない繊維強化樹脂シートを金型内に配置する。そして、該繊維強化樹脂シートの強化繊維が露出している側に熱可塑性樹脂(B)を射出し、繊維強化樹脂シートの未含浸部分に熱可塑性樹脂(B)を含浸させつつ一体に成形する。特許文献2には、射出成形部分に強化繊維を含有させることも開示されている。
国際公開第2012/172982号 国際公開第2014/103658号
 特許文献2の方法では、熱可塑性樹脂(A)部分と熱可塑性樹脂(B)部分の境界が凹凸形状となることで、そのアンカー効果によって接着強度が高められている。しかし、該方法で得られた繊維強化複合材料成形品においても、インサート部分と射出成形部分の境界部分の接着強度が不充分となることがある。
 本発明は、繊維強化樹脂基材からなるインサート部分と、該部分と一体に成形される一体成形部分との境界部分における接着強度が高い繊維強化複合材料成形品、及び該繊維強化複合材料成形品の製造方法を提供することを目的とする。
 本発明は、以下の構成を有する。
[1]熱可塑性樹脂(x1)、及び繊維長3mm以上100mm未満の強化繊維(x2)を含む繊維強化樹脂基材(X)と、熱可塑性樹脂(y1)、及び繊維長0.02mm以上3mm未満の強化繊維(y2)を含む樹脂組成物(Y)とを金型内で一体に成形して繊維強化複合材料成形品を製造する方法であって、
 前記繊維強化樹脂基材(X)中に存在する強化繊維の総体積に対する前記強化繊維(x2)の合計体積の割合が67体積%以上であり、前記繊維強化樹脂基材(X)の繊維体積含有率が15~50体積%であり、
 前記樹脂組成物(Y)中に存在する強化繊維の総体積に対する前記強化繊維(y2)の合計体積の割合が67体積%以上であり、前記樹脂組成物(Y)の繊維体積含有率が5~25体積%であり、
 前記繊維強化樹脂基材(X)の表面の少なくとも一部で前記強化繊維(x2)が露出した状態で、前記繊維強化樹脂基材(X)と前記樹脂組成物(Y)とを一体に成形する成形工程を有する、繊維強化複合材料成形品の製造方法。
[2]前記成形工程の前に、前記強化繊維(x2)が露出していない前記繊維強化樹脂基材(X)を加熱し、該繊維強化樹脂基材(X)の表面の少なくとも一部で前記強化繊維(x2)を露出させる露出工程を有する、[1]に記載の繊維強化複合材料成形品の製造方法。
[3]前記成形工程において、前記樹脂組成物(Y)を金型内に射出して成形する、[1]又は[2]に記載の繊維強化複合材料成形品の製造方法。
[4]前記金型内に前記繊維強化樹脂基材(X)を配置した状態で、前記金型によって前記繊維強化樹脂基材(X)を賦形しながら、又は賦形した後に前記樹脂組成物(Y)を射出する、[3]に記載の繊維強化複合材料成形品の製造方法。
[5]前記成形工程において、前記繊維強化樹脂基材(X)と前記樹脂組成物(Y)とをプレス成形により一体に成形する、[1]又は[2]に記載の繊維強化複合材料成形品の製造方法。
[6]前記熱可塑性樹脂(x1)の少なくとも一部が繊維状である、[1]~[5]のいずれかに記載の繊維強化複合材料成形品の製造方法。
[7]前記繊維強化樹脂基材(X)が、厚さ方向に圧縮可能な繊維強化樹脂基材(X1)である、[1]~[6]のいずれかに記載の繊維強化複合材料成形品の製造方法。
[8]強化繊維及び熱可塑性樹脂を含有し、第1層、第2層及び第3層をこの順に備える繊維強化複合材料成形品であって、
 前記第1層は、層の厚さが300μm以上であり、当該層内に存在する強化繊維の総体積に対する、繊維長3mm以上100mm未満の強化繊維(x2)の合計体積の割合が67体積%以上であり、繊維体積含有率Vf1が15~50体積%である層であり、
 前記第2層は、層の厚さが100~1500μmであり、当該層内に存在する強化繊維の総体積に対する、前記強化繊維(x2)の合計体積の割合が33体積%超であり、かつ繊維長0.02mm以上3mm未満の強化繊維(y2)の合計体積の割合が67体積%未満である層であり、
 前記第3層は、層の厚さが300μm以上であり、当該層内に存在する強化繊維の総体積に対する、前記強化繊維(y2)の合計体積の割合が67体積%以上であり、繊維体積含有率Vf3が5~25体積%である層である、繊維強化複合材料成形品。
[9]前記第1層と前記第3層が前記第2層を介して接続されている、[8]に記載の繊維強化複合材料成形品。
[10]前記第1層の繊維体積含有率Vf1と、前記第2層の繊維体積含有率Vf2と、前記第3層の繊維体積含有率Vf3とが下式(1)の条件を満たす、[8]又は[9]に記載の繊維強化複合材料成形品。
 Vf3<Vf2<Vf1 ・・・(1)
 本発明の繊維強化複合材料成形品の製造方法によれば、繊維強化樹脂基材からなるインサート部分と、該部分と一体に成形される一体成形部分との境界部分における接着強度が高い繊維強化複合材料成形品を製造することができる。
 本発明の繊維強化複合材料成形品においては、繊維強化樹脂基材からなるインサート部分と、該部分と一体に成形される一体成形部分との境界部分における接着強度が高い。
本発明の繊維強化複合材料成形品の製造方法の一工程を示した断面図である。 本発明の繊維強化複合材料成形品の製造方法の一工程を示した断面図である。 本発明の繊維強化複合材料成形品の製造方法の一工程を示した断面図である。 本発明の製造方法で得られる繊維強化複合材料成形品の一例を示した断面図である。 図4の繊維強化複合材料成形品の拡大断面図である。 実施例で使用した金型を示した断面図である。
 本明細書において、インサート部分とは、繊維強化複合材料成形品における繊維強化樹脂基材(X)が存在する部分を意味する。一体成形部分とは、樹脂組成物(Y)のみで成形された部分を意味する。繊維強化樹脂基材(X)における強化繊維(x2)の露出部分に樹脂組成物(Y)が充填された部分は、インサート部分とする。
[繊維強化複合材料成形品]
 本発明の繊維強化複合材料成形品は、強化繊維及び熱可塑性樹脂を含有し、第1層、第2層及び第3層をこの順に備える繊維強化複合材料成形品である。
 本発明の繊維強化複合材料成形品は、例えば、後述する本発明の繊維強化複合材料成形品の製造方法により製造することができる。本発明の製造方法で製造される繊維強化複合材料成形品は、繊維強化樹脂基材(X)及び樹脂組成物(Y)で形成されたインサート部分と、樹脂組成物(Y)によって該インサート部分と一体に成形された一体成形部分とを備える。第1層及び第2層はインサート部分に存在し、第3層は一体成形部分に存在する。
 以下、本発明の繊維強化複合材料成形品の一例を示して説明する。本実施形態の繊維強化複合材料成形品1は、図4及び図5に示すように、繊維強化樹脂基材(X)10が含まれるインサート部分2と、樹脂組成物(Y)12により形成された一体成形部分3とを備えている。また、繊維強化複合材料成形品1においては、インサート部分2及び一体成形部分3により、平板部4と、平板部4の両端から立ち上がる側板部5,5とが形成されている。
 繊維強化複合材料成形品1においては、厚さ方向において、インサート部分2から一体成形部分3に向かって、第1層23、第2層22、第3層21が形成されている。第1層23及び第2層22はインサート部分2に存在し、第3層21は一体成形部分3に存在している。
(第1層)
 第1層23は、熱可塑性樹脂、及び繊維長3mm以上100mm未満の強化繊維(x2)を含む層である。
 熱可塑性樹脂としては、特に限定されず、例えば、ポリアミド樹脂(ナイロン6、ナイロン66、ナイロン12、ナイロンMXD6等)、ポリオレフィン樹脂(低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン等)、変性ポリオレフィン樹脂(変性ポリプロピレン樹脂等)、ポリエステル樹脂(ポリエチレンテレフタレート、ポリブチレンテレフタレート等)、ポリカーボネート樹脂、ポリアミドイミド樹脂、ポリフェニレンオキシド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルイミド樹脂、ポリスチレン樹脂、ABS樹脂、ポリフェニレンサルファイド樹脂、液晶ポリエステル樹脂、アクリロニトリルとスチレンの共重合体、ナイロン6とナイロン66の共重合体等が挙げられる。変性ポリオレフィン樹脂としては、例えば、マレイン酸等の酸によりポリオレフィン樹脂を変性した樹脂等が挙げられる。熱可塑性樹脂としては、1種を単独で使用してもよく、2種以上を併用してもよい。
 強化繊維(x2)は、繊維長3mm以上100mm未満の強化繊維である。
 強化繊維(x2)としては、繊維強化複合材料成形品において通常使用されているものであれば特に限定されず、例えば、無機繊維、有機繊維、金属繊維、又はこれらを組み合わせたハイブリッド構成の強化繊維が使用できる。無機繊維としては、炭素繊維、黒鉛繊維、炭化珪素繊維、アルミナ繊維、タングステンカーバイド繊維、ボロン繊維、ガラス繊維等が挙げられる。有機繊維としては、アラミド繊維等が挙げられる。金属繊維としては、ステンレス、鉄等の繊維が挙げられ、また金属を被覆した炭素繊維でもよい。これらの中では、繊維強化複合材料成形品の強度等の機械物性を考慮すると、炭素繊維が好ましい。強化繊維(x2)としては、1種の強化繊維を単独で使用してもよく、2種以上の強化繊維を併用してもよい。
 強化繊維(x2)の繊維長は、繊維長3mm以上100mm未満であり、3~75mmが好ましく、5~50mmがより好ましい。強化繊維(x2)の繊維長が下限値以上であれば、機械特性に優れる繊維強化複合材料成形品が得られる。強化繊維(x2)の繊維長が上限値以下であれば、製造時の賦形性が優れる。
 第1層には、強化繊維(x2)以外の強化繊維が含まれていてもよい。強化繊維(x2)以外の強化繊維としては、特に限定されず、例えば第2層において説明する強化繊維(y2)や繊維長が100mm以上の強化繊維が挙げられる。
 第1層の厚さは、300μm以上であり、500μm以上が好ましい。第1層の厚さが下限値以上であれば、機械特性に優れる繊維強化複合材料成形品が得られる。第1層の厚さの上限値は、特に限定されず、適宜設定することができ、現実的には、例えば、50mm程度である。
 第1層内に存在する強化繊維の総体積に対する強化繊維(x2)の合計体積の割合は、67体積%以上であり、75~100体積%が好ましく、80~100体積%がより好ましい。繊維長の長い強化繊維が多すぎると賦形性が低下する傾向があり、また繊維長が短い強化繊維が多すぎると繊維強化複合材料成形品の機械物性が低下する傾向がある。前記割合が前記範囲内であれば、賦形性と強度のバランスが良好となる。
 第1層における繊維体積含有率Vf1は、15~50体積%であり、20~45体積%が好ましく、25~40体積%がより好ましい。繊維体積含有率Vf1が下限値以上であれば、充分な機械特性を有する繊維強化複合材料成形品が得られる。繊維体積含有率Vf1が上限値以下であれば、製造時の賦形性が充分なものとなる。
(第2層)
 第2層22は、熱可塑性樹脂、強化繊維(x2)、及び繊維長0.02mm以上3mm未満の強化繊維(y2)を含む層である。第2層には、強化繊維(x2)及び強化繊維(y2)以外の強化繊維が含まれていてもよい。
 第2層に含まれる熱可塑性樹脂としては、特に限定されず、例えば、第1層に含まれる熱可塑性樹脂として挙げたものと同じものが挙げられる。第2層に含まれる熱可塑性樹脂は、1種であってもよく、2種以上であってもよい。
 強化繊維(y2)は、繊維長0.02mm以上3mm未満の強化繊維である。強化繊維(y2)の種類としては、強化繊維(x2)で挙げたものと同じものが挙げられる。強化繊維(y2)としては、繊維強化複合材料成形品の強度等の機械物性を考慮すると、炭素繊維が好ましい。
 強化繊維(y2)の繊維長は、0.02mm以上3mm未満であり、0.04~1.5mmが好ましく、0.07~1.3mmがより好ましい。強化繊維(y2)の繊維長が下限値以上であれば、繊維強化複合材料成形品のインサート部分と一体成形部分の境界部分の接着強度が高くなる。強化繊維(y2)の繊維長が上限値以下であれば、後述する成形工程において繊維強化樹脂基材(X)の強化繊維(x2)の露出部分に強化繊維(y2)が入り込みやすくなる。これにより、第2層における、製造時の繊維強化樹脂基材(X)において強化繊維(x2)が露出していた部分に相当する部分に、強化繊維(y2)が突き刺さったような状態で含有されやすくなる。そのため、第2層を介した第1層と第3層の接着強度、すなわちインサート部分と一体成形部分の境界部分の接着強度が高められる。
 第2層の厚さは、100~1500μmであり、200~1250μmが好ましく、300~1000μmがより好ましい。第2層の厚さが下限値以上であれば、繊維強化複合材料成形品のインサート部分と一体成形部分の境界部分の接着強度に優れる。一方、該第2層は前記第1層と比較すると相対的に繊維長は短いために、極端に第2層が厚い場合は、繊維強化複合材料成形品の機械物性の低下が懸念される。しかし、第2層の厚さが上限値以下であれば、機械特性に優れる繊維強化複合材料成形品が得られる。
 第2層内に存在する強化繊維の総体積に対する、強化繊維(x2)の合計体積の割合は、33体積%超であり、36~64体積%が好ましく、40~60体積%がより好ましい。
 第2層内に存在する強化繊維の総体積に対する、強化繊維(y2)の合計体積の割合は、67体積%未満であり、36~64体積%が好ましく、40~60体積%がより好ましい。強化繊維(x2)の合計体積の割合及び強化繊維(y2)の合計体積の割合が上記範囲内であれば、繊維強化複合材料成形品のインサート部分と一体成形部分の境界部分の接着強度に優れる。
 第2層における繊維体積含有率Vf2は、8~42体積%が好ましく、12~37体積%がより好ましく、15~33体積%がさらに好ましい。繊維体積含有率Vf2が下限値以上であれば、機械特性に優れる繊維強化複合材料成形品が得られる。繊維体積含有率Vf2が上限値以下であれば、第2層において強化繊維(x2)と強化繊維(y2)が互いに絡まりやすく、繊維強化複合材料成形品のインサート部分と一体成形部分の境界部分の接着強度がより優れたものとなる。
(第3層)
 第3層21は、熱可塑性樹脂及び強化繊維(y2)を含む層である。第3層には、強化繊維(y2)以外の強化繊維が含まれていてもよい。強化繊維(y2)以外の強化繊維としては、例えば、強化繊維(x2)が挙げられる。
 第3層の厚さは、300μm以上であり、500μm以上が好ましい。第3層の厚さが下限値以上であれば、機械特性に優れる繊維強化複合材料成形品が得られる。第3層の厚さの上限値は、特に限定されず、適宜設定できる。
 第3層内に存在する強化繊維の総体積に対する強化繊維(y2)の合計体積の割合は、67体積%以上であり、75~100体積%が好ましく、80~100体積%がより好ましい。繊維長の長い強化繊維が多すぎると、後述する成形工程において繊維強化樹脂基材(X)の強化繊維(x2)の露出部分に強化繊維(y2)が入り込みにくくなる。また繊維長が短い強化繊維が多すぎると、強化繊維(y2)の効果が得られにくくなる。このように、繊維長の長い強化繊維が多すぎても、繊維長が短い強化繊維が多すぎても、繊維強化複合材料成形品のインサート部分と一体成形部分の境界部分の接着強度が低下する傾向がある。前記割合が前記範囲内であれば、繊維強化複合材料成形品のインサート部分と一体成形部分の境界部分の接着強度に優れる。
 第3層における繊維体積含有率Vf3は、5~25体積%であり、8~22体積%が好ましく、10~20体積%がより好ましい。繊維体積含有率Vf3が下限値以上であれば、機械特性に優れる繊維強化複合材料成形品が得られる。繊維体積含有率Vf3が上限値以下であれば、繊維強化複合材料成形品のインサート部分と一体成形部分の境界部分の接着強度に優れる。
 第1層の繊維体積含有率Vf1と、第2層の繊維体積含有率Vf2と、第3層の繊維体積含有率Vf3とは、繊維強化樹脂基材からなるインサート部分と、該部分と一体に成形される一体成形部分との境界部分における接着強度がより高くなる点から、下式(1)の条件を満たすことが好ましい。
 Vf3<Vf2<Vf1 ・・・(1)
 繊維強化複合材料成形品における第1層、第2層及び第3層は、実施例に記載した方法で決定することができる。本発明の繊維強化複合材料成形品においては、第1層と第3層が第2層を介して接続されていることが好ましい。すなわち、第1層と第2層の間、及び第2層と第3層の間に他の層が存在せず、第1層と第2層と第3層が互いに接して連続的に形成されていることが好ましい。本発明の繊維強化複合材料成形品は、第1層、第2層及び第3層をこの順に備える3層構成であることが特に好ましい。
[繊維強化複合材料成形品の製造方法]
 本発明の繊維強化複合材料成形品の製造方法は、熱可塑性樹脂(x1)、及び繊維長3mm以上100mm未満の強化繊維(x2)を含む繊維強化樹脂基材(X)と、熱可塑性樹脂(y1)、及び繊維長0.02mm以上3mm未満の強化繊維(y2)を含む樹脂組成物(Y)とを金型内で一体に成形して繊維強化複合材料成形品を製造する方法である。本発明の繊維強化複合材料成形品の製造方法を用いれば、前記した本発明の繊維強化複合材料成形品を得ることができる。本発明の製造方法により製造される繊維強化複合材料成形品は、繊維強化樹脂基材(X)で形成されたインサート部分と、インサート部分と一体となった一体成形部分とを備える。
 本発明の繊維強化複合材料成形品の製造方法は、繊維強化樹脂基材(X)の少なくとも表面の一部で強化繊維(x2)が露出した状態で、繊維強化樹脂基材(X)と樹脂組成物(Y)とを一体に成形する成形工程を有する。
(繊維強化樹脂基材(X))
 繊維強化樹脂基材(X)は、熱可塑性樹脂(x1)、及び強化繊維(x2)を含む基材である。繊維強化樹脂基材(X)としては、例えば、強化繊維(x2)を含む繊維基材に、熱可塑性樹脂(x1)が含浸された基材が挙げられる。また、繊維強化樹脂基材(X)としては、強化繊維(x2)と熱可塑性樹脂(x1)からなる繊維とからなる繊維基材を用いてもよい。このように、繊維強化樹脂基材(X)においては、熱可塑性樹脂(x1)の少なくとも一部を繊維状としてもよい。該繊維基材の表面において、熱可塑性樹脂(x1)が含浸されず、強化繊維(x2)と繊維状の熱可塑性樹脂(X2)が混在している部分では、強化繊維(x2)が露出している。なお、本発明においては、熱可塑性樹脂(x1)からなる繊維は強化繊維に含まれないものとする。
 繊維基材の態様としては、例えば、多数の強化繊維(x2)や熱可塑性樹脂(x1)からなる繊維、又は複数の強化繊維(x2)や熱可塑性樹脂(x1)からなる繊維が束ねられた多数の強化繊維束(ストランド)がシート状にされた不織布が挙げられる。不織布の態様としては、特に限定されず、例えば、チョップドストランドマット、コンティニュアンスストランドマット、抄紙マット、カーディングマット、エアレイドマット等が挙げられる。
 熱可塑性樹脂(x1)からなる繊維は、一般に炭素繊維等の強化繊維(x2)に比べて柔軟である。そのため、強化繊維(x2)と熱可塑性樹脂(x1)からなる繊維とを組み合わせて用いることで、繊維同士が充分に絡まりやすくなり、また繊維強化樹脂基材(X)の製造時に強化繊維(x2)が破断したり折れたりする不具合が起きにくくなる。強化繊維(x2)と熱可塑性樹脂(x1)からなる繊維とを組み合わせて用いる場合、基材を形成した後に、熱可塑性樹脂(x1)からなる繊維の一部又は全部を一旦溶融させてから固化させ、該繊維を形成する熱可塑性樹脂(x1)によって互いの強化繊維(x2)同士を結合させることが好ましい。これにより、繊維強化樹脂基材(X)から強化繊維(x2)がより脱落しにくくなる。
 熱可塑性樹脂繊維(x1)としては、特に限定されず、例えば、繊維強化複合材料成形品の説明において挙げた熱可塑性樹脂が挙げられる。熱可塑性樹脂繊維(x1)としては、1種であってもよく、2種以上であってもよい。
 熱可塑性樹脂(x1)からなる繊維の繊維長は、特に限定されず、例えば、1~100mmとすることができる。熱可塑性樹脂(x1)からなる繊維には、繊維同士が絡まりやすくなる点から、捲縮が付与されていることが好ましい。熱可塑性樹脂(x1)からなる繊維としては、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 繊維強化樹脂基材(X)が熱可塑性樹脂(x1)からなる繊維を含有する場合、繊維強化樹脂基材(X)中の繊維の総量に対する強化繊維(x2)の割合は、15~95体積%が好ましく、20~90体積%がより好ましい。強化繊維(x2)の割合が下限値以上であれば、機械特性に優れる繊維強化複合材料成形品が得られやすい。強化繊維(x2)の割合が上限値以下であれば、熱可塑性樹脂(x1)からなる繊維による効果が得られやすい。
 熱可塑性樹脂(x1)が含浸された繊維強化樹脂基材(X)としては、強化繊維(x2)のみで形成した繊維基材に熱可塑性樹脂(x1)を含浸させた基材や、強化繊維(x2)と熱可塑性樹脂(x1)からなる繊維で形成した繊維基材に熱可塑性樹脂(x1)を含浸させた基材等が挙げられる。
 繊維強化樹脂基材(X)には、本発明の効果を損なわない範囲であれば、強化繊維(x2)以外の強化繊維が含有されていてもよい。すなわち、繊維強化樹脂基材(X)には、繊維長3mm未満の強化繊維や、繊維長100mm超の強化繊維が含有されていてもよい。
 繊維強化樹脂基材(X)には、目的の繊維強化複合材料成形品の要求特性に応じて、難燃剤、耐候性改良剤、酸化防止剤、熱安定剤、紫外線吸収剤、可塑剤、滑剤、着色剤、相溶化剤、導電性フィラー等の添加剤を含有させてもよい。
 繊維強化樹脂基材(X)中に存在する強化繊維の総体積に対する強化繊維(x2)の合計体積の割合は、67体積%以上であり、75~100体積%が好ましく、80~100体積%がより好ましい。繊維長の長い強化繊維が多すぎると賦形性が低下する傾向があり、また繊維長が短い強化繊維が多すぎると繊維強化複合材料成形品の機械物性が低下する傾向がある。前記割合が前記範囲内であれば、賦形性と強度のバランスが良好となる。
 繊維強化樹脂基材(X)の繊維体積含有率は、15~50体積%であり、20~45体積%が好ましく、25~40体積%がより好ましい。繊維強化樹脂基材(X)の繊維体積含有率が下限値以上であれば、充分な機械特性を有する繊維強化複合材料成形品が得られる。繊維強化樹脂基材(X)の繊維体積含有率が上限値以下であれば、製造時の賦形性が充分なものとなる。
 成形工程の繊維強化樹脂基材(X)においては、少なくとも表面の一部で強化繊維(x2)を露出させる。強化繊維(x2)が一部露出した繊維強化樹脂基材(X)が金型内に配置された状態で樹脂組成物(Y)を一体に成形することで、樹脂組成物(Y)が露出した部分に容易に充填される。強化繊維(x2)が少なくとも表面の一部で露出した繊維強化樹脂基材(X)としては、特に限定されず、例えば、繊維基材における厚さ方向の一方の側に熱可塑性樹脂(x1)が含浸され、もう一方の側が、樹脂が含浸されていない未含浸部分とされたものが挙げられる。強化繊維(x2)が少なくとも表面の一部で露出した繊維強化樹脂基材(X)としては、強化繊維(x2)と熱可塑性樹脂(x1)からなる繊維のみで形成した繊維基材であってもよい。
 繊維強化樹脂基材(X)としては、厚さ方向に圧縮可能である繊維強化樹脂基材(X1)を用いることが好ましい。これにより、インサート部分と一体成形部分の境界部分における接着強度が高い繊維強化複合材料成形品が得られやすくなる。
 本発明において、厚さ方向に圧縮可能な繊維強化樹脂基材とは、23℃において、2MPaで圧縮したときの圧縮率Pが30%以上である繊維強化樹脂基材を意味する。繊維強化樹脂基材(X1)の一部に熱可塑性樹脂(x1)が含浸されている場合の圧縮率Pは、樹脂含浸部分を除いて算出した値、すなわち未含浸部分のみについて測定された値を意味するものとする。
 なお、圧縮率は、JIS L1913に準拠した圧縮率Pと定義し、繊維強化樹脂基材(X1)のJIS L1913における初荷重を加えた時の厚さをT、任意の圧力を加えた時の厚さをTとし、P=(T-T)/T×100により算出される。繊維強化樹脂基材(X1)の一部に熱可塑性樹脂(x1)が含浸されている場合の圧縮率は、熱可塑性樹脂(x1)の含浸部分の厚さをTとして、P=(T-T)/(T-T)×100により算出される。熱可塑性樹脂(x1)の含浸部分の厚さTは、繊維強化樹脂基材(X1)の断面を鏡面研磨した後、光学顕微鏡観察により計測することができる。
 繊維強化樹脂基材(X1)の圧縮率Pは、30%以上が好ましく、40~80%がより好ましい。圧縮率Pが下限値以上であれば、インサート部分と一体成形部分の境界部分における接着強度が高く、また樹脂組成物(Y)が繊維強化樹脂基材(X1)の強化繊維(x2)が露出した部分に十分に充填された、機械特性に優れた繊維強化複合材料成形品が得られやすい。一方、極端に圧縮率Pが高いと、繊維強化複合材料成形品におけるインサート部分の繊維強化樹脂基材(X1)由来の存在量が少なくなり、インサート部分の機械特性が低下するおそれがある。しかし、圧縮率Pが上限値以下であれば、インサート部分の機械特性を損なうことなく、機械特性に優れた繊維強化複合材料成形品が得られやすい。
 繊維強化樹脂基材(X1)における10MPaで圧縮したときの圧縮率Pは、98%以下が好ましく、45~97%がより好ましい。圧縮率Pが下限値以上であれば、インサート部分と一体成形部分の境界部分における接着強度が高く、また繊維強化樹脂基材(X1)の強化繊維(x2)が露出した部分に樹脂組成物(Y)が十分に充填された、機械特性に優れた繊維強化複合材料成形品が得られやすい。一方、極端に圧縮率Pが高いと、繊維強化複合材料成形品のインサート部分に、繊維強化樹脂基材(X1)が圧縮前の状態に戻ろうとする残留応力が発生して、繊維強化複合材料成形品にソリや寸法精度の低下が生じるおそれがある。しかし、圧縮率Pが上限値以下であれば、寸法精度に優れる繊維強化複合材料成形品が得られやすい。
 繊維強化樹脂基材(X1)の一部に熱可塑性樹脂(x1)が含浸されている場合の圧縮率Pは、樹脂含浸部分を除いて算出した値を意味するものとする。
 繊維強化樹脂基材(X1)としては、加熱によるスプリングバックによって膨らむことで、厚さ方向に圧縮可能になる繊維強化樹脂基材(X11)を用いてもよい。繊維強化樹脂基材(X11)は、加熱前は圧縮率Pが70%未満であるが、加熱されることで圧縮率Pが70%以上となるものである。
 例えば、一部に熱可塑性樹脂(x1)が含浸された繊維強化樹脂基材(X1)を用いて、金型内で繊維強化樹脂基材(X1)を熱可塑性樹脂(x1)の軟化温度以上に加熱して賦形する場合には、その加熱によって厚さ方向に圧縮可能になる繊維強化樹脂基材(X11)を用いることができる。
 繊維強化樹脂基材(X)の製造方法としては、特に限定されず、公知の方法を採用できる。
 強化繊維(x2)、又は、強化繊維(x2)及び熱可塑性樹脂(x1)からなる繊維を組み合わせて用いた不織布からなる繊維基材を製造する方法としては、例えば、エアレイド法、カーディング法、抄紙法等が挙げられる。
 不織布からなる繊維基材に熱可塑性樹脂(x1)を含浸させる方法としては、例えば、熱可塑性樹脂(x1)で形成された樹脂フィルムを不織布の一方の面側に積層し、熱可塑性樹脂(x1)を加熱して溶融させつつ、圧縮成形機により加圧して含浸させる方法等が挙げられる。圧縮成形機としては、例えば、ダブルベルトプレス、カレンダーロール等が挙げられる。
[樹脂組成物(Y)]
 樹脂組成物(Y)は、熱可塑性樹脂(y1)及び強化繊維(y2)を含む樹脂組成物である。
(熱可塑性樹脂(y1))
 熱可塑性樹脂(y1)としては、特に限定されず、例えば、繊維強化複合材料成形品の説明において挙げた熱可塑性樹脂が挙げられる。熱可塑性樹脂(y1)としては、インサート部分と一体成形部分の境界部分における接着強度が高くなる点から、繊維強化樹脂基材(X)に含まれる熱可塑性樹脂繊維(x1)と同じ樹脂であることが好ましい。熱可塑性樹脂(y1)としては、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 樹脂組成物(Y)には、強化繊維(y2)以外の強化繊維が含まれていてもよい。例えば、樹脂組成物(Y)には、熱可塑性樹脂(y1)及び強化繊維(y2)とともに、繊維長が0.02mm未満又は3mm超の強化繊維が含まれていてもよい。樹脂組成物(Y)中に存在する強化繊維の総体積に対する強化繊維(y2)の合計体積の割合は、67体積%以上であり、75~100体積%が好ましく、80~100体積%がより好ましい。繊維長の長い強化繊維が多すぎると、繊維強化樹脂基材(X)の強化繊維(x2)の露出部分に強化繊維(y2)が入り込みにくくなる。また繊維長が短い強化繊維が多すぎると、強化繊維(y2)の効果が得られにくくなる。このように、繊維長の長い強化繊維が多すぎても、繊維長が短い強化繊維が多すぎても、繊維強化複合材料成形品のインサート部分と一体成形部分の境界部分の接着強度が低下する傾向がある。前記割合が前記範囲内であれば、インサート部分と一体成形部分の境界部分の接着強度に優れた繊維強化複合材料成形品が得られる。
 繊維強化樹脂基材(X)に使用する強化繊維(x2)の繊維長と、樹脂組成物(Y)中の強化繊維(y2)の繊維長に充分に差がある場合、樹脂組成物(Y)中の強化繊維(y2)の前記割合は、繊維強化複合材料成形品の第3層について測定した強化繊維の総体積に対する強化繊維(y2)の合計体積の割合から推定できる。
 樹脂組成物(Y)の繊維体積含有率は、5~25体積%であり、8~22体積%が好ましく、10~20体積%がより好ましい。樹脂組成物(Y)の繊維体積含有率が下限値以上であれば、機械特性に優れる繊維強化複合材料成形品が得られる。樹脂組成物(Y)の繊維体積含有率が上限値以下であれば、繊維強化複合材料成形品のインサート部分と一体成形部分の境界部分の接着強度に優れる。
 樹脂組成物(Y)中の強化繊維(y2)の含有量は、熱可塑性樹脂(y1)100質量部に対して、5~50質量部が好ましく、10~35質量部がより好ましい。強化繊維(y2)の含有量が下限値以上であれば、インサート部分と一体成形部分の境界部分の接着強度が高い繊維強化複合材料成形品が得られやすい。強化繊維(y2)の含有量が上限値以下であれば、繊維強化樹脂基材(X)における強化繊維(x2)が露出した部分に樹脂組成物(Y)が充填されやすく、機械特性に優れる繊維強化複合材料成形品が得られやすい。
 樹脂組成物(Y)は、熱可塑性樹脂(y1)と強化繊維(y2)とを、二軸押出し混練等の公知の手法により混練することにより製造することができる。また、樹脂組成物(Y)として市販品の繊維強化熱可塑性樹脂ペレットを射出成形してもよい。
 樹脂組成物(Y)には、目的の繊維強化複合材料成形品の要求特性に応じて、難燃剤、耐候性改良剤、酸化防止剤、熱安定剤、紫外線吸収剤、可塑剤、滑剤、着色剤、相溶化剤、導電性フィラー等の添加剤を配合してもよい。
(成形工程)
 成形工程では、金型内に繊維強化樹脂基材(X)が配置され、かつ繊維強化樹脂基材(X)の少なくともその表面の一部で強化繊維(x2)が露出した状態で、繊維強化樹脂基材(X)と樹脂組成物(Y)とを一体に成形する。
 本発明においては、強化繊維(x2)が露出していない繊維強化樹脂基材(X)を使用し、成形工程の前に該繊維強化樹脂基材(X)の表面の少なくとも一部で強化繊維(x2)が露出するように処理してもよい。具体的には、成形工程の前に、強化繊維(x2)が露出していない繊維強化樹脂基材(X)を加熱し、該繊維強化樹脂基材(X)の表面の少なくとも一部で強化繊維(x2)を露出させる露出工程を行ってもよい。この場合、露出工程は、金型の外で行ってもよく、強化繊維(x2)が露出していない繊維強化樹脂基材(X)を金型内に配置してから行ってもよい。
 繊維強化樹脂基材(X)と樹脂組成物(Y)とを一体に成形する方法としては、例えば、射出成形が挙げられる。すなわち、繊維強化樹脂基材(X)の表面の少なくとも一部で強化繊維(x2)が露出した状態で、金型内に樹脂組成物(Y)を射出し、繊維強化樹脂基材(X)の強化繊維(x2)が露出した部分に樹脂組成物(Y)を含浸させつつ、樹脂組成物(Y)を繊維強化樹脂基材(X)と一体に成形する方法が挙げられる。
 射出成形を用いる場合、一般に、射出機内でスクリューの駆動により樹脂組成物が流動する際等に、繊維が折れて繊維長が短くなる傾向がある。そのため、これらの要因で繊維長が短くなることを考慮し、射出機に供給する樹脂組成物における強化繊維の繊維長は、強化繊維(y2)の繊維長よりも長くしておくことが好ましい。射出機に供給する強化繊維の繊維長は、0.1~10.0mmが好ましく、0.2~6.0mmがより好ましく、0.3~3.0mmがさらに好ましい。
 また、射出成形を行う金型により、繊維強化樹脂基材(X)を賦形することが好ましい。具体的には、金型内に繊維強化樹脂基材(X)を配置した状態で、繊維強化樹脂基材(X)を賦形しながら、又は賦形した後に樹脂組成物(Y)を射出して成形を行うことが好ましい。これにより、繊維強化樹脂基材(X)を事前に別途賦形しておく必要がなくなるため、生産性が高くなるうえ、コスト面でも有利である。
 繊維強化樹脂基材(X)を賦形しながら射出成形を行う態様としては、金型内に繊維強化樹脂基材(X)を配置した状態で、樹脂組成物(Y)を射出しながら金型を閉じる態様、金型内に繊維強化樹脂基材(X)を配置した状態で、樹脂組成物(Y)を射出した後に金型を閉じる態様等が挙げられる。
 繊維強化樹脂基材(X)を賦形した後に射出成形を行う態様としては、例えば、金型内に繊維強化樹脂基材(X)を配置した状態で、金型を閉じて繊維強化樹脂基材(X)を賦形した後に樹脂組成物(Y)を射出する態様が挙げられる。
 該態様においては、金型を閉じて繊維強化樹脂基材(X)を賦形した後に、一旦金型を開き、その状態で樹脂組成物(Y)を射出し、再度金型を閉めて樹脂組成物(Y)を加圧しつつ繊維強化樹脂基材(X)と一体に成形することが好ましい。これにより、金型内に供給される樹脂組成物(Y)が加圧されやすくなり、繊維強化樹脂基材(X)の強化繊維(x2)の露出部分に樹脂組成物(Y)を充分に含浸させやすくなる。
 また、この場合、金型を一旦開くためのエネルギー消費を低減できる点、成形時間の短縮が可能である点、もしくは金型の機械設計を簡略化できる点から、金型を型締めして繊維強化樹脂基材(X)を賦形した後に、樹脂組成物(Y)を射出する際の射出圧によって金型が一旦開かれるようにすることが好ましい。
 繊維強化樹脂基材(X)と樹脂組成物(Y)とを一体に成形する方法としては、プレス成形を用いてもよい。すなわち、繊維強化樹脂基材(X)の表面の少なくとも一部で強化繊維(x2)が露出した状態で、金型内に樹脂組成物(Y)を設置し、プレス成形によって繊維強化樹脂基材(X)の強化繊維(x2)が露出した部分に樹脂組成物(Y)を含浸させつつ、樹脂組成物(Y)を繊維強化樹脂基材(X)と一体に成形する方法を用いてもよい。プレス成形を行う場合も、プレス成形を行う金型により、繊維強化樹脂基材(X)を賦形することが好ましい。
 成形工程において、金型内で繊維強化樹脂基材(X)を賦形する際には、繊維強化樹脂基材(X)を熱可塑性樹脂(x1)の軟化温度以上に加熱する。この場合、繊維強化樹脂基材(X)を軟化温度以上に加熱してから金型内に配置してもよく、金型内に配置した後に繊維強化樹脂基材(X)を軟化温度以上に加熱してもよい。繊維強化樹脂基材(X)を加熱する方法は、特に限定されず、例えば、赤外線ヒータ等が挙げられる。
 賦形時の繊維強化樹脂基材(X)の温度T(℃)と、熱可塑性樹脂(x1)の軟化温度T(℃)との関係は、T≦Tであり、T+10(℃)≦T≦T+150(℃)が好ましく、T+30(℃)≦T≦T+100(℃)がより好ましい。温度Tが下限値以上であれば、インサート部分と一体成形部分の境界面の接着強度が高い繊維強化複合材料成形品が得られやすく、また成形時間が短くなる。温度Tが高すぎると、型締め後に熱可塑性樹脂(x1)が固化するまでの時間が長くなって生産性が低下したり、熱可塑性樹脂(x1)が熱分解を起こすといった問題が発生するおそれがある。しかし、温度Tが上限値以下であれば、型締め後の熱可塑性樹脂(x1)が固化するまでの時間は問題なく、また熱可塑性樹脂(x1)の熱分解も抑制しやすい。
 型締め時の金型温度は、熱可塑性樹脂(y1)及び熱可塑性樹脂(x1)の軟化温度のうち、最も低い軟化温度よりも5℃以上低いことが好ましく、15℃以上低いことがより好ましい。これにより、繊維強化複合材料成形品中の熱可塑性樹脂が十分に冷却固化されるため、金型から繊維強化複合材料成形品を脱型することが容易になる。
 以下、本発明の繊維強化複合材料成形品の製造方法の一例として、図1に例示した金型100を用いる態様について説明する。
 金型100は、上面側に凹部112が形成された下型110と、下方に突き出る凸部122が設けられた上型120とを備える。上型120には、凸部122の下面から樹脂を射出するための樹脂流路124が形成されている。上型120を下型110に近接させて金型100を閉じたときに、金型100内における凹部112と凸部122との間に、目的の繊維強化複合材料成形品の形状と相補的な形状のキャビティが形成されるようになっている。
 金型100を用いる製造方法においては、まず、図1に示すように、下型110における凹部112内に、繊維強化樹脂基材(X)10を配置する。繊維強化樹脂基材(X)10は、強化繊維(x2)10aがシート状にされた基材の厚さ方向の一方の側に熱可塑性樹脂(x1)10bが含浸され、もう一方の側が未含浸である強化繊維(x2)の露出部分10cとなっているものである。この例では、露出部分10cが上側を向くように繊維強化樹脂基材(X)10を下型110の凹部112内に配置する。
 次いで、赤外線ヒーター等により、繊維強化樹脂基材(X)10を熱可塑性樹脂(x1)10bの軟化温度以上に加熱する。その後、図2に示すように、上型120の樹脂流路124から繊維強化樹脂基材(X)10上に、熱可塑性樹脂(y1)及び強化繊維(y2)を含む樹脂組成物(Y)12を射出する。
 次いで、図3に示すように、上型120を下型110に近接させて金型100を閉じ、繊維強化樹脂基材(X)10を賦形しつつ、樹脂組成物(Y)12を繊維強化樹脂基材(X)10の露出部分10cに含浸させながら一体に成形する。熱可塑性樹脂(x1)及び熱可塑性樹脂(y1)が固化した後に金型100を開き、繊維強化複合材料成形品1を取り出す。
 この例で得られる繊維強化複合材料成形品1は、図4に示すように、繊維強化樹脂基材(X)10が含まれるインサート部分2と、樹脂組成物(Y)12により形成された一体成形部分3とが一体になっている。また、繊維強化複合材料成形品1においては、インサート部分2及び一体成形部分3により、平板部4と、平板部4の両端から立ち上がる側板部5,5とが形成されている。そして、繊維強化複合材料成形品1の厚さ方向においては、インサート部分2から一体成形部分3に向かって、第1層23、第2層22、第3層21が形成されている。
 以上説明したように、本発明の繊維強化複合材料成形品の製造方法においては、金型内で、繊維強化樹脂基材(X)の強化繊維(x2)が露出した部分に、熱可塑性樹脂(y1)とともに強化繊維(y2)を含浸させつつ、繊維強化樹脂基材(X)と一体に成形する。そのため、図5にも示してあるように、インサート部分と一体成形部分との境界部分に位置する第2層では、強化繊維(y2)が強化繊維(x2)の間に突き刺さっているような状態で存在する。これにより、インサート部分と一体成形部分との境界部分の接着強度が高くなる。
 特に、厚さ方向に圧縮可能な繊維強化樹脂基材(X1)を用いれば、基材中の空隙が大きいために、成形工程において繊維長が0.02~3.0mmの強化繊維(y2)が強化繊維(x2)の露出部分に入り込みやすく、インサート部分と一体成形部分との境界部分の接着強度を高める効果が充分に得られやすい。
 なお、本発明の繊維強化複合材料成形品の製造方法は、前記した方法には限定されない。例えば、上方に突き出る凸部が設けられた下型と、下面側に凹部が形成された上型と、を備える金型を用いて繊維強化複合材料成形品を製造する方法であってもよい。
 本発明の繊維強化複合材料成形品の製造方法においては、事前に賦形した繊維強化樹脂基材(X)を金型内に配置して樹脂組成物(Y)の射出成形又はプレス成形を行ってもよい。
 本発明の製造方法により製造する繊維強化複合材料成形品の形状は、特に限定されない。例えば、一体成形部分にリブ、ボス等を形成してもよい。
 以下、実施例によって本発明を詳細に説明するが、本発明は以下の記載によっては限定されない。
[製造例A1]
 ロータリーカッターを用い、強化繊維(x2)として、炭素繊維(三菱レイヨン社製、パイロフィルTR 50S、比重1.82)を繊維長12mmにカットして、チョップド炭素繊維を作製した。また、熱可塑性樹脂(x1)である酸変性ポリプロピレン樹脂(三菱化学製モディックP958V、MFR50、比重0.91)からなる繊維を繊維長3mmにカットして、チョップドポリプロピレン繊維を作製した。質量濃度0.12%のポリエチレンオキシド水溶液115kgに対し、チョップドポリプロピレン繊維を0.63kgを投入し、撹拌機を用いて十分に撹拌した。続いて、チョップド炭素繊維を0.54kg投入し、10秒間撹拌して、分散液を得た。得られた分散液を100cm角のメッシュ枠に流し込み、ポリエチレンオキシド水溶液をろ過した後、120℃の乾燥機内にて水分を完全に除き、繊維体積含有率が30体積%(繊維質量含有率:46質量%)で目付が1.17kg/mの繊維強化樹脂基材(X-1)を得た。繊維強化樹脂基材(X-1)中に存在する強化繊維の総体積に対する強化繊維(x2)の合計体積の割合が100体積%である。繊維強化樹脂基材(X-1)の比重と目付から算出される理論厚さは1.0mmである。
[製造例A2]
 製造例A1で得られた繊維強化樹脂基材(X-1)を30cm角に切り出し、300mm角で深さ15mmの印籠金型内に配置して、200℃まで加熱した後、多段プレス機(神藤金属工業所製圧縮成形機、製品名:SFA-50HH0)で加熱・加圧した。加熱・加圧の条件は、盤面の温度を200℃、圧力を0.2MPa、加熱・加圧の時間を2分間とした。次いで、同一の圧力で室温まで冷却し、厚さ1mmの繊維強化プラスチック板(i)を得た。繊維強化プラスチック板(i)においては、表面に強化繊維(x2)が露出していなかった。
[実施例A1]
 図6に例示した金型200と、移動式IRヒーターと、東洋機械金属(株)製の射出成形装置ET-80HR2を用いて繊維強化複合材料成形品を製造した。金型200は、下面側に凹部212が形成された上型210と、上方に突き出る凸部222が設けられた下型220とを備えている。下型220には、凸部222の上面から樹脂を射出するための樹脂流路224が形成されている。上型210を下型220に近接させて金型200を閉じたときに、金型200内における凹部212と凸部222との間に、目的の繊維強化複合材料成形品の形状と相補的な形状のキャビティ(キャビティー厚さ2mm)が形成されるようになっている。
 製造例A1で得た繊維強化樹脂基材(X-1)を下型220の凸部222上に設置した。その状態で移動式IRヒーターによって繊維強化樹脂基材(X-1)の表面温度が185℃以上になるまで15秒間加熱し、繊維強化樹脂基材(X-1)の上部のポリプロピレン繊維を溶融させた。金型200を閉じた後、210℃に加熱して溶融状態とした樹脂組成物(Y-1)を、下型220の樹脂流路224から金型200の空間(キャビティー)に射出し、繊維強化樹脂基材(X-1)における下側のポリプロピレン繊維を溶融させながら、強化繊維(x2)の露出部分に樹脂組成物(Y-1)を含浸させて繊維強化樹脂基材(X-1)と一体に成形し、2mm厚の繊維強化複合材料成形品(F-1)を得た。樹脂組成物(Y-1)としては、強化繊維(y2)として炭素繊維(平均繊維長:0.6mm)を含む炭素繊維強化ポリプロピレン樹脂ペレット(商品名「パイロフィルペレットPP-C- 20A」、三菱レイヨン社製、繊維体積含有率:11体積%(繊維質量含有率:20質量%)、軟化温度:165℃)を使用した。樹脂組成物(Y-1)中に存在する強化繊維の総体積に対する強化繊維(y2)の合計体積の割合が100体積%である。
[比較例A1]
 樹脂組成物(Y-1)の代わりに、強化繊維(y2)を含まない樹脂組成物としてポリプロピレン樹脂(商品名「ノバテックSA06GA」、日本ポリプロ社製、軟化温度:165℃)を用いた以外は、実施例A1と同様にして2mm厚の繊維強化複合材料成形品(F-2)を得た。
[比較例A2]
 繊維強化樹脂基材(X-1)の代わりに製造例A2で得られた繊維強化プラスチック板(i)を用い、移動式IRヒーターによる加熱を省いた以外は、実施例A1と同様にして、2mm厚の繊維強化複合材料成形品(F-3)を得た。
[X線CT測定による構成評価:強化複合材料成形品の強化繊維の存在比率の測定法、及び特定の層の強化繊維体積含有率の測定方法]
 各例で得た強化複合材料成形品から縦10mm×横10mmのサイズの試験片を切り出した。ただし、強化複合材料成形品の厚さが10mmを超える場合は、厚さが10mm以下となるように、かつ繊維強化樹脂基材(X)で形成された部分と樹脂組成物(Y)で形成された部分の境界部分が残るように、厚さ方向の一方又は両方の表層部分をカットする。
 焦点サイズ1μmのX線CT測定機を用いて、試験片をその厚さ方向がZ軸方向となるように設置し、X-Y平面は固定して、Z軸方向に沿って移動させて測定した(X-Y平面の単位面積:10mm×10mm領域で測定)。このとき、測定のドットピッチは、測定精度の観点から1μm以下とした。測定により得られたスキャン画像を、解析ソフトを用いて、3次元表示変換した。画像処理により、強化繊維のみを表示させ、それらの強化繊維を繊維長によって色分けする処理を施した。本実施例では、繊維長100mm以上の強化繊維を黄色、繊維長3mm以上100mm未満の強化繊維を赤、繊維長0.02mm以上3mm未満の強化繊維を青で表示し、0.02mm未満の強化繊維は無視した。
 色分けされた各々の強化繊維に対して、繊維の両末端から長さ40μm毎に分断する処理を施した。具体的には、例えば繊維長176μmの強化繊維については、片末端から繊維長が40μm、40μm、16μm、40μm、40μmとなるように分断した。このとき、繊維長が40μm未満となる部分については、必ずその部分が分断前の強化繊維の中央部に位置するように処理した。また、分断数が奇数になる場合は、繊維長が40μm未満となる部分の両側において、繊維長が40μmの部分の数の差が1となるようにした。例えば繊維長が65μmの強化繊維は、任意の片末端から繊維長が40μm、25μmとなるように分断処理を行った。また、繊維長が130μmの強化繊維は、任意の片末端から繊維長が40μm、40μm、10μm、40μとなるように分断処理を行った。ここで、繊維長が20μm以上40μ未満の繊維は切断せずにそのまま残し、分断後の繊維長が20μm未満の部分については削除した。
 次いで、分断後の繊維長20μm以上40μm以下の強化繊維を、該強化繊維の長さ方向の中点位置での点表示に変換した。点表示の色は元の強化繊維の色分けと同じ色とした。試験片の測定範囲(10mm×10mm×厚さ方向Hmmの空間)を、強化繊維基材(X)が位置する側から厚さ方向に25μm毎に区切った。つまり、厚さHmmの試験片の場合、該試験片の測定範囲を、厚さ方向において、H×1000÷25個の区間に区切った。区切られた各々の空間において、黄、赤、青のそれぞれの色の点の数の存在割合を算出した。それぞれの点の数の存在割合は、各空間における繊維長100mm以上の強化繊維(黄)、繊維長3mm以上100mm未満の強化繊維(x2)(青)、及び繊維長0.02mm以上3mm未満の強化繊維(y2)(赤)のそれぞれの体積基準の存在割合と一致する。次いで、試験片において、強化繊維(x2)(青)の割合が67体積%以上の空間を合わせて第1層とし、強化繊維(x2)(青)の割合が33体積%超で強化繊維(y2)(赤)の割合が67体積%未満の空間を合わせて第2層とし、強化繊維(y2)(赤)の割合が67体積%以上の空間を第3層として分類した。第1層、第2層及び第3層がこの順とならないものについては、このような分類は実施しなかった。
 次いで、第1層~第3層について、それぞれ繊維体積含有率Vf1~Vf3を下式により算出した。
 Vf=40μm×(繊維半径)×(繊維半径)×(円周率)×(単位空間に存在する点の数)÷(単位空間の体積)×100
 次いで、本発明に規定する条件を満たす第1層~第3層が形成されていたものを「○(良好)」、それら第1層~第3層が形成されていなかったものを「×(不良)」と評価した。
[層間せん断強度の測定]
 得られた繊維強化複合材料成形品から25.4mm長×6.3mm幅×2mm厚の試験片を切り出し、ASTM D2344に準拠して層間せん断強度(ILSS)を測定した。
 実施例A1及び比較例A1、A2の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本発明に規定する条件を満たす第1層、第2層及び第3層が形成された実施例A1の繊維強化複合材料成形品は、それらの層が形成されていない比較例A1、A2の繊維強化複合材料成形品に比べて、層間せん断強度が高かった。
[製造例B1]
 繊維長が50mmの炭素繊維を用い、カーディング法により、強化繊維(x2)として平均繊維長25mmの炭素繊維を含み、目付が300g/mである炭素繊維不織布を製造する。
 熱可塑性樹脂(x1)として酸変性ポリプロピレン樹脂(商品名「モディックP958V」、三菱化学社製、軟化温度:165℃)を用いた目付が200g/mのフィルムを炭素繊維不織布の片方の面に配置し、カレンダーロールに複数回通して加熱と加圧を行い、樹脂を炭素繊維不織布に含浸させて厚さ470μmの繊維強化樹脂基材(X1-1)を得る。該繊維強化樹脂基材(X1-1)においては、厚さ方向の熱可塑性樹脂(x1)を含浸させた側と反対側は樹脂が含浸されていない未含浸部分となっており、強化繊維(x2)が露出している。繊維強化樹脂基材(X1-1)における熱可塑性樹脂(x1)が含浸された部分の厚さは330μmであり、未含浸部分の厚さは140μmである。該繊維強化樹脂基材(X1-1)は圧縮可能な基材であり、圧縮率Pが50%であり、圧縮率Pが57%である。繊維強化樹脂基材(X1-1)中に存在する強化繊維の総体積に対する強化繊維(y2)の合計体積の割合は100体積%である。
[実施例B1]
 図1に例示した金型100を用いて、繊維強化複合材料成形品を製造する。
 下型110の凹部112内に、製造例B1で得られる繊維強化樹脂基材(X1-1)を、未含浸部分を上にして配置する。次いで、赤外線ヒーターによって前記繊維強化樹脂基材(X1-1)を210℃に加熱した後、金型100を閉じて、前記繊維強化樹脂基材(X1-1)を賦型する。
 炭素繊維強化ポリプロピレン樹脂ペレット(商品名「パイロフィルペレットPP-C-10A」、三菱レイヨン社製、炭素繊維含有量:10質量%、軟化温度:165℃、平均繊維長:0.6mm)を樹脂組成物(Y-2)とする。樹脂組成物(Y-2)中に存在する強化繊維の総体積に対する強化繊維(y2)の合計体積の割合は100体積%である。該樹脂組成物(Y-2)を210℃に加熱して溶融状態として、上型120の樹脂流路124から金型100内の空間に射出し、繊維強化樹脂基材(X-1)の強化繊維(x2)の露出部分に含浸させつつ、繊維強化樹脂基材(X-1)と一体に成形し、2mm厚の繊維強化複合材料成形品(F-4)を得る。この繊維強化複合材料成形品(F-4)における強化繊維(y2)である炭素繊維の繊維長は0.2~0.75mmであり、平均繊維長は0.5mmである。
[実施例B2]
 図1に例示した金型100を用いて、繊維強化複合材料成形品を製造する。
 熱可塑性樹脂(y1)としてポリプロピレン樹脂(商品名「ノバテックSA06GA」、日本ポリプロ社製、軟化温度:165℃)85質量部と、繊維長が25mmの炭素繊維(商品名「パイロフィル炭素繊維トウTR 50S」、三菱レイヨン社製)15質量部とを二軸押出し混練し、樹脂組成物(Y-3)を得る。この樹脂組成物(Y-3)中における強化繊維(y2)である炭素繊維の平均繊維長は0.75mmである。樹脂組成物(Y-3)中に存在する強化繊維の総体積に対する強化繊維(y2)の合計体積の割合は100体積%である。
 下型110の凹部112内に、製造例B1で得られる繊維強化樹脂基材(X1-1)を、強化繊維(x2)の露出部分を上にして配置する。次いで、赤外線ヒーターによって前記繊維強化樹脂基材(X1-1)を210℃に加熱した後、金型100が少し開かれている状態で、210℃に加熱して溶融状態とした前記樹脂組成物(Y-3)を、上型120の樹脂流路124から前記繊維強化樹脂基材(X1-1)上に射出する。
 次いで、金型100を閉じ、前記繊維強化樹脂基材(X1-1)を賦型しつつ、前記樹脂組成物(Y-3)を前記繊維強化樹脂基材(X1-1)の強化繊維(x2)の露出部分に含浸させながら繊維強化樹脂基材(X1-1)と一体に成形し、2mm厚の繊維強化複合材料成形品(F-5)を得る。この繊維強化複合材料成形品(F-5)における強化繊維(y2)である炭素繊維の繊維長は0.1~1.3mmであり、平均繊維長は0.6mmである。
[実施例B3]
 図1に例示した金型100を用いて、繊維強化複合材料成形品を製造する。
 熱可塑性樹脂(y1)としてポリプロピレン樹脂(商品名「ノバテックSA06GA」、日本ポリプロ社製、軟化温度:165℃)75質量部と、繊維長が25mmの炭素繊維(商品名「パイロフィル炭素繊維トウTR 50S」、三菱レイヨン社製)25質量部とを二軸押出し混練し、樹脂組成物(Y-4)を得る。この樹脂組成物(Y-4)中の強化繊維(y2)である炭素繊維の平均繊維長は0.75mmである。樹脂組成物(Y-4)中に存在する強化繊維の総体積に対する強化繊維(y2)の合計体積の割合は100体積%である。
 下型110の凹部112内に、製造例B1で得られる繊維強化樹脂基材(X1-1)を、未含浸部分を上にして配置する。次いで、赤外線ヒーターによって前記繊維強化樹脂基材(X1-1)を210℃に加熱した後、金型100を閉じて、前記繊維強化樹脂基材(X1-1)を賦型する。
 次いで、金型100を少し開き、その状態で、210℃に加熱して溶融状態とした前記樹脂組成物(Y-4)を、上型120の樹脂流路124から前記繊維強化樹脂基材(X1-1)上に射出する。
 次いで、金型100を閉じ、前記繊維強化樹脂基材(X1-1)を賦型しつつ、前記樹脂組成物(Y-4)を前記繊維強化樹脂基材(X1-1)の強化繊維(x2)の露出部分に含浸させながら繊維強化樹脂基材(X1-1)と一体に成形し、2mm厚の繊維強化複合材料成形品(F-6)を得る。この繊維強化複合材料成形品(F-6)における強化繊維(y2)である炭素繊維の繊維長は0.07~1.3mmであり、平均繊維長は0.6mmである。
[比較例B1]
 樹脂組成物(Y-2)の代わりに、強化繊維(y2)を含まない樹脂組成物としてポリプロピレン樹脂(商品名「ノバテックSA06GA」、日本ポリプロ社製、軟化温度:165℃)を用いる以外は、実施例B1と同様にして2mm厚の繊維強化複合材料成形品(F-7)を得る。
[繊維強化複合材料成形品中の強化繊維(y2)の平均繊維長]
 繊維強化複合材料成形品中の強化繊維(y2)の平均繊維長は、以下の方法で測定する。繊維強化複合材料成形品をオーブンに入れて500℃で2時間焼成し、樹脂を焼き飛ばした後、得られた灰分を水中に均一に分散させる。その分散水をシャーレに採り、乾燥させた後に光学顕微鏡により観察し、強化繊維(y2)の繊維長を無作為に1000本計測する。そして、下式によりその質量平均値を算出して強化繊維(y2)の平均繊維長とする。
 平均繊維長=Σ(Mi×Ni)/Σ(Mi×Ni)
 ただし、前記式中、Miは計測される繊維長(mm)であり、Niは繊維長Mi(mm)の強化繊維(y2)の個数である。
[接着強度の評価]
 各例における成形体のインサート部分と一体成形部分の境界面での接着強度は、以下のようにして評価する。
 繊維強化複合材料成形品から12.7mm幅×120mm長に試験片を切り出し、JIS K7074に準拠した曲げ試験を実施する。その試験から得られるひずみ-応力曲線の最初の応力降伏点が基材破壊であるものを「〇」、インサート部分と一体成形部分の境界面での界面剥離であるものを「×」とする。
 評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、本発明の製造方法を用いて製造する実施例B1~B3の繊維強化複合材料成形品は、熱可塑性樹脂組成物に強化繊維(y2)を含まない比較例B1の繊維強化複合材料成形品に比べて、インサート部分と一体成形部分の境界部分における接着強度が高い。これは、実施例B1~B3の繊維強化複合材料成形品では、インサート部分における繊維強化樹脂基材(X)の未含浸部分であった部分に、強化繊維(y2)が突き刺さっているような状態で存在するためであると考えられる。
 1 繊維強化複合材料成形品
 2 インサート部分
 3 一体成形部分
 4 平板部
 5 側板部
 6 境界部分
 10 繊維強化樹脂基材(X)
 10a 強化繊維(x2)
 10b 熱可塑性樹脂(x1)
 10c 露出部分
 12 樹脂組成物(Y)
 12a 熱可塑性樹脂(y1)
 12b 強化繊維(y2)
 21 第3層
 22 第2層
 23 第1層
 100 金型
 110 下型
 112 凹部
 120 上型
 122 凸部
 124 樹脂流路

Claims (10)

  1.  熱可塑性樹脂(x1)、及び繊維長3mm以上100mm未満の強化繊維(x2)を含む繊維強化樹脂基材(X)と、熱可塑性樹脂(y1)、及び繊維長0.02mm以上3mm未満の強化繊維(y2)を含む樹脂組成物(Y)とを金型内で一体に成形して繊維強化複合材料成形品を製造する方法であって、
     前記繊維強化樹脂基材(X)中に存在する強化繊維の総体積に対する前記強化繊維(x2)の合計体積の割合が67体積%以上であり、前記繊維強化樹脂基材(X)の繊維体積含有率が15~50体積%であり、
     前記樹脂組成物(Y)中に存在する強化繊維の総体積に対する前記強化繊維(y2)の合計体積の割合が67体積%以上であり、前記樹脂組成物(Y)の繊維体積含有率が5~25体積%であり、
     前記繊維強化樹脂基材(X)の表面の少なくとも一部で前記強化繊維(x2)が露出した状態で、前記繊維強化樹脂基材(X)と前記樹脂組成物(Y)とを一体に成形する成形工程を有する、繊維強化複合材料成形品の製造方法。
  2.  前記成形工程の前に、前記強化繊維(x2)が露出していない前記繊維強化樹脂基材(X)を加熱し、該繊維強化樹脂基材(X)の表面の少なくとも一部で前記強化繊維(x2)を露出させる露出工程を有する、請求項1に記載の繊維強化複合材料成形品の製造方法。
  3.  前記成形工程において、前記樹脂組成物(Y)を金型内に射出して成形する、請求項1又は2に記載の繊維強化複合材料成形品の製造方法。
  4.  前記金型内に前記繊維強化樹脂基材(X)を配置した状態で、前記金型によって前記繊維強化樹脂基材(X)を賦形しながら、又は賦形した後に前記樹脂組成物(Y)を射出する、請求項3に記載の繊維強化複合材料成形品の製造方法。
  5.  前記成形工程において、前記繊維強化樹脂基材(X)と前記樹脂組成物(Y)とをプレス成形により一体に成形する、請求項1又は2に記載の繊維強化複合材料成形品の製造方法。
  6.  前記熱可塑性樹脂(x1)の少なくとも一部が繊維状である、請求項1~5のいずれか一項に記載の繊維強化複合材料成形品の製造方法。
  7.  前記繊維強化樹脂基材(X)が、厚さ方向に圧縮可能な繊維強化樹脂基材(X1)である、請求項1~6のいずれか一項に記載の繊維強化複合材料成形品の製造方法。
  8.  強化繊維及び熱可塑性樹脂を含有し、第1層、第2層及び第3層をこの順に備える繊維強化複合材料成形品であって、
     前記第1層は、層の厚さが300μm以上であり、当該層内に存在する強化繊維の総体積に対する、繊維長3mm以上100mm未満の強化繊維(x2)の合計体積の割合が67体積%以上であり、繊維体積含有率Vf1が15~50体積%である層であり、
     前記第2層は、層の厚さが100~1500μmであり、当該層内に存在する強化繊維の総体積に対する、前記強化繊維(x2)の合計体積の割合が33体積%超であり、かつ繊維長0.02mm以上3mm未満の強化繊維(y2)の合計体積の割合が67体積%未満である層であり、
     前記第3層は、層の厚さが300μm以上であり、当該層内に存在する強化繊維の総体積に対する、前記強化繊維(y2)の合計体積の割合が67体積%以上であり、繊維体積含有率Vf3が5~25体積%である層である、繊維強化複合材料成形品。
  9.  前記第1層と前記第3層が前記第2層を介して接続されている、請求項8に記載の繊維強化複合材料成形品。
  10.  前記第1層の繊維体積含有率Vf1と、前記第2層の繊維体積含有率Vf2と、前記第3層の繊維体積含有率Vf3とが下式(1)の条件を満たす、請求項8又は9に記載の繊維強化複合材料成形品。
     Vf3<Vf2<Vf1 ・・・(1)
PCT/JP2016/062120 2015-04-17 2016-04-15 繊維強化複合材料成形品及びその製造方法 WO2016167349A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680022123.2A CN107530926A (zh) 2015-04-17 2016-04-15 纤维增强复合材料成型品及其制造方法
JP2016528043A JP6245362B2 (ja) 2015-04-17 2016-04-15 繊維強化複合材料成形品及びその製造方法
EP16780140.6A EP3284574A4 (en) 2015-04-17 2016-04-15 Fiber-reinforced composite material molded article and method for manufacturing same
US15/565,730 US11084187B2 (en) 2015-04-17 2016-04-15 Fiber-reinforced composite material molded article and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-084918 2015-04-17
JP2015084918 2015-04-17

Publications (1)

Publication Number Publication Date
WO2016167349A1 true WO2016167349A1 (ja) 2016-10-20

Family

ID=57125860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062120 WO2016167349A1 (ja) 2015-04-17 2016-04-15 繊維強化複合材料成形品及びその製造方法

Country Status (5)

Country Link
US (1) US11084187B2 (ja)
EP (1) EP3284574A4 (ja)
JP (1) JP6245362B2 (ja)
CN (1) CN107530926A (ja)
WO (1) WO2016167349A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018193482A (ja) * 2017-05-18 2018-12-06 日産自動車株式会社 繊維樹脂複合体、および該繊維樹脂複合体の成形方法
WO2019170021A1 (en) * 2018-03-05 2019-09-12 Covestro Deutschland Ag Thermoplastic composite article and manufacturing method and use thereof
JP2019181696A (ja) * 2018-03-31 2019-10-24 株式会社タカギセイコー 繊維強化樹脂成形品及びその製造方法
JP2019181901A (ja) * 2018-04-17 2019-10-24 旭化成株式会社 成形品の製造方法
KR20200022899A (ko) * 2018-08-24 2020-03-04 (주)엘지하우시스 다공성 섬유강화 복합재 및 이를 제조하는 방법
WO2020196075A1 (ja) 2019-03-28 2020-10-01 帝人株式会社 プレス成形体の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180021996A1 (en) * 2016-07-19 2018-01-25 Eaton Corporation Marbled Grip
CN109720415B (zh) * 2017-10-27 2022-07-15 全耐塑料公司 改良的机动车辆混合结构部件的制造方法及对应的混合结构部件
CN116604833B (zh) * 2023-07-20 2023-10-27 宁波劳伦斯汽车内饰件有限公司 一种热固性和热塑性复合材料成型方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930458A (ja) * 1972-07-20 1974-03-18
JPS511266B2 (ja) * 1972-01-07 1976-01-16
JPH0479911A (ja) * 1990-07-20 1992-03-13 Nhk Spring Co Ltd プラスチックシートフレームおよびその製造方法
JPH1190986A (ja) * 1997-09-25 1999-04-06 Press Kogyo Co Ltd 繊維強化樹脂成形体の溶着方法
JP2012071595A (ja) * 2010-08-31 2012-04-12 Toray Ind Inc 複合成形体の製造方法
JP2014213540A (ja) * 2013-04-25 2014-11-17 本田技研工業株式会社 繊維強化樹脂積層体の接合方法及び繊維強化樹脂成形体
JP2014213539A (ja) * 2013-04-25 2014-11-17 本田技研工業株式会社 繊維強化樹脂積層体の接合方法及び接合装置並びに繊維強化樹脂材

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4269884A (en) * 1979-10-10 1981-05-26 Allied Chemical Corporation Fiber reinforced multi-ply stampable thermoplastic sheet
US6372078B1 (en) 1999-09-09 2002-04-16 Ronnie L. Melchert Method for bonding polyester to plastic and resultant product
US20040067705A1 (en) * 2002-10-07 2004-04-08 National Research Council Of Canada Process of bonding and composites made therefrom
US7521386B2 (en) * 2004-02-07 2009-04-21 Milliken & Company Moldable heat shield
US7153794B2 (en) 2004-05-07 2006-12-26 Milliken & Company Heat and flame shield
ATE470740T1 (de) 2005-08-17 2010-06-15 Milliken & Co Vliesstoff mit faserregionen mit unterschiedlicher dichte und herstellungsverfahren dafür
US20070269645A1 (en) * 2006-04-05 2007-11-22 Venkat Raghavendran Lightweight thermoplastic composite including reinforcing skins
JP5101266B2 (ja) * 2007-12-21 2012-12-19 株式会社アルバック 磁気デバイスの製造方法
JP5263622B2 (ja) 2009-10-05 2013-08-14 大倉工業株式会社 繊維強化型プラスチックの接合構造及び接合方法
CN103561931B (zh) 2011-06-16 2016-04-06 东丽株式会社 纤维增强塑料的制造方法
US10093777B2 (en) 2012-12-26 2018-10-09 Toray Industries, Inc. Fiber-reinforced resin sheet, integrated molded product and process for producing same
CN104227929A (zh) * 2013-06-24 2014-12-24 江阴大田科技服务有限公司 一种含纤维网的塑胶板注射成型方法
US10632718B2 (en) 2014-09-30 2020-04-28 The Boeing Company Filament network for a composite structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511266B2 (ja) * 1972-01-07 1976-01-16
JPS4930458A (ja) * 1972-07-20 1974-03-18
JPH0479911A (ja) * 1990-07-20 1992-03-13 Nhk Spring Co Ltd プラスチックシートフレームおよびその製造方法
JPH1190986A (ja) * 1997-09-25 1999-04-06 Press Kogyo Co Ltd 繊維強化樹脂成形体の溶着方法
JP2012071595A (ja) * 2010-08-31 2012-04-12 Toray Ind Inc 複合成形体の製造方法
JP2014213540A (ja) * 2013-04-25 2014-11-17 本田技研工業株式会社 繊維強化樹脂積層体の接合方法及び繊維強化樹脂成形体
JP2014213539A (ja) * 2013-04-25 2014-11-17 本田技研工業株式会社 繊維強化樹脂積層体の接合方法及び接合装置並びに繊維強化樹脂材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3284574A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018193482A (ja) * 2017-05-18 2018-12-06 日産自動車株式会社 繊維樹脂複合体、および該繊維樹脂複合体の成形方法
JP7113596B2 (ja) 2017-05-18 2022-08-05 日産自動車株式会社 繊維樹脂複合体の成形方法
WO2019170021A1 (en) * 2018-03-05 2019-09-12 Covestro Deutschland Ag Thermoplastic composite article and manufacturing method and use thereof
JP2019181696A (ja) * 2018-03-31 2019-10-24 株式会社タカギセイコー 繊維強化樹脂成形品及びその製造方法
JP2019181901A (ja) * 2018-04-17 2019-10-24 旭化成株式会社 成形品の製造方法
JP7020988B2 (ja) 2018-04-17 2022-02-16 旭化成株式会社 成形品の製造方法
KR20200022899A (ko) * 2018-08-24 2020-03-04 (주)엘지하우시스 다공성 섬유강화 복합재 및 이를 제조하는 방법
KR102280425B1 (ko) 2018-08-24 2021-07-21 (주)엘엑스하우시스 다공성 섬유강화 복합재 및 이를 제조하는 방법
WO2020196075A1 (ja) 2019-03-28 2020-10-01 帝人株式会社 プレス成形体の製造方法
WO2020196076A1 (ja) 2019-03-28 2020-10-01 帝人株式会社 プレス成形体の製造方法

Also Published As

Publication number Publication date
EP3284574A1 (en) 2018-02-21
US11084187B2 (en) 2021-08-10
US20180071957A1 (en) 2018-03-15
EP3284574A4 (en) 2018-04-25
JPWO2016167349A1 (ja) 2017-04-27
CN107530926A (zh) 2018-01-02
JP6245362B2 (ja) 2017-12-13

Similar Documents

Publication Publication Date Title
JP6245362B2 (ja) 繊維強化複合材料成形品及びその製造方法
JP6075094B2 (ja) リブ構造を有する成形品の製造方法
US4356228A (en) Fiber-reinforced moldable sheet and process for preparation thereof
JP5459005B2 (ja) プレス成形方法およびその成形体
JP5644496B2 (ja) 繊維強化熱可塑性樹脂成形体
JP6197968B1 (ja) 構造体の製造方法
US11584835B2 (en) Laminated substrate and method for manufacturing the same
TW201444678A (zh) 夾芯積層體、夾芯構造體及使用其之一體化成形品及彼等之製造方法
WO2019188873A1 (ja) プレス成形品の製造方法
JP2013091775A (ja) 繊維強化樹脂組成物
JP2011006578A (ja) 繊維・樹脂複合化シート及びfrp成形体
JPH04163109A (ja) 繊維強化熱可塑性樹脂成形素材の製造方法
JP2013208725A (ja) 炭素繊維強化熱可塑性樹脂積層体及びその製造法
WO2019189384A1 (ja) 成形品の製造方法
EP3135715A1 (en) Fiber-reinforced plastic joined body, method for producing fiber-reinforced plastic joined body, and fiber-reinforced molded article
JP2012192645A (ja) 成形品の製造方法
CN107002365B (zh) 碳纤维毡、坯料、片材料和成型品
WO2021153366A1 (ja) 炭素繊維とガラス繊維を含むコールドプレス成形体、およびその製造方法
JP5789933B2 (ja) 繊維強化熱可塑性樹脂シートの圧縮成形方法
TW202134029A (zh) 三明治結構體及其製造方法
JP5395385B2 (ja) 炭素繊維強化熱可塑性樹脂成型体の製造方法および炭素繊維強化熱可塑性樹脂成型体
JP7039823B2 (ja) 炭素繊維強化プラスチック積層体およびその製造方法
JP2013010255A (ja) 熱可塑性樹脂複合材材料
CN114761213B (zh) 纤维增强复合材料及夹层结构体
JP6458589B2 (ja) シート材料、一体化成形品および一体化成形品の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016528043

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16780140

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016780140

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15565730

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE