WO2016163592A1 - 강화 투명복합소재 및 그 제조 방법 - Google Patents

강화 투명복합소재 및 그 제조 방법 Download PDF

Info

Publication number
WO2016163592A1
WO2016163592A1 PCT/KR2015/005729 KR2015005729W WO2016163592A1 WO 2016163592 A1 WO2016163592 A1 WO 2016163592A1 KR 2015005729 W KR2015005729 W KR 2015005729W WO 2016163592 A1 WO2016163592 A1 WO 2016163592A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
hydrophobic
nanofibers
transparent composite
nanofiber
Prior art date
Application number
PCT/KR2015/005729
Other languages
English (en)
French (fr)
Inventor
강은석
박덕해
정경호
이종원
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2016163592A1 publication Critical patent/WO2016163592A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a reinforced transparent composite material including a hydrophobic nanofiber sheet and a manufacturing method thereof.
  • Glass is transparent, strong, and has a low coefficient of thermal expansion, so it is used throughout the real life and industry, but has a fatal disadvantage of being easily broken.
  • Optical materials to replace glass include various optical plastics such as PC (polycarbonate), PMMA (polymethyl methacrylate) and PET (polyethylene terephthalate), but they are not as strong as glass, easily deformed, and have poor thermal stability. There is a limit to replacing glass.
  • glass fiber reinforced transparent composite materials reinforced with transparent glass fiber reinforced materials have been developed. It has been spotlighted as an alternative to glass due to its strength and low thermal expansion rate, but has a disadvantage in that it is difficult to accurately match the refractive index of glass fiber and transparent resin in the visible light range and poor turbidity characteristics due to poor surface flatness. If the turbidity is not good, there is a limit to use as an optical material because the transmitted light is spread.
  • Nanofibers are as strong and transparent as glass, and because the fiber diameter ( ⁇ 100 nm) is much smaller than the wavelength of visible light (400-800 nm), the light is hardly recognized by the fiber. And turbidity).
  • the composite material based thereon can also reduce the coefficient of thermal expansion similar to glass by cellulose, which can be significantly improved compared to plastics in terms of thermal stability.
  • composite materials using nanofibers have been made thinner to 100 ⁇ m or less to produce transparent films, or thicker than several millimeters to produce plates with high strength.
  • the former is too thin in order to secure transparency, the strength is low, and the latter is optically opaque.
  • the first method is to produce nanofibers by dispersing the nanofibers in a transparent resin and then heat or photocuring the second method. .
  • the first method is that the nanofibers have a fiber diameter of 100 nm or less, so that the surface area is large in volume and the nanofibers are irregularly arranged in the transparent resin, so that a large amount of fibers cannot be added. Therefore, it is possible to obtain a transparent composite material, but the strength was not high because the reinforcing effect by the nanofiber is not large.
  • the second method is to form a nanofiber sheet through the process of filtering the nanofiber aqueous dispersion solution, which is likely to occur when the water is removed and dried, the nanofibers are bonded to each other, resulting in a larger fiber size Closed pores can form between the fibers. Therefore, in the impregnation process of infiltrating the transparent resin into the sheet, it becomes difficult to enter the transparent resin and the fiber size becomes 100 nm or more, resulting in a problem of deterioration of optical properties.
  • Still another object of the present invention is to provide a method for producing the reinforced transparent composite material including a hydrophobic nanofiber sheet.
  • the reinforced transparent composite material according to an embodiment of the present invention includes a hydrophobic nanofiber sheet.
  • the hydrophobic nanofibers may have a surface tension of 40 to 70 mN / m based on 1 wt% aqueous solution.
  • the hydrophobic nanofibers can be derived from plants.
  • the plants are lovegrass, bamboo, silver maple tree, tulip tree, trident maple, rice, lotus and pyracantha. It may be one or more selected from the group consisting of.
  • the plant may be bamboo.
  • the hydrophobic nanofibers may have a diameter of 5 to 100 nm.
  • the hydrophobic nanofiber sheet may have a thickness of 20 to 1,000 ⁇ m.
  • the reinforced transparent composite material may include two or more hydrophobic nanofiber sheets.
  • the reinforced transparent composite material may have a thickness of 0.2 to 1.5 mm.
  • Method for producing a reinforced transparent composite material comprises the steps of (i) preparing a hydrophobic nanofiber sheet; (ii) impregnating the hydrophobic nanofiber sheet into the transparent resin; And (iii) molding the impregnated hydrophobic nanofiber sheet.
  • Step (ii) may involve heating.
  • the transparent resin may have a viscosity of 100 to 10,000 cps.
  • Step (iii) may be carried out by thermal curing.
  • Step (iii) may involve pressurization.
  • Step (iii) may further comprise a drying step before molding.
  • Step (ii) may further comprise impregnating and stacking two or more hydrophobic nanofiber sheets.
  • the hydrophobic nanofibers may have a surface tension of 40 to 70 mN / m based on 1 wt% aqueous solution.
  • the hydrophobic nanofiber may be derived from a plant.
  • the plants are lovegrass, bamboo, silver maple tree, tulip tree, trident maple, rice, lotus and blood It may be at least one selected from the group consisting of pyracantha.
  • the plant may be bamboo.
  • the hydrophobic nanofibers may have a diameter of 5 to 100 nm.
  • the hydrophobic nanofiber sheet may have a thickness of 20 to 1,000 ⁇ m.
  • the reinforced transparent composite material of the present invention comprises a hydrophobic nanofiber sheet.
  • the present invention relates to a reinforced transparent composite material, and more particularly to a reinforced transparent composite material produced by impregnating a transparent resin after the sheet is made of nanofibers having a hydrophobicity.
  • the present invention is to obtain a nanofiber for reinforcing the material using a plant-derived fiber raw material, in particular, using plants having hydrophobic properties to reduce the aggregation phenomenon of the nanofiber by hydrogen bonding, which causes closed pores during the nanofiber sheet forming process It was conceived that it is possible to secure pores through which transparent resin can penetrate.
  • Nanofibers are easily deformed because of their small cross-sectional secondary moments and are also very cohesive and generally have poor compatibility with resins. Therefore, the process of suppressing the aggregation of the nanofibers is essential, and there is a need to find a way to sufficiently and uniformly penetrate the transparent resin into the fine pores between the fibers.
  • a larger amount of fiber is added to This method is preferred because the reinforcing effect can be greatly seen.
  • the cellulose aqueous dispersion solution is filtered to form a nanofiber sheet.
  • Hydroxyl groups have strong hydrogen bonds, and the phenomenon of nanofibers is frequently combined. This causes the fibers to increase in size and create closed pores between the fibers.
  • the impregnation process of infiltrating the transparent resin into the sheet it becomes difficult to infiltrate the transparent resin, and when the combined fiber size is 100 nm or more, a problem of deterioration of the optical properties occurs.
  • cellulose has surface anisotropy along the polymer chain with hydroxyl groups on the side and hydrocarbon groups on the upper and lower sides, hydrophilicity on the side, and hydrophobicity on the upper and lower sides (FIG. 1).
  • Plant-derived nanofibers are formed in a crystal structure in which cellulose molecules are arranged, and the size of hydrophobicity or hydrophilicity varies according to the arrangement structure.
  • hydrophobicity and hydrophilicity are relative concepts. As hydrophobicity increases, hydrophilicity decreases.
  • nanofibers in which cellulose molecules are arranged in a rhombus shape relatively hydrophilicity is revealed on the surface, so that the hydrophilicity becomes hydrophilic.
  • the upper and lower hydrophobic surfaces are exposed on the surface of the nanofibers to show hydrophobicity (FIG. 1).
  • These hydrophilic / hydrophobic properties can be compared relatively by measuring the surface tension of the plant-derived nanofiber aqueous solution.
  • bamboo has a hydrophobicity with low affinity with water relative to conifers or hardwoods.
  • the nanofiber sheets produced using bamboo, hardwood and conifer nanofibers were observed through an electron microscope, the surface shape difference could be observed.
  • the hydrophobicity decreased gradually in the order of bamboo, hardwood and softwood nanofibers.
  • the bonds between the fibers are small and the pores between the fibers are maintained (FIG. 2).
  • the nanofiber sheet is manufactured using plant-derived natural cellulose nanofibers showing hydrophobicity as in the present invention, since the cellulose molecules have a relatively high fraction of blocks arranged in a block form, the hydrophilic side that exposes the hydroxyl group is hidden. The highly hydrophobic upper and lower surfaces are exposed on the surface of the nanofibers, thereby preventing hydrogen bonding, preventing aggregation between the nanofibers, and as a result, the nanofiber sheets can maintain open pores (FIG. 2).
  • the reinforced transparent composite material including the hydrophobic nanofiber sheet of the present invention includes nanofibers in the form of a sheet, while securing its strength, and particularly including hydrophobic nanofibers, conventional plant-derived cellulose nanofiber sheets such as conifers and hardwoods. Solving the problem of the closed pores that have had, through the open pores of the sufficiently secured sheet is very easy to penetrate the transparent resin can significantly improve the optical properties of the material.
  • the nanofiber-reinforced transparent composite material including the hydrophobic nanofiber sheet according to the present invention may exhibit a transmittance of 90% or more and a haze of less than 1% even when manufactured to a thickness of 1 mm or more, and has higher impact resistance and tensile strength than glass. The mechanical strength is improved.
  • the reinforced transparent composite material of the present invention may be implemented through a method of forming a nanofiber sheet and impregnating it in a transparent resin.
  • the transparent resin usable in the present invention can be used without limitation as long as it is a resin commonly used in transparent composite materials, such as acrylic resins, methacryl resins, epoxy resins, urethane resins, olefin resins, phenol resins, melamine resins and novolac resins.
  • Urea resin, guanamine resin, alkyd resin, unsaturated polyester resin, vinyl ester resin, diallyl phthalate resin, silicone resin, furan resin, ketone resin, xylene resin, thermosetting polyimide, styrylpyridine resin, tria Tactile resin etc. are mentioned.
  • an epoxy resin, a silicone resin, an acrylic resin, and a methacryl resin with high transparency may be preferable.
  • These transparent resins may be used individually by 1 type, and may mix and use 2 or more types.
  • the transparent resin may be a thermoplastic resin or a thermosetting resin.
  • the content ratio of the reinforcing material in the transparent composite material of the present invention may be 5 to 60% by weight, preferably 10 to 40% by weight, more preferably 10 to 30% by weight.
  • the content ratio of the reinforcing material may be 5 to 60% by weight, preferably 10 to 40% by weight, more preferably 10 to 30% by weight.
  • the transparent composite material of the present invention may contain one or more additives at a level that does not impair the transparency of the material and the effects of the present invention.
  • the additive include compatibilizers such as maleic anhydride and modified polypropylene; Surfactants; Polysaccharides such as starch and alginic acid; Natural proteins such as gelatin glue and casein; Inorganic compounds such as tannins, zeolites, ceramics, and metal powders; coloring agent; Plasticizers; Spices; Pigments; Rheology modifiers; Leveling agents; Conducting agents; Antistatic agents; Ultraviolet absorbers; UV dispersants; Deodorant and the like, but is not limited thereto.
  • compatibilizers such as maleic anhydride and modified polypropylene
  • Surfactants Polysaccharides such as starch and alginic acid
  • Natural proteins such as gelatin glue and casein
  • Inorganic compounds such as tannins, zeolites, ceramics, and metal powders
  • coloring agent such as plasticizers; Spices
  • the refractive index of the transparent resin contained in the transparent composite material of the present invention may be in the range of 1.53 to 1.59, in this range can be obtained a transparent composite material particularly close to the flexural speed of the plant fiber. Since the refractive index of the hydrophobic nanofibers of the present invention may range from 1.54 to 1.58, matching the refractive indexes of the hydrophobic nanofibers and the transparent resin may increase the transmittance and reduce turbidity.
  • the nanofiber sheet included in the reinforced transparent composite material of the present invention may have a surface tension of the hydrophobic nanofibers constituting the sheet 40 to 70 mN / m based on 1% by weight aqueous solution.
  • the surface tension of the hydrophobic nanofibers may be 45 to 65 mN / m, more preferably 50 to 60 mN / m.
  • the effect of the improvement can be obtained, and the permeability of the hydrophobic transparent resin to the nanofiber sheet can be improved by setting it at 70 mN / m or less, so that the transmittance of the transparent composite material can be improved and the turbidity improvement can be obtained.
  • the raw material of the nanofibers used in the reinforced transparent composite material according to the present invention is good bamboo, the surface tension of the bamboo-derived nanofibers based on 1% by weight aqueous solution is 40 to 70 mN / m, Specifically, it may be 45 to 65 mN / m.
  • the hydrophobic nanofibers can be derived from plants.
  • the plants are lovegrass, bamboo, silver maple tree, tulip tree, trident maple, rice, lotus and pyracantha. It may be one or more selected from the group consisting of.
  • the reinforcing transparent composite material of the present invention includes a sheet containing hydrophobic nanofibers, and therefore, any of the leaves of the plant exhibiting the desired hydrophobicity can be used.
  • the desired hydrophobicity in the reinforced transparent composite material of the present invention is that the surface tension of the aqueous solution of nanofibers based on 1% by weight aqueous solution as described above can be measured to 40 to 70 mN / m.
  • the plant may be bamboo.
  • the nanofibers making up the hydrophobic nanofiber sheet may have a diameter of 5 to 100 nm. Specifically the nanofibers may have a diameter of 10 to 60 nm, more preferably 20 to 40 nm. When the diameter of the nanofibers is 5 nm or more, it is possible to increase the nanofiber content when manufacturing the transparent composite material by suppressing the increase of the pores in the nanofiber sheet so that the effect of improving the mechanical strength and the elastic modulus can be obtained. If the wavelength is less than 100 nm, the visible light may not recognize the nanofibers well, thereby obtaining excellent optical properties (transmittance and turbidity) of the transparent composite material.
  • a fiber having a diameter larger than the wavelength of the visible ray is basically combined with a transparent resin as a reinforcing material, visible light scattering occurs, resulting in a problem that the transparency of the resin is impaired. It can be set in the range of 5 to 100 nm so that the nanofibers can usefully function as a material for reinforcing the transparent resin.
  • the hydrophobic nanofiber sheet included in the reinforced transparent composite material of the present invention may have a thickness of 20 to 1,000 ⁇ m.
  • the hydrophobic nanofiber sheet may have a thickness of 30 to 500 ⁇ m, more preferably 50 to 200 ⁇ m.
  • the reinforced transparent composite material of the present invention may comprise two or more hydrophobic nanofiber sheets. By stacking two or more hydrophobic nanofiber sheets to form a reinforced transparent composite material, the thickness and strength can be adjusted to be suitable as target components.
  • the reinforced transparent composite material of the present invention may have a thickness of 0.2 mm to 1.5 mm.
  • the thickness of the reinforced transparent composite material may be 0.4 mm to 1.0 mm, more preferably 0.5 mm to 0.7 mm. This is because by setting the thickness of the reinforced transparent composite material to 0.2 mm or more, it is possible to prevent breakage because the thickness is thin, and to replace the glass used in the thin electronic device by setting it to 1.5 mm or less.
  • Method for producing a reinforced transparent composite material comprises the steps of (i) preparing a hydrophobic nanofiber sheet; (ii) impregnating the hydrophobic nanofiber sheet into the transparent resin; And (iii) molding the impregnated hydrophobic nanofiber sheet.
  • the step (i) preparing the hydrophobic nanofiber sheet begins with the process of unpacking the cellulose fibers in the dry plant fibers and decomposing them to nanofiberize a portion of the plant fibers. At this time, it is preferable that the average fiber diameter is resolved to about 5 to 200 ⁇ m to obtain appropriate freeness.
  • a method for decomposing plant fibers a known method may be employed. For example, a method of decomposing and dissolving a water suspension of a raw material containing the cellulose fibers and a slurry by mechanically grinding a refiner using a refiner high pressure homogenizer, grinder, bead mill, or the like may be employed. Method can be used.
  • raw fiber leaves may be mechanically dehydrated in a dry state to obtain nanofibers.
  • the moisture content of the raw material may be at least 3% by weight, preferably at least 4% by weight, and more preferably at least 5% by weight. If the moisture content of the raw material is too small, the cellulose fibers may be in close proximity to each other and the hydrogen between the cellulose fibers may be reduced. The sea islands become insufficient because the bonding develops and the mechanical sea island effect can be reduced.
  • molding method is not specifically limited in order to form a sheet
  • the method of pressure-reducing filtering or pressure-filtering the nanofiber aqueous solution slurry obtained through the said island fiber process, for example by a suction filtration filter can be used. After filtering, it may be molded into a sheet through additional processes such as drying, heat compression, and the like.
  • the drying process may be performed at 100 to 150 ° C. In order to evaporate water, a temperature of 100 ° C. or higher is required, and nanofibers may be damaged by heat at a temperature of 150 ° C. or higher.
  • the nanofiber sheet is impregnated in the transparent resin (step (ii)), the transparent resin used at this time is as described above for the reinforced transparent composite material of the present invention.
  • Step (ii) may involve heating.
  • the viscosity of the transparent resin may be 100 to 10,000 cps, preferably 200 to 7,000 cps, more preferably 250 to 5,000 cps.
  • the viscosity is preferably 10,000 cps or less, and when heat is applied at 60 to 90 ° C. during impregnation, the viscosity of the transparent resin may be reduced to enhance penetration between pores.
  • the viscosity is 100 cps or less, the transparent resin does not stay in the nanofiber sheet when heated, and easily exits, so that the composite material becomes opaque. Through the impregnation process, the nanofiber sheet becomes transparent. It is important to sufficiently infiltrate the transparent resin between the nanofibers.
  • this impregnation step can be carried out in part or in whole while changing the pressure, and a method of changing the pressure may be reduced pressure or pressure.
  • a method of changing the pressure may be reduced pressure or pressure.
  • step (iii)) is a process of curing the nanofiber sheet impregnated with the transparent resin.
  • This curing process may be performed by a polymerization reaction, a crosslinking reaction, a chain extension reaction, or the like.
  • it may be made of a method of removing the solvent in the transparent resin.
  • the solvent removal may include evaporation removal under reduced pressure as well as evaporation removal under atmospheric pressure.
  • step (iii) may be performed by conventional curing of a transparent composite material such as curing by heating / cooling or photocuring, but is not limited thereto.
  • the forming step may be performed by thermosetting, and may involve pressurization.
  • the sheet may be pressurized thermoformed by hot press.
  • the pressure applied during thermoforming is preferably 100 to 600 MPa, and if the pressure is too low, the gap between the pores in the sheet or the laminated sheets is widened, and thus it is difficult to obtain uniform characteristics.
  • the heat treatment condition is preferably at least 2 hours at 100 to 170 ° C, because when the transparent resin is cured at 100 ° C or more and the heat treatment temperature is too high, damage may occur to the nanofibers and the transparent resin, thereby causing discoloration.
  • the effect of reducing the coefficient of thermal expansion and improving the Young's modulus of the transparent composite material can be expected.
  • step (iii) may further comprise a drying step prior to molding.
  • the hydrophobic nanofibers used in the method may have a surface tension of 40 to 70 mN / m based on 1% by weight aqueous solution.
  • the surface tension of the hydrophobic nanofibers may be 45 to 65 mN / m, more preferably 50 to 60 mN / m.
  • the effect of the improvement can be obtained, and the permeability of the hydrophobic transparent resin to the nanofiber sheet can be improved by setting it at 70 mN / m or less, so that the transmittance of the transparent composite material can be improved and the turbidity improvement can be obtained.
  • the hydrophobic nanofibers used in the method may be derived from plants.
  • the plant used in the method is lovegrass, bamboo, silver maple tree, tulip tree, trident maple, rice, It may be at least one selected from the group consisting of lotus and pyracantha.
  • the reinforced transparent composite material of the present invention includes a sheet containing hydrophobic nanofibers, and accordingly, any of the leaves of the plant showing the desired hydrophobicity can be used in the above method.
  • the desired hydrophobicity in the reinforced transparent composite material of the present invention prepared by the above method is that the surface tension of the aqueous solution of nanofibers can be measured at 40 to 70 mN / m based on 1 wt% aqueous solution as described above.
  • the plant used in the method may be bamboo.
  • the hydrophobic nanofibers used in the method may have a diameter of 5 to 100 nm in diameter.
  • the nanofibers may have a diameter of 10 to 60 nm, more preferably 20 to 40 nm.
  • the diameter of the nanofibers is 5 nm or more, it is possible to increase the amount of nanofibers in the production of the transparent composite material by suppressing the excessive pore in the nanofiber sheet, thereby improving the mechanical strength and elastic modulus of the transparent composite material obtained by the above method. This is because it is possible to obtain an effect of improving the optical properties, and if it is 100 nm or less, visible light does not recognize the nanofibers well so that excellent optical properties (transmittance and haze) of the transparent composite material can be obtained.
  • a fiber having a diameter larger than the wavelength of the visible ray is basically combined with a transparent resin as a reinforcing material, visible light scattering occurs, resulting in a problem that the transparency of the resin is impaired. It can be set in the range of 5 to 100 nm so that the nanofibers can usefully function as a material for reinforcing the transparent resin.
  • the hydrophobic nanofiber sheet used in the method may have a thickness of 20 to 1,000 ⁇ m.
  • the hydrophobic nanofiber sheet may have a thickness of 30 to 500 ⁇ m, more preferably 50 to 200 ⁇ m.
  • the present invention is to provide a reinforced transparent composite material, and more particularly, to a transparent composite material prepared by impregnating and molding a transparent resin after producing a hydrophobic nanofiber sheet and a method for producing the same.
  • the nanofiber composite material is transparent and resistant to breakage compared to glass
  • the front cover of the mobile device display, the front cover of the flexible device, the window glass of a transport device such as a car, a train, a ship, an airplane, a camera, and a camcorder play a video.
  • Internal parts such as lenses such as devices, printing devices, copying devices, building materials, organic EL displays, organic EL displays, and glass substrates, touch panels, transparent parts for headlights, etc. It is possible to use in place of.
  • the reinforced transparent composite material according to the present invention exhibits transmittance and turbidity ⁇ 1% of 90% or more at a thickness of 1 mm.
  • the glass fiber is used as a reinforcing material, and thus, the transparency is maintained and the specific gravity is low according to the temperature change.
  • 1 is a conceptual diagram illustrating the hydrophilic / hydrophobic characteristics of plant leaves according to the molecular structure and cellulose molecular arrangement of the cellulose.
  • Figure 2 is an electron micrograph of the surface shape of the nanofiber sheet according to the plant fiber raw material.
  • FIG. 3 is a manufacturing process chart of the reinforced transparent composite material of the present invention according to one embodiment.
  • bamboo pulp fibers were repeatedly grindized with a grinder (Super Masscolloider, Masuko Sangyo Co., Ltd.) at least 60 times to prepare bamboo nanofibers, and diluted with water to adjust the concentration to 1% by weight.
  • the diluted solution was treated with a homogeneous mixer (T18 basic ULTRA-TURRAX, IKA) for 10,000 rpm for 3 minutes, and then treated with an ultrasonic homogenizer (VC505 Vibra cell, SONICS) at 30% output for 30 minutes to uniformly dispersed aqueous nanofiber solution. Got it.
  • Bisphenol A epoxy (Bisphenol A diglycidyl ether, KDS8128, Kukdo Chemical), anhydrous curing agent (Methylhexahydrophthalicanhydride, KFH271, Kukdo Chemical), low viscosity diluent (3-ethyl-3-hydroxymethyl-oxetane, OXT-101, Toagosei)
  • 2-? Ethyl-? 4-? Methylimidazole (sigma aldrich) was added as an initiator to 0.15 wt% of the weight of the transparent resin to prepare a transparent resin.
  • the transparent resin was cured by maintaining at 90 ° C. for 2 hours and then heating at 150 ° C. for 2 hours. When the cured product was measured with a refractive index meter (AR2008, KRUSS), a refractive index of 1.54 was obtained.
  • the nanofibers were immersed in the transparent resin solution and placed in a vacuum oven (OV11, Zeotech) and then decompressed to 0.1 MPa at 70 ° C. and maintained for 2 hours. Seven sheets of resin-infiltrated nanofiber sheets were laminated, inserted into a mold capable of producing a plate having a thickness of 1 mm, and heated at 150 ° C. for 3 hours with a pressure of 30 MPa using a thermocompressor to prepare a reinforced transparent composite material. . The content of the nanofibers in the prepared composite material was 10.88% by weight.
  • the composite material was prepared by treating the hardwood pulp in the same manner as in Example 1, but seven nanofiber sheets were used in the same manner. There was no.
  • the composite material was prepared by treating the coniferous pulp in the same manner as in Example 1, but seven nanofiber sheets were used in the same manner, but since the permeability of the transparent resin decreased, a large number of pores existed in the composite material to calculate the nanofiber content. There was no.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

본 발명은 소수성 나노섬유 시트를 포함하는 강화 투명복합소재 및 그 제조 방법에 관한 것이다.

Description

강화 투명복합소재 및 그 제조 방법
본 발명은 소수성 나노섬유 시트를 포함하는 강화 투명복합소재 및 그 제조 방법에 관한 것이다.
유리는 투명하고 강하며 열팽창률이 적은 특징이 있어 실생활 및 산업 전반에 걸쳐 사용되고 있으나 쉽게 깨진다는 치명적인 단점이 있다. 유리를 대체하기 위한 광학 소재로는 PC (폴리카보네이트), PMMA (폴리메틸메타아크릴레이트), PET (폴리에틸렌테레프탈레이트)와 같이 다양한 광학 플라스틱이 있으나 유리만큼 강하지 않고 쉽게 변형되며 열안정성이 떨어지는 단점이 있어 유리를 대체하기에는 한계가 있다.
광학 플라스틱의 단점을 보완하기 위해 투명한 유리섬유 강화재로 보강된 유리섬유 강화 투명복합소재가 개발되었다. 이는 유리 이상의 강도와 낮은 열팽창률로 인해 유리 대체 소재로 각광을 받았으나, 가시광선 영역에서 유리섬유와 투명수지의 굴절률을 정확히 맞추기 어렵고 표면 평탄도가 좋지 않아 탁도 특성이 떨어지는 단점이 있다. 탁도가 좋지 않으면 투과되는 빛이 퍼져 보이기 때문에 광학 소재로써 사용하기에는 한계가 있다.
최근 투명복합소재의 강화재로 유리섬유가 아닌 나노 직경의 셀룰로오스 섬유를 사용하는 연구가 진행되고 있다. 나노섬유는 유리만큼 강하고 투명한 특성을 갖고 있으며, 섬유 직경 (<100 nm)이 가시광선의 파장 (400~800 nm)보다 훨씬 작기 때문에 빛이 섬유를 잘 인식하지 못하므로 복합소재의 우수한 광학 특성 (투과율 및 탁도)를 얻는데 장점이 있다. 또한 셀룰로오스는 낮은 열팽창계수를 가지므로, 그에 기반한 복합소재도 셀룰로오스에 의해 열팽창율을 유리와 유사하게 감소시킬 수 있어, 열안정성 측면에서도 플라스틱에 비해 현저히 개선될 수 있다.
현재까지 나노섬유를 이용한 복합소재는 100 μm 이하로 얇게 만들어 투명한 필름을 제작하거나, 수 mm 이상으로 두껍게 제작하여 강도를 높인 판재를 제작하고 있다. 하지만 전자의 경우, 투명성을 확보하기 위하여 지나치게 박막화되어 강도가 낮고, 후자의 경우는 광학적으로는 불투명하다는 한계가 지적되어 왔다.
이와 같은 상기 종래의 나노섬유 강화 복합소재를 제작하는 방법으로는 2 가지가 있다. 첫 번째는 나노섬유를 투명수지에 분산시킨 후 열이나 광경화하여 제작하는 방법이고, 두 번째는 나노섬유를 부직포와 같이 시트 형태로 제작한 후 투명수지를 함침시킨 후 열이나 광경화하는 방법이다.
첫 번째 방법은 나노섬유가 섬유 직경이 100 nm 이하로 매우 작아 부피 대비 표면적이 넓고, 나노섬유가 투명수지 내에 불규칙적으로 배열하기 때문에, 많은 양의 섬유를 투입할 수 없는 단점이 있다. 그러므로 투명한 복합소재를 얻을 수는 있으나 나노섬유에 의한 강화 효과가 크지 않아 강도가 높지 않았다.
두 번째 방법은 나노섬유 수분산 용액을 필터링하는 과정을 거쳐 나노섬유 시트를 형성하게 되는데, 물이 제거되고 건조되는 과정에서 나노섬유끼리 결합하는 현상이 발생할 가능성이 크고, 이로 인해 섬유의 크기가 커지면서 섬유 사이에는 닫힌 기공이 생길 수 있다. 따라서 투명수지를 시트에 침투시키는 함침 공정에서 투명수지가 들어가기 어려워지며 섬유 크기가 100 nm 이상이 되면서 광학 특성이 저하되는 문제점이 발생하였다.
이에, 전자 기기 디스플레이, 자동차유리, 창유리 등 기술 분야에서 유리를 대체할 수 있는 내충격성이 우수한 고강도의, 동시에 고투명성을 갖추어 광특성이 현저히 개선된 투명복합소재에 대한 요구는 계속되고 있다.
본 발명의 목적은 소수성 나노섬유 시트를 포함하는 강화 투명복합소재를 제공하는 것이다.
본 발명의 또 다른 목적은 소수성 나노섬유 시트를 포함하는 상기 강화 투명복합소재의 제조 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명의 일 실시예에 따른 강화 투명복합소재는 소수성 나노섬유 시트를 포함한다.
상기 소수성 나노섬유는 1 중량% 수용액을 기준으로 표면장력이 40 내지 70 mN/m일 수 있다.
상기 소수성 나노섬유는 식물로부터 유래할 수 있다.
상기 식물은 그령 (lovegrass), 대나무 (bamboo), 은단풍 (silver maple tree), 튤립나무 (tulip tree), 중국단풍 (trident maple), 벼 (rice), 연 (lotus) 및 피라칸사스 (pyracantha)로 이루어지는 군으로부터 선택되는 1 이상일 수 있다.
상기 식물은 대나무일 수 있다.
상기 소수성 나노섬유는 그 직경이 5 내지 100 nm일 수 있다
상기 소수성 나노섬유 시트는 그 두께가 20 내지 1,000 μm일 수 있다
상기 강화 투명복합소재는 2 이상의 소수성 나노섬유 시트를 포함할 수 있다.
상기 강화 투명복합소재는 그 두께가 0.2 내지 1.5 mm 일 수 있다.
본 발명의 다른 일 실시예에 따른 강화 투명복합소재의 제조 방법은 (i) 소수성 나노섬유 시트를 준비하는 단계; (ii) 상기 소수성 나노섬유 시트를 투명수지에 함침시키는 단계; 및 (iii) 상기 함침된 소수성 나노섬유 시트를 성형하는 단계를 포함한다.
상기 단계 (ii)는 가열을 수반할 수 있다.
상기 투명수지는 그 점도가 100 내지 10,000 cps일 수 있다.
상기 단계 (iii)은 열경화에 의하여 수행될 수 있다.
상기 단계 (iii)은 가압을 수반할 수 있다.
상기 단계 (iii)은 성형 전에 건조 단계를 더 포함할 수 있다.
상기 단계 (ii)는 2 이상의 소수성 나노섬유 시트를 함침시켜 적층하는 단계를 더 포함할 수 있다.
상기 방법에 있어서, 상기 소수성 나노섬유는 1 중량% 수용액을 기준으로 표면장력이 40 내지 70 mN/m일 수 있다.
상기 방법에 있어서, 상기 소수성 나노섬유는 식물로부터 유래할 수 있다
상기 방법에 있어서, 상기 식물은 그령 (lovegrass), 대나무 (bamboo), 은단풍 (silver maple tree), 튤립나무 (tulip tree), 중국단풍 (trident maple), 벼 (rice), 연 (lotus) 및 피라칸사스 (pyracantha)로 이루어지는 군으로부터 선택되는 1 이상일 수 있다.
상기 방법에 있어서, 상기 식물은 대나무일 수 있다.
상기 방법에 있어서, 상기 소수성 나노섬유는 그 직경이 5 내지 100 nm일 수 있다.
상기 방법에 있어서, 상기 소수성 나노섬유 시트는 그 두께가 20 내지 1,000 μm일 수 있다.
이하, 본 발명을 보다 상세하게 설명한다.
일 구현예에 있어서, 본 발명의 강화 투명복합소재는 소수성 나노섬유 시트를 포함한다. 본 발명은 강화 투명복합소재에 관한 것으로, 보다 상세하게는 소수성을 갖는 나노섬유로 시트를 제작한 후 투명수지에 함침하여 제조되는 강화 투명 복합소재에 관한 것이다.
본 발명은 식물 유래 섬유 원료를 사용하여 소재 강화용 나노섬유를 얻되, 특히 소수성 특성을 지닌 식물들을 사용하면 나노섬유 시트 형성 과정 중 닫힌 기공을 유발하는, 수소결합에 의한 나노섬유의 응집 현상을 줄이고 투명수지가 침투할 수 있는 기공을 확보하는 것이 가능하다는 점에 착안한 것이다.
나노섬유는 단면 2차 모멘트가 작기 때문에 변형되기가 쉽고, 또한 매우 응집력이 강하기 때문에 일반적으로 수지와의 상용성이 좋지 않다. 이에 나노섬유의 응집을 억제하는 공정은 필수적이고, 투명 수지를 섬유 사이의 미세한 공극에 충분하고 균일하게 침투시킬 수 있는 방안을 모색할 필요가 있다. 또한, 투명복합소재를 제조하는 방법에 있어서, 나노섬유 자체를 투명수지에 분산시키지 않고, 나노섬유 시트를 형성하여 이를 투명수지에 함침시키는 방법을 이용하면 보다 많은 양의 섬유를 투입하여 섬유에 의한 강화 효과를 크게 볼 수 있으므로 이 방법을 선호하게 되는데, 그러나, 식물 유래 나노섬유를 재료로 이용하는 경우 셀룰로오스 수분산 용액을 여과하여 나노섬유 시트 형성시, 물이 제거되고 건조되는 과정에서 셀룰로오스 분자에 존재하는 수산화기 (-OH)들이 강한 수소 결합을 하게 되면서 나노섬유끼리 결합하는 현상이 빈발한다. 이로 인해 섬유는 그 크기가 증가하고 섬유 사이에는 닫힌 기공이 생기게 된다. 그 결과 투명수지를 시트에 침투시키는 함침 공정에서 투명수지가 침투하는 것이 어려워지며 결합된 섬유 크기가 100 nm 이상이 되면 광학 특성이 저하되는 문제점이 발생한다.
셀룰로오스는 분자 구조에 있어서 고분자 사슬을 따라 측면에는 수산화기가, 상하면에는 탄화수소기가 존재하여, 측면은 친수성, 상하면은 소수성을 갖는 표면 이방성을 나타낸다 (도 1). 식물 유래 나노섬유는 셀룰로오스 분자가 배열된 결정 구조로 형성되어 있으며, 배열 구조에 따라 소수성이나 친수성의 크기가 달라진다. 여기서 소수성, 친수성은 상대적인 개념으로서 소수성이 증가하면 친수성은 감소하게 되는데, 셀룰로오스 분자가 마름모 형태로 배열을 한 나노섬유의 경우는 상대적으로 친수성 측면이 표면에 많이 드러나게 되어 친수성을 갖게 되며, 블록형태로 배열한 경우에는 소수성 상하면이 나노섬유의 표면에 많이 드러나게 되어 소수성을 나타낸다 (도 1). 이러한 친수성/소수성 특성은 식물 유래 나노섬유 수용액의 표면장력을 측정함으로써 상대적으로 비교할 수 있다.
일반적으로 식물 유래 셀룰로오스 섬유는 제지 분야에서 많이 활용되어 왔으므로 제조 비용이 저렴한 활엽수나 침엽수가 사용되어 왔으며, 나노섬유도 주로 활엽수나 침엽수를 원료로 하여 제작되어 왔다. 그러나 하기 표 1에서 볼 수 있는 바와 같이 1 중량% 나노섬유 수용액의 표면장력의 측정 결과에 따르면, 침엽수, 활엽수에 비해 대나무 나노섬유의 경우가 표면장력이 낮게 평가되었다.
대나무 나노섬유수용액 활엽수 나노섬유수용액 침엽수 나노섬유 수용액
표면장력*(mN/m) 59.11 72.33 81.08
상기 표면장력 측정 결과로부터 대나무가 침엽수나 활엽수에 비해 상대적으로 물과의 친화도가 낮은 소수성을 가진다는 것을 알 수 있다. 각각 대나무, 활엽수 및 침엽수 나노섬유를 이용하여 제작한 나노섬유 시트를 전자 현미경을 통하여 관찰하면 이들의 표면 형상 차이를 볼 수 있는데, 대나무, 활엽수, 침엽수 나노섬유 순으로 점차 소수성이 감소하면서 친수성을 나타내며, 특히 대나무 나노섬유의 경우 섬유 간 결합이 적고 섬유 사이의 기공이 유지되는 것을 알 수 있다 (도 2).
따라서, 본 발명에서와 같이 소수성을 나타내는 식물 유래 천연 셀룰로오스 나노섬유를 이용하여 나노섬유 시트를 제조하게 되면, 상대적으로 그 셀룰로오스 분자는 블록형태로 배열된 분율이 높으므로 수산화기를 노출시키는 친수성 측면은 가리워지고 소수성 상하면이 나노섬유의 표면에 많이 드러나게 되므로 수소 결합을 방지, 나노섬유간 응집을 막고 그 결과 나노섬유 시트가 열린 기공을 유지할 수 있게 된다 (도 2). 즉, 본 발명의 소수성 나노섬유 시트를 포함하는 강화 투명복합소재는 시트 형태로 나노섬유를 포함하여 그 강도를 확보하면서, 특히 소수성 나노섬유를 포함하여 종래 침엽수나 활엽수 등 일반적인 식물 유래 셀룰로오스 나노섬유 시트가 가지고 있던 닫힌 기공이라는 문제점을 해결, 충분히 확보된 시트의 열린 기공을 통하여 투명수지의 침투가 매우 용이하므로 소재의 광특성을 현저히 개선할 수 있다. 본 발명에 의한 소수성 나노섬유 시트를 포함하는 나노섬유강화 투명복합소재는 1 mm 이상의 두께로 제작되는 경우에도 90% 이상의 투과율과 1% 미만의 탁도를 나타낼 수 있고, 유리보다 강한 내충격성 및 인장 강도를 갖는 등 기계적 강도가 향상된 것이다.
상술한 바와 같이, 본 발명의 강화 투명복합소재는 나노섬유 시트를 형성하여 이를 투명수지에 함침시키는 방법을 통하여 구현될 수 있다. 본 발명에서 이용 가능한 투명수지는 통상적으로 투명복합소재에 사용되는 수지라면 제한없이 사용될 수 있으며, 예컨대 아크릴 수지, 메타크릴 수지, 에폭시 수지, 우레탄 수지, 올레핀 수지, 페놀 수지, 멜라민 수지, 노볼락 수지, 우레아 수지, 구아나민 수지, 알키드 수지, 불포화 폴리에스테르 수지, 비닐에스테르 수지, 디알릴프탈레이트 수지, 실리콘 수지, 푸란 수지, 케톤 수지, 자일렌 수지, 열경화형 폴리이미드, 스티릴피리딘계 수지, 트리아진계 수지 등을 들 수 있다. 이들 중에서도 특히 투명성이 높은 에폭시 수지, 실리콘 수지, 아크릴 수지, 메타크릴 수지가 바람직할 수 있다. 이들 투명수지는 1 종 단독으로 사용해도 되고, 2 종 이상을 혼합하여 사용할 수도 있다.
특정 구현예에 있어서, 상기 투명수지는 열가소성 수지 또는 열경화성 수지일 수 있다.
본 발명의 투명복합소재 중의 강화 재료의 함유 비율, 즉 소수성 나노섬유 시트의 함유 비율은 5 내지 60 중량%, 좋기로는 10 내지 40 중량%, 더욱 좋기로는 10 내지 30 중량%일 수 있다. 강화 재료의 함유 비율을 5 중량% 이상으로 설정함으로써 기계적 강도의 향상, 열팽창 계수의 저감, 고온화에서의 탄성률의 향상 등의 효과를 얻을 수 있고, 60 중량% 정도 이하로 설정함으로써 투명복합소재의 투과율 감소 억제, 탁도 상승 억제, 흡습율의 저하 등의 효과를 얻을 수 있다.
특정 구현예에 있어서, 본 발명의 투명복합소재는 소재의 투명성 및 본 발명의 효과를 해치지 않는 수준에서 1종 이상의 첨가제를 함유할 수 있다. 첨가제의 구체적인 예로는, 무수 말레산, 변성 폴리프로필렌 등의 상용화제; 계면 활성제; 전분류, 알긴산 등의 다당류; 젤라틴 아교, 카세인 등의 천연 단백질; 탄닌, 제올라이트, 세라믹, 금속 분말 등의 무기 화합물; 착색제; 가소제; 향료; 안료; 유동성 조정제; 레벨링제; 도전제; 대전 방지제; 자외선 흡수제; UV 분산제; 탈취제 등을 들 수 있으나 이에 한정되는 것은 아니다. 이러한 첨가제를 사용하는 경우, 1 종 단독으로 사용해도 되고, 2 종 이상을 혼합하여 사용할 수도 있다.
상기 본 발명의 투명복합소재에 함유되는 투명수지의 굴절률은 그 범위가 1.53 내지 1.59일 수 있으며, 이 범위에서 특히 식물 섬유의 굴성 속도에 가까운 투명한 복합소재를 얻을 수 있다. 본 발명의 소수성 나노섬유의 굴절률은 1.54 내지 1.58 범위일 수 있으므로 상기 소수성 나노섬유와 투명수지의 굴절률을 매칭시키면 투과율 상승시키고 탁도를 감소시키는 개선 효과를 얻을 수 있다.
특정 구현예에 있어서, 본 발명의 강화 투명복합소재에 포함되는 나노섬유 시트는 그 시트를 이루는 소수성 나노섬유의 표면장력이 1 중량% 수용액을 기준으로 40 내지 70 mN/m일 수 있다. 좋기로는 상기 소수성 나노섬유의 표면장력은 45 내지 65 mN/m, 더욱 좋기로는 50 내지 60 mN/m일 수 있다. 상기 소수성 나노섬유의 표면장력을 40 mN/m 이상으로 설정함으로써 나노섬유 시트에 열린 기공을 유지하면서도 나노섬유들이 만나 겹쳐지는 부분에는 수소결합을 형성하여 그물과 같은 구조를 만들어 기계적 강도의 향상, 탄성률의 향상 등의 효과를 얻을 수 있고, 70 mN/m 이하로 설정함으로써 소수성인 투명수지의 나노섬유 시트에의 침투성이 좋아져 투명복합소재의 투과율 향상, 탁도 개선 효과를 얻을 수 있기 때문이다.
특정 구현예에 있어서, 상기 본 발명에 따른 강화 투명복합소재에 사용되는 나노섬유의 원료로는 대나무가 양호하고, 1 중량% 수용액 기준으로 대나무 유래 나노섬유의 표면장력은 40 내지 70 mN/m, 좋기로는 45 내지 65 mN/m 일 수 있다.
특정 구현예에 있어서, 상기 소수성 나노섬유는 식물로부터 유래할 수 있다. 상기 식물은 그령 (lovegrass), 대나무 (bamboo), 은단풍 (silver maple tree), 튤립나무 (tulip tree), 중국단풍 (trident maple), 벼 (rice), 연 (lotus) 및 피라칸사스 (pyracantha)로 이루어지는 군으로부터 선택되는 1 이상일 수 있다. 상술한 바와 같이 본 발명의 강화 투명복합소재는 소수성 나노섬유를 함유하는 시트를 포함하고, 따라서 목적하는 소수성을 나타내는 식물의 잎이라면 어떠한 것도 사용할 수 있다. 본 발명의 강화 투명복합소재에서 목적하는 소수성은 상술한 바와 같이 1 중량% 수용액 기준으로 그 나노섬유 수용액의 표면장력이 40 내지 70 mN/m로 측정될 수 있는 것이다. 특히 좋기로는, 상기 식물은 대나무일 수 있다.
특정 구현예에 있어서, 소수성 나노섬유 시트를 구성하는 나노섬유는 그 직경이 5 내지 100 nm일 수 있다. 좋기로는 상기 나노섬유는 그 직경이 10 내지 60 nm, 더욱 좋기로는 20 내지 40 nm일 수 있다. 상기 나노섬유의 직경이 5 nm 이상이면 나노섬유 시트 내에 기공이 너무 많아지는 것을 억제하여 투명복합소재 제조시 나노섬유 함량을 증가시킬 수 있으므로 기계적 강도의 향상, 탄성률의 향상 등의 효과를 얻을 수 있고, 100 nm 이하이면 가시광선이 나노섬유를 잘 인식하지 못하여 투명복합소재의 우수한 광학 특성 (투과율 및 탁도)를 얻을 수 있기 때문이다. 즉, 기본적으로 가시광선 영역의 파장보다 직경이 큰 섬유가 강화 재료로서 투명수지와 결합하게 되면 가시광선 빛 산란이 생겨 그 결과 수지의 투명성이 손상되어 버리는 문제가 발생하므로 따라서, 나노섬유의 직경을 상기 5 내지 100 nm 범위로 설정하여 나노섬유가 투명수지를 보강하는 재료로서 유용히 기능할 수 있도록 할 수 있다.
특정 구현예에 있어서, 본 발명의 강화 투명복합소재에 포함되는 소수성 나노섬유 시트는 그 두께가 20 내지 1,000 μm일 수 있다. 좋기로는 상기 소수성 나노섬유 시트는 그 두께가 30 내지 500 μm, 더욱 좋기로는 50 내지 200 μm일 수 있다. 상기 나노섬유 시트의 두께를 20 μm 이상으로 설정함으로써 시트 두께가 얇아 파손되거나 복합소재 제조 시 열공정으로 변형되는 것을 방지하며, 1,000 μm 이하로 설정함으로써 시트가 두께 방향으로 균일한 밀도를 갖고 투명수지가 시트 내부까지 침투하는 것이 용이하게 되어 복합소재의 투과율 향상 및 탁도 개선에 효과를 얻을 수 있기 때문이다.
특정 구현예에 있어서, 본 발명의 강화 투명복합소재는 2 이상의 소수성 나노섬유 시트를 포함할 수 있다. 2 이상의 소수성 나노섬유 시트를 적층하여 강화 투명복합소재를 형성, 목표로 하는 부품으로서 적합하도록 그 두께 및 강도를 조절할 수 있다.
특정 구현예에 있어서, 본 발명의 강화 투명복합소재는 그 두께가 0.2 mm 내지 1.5 mm 일 수 있다. 좋기로는 상기 강화 투명복합소재의 두께는 0.4 mm 내지 1.0 mm, 더욱 좋기로는 0.5 mm 내지 0.7 mm 일 수 있다. 상기 강화 투명복합소재의 두께를 0.2 mm 이상으로 설정함으로써 두께가 얇기 때문에 파손되는 것을 방지하고, 1.5 mm 이하로 설정함으로써 박형 전자 기기에 사용되는 유리를 대체하는 것이 가능하기 때문이다.
본 발명의 다른 일 실시예에 따른 강화 투명복합소재의 제조 방법은 (i) 소수성 나노섬유 시트를 준비하는 단계; (ii) 상기 소수성 나노섬유 시트를 투명수지에 함침시키는 단계; 및 (iii) 상기 함침된 소수성 나노섬유 시트를 성형하는 단계를 포함한다.
상기 (i) 소수성 나노섬유 시트를 준비하는 단계는 건조한 식물 섬유에서 셀룰로오스 섬유의 응집을 풀고 이를 해섬하여 식물 섬유의 일부를 나노섬유화하는 공정으로 시작된다. 이때 적절한 여수성을 얻기 평균 섬유 직경이 5 내지 200 μm 정도로 해섬하는 것이 양호하다. 식물 섬유를 해섬하는 방법은 공지의 방법을 채용 할 수 있고, 예를 들면, 상기 셀룰로오스 섬유를 함유하는 원재의 물 현탁액, 슬러리를 리파이너 고압 균질기, 그라인더, 비즈밀 등에 의해 기계적으로 분쇄하여 해섬하는 방법을 사용할 수 있다. 또는 원재 엽분을 건조 상태에서 기계적으로 해섬하여 나노섬유를 얻을 수 있다. 해섬시 원재의 수분 함유량은 3 중량% 이상, 좋기로는 4 중량% 이상, 더욱 좋기로는 5 중량% 이상일 수 있는데, 원재료의 수분 함유량이 너무 적은 경우 셀룰로오스 섬유끼리 근접하여, 셀룰로오스 섬유 사이의 수소결합이 발달되고, 기계적 해섬 효과를 저감시킬 수 있기 때문에 해섬이 불충분해진다.
나노섬유 수용액으로부터 시트를 형성하기 위해서 그 성형 방법은 특별히 한정되지는 않지만, 상기 해섬 공정을 통하여 얻어진 나노섬유 수용액 슬러리를, 예컨대 흡입 여과 필터에 감압필터링 혹은 가압필터링하는 방법이 사용 가능하다. 필터링 후 이를 건조, 가열 압축 등 추가 공정을 거쳐 시트 형태로 성형할 수 있는데, 건조 과정은 100 내지 150℃에서 이루어질 수 있다. 물의 증발을 위해서는 100℃ 이상의 온도가 필요하며, 150℃ 이상의 온도에서는 나노섬유가 열에 의한 손상을 받을 수 있기 때문이다.
그 후, 상기 나노섬유 시트는 투명수지에 함침되는데 (단계 (ii)), 이때 사용되는 투명수지는 본 발명의 강화 투명복합소재에 대하여 전술한 바와 같다. 상기 단계 (ii)는 가열을 수반할 수 있다.
투명수지의 점도는 100 내지 10,000 cps, 좋기로는 200 내지 7,000 cps, 더욱 좋기로는 250 내지 5,000 cps일 수 있다. 특히 나노섬유 간의 기공 사이로 잘 침투하기 위해 점도가 10,000 cps 이하인 것이 바람직하며, 함침시 60 내지 90℃로 열을 가하면 투명수지의 점도가 감소하여 기공 사이로 침투를 증진시킬 수 있다. 점도가 100 cps 이하인 경우 가열 시 투명수지가 나노섬유 시트 내에 머무르지 못하고 쉽게 빠져 나오게 되어 복합소재가 불투명해지므로 100 cps 이상인 것이 바람직하다. 함침 과정을 통하여 나노섬유 시트는 투명해진다. 나노섬유 사이에 투명수지를 충분히 침투시키는 것이 중요한데, 따라서 이 함침 단계는 그 일부 또는 전부를 압력을 변화시키면서 실시할 수 있고, 압력을 변화시키는 방법으로서는, 감압 또는 가압을 들 수 있다. 감압 또는 가압으로 한 경우, 나노섬유 사이에 존재하는 공기를 상기 투명수지로 치환하는 것이 용이해져, 기포의 잔존을 방지할 수 있다.
그 후, 함침된 나노섬유 시트는 성형 단계를 거치고 (단계 (iii)), 이는 투명수지에 함침된 나노섬유 시트는 경화시키는 과정이다. 이 경화 과정은 중합 반응, 가교 반응, 사슬 연장 반응 등에 의하여 이루어지는 것일 수 있다. 또한, 투명수지 중 용매를 제거하는 방식으로 이루어지는 것일 수도 있다. 상기 용매 제거는, 상압 하 증발 제거뿐만 아니라, 감압 하 증발 제거를 포함할 수도 있다.
이때, 단계 (iii)은 예컨대, 가열/냉각에 의한 경화, 광경화 등 투명복합소재를 성형하는 통상적인 경화에 의하여 수행되는 것일 수 있으나, 이에 한정되는 것은 아니다. 특히, 상기 성형 단계는 열경화에 의하여 수행될 수 있고, 가압을 수반할 수 있다. 예컨대, 시트는 열압기 (hot press)로 가압 열성형될 수 있다. 이때, 상기 단계 (ii)에서 2 이상의 소수성 나노섬유 시트를 함침시켜 적층하게 되면, 이 단계 (iii)에서 목표로 하는 부품으로서 적합하도록 그 두께가 조절 가능한 투명복합소재를 얻을 수 있게 된다. 열성형시 가해주는 압력은 100 내지 600 MPa이 바람직하며, 압력이 너무 낮으면 시트 내 공극 또는 적층된 시트 사이의 간격이 넓어져 균일한 특성을 얻기 어렵기 때문이다. 열처리 조건은 100 내지 170℃에서 2 시간 이상이 바람직한데, 이는 투명수지가 100℃ 이상에서 경화되고 열처리 온도가 너무 높아질 경우 나노섬유 및 투명수지에 손상이 생겨 변색이 일어날 수 있기 때문이다. 또한, 열압 처리에 의하여는 나노섬유 엉킴을 고정화시킴으로써, 투명복합소재의 열팽창 계수 저감이나 영률 향상 효과를 기대할 수 있다.
특정 구현예에 있어서, 상기 단계 (iii)은 성형 전에 건조 단계를 더 포함할 수 있다.
특정 구현예에 있어서, 상기 방법에 이용되는 소수성 나노섬유는 1 중량% 수용액을 기준으로 표면장력이 40 내지 70 mN/m일 수 있다. 좋기로는 상기 소수성 나노섬유의 표면장력은 45 내지 65 mN/m, 더욱 좋기로는 50 내지 60 mN/m일 수 있다. 상기 소수성 나노섬유의 표면장력을 40 mN/m 이상으로 설정함으로써 나노섬유 시트에 열린 기공을 유지하면서도 나노섬유들이 만나 겹쳐지는 부분에는 수소결합을 형성하여 그물과 같은 구조를 만들어 기계적 강도의 향상, 탄성률의 향상 등의 효과를 얻을 수 있고, 70 mN/m 이하로 설정함으로써 소수성인 투명수지의 나노섬유 시트에의 침투성이 좋아져 투명복합소재의 투과율 향상, 탁도 개선 효과를 얻을 수 있기 때문이다.
특정 구현예에 있어서, 상기 방법에 이용되는 소수성 나노섬유는 식물로부터 유래할 수 있다.
특정 구현예에 있어서, 상기 방법에 이용되는 상기 식물은 그령 (lovegrass), 대나무 (bamboo), 은단풍 (silver maple tree), 튤립나무 (tulip tree), 중국단풍 (trident maple), 벼 (rice), 연 (lotus) 및 피라칸사스 (pyracantha)로 이루어지는 군으로부터 선택되는 1 이상일 수 있다. 상술한 바와 같이 본 발명의 강화 투명복합소재는 소수성 나노섬유를 함유하는 시트를 포함하고, 따라서 상기 방법에 있어서, 목적하는 소수성을 나타내는 식물의 잎이라면 어떠한 것도 사용할 수 있다. 상기 방법에 의하여 제조되는 본 발명의 강화 투명복합소재에서 목적하는 소수성은 상술한 바와 같이 1 중량% 수용액 기준으로 그 나노섬유 수용액의 표면장력이 40 내지 70 mN/m로 측정될 수 있는 것이다.
특정 구현예에 있어서, 상기 방법에 이용되는 상기 식물은 대나무일 수 있다.
특정 구현예에 있어서, 상기 방법에 이용되는 상기 소수성 나노섬유는 그 직경이 그 직경이 5 내지 100 nm일 수 있다. 좋기로는 상기 나노섬유는 그 직경이 10 내지 60 nm, 더욱 좋기로는 20 내지 40 nm일 수 있다. 상기 나노섬유의 직경이 5 nm 이상이면 나노섬유 시트 내에 기공이 너무 많아지는 것을 억제하여 투명복합소재 제조시 나노섬유 함량을 증가시킬 수 있으므로 상기 방법에 의하여 얻어지는 투명복합소재의 기계적 강도의 향상, 탄성률의 향상 등의 효과를 얻을 수 있고, 100 nm 이하이면 가시광선이 나노섬유를 잘 인식하지 못하여 투명복합소재의 우수한 광학 특성 (투과율 및 탁도)를 얻을 수 있도록 하기 때문이다. 즉, 기본적으로 가시광선 영역의 파장보다 직경이 큰 섬유가 강화 재료로서 투명수지와 결합하게 되면 가시광선 빛 산란이 생겨 그 결과 수지의 투명성이 손상되어 버리는 문제가 발생하므로 따라서, 나노섬유의 직경을 상기 5 내지 100 nm 범위로 설정하여 나노섬유가 투명수지를 보강하는 재료로서 유용히 기능할 수 있도록 할 수 있다.
특정 구현예에 있어서, 상기 방법에 이용되는 상기 소수성 나노섬유 시트는 그 두께가 20 내지 1,000 μm일 수 있다. 좋기로는 상기 소수성 나노섬유 시트는 그 두께가 30 내지 500 μm, 더욱 좋기로는 50 내지 200 μm일 수 있다. 상기 나노섬유 시트의 두께를 20 μm 이상으로 설정함으로써 상기 본 발명의 투명복합소재 제조 방법의 시행시 시트 두께가 얇아 파손되거나 열공정으로 변형되는 것을 방지하며, 1,000 μm 이하로 설정함으로써 시트가 두께 방향으로 균일한 밀도를 갖고 투명수지가 시트 내부까지 침투하는 것이 용이하게 되어 상기 방법에 의하여 얻어지는 투명복합소재의 투과율 향상 및 탁도 개선에 효과를 얻을 수 있기 때문이다.
본 발명은 강화 투명복합소재를 제공하기 위한 것으로, 보다 상세하게는 소수성 나노섬유 시트를 제작한 후 투명수지에 함침, 성형하여 제조한 투명한 복합소재 및 그 제조하는 방법에 관한 것이다. 본 발명에 의하면 나노섬유 복합소재는 투명하면서 유리에 비해 깨짐에 강하므로, 모바일 기기 디스플레이의 전면 커버, 플렉서블 기기의 전면 커버, 자동차, 기차, 선박, 비행기 등 수송 기기의 창유리, 카메라, 캠코더 영상 재생 기기 등의 렌즈, 인쇄 기기, 복사 기기 등의 내부 부품, 건축 재료, 유기 EL 디스플레이 유기 EL 조명과 태양 전지의 투명 기판, 터치 패널, 헤드 라이트용 투명 부품 등 내충격성과 투명성을 동시에 요구하는 분야에 유리를 대체하여 사용하는 것이 가능하다.
본 발명에 의하면, 나노섬유강화 복합소재 제작에 있어서 강하면서도 투명한 광특성을 동시에 보유하기 힘들다는 종래의 문제점을 해결하는 것이 가능하여, 나노섬유 투명복합소재의 강도 및 광특성을 동시에 현저히 개선할 수 있다. 본 발명에 의한 강화 투명복합소재는 두께 1 mm에서 90% 이상의 투과율과 탁도< 1%를 나타낸다. 또한, 식물 유래 섬유를 강화 재료로 사용하고 있기 때문에 유리 섬유를 보강 재료로 한 복합소재와 비교하여 온도 변화에 따라 투명성이 유지되고 비중이 낮은 장점도 갖는다.
도 1은 셀룰로오스의 분자 구조 및 셀룰로오스 분자배열 구조에 따른 식물잎의 친수/소수 특성을 설명하는 개념도이다.
도 2는 식물 섬유 원료에 따른 나노섬유 시트 표면 형상에 대한 전자현미경 사진이다.
도 3은 일 구현예에 따른 본 발명의 강화 투명복합소재의 제조 공정도이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 첨부한 도면을 참고로 하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예 1
1. 나노섬유 시트의 제조
대나무 펄프 섬유를 그라인더 (Super Masscolloider, Masuko Sangyo Co., Ltd)로 60회 이상 반복 그라인딩 처리하여 대나무 나노섬유를 제조하고, 물로 희석하여 1 중량%로 농도를 조절하였다. 희석액을 균질혼합기 (T18 basic ULTRA-TURRAX,IKA)로 10,000 rpm, 3 분 동안 처리하고, 초음파균질기 (VC505 Vibra cell, SONICS)로 30% 출력, 30 분 처리하여 균일하게 분산된 나노섬유 수용액을 얻었다. 나노섬유 수용액을 실리콘 기판 위에 스핀코팅 (3,000 rpm, 30 초)하여 주사형 전자현미경 (SEM, Scanning electron microscope) 및 원자간력 현미경 (AFM, Atomic Force Microscope)으로 나노섬유 직경이 100 nm 이하임을 확인할 수 있었다. 또한 상기 나노섬유 수용액을 표면장력측정기 (DSA100, KRUSS)로 측정한 결과 59.11 mN/N의 표면장력을 확인하였다. 나노섬유 시트 제조를 위해 PVDF (Polyvinylidene fluoride) 필터와 감압필터 시스템 (ADVENTEC)을 이용하였고, 80 ml 수용액을 필터링한 후 100℃에서 1 시간 건조하여 두께 약 100 μm의 시트를 얻을 수 있었다.
2. 투명수지의 제조
비스페놀 A 에폭시 (Bisphenol A diglycidyl ether, KDS8128, 국도화학), 무수 경화제 (Methylhexahydrophthalicanhydride, KFH271, 국도화학), 저점도 희석제 (3-ethyl-3-hydroxymethyl-oxetane, OXT-101, Toagosei)를 각각 중량비 100:110:15로 혼합한 후 개시제로 2-?에틸-?4-?메틸이미다졸 (sigma aldrich)을 투명수지 무게의 0.15 중량%로 첨가하여 투명수지를 제조하였다. 투명수지는 90℃에서 2 시간 유지한 후 150℃에서 2 시간 가열하여 경화할 수 있었으며, 경화물을 굴절률 측정기(AR2008, KRUSS)로 측정시 1.54의 굴절률을 얻을 수 있었다.
3. 투명복합소재의 제조
나노섬유 사이의 기공으로 투명수지가 침투할 수 있도록, 나노섬유를 투명수지 용액에 침지하고 진공오븐 (OV11, 제이오텍)에 넣은 후 70℃에서 0.1 MPa로 감압하여 2 시간 유지하였다. 수지가 침투된 나노섬유 시트 7장을 적층하여 두께 1 mm의 판재를 제작할 수 있는 몰드에 삽입한 후 열압기로 30 MPa의 압력을 가하며 150℃로 3 시간 동안 가열하여 강화 투명복합소재를 제조하였다. 제조된 복합소재 내 나노섬유의 함량은 10.88 중량%을 나타내었다.
비교예 1
활엽수 펄프를 실시예 1과 같은 방법으로 처리하여 복합소재를 제조하였으며, 동일하게 나노섬유 시트 7장을 사용하였으나 투명수지의 침투성이 저하되어 복합소재 내에 다수의 기공이 존재하여 나노섬유 함량을 계산할 수 없었다.
비교예 2
침엽수 펄프를 실시예 1과 같은 방법으로 처리하여 복합소재를 제조하였으며, 동일하게 나노섬유 시트 7장을 사용하였으나 투명수지의 침투성이 저하되어 복합소재 내에 다수의 기공이 존재하여 나노섬유 함량을 계산할 수 없었다.
물성평가
실시예 및 비교예를 통해 제조된 복합소재는 KONICA MINOLTA의 Spectrophotometer CM-5를 이용하여 파장 360~740 nm에서의 투과율 및 탁도를 측정하였고, 연진 코퍼레이션의 UTA500을 이용하여 ASTM D790 측정기준으로 3점 굽힘 강도를 측정하였다. 그 결과를 하기 표 2에 나타내었다.
대나무 나노섬유 활엽수나노섬유 침엽수나노섬유
수지침투성 O X X
투과율 (%) 91.2 79.4 57.0
탁도 (%) 0.6 27.1 60.2
굴곡강도 (MPa) 261 112 43
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.

Claims (22)

  1. 소수성 나노섬유 시트를 포함하는 강화 투명복합소재.
  2. 제1항에 있어서, 상기 소수성 나노섬유는 1 중량% 수용액을 기준으로 표면장력이 40 내지 70 mN/m인 것인 강화 투명복합소재.
  3. 제1항에 있어서, 상기 소수성 나노섬유는 식물 유래인 것인 강화 투명복합소재.
  4. 제3항에 있어서, 상기 식물은 그령 (lovegrass), 대나무 (bamboo), 은단풍 (silver maple tree), 튤립나무 (tulip tree), 중국단풍 (trident maple), 벼 (rice), 연 (lotus) 및 피라칸사스 (pyracantha)로 이루어지는 군으로부터 선택되는 1 이상인 것인 강화 투명복합소재.
  5. 제3항에 있어서, 상기 식물은 대나무인 것인 강화 투명복합소재.
  6. 제1항에 있어서, 상기 소수성 나노섬유는 5 내지 100 nm 직경인 것인 강화 투명복합소재.
  7. 제1항에 있어서, 상기 소수성 나노섬유 시트는 20 내지 1,000 μm 두께인 것인 강화 투명복합소재.
  8. 제1항에 있어서, 2 이상의 소수성 나노섬유 시트를 포함하는 것인 강화 투명복합소재.
  9. 제8항에 있어서, 0.2 내지 1.5 mm 두께인 것인 강화 투명복합소재.
  10. (i) 소수성 나노섬유 시트를 준비하는 단계;
    (ii) 상기 소수성 나노섬유 시트를 투명수지에 함침시키는 단계; 및
    (iii) 상기 함침된 소수성 나노섬유 시트를 성형하는 단계
    를 포함하는 강화 투명복합소재의 제조 방법.
  11. 제10항에 있어서, 상기 단계 (ii)는 가열을 수반하는 것인 방법.
  12. 제10항에 있어서, 상기 투명수지는 100 내지 10,000 cps의 점도인 것인 방법.
  13. 제10항에 있어서, 상기 단계 (iii)은 열경화에 의하여 수행되는 것인 방법.
  14. 제10항에 있어서, 상기 단계 (iii)은 가압을 수반하는 것인 방법.
  15. 제10항에 있어서, 상기 단계 (iii)은 성형 전에 건조 단계를 더 포함하는 것인 방법.
  16. 제10항에 있어서, 상기 단계 (ii)는 2 이상의 소수성 나노섬유 시트를 함침시켜 적층하는 단계를 더 포함하는 것인 방법.
  17. 제10항에 있어서, 상기 소수성 나노섬유는 1 중량% 수용액을 기준으로 표면장력이 40 내지 70 mN/m인 것인 방법.
  18. 제10항에 있어서, 상기 소수성 나노섬유는 식물 유래인 것인 방법.
  19. 제18항에 있어서, 상기 식물은 그령 (lovegrass), 대나무 (bamboo), 은단풍 (silver maple tree), 튤립나무 (tulip tree), 중국단풍 (trident maple), 벼 (rice), 연 (lotus) 및 피라칸사스 (pyracantha)로 이루어지는 군으로부터 선택되는 1 이상인 것인 방법.
  20. 제18항에 있어서, 상기 식물은 대나무인 것인 방법.
  21. 제10항에 있어서, 상기 소수성 나노섬유는 5 내지 100 nm 직경인 것인 방법.
  22. 제10항에 있어서, 상기 소수성 나노섬유 시트는 20 내지 1,000 μm 두께인 것인 방법.
PCT/KR2015/005729 2015-04-10 2015-06-09 강화 투명복합소재 및 그 제조 방법 WO2016163592A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150051062A KR102408611B1 (ko) 2015-04-10 2015-04-10 강화 투명복합소재 및 그 제조 방법
KR10-2015-0051062 2015-04-10

Publications (1)

Publication Number Publication Date
WO2016163592A1 true WO2016163592A1 (ko) 2016-10-13

Family

ID=57072644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005729 WO2016163592A1 (ko) 2015-04-10 2015-06-09 강화 투명복합소재 및 그 제조 방법

Country Status (2)

Country Link
KR (1) KR102408611B1 (ko)
WO (1) WO2016163592A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117089157A (zh) * 2023-09-19 2023-11-21 南通惟怡新材料科技有限公司 一种量子点复合材料的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090040290A (ko) * 2006-07-19 2009-04-23 파이오니아 가부시키가이샤 나노 파이버 시트 및 그 제조 방법 그리고 섬유 강화 복합 재료
KR20110134986A (ko) * 2010-06-10 2011-12-16 손근수 천연 섬유 소재를 이용한 바이오 나노 섬유의 제조 방법 및 이를 이용하여 제조되는 바이오 나노 섬유
KR20120052725A (ko) * 2010-11-16 2012-05-24 한국생산기술연구원 고분자-유기 나노섬유복합체, 그 제조방법 및 그를 이용한 반사형 편광소자
JP2013018931A (ja) * 2011-07-14 2013-01-31 Konica Minolta Holdings Inc セルロースナノファイバーとポリイミドによる透明な複合フィルム
JP5660513B1 (ja) * 2014-05-22 2015-01-28 国立大学法人九州工業大学 バイオマスナノ繊維の製造方法およびバイオマスナノ繊維・高分子樹脂複合体の製造方法
KR20150035240A (ko) * 2013-09-27 2015-04-06 엘지전자 주식회사 투명 복합 소재 및 제조 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101322598B1 (ko) * 2010-06-10 2013-10-29 손근수 천연 분말을 이용한 사출형 복합재료의 제조방법 및 이에 의한 천연 분말을 이용한 사출형 복합재료

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090040290A (ko) * 2006-07-19 2009-04-23 파이오니아 가부시키가이샤 나노 파이버 시트 및 그 제조 방법 그리고 섬유 강화 복합 재료
KR20110134986A (ko) * 2010-06-10 2011-12-16 손근수 천연 섬유 소재를 이용한 바이오 나노 섬유의 제조 방법 및 이를 이용하여 제조되는 바이오 나노 섬유
KR20120052725A (ko) * 2010-11-16 2012-05-24 한국생산기술연구원 고분자-유기 나노섬유복합체, 그 제조방법 및 그를 이용한 반사형 편광소자
JP2013018931A (ja) * 2011-07-14 2013-01-31 Konica Minolta Holdings Inc セルロースナノファイバーとポリイミドによる透明な複合フィルム
KR20150035240A (ko) * 2013-09-27 2015-04-06 엘지전자 주식회사 투명 복합 소재 및 제조 방법
JP5660513B1 (ja) * 2014-05-22 2015-01-28 国立大学法人九州工業大学 バイオマスナノ繊維の製造方法およびバイオマスナノ繊維・高分子樹脂複合体の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117089157A (zh) * 2023-09-19 2023-11-21 南通惟怡新材料科技有限公司 一种量子点复合材料的制备方法

Also Published As

Publication number Publication date
KR102408611B1 (ko) 2022-06-15
KR20160121271A (ko) 2016-10-19

Similar Documents

Publication Publication Date Title
US9029275B2 (en) Nanofiber sheet, process for producing the same, and fiber-reinforced composite material
TWI391427B (zh) 纖維強化複合材料及其製造方法與用途,以及纖維素纖維集合體
CN108884251B (zh) 包含纤维素微细纤维层的树脂复合薄膜
JP4721186B2 (ja) 繊維強化複合材料及びその製造方法
JP5170193B2 (ja) 繊維強化複合材料及びその製造方法並びに配線基板
JP5099618B2 (ja) 繊維複合材料及びその製造方法
TWI667270B (zh) 微細纖維及含微細纖維片的製造方法、由其得到的片及積層樹脂的樹脂複合體
JP4724814B2 (ja) 繊維強化複合材料及びその製造方法並びに配線基板
KR101335758B1 (ko) 복합체 조성물 및 복합체
JP6695662B2 (ja) 多糖類のナノファイバー、分散媒及びモノマーを含む分散体、並びにその分散体から得られる樹脂組成物
WO2010001829A1 (ja) ナノファイバーシート及びその製造方法
Yano et al. Wood Pulp‐Based Optically Transparent Film: A Paradigm from Nanofibers to Nanostructured Fibers
Zhao et al. Fabrication of mechanically robust and UV-resistant aramid fiber-based composite paper by adding nano-TiO 2 and nanofibrillated cellulose
WO2012120971A1 (ja) 透明樹脂複合材料
CN102977393B (zh) 一种透明耐水植物纳米纤维复合材料的制备方法
JP2006036926A (ja) 繊維強化複合材料
JP6488537B2 (ja) 微細繊維含有複合シート及びその製造方法
Biswas et al. Flexible and transparent chitin/acrylic nanocomposite films with high mechanical strength
JP5374869B2 (ja) セルロース繊維複合体
WO2016163592A1 (ko) 강화 투명복합소재 및 그 제조 방법
JP6872763B2 (ja) セルロースナノファイバー複合膜およびその製造方法
Liu et al. One-step brush-coating strategy for low-haze and water-resistant transparent wood films
JP4428521B2 (ja) 透明積層体
Jiang et al. Nanocrystalline cellulose prepared by double oxidation as reinforcement in polyvinyl alcohol hydrogels
JP2013181084A (ja) 複合体組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15888577

Country of ref document: EP

Kind code of ref document: A1