JP6789007B2 - エンジン制御方法及びエンジン制御装置 - Google Patents

エンジン制御方法及びエンジン制御装置 Download PDF

Info

Publication number
JP6789007B2
JP6789007B2 JP2016116112A JP2016116112A JP6789007B2 JP 6789007 B2 JP6789007 B2 JP 6789007B2 JP 2016116112 A JP2016116112 A JP 2016116112A JP 2016116112 A JP2016116112 A JP 2016116112A JP 6789007 B2 JP6789007 B2 JP 6789007B2
Authority
JP
Japan
Prior art keywords
compression ratio
piston
ignition timing
timing
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016116112A
Other languages
English (en)
Other versions
JP2017219017A (ja
Inventor
知弘 坂田
知弘 坂田
露木 毅
毅 露木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Priority to JP2016116112A priority Critical patent/JP6789007B2/ja
Publication of JP2017219017A publication Critical patent/JP2017219017A/ja
Application granted granted Critical
Publication of JP6789007B2 publication Critical patent/JP6789007B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

本発明は、筒内直接燃料噴射式火花点火エンジンを制御するエンジン制御方法及びエンジン制御装置に関する。
エンジンの排気通路には、一般的に、排気ガスを浄化するための触媒装置が配置されている。触媒装置に担時された触媒は、活性化温度未満では良好な触媒機能を発揮しないので、機関始動時には触媒を早期に活性化温度まで昇温させるための暖機運転が必要となる。暖機運転の手法としては、点火タイミングを遅角させることによって排気ガスの温度を高めて、触媒を昇温させる手法がある。また、このような暖機運転において、点火タイミングを遅角した状態でも良好な着火性を確保するために、点火プラグの近傍に燃料噴霧を集中させた状態で火花点火を行う、いわゆる成層燃焼を実施する場合がある。
このような暖機運転中において、例えば、加速を行うなどして急速に負荷が加わると、上記のような成層燃焼から均質ストイキ燃焼へと切り替わる。特許文献1には、加速時の燃料噴射量に応じて点火タイミングを連続的に遅角させることにより全加速域におけるドライバビリティを向上させることが開示されている。
特許3190130号公報
ところで、ピストン冠面に設けたキャビティを利用して点火プラグの近傍に燃料噴霧を集中させる場合には、暖機運転にピストン冠面に燃料が付着する。そして、成層燃焼から均質ストイキ燃焼へと切り替える際に、ピストン冠面に付着した燃料が燃焼火炎により点火されて燃焼すると、排気微粒子(PM:Particulate Matter)の生成量の増大を招くこととなる。
点火タイミングを遅らせるほど、点火タイミングにおける点火プラグからピストン冠面までの距離は長くなり、燃焼火炎がピストン冠面に到達しにくくなる。しかし、上記文献ではPMの生成量の抑制を全く考慮していない。つまり、上記文献においては、加速時における点火タイミングの遅角量を設定するにあたり、燃焼火炎がピストン冠面に到達するか否かはまったく考慮されていない。このため、上記文献により設定した点火タイミングでは、燃焼火炎がピストン冠面に到達してPMの排出量(以下、PN:Particulate Numberともいう)が増大するおそれがある。
また、エンジンの機械圧縮比を運転状態に応じて変化させる可変圧縮比機構を用いて、暖機運転時には排気ガスの温度を高めるために圧縮比を相対的に低くし、加速時には熱効率を高めるために圧縮比を高める制御が知られている。この制御によれば、同一クランク角度における点火プラグからピストン冠面までの距離は、暖機運転中よりも加速時の方が小さくなる。つまり、燃焼火炎がピストン冠面に到達し易くなる。よって、上記文献の制御では、ピストン冠面の温度が低いときの加速時においてPN増加を抑制することがさらに難しい。
そこで、本発明では、可変圧縮比機構によって圧縮比を変更する場合であっても、燃焼形態の変更に伴うPNの増加を抑制し得るようエンジンを制御することを目的とする。
本発明のある態様によれば、筒内に燃料を直接噴射する燃料噴射弁と、筒内の混合気に火花点火する点火プラグと、圧縮比を変更する可変圧縮比機構と、を備える筒内直接燃料噴射式火花点火エンジンを制御するエンジン制御方法が提供される。エンジン制御方法は、圧縮比毎の、クランクアングルと点火プラグからピストンまでの距離との関係と、圧縮比、エンジン回転速度及び負荷を含む運転状態と火炎がピストン冠面に到達するタイミングとの関係と、を予め取得しておき、圧縮比を筒内直接燃料噴射式火花点火エンジンの負荷に応じて変更し、圧縮比を変更する場合に、圧縮比変更前と圧縮比変更後の、点火プラグからピストンまでの距離が同じになるときのクランクアングルの差に基づいて点火タイミングを制御することで、前記圧縮比を変更する前後における点火タイミングまたはピストン冠面に燃焼火炎が到達するタイミングのいずれかにおける点火プラグからピストンまでの距離を同じにする。
上記態様によれば、可変圧縮比機構によって圧縮比を変更する場合であっても、燃焼形態の変更に伴うPNの増加を抑制することができる。
図1は、本実施形態を適用する筒内直接燃料噴射式火花点火エンジンの燃焼室周辺の概略構成図である。 図2は、PNの増加を抑制するための制御ルーチンを示すフローチャートである。 図3は、シリンダヘッドからピストンまでの距離と圧縮比との関係を示す図である。 図4は、シリンダヘッドからピストンまでの距離が低圧縮比時と同じになる高圧縮比時のクランクアングルを示す図である。 図5は、シリンダヘッドからピストンまでの距離が同じになる低圧縮比時のクランクアングルと高圧縮比時のクランクアングルとの差を示す図である。 図6は、点火タイミングを設定するためのサブルーチンを示すフローチャートである。 図7は、第1実施形態における均質ストイキ燃焼時の点火タイミングを示す図である。 図8は、燃焼火炎がピストンに到達するときの、シリンダヘッドからピストンまでの距離と圧縮比との関係を示す図である。 図9は、シリンダヘッドからピストンまでの距離が同じになる低圧縮比時のクランクアングルと高圧縮比時のクランクアングルとの差を示す図である。 図10は、第1実施形態における均質ストイキ燃焼時の点火タイミングを示す図である。
以下、添付図面を参照しながら本発明の実施形態について説明する。
(第1実施形態)
図1は、本実施形態を適用する筒内直接燃料噴射式火花点火エンジン(以下、「エンジン」ともいう)1の、燃焼室周辺の概略構成図である。なお、図1はひとつの気筒についてのみ示しているが、本実施形態は多気筒エンジンにも適用可能である。
エンジン1のシリンダブロック1Bはシリンダ2を備える。シリンダ2にはピストン3が往復動可能に収められている。ピストン3は可変圧縮比機構VCRにより駆動されてシリンダ2内を往復動する。
可変圧縮比機構VCRは出願人により公知にされた機構である。クランクシャフト14のクランクピン14Aに、ロアリンク13が回転自由に固定されている。ロアリンク13とピストン3とはアッパーリンク12を介して連結されている。また、ロアリンク13とコントロールシャフト16とがコントロールリンク15を介して連結されている。コントロールリンク15は、コントロールシャフト16の回転軸からずれた位置に連結されている。コントロールシャフト16は、例えばラックアンドピニオン機構等を介して電動モータ17により回転駆動される。
上記の構成により、コントロールシャフト16が回転してコントロールリンク15が引き下げられると、ロアリンク13はクランクピン14Aを軸として回転し、アッパーリンク12が押し上げられる。その結果、ピストン3の上死点位置が上昇する。この反対に、コントロールリンク15が押し上げられると、アッパーリンク12は引き下げられ、ピストン3の上死点位置が下降する。このように、可変圧縮比機構VCRは、ピストン3の上死点位置を変更することによって、いわゆる機械圧縮比を変更することが可能である。
また、ピストン3は冠面3A(以下、ピストン冠面3Aともいう)に後述するキャビティ10を備える。
エンジン1のシリンダヘッド1Aは凹状の燃焼室11を備える。燃焼室11は、いわゆるペントルーフ型に構成されており、吸気側の傾斜面には一対の吸気バルブ6が、排気側の傾斜面には一対の排気バルブ7がそれぞれ配置されている。そして、これら一対の吸気バルブ6及び一対の排気バルブ7に囲まれた燃焼室11の略中心位置に、点火プラグ8がシリンダ2の軸線に沿うように配置されている。
また、シリンダヘッド1Aの、一対の吸気バルブ6に挟まれた位置には、燃料噴射弁9が燃焼室11に臨むように配置されている。燃料噴射弁9から噴射される燃料噴霧の指向性については後述する。
吸気バルブ6及び排気バルブ7は、バルブオーバーラップ期間調整機構としての可変動弁機構20により駆動される。可変動弁機構20は、吸気バルブ6及び排気バルブ7がいずれも開弁したバルブオーバーラップ期間が生じるように、吸気バルブ6及び排気バルブ7のバルブタイミング、つまり開弁タイミング及び閉弁タイミング、を変化させ得るものであれば足りる。なお、開弁タイミングとは開弁動作を開始するタイミング、閉弁タイミングとは閉弁動作を終了するタイミングである。本実施形態では、吸気バルブ6を駆動するカムシャフト及び排気バルブ7を駆動するカムシャフトの、クランクシャフトに対する回転位相を変化させる公知の可変動弁機構20を用いる。なお、回転位相だけでなく吸気バルブ6及び排気バルブ7の作動角も変化させ得る公知の可変動弁機構を用いてもよい。また、可変動弁機構20としては、吸気バルブ6と排気バルブ7の開閉タイミングの両方が調整できるものに限らず、いずれか一方のみを調整できるものでもよい。例えば、吸気バルブ6の開閉タイミングのみが調整できるものであっても吸気バルブ6の開期間と排気バルブ7の開期間とのバルブオーバーラップ期間を長くしたり短くしたり調整できれば他の機構を採用してもよい。
排気通路5の排気流れ下流側には、エンジン1の排気ガスを浄化するための排気浄化触媒(図示せず)が介装されている。排気浄化触媒は、例えば三元触媒である。
ピストン3は、上述したようにピストン冠面3Aにキャビティ10を備える。キャビティ10は、ピストン冠面3Aにおいて吸気側に偏った位置に設けられている。そして、燃料噴射弁9は、ピストン3が上死点近傍にあるときに燃料噴射すると、燃料噴霧がこのキャビティ10を指向するように配置されている。キャビティ10に衝突した燃料噴霧が、キャビティ10の壁面に沿って巻き上げられて点火プラグ8の方向へ向かう形状になっている。
エンジン1の燃料噴射量、燃料噴射タイミング、圧縮比及び点火タイミング等は、コントローラ100によりエンジン1の運転状態に応じて制御される。燃料噴射タイミングとは、燃料噴射を開始するタイミングである。また、これらの制御を実行するために、エンジン1はクランクシャフト角度センサ、冷却水温センサ32、吸入空気量を検出するエアフローメータ、アクセルペダルの踏み込み量を検出するアクセル開度センサ31、排気浄化触媒の温度を直接的に又は間接的に検出する触媒温度センサ33等の各種検出装置を備える。アクセル開度センサ31は、エンジン1の負荷を検出する他に、ドライバーの加速要求を検出する加速要求センサとしても機能するが、加速要求センサはこれに限られない。例えば、手でアクセル操作するものも適用でき、加速要求量を検出できれば操作子の形態にはこだわらない。
なお、コントローラ100は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。コントローラ100を複数のマイクロコンピュータで構成することも可能である。
ここで、基本的な圧縮比及び点火タイミングの設定方法について説明する。
コントローラ100は、圧縮比をエンジン1の負荷に応じて次のように設定する。低負荷状態では、燃費性能の向上を図るために、コントローラ100は可変圧縮比機構VCRで取り得る圧縮比のなかで相対的に高い圧縮比(以下、「高圧縮比」ともいう。)に設定する。そして、コントローラ100は、負荷の増大に応じて、ノッキング発生の抑制と燃費性能とを両立するために段階的または連続的に圧縮比を低下させる。
コントローラ100は、従来から知られているのと同様に、エンジン1の負荷及び回転速度、そして冷却水温をパラメータとして基本的な点火タイミングを設定する。そして、コントローラ100は基本的な点火タイミングを、上述した圧縮比をパラメータとして補正する。なお、基本的な点火タイミングを、エンジン1の負荷及び回転速度と、冷却水温と、圧縮比と、をパラメータとして設定するようにしてもよい。点火タイミングの設定に冷却水温を用いるのは、燃焼安定度に影響を及ぼす筒内温度を取得するためである。したがって、筒内温度を取得できるパラメータであれば他のものを用いてもよい。筒内温度を直接的に検出するセンサが有る場合には筒内温度をパラメータとする。
次に、コントローラ100が実行する、エンジン1の始動時における制御について説明する。本実施形態では、1燃焼サイクルあたりに必要な燃料量を2回に分けて噴射する、いわゆる2段噴射を行うこととする。
排気浄化触媒は、活性化温度より低温では十分な浄化性能を発揮しない。このため、排気浄化触媒が活性化温度より低温である冷機始動時には、排気浄化触媒を早期に昇温する必要がある。そこで、コントローラ100は、冷間始動直後のアイドル状態で排気浄化触媒が不活性状態にある場合に、排気浄化触媒を早期に活性化させるために超リタード成層燃焼を実行する。なお、超リタード成層燃焼そのものは公知(特開2008−25535号公報参照)である。
超リタード成層燃焼では、コントローラ100は点火タイミングを上述した設定方法により膨張行程の前半の、例えば圧縮上死点後15−30degに設定する。以下、この点火タイミングを基本点火タイミングという。このような点火タイミングを設定することで、排気浄化触媒に流入する排気の温度が高まる。
また、コントローラ100は1回目の燃料噴射タイミングを吸気行程の前半に設定し、2回目の燃料噴射タイミングを圧縮行程の後半の、燃料噴霧が点火タイミングまでに点火プラグ8の周辺に到達し得るタイミング、例えば圧縮上死点前50−60degに設定する。
また、超リタード成層燃焼では、コントローラ100は可変圧縮比機構VCRを低圧縮比側に設定する。ここでいう低圧縮比とは、可変圧縮比機構VCRで実現可能な圧縮比のうち、相対的に低い圧縮比のことをいう。超リタード成層燃焼のときに低圧縮比にすることで、熱効率が低下して排気温度が上昇する。
ここで、1回目の燃料噴射量と2回目の燃料噴射量とについて説明する。
上述した超リタード成層燃焼で排出される排気ガスの空燃比はストイキ(理論空燃比)である。コントローラ100は一般的な燃料噴射量設定方法と同様に、1燃焼サイクル当たりの吸入空気量で完全燃焼させ得る燃料量(以下、トータル燃料量ともいう)を算出する。このトータル燃料量のうちの一部、例えば50−90重量%を1回目の噴射量とし、残りを2回目の噴射量とする。
上記のように燃料噴射量を設定すると、1回目の燃料噴射で噴射された燃料噴霧は、キャビティ10に衝突することなくシリンダ2内に拡散し、空気と混合して燃焼室11の全域にストイキよりもリーンな均質混合気を形成する。そして、2回目の燃料噴射で噴射された燃料噴霧は、キャビティ10に衝突し、巻き上げられることによって点火プラグ8の近傍に到達し、点火プラグ8の周りにストイキよりもリッチな混合気を集中的に形成する。これにより燃焼室11内の混合気は成層状態となる。この状態で点火プラグ8により火花点火すれば、失火やスモーク発生が抑制された外乱に強い燃焼が行われる。ところで、上述した燃焼は成層燃焼であるが、点火タイミングが圧縮上死前である一般的な成層燃焼と区別するために、超リタード成層燃焼と称する。
上記のような超リタード成層燃焼によれば、従来の均質ストイキ燃焼と比較して排気温度を上昇させることができるだけでなく、燃焼室11から排気通路5へのハイドロカーボン(HC)排出量を低減できる。すなわち、超リタード成層燃焼によれば、従来の均質ストイキ燃焼だけ、成層燃焼だけ、或いは、これらに対し更に追加燃料を燃焼後期以降(膨張行程以降や排気行程中)に噴射する燃焼形態等、で暖機を行なわせる場合に比べて、始動開始から排気浄化触媒が活性化するまでの間における大気中へのHCの排出を抑制しながら、排気浄化触媒の早期活性化を実現することができる。なお、ここでは超リタード成層燃焼を2段燃料噴射によって行うこととしているが燃料噴射の段数はこれに限られない。
ところで、超リタード成層燃焼の実行中にピストン冠面3Aに衝突した燃料の一部は、点火プラグ8の方向に巻き上がらずに、ピストン冠面3Aに付着する。ピストン冠面3Aに燃料が付着した場合でも、付着した燃料が気化して当該燃焼サイクルで燃焼すれば、ピストン冠面3Aに燃料が残留することはない。しかし、超リタード成層燃焼を実行するのは冷機始動時なので、ピストン冠面3Aの温度が上昇するまでは、付着した燃料は気化し難い。また、付着した燃料が当該燃焼サイクルの燃焼火炎が伝播することによって燃焼すれば、ピストン冠面3Aに燃料が残留することはない。しかし、超リタード成層燃焼では膨張行程で燃焼を開始するので、燃焼火炎がピストン冠面3Aに到達しなかったり、または膨張行程後半で温度低下した状態でピストン冠面3Aに到達することとなったりするので、付着した燃料を当該サイクル中に燃やし切ることは難しい。なお、ピストン冠面3Aに残留している液状燃料が燃焼火炎によって点火されて燃焼する現象をプールファイヤと称する。
したがって、冷機始動してからの所定期間は、ピストン冠面3Aに残留する液状燃料は増加し続ける。ここでいう所定期間とは、1燃焼サイクル中にピストン冠面3Aに付着する量よりも、ピストン冠面3Aに残留していた液状燃料が1燃焼サイクル中に気化する量の方が多くなるまでの期間である。
つまり、所定期間を超えて超リタード成層燃焼を継続すれば、ピストン冠面3Aに残留していた液状燃料は徐々に減少する。しかし、所定期間経過前に、ピストン冠面3Aに液状燃料が残留した状態で超リタード成層燃焼から均質ストイキ燃焼に切り替わる場合がある。例えば、アクセルペダルが踏み込まれて加速する場合である。なお、ここでいう均質ストイキ燃焼とは、燃焼室11の全体に理論空燃比の混合気を形成し、火花点火する燃焼形態である。
超リタード成層燃焼が行われているときにアクセルペダルが踏み込まれ加速する場合、通常制御へと制御が切り替わる。本実施形態において通常制御とは、均質ストイキ燃焼において最適点火時期(MBT:minimum advance for best torque、トルク最大点における点火時期)で火花点火する制御である。一般的に均質ストイキ燃焼時におけるMBTは、TDCよりも若干進角した点火タイミングとなっている。なお、このときの燃料噴射は吸気行程噴射である。
ピストン冠面3Aに液状燃料が残留している状態で超リタード成層燃焼から均質ストイキ燃焼をMBTで行わせるように切り替えると、燃焼火炎が高温のままピストン冠面3Aに到達してプールファイヤが生じ、残留している液状燃料が燃焼する。そして、今回の燃焼サイクルまでに蓄積した液状燃料が燃焼すると、PNが増加する傾向がある。
そこで本実施形態では、液状燃料が燃焼することによるPNの増加を抑制するために、コントローラ100が以下に説明する制御を実行する。
図2は、PNの増加を抑制するための制御ルーチンを示すフローチャートである。この制御ルーチンは、コントローラ100によって実行される。なお、本ルーチンは例えば10ミリ秒程度の短い間隔で繰り返し実行される。
本ルーチンでは、ピストン冠面3Aに残留する液状燃料に火炎が接触することによるPM発生を抑制するための点火タイミングを設定する。なお、本ルーチンでは、ピストン冠面3Aに残留する液状燃料量(以下、単に「液状燃料量」ともいう)を低減するために、バルブオーバーラップ期間の拡大も行う。以下、フローチャートのステップにしたがって説明する。
ステップS101で、コントローラ100は、超リタード成層燃焼時から継続してアクセルペダルが閾値Aよりも大きく踏み込まれたか否かを判定する。ここで、閾値Aとは、ドライバーに加速意図有りと認められる程度のアクセルペダルの踏み込み量である。この閾値Aは、予め設定されている。また、このとき、超リタード成層燃焼時であったか否かは、排気浄化触媒の温度に基づいて判定することができる。具体的には、排気浄化触媒が活性温度未満であれば実行中、活性温度以上であれば実行中でない、と判定する。
そして、ステップS101においてアクセルペダルが閾値Aよりも大きく踏み込まれていないときには、コントローラ100は、触媒温度が触媒の活性化温度TCを超えているか否かを判定する(S102)。そして、触媒温度が触媒の活性化温度TCを超えていない場合には、コントローラ100は、前述の超リタード成層燃焼制御を継続して行う(S103)。
一方、ステップS101においてアクセルペダルが閾値Aよりも大きく踏み込まれているとき、または、ステップS102において触媒温度が触媒の活性化温度TCを超えた場合には、コントローラ100は均質ストイキ燃焼制御を行う(S104)。均質ストイキ燃焼とは、前述のように、燃焼室11の全体に理論空燃比の混合気を形成し、火花点火する燃焼形態である。均質ストイキ燃焼を実行するときには、コントローラ100は可変圧縮比機構VCRを超リタード成層燃焼のときよりも高圧縮比側に設定する。
なお、触媒温度が活性化温度TCを超えている場合であってもステップS104に処理を進め、後述するステップS105でピストン冠面3Aの温度に応じた制御を行うこととしているのは、触媒が活性しているからといってピストン冠面3Aの温度が昇温しているとは限らず、ピストン冠面3Aの温度が低い場合にはPNが増加する場合があるからである。
次に、ステップS105で、コントローラ100はピストン冠面3Aの温度(以下、単に「ピストン冠面温度」ともいうことがある)を取得する。本実施形態において、ピストン冠面温度を冷却水温センサ32の検出値から求めることができる。例えば、既存の冷却水温センサ32によって取得される温度とピストン冠面温度との関係を予め求めておくことで、既存の冷却水温センサ32によって取得される温度に基づいて、エンジン1の制御時にピストン温度を取得することができる。
ステップS106で、コントローラ100はステップS105で取得したピストン冠面温度が予め設定してある閾値T1未満であるか否かを判定する。コントローラ100は、ピストン冠面温度が閾値T1未満の場合はステップS107の処理を実行する。
閾値T1以上の場合は、コントローラ100は、ステップS108において通常制御を実行する。通常制御は、点火タイミングをMBTとして均質ストイキ燃焼を行う運転制御である。
本ステップで用いる閾値T1には、超リタード成層燃焼から通常制御に切り替えたとしても、PNの排出規制値を満足できる値が予め設定される。閾値T1は、換言すると、ピストン冠面3Aに付着した液状燃料が1サイクル中で気化や燃焼のできる温度とできない温度との境界の温度とも言える。そして、1サイクル中で気化や燃焼ができない温度とは、ピストン冠面3Aに付着した液状燃料が次のサイクルまで液状で持ち越されてしまい、排気微粒子(PM)の生成の要因となってしまう温度とも言える。なお、閾値T1を、加速時にピストン冠面3Aが液状燃料で濡れていなくとも火炎が発生する場合もあることが解ったため、その温度と火炎が発生しない温度の境界の温度としてもよい。
ステップS107で、コントローラ100は、火花点火タイミング(以下、単に「点火タイミング」ということもある)を後述するサブルーチンを実行することにより算出する。
ここで、ステップS107における点火タイミングの設定についての考え方について説明する。
図3は、クランクアングル[CA°]とヘッド−ピストン間隔との関係を示す図である。ここでいう「ヘッド−ピストン間隔」とは、シリンダヘッド下面からピストン冠面までの距離である。クランクアングル0°のときが圧縮上死点である。図中のεhighは均質ストイキ燃焼時の圧縮比(以下、高圧縮比ともいう)における挙動を示し、εlowは超リタード成層燃焼時の圧縮比(以下、低圧縮比ともいう)における挙動を示す。図中のIT_lowは低圧縮比時の点火タイミング、つまり上述した基本点火タイミングである。
ピストン3はシリンダ2を往復動するので、クランクアングルの変化に応じてヘッド−ピストン間隔も変化する。そして、可変圧縮比機構の特性上、高圧縮比時には低圧縮比時より圧縮上死点が高くなるので、図示するように、εhighの方がεlowよりもヘッド−ピストン間隔が小さくなる。
なお、図3では縦軸をシリンダヘッド下面からピストン冠面までの距離としたが、これを点火プラグ8の先端からピストン冠面3Aまでの距離としてもよい。点火プラグ8の先端からシリンダヘッド下面までの距離は圧縮比の変更によらず一定なので、距離の絶対値は異なるものの、εhighの曲線とεlowの曲線との相対的な関係は図3と同様になるからである。すなわち、以下の説明において、「ヘッド−ピストン間隔」を点火プラグ8の先端からピストン冠面3Aまでの距離に置き換えることができる。
図3に示すように、低圧縮比時の基本点火タイミングIT_lowにおけるヘッド−ピストン間隔をL1とする。高圧縮比時に、低圧縮比時と同じ点火タイミングで点火すると、点火タイミングにおけるヘッド−ピストン間隔L2はL1よりも小さくなる。点火タイミングにおけるヘッド−ピストン間隔が小さいということは、火花点火による燃焼火炎がピストン冠面に到達するタイミングにおけるヘッド−ピストン間隔も小さくなり、プールファイヤが生じ易くなる。つまり、高圧縮比時に低圧縮比時と同じ点火タイミングで点火するとPNが増大し易くなる。
そこで本実施形態では、高圧縮比時の点火タイミングを、ヘッド−ピストン間隔が低圧縮比時と同じになるように設定する。具体的には、以下の通りである。
図4は、低圧縮比時におけるヘッド−ピストン間隔と同じヘッド−ピストン間隔になる、高圧縮比時におけるクランクアングル(以下、「等ヘッド−ピストン間隔クランクアングル」ともいう)を示す図である。図中の横軸は低圧縮比時(ε1)のクランクアングル、縦軸は等ヘッド−ピストン間隔クランクアングルである。クランクアングル0°は圧縮上死点である。図4中の実線Cは、低圧縮比時のクランクアングル毎に等ヘッド−ピストン間隔クランクアングルをプロットし、それらをつなげたものである。図中の破線Dは、ε1=ε2の場合の等ヘッド−ピストン間隔クランクアングルを示している。
図4に示した通り、等ヘッド−ピストン間隔クランクアングルは低圧縮比時におけるクランクアングルよりも大きい。これは、図3に示した通り、高圧縮比時には低圧縮比時よりもシリンダヘッドに近い位置でピストン3が往復動するからである。
図5は、図4の実線Cと破線Dとの縦軸方向の差(以下、ΔCAともいう)と、低圧縮比時のクランクアングルとの関係を示す図である。図5に示す通り、低圧縮比時の点火タイミングIT_lowにおけるデルタCAはΔCA1である。すなわち、高圧縮比時の点火タイミングにおけるヘッド−ピストン間隔を、低圧縮比時の点火タイミングIT_lowにおけるヘッド−ピストン間隔と同じにするには、高圧縮比時の点火タイミングを低圧縮比時の点火タイミングに対してΔCA1だけ遅角側に設定すればよい。
図6は、上述した高圧縮比時における点火タイミングの設定方法を制御ルーチンにまとめたものである。すなわち、図6は図2のステップS107において実行するサブルーチンである。
ステップS200で、コントローラ100は圧縮比及び基本点火タイミングを読み込む。
コントローラ100は、圧縮比としてコントロールシャフト16の回転角やピストンストローク等に基づいて算出した値を読み込む。
ステップS210で、コントローラ100はΔCAを算出する。例えば、図5に示すようなΔCAのテーブルを予め作成しておき、これを低圧縮比時の点火タイミングIT_lowを用いて検索することによって算出する。なお、均質ストイキ時に取り得る圧縮比が複数ある場合には、圧縮比毎のテーブルを作成しておく。
ステップS220で、コントローラ100はΔCAを用いて基本点火タイミングを補正し、補正後の点火タイミングを均質ストイキ燃焼時の点火タイミングとして設定する。具体的には、基本点火タイミングからΔCAだけ遅角したタイミングを補正後の点火タイミングとする。
図7は、図6の制御ルーチンを実行した場合の、均質ストイキ燃焼時の点火タイミングIT_highを示す図である。均質ストイキ燃焼時の点火タイミングIT_highを、超リタード成層燃焼時の点火タイミングTI_lowからΔCA1だけ遅角側に設定する。これにより、均質ストイキ燃焼時の点火タイミングIT_highにおけるヘッド−ピストン間隔は、超リタード成層燃焼時の点火タイミングIT_lowにおけるヘッド−ピストン間隔と同じになる。すなわち、超リタード成層燃焼から均質ストイキ燃焼への切り替えに伴って圧縮比が上昇した場合でも、点火タイミングにおけるヘッド−ピストン間隔が一定に維持される。その結果、燃焼火炎がピストン冠面3Aに到達する際のヘッド−ピストン間隔の、圧縮比の変更に伴う変化が抑制されるので、PNの増大が抑制される。
以上の通り本実施形態では、圧縮比を変更する場合に、点火タイミングにおけるヘッド−ピストン間隔が、圧縮比を変更する前と同じになるように、点火タイミングを制御するので、PNの増大を抑制することができる。
(第2実施形態)
本実施形態は、システムの構成は第1実施形態と同様である。また、本実施形態の制御ルーチンは、基本的には図2と同様であるが、ステップS107における均質ストイキ燃焼時の点火タイミングの設定方法が第1実施形態と異なる。
本実施形態では、点火による燃焼火炎がピストン冠面3Aに到達するタイミング(以下、「火炎到達タイミング」ともいう)が超リタード成層燃焼時(低圧縮比時)と同じになるように、均質ストイキ燃焼時(高圧縮比時)の点火タイミングを設定する。
以下、具体的な設定方法について説明する。
図8は、図3と同様にクランクアングル[CA°]とヘッド−ピストン間隔との関係を示す図である。
低圧縮比時に点火タイミングIT_lowで点火すると、燃焼火炎はクランクアングルがCA2のときにピストン冠面3Aに到達する。このときのヘッド−ピストン間隔をL3とする。高圧縮比時に同じ点火タイミングIT_lowで点火すると、燃焼火炎がピストン冠面3Aに到達するクランクアングルCA2におけるヘッド−ピストン間隔は、L3より短いL4となる。つまり、図3で説明したようにプールファイヤが生じ易くなり、PNの増大を招来し易くなる。
そこで本実施形態では、高圧縮比時にもヘッド−ピストン間隔がL3となるタイミングで燃焼火炎がピストン冠面3Aに到達するように、高圧縮比時の点火タイミングIT_highを設定する。
図9は、図5と同様に、ΔCAと低圧縮比時のクランクアングルとの関係を示す図である。図示する通り、火炎到達タイミングにおけるΔCAはΔCA2である。これは、高圧縮比時のヘッド−ピストン間隔が低圧縮比時の火炎到達タイミングにおけるヘッド−ピストン間隔と同じになるのは、低圧縮比時の火炎到達タイミングCA2よりもΔCA2だけ遅角側のタイミングであることを意味する。そこで本実施形態では、高圧縮比時の火炎到達タイミングがクランクアングルCA2よりもΔCA2だけ遅角側になるように、高圧縮比時の点火タイミングIT_highを設定する。具体的には、高圧縮比時の点火タイミングIT_highを、低圧縮比時の点火タイミングIT_lowよりもΔCA2だけ遅角側に設定する。
具体的には、図6のサブルーチンのステップS210において、コントローラ100は上述したΔCA2を算出する。例えば、図9に示すようなΔCAのテーブルを予め作成しておき、火炎到達タイミングを用いてテーブルを検索することによって算出する。火炎到達タイミングの取得方法は、次の通りである。
まず、圧縮比、エンジン回転速度及び負荷等といった運転状態と火炎到達タイミングとの関係を、予め実験やシミュレーションによって求めておく。そして、ステップS210の処理を実行する際に運転状態を読み込み、予め求めておいた関係と運転状態とを用いて火炎到達タイミングを算出する。
なお、均質ストイキ時に取り得る圧縮比が複数ある場合には、圧縮比毎のテーブルを作成しておく。
図10は、上述した方法で設定した均質ストイキ燃焼の点火タイミングを示す図である。
均質ストイキ燃焼時の点火タイミングIT_highを、超リタード成層燃焼時の点火タイミングTI_lowからΔCA2だけ遅角側に設定する。これにより、均質ストイキ燃焼時の火炎到達タイミングにおけるヘッド−ピストン間隔は、超リタード成層燃焼時の火炎到達タイミングにおけるヘッド−ピストン間隔と同じになる。すなわち、超リタード成層燃焼から均質ストイキ燃焼への切り替えに伴って圧縮比が上昇した場合でも、火炎到達タイミングにおけるヘッド−ピストン間隔が一定に維持される。その結果、圧縮比の変更に伴う火炎到達タイミングの変化が抑制されるので、PNの増大が抑制される。
以上の通り本実施形態では、圧縮比を変更する場合に、ピストン冠面に燃焼火炎が到達するタイミングにおける点火プラグからピストンまでの距離が、圧縮比を変更する前と同じになるように、点火タイミングを制御するので、PNの増大を抑制することができる。
なお、本発明は上記の実施の形態に限定されるわけではなく、特許請求の範囲に記載の技術的思想の範囲内で様々な変更を成し得ることは言うまでもない。
1 筒内直接燃料噴射式火花点火エンジン(エンジン)
2 シリンダ
3 ピストン
8 点火プラグ
9 燃料噴射弁
20 可変動弁機構
100 コントローラ

Claims (2)

  1. 筒内に燃料を直接噴射する燃料噴射弁と、
    筒内の混合気に火花点火する点火プラグと、
    圧縮比を変更する可変圧縮比機構と、
    を備える筒内直接燃料噴射式火花点火エンジンを制御するエンジン制御方法において、
    圧縮比毎の、クランクアングルと前記点火プラグからピストンまでの距離との関係と、
    前記圧縮比、エンジン回転速度及び負荷を含む運転状態と火炎がピストン冠面に到達するタイミングとの関係と、
    を予め取得しておき、
    前記圧縮比を前記筒内直接燃料噴射式火花点火エンジンの負荷に応じて変更し、
    前記圧縮比を変更する場合に、圧縮比変更前と圧縮比変更後の、前記点火プラグからピストンまでの距離が同じになるときのクランクアングルの差に基づいて点火タイミングを制御することで、前記圧縮比を変更する前後における点火タイミングまたはピストン冠面に燃焼火炎が到達するタイミングのいずれかにおける前記点火プラグからピストンまでの距離を同じにすることを特徴とするエンジン制御方法。
  2. 筒内に燃料を直接噴射する燃料噴射弁と、
    筒内の混合気に火花点火する点火プラグと、
    圧縮比を変更する可変圧縮比機構と、
    を備える筒内直接燃料噴射式火花点火エンジンを制御するエンジン制御装置において、
    前記可変圧縮比機構を用いて前記圧縮比を制御する圧縮比制御部と、
    点火タイミングを制御する点火タイミング制御部と、
    を備え、
    前記点火タイミング制御部は、圧縮比毎の、クランクアングルと前記点火プラグからピストンまでの距離との関係と、前記圧縮比、エンジン回転速度及び負荷を含む運転状態と火炎がピストン冠面に到達するタイミングとの関係と、を予め取得しておき、前記圧縮比を変更する場合に、圧縮比変更前と圧縮比変更後の、前記点火プラグからピストンまでの距離が同じになるときのクランクアングルの差に基づいて点火タイミングを制御することで、前記圧縮比を変更する前後における点火タイミングまたはピストン冠面に燃焼火炎が到達するタイミングのいずれかにおける前記点火プラグからピストンまでの距離を同じにすることを特徴とするエンジン制御装置。
JP2016116112A 2016-06-10 2016-06-10 エンジン制御方法及びエンジン制御装置 Active JP6789007B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016116112A JP6789007B2 (ja) 2016-06-10 2016-06-10 エンジン制御方法及びエンジン制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016116112A JP6789007B2 (ja) 2016-06-10 2016-06-10 エンジン制御方法及びエンジン制御装置

Publications (2)

Publication Number Publication Date
JP2017219017A JP2017219017A (ja) 2017-12-14
JP6789007B2 true JP6789007B2 (ja) 2020-11-25

Family

ID=60656032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016116112A Active JP6789007B2 (ja) 2016-06-10 2016-06-10 エンジン制御方法及びエンジン制御装置

Country Status (1)

Country Link
JP (1) JP6789007B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111561401B (zh) * 2019-09-27 2021-06-11 长城汽车股份有限公司 可变压缩比发动机的控制方法及装置

Also Published As

Publication number Publication date
JP2017219017A (ja) 2017-12-14

Similar Documents

Publication Publication Date Title
JP6521060B2 (ja) エンジン制御装置及びエンジン制御方法
JP6369630B2 (ja) エンジン制御装置及びエンジン制御方法
JP6521061B2 (ja) エンジン制御装置及びエンジン制御方法
JP6789007B2 (ja) エンジン制御方法及びエンジン制御装置
JP6744765B2 (ja) 筒内直接噴射式内燃機関の制御方法及び制御装置
WO2017022088A1 (ja) 燃料噴射制御方法及び燃料噴射制御装置
JP6369629B2 (ja) エンジン制御装置及びエンジン制御方法
JP6384607B2 (ja) 燃料噴射制御装置及び燃料噴射制御方法
JP4525509B2 (ja) 筒内直接噴射式火花点火内燃機関の制御装置
JP2007239744A (ja) 直噴式エンジンの燃料噴射制御方法

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200213

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200828

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200828

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200908

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201102

R150 Certificate of patent or registration of utility model

Ref document number: 6789007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150