WO2016166818A1 - エンジン制御装置及びエンジン制御方法 - Google Patents

エンジン制御装置及びエンジン制御方法 Download PDF

Info

Publication number
WO2016166818A1
WO2016166818A1 PCT/JP2015/061497 JP2015061497W WO2016166818A1 WO 2016166818 A1 WO2016166818 A1 WO 2016166818A1 JP 2015061497 W JP2015061497 W JP 2015061497W WO 2016166818 A1 WO2016166818 A1 WO 2016166818A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
fuel injection
piston crown
engine control
crown surface
Prior art date
Application number
PCT/JP2015/061497
Other languages
English (en)
French (fr)
Inventor
佳宏 今岡
露木 毅
尊雄 井上
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201580078817.3A priority Critical patent/CN107532531B/zh
Priority to PCT/JP2015/061497 priority patent/WO2016166818A1/ja
Priority to CA2982751A priority patent/CA2982751C/en
Priority to EP15889156.4A priority patent/EP3284935B1/en
Priority to US15/565,211 priority patent/US10119486B2/en
Priority to BR112017022087-3A priority patent/BR112017022087B1/pt
Priority to KR1020177030909A priority patent/KR101817049B1/ko
Priority to MYPI2017703844A priority patent/MY165600A/en
Priority to RU2017136794A priority patent/RU2649876C1/ru
Priority to JP2017512497A priority patent/JP6521061B2/ja
Priority to MX2017013008A priority patent/MX364575B/es
Publication of WO2016166818A1 publication Critical patent/WO2016166818A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
    • F02D35/026Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0245Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by increasing temperature of the exhaust gas leaving the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/047Taking into account fuel evaporation or wall wetting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1466Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a soot concentration or content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • F02D41/345Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • F02D43/04Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment using only digital means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an engine control device and an engine control method for controlling an in-cylinder direct fuel injection spark ignition engine.
  • a catalyst device for purifying exhaust gas is disposed in the exhaust passage of the engine. Since the catalyst supported on the catalyst device does not exhibit a good catalytic function below the activation temperature, a warm-up operation is required to quickly raise the catalyst to the activation temperature when the engine is started.
  • Japanese Patent Application Laid-Open No. 2011-220210 describes a warm-up operation in which the temperature of exhaust gas is increased by retarding the ignition timing to raise the temperature of the catalyst. Further, in the warm-up operation described in the above document, in order to ensure good ignitability even when the ignition timing is retarded, so-called stratification is performed in which the fuel spray is concentrated in the vicinity of the spark plug. Combustion is in progress.
  • an object of the present invention is to control the engine so that the catalyst can be activated early and PN can be reduced.
  • an engine for controlling an in-cylinder direct fuel injection spark ignition engine comprising: a fuel injection valve that directly injects fuel into the cylinder; and an ignition plug that sparks and ignites an air-fuel mixture in the cylinder.
  • a control device is provided. When it is necessary to warm up the exhaust gas purification catalyst interposed in the exhaust passage, the engine control device is in the compression stroke and the fuel spray collides with the piston crown surface. A catalyst warm-up operation is performed at a timing toward the ignition plug along the shape of the surface, where the ignition timing is after compression top dead center. Then, the engine control device advances the fuel injection timing in accordance with an increase in the estimated amount of liquid fuel remaining on the piston crown surface during execution of the catalyst warm-up operation.
  • FIG. 1 is a schematic configuration diagram of an engine to which the first embodiment is applied.
  • FIG. 2 is a flowchart showing a control routine for suppressing an increase in PN.
  • FIG. 3 is a table in which the fuel injection timing advance amount is used in the control of the first embodiment.
  • FIG. 4 is a diagram showing the fuel injection timing when the control of the first embodiment is executed.
  • FIG. 5 is a table in which the length of the valve overlap period used in the control of the first embodiment is set.
  • FIG. 6 is a table in which valve timings for realizing the valve overlap period calculated from the table of FIG. 5 are set.
  • FIG. 7 is a table in which the length of the valve overlap period used in the control of the second embodiment is set.
  • FIG. 1 is a schematic configuration diagram of an engine to which the first embodiment is applied.
  • FIG. 2 is a flowchart showing a control routine for suppressing an increase in PN.
  • FIG. 3 is a table in which the fuel injection timing advance amount is used in the
  • FIG. 8 is a table in which valve timings for realizing the valve overlap period calculated from the table of FIG. 7 are set.
  • FIG. 9 is a diagram illustrating the fuel injection timing when the damper period is not provided.
  • FIG. 10 is a diagram showing another embodiment of the fuel injection timing.
  • FIG. 1 is a schematic configuration diagram around a combustion chamber of an in-cylinder direct fuel injection spark ignition engine (hereinafter also referred to as “engine”) 1 to which the present embodiment is applied.
  • engine direct fuel injection spark ignition engine
  • FIG. 1 shows only one cylinder, this embodiment can also be applied to a multi-cylinder engine.
  • the cylinder block 1B of the engine 1 includes a cylinder 2.
  • a piston 3 is accommodated in the cylinder 2 so as to be able to reciprocate.
  • the piston 3 is connected to a crankshaft (not shown) via a connecting rod 12 and reciprocates as the crankshaft rotates.
  • the piston 3 includes a cavity 10 described later on a crown surface 3A (hereinafter also referred to as a piston crown surface 3A).
  • the cylinder head 1A of the engine 1 includes a concave combustion chamber 11.
  • the combustion chamber 11 is configured as a so-called pent roof type, and a pair of intake valves 6 are disposed on the inclined surface on the intake side, and a pair of exhaust valves 7 are disposed on the inclined surface on the exhaust side.
  • An ignition plug 8 is disposed along the axis of the cylinder 2 at a substantially central position of the combustion chamber 11 surrounded by the pair of intake valves 6 and the pair of exhaust valves 7.
  • a fuel injection valve 9 is arranged at a position between the pair of intake valves 6 in the cylinder head 1A so as to face the combustion chamber 11. The directivity of fuel spray injected from the fuel injection valve 9 will be described later.
  • the intake valve 6 and the exhaust valve 7 are driven by a variable valve mechanism (not shown).
  • the variable valve mechanism changes the valve timing of the intake valve 6 and the exhaust valve 7, that is, the valve opening timing and the valve closing timing so that a valve overlap period in which both the intake valve 6 and the exhaust valve 7 are opened occurs. Anything that can be allowed to do is sufficient.
  • the valve opening timing is the timing for starting the valve opening operation
  • the valve closing timing is the timing for ending the valve closing operation.
  • a known variable valve mechanism that changes the rotational phase of the camshaft that drives the intake valve 6 and the camshaft that drives the exhaust valve 7 with respect to the crankshaft is used.
  • An exhaust purification catalyst for purifying the exhaust gas of the engine 1 is interposed on the exhaust flow downstream side of the exhaust passage 5.
  • the exhaust purification catalyst is, for example, a three-way catalyst.
  • the piston 3 includes the cavity 10 in the piston crown surface 3A as described above.
  • the cavity 10 is provided at a position biased toward the intake side on the piston crown surface 3A.
  • the fuel injection valve 9 is arranged so that the fuel spray is directed toward the cavity 10 when fuel is injected when the piston 3 is in the vicinity of the top dead center.
  • the fuel spray that has collided with the cavity 10 is wound up along the wall surface of the cavity 10 and is directed toward the spark plug 8.
  • the fuel injection amount, fuel injection timing, ignition timing, and the like of the engine 1 are controlled by the controller 100 according to the operating state of the engine 1.
  • the fuel injection timing is the timing at which fuel injection is started.
  • the engine 1 includes various detection devices such as a crankshaft angle sensor, a cooling water temperature sensor, and an air flow meter that detects an intake air amount.
  • Exhaust gas purification catalyst does not exhibit sufficient purification performance at temperatures lower than the activation temperature. For this reason, it is necessary to raise the temperature of the exhaust purification catalyst at an early stage at the time of cold start when the exhaust purification catalyst is lower than the activation temperature. Therefore, when the exhaust purification catalyst is in an inactive state in an idle state immediately after the cold start, the controller 100 performs super retarded stratified combustion to activate the exhaust purification catalyst at an early stage. Super retarded stratified combustion itself is known (see Japanese Patent Application Laid-Open No. 2008-25535).
  • the controller 100 sets the ignition timing to the first half of the expansion stroke, for example, 15-30 deg after compression top dead center. Further, the controller 100 sets the first fuel injection timing in the first half of the intake stroke, and sets the second fuel injection timing in the second half of the compression stroke so that the fuel spray can reach the periphery of the spark plug 8 by the ignition timing. For example, it is set to 50-60 deg before compression top dead center.
  • the air-fuel ratio of the exhaust gas discharged by the above-mentioned super retarded stratified combustion is stoichiometric (theoretical air-fuel ratio).
  • the controller 100 calculates the amount of fuel that can be completely combusted with the amount of intake air per combustion cycle (hereinafter also referred to as the total fuel amount), as in a general fuel injection amount setting method.
  • a part of the total fuel amount, for example, 50 to 90% by weight is set as the first injection amount, and the rest is set as the second injection amount.
  • the fuel spray injected in the first fuel injection diffuses into the cylinder 2 without colliding with the cavity 10, mixes with air, and is stoichiometric throughout the combustion chamber 11. A leaner homogeneous mixture is formed.
  • the fuel spray injected in the second fuel injection collides with the cavity 10 and reaches the vicinity of the spark plug 8 by being wound up, and concentrates the air-fuel mixture richer than stoichiometric around the spark plug 8. To form. Thereby, the air-fuel mixture in the combustion chamber 11 is in a stratified state. If a spark is ignited by the spark plug 8 in this state, combustion that is resistant to disturbances in which misfires and smoke are suppressed is performed.
  • the combustion mentioned above is stratified combustion, in order to distinguish from the general stratified combustion whose ignition timing is before compression top dead, it is called super retarded stratified combustion.
  • the exhaust temperature can be raised as compared with the conventional homogeneous stoichiometric combustion, and the amount of hydrocarbon (HC) discharged from the combustion chamber 11 to the exhaust passage 5 is reduced. it can. That is, according to super retarded stratified combustion, only conventional homogeneous stoichiometric combustion, only stratified combustion, or a combustion mode in which additional fuel is injected after the later stage of combustion (after the expansion stroke or during the exhaust stroke), etc. Compared with the case where warm-up is performed, early activation of the exhaust purification catalyst can be realized while suppressing the discharge of HC into the atmosphere between the start of starting and the activation of the exhaust purification catalyst.
  • the liquid fuel remaining on the piston crown surface 3A continues to increase for a predetermined period after the cold start.
  • the predetermined period here means that the amount of liquid fuel remaining on the piston crown surface 3A vaporizes in one combustion cycle is larger than the amount attached to the piston crown surface 3A during one combustion cycle. Is the period.
  • the super retarded stratified combustion may be switched to the homogeneous stoichiometric combustion with the liquid fuel remaining on the piston crown surface 3A.
  • the homogeneous stoichiometric combustion here is a combustion mode in which a stoichiometric air-fuel ratio mixture is formed in the entire combustion chamber 11 and spark ignition is performed at an optimum ignition timing (MBT).
  • the controller 100 executes the control described below in order to suppress an increase in PN due to the combustion of the liquid fuel.
  • FIG. 2 is a flowchart showing a control routine for suppressing an increase in PN executed by the controller 100. This routine is repeatedly executed at intervals as short as about 10 milliseconds, for example.
  • liquid fuel amount in order to suppress the amount of liquid fuel remaining on the piston crown surface 3A (hereinafter also simply referred to as “liquid fuel amount”), the second injection timing of the second stage injection is left on the piston crown surface 3A. It changes according to the amount of liquid fuel.
  • liquid fuel amount in order to suppress the amount of liquid fuel remaining on the piston crown surface 3A.
  • step S101 the controller 100 determines whether or not super retarded stratified combustion is being performed. If it is being executed, the process of step S102 is executed. If it is not being executed, a process for switching to homogeneous stoichiometric combustion (hereinafter also referred to as normal control) is executed in step S108. Whether super retarded stratified combustion is being performed is determined based on the temperature of the exhaust purification catalyst. Specifically, it is determined that the exhaust purification catalyst is being executed if it is lower than the activation temperature, and is not being executed if it is equal to or higher than the activation temperature. Even if the exhaust purification catalyst is below the activation temperature, if there is an acceleration request, the controller 100 executes the process of step S108.
  • Whether or not there is an acceleration request can be determined based on a detection value of an accelerator pedal opening sensor (not shown). For example, it may be determined that there is a request for acceleration when the accelerator pedal is depressed, or it may be determined that there is a request for acceleration when the degree of opening is greater than a predetermined opening degree. Further, the acceleration rate of the accelerator pedal opening may be added to the determination material, and it may be determined that there is an acceleration request when the accelerator pedal is depressed and the change rate is equal to or greater than a predetermined value.
  • step S102 the controller 100 estimates the amount of liquid fuel.
  • the amount of liquid fuel is estimated based on the wall temperature of the cylinder 2 (hereinafter also referred to as cylinder wall temperature) and the elapsed time from the start of the engine. Specifically, first, the residual amount per unit time is determined for each cylinder wall temperature based on the characteristic that the lower the cylinder wall temperature, the easier the liquid fuel remains on the piston crown surface 3A. By integrating the elapsed time from the start, the integrated amount attached to the piston crown surface 3A is calculated. Next, a vaporization amount, which will be described later, is subtracted from the integrated amount, and the result is used as an estimated amount of liquid fuel.
  • the temperature of the piston crown surface 3A has a direct relationship with the easiness of remaining of the liquid fuel, but here, there is a correlation with the temperature of the piston crown surface 3A, and from the detection value of the existing cooling water temperature sensor. Estimated cylinder wall temperature is used.
  • the above vaporization amount is the vaporized amount of the fuel adhering to the piston crown surface 3A.
  • step S103 the controller 100 determines whether or not the liquid fuel amount estimated in step S102 (hereinafter also referred to as liquid fuel estimated amount) is less than a preset threshold value L2.
  • the controller 100 executes the process of step S104 when the estimated amount of liquid fuel is less than the threshold value L2, and executes the process of step S108 when it is greater than or equal to the threshold value L2.
  • Threshold value L2 used in this step is set to a value that can satisfy the emission regulation value of PN even when switching from super retarded stratified combustion to homogeneous stoichiometric combustion.
  • step S104 the controller 100 calculates the advance amount (hereinafter also referred to as the fuel injection timing advance amount ADV) of the second fuel injection timing with respect to the basic fuel injection timing in the two-stage injection as described later.
  • the basic fuel injection timing is a timing at which the fuel spray collides with the cavity 10 during the compression stroke.
  • the specific value of the basic fuel injection timing is set by conforming work for each vehicle specification to which the present embodiment is applied. In the present embodiment, as described above, it is 50-60 ° before the compression top dead center. The value between.
  • the unit of “advance amount” and “retard amount” is a crank angle.
  • the fuel injection timing advance amount ADV is calculated by, for example, creating a table shown in FIG. 3 in advance and storing it in the controller 100, and searching this table using the estimated liquid fuel amount.
  • the vertical axis represents the fuel injection timing advance amount ADV
  • the horizontal axis represents the liquid fuel estimated amount L.
  • the fuel injection timing advance amount ADV is zero when the liquid fuel estimated amount L is zero ⁇ L ⁇ threshold L1, ADV1 when threshold L1 ⁇ L ⁇ threshold L2, and ADV2 when L ⁇ threshold L2.
  • the fuel injection timing advance amount ADV ⁇ b> 1 is such a magnitude that the fuel injection timing is during the compression stroke and a part of the fuel spray collides with the cavity 10.
  • the fuel injection timing advance amount ADV ⁇ b> 2 is a magnitude at which the fuel injection timing is during the intake stroke and the fuel spray does not collide with the cavity 10.
  • the threshold value L1 is a preset value. Specific numerical values are set according to the specifications of the vehicle to which this embodiment is applied.
  • a table of fuel injection timing advance amount is prepared for each temperature of the piston crown surface 3A, and when calculating the fuel injection timing advance amount in step S104, a table corresponding to the temperature of the piston crown surface 3A is prepared. You may make it select.
  • the fuel injection timing advance amount is set to be larger for the table when the temperature of the piston crown surface 3A is lower. In other words, the lower the temperature of the piston crown surface 3A, the more the fuel injection timing advance amount in FIG. 3 is shifted upward. The lower the temperature of the piston crown surface 3A, the more likely the fuel that has collided to remain as liquid fuel. Therefore, by calculating the fuel injection timing advance amount ADV1 as described above, the liquid remaining on the piston crown surface 3A more reliably. Increase in fuel amount can be suppressed.
  • step S105 the controller 100 sets the fuel injection timing. Specifically, a new fuel injection timing is calculated from the basic fuel injection timing for super retarded stratified combustion and the fuel injection timing advance amount ADV calculated in step S104.
  • FIG. 4 is a diagram showing an example of the fuel injection timing when the processes of steps S104 and S105 are executed.
  • the vertical axis in FIG. 4 indicates the crank angle, and the horizontal axis indicates the liquid fuel estimated amount L.
  • the fuel injection timing remains the basic injection timing.
  • the fuel injection timing is advanced from the basic injection timing by the fuel injection timing advance amount ADV1.
  • the fuel injection timing advance amount ADV1 since a part of the fuel spray collides with the cavity 10 as described above, a stratified air-fuel mixture is formed around the spark plug 8 although it is less than in the case of the basic fuel injection timing. Combustion performed by spark ignition in this state is referred to as weakly stratified combustion.
  • the fuel injection timing is advanced from the basic injection timing by the fuel injection timing advance amount ADV2, and the intake stroke injection is performed.
  • the fuel spray diffuses and mixes by the ignition timing to form a homogeneous mixture throughout the cylinder. Therefore, the combustion mode is homogeneous stoichiometric combustion.
  • the controller 100 advances the fuel injection timing in accordance with the increase in the estimated liquid fuel amount L. More specifically, the controller 100 advances the fuel injection timing and switches to weak stratified combustion when the estimated liquid fuel amount L is equal to or greater than the threshold value L1. Thereby, since the fuel amount which collides with the cavity 10 reduces compared with the case of super retarded stratified combustion, the increase in the fuel amount remaining on the piston crown surface 3A can be suppressed.
  • the controller 100 advances the fuel injection timing to the intake stroke and switches to homogeneous stoichiometric combustion. Thereby, since fuel spray does not adhere to the cavity 10, the increase in the amount of fuel remaining on the crown surface can be further suppressed.
  • controller 100 controls the ignition timing according to the operating state in a separate flow (not shown). In the case of super retarded stratified combustion, the controller 100 retards the ignition timing with respect to the MBT, but also advances the ignition timing in accordance with the new fuel injection timing.
  • step S106 the controller 100 calculates the valve overlap period based on the estimated liquid fuel amount L.
  • the valve overlap period here refers to a period in which the state in which the intake valve 6 and the exhaust valve 7 remain open is expressed by a crank angle.
  • the vertical axis represents the valve overlap period
  • the horizontal axis represents the estimated liquid fuel amount L.
  • the valve overlap period is the basic valve overlap period V0 when the estimated liquid fuel amount L is 0 ⁇ L ⁇ L1, V1 when L1 ⁇ L ⁇ L2, and V2 when L ⁇ L2. ing.
  • V0 ⁇ V1 ⁇ V2 is established.
  • valve overlap period becomes longer, so-called internal EGR gas amount increases, so that the in-cylinder temperature from the intake stroke to the ignition timing increases. If the in-cylinder temperature rises, the temperature of the piston crown surface 3A also rises, and the vaporization of the liquid fuel adhering to the cavity is promoted. Therefore, the table in FIG. 5 is set so that the valve overlap period becomes longer as the estimated amount of liquid fuel increases.
  • a valve overlap period table is created for each temperature of the piston crown surface 3A, and when calculating the fuel injection timing advance amount in step S106, a table corresponding to the temperature of the piston crown surface 3A is selected. You may do it.
  • the valve overlap period is set longer for the table when the temperature of the piston crown surface 3A is lower. That is, as the temperature of the piston crown surface 3A becomes lower, the valve overlap period of FIG. 5 is shifted upward. The lower the temperature of the piston crown surface 3A, the more likely the fuel that has collided to remain as liquid fuel. By calculating the valve overlap period as described above, the amount of liquid fuel remaining on the piston crown surface 3A can be more reliably determined. Increase can be suppressed.
  • step S107 the controller 100 sets the conversion angle of the variable valve mechanism for realizing the valve overlap period calculated in step S106, and changes the valve overlap amount. More specifically, the valve timings of the intake valve 6 and the exhaust valve 7 are calculated by a method described later, and the conversion angles of the intake side and exhaust side variable valve mechanisms are changed based on the calculation results.
  • FIG. 6 calculates the opening timing (IVO in the drawing) of the intake valve 6 and the closing timing (EVC in the drawing) of the exhaust valve 7 for realizing the valve overlap period calculated in step S106. It is a table for.
  • the vertical axis indicates the valve timing
  • the horizontal axis indicates the valve overlap amount.
  • the intake valve opening timing is IVO0
  • the exhaust valve closing timing is EVC0.
  • the intake valve opening timing is IVO1 advanced from IVO0
  • the exhaust valve closing timing is EVC1 delayed from EVC0.
  • the intake valve opening timing is IVO2 that is further advanced than IVO1
  • the exhaust valve closing timing is EVC2 that is further delayed than EVC1.
  • the advance amount of the opening timing of the intake valve 6 is larger than the retard amount of the closing timing of the exhaust valve 7. This is because as the closing timing of the exhaust valve 7 is retarded, the intake air blow-through amount increases and the cylinder volume efficiency decreases. That is, when the valve overlap period is lengthened by mainly advancing the opening timing of the intake valve 6 as in the present embodiment, a decrease in cylinder volume efficiency can be suppressed.
  • steps S106-S107 may be executed prior to the processing of steps S104-S105.
  • the controller 100 estimates the amount of liquid fuel remaining on the piston crown surface 3A during superretard stratified combustion. When the estimated amount of liquid fuel is equal to or greater than the threshold L2, the controller 100 switches from super retarded stratified combustion to normal control. When the estimated amount of liquid fuel is less than the threshold value L2, the controller 100 advances the fuel injection timing and lengthens the valve overlap period according to the increase in the estimated amount of liquid fuel.
  • the controller 100 when it is necessary to warm up the exhaust purification catalyst interposed in the exhaust passage 5, the controller 100 is in the compression stroke and the fuel spray collides with the piston crown surface 3A.
  • the catalyst is warmed up (super retarded stratified combustion) in which the fuel spray is injected at the fuel injection timing toward the ignition plug 8 along the shape of the piston crown surface 3A, and spark ignition is performed after the compression top dead center.
  • the controller 100 advances the fuel injection timing in accordance with an increase in the estimated amount of liquid fuel remaining on the piston crown surface 3A. By advancing the fuel injection timing, the amount of fuel colliding with the piston crown surface 3A is reduced, so that the amount of liquid fuel remaining on the piston crown surface 3A is reduced. Thereby, PN can be reduced.
  • the fuel spray is in the piston crown surface 3A during the compression stroke.
  • the fuel injection timing is advanced to the intake stroke from the timing of collision with the ignition plug toward the spark plug. This increases the distance from the fuel injection valve 9 to the piston crown surface 3A at the fuel injection timing and prevents the fuel spray from colliding with the piston crown surface 3A, thereby suppressing an increase in liquid fuel remaining on the piston crown surface 3A. it can.
  • the distance between the fuel injection valve 9 and the piston crown surface 3A is reduced when the fuel injection timing is advanced to the intake stroke.
  • the fuel injection timing after the advance is a fuel injection timing at which the fuel spray does not collide with the piston crown surface 3A, for example, 100 deg. The effect that the increase in the liquid fuel remaining on the surface 3A can be suppressed is obtained.
  • the time from when the fuel adheres to the piston crown surface 3A until the spark is ignited increases.
  • the atmospheric temperature in the cylinder rises due to the compression action, and vaporization is promoted. Therefore, even when the fuel injection timing at which the fuel spray adheres to the piston crown surface 3A due to the advance angle is obtained, the effect of suppressing the increase in the liquid fuel remaining on the piston crown surface 3A can be obtained if the amount of adhesion is small.
  • the liquid fuel remaining on the piston crown surface 3A increases when the fuel injection timing is advanced from the bottom dead center.
  • the increase in the liquid fuel remaining on the piston crown surface 3A can be suppressed because the amount of fuel colliding with the piston crown surface 3A decreases or due to the collision This is due to one of the two mechanisms described above that the time for the attached fuel to evaporate is extended.
  • the fuel injection timing is gradually brought closer to the intake stroke in accordance with the increase in the estimated amount of liquid fuel remaining on the piston crown surface 3A. That is, when the estimated amount of liquid fuel increases, the super retarded stratified combustion is switched to the weak stratified combustion. Thereby, warm-up of the exhaust purification catalyst can be promoted by weak stratified combustion while suppressing an increase in liquid fuel remaining on the piston crown surface 3A.
  • the advance amount of the fuel injection timing described above is increased as the temperature of the piston crown surface 3A is lower.
  • the lower the temperature of the piston crown surface 3A the more easily the fuel spray that has collided remains on the piston crown surface 3A. Therefore, according to the present embodiment, the amount of liquid fuel remaining on the piston crown surface 3A can be more reliably reduced.
  • part of the fuel is also injected during the intake stroke. That is, two-stage injection is performed in which fuel is injected in the intake stroke and the compression stroke.
  • the fuel injected in the intake stroke forms an air-fuel mixture that is homogeneous and leaner than the stoichiometric air-fuel ratio in the combustion chamber 11. If the spark is ignited in this state, the combustion is strong against disturbance.
  • the controller 100 increases the valve overlap amount so that the piston crown surface temperature rises according to the increase in the estimated amount of liquid fuel remaining on the piston crown surface 3A.
  • the valve overlap period becomes longer, the internal EGR amount increases and the in-cylinder temperature rises from the stage of the intake stroke, so that vaporization of the liquid fuel can be promoted. As a result, PN can be reduced.
  • the valve overlap amount is gradually increased as the estimated amount of liquid fuel remaining on the piston crown surface 3A increases. That is, even when the super retarded stratified combustion is switched to the weak stratified combustion as the estimated amount of liquid fuel increases, the above-described valve overlap amount control is executed. Thereby, warm-up of the exhaust purification catalyst can be promoted by weak stratified combustion while suppressing an increase in liquid fuel remaining on the piston crown surface 3A.
  • the amount of change in the valve overlap amount is increased as the temperature of the piston crown surface 3A is lower.
  • the lower the temperature of the piston crown surface 3A the more easily the fuel spray that has collided remains on the piston crown surface 3A. Therefore, according to the present embodiment, the amount of liquid fuel remaining on the piston crown surface 3A can be more reliably reduced.
  • the controller 100 executes the control routine shown in FIG.
  • the valve overlap period calculation method is different from that in the first embodiment. That is, in the present embodiment, the contents of the processing in steps S106 to S107 in FIG. 2 are different from those in the first embodiment.
  • FIG. 7 is a table used for calculating the valve overlap period in step S106. Unlike FIG. 5 used in the first embodiment, the valve overlap period becomes longer in proportion to the increase in the estimated amount of liquid fuel. Thereby, finer control according to the estimated amount of liquid fuel becomes possible.
  • FIG. 8 is a table used for setting the valve timings of the intake valve 6 and the exhaust valve 7 in step S107.
  • the valve timings of the intake valve 6 and the exhaust valve 7 are proportional to the valve overlap period. That is, the advance amount of the opening timing of the intake valve 6 and the retard amount of the closing timing of the exhaust valve 7 are increased in proportion to the longer valve overlap period.
  • the advance amount of the opening timing of the intake valve 6 is made larger than the retard amount of the closing timing of the exhaust valve 7 as in FIG. 6 used in the first embodiment. It is.
  • each embodiment mentioned above is not limited to what performs these stratified combustion by two split injections.
  • single-stage injection in which the first fuel injection out of the two fuel injections described above is omitted may be used to perform stratified combustion only by the second fuel injection.
  • the controller 100 may switch to homogeneous stoichiometric combustion when the estimated amount of liquid fuel exceeds a predetermined threshold during the execution of super retarded stratified combustion.
  • the above-mentioned “slowly approach the fuel injection timing closer to the intake stroke according to the increase in the estimated amount of liquid fuel” means that the fuel injection timing is advanced stepwise as shown in FIGS. It is not limited.
  • the advance amount of the fuel injection timing when the liquid fuel estimated amount is less than the threshold value L2 may be continuously increased in accordance with the increase in the liquid fuel estimated amount.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

エンジン制御装置は、筒内に燃料を直接噴射する燃料噴射弁と、筒内の混合気に火花点火する点火プラグとを備える筒内直接燃料噴射式火花点火エンジンを制御する。エンジン制御装置は、排気通路に介装される排気浄化触媒を暖機する必要がある場合に、燃料噴射タイミングが圧縮行程中かつ燃料噴霧がピストン冠面に衝突し、衝突した燃料噴霧がピストン冠面の形状に沿って点火プラグへ向かうタイミングであって、点火タイミングが圧縮上死点以降である触媒暖機運転を実行し、触媒暖機運転の実行中に、ピストン冠面に残存する液状燃料の推定量の増加に応じて燃料噴射タイミングを進角する。

Description

エンジン制御装置及びエンジン制御方法
 本発明は、筒内直接燃料噴射式火花点火エンジンを制御するエンジン制御装置及びエンジン制御方法に関する。
 エンジンの排気通路には、一般的に、排気ガスを浄化するための触媒装置が配置されている。触媒装置に担持された触媒は、活性化温度未満では良好な触媒機能を発揮しないので、機関始動時には触媒を早期に活性化温度まで昇温させるための暖機運転が必要となる。特開2011-220210には、点火時期を遅角させることによって排気ガスの温度を高めて、触媒を昇温させる暖機運転が記載されている。また、上記文献に記載の暖機運転では、点火時期を遅角した状態でも良好な着火性を確保するために、点火プラグの近傍に燃料噴霧を集中させた状態で火花点火を行う、いわゆる成層燃焼を実施している。
 しかしながら、上記文献に記載の暖機運転では、触媒の暖機運転を実施すべき条件が成立していても、暖房がONになっている場合には点火時期をリタードした状態で均質ストイキ燃焼を実施することとなっている。このような暖機運転は、暖房性能の確保には有効ではあるものの、エミッション低減については十分ではない。特に、上記文献では、排気微粒子(PM:Particulate Matter)の生成量を抑制するために重要な、ピストン冠面に付着した液状燃料量を全く考慮していないので、PMの排出量(以下、PN:Particulate Numberともいう)を低減することは難しい。
 そこで本発明では、触媒を早期に活性化させ、かつPNの低減を実現し得るようエンジンを制御することを目的とする。
 本発明のある態様によれば、筒内に燃料を直接噴射する燃料噴射弁と、筒内の混合気に火花点火する点火プラグと、を備える筒内直接燃料噴射式火花点火エンジンを制御するエンジン制御装置が提供される。エンジン制御装置は、排気通路に介装される排気浄化触媒を暖機する必要がある場合に、燃料噴射タイミングが圧縮行程中かつ燃料噴霧がピストン冠面に衝突し、衝突した燃料噴霧がピストン冠面の形状に沿って点火プラグへ向かうタイミングであって、点火タイミングが圧縮上死点以降である触媒暖機運転を実行する。そして、エンジン制御装置は、触媒暖機運転の実行中に、ピストン冠面に残存する液状燃料の推定量の増加に応じて燃料噴射タイミングを進角する。
図1は、第1実施形態を適用するエンジンの概略構成図である。 図2は、PNの増加を抑制するための制御ルーチンを示すフローチャートである。 図3は、第1実施形態の制御で用いる、燃料噴射タイミング進角量を設定したテーブルである。 図4は、第1実施形態の制御を実行した場合の燃料噴射タイミングを示す図である。 図5は、第1実施形態の制御で用いる、バルブオーバーラップ期間の長さを設定したテーブルである。 図6は、図5のテーブルから算出したバルブオーバーラップ期間を実現するためのバルブタイミングを設定したテーブルである。 図7は、第2実施形態の制御で用いる、バルブオーバーラップ期間の長さを設定したテーブルである。 図8は、図7のテーブルから算出したバルブオーバーラップ期間を実現するためのバルブタイミングを設定したテーブルである。 図9は、ダンパー期間を設けない場合の燃料噴射タイミングを示す図である。 図10は、燃料噴射タイミングの他の実施例を示す図である。
 以下、添付図面を参照しながら本発明の実施形態について説明する。
 (第1実施形態)
 図1は、本実施形態を適用する筒内直接燃料噴射式火花点火エンジン(以下、「エンジン」ともいう)1の、燃焼室周辺の概略構成図である。なお、図1はひとつの気筒についてのみ示しているが、本実施形態は多気筒エンジンにも適用可能である。
 エンジン1のシリンダブロック1Bはシリンダ2を備える。シリンダ2にはピストン3が往復動可能に収められている。ピストン3はコネクティングロッド12を介して図示しないクランクシャフトと連結されており、クランクシャフトが回転することにより往復動する。また、ピストン3は冠面3A(以下、ピストン冠面3Aともいう)に後述するキャビティ10を備える。
 エンジン1のシリンダヘッド1Aは凹状の燃焼室11を備える。燃焼室11は、いわゆるペントルーフ型に構成されており、吸気側の傾斜面には一対の吸気バルブ6が、排気側の傾斜面には一対の排気バルブ7がそれぞれ配置されている。そして、これら一対の吸気バルブ6及び一対の排気バルブ7に囲まれた燃焼室11の略中心位置に、点火プラグ8がシリンダ2の軸線に沿うように配置されている。
 また、シリンダヘッド1Aの、一対の吸気バルブ6に挟まれた位置には、燃料噴射弁9が燃焼室11に臨むように配置されている。燃料噴射弁9から噴射される燃料噴霧の指向性については後述する。
 吸気バルブ6及び排気バルブ7は、図示しない可変動弁機構により駆動される。可変動弁機構は、吸気バルブ6及び排気バルブ7がいずれも開弁したバルブオーバーラップ期間が生じるように、吸気バルブ6及び排気バルブ7のバルブタイミング、つまり開弁タイミング及び閉弁タイミング、を変化させ得るものであれば足りる。なお、開弁タイミングとは開弁動作を開始するタイミング、閉弁タイミングとは閉弁動作を終了するタイミングである。本実施形態では、吸気バルブ6を駆動するカムシャフト及び排気バルブ7を駆動するカムシャフトの、クランクシャフトに対する回転位相を変化させる公知の可変動弁機構を用いる。なお、回転位相だけでなく吸気バルブ及び排気バルブの作動角も変化させ得る公知の可変動弁機構を用いてもよい。
 排気通路5の排気流れ下流側には、エンジン1の排気ガスを浄化するための排気浄化触媒が介装されている。排気浄化触媒は、例えば三元触媒である。
 ピストン3は、上述したようにピストン冠面3Aにキャビティ10を備える。キャビティ10は、ピストン冠面3Aにおいて吸気側に偏った位置に設けられている。そして、燃料噴射弁9は、ピストン3が上死点近傍にあるときに燃料噴射すると、燃料噴霧がこのキャビティ10を指向するように配置されている。キャビティ10に衝突した燃料噴霧が、キャビティ10の壁面に沿って巻き上げられて点火プラグ8の方向へ向かう形状になっている。
 なお、エンジン1の燃料噴射量、燃料噴射タイミング、及び点火時期等は、コントローラ100によりエンジン1の運転状態に応じて制御される。なお、燃料噴射タイミングとは、燃料噴射を開始するタイミングである。また、これらの制御を実行するために、エンジン1はクランクシャフト角度センサ、冷却水温センサ、吸入空気量を検出するエアフローメータ等の各種検出装置を備える。
 次に、コントローラ100が実行する、エンジン1の始動時における制御について説明する。本実施形態では、1燃焼サイクルあたりに必要な燃料量を2回に分けて噴射する、いわゆる2段噴射を行うこととする。
 排気浄化触媒は、活性化温度より低温では十分な浄化性能を発揮しない。このため、排気浄化触媒が活性化温度より低温である冷機始動時には、排気浄化触媒を早期に昇温する必要がある。そこで、コントローラ100は、冷間始動直後のアイドル状態で排気浄化触媒が不活性状態にある場合に、排気浄化触媒を早期に活性化させるために超リタード成層燃焼を実行する。なお、超リタード成層燃焼そのものは公知(特開2008-25535号公報参照)である。
 超リタード成層燃焼では、コントローラ100は点火タイミングを膨張行程の前半の、例えば圧縮上死点後15-30degに設定する。また、コントローラ100は1回目の燃料噴射タイミングを吸気行程の前半に設定し、2回目の燃料噴射タイミングを圧縮行程の後半の、燃料噴霧が点火タイミングまでに点火プラグ8の周辺に到達し得るタイミング、例えば圧縮上死点前50-60degに設定する。
 ここで、1回目の燃料噴射量と2回目の燃料噴射量とについて説明する。
 上述した超リタード成層燃焼で排出される排気ガスの空燃比はストイキ(理論空燃比)である。コントローラ100は一般的な燃料噴射量設定方法と同様に、1燃焼サイクル当たりの吸入空気量で完全燃焼させ得る燃料量(以下、トータル燃料量ともいう)を算出する。このトータル燃料量のうちの一部、例えば50-90重量%を1回目の噴射量とし、残りを2回目の噴射量とする。
 上記のように燃料噴射量を設定すると、1回目の燃料噴射で噴射された燃料噴霧は、キャビティ10に衝突することなくシリンダ2内に拡散し、空気と混合して燃焼室11の全域にストイキよりもリーンな均質混合気を形成する。そして、2回目の燃料噴射で噴射された燃料噴霧は、キャビティ10に衝突し、巻き上げられることによって点火プラグ8の近傍に到達し、点火プラグ8の周りにストイキよりもリッチな混合気を集中的に形成する。これにより燃焼室11内の混合気は成層状態となる。この状態で点火プラグ8により火花点火すれば、失火やスモーク発生が抑制された外乱に強い燃焼が行われる。ところで、上述した燃焼は成層燃焼であるが、点火タイミングが圧縮上死前である一般的な成層燃焼と区別するために、超リタード成層燃焼と称する。
 上記のような超リタード成層燃焼によれば、従来の均質ストイキ燃焼と比較して排気温度を上昇させることができるだけでなく、燃焼室11から排気通路5へのハイドロカーボン(HC)排出量を低減できる。すなわち、超リタード成層燃焼によれば、従来の均質ストイキ燃焼だけ、成層燃焼だけ、或いは、これらに対し更に追加燃料を燃焼後期以降(膨張行程以降や排気行程中)に噴射する燃焼形態等、で暖機を行なわせる場合に比べて、始動開始から排気浄化触媒が活性化するまでの間における大気中へのHCの排出を抑制しながら、排気浄化触媒の早期活性化を実現することができる。
 ところで、超リタード成層燃焼の実行中にピストン冠面3Aに衝突した燃料の一部は、点火プラグ8の方向に巻きあがらずに、ピストン冠面3Aに付着する。ピストン冠面3Aに燃料が付着した場合でも、付着した燃料が気化して当該燃焼サイクルで燃焼すれば、ピストン冠面3Aに燃料が残留することはない。しかし、超リタード成層燃焼を実行するのは冷機始動時なので、ピストン冠面3Aの温度が上昇するまでは、付着した燃料は気化し難い。また、付着した燃料が当該燃焼サイクルの燃焼火炎が伝播することによって燃焼すれば、ピストン冠面3Aに燃料が残留することはない。しかし、超リタード成層燃焼では膨張行程で燃焼を開始するので、燃焼火炎がピストン冠面3Aに到達しなかったり、または膨張行程後半で温度低下した状態でピストン冠面3Aに到達することとなったりするので、付着した燃料を当該サイクル中に燃やし切ることは難しい。なお、ピストン冠面3Aに残留している液状燃料が燃焼火炎によって点火されて燃焼する現象をプールファイヤと称する。
 したがって、冷機始動してからの所定期間は、ピストン冠面3Aに残留する液状燃料は増加し続ける。ここでいう所定期間とは、1燃焼サイクル中にピストン冠面3Aに付着する量よりも、ピストン冠面3Aに残留していた液状燃料が1燃焼サイクル中に気化する量の方が多くなるまでの期間である。
 つまり、所定期間を超えて超リタード成層燃焼を継続すれば、ピストン冠面3Aに残留していた液所燃料は徐々に減少する。しかし、所定期間経過前に、ピストン冠面3Aに液状燃料が残留した状態で超リタード成層燃焼から均質ストイキ燃焼に切り替わる場合がある。例えば、排気浄化触媒が活性化した場合や、アクセルペダルが踏み込まれて加速する場合である。なお、ここでいう均質ストイキ燃焼とは、燃焼室11の全体に理論空燃比の混合気を形成し、最適点火時期(MBT:minimum advance for best torque)で火花点火する燃焼形態である。
 ピストン冠面3Aに液状燃料が残留している状態で均質ストイキ燃焼に切り替わると、燃焼火炎が高温のままピストン冠面3Aに到達してプールファイヤが生じ、残留している液状燃料が燃焼する。このように、今回の燃焼サイクルまでに蓄積した液状燃料が燃焼すると、PNが増加する傾向がある。
 そこで本実施形態では、液状燃料が燃焼することによるPNの増加を抑制するために、コントローラ100が以下に説明する制御を実行する。
 図2は、コントローラ100が実行するPNの増加を抑制するための制御ルーチンを示すフローチャートである。なお、本ルーチンは例えば10ミリ秒程度の短い間隔で繰り返し実行される。
 本ルーチンは、ピストン冠面3Aに残留する液状燃料量(以下、単に「液状燃料量」ともいう)を抑制するために、2段噴射の2回目の噴射タイミングをピストン冠面3Aに残留している液状燃料量に応じて変更するものである。以下、フローチャートのステップにしたがって説明する。
 ステップS101で、コントローラ100は超リタード成層燃焼の実行中であるか否かを判定する。実行中であればステップS102の処理を実行し、実行中でなければ、ステップS108にて均質ストイキ燃焼(以下、通常制御ともいう)への切り替え処理を行う。超リタード成層燃焼の実行中であるか否かは、排気浄化触媒の温度に基づいて判定する。具体的には、排気浄化触媒が活性温度未満であれば実行中、活性温度以上であれば実行中でない、と判定する。なお、排気浄化触媒が活性温度未満であっても、加速要求が有る場合にはコントローラ100はステップS108の処理を実行する。加速要求の有無は図示しないアクセルペダル開度センサの検出値に基づいて判断できる。例えばアクセルペダルが踏み込まれた場合に加速要求有りと判断してもよいし、所定の開度より大きくなった場合に加速要求有りと判断してもよい。さらに、アクセルペダル開度の変化速度を判断材料に加えて、アクセルペダルが踏み込まれ、かつ変化速度が所定値以上の場合に加速要求有りと判断してもよい。
 ステップS102で、コントローラ100は液状燃料量を推定する。本実施形態では、シリンダ2の壁温(以下、シリンダ壁温ともいう)とエンジン始動からの経過時間とに基づいて液状燃料量を推定する。具体的には、まず、シリンダ壁温が低いほど液状燃料がピストン冠面3Aに残留し易いという特性に基づいて、シリンダ壁温毎に単位時間当たりの残留量を定めておき、この値にエンジン始動からの経過時間を積算することによってピストン冠面3Aに付着した積算量を算出する。次に、この積算量から後述する気化量を減算し、その結果を液状燃料の推定量とする。
 なお、液状燃料の残留し易さと直接的な関係があるのはピストン冠面3Aの温度であるが、ここではピストン冠面3Aの温度と相関があり、かつ既存の冷却水温センサの検出値から推定可能なシリンダ壁温を用いている。
 上記の気化量とは、ピストン冠面3Aに付着していた燃料のうち気化した量である。燃料は温度が高いほど気化し易くなるので、ピストン冠面3Aの温度が高くなるほど気化量は多くなる。
 ステップS103で、コントローラ100はステップS102で推定した液状燃料量(以下、液状燃料推定量ともいう)が予め設定してある閾値L2未満であるか否かを判定する。コントローラ100は、液状燃料推定量が閾値L2未満の場合はステップS104の処理を実行し、閾値L2以上の場合はステップS108の処理を実行する。
 本ステップで用いる閾値L2は、超リタード成層燃焼から均質ストイキ燃焼に切り替えたとしても、PNの排出規制値を満足できる値を設定する。
 ステップS104で、コントローラ100は、2段噴射における2回目の燃料噴射タイミングの基本燃料噴射タイミングに対する進角量(以下、燃料噴射タイミング進角量ADVともいう)を後述するように算出する。基本燃料噴射タイミングは、圧縮行程中かつ燃料噴霧がキャビティ10に衝突するタイミングである。基本燃料噴射タイミングの具体的な値は、本実施形態を適用する車両の仕様毎の適合作業によって設定するものであるが、本実施形態では上述したように圧縮上死点前50-60°の間の値とする。なお、本実施形態における「進角量」及び「遅角量」の単位はクランク角である。
 燃料噴射タイミング進角量ADVは、例えば、図3に示すテーブルを予め作成してコントローラ100に格納しておき、このテーブルを液状燃料推定量で検索することにより算出する。
 図3は、縦軸が燃料噴射タイミング進角量ADVを示し、横軸が液状燃料推定量Lを示している。燃料噴射タイミング進角量ADVは、液状燃料推定量Lがゼロ≦L<閾値L1の場合はゼロ、閾値L1≦L<閾値L2の場合はADV1、L≧閾値L2の場合はADV2である。燃料噴射タイミング進角量ADV1は、燃料噴射タイミングが圧縮行程中かつ燃料噴霧の一部がキャビティ10に衝突するタイミングとなる大きさである。燃料噴射タイミング進角量ADV2は、燃料噴射タイミングが吸気行程中かつ燃料噴霧がキャビティ10に衝突しないタイミングとなる大きさである。閾値L1は、予め設定した値である。具体的な数値は本実施形態を適用する車両の仕様に応じて設定する。
 なお、ピストン冠面3Aの温度毎に燃料噴射タイミング進角量のテーブルを作成しておき、ステップS104で燃料噴射タイミング進角量を算出する際に、ピストン冠面3Aの温度に応じたテーブルを選択するようにしてもよい。この場合、ピストン冠面3Aの温度が低い場合のテーブルほど、燃料噴射タイミング進角量を大きく設定しておく。つまり、ピストン冠面3Aの温度が低くなるほど、図3の燃料噴射タイミング進角量が上にシフトしたテーブルになる。ピストン冠面3Aの温度が低いほど、衝突した燃料が液状燃料として残留し易いので、上記のように燃料噴射タイミング進角量ADV1を算出することで、より確実にピストン冠面3Aに残留する液状燃料量の増加を抑制できる。
 ステップS105で、コントローラ100は燃料噴射タイミングを設定する。具体的には、超リタード成層燃焼用の基本燃料噴射タイミングとステップS104で算出した燃料噴射タイミング進角量ADVとから新たな燃料噴射タイミングを算出する。
 図4は、上記ステップS104及びS105の処理を実行した場合の燃料噴射タイミングの一例を示す図である。図4の縦軸がクランク角度を示し、横軸が液状燃料推定量Lを示している。液状燃料推定量Lが閾値L1未満の場合は、燃料噴射タイミングは基本噴射タイミングのままである。
 液状燃料推定量Lが閾値L1以上閾値L2未満の場合は、燃料噴射タイミングは基本噴射タイミングから燃料噴射タイミング進角量ADV1だけ進角している。この場合、上述したように燃料噴霧の一部はキャビティ10に衝突するので、基本燃料噴射タイミングの場合に比べると少ないものの、点火プラグ8の周りに成層混合気が形成される。この状態で火花点火されることによって行われる燃焼を弱成層燃焼と称する。
 液状燃料推定量Lが閾値L2以上の場合は、燃料噴射タイミングは基本噴射タイミングから燃料噴射タイミング進角量ADV2だけ進角して、吸気行程噴射となる。吸気行程噴射になると、燃料噴霧は点火タイミングまでに拡散・混合して筒内全域に均質な混合気を形成する。したがって、燃焼形態は均質ストイキ燃焼となる。
 上記のように、コントローラ100は燃料噴射タイミングを液状燃料推定量Lの増加に応じて進角させる。より詳細には、コントローラ100は液状燃料推定量Lが閾値L1以上になると燃料噴射タイミングを進角させて弱成層燃焼に切り替える。これにより、キャビティ10に衝突する燃料量が超リタード成層燃焼の場合に比べて減少するので、ピストン冠面3Aに残留する燃料量の増加を抑制できる。コントローラ100は、液状燃料推定量Lが閾値L2以上になると燃料噴射タイミングを吸気行程まで進角させて、均質ストイキ燃焼に切り替える。これにより、燃料噴霧がキャビティ10に付着しなくなるので、冠面に残留する燃料量の増加をさらに抑制できる。
 なお、コントローラ100は、図示しない別フローにて運転状態に応じて点火タイミングを制御している。そして、コントローラ100は、超リタード成層燃焼の場合には点火タイミングをMBTよりも遅角させているが、上記の新たな燃料噴射タイミングに合わせて点火タイミングも進角させる。
 フローチャートの説明に戻る。
 ステップS106で、コントローラ100は、液状燃料推定量Lに基づいてバルブオーバーラップ期間を算出する。ここでいうバルブオーバーラップ期間とは、吸気バルブ6及び排気バルブ7が開弁している状態が継続する期間をクランク角度で表したものである。
 図5は、縦軸がバルブオーバーラップ期間を示し、横軸が液状燃料推定量Lを示している。図5では、バルブオーバーラップ期間は、液状燃料推定量Lが0≦L<L1の場合は基本バルブオーバーラップ期間V0、L1≦L<L2の場合はV1、L≧L2の場合はV2となっている。ここで、V0<V1<V2の関係が成立する。
 バルブオーバーラップ期間が長くなると、いわゆる内部EGRガス量が増加するので、吸気行程から点火タイミングまでの筒内温度が上昇する。筒内温度が上昇すればピストン冠面3Aの温度も上昇し、キャビティに付着している液状燃料の気化が促進される。そこで、図5のテーブルは、液状燃料推定量が多くなると、バルブオーバーラップ期間が長くなるように設定されている。
 なお、ピストン冠面3Aの温度毎にバルブオーバーラップ期間のテーブルを作成しておき、ステップS106で燃料噴射タイミング進角量を算出する際に、ピストン冠面3Aの温度に応じたテーブルを選択するようにしてもよい。この場合、ピストン冠面3Aの温度が低い場合のテーブルほど、バルブオーバーラップ期間を長く設定しておく。つまり、ピストン冠面3Aの温度が低くなるほど、図5のバルブオーバーラップ期間が上にシフトしたテーブルになる。ピストン冠面3Aの温度が低いほど、衝突した燃料が液状燃料として残留し易いので、上記のようにバルブオーバーラップ期間を算出することで、より確実にピストン冠面3Aに残留する液状燃料量の増加を抑制できる。
 ステップS107で、コントローラ100はステップS106で算出したバルブオーバーラップ期間を実現するための可変動弁機構の変換角を設定して、バルブオーバーラップ量を変更する。より詳細には、吸気バルブ6及び排気バルブ7のバルブタイミングを後述する方法により算出し、算出結果に基づいて吸気側及び排気側の可変動弁機構の変換角を変更する。
 図6は、ステップS106で算出したバルブオーバーラップ期間を実現するための、吸気バルブ6の開タイミング(図中のIVO)と、排気バルブ7の閉タイミング(図中のEVC)と、を算出するためのテーブルである。図6は、縦軸がバルブタイミングを示し、横軸がバルブオーバーラップ量を示している。基本バルブオーバーラップ期間V0の場合は、吸気バルブ開タイミングがIVO0、排気バルブ閉タイミングがEVC0である。バルブオーバーラップ期間がV1の場合は、吸気バルブ開タイミングがIVO0より進角したIVO1、排気バルブ閉タイミングがEVC0より遅角したEVC1である。バルブオーバーラップ期間がV2の場合は、吸気バルブ開タイミングがIVO1よりさらに進角したIVO2、排気バルブ閉タイミングがEVC1よりさらに遅角したEVC2である。このように、バルブオーバーラップ期間がいずれの長さであっても、吸気バルブ開タイミングと排気バルブ閉タイミングは、排気上死点を挟むように設定されている。
 また、吸気バルブ6の開タイミングの進角量は、排気バルブ7の閉タイミングの遅角量よりも大きくなっている。これは、排気バルブ7の閉タイミングを遅角するほど、吸入空気の吹き抜け量が増加し、シリンダ体積効率が低下してしまうからである。すなわち、本実施形態のように主に吸気バルブ6の開タイミングを進角させることでバルブオーバーラップ期間を長くすると、シリンダ体積効率の低下を抑制することができる。
 なお、図2のフローチャートにおいて、ステップS106-S107の処理を、ステップS104-S105の処理より先に実行してもかまわない。
 上述した制御ルーチンをまとめると、次の通りである。まず、コントローラ100は超リタード成層燃焼中にピストン冠面3Aに残留する液状燃料量を推定する。液状燃料推定量が閾値L2以上の場合は、コントローラ100は超リタード成層燃焼から通常制御へ切り替える。液状燃料推定量が閾値L2未満の場合は、コントローラ100は液状燃料推定量の増加に応じて、燃料噴射タイミングを進角し、かつ、バルブオーバーラップ期間を長くする。
 次に、本実施形態の効果について説明する。
 本実施形態では、排気通路5に介装される排気浄化触媒を暖機する必要がある場合に、コントローラ100は、圧縮行程中であって、かつ燃料噴霧がピストン冠面3Aに衝突し、衝突した燃料噴霧がピストン冠面3Aの形状に沿って点火プラグ8へ向かう燃料噴射タイミングで燃料を噴射し、圧縮上死点以降に火花点火をする触媒暖機運転(超リタード成層燃焼)を実行する。そして、超リタード成層燃焼の実行中に、コントローラ100はピストン冠面3Aに残存する液状燃料の推定量の増加に応じて燃料噴射タイミングを進角する。燃料噴射タイミングを進角することにより、ピストン冠面3Aに衝突する燃料量が減少するので、ピストン冠面3Aに残留する液状燃料量が減少する。これにより、PNを低減することができる。
 本実施形態では、ピストン冠面3Aに残留する液状燃料の推定量が排気微粒子の排出規制値に基づいて設定した閾値を超えた場合には、圧縮行程中であって燃料噴霧がピストン冠面3Aに衝突して点火プラグへ向かうタイミングから、吸気行程へ燃料噴射タイミングを進角させる。これにより、燃料噴射タイミングにおける燃料噴射弁9からピストン冠面3Aまでの距離が広がり、燃料噴霧がピストン冠面3Aに衝突することがなくなるので、ピストン冠面3Aに残留する液状燃料の増加を抑制できる。
 なお、仮に、圧縮行程中の燃料噴射タイミングが下死点近傍である場合には、燃料噴射タイミングを吸気行程中へ進角すると、燃料噴射弁9とピストン冠面3Aとの距離は縮まる。しかし、進角後の燃料噴射タイミングが、燃料噴霧がピストン冠面3Aに衝突しない燃料噴射タイミング、例えば下死点前100deg-下死点、であれば、燃料噴射タイミングの進角により、ピストン冠面3Aに残留する液状燃料の増加を抑制できるという効果が得られる。
 また、燃料噴射タイミングを進角することによって、燃料噴霧がピストン冠面3Aに付着する燃料噴射タイミングになったとしても、燃料がピストン冠面3Aに付着してから火花点火されるまでの時間、つまり、付着した燃料が気化し得る時間は伸びる。特に、圧縮行程の開始後は圧縮作用により筒内の雰囲気温度が上昇して気化が促進される。したがって、進角により燃料噴霧がピストン冠面3Aに付着する燃料噴射タイミングになったとしても、付着する量が少なければピストン冠面3Aの残留する液状燃料の増加を抑制する効果は得られる。
 上記のように、燃料噴射タイミングを下死点より早めるとピストン冠面3Aに残留する液状燃料が増加するとは、一概にはいえない。燃料噴射タイミングを圧縮行程から吸気行程へ進角させることで、ピストン冠面3Aに残留する液状燃料の増加を抑制できるのは、ピストン冠面3Aに衝突する燃料量が減少する、または、衝突により付着した燃料が気化する時間が伸びる、という上述した2つのメカニズムのいずれかによるものである。
 本実施形態では、ピストン冠面3Aに残留する液状燃料の推定量の増加に応じて、燃料噴射タイミングを徐々に吸気行程に近付ける。すなわち、液状燃料推定量が増加したら、超リタード成層燃焼から弱成層燃焼に切り替える。これにより、ピストン冠面3Aに残留する液状燃料の増加を抑制しつつ、弱成層燃焼によって排気浄化触媒の暖機を促進できる。
 本実施形態では、ピストン冠面3Aの温度が低いほど、上述した燃料噴射タイミングの進角量を大きくする。ピストン冠面3Aの温度が低いほど、衝突した燃料噴霧がピストン冠面3Aに残留し易い。したがって、本実施形態によれば、より確実にピストン冠面3Aに残留する液状燃料量を低減できる。
 本実施形態では、少なくとも暖機運転(超リタード成層燃焼)の実行中は、燃料の一部を吸気行程中にも噴射する。つまり、吸気行程及び圧縮行程で燃料を噴射する2段噴射を行う。吸気行程で噴射された燃料は、燃焼室11内に均質で理論空燃比よりもリーンな混合気を形成する。この状態で火花点火すれば外乱に強い燃焼が行われる。
 本実施形態では、超リタード成層燃焼の実行中に、コントローラ100はピストン冠面3Aに残存する液状燃料の推定量の増加に応じて、ピストン冠面温度が上昇するようにバルブオーバーラップ量を増大させる。バルブオーバーラップ期間が長くなるほど内部EGR量が増加し、吸気行程の段階から筒内温度が上昇するので、液状燃料の気化を促進できる。その結果、PNを低減することができる。
 本実施形態では、ピストン冠面3Aに残留する液状燃料の推定量の増加に応じて、バルブオーバーラップ量を徐々に大きくする。すなわち、液状燃料推定量の増加に伴い超リタード成層燃焼から弱成層燃焼に切り替わっても、上述したバルブオーバーラップ量の制御を実行する。これにより、ピストン冠面3Aに残留する液状燃料の増加を抑制しつつ、弱成層燃焼によって排気浄化触媒の暖機を促進できる。
 本実施形態では、ピストン冠面3Aの温度が低いほど、バルブオーバーラップ量の変化量を大きくする。ピストン冠面3Aの温度が低いほど、衝突した燃料噴霧がピストン冠面3Aに残留し易い。したがって、本実施形態によれば、より確実にピストン冠面3Aに残留する液状燃料量を低減できる。
 (第2実施形態)
 第2実施形態と第1実施形態との相違点は、バルブオーバーラップ期間の算出方法である。以下、この相違点を中心に説明する。
 本実施形態でも、コントローラ100は図2に示す制御ルーチンを実行する。上記のように、本実施形態ではバルブオーバーラップ期間の算出方法が第1実施形態と異なる。つまり、本実施形態では、図2のステップS106-S107の処理の内容が第1実施形態とは異なる。
 図7は、ステップS106でバルブオーバーラップ期間を算出するために用いるテーブルである。第1実施形態で用いる図5と異なり、バルブオーバーラップ期間は液状燃料推定量の増加に比例して長くなっている。これにより、液状燃料推定量に応じたよりきめ細やかな制御が可能となる。
 なお、第1実施形態と同様に、ピストン冠面3Aの温度毎に図7の同様のテーブルを作成しておき、ピストン冠面3Aの温度が低いほどバルブオーバーラップ期間が長くなるようにしてもよい。
 図8は、ステップS107で吸気バルブ6及び排気バルブ7のバルブタイミングを設定するために用いるテーブルである。吸気バルブ6及び排気バルブ7のバルブタイミングはバルブオーバーラップ期間と比例関係にある。つまり、バルブオーバーラップ期間が長くなるのに比例して、吸気バルブ6の開タイミングの進角量と排気バルブ7の閉タイミングの遅角量とが大きくなる。
 なお、バルブオーバーラップ期間を長くする場合に、吸気バルブ6の開タイミングの進角量を、排気バルブ7の閉タイミングの遅角量よりも大きくする点は第1実施形態で用いる図6と同様である。
 本実施形態によれば、第1実施形態と同様に液状燃料の増加を抑制する効果が得られるだけはなく、液状燃料推定量に応じた、より適切なバルブオーバーラップ期間を設定することができる。
 なお、上述した各実施形態は、これらの成層燃焼を2回の分割噴射により行うものに限定されるものでもない。例えば、上述した2回の燃料噴射のうち1回目の燃料噴射を省略した単段噴射とし、2回目の燃料噴射のみで成層燃焼を行うようにしてもよい。
 また、図9に示すように、超リタード成層燃焼の実行中に液状燃料推定量が所定の閾値以上になったら、コントローラ100が均質ストイキ燃焼へ切り替えるようにしてもよい。
 また、上述した「液状燃料の推定量の増加に応じて、燃料噴射タイミングを徐々に吸気行程に近付ける」とは、図4や図9のように燃料噴射タイミングをステップ的に進角させるものに限定されるものではない。例えば、図10の実線または破線のように、液状燃料推定量が閾値L2未満の場合の燃料噴射タイミングの進角量を、液状燃料推定量の増加に応じて連続的に増加させてもよい。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。

Claims (6)

  1.  筒内に燃料を直接噴射する燃料噴射弁と、
     筒内の混合気に火花点火する点火プラグと、
    を備える筒内直接燃料噴射式火花点火エンジンを制御するエンジン制御装置において、
     排気通路に介装される排気浄化触媒を暖機する必要がある場合に、燃料噴射タイミングが圧縮行程中であって、点火タイミングを遅らせる触媒暖機運転を実行し、
     前記触媒暖機運転の実行中に、ピストン冠面に残存する液状燃料の推定量に応じて前記燃料噴射タイミングを進角するエンジン制御装置。
  2.  請求項1に記載のエンジン制御装置において、
     前記ピストン冠面に残存する液状燃料の推定量が、排気微粒子の排出規制値に基づいて設定した閾値を超えた場合には、前記燃料噴霧が前記点火プラグへ向かうタイミングでの噴射から吸気行程噴射へ前記燃料噴射タイミングを進角するエンジン制御装置。
  3.  請求項2に記載のエンジン制御装置において、
     前記ピストン冠面に残留する液状燃料の推定量の増加に応じて前記燃料噴射タイミングを徐々に吸気行程に近付けるエンジン制御装置。
  4.  請求項1から3のいずれかに記載のエンジン制御装置において、
     ピストン冠面の温度が低いほど前記燃料噴射タイミングの進角量を大きくするエンジン制御装置。
  5.  請求項1から4のいずれかに記載のエンジン制御装置において、
     少なくとも前記暖機運転の実行中は、燃料の一部を吸気行程中にも噴射するエンジン制御装置。
  6.  筒内に燃料を直接噴射する燃料噴射弁と、
     筒内の混合気に火花点火する点火プラグと、
    を備える筒内直接燃料噴射式火花点火エンジンを制御するエンジン制御方法において、
     排気通路に介装される排気浄化触媒を暖機する必要がある場合に、圧縮行程中に燃料を噴射し、点火時期を遅らせる触媒暖機運転を実行し、
     前記触媒暖機運転の実行中に、ピストン冠面に残存する液状燃料の推定量に応じて燃料噴射タイミングを進角させるエンジン制御方法。
PCT/JP2015/061497 2015-04-14 2015-04-14 エンジン制御装置及びエンジン制御方法 WO2016166818A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CN201580078817.3A CN107532531B (zh) 2015-04-14 2015-04-14 发动机控制装置以及发动机控制方法
PCT/JP2015/061497 WO2016166818A1 (ja) 2015-04-14 2015-04-14 エンジン制御装置及びエンジン制御方法
CA2982751A CA2982751C (en) 2015-04-14 2015-04-14 Engine control device and engine control method
EP15889156.4A EP3284935B1 (en) 2015-04-14 2015-04-14 Engine control device and engine control method
US15/565,211 US10119486B2 (en) 2015-04-14 2015-04-14 Engine control device and engine control method
BR112017022087-3A BR112017022087B1 (pt) 2015-04-14 2015-04-14 Dispositivo de controle de motor e método de controle de motor
KR1020177030909A KR101817049B1 (ko) 2015-04-14 2015-04-14 엔진 제어 장치 및 엔진 제어 방법
MYPI2017703844A MY165600A (en) 2015-04-14 2015-04-14 Engine control device and engine control method
RU2017136794A RU2649876C1 (ru) 2015-04-14 2015-04-14 Устройство и способ для регулирования двигателя
JP2017512497A JP6521061B2 (ja) 2015-04-14 2015-04-14 エンジン制御装置及びエンジン制御方法
MX2017013008A MX364575B (es) 2015-04-14 2015-04-14 Dispositivo de control de motor y metodo de control de motor.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/061497 WO2016166818A1 (ja) 2015-04-14 2015-04-14 エンジン制御装置及びエンジン制御方法

Publications (1)

Publication Number Publication Date
WO2016166818A1 true WO2016166818A1 (ja) 2016-10-20

Family

ID=57126122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061497 WO2016166818A1 (ja) 2015-04-14 2015-04-14 エンジン制御装置及びエンジン制御方法

Country Status (11)

Country Link
US (1) US10119486B2 (ja)
EP (1) EP3284935B1 (ja)
JP (1) JP6521061B2 (ja)
KR (1) KR101817049B1 (ja)
CN (1) CN107532531B (ja)
BR (1) BR112017022087B1 (ja)
CA (1) CA2982751C (ja)
MX (1) MX364575B (ja)
MY (1) MY165600A (ja)
RU (1) RU2649876C1 (ja)
WO (1) WO2016166818A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10280858B2 (en) * 2015-04-20 2019-05-07 Nissan Motor Co., Ltd. Engine control device and engine control method
CN112211739B (zh) * 2020-09-10 2022-04-26 潍柴动力股份有限公司 提高发动机一致性的控制方法、装置及系统
GB2622780A (en) * 2022-09-27 2024-04-03 Caterpillar Energy Solutions Gmbh Method for controlling operation of an internal combustion engine which runs on a fuel mixture of hydrogen and natural gas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04241753A (ja) * 1991-01-14 1992-08-28 Toyota Motor Corp 筒内噴射式内燃機関
JP2009103014A (ja) * 2007-10-22 2009-05-14 Toyota Motor Corp 内燃機関の制御装置
JP2013217379A (ja) * 2013-06-26 2013-10-24 Hitachi Automotive Systems Ltd 筒内噴射式内燃機関の制御装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0983433B1 (en) * 1998-02-23 2007-05-16 Cummins Inc. Premixed charge compression ignition engine with optimal combustion control
JP4019570B2 (ja) * 1999-09-09 2007-12-12 トヨタ自動車株式会社 筒内噴射式内燃機関の燃料噴射制御装置
WO2002035075A1 (fr) * 2000-10-26 2002-05-02 Hitachi, Ltd. Moteur a combustion interne et a injection dans le cylindre
JP4394318B2 (ja) * 2001-10-12 2010-01-06 株式会社デンソー 内燃機関のバルブタイミング制御装置
JP2003286869A (ja) * 2002-03-27 2003-10-10 Toyota Motor Corp 筒内噴射式火花点火内燃機関
JP3912500B2 (ja) * 2002-03-29 2007-05-09 三菱自動車工業株式会社 内燃機関
JP3797278B2 (ja) * 2002-04-26 2006-07-12 トヨタ自動車株式会社 筒内噴射式内燃機関の燃料噴射制御装置
CN100476180C (zh) * 2003-10-09 2009-04-08 Avl里斯脱有限公司 内燃机的工作方法
JP2007187094A (ja) * 2006-01-13 2007-07-26 Mitsubishi Electric Corp 内燃機関の制御装置
JP2007239583A (ja) 2006-03-08 2007-09-20 Nissan Motor Co Ltd 内燃機関の燃焼制御装置
JP4736930B2 (ja) 2006-04-26 2011-07-27 トヨタ自動車株式会社 内燃機関の触媒制御装置
JP4600361B2 (ja) 2006-07-19 2010-12-15 トヨタ自動車株式会社 筒内噴射式火花点火内燃機関の制御装置
JP4306711B2 (ja) * 2006-09-29 2009-08-05 トヨタ自動車株式会社 筒内噴射式火花点火内燃機関
US8096108B2 (en) * 2007-05-01 2012-01-17 GM Global Technology Operations LLC Engine warm-up of a homogeneous charge compression ignition engine
JP4743183B2 (ja) * 2007-08-01 2011-08-10 トヨタ自動車株式会社 燃料噴射制御装置
JP5029288B2 (ja) * 2007-10-29 2012-09-19 日産自動車株式会社 排気浄化触媒の暖機制御装置及び暖機制御方法
JP5372728B2 (ja) * 2009-12-25 2013-12-18 日立オートモティブシステムズ株式会社 筒内噴射式内燃機関の制御装置
RU2509907C2 (ru) * 2009-12-28 2014-03-20 Тойота Дзидося Кабусики Кайся Двигатель внутреннего сгорания с искровым зажиганием
JP5593797B2 (ja) 2010-04-08 2014-09-24 トヨタ自動車株式会社 燃料噴射装置および燃料噴射ノズル
JP5783701B2 (ja) 2010-10-21 2015-09-24 日立オートモティブシステムズ株式会社 筒内噴射エンジンの制御装置
JP5396430B2 (ja) * 2011-05-23 2014-01-22 日立オートモティブシステムズ株式会社 筒内噴射式内燃機関の制御装置
JP2012255366A (ja) * 2011-06-08 2012-12-27 Denso Corp 内燃機関の制御装置及び制御方法
JP6006146B2 (ja) * 2013-03-07 2016-10-12 日立オートモティブシステムズ株式会社 エンジンの制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04241753A (ja) * 1991-01-14 1992-08-28 Toyota Motor Corp 筒内噴射式内燃機関
JP2009103014A (ja) * 2007-10-22 2009-05-14 Toyota Motor Corp 内燃機関の制御装置
JP2013217379A (ja) * 2013-06-26 2013-10-24 Hitachi Automotive Systems Ltd 筒内噴射式内燃機関の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3284935A4 *

Also Published As

Publication number Publication date
CN107532531A (zh) 2018-01-02
MY165600A (en) 2018-04-16
CA2982751C (en) 2018-03-27
KR20170124609A (ko) 2017-11-10
KR101817049B1 (ko) 2018-02-21
CA2982751A1 (en) 2016-10-20
MX2017013008A (es) 2018-02-01
EP3284935A4 (en) 2018-05-30
MX364575B (es) 2019-05-02
BR112017022087B1 (pt) 2022-09-13
US20180080400A1 (en) 2018-03-22
BR112017022087A2 (ja) 2018-07-03
CN107532531B (zh) 2018-10-02
US10119486B2 (en) 2018-11-06
EP3284935B1 (en) 2020-06-10
EP3284935A1 (en) 2018-02-21
RU2649876C1 (ru) 2018-04-05
JP6521061B2 (ja) 2019-05-29
JPWO2016166818A1 (ja) 2018-02-01

Similar Documents

Publication Publication Date Title
JP6521060B2 (ja) エンジン制御装置及びエンジン制御方法
JP6369630B2 (ja) エンジン制御装置及びエンジン制御方法
JP6521061B2 (ja) エンジン制御装置及びエンジン制御方法
JP6369629B2 (ja) エンジン制御装置及びエンジン制御方法
JP6789007B2 (ja) エンジン制御方法及びエンジン制御装置
JP6384607B2 (ja) 燃料噴射制御装置及び燃料噴射制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889156

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15565211

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017512497

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/013008

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2982751

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017022087

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20177030909

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017136794

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 112017022087

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171013