WO2016162292A1 - Saugbandförderer und strangmaschine der tabak verarbeitenden industrie, verwendung und verfahren zum messen von materialeigenschaften eines materialstrangs der tabak verarbeitenden industrie - Google Patents

Saugbandförderer und strangmaschine der tabak verarbeitenden industrie, verwendung und verfahren zum messen von materialeigenschaften eines materialstrangs der tabak verarbeitenden industrie Download PDF

Info

Publication number
WO2016162292A1
WO2016162292A1 PCT/EP2016/057302 EP2016057302W WO2016162292A1 WO 2016162292 A1 WO2016162292 A1 WO 2016162292A1 EP 2016057302 W EP2016057302 W EP 2016057302W WO 2016162292 A1 WO2016162292 A1 WO 2016162292A1
Authority
WO
WIPO (PCT)
Prior art keywords
suction belt
strand
measuring device
tobacco
channel
Prior art date
Application number
PCT/EP2016/057302
Other languages
English (en)
French (fr)
Inventor
Johannes Müller
Original Assignee
Hauni Maschinenbau Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55646612&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016162292(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hauni Maschinenbau Ag filed Critical Hauni Maschinenbau Ag
Priority to EP16713474.1A priority Critical patent/EP3297461B1/de
Priority to JP2017552801A priority patent/JP7115854B2/ja
Priority to PL16713474.1T priority patent/PL3297461T3/pl
Priority to KR1020177032194A priority patent/KR102624354B1/ko
Priority to CN201680020944.2A priority patent/CN107529813B/zh
Publication of WO2016162292A1 publication Critical patent/WO2016162292A1/de
Priority to US15/726,926 priority patent/US11178901B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24CMACHINES FOR MAKING CIGARS OR CIGARETTES
    • A24C5/00Making cigarettes; Making tipping materials for, or attaching filters or mouthpieces to, cigars or cigarettes
    • A24C5/14Machines of the continuous-rod type
    • A24C5/18Forming the rod
    • A24C5/1857Belt construction or driving means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24CMACHINES FOR MAKING CIGARS OR CIGARETTES
    • A24C5/00Making cigarettes; Making tipping materials for, or attaching filters or mouthpieces to, cigars or cigarettes
    • A24C5/14Machines of the continuous-rod type
    • A24C5/18Forming the rod
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24CMACHINES FOR MAKING CIGARS OR CIGARETTES
    • A24C5/00Making cigarettes; Making tipping materials for, or attaching filters or mouthpieces to, cigars or cigarettes
    • A24C5/32Separating, ordering, counting or examining cigarettes; Regulating the feeding of tobacco according to rod or cigarette condition
    • A24C5/34Examining cigarettes or the rod, e.g. for regulating the feeding of tobacco; Removing defective cigarettes
    • A24C5/3412Examining cigarettes or the rod, e.g. for regulating the feeding of tobacco; Removing defective cigarettes by means of light, radiation or electrostatic fields
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24CMACHINES FOR MAKING CIGARS OR CIGARETTES
    • A24C5/00Making cigarettes; Making tipping materials for, or attaching filters or mouthpieces to, cigars or cigarettes
    • A24C5/39Tobacco feeding devices
    • A24C5/399Component parts or details, e.g. feed roller, feed belt

Definitions

  • Suction belt conveyor and rod machine of the tobacco processing industry use and method for measuring material properties of a material strand of the tobacco processing industry
  • the invention relates to a suction belt conveyor of a strand machine of the tobacco processing industry for conveying material, in particular tobacco, comprising at least one downwardly open strand guide channel bounded by two lateral channel cheeks and a suction belt along a conveying path, and a rod maker of the tobacco processing industry, a use and a method for measuring material properties of a material strand of the tobacco processing industry.
  • the invention generally relates to the field of strand production of tobacco processing industry materials, and more particularly to the production of a tobacco strand.
  • the quality of the strand material is usually monitored by means of various measuring devices, with particular attention being paid to properties such as quantity, density, moisture, etc. of the material.
  • Various measuring methods are used for this purpose, for example optical measuring methods, HF measuring methods, microwave measuring methods or measuring methods using ⁇ -radiators. It is known to provide the measuring devices for determining the material properties in the case of tobacco strands, where the tobacco rod is already encased in the cigarette paper. This is partly due to the fact that the tobacco rod is relatively easy to reach there with a measuring device. On the other hand, the tobacco rod then already has its final form.
  • the disadvantage of these known measuring methods is that the influence of the paper in the arrangement of the measuring devices must always be taken into account at this position.
  • the object of the present invention is to provide an alternative possibility for measuring material properties of a material strand of the tobacco-processing industry.
  • a suction belt conveyor of a rod making machine of the tobacco processing industry for conveying material, in particular tobacco comprising at least one downwardly open strand guide channel bounded by two lateral channel cheeks and a suction belt along a conveying path, which is further developed thereby; at least one electromagnetic measuring device is integrated into the channel cheeks of the suction belt conveyor at least at one position along the conveying path.
  • a measurement of the material, in particular tobacco material is now provided for the first time already at a very early stage, namely in the suction belt conveyor, in which the material is not yet enveloped by a wrapping material, for example a wrapping paper.
  • Saugband makeuper in extruding machines of the tobacco processing industry have a suction belt, which is perforated and acted upon from above with negative pressure or suction air.
  • sporadic tobacco or other material from below in a stream of air on the suction belt wound up so that a layer of loose material accumulates or builds up on the underside of the suction belt and is held by the applied from above vacuum on the suction belt.
  • This suction belt moves through a guide channel with side channel cheeks, so that a solid Cross section is defined for the aufhinerte material.
  • the tobacco material passes into a format device in which it is wrapped with a wrapping material, for example a paper or an aluminum foil, and formed into a strand with a round or oval cross-section.
  • the suction belt conveyor is a comparatively compact and solid unit.
  • An example of a corresponding suction belt conveyor is known from DE 10 201 1 082 625 A1 of the Applicant, whose disclosure content is to be incorporated by reference in its entirety in the present application.
  • the suction belt is a wearing part, which is replaced about every shift. For this reason, the strand guide channel is open at the bottom.
  • the measurement already in the strand guide channel of the suction belt conveyor has the advantage that already at an early stage without disturbing influences, a measurement of material properties is possible.
  • Material properties can z.
  • An early determination of the density offers the advantage that deviations from the predefined values are quickly recognized and thus an immediate control z.
  • electromagnetic measuring devices are used which operate in a frequency range between 100 kHz to 1 5 GHz.
  • the electromagnetic measuring device is particularly preferably designed as a microwave measuring device having at least one resonator cavity, since microwave measuring technology offers a large number of possibilities for determining the properties of materials.
  • the microwave measuring device preferably comprises at least one measuring opening aligned with the conveying path.
  • a measuring opening can be provided from above, from the sides or in a U-shaped manner.
  • the microwave measuring device preferably comprises two coaxial resonators which are opposite one another and in particular are aligned with one another and are embedded in the two opposite channel cheeks. This results in an optionally symmetrical arrangement on both sides of the guide channel in the suction belt conveyor, in which the guide channel itself is part of the resonator cavity between the two coaxial resonators. In this case, a coaxial resonator is excited, while the opposite coaxial resonator serves as a receiver.
  • the coaxial resonators are preferably short-circuited ⁇ / 4 coaxial resonators.
  • the at least one microwave measuring device in the two opposite channel cheeks in particular in addition, in each case has a resonator cavity with a rectangular cross-section, which are arranged in particular mutually aligned on both sides of the strand guide channel.
  • Resonator cavities with rectangular cross section allow by the choice of the dimensions of the walls a very accurate adjustment of the tobacco material penetrating microwave field.
  • An embodiment of a resonator cavity having a rectangular cross-section would be that the rectangular cross section in the direction of the conveying path is larger or smaller than vertically across the conveying path, the smaller of the cross sections having an extension of less than half a wavelength at a microwave measuring frequency. If the rectangular cross section in the direction of the conveying path is greater than vertically transversely to the conveying path, a geometry is selected in which the electric field in the tobacco material has a preferential component in the vertical direction (Y direction). Such a field has a very good penetration of the material strand result.
  • the Z component of the electric field ie the component in the strand conveying direction
  • this field penetrates the material well, and the measuring window along the strand conveying direction is narrower, so that even smaller structures can be resolved by rapid temporal changes. This is bought with a slightly higher extent of the stray field in strand direction.
  • a cover is arranged above the openings of the resonator cavities and the suction belt, which is designed to be reflective for microwaves, wherein in particular a distance between the cover and the suction belt is a few millimeters, in particular less than 20 mm, in particular less than 6 mm ,
  • This cover has the effect that the microwave measuring field and stray fields are limited vertically upward, which has a positive influence on stray fields of the microwave measuring field. For example, with a reduction in the distance of the lid from 18 mm to 4 mm, the maximum field strength of the stray field at a distance of one meter can be reduced by a factor of 4 or more.
  • the at least one microwave measuring device in particular in addition, comprises an inverted "U" -shaped slotted rectangular resonator which encloses the strand guide channel on three sides.
  • This particular inverted "U" -shaped configuration of a rectangular resonator is structurally conditioned by the fact that the guide channel of the suction belt conveyor must be open at the bottom to allow a Saugband cel.
  • the coherent resonator cavity extends from the side in a channel cheek across the guide channel to In both channel cheeks, the resonator cavity opens in two slots to the guide channel, whose dimensions in the direction of conveyance are narrower than the dimensions of the resonator cavity itself, such that a taper of the resonator cavity to the center, So to the guide channel out, takes place.
  • Such a "slotted rectangular resonator” has a very high quality and a good penetration of the measuring field into the guide channel and, since it also directly reaches the tobacco material, such a resonator has a particularly high sensitivity to fluctuations in the material properties of the material strand.
  • the resonator cavity In the case of the slotted rectangular resonator, it is preferably further provided for the resonator cavity to narrow in its cross-section, based on the orientation of the strand guide channel, from the outside to an opening towards the channel cheek.
  • microwave measuring devices which can be used according to the invention described so far are preferably operated in transmission. Also, a reflection measurement, in which only one channel cheek, a resonator is embedded and the other channel cheek reflects, is possible and provided within the scope of the invention. This applies both to the case of an open coaxial resonator and to resonators with a rectangular cross-section.
  • Microwave measuring devices emit a portion of their power to the environment, depending on how they are constructed. According to the specifications of different standards (EU: TBD, USA: TBD) the power of the microwave radiation must not exceed certain limits. In microwave measuring devices with a closed resonator, no modes can propagate in the opening of the microwave measuring device through which the strand is guided. This is different with partially open microwave measuring devices such. B. the slotted rectangular resonator. Here, modes can spread through the openings, which can lead to emissions that are well above the limits to be complied with.
  • the resonators are excited by means of two symmetrically arranged inputs and outputs. In principle, different modes can be stimulated. It is desirable to excite a mode whose electric field is parallel to the strand in the measuring range, since it has been shown that a direction perpendicular to the strand is field excited excitable modes in the channel cheek. This is for example given in the cylindrical TM010 mode or in the related TE 1 10 mode in the slotted rectangular resonator.
  • the Applicant has found that it is the perpendicular to the strand oriented electric field, which generates propagatable modes in the channel cheek and thus responsible for the radiation.
  • the resonator has three input and output antennas, of which two antennas are arranged symmetrically to both sides of the strand guide channel and the third antenna in a plane of symmetry of the Resonatorcavity above the strand guide channel, wherein the two symmetrically arranged antennas are excited in phase and the middle antenna serves as Auskoppelantenne, or the middle antenna is excited and the two symmetrically arranged antennas (268, 269) serve as Auskoppelantennen.
  • the symmetrical arrangement of the antennas together with the in-phase excitation of the symmetrical antennas in the two sides of the slotted rectangular resonator and a coupling in the upper region in the plane of symmetry offers the advantage that no field distributions are excited which have horizontal field components perpendicular to the strand Radiations can be significantly reduced.
  • the in-phase excitation is carried out for example by a signal division with a Wilkinson divider, while the field at a third goal or antenna, arranged centrally in the plane of symmetry, is to tap.
  • the central gate or the central antenna can be excited and the Signal at the two symmetrical gates (antennas) are in phase tapped.
  • one or both channel cheeks have one or more microwaves absorbing in the conveying direction of the suction belt downstream and / or upstream of the at least one resonator cavity one or more microwaves incorporated in the channel cheek or channel cheeks.
  • These may be foam materials, rubber layers, thin films or the like with corresponding absorption properties, for example based on silicones or polyanilines, as described, for example, in L. de Castro Folgueras et al., "Dielectric Properties of Microwave Absorbing Sheets Produced with Silicone and Polyaniline ", Materials Research 2010, 13 (2), pages 197 to 201.
  • Other materials with sufficiently high absorption properties are also suitable.
  • a power and / or measuring electronics is arranged on the suction belt conveyor and thermally coupled to the suction belt conveyor. This ensures that the microwave measuring device, which has a comparatively low power requirement due to its compactness, is provided with electronics which are kept at a substantially constant temperature by thermal coupling with the suction belt conveyor, which constitutes a high thermal mass.
  • the electromagnetic measuring device can also be designed as a capacitive measuring device. Due to the rectangular dimensions of the suction belt conveyor, the capacitive measuring device can be considered as a kind of plate capacitor. It is conceivable that di-electric cavities are provided on both sides of the channel cheek, on which electrodes in the form of metal surfaces are applied.
  • the object on which the invention is based is also achieved by a rod making machine of the tobacco-processing industry, in particular tobacco rod mill. ne, solved with a Saugbandplier invention described above.
  • the object underlying the present invention is achieved by a use of a microwave measuring device in a suction belt conveyor according to the invention described above a strand machine of the tobacco processing industry for measuring the material properties of a tobacco on a suction belt from below and held with suction on the suction belt held tobacco material.
  • the object underlying the invention is also achieved by a method for measuring material properties of a strand of material, in particular tobacco rod, the tobacco processing industry, wherein the material properties of the suction belt of a suction belt conveyor according to the invention previously described verkauerten from below and with the suction belt along a Be conveyed through a guide channel of the suction belt conveyed material along the conveying path in the guide channel by means of a microwave measuring device of the suction belt conveyor or in Saugband makeuper be measured.
  • the resonant method is preferably used as the method since, compared to the broadband method, the material is characterized over a certain frequency range, the resonant method only measures at the resonant frequency. It is thus not only faster, but - at least at this frequency - also much more accurate.
  • the measurement is carried out as a transmission measurement, in which, in particular in the case of a resonant method, measurement is always carried out at the maximum of the signal level, which simplifies the measurement value acquisition.
  • the loss measurement is more accurate and less sensitive here. the external wiring.
  • FIG. 2 a), b) show schematically a perspective individual representation (a) and a cross-sectional representation (b) of a strand guide channel provided in the known cigarette rod machine of FIG. 1, FIG.
  • Fig. 6a) to e) is a schematic representation of a further alternative
  • Embodiment of a suction belt conveyor with a slotted rectangular conveyor with detailed representations, field distribution and radiation characteristics,
  • Fig. 7a) to e) are schematic representations of the control of a corresponding slotted rectangular resonator with radiation characteristics and schematic representations of absorption elements for the channel cheek of Saugband makeupers invention, a schematic representation of an embodiment egg nes Saugbandageers with a capacitive Messeinrich device with field distribution.
  • a known cigarette rod machine according to DE 10 201 1 082 625 A1 is shown schematically, the structure and operation of which will be explained below.
  • a pre-distributor 2 is charged in portions with tobacco fibers (not shown in the figures).
  • a removal roller 3 in the pre-distributor 2 supplies a reservoir 4 with tobacco fibers from the pre-distributor 2.
  • From the reservoir 4 takes a steep conveyor 5, the tobacco fibers and Charges a stowage 6.
  • From the stowage 6 takes a pin roller 7 a substantially uniform stream of tobacco fiber, which is knocked out by a rollover roller 8 of the pins of the pin roller 7 and thrown onto a circulating at a constant speed spreading cloth 9.
  • a tobacco fleece is formed from the tobacco stream.
  • the tobacco fleece is thrown into a viewing device 1 1, which consists essentially of an air curtain, the larger or heavier tobacco particles pass, while all other tobacco particles are lowered by the air in a funnel formed by a pin roller 12 and a wall 1 3 funnel 14.
  • the tobacco fibers are conveyed from the hopper 12 to Saugband makeuper 160, in a strand guide channel 16 and thrown against a bottom of the strand guide channel 16 forming lower strand of an air-permeable, acted upon from its back with negative pressure, endless circulating suction belt 17, on which a strand-shaped tobacco fiber cake is thrown from the tobacco fibers, which is thus held at the lower run of the suction belt 17 by means of sucked air into a vacuum chamber 18. Due to the circulating suction belt 17, the tobacco fiber cake hung or accumulated therein is conveyed as a strand hanging along the strand guide channel 16. The lower strand of the suction belt 17 extends through the strand guide channel 16 from its beginning, where the strand formation zone is located, in the illustrated embodiment, to a Egalisator or trimmer 19 for the removal of excess tobacco fibers.
  • the tobacco fiber strand thus formed is placed on a run in synchronism cigarette paper strip 21.
  • the cigarette paper strip 21 is withdrawn from a reel 22, passed through a printing unit 23 and placed on a driven format tape 24.
  • the format tape 24 transports the tobacco rod together with the cigarette paper strip 21 through a format 26, in which the cigarette paper strip 21 is folded around the tobacco rod, so that only a narrow edge protrudes, which is glued in a known manner by a Glimapparat, not shown.
  • the adhesive seam thus formed is then closed and dried by a Tandemnahtplätte 27.
  • the cigarette rod 28 thus formed passes through a measuring device 29 and is then cut by a knife apparatus 31 into double-length cigarettes 32.
  • the double-length cigarettes 32 are transferred from a controlled-arm transfer device 34 to a transfer drum 36 of a filter attachment machine 37, on the cutting drum 38 they are divided with a circular blade in single cigarettes.
  • Conveyor belts 39, 41 convey excess tobacco fibers separated from the trimmer 19 into a container 42 arranged below the storage container 4, from which these excess tobacco fibers are removed again from the vertical conveyor 5 as recycled tobacco.
  • the module comprising the strand guide channel 16 has a frame 46, by means of which this assembly is arranged in the machine shown in FIG.
  • the strand guide channel 16 is open at the bottom and has two spaced-apart lateral cheeks 1 6a, 16b. Further, in Fig. 2b of the (overhead) bottom of the strand guide channel 16 forming lower strand 17a of the endless circulating suction belt 17 (Fig. 1) is shown schematically in cross section.
  • the cavity 1 6c and thus also the cross section of the strand guide channel 16 is bounded by the two lateral channel cheeks 16 a, 16 b and the lower strand 17 a of the suction belt 17.
  • the distance between the two lateral channel cheeks 16a, 16b of the strand guide channel 16 determines the width of the strand-shaped tobacco cake which has appeared in the cavity 16c of the strand guide channel 16.
  • At least one of the two lateral cheeks 16a, 16b is adjustable transversely to the strand conveying direction according to the arrow X shown in FIG. 2a, which is schematically indicated by the double arrow Y in FIGS. 2a) and 2b).
  • the adjustability of at least one of the two lateral cheeks 16a, 16b can be their distance from each other and thus the clear width of the cavity 1 6c of the strand guide channel 16 change, which also causes a corresponding change in the width of the cavity 16c of the strand guide channel 16 shy stranded tobacco cake.
  • the change in width also has an influence on the loading height.
  • the adjustment of the lateral cheeks 1 6a, 16b is effected by means of a drive device 48, which is controlled by a subsequent control in which the distance between the two channel cheeks 16a, 16b and the clear width of the cavity 16c of the strand guide channel 16 forms the manipulated variable.
  • the previously measuring device 29 is preferably formed, the cross section, the ovality or roundness and / or the density of the cigarette rod 28 and / or the weight of the cigarettes 32 and / or the weight of the cigarette rod 28 per unit length and / or the Faser Stahlllgrad in the cigarette rod 28 and / or in the cigarettes 32 to capture and deliver a corresponding output signal A.
  • This output signal A is transmitted to a controller 50.
  • a distance sensor 52 is provided on the strand guide channel 16, which detects the accumulation height of the strand-shaped tobacco cake in the strand guide channel 16 and transmits a corresponding output signal B to the controller 50.
  • the distance sensor 52 is disposed upstream of the trimmer 1 9.
  • a further distance sensor 56 is provided, with the aid of which the respective actual value for the clear distance between the two lateral cheeks 1 6a, 16b of the strand guide channel 16 and thus the width of the cavity 1 6c detected and a corresponding signal F to the adjusting device 54 is transmitted.
  • the controller 50 processes, as a further input variable, a setpoint signal C, by means of which a corresponding desired value is specified for the parameter or parameters to be controlled. These three signals A, B and C are processed in the controller 50, which as a result produces an output signal D in order to produce a downstream adjusting device 54. to address speaking.
  • Fig. 3 shows schematically a first embodiment according to the invention in section a Saugbandier with in the channel cheeks 102, 1 04 embedded coaxial resonators 206, 207. These may, but need not, as the channel cheeks 16a, 16b of FIG. 2 may be formed. Preferably, they are solid outside of microwave measuring devices.
  • a section of a strand guide channel 100 is shown, wherein the strand conveying direction 108 or the conveying path 108 is marked with arrows.
  • a suction belt 106 which is moved in the strand conveying direction (arrow) and is aufauert on the material, up to a filling level 1 12, which, as is shown from below, also a filling depth extends.
  • a cover 1 1 0 is arranged, the radiation of a microwave measuring field from the coaxial resonators 206, 207 limited upwards.
  • the rear channel cheek 102 is solid, the front channel cheek 1 04 semi-transparent shown.
  • the cover 1 10 is actually in one piece and does not consist of two halves, as the schematic representation in Fig. 3a) represents only for clarity.
  • the coaxial resonators 206, 207 of the microwave measuring device 200 each have a resonator cavity 202, 203, as can be clearly seen in FIG. 3b). Centered in the resonator cavity 202, 203, a coaxial antenna 208, 209 is arranged in each case. Toward the guide channel 100, the resonator cavities 202, 203 open with openings 204, 205, so that an electromagnetic microwave field indicated by arrows penetrates into the guide channel 100.
  • a coordinate system is shown in each case, in which the Z-direction coincides with the conveying path 108, the X-direction in the horizontal direction is perpendicular to the Z-axis and the Y-direction in the vertical direction.
  • the coaxial resonators 206, 207 are preferably short-circuited ⁇ / 4 coaxial resonators.
  • the maximum field strength occurs at the interface of the open end of the respective coaxial resonator 206, 207, and attenuates toward the center of the guide channel 100.
  • the coaxial resonators 206, 207 have a radiation characteristic with a maximum pronounced in the Z and X directions.
  • the extent of the resonator cavities 222, 223 in the direction of the conveying path 108 is significantly greater than transverse to it, so that an electric field with predominant Y component (E y ) is formed.
  • the respective antennas 228, 229 penetrate vertically into the resonator cavities 222, 223 from below to generate the dominant Y component microwave field.
  • the field strength distribution of the E y field component is shown in Fig. 4b). There is good penetration of the guide channel 100.
  • the vertical dimension of the resonator cavities 222, 223 is significantly smaller than half the wavelength of the microwave measurement field used, between 4 and 6 GHz, while the dimension in the strand direction is greater than half a wavelength, thus a mode whose field component can propagate in the Y direction, vertical to the line direction (Z direction).
  • FIG. 5 schematically shows a further embodiment of an inventive
  • these are again two rectangular resonators 246, 247 with rectangular resonator cavities 242, 243 embedded in the channel walls 102, 104, which, as in FIGS previous embodiments also, aligned with each other and penetrate the guide channel 100 at the height of the réelleschangerten on the suction belt 106 material.
  • the rectangular resonator cavities 242, 243 now have a small extension of less than one half wavelength of the microwave array in the line direction and more than half a wavelength across it in a vertical direction.
  • the antennas 248, 249 are arranged symmetrically on both sides with their antenna cables 248a, 249a and project into the resonator cavities 242, 243 in the strand direction, ie in the Z direction. It is excited as a main component of a field with electric field lines in the Z direction (E z ). This penetrates in each case at the locations of the openings 244, 245 to the guide channel 100 in the material in the guide channel 100 and weakens towards the center down. Overall, the material is well penetrated by the electric field and the measurement window in the Z direction is narrower than in the E y resonator of Fig. 4. However, the X component of the electric field propagates in the channel cheek and leads, as in Fig. 5c) can be seen, based on the radiation characteristic shown there, to a scattering radiation in the Z direction.
  • Fig. 6 schematically illustrates another embodiment with a microwave measuring device 260 having a slotted rectangular resonator 266 which invertedly extends "U" around the guide channel 100 and the material below the suction band 106 and is open at the bottom 6a), slot-shaped openings 265 can be seen, which define a very narrow measuring window in the Z-direction Center, so the guide channel 100 with the material out, the cross section of the resonator cavity 262 narrows in the Z direction by means of a collar 272.
  • the couplings 268a, 269a of two antennas 268, 269 are shown, which project into the resonator cavity 262 in the Z direction.
  • the microwave field in the resonator is formed in the entire U-shaped resonator.
  • Fig. 6c shows a cross section in the YZ plane through the guide channel 100 and the slotted rectangular resonator 266, in which the execution of the collar 272 is clearly visible, as well as the arrangement of the z-direction in the resonator cavity 266 protruding antenna 269 and outside of the antenna cable 269.
  • Fig. 6d shows the field distribution of the electric field strength in frontal view with the cross-sectional plane in the center of the slot 265 for the resonator 266 of FIG. 6a) to 6c).
  • the electric field in the illustrated structure decreases downwardly and toward the center, but has the advantage of being immediately adjacent to the material and having no design spacing, except for microwave transmissive windows which prevent fouling of the resonator cavity 262.
  • the sensor has the highest sensitivity of all microwave measuring devices shown so far.
  • the radiation shown in Fig. 6e) is greatest in the Z direction and has, for comparison with the other embodiments, a maximum radiation.
  • FIGS. 7 a) to 7 c Different configurations of the driving of the slotted rectangular resonator 266 are shown in FIGS. 7 a) to 7 c).
  • a symmetric resonator such as the slotted rectangular resonator 266, two modes capable of propagation are excited: the common mode, where the electric field lines (E) in the strand are (mostly) parallel to it and the magnetic field (H) encloses both antennas, as well as the "push-pull” mode, in which the electric field lines (mainly) orthogonal to the strand, run between the antennas ..
  • the actual field distribution is finally a superposition of the two modes from each other could be DC or push-pull mode when input and output antenna (coupling element) in common mode (Fig.7a) or push-pull (Fig. 7b) are excited. It has been shown that I act in the push-pull mode around the mode, which excites in the channel cheek so-called plate modes that can propagate and radiate here, as shown in Fig. 7b).
  • FIG. 7 c shows an exemplary embodiment according to the invention in which the knowledge about the in-phase excitation for reducing the radiation is implemented advantageously.
  • the two symmetrical arranged antennas 268, 269 are excited equally (eg, via a simple signal division by Wilkinon divider) and effectively represent one electrode (input or output).
  • the other electrode is inserted in the plane of symmetry as shown in Fig. 7c).
  • the dimensions of the slotted rectangular resonator 266 range from about 50 to 100 mm in the Z direction, also 50 to 1 00 mm in the Y direction and about 70 mm in the X direction. Other dimensions are of course also possible and feasible according to the invention.
  • FIGS. 8a), 8b show a schematic sectional representation of the guide channel 100 with channel cheeks 102, 104, in which oppositely absorbing elements 300, 302 made of a material having a complex dielectric constant are embedded, for example a microwave-absorbing rubber membrane. material, foam or the like. These remove power from the radiated microwave field, so that the radiation is reduced to the outside.
  • Fig. 8b) shows the arrangement of such absorbing elements 300, 302, 304, 306 upstream and downstream of the slotted rectangular resonator 266 in the channel cheeks 102, 104.
  • the corresponding absorbing elements 300 to 306 are, for example, in cavities specially created for this purpose Insert the channel cheeks 1 02, 104 along the propagation direction.
  • the achieved attenuation increases with size and layer thickness of the absorbent material.
  • a fundamental mode of the TEM plate mode can be attenuated by more than 10 dB in the propagation direction.
  • FIG. 9 is a plan view of a suction belt conveyor according to the invention with a strand guide channel 1 00, which is bounded by the channel cheeks 1 6a, 16b, and a capacitive measuring device 320 shown.
  • the capacitive measuring device comprises two recesses (cavities) 321, 322 provided opposite one another in the channel cheeks 16a, 16b and filled with air or dielectric. In each recess, an electrode 323, 324 is inserted. As can be seen from FIG. 9, the structure of the capacitive measuring device is similar to a plate capacitor.
  • the effective measurement window is determined by the field lines, which are shown by arrows in FIG. 9). These field lines also determine the actual effective measurement capacity. The remaining field lines are to be allocated to stray capacities.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Manufacturing Of Cigar And Cigarette Tobacco (AREA)

Abstract

Die Erfindung betrifft einen Saugbandförderer (160) einer Strangmaschine der Tabak verarbeitenden Industrie zur Förderung von Material, insbesondere Tabak, umfassend wenigstens einen nach unten offenen Strangführungskanal (100), der durch zwei seitliche Kanalwangen (102, 104) und ein Saugband (106) entlang eines Förderwegs (108) begrenzt ist, sowie eine Strangmaschine der Tabak verarbeitenden Industrie, eine Verwendung und ein Verfahren zum Messen von Materialeigenschaften eines Materialstrangs der Tabak verarbeitenden Industrie. Erfindungsgemäß ist zur Bestimmung von Eigenschaften des geförderten Materials an wenigstens einer Position entlang des Förderwegs (108) wenigstens eine elektromagnetische Messeinrichtung (200, 220, 240, 260) in die Kanalwangen (102, 104) des Saugbandförderers (160) integriert.

Description

Saugbandförderer und Strangmaschine der Tabak verarbeitenden Industrie, Verwendung und Verfahren zum Messen von Materialeigenschaften eines Materialstrangs der Tabak verarbeitenden Industrie
Beschreibung
Die Erfindung betrifft einen Saugbandförderer einer Strangmaschine der Tabak verarbeitenden I ndustrie zur Förderung von Material, insbesondere Tabak, umfassend wenigstens einen nach unten offenen Strangführungskanal, der durch zwei seitliche Kanalwangen und ein Saugband entlang eines Förderwegs begrenzt ist, sowie eine Strangmaschine der Tabak verarbeitenden Industrie, eine Verwendung und ein Verfahren zum Messen von Materialeigenschaften eines Materialstrangs der Tabak verarbeitenden I ndustrie.
Die Erfindung betrifft generell das Gebiet der Strangherstellung von Materialien der Tabak verarbeitenden Industrie, insbesondere die Herstellung eines Tabakstrangs. Um eine gleichmäßig hohe Materialqualität sicherzustellen , wird üblicherweise mit Hilfe verschiedener Messvorrichtungen die Qualität des Strangmaterials überwacht, wobei besonders Eigenschaften wie Menge, Dichte, Feuchtigkeit usw. des Materials überwacht werden. Hierzu werden verschiedene Messverfahren verwendet, beispielsweise optische Messverfahren, HF-Messverfahren , Mikrowellenmessverfahren oder Messverfahren unter Verwendung von ß-Strahlern. Es ist bekannt, die Messvorrichtungen zur Bestimmung der Materialeigenschaften im Falle von Tabaksträngen dort vorzusehen, wo der der Tabakstock bereits mit dem Zigarettenpapier umhüllt ist. Dies liegt zum einen darin begründet, dass der Tabakstock dort mit einer Messeinrichtung relativ gut zu erreichen ist. Zum anderen hat der Tabakstock dann schon seine endgültige Form. Der Nachteil dieser bekannten Messverfahren ist, dass der Einfluss des Papiers bei der Anordnung der Messeinrichtungen an dieser Position immer mit berücksichtigt werden muss.
Die Aufgabe der vorliegenden Erfindung ist es eine alternative Möglichkeit zur Messung von Materialeigenschaften eines Materialstrangs der Tabak verarbeitenden I ndustrie zur Verfügung zu stellen.
Diese Aufgabe wird durch einen Saugbandförderer einer Strangmaschine der Tabak verarbeitenden I ndustrie zur Förderung von Material, insbesondere Tabak, umfassend wenigstens einen nach unten offenen Strangführungskanal, der durch zwei seitliche Kanalwangen und ein Saugband entlang eines Förderwegs begrenzt ist, gelöst, der dadurch weitergebildet ist, dass an wenigstens einer Position entlang des Förderwegs wenigstens eine elektromagnetische Messeinrichtung in die Kanalwangen des Saugbandförderers integriert ist.
Mit der Erfindung wird nunmehr erstmals eine Messung des Materials, insbesondere Tabakmaterials, bereits in einem sehr frühen Stadium, nämlich im Saugbandförderer, zur Verfügung gestellt, bei der das Material noch nicht durch ein Umhüllungsmaterial, beispielsweise ein Umhüllungspapier umhüllt ist. Saugbandförderer in Strangmaschinen der Tabak verarbeitenden Industrie weisen ein Saugband auf, das perforiert und von oben mit Unterdruck bzw. Saugluft beaufschlagt ist. In einem Aufschauerbereich wird vereinzeltes Tabakmaterial oder anderes Material von unten in einem Luftstrom auf das Saugband aufgeschauert, so dass sich eine Schicht des losen Materials an der Unterseite des Saugbands ansammelt bzw. aufbaut und durch den von oben anliegenden Unterdruck am Saugband gehalten wird. Dieses Saugband bewegt sich durch einen Führungskanal mit seitlichen Kanalwangen , so dass ein fester Querschnitt für das aufgeschauerte Material definiert ist. Ausgangs des Saugbandförderers gelangt das Tabakmaterial in eine Formateinrichtung, in der es mit einem Umhüllungsmaterial , beispielsweise einem Papier oder einer Aluminiumfolie, umwickelt wird und zu einem Strang mit rundem oder ovalem Querschnitt geformt wird .
Der Saugbandförderer ist eine vergleichsweise kompakte und massive Einheit. Ein Beispiel eines entsprechenden Saugbandförderers ist aus DE 10 201 1 082 625 A1 der Anmelderin bekannt, deren Offenbarungsgehalt vollinhaltlich in die vorliegende Anmeldung durch Bezugnahme aufgenommen sein soll. Das Saugband ist ein Verschleißteil, das etwa zu jeder Schicht ausgetauscht wird . Aus diesem Grund ist der Strangführungskanal nach unten offen .
Die Messung bereits im Strangführungskanal des Saugbandförderers hat den Vorteil , dass bereits zu einem frühen Zeitpunkt ohne störende Einflüsse eine Messung von Materialeigenschaften möglich wird. Materialeigenschaften können z. B. die Messung der Dichte bzw. des Gewichts des Tabaks sein . Eine frühzeitige Bestimmung der Dichte, wie vorgeschlagen , bietet den Vorteil, dass Abweichungen von den vorgegebenen Werten schnell erkannt und damit eine umgehende Regelung z. B. der Tabakförderung durchgeführt werden kann, wodurch Tabakausschuss vorteilhaft reduziert werden kann .
Bevorzugt werden elektromagnetische Messeinrichtungen eingesetzt, die in einem Frequenzbereich zwischen 100kHz bis 1 5GHz arbeiten.
Besonders bevorzugt ist die elektromagnetische Messeinrichtung jedoch als Mikrowellenmesseinrichtung mit wenigstens einem Resonatorhohlraum ausgebildet, da die Mikrowellenmesstechnik eine Vielzahl an Möglichkeiten bietet, die Eigenschaften von Materialien zu bestimmen.
Vorzugsweise umfasst die Mikrowellenmesseinrichtung wenigstens eine zum Förderweg ausgerichtete Messöffnung. I m Hinblick auf die Integration der Mikrowellenmesseinrichtung in die Kanalwangen und der Tatsache, dass die Mes- seinrichtung so ausgebildet sein muss, dass ein Saugbandwechsel möglich ist, muss die Mikrowellenmessemrichtung als teilweiser offener Sensor ausgeführt werden. Entsprechend kann eine von oben , von den Seiten oder u-förmig umschließende Messöffnung vorgesehen sein .
Vorzugsweise umfasst die Mikrowellenmessemrichtung zwei einander gegenüberliegende und insbesondere miteinander fluchtende, in die beiden gegenüberliegenden Kanalwangen eingelassene Koaxialresonatoren. Somit ergibt sich eine, gegebenenfalls symmetrische, Anordnung beiderseits des Führungskanals im Saugbandförderer, bei der der Führungskanal selbst zwischen den beiden Koaxialresonatoren Teil des Resonatorhohlraums ist. In diesem Fall wird ein Koaxialresonator angeregt, während der gegenüberliegende Koaxialresonator als Empfänger dient. Bei den Koaxialresonatoren handelt es sich vorzugsweise um am Ende kurzgeschlossene λ/4-Koaxialresonatoren .
In einer alternativen oder zusätzlichen Ausführungsform der Erfindung ist vorzugsweise vorgesehen , dass die wenigstens eine Mikrowellenmessemrichtung in den beiden gegenüberliegenden Kanalwangen , insbesondere zusätzlich, jeweils einen Resonatorhohlraum mit rechteckigem Querschnitt aufweist, die insbesondere zueinander fluchtend beiderseits des Strangführungskanals angeordnet sind .
Resonatorhohlräume mit rechteckigem Querschnitt ermöglichen durch die Wahl der Dimensionen der Wände eine sehr genaue Einstellung des das Tabakmaterial durchdringenden Mikrowellenfeldes.
Eine Ausgestaltung eines Resonatorhohlraums mit rechteckigem Querschnitt wäre, dass der rechteckige Querschnitt in Richtung des Förderwegs größer oder kleiner ist als vertikal quer zum Förderweg, wobei der kleinere der Querschnitte eine Ausdehnung von weniger als einer halben Wellenlänge bei einer Mikrowellenmessfrequenz aufweist. Wenn der rechteckige Querschnitt in Richtung des Förderwegs größer ist als vertikal quer zum Förderweg, so ist eine Geometrie gewählt, in der das elektrische Feld im Tabakmaterial eine Vorzugskomponente in der vertikalen Richtung (Y-Richtung) hat. Ein solches Feld hat eine sehr gute Durchdringung des Materialstrangs zur Folge. I m umgekehrten Fall, dass die Ausdehnung des Resonatorhohlraums quer zur Strangförderrichtung, also vertikal , größer ist als in Strangförderrichtung, ist im Material die Z-Komponente des elektrischen Feldes, also die Komponente in Strangförderrichtung, dominant. Auch dieses Feld durchdringt das Material gut, und das Messfenster entlang der Strangförderrichtung ist schmaler, so dass auch kleinere Strukturen durch schnelle zeitliche Veränderungen aufgelöst werden können. Dies wird erkauft mit einer etwas höheren Ausdehnung des Streufeldes in Strangrichtung.
In einer vorteilhaften Weiterbildung ist oberhalb der Öffnungen der Resonatorhohlräume und des Saugbands ein Deckel angeordnet, der für Mikrowellen reflektierend ausgebildet ist, wobei insbesondere ein Abstand zwischen dem Deckel und dem Saugband wenige Millimeter, insbesondere weniger als 20 mm, insbesondere weniger als 6 mm, beträgt. Dieser Deckel hat die Wirkung, dass das Mikrowellenmessfeld und Streufelder vertikal nach oben hin begrenzt werden, was einen positiven Einfluss auf Streufelder des Mikrowellenmessfelds hat. So kann beispielsweise bei einer Verringerung des Abstands des Deckels von 18 mm auf 4 mm die maximale Feldstärke des Streufelds im Abstand von einem Meter um einen Faktor 4 oder mehr verringert werden .
In einer weiteren alternativen oder zusätzlichen bevorzugten Ausgestaltung ist vorgesehen , dass die wenigstens eine Mikrowellenmesseinrichtung, insbesondere zusätzlich , einen umgekehrt "U"-förmigen geschlitzten Rechteck- Resonator umfasst, der den Strangführungskanal an drei Seiten umschließt. Diese besondere umgekehrt „U"-förmige Ausgestaltung eines Rechteck- Resonators ist konstruktiv dadurch bedingt, dass der Führungskanal des Saugbandförderers nach unten offen sein muss, um einen Saugbandwechsel zu erlauben . Der zusammenhängende Resonatorhohlraum erstreckt sich von seitlich in einer Kanalwange quer über den Führungskanal zur anderen Seite in der anderen Kanalwange. In beiden Kanalwangen öffnet sich der Resonatorhohlraum in zwei Schlitzen zum Führungskanal, deren Abmessungen in Richtung der Förderung schmaler sind als die Abmessungen des Resonatorhohlraums selber, so dass eine Verjüngung des Resonatorhohlraums zum Zentrum, also zum Führungskanal hin , erfolgt. Ein solcher „geschlitzter Rechteck- Resonator" hat eine sehr hohe Güte und eine gute Eindringung des Messfeldes in den Führungskanal hinein. Da er auch direkt an das Tabakmaterial heranreicht, weist ein solcher Resonator eine besonders hohe Empfindlichkeit für Schwankungen in den Materialeigenschaften des Materialstrangs auf.
Bei dem geschlitzten Rechteck-Resonator ist vorzugsweise weiter vorgesehen, dass der Resonatorhohlraum sich in seinem auf die Ausrichtung des Strangführungskanals bezogenen Querschnitt von außen auf eine Öffnung zur Kanalwange hin verengt.
Alle bislang beschriebenen erfindungsgemäß einsetzbaren Mikrowellenmess- einrichtungen werden vorzugsweise in Transmission betrieben. Auch eine Re- flektionsmessung, bei der nur in einer Kanalwange ein Resonator eingelassen ist und die andere Kanalwange reflektiert, ist im Rahmen der Erfindung möglich und vorgesehen . Dies gilt sowohl für den Fall eines offenen Koaxialresonators als auch für Resonatoren mit rechteckigem Querschnitt.
Mikrowellenmesseinrichtungen strahlen je nach Bauweise einer Teil I hrer Leistung an die Umgebung ab. Gemäß den Vorgaben verschiedener Normen (EU : TBD, USA: TBD) darf die Leistung der Mikrowellenabstrahlung bestimmte Grenzwerte nicht überschreiten . Bei Mikrowellenmesseinrichtungen mit einem geschlossenen Resonator können sich in der Öffnung der Mikrowellenmessein- richtung durch die der Strang geführt wird , keine Moden ausbreiten . Anders sieht dies mit teilweise offenen Mikrowellen messeinrichtungen wie z. B. dem geschlitzten Rechteck-Resonator aus. Hier können sich über die Öffnungen Moden ausbreiten , wodurch es zu Abstrahlungen kommen kann , die deutlich über den einzuhaltenden Grenzwerten liegen .
Bei Messungen mittels des Transmissionsverfahrens werden die Resonatoren über zwei symmetrisch angeordnete Ein- bzw. Auskopplungen angeregt. Grundsätzlich können verschiedene Moden angeregt werden. Wünschenswert ist die Anregung einer Mode, deren elektrisches Feld im Messbereich parallel zum Strang verläuft, da es sich gezeigt, dass ein senkrecht zum Strang orien- tiertes Feld ausbreitungsfähige Moden in der Kanalwange anregt. Dies ist z. b. bei der zylindrischen TM010 Mode oder bei der ihr verwandten TE 1 10 Mode im geschlitzten Rechteck-Resonator gegeben .
Aufgrund der Anordnung der Ein/ Auskopplung wird jedoch zudem eine hierzu orthogonale Mode angeregt. Deren elektrisches Feld verläuft senkrecht zum Strang und bildet eine direkte Verbindung zwischen Ein- und Auskopplung. Beide Feldverteilungen werden angeregt und überlagern sich schließlich.
Die Anmelderin hat herausgefunden , dass es das senkrecht zum Strang orientierte elektrische Feld ist, welches ausbreitungsfähige Moden in der Kanalwange erzeugt und somit für die Abstrahlung verantwortlich ist.
Um bei dem geschlitzten Rechteck-Resonator ein parallel zum Strang orientiertes Feld zu erzeugen ist daher vorzugsweise vorgesehen, dass der Resonator drei Ein- und Auskoppelantennen aufweist, von denen zwei Antennen symmetrisch zu beiden Seiten des Strangführungskanals angeordnet sind und die dritte Antenne in einer Symmetrieebene des Resonatorhohlraums oberhalb des Strangführungskanals, wobei die beiden symmetrisch angeordneten Antennen gleichphasig angeregt werden und die mittlere Antenne als Auskoppelantenne dient, oder die mittlere Antenne angeregt wird und die beiden symmetrisch angeordneten Antennen (268, 269) als Auskoppelantennen dienen.
Die symmetrische Anordnung der Antennen zusammen mit der gleichphasigen Anregung der symmetrischen Antennen in den beiden Seiten des geschlitzten Rechteck-Resonators und einer Auskopplung im oberen Bereich in der Symmetrieebene bietet den Vorteil , dass keine Feldverteilungen angeregt werden, die horizontale Feldkomponenten senkrecht zum Strang besitzen, wodurch Ab- strahlungen deutlich reduziert werden können .
Die gleichphasige Anregung erfolgt beispielsweise durch eine Signalteilung mit einem Wilkinson-Divider, während das Feld an einem dritten Tor bzw. Antenne, mittig in der Symmetrieebene angeordnet, abzugreifen ist. Alternativ kann auch das mittige Tor bzw. die mittige Antenne angeregt werden und das Signal an den zwei symmetrischen Toren (Antennen) phasengleich abgegriffen werden.
Alternativ oder zur weiteren Reduzierung von Abstrahlungen weist bzw. weisen eine oder beide Kanalwangen in einer Förderrichtung des Saugbands stromabwärts und/oder stromaufwärts des wenigstens einen Resonatorhohlraums einen oder mehrere in die Kanalwange oder Kanalwangen eingelassene Mikrowellen absorbierende Flächenkörper auf. Hierbei kann es sich um Schaummaterialien, Gummischichten, dünne Filme oder Ähnliches mit entsprechenden Absorptionseigenschaften handeln , beispielsweise auf der Basis von Silikonen oder Polyanilinen, wie dies beispielsweise in L. de Castro Folgueras et al ., „Dielectric Properties of Microwave Absorbing Sheets Produced with Silicone and Polyaniline", Materials Research 2010, 13 (2), Seiten 197 bis 201 , offenbart ist. Auch andere Materialien mit ausreichend großen Absorptionseigenschaften sind hierfür geeignet.
Vorzugsweise ist eine Leistungs- und/oder Messelektronik am Saugbandförderer angeordnet und thermisch mit dem Saugbandförderer gekoppelt. Damit wird sichergestellt, dass die Mikrowellenmesseinrichtung, die aufgrund ihrer Kompaktheit einen vergleichsweise geringen Leistungsbedarf hat, mit einer Elektronik versehen ist, die durch thermische Kopplung mit dem Saugbandförderer, der eine hohe thermische Masse darstellt, auf im Wesentlichen konstanter Temperatur gehalten wird.
Alternativ zu einer Mikrowellenmesseinrichtung kann die elektromagnetische Messeinrichtung auch als kapazitive Messeinrichtung ausgebildet sein. Aufgrund der rechteckigen Abmessungen des Saugbandförderers kann die kapazitive Messeinrichtung als eine Art Plattenkondensator betrachtet werden . Denkbar ist, dass auf beiden Seiten der Kanalwange di-elektrische Hohlräume vorgesehen werden, auf denen Elektroden in Form von Metallflächen aufgebracht werden .
Die der Erfindung zugrunde liegende Aufgabe wird auch durch eine Strangmaschine der Tabak verarbeitenden I ndustrie, insbesondere Tabakstrangmaschi- ne, mit einem zuvor beschriebenen erfindungsgemäßen Saugbandförderer gelöst.
Ebenso wird die der obigen Erfindung zugrunde liegende Aufgabe durch eine Verwendung einer Mikrowellenmesseinrichtung in einem zuvor beschriebenen erfindungsgemäßen Saugbandförderer einer Strangmaschine der Tabak verarbeitenden I ndustrie zur Messung von Materialeigenschaften eines auf ein Saugband von unten aufgeschauerten und mit Saugluft am Saugband gehaltenen Tabakmaterials gelöst.
Schließlich wird die der Erfindung zugrunde liegende Aufgabe auch durch ein Verfahren zum Messen von Materialeigenschaften eines Materialstrangs, insbesondere Tabakstrangs, der Tabak verarbeitenden I ndustrie gelöst, wobei die Materialeigenschaften des auf ein Saugband eines erfindungsgemäßen zuvor beschriebenen Saugbandförderers von unten aufgeschauerten und mit dem Saugband entlang eines Förderwegs durch einen Führungskanal des Saugbandförderers geförderten Materials entlang des Förderwegs im Führungskanal mittels einer Mikrowellenmesseinrichtung des Saugbandförderers bzw. im Saugbandförderer gemessen werden.
Es ist denkbar, dass Verfahren als breitbandiges oder resonantes Verfahren einzusetzen . Vorzugsweise wird als Verfahren dass resonante Verfahren eingesetzt, da gegenüber dem breitbandigen Verfahren, das Material über einen bestimmten Frequenzbereich charakterisiert wird, misst das resonante Verfahren nur bei der Resonanzfrequenz. Es ist damit nicht nur schneller, sondern - zumindest bei dieser Frequenz - auch deutlich genauer.
Als Betriebsarten kommen u. a. eine Reflexions- oder eine Transmissionsmessung in Betracht. Vorzugsweise erfolgt die Messung als Transmissionsmessung, bei der insbesondere bei einem resonanten Verfahren stets im Maximum des Signalpegels gemessen wird, was die Messwerterfassung vereinfacht. Auch die Verlustmessung ist hier genauer und weniger empfindlich bzgl . der äußeren Beschaltung. Die Vorteile, Eigenschaften und Merkmale zu der erfindungsgemäßen Strangmaschine, Verwendung und dem Verfahren entsprechen denjenigen des erfindungsgemäßen Saugbandförderers, auf den sie sich beziehen.
Weitere Merkmale der Erfindung werden aus der Beschreibung erfindungsgemäßer Ausführungsformen zusammen mit den Ansprüchen und den beigefügten Zeichnungen ersichtlich. Erfindungsgemäße Ausführungsformen können einzelne Merkmale oder eine Kombination mehrerer Merkmale erfüllen .
Die Erfindung wird nachstehend ohne Beschränkung des allgemeinen Erfindungsgedankens anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen beschrieben, wobei bezüglich aller im Text nicht näher erläuterten erfindungsgemäßen Einzelheiten ausdrücklich auf die Zeichnungen verwiesen wird . Es zeigen:
Fig. 1 ein schematisches Übersichtsbild einer bekannten Zigaret- tenstrangmaschine,
Fig. 2a), b) schematisch eine perspektivische Einzeldarstellung (a) und eine Querschnittsdarstellung (b) eines in der bekannten Zigarettenstrangmaschine von Fig. 1 vorgesehenen Strangführungskanals,
Fig. 3a) bis c) eine schematische Darstellung einer ersten Ausführungsform eines Saugbandförderers mit einer Mikrowellenmess- einrichtung mit Feldverteilung und Abstrahlungscharakte- ristik,
Fig. 4a) bis c) eine schematische Darstellung einer weiteren Ausführungsform eines Saugbandförderers mit einer Mikrowel- lenmesseinrichtung, Feldcharakteristik und Abstrahlungs- charakteristik, Fig. 5a) bis c) eine weitere alternative Ausführungsform in einer schematischen Darstellung eines Saugbandförderers mit einer Mikrowellenmesseinrichtung, Feldcharakteristik und Ab- strahlungscharakteristik,
Fig. 6a) bis e) eine schematische Darstellung einer weiteren alternativen
Ausführungsform eines Saugbandförderers mit einem geschlitzten Rechteckförderer, mit Detaildarstellungen , Feldverteilung und Abstrahlungscharakteristik,
Fig. 7a) bis e) schematische Darstellungen der Ansteuerung eines entsprechenden geschlitzten Rechteck-Resonators mit Abstrahlcharakteristiken und schematische Darstellungen von Absorptionselementen für die Kanalwange eines erfindungsgemäßen Saugbandförderers, eine schematische Darstellung einer Ausführungsform ei nes Saugbandförderers mit einer kapazitiven Messeinrich tung mit Feldverteilung.
In den Zeichnungen sind jeweils gleiche oder gleichartige Elemente und/oder Teile mit denselben Bezugsziffern versehen , so dass von einer erneuten Vorstellung jeweils abgesehen wird .
In Fig. 1 ist schematisch eine bekannte Zigarettenstrangmaschine gemäß DE 10 201 1 082 625 A1 gezeigt, deren Aufbau und Wirkungsweise nachfolgend erläutert wird .
Von einer Schleuse 1 wird ein Vorverteiler 2 portionsweise mit (in den Figuren nicht gezeigten) Tabakfasern beschickt. Eine Entnahmewalze 3 im Vorverteiler 2 versorgt einen Vorratsbehälter 4 mit Tabakfasern aus dem Vorverteiler 2. Aus dem Vorratsbehälter 4 entnimmt ein Steilförderer 5 die Tabakfasern und beschickt einen Stauschacht 6. Aus dem Stauschacht 6 entnimmt eine Stiftwalze 7 einen im Wesentlichen gleichförmigen Tabakfaserstrom, der von einer Ausschlagwalze 8 aus den Stiften der Stiftwalze 7 herausgeschlagen und auf ein mit konstanter Geschwindigkeit umlaufendes Streutuch 9 geschleudert wird . Auf dem Streutuch 9 wird aus dem Tabakstrom ein Tabakvlies gebildet. Das Tabakvlies wird in eine Sichteinrichtung 1 1 geschleudert, die im Wesentlichen aus einem Luftvorhang besteht, den größere bzw. schwerere Tabakteile passieren , während alle anderen Tabakteilchen von der Luft in einen von einer Stiftwalze 12 und einer Wand 1 3 gebildeten Trichter 14 gesenkt werden .
Von der Stiftwalze 12 werden die Tabakfasern aus dem Trichter 12 zum Saugbandförderer 160 gefördert, und zwar in einen Strangführungskanal 16 und dort gegen einen den Boden des Strangführungskanals 16 bildenden Untertrum eines luftdurchlässigen, von seiner Rückseite her mit Unterdruck beaufschlagten , endlos umlaufenden Saugbandes 17 geschleudert, an dem aus den Tabakfasern ein strangförmiger Tabakfaserkuchen aufgeschauert wird , der somit am Untertrum des Saugbandes 17 mithilfe von in eine Unterdruckkammer 18 gesaugter Luft gehalten wird . Durch das umlaufende Saugband 17wird entlang des Strangführungskanals 1 6 der darin aufgeschauerte bzw. angesammelte Tabakfaserkuchen als Strang hängend gefördert. Der Untertrum des Saugbandes 17 erstreckt sich durch den Strangführungskanal 16 von dessen Anfang, wo sich die Strangbildungszone befindet, im dargestellten Ausführungsbeispiel bis zu einem Egalisator oder Trimmer 19 zur Entfernung von überschüssigen Tabakfasern.
Anschließend wird der so gebildete Tabakfaserstrang auf einen im Gleichlauf geführten Zigarettenpapierstreifen 21 gelegt. Der Zigarettenpapierstreifen 21 wird von einer Bobine 22 abgezogen, durch ein Druckwerk 23 geführt und auf ein angetriebenes Formatband 24 gelegt. Das Formatband 24 transportiert den Tabakstrang gemeinsam mit dem Zigarettenpapierstreifen 21 durch ein Format 26, in dem der Zigarettenpapierstreifen 21 um den Tabakstrang gefaltet wird, so dass nur noch ein schmaler Rand absteht, der von einem nicht dargestellten Leimapparat in bekannter Weise beleimt wird. Die so gebildete Klebenaht wird dann geschlossen und von einer Tandemnahtplätte 27 getrocknet. Der so gebildete Zigarettenstrang 28 durchläuft ein Messgerät 29 und wird anschließend von einem Messerapparat 31 in doppelt lange Zigaretten 32 geschnitten . Die doppelt langen Zigaretten 32 werden von einer gesteuerte Arme aufweisenden Übergabevorrichtung 34 auf eine Übernahmetrommel 36 einer Filteransetzmaschine 37 übergeben , auf deren Schneidtrommel 38 sie mit einem Kreismesser in Einzelzigaretten geteilt werden.
Förderbänder 39, 41 fördern vom Trimmer 19 abgetrennte überschüssige Tabakfasern in einen unter dem Vorratsbehälter 4 angeordneten Behälter 42, aus dem diese überschüssigen Tabakfasern als rückgeführter Tabak vom Steilförderer 5 wieder entnommen wird .
In den Fig. 2a) und 2b) ist der bekannte Strangführungskanal 16 aus DE 10 201 1 082 625 A1 als Einzelheit mit weiteren Details dargestellt.
Die den Strangführungskanal 16 umfassende Baugruppe weist einen Rahmen 46 auf, durch den diese Baugruppe in der in Fig. 1 gezeigten Maschine angeordnet ist. Der Strangführungskanal 16 ist nach unten offen und weist zwei voneinander beabstandete seitliche Wangen 1 6a, 16b auf. Ferner ist in Fig. 2b der den (oben liegenden) Boden des Strangführungskanals 16 bildende Untertrum 17a des endlos umlaufenden Saugbandes 17 (Fig. 1 ) schematisch im Querschnitt dargestellt. Der Hohlraum 1 6c und somit auch der Querschnitt des Strangführungskanals 16 wird von den beiden seitlichen Kanalwangen 16a, 16b und dem Untertrum 17a des Saugbandes 17 begrenzt. Der Abstand zwischen den beiden seitlichen Kanalwangen 16a, 16b des Strangführungskanals 16 bestimmt die Breite des im Hohlraum 1 6c des Strangführungskanals 16 auf- geschauerten strangförmigen Tabakkuchens.
Im dargestellten Beispiel ist mindestens eine der beiden seitlichen Wangen 16a, 1 6b quer zur Strangförderrichtung gemäß dem in Fig. 2a gezeigten Pfeil X verstellbar, was in den Fig. 2a) und 2b) mit dem Doppelpfeil Y schematisch angedeutet ist. Durch diese Verstellbarkeit mindestens einer der beiden seitlichen Wangen 16a, 16b lässt sich deren Abstand voneinander und somit die lichte Breite des Hohlraumes 1 6c des Strangführungskanals 16 verändern, was auch eine entsprechende Veränderung der Breite des im Hohlraum 16c des Strangführungskanals 16 aufgeschauerten strangförmigen Tabakkuchens bewirkt. Bei gegebener Querschnittsfläche des im Hohlraum 16c des Strangführungskanals 16 aufgeschauerten strangförmigen Tabakkuchens hat die Veränderung der Breite auch einen Einfluss auf die Aufschütthöhe.
Die Verstellung der seitlichen Wangen 1 6a, 16b erfolgt mithilfe einer Antriebseinrichtung 48, die von einer nachfolgenden Regelung angesteuert wird , bei welcher der Abstand zwischen den beiden Kanalwangen 16a, 16b bzw. die lichte Breite des Hohlraumes 16c des Strangführungskanals 16 die Stellgröße bildet.
Das bereits zuvor Messgerät 29 ist vorzugsweise ausgebildet, den Querschnitt, die Ovalität bzw. Rundheit und/oder die Dichte des Zigarettenstranges 28 und/oder das Gewicht der Zigaretten 32 und/oder das Gewicht des Zigarettenstranges 28 pro Längeneinheit und/oder den Faserfüllgrad im Zigarettenstrang 28 und/oder in den Zigaretten 32 zu erfassen und ein entsprechendes Ausgangssignal A abzugeben. Dieses Ausgangssignal A wird an einen Regler 50 übermittelt. Wie Fig. 1 schematisch erkennen lässt, ist am Strangführungskanal 16 ein Abstandssensor 52 vorgesehen , der die Aufschütthöhe des strangförmigen Tabakkuchens im Strangführungskanal 16 erfasst und ein entsprechendes Ausgangssignal B an den Regler 50 übermittelt. Der Abstandssensor 52 ist stromaufwärts vor dem Trimmer 1 9 angeordnet.
Am Strangführungskanal 16 ist noch ein weiterer Abstandssensor 56 vorgesehen, mit dessen Hilfe der jeweilige Ist-Wert für den lichten Abstand zwischen den beiden seitlichen Wangen 1 6a, 16b des Strangführungskanals 16 und somit die Breite dessen Hohlraums 1 6c erfasst und ein entsprechendes Signal F an die Justiereinrichtung 54 übermittelt wird . Der Regler 50 verarbeitet als weitere Eingangsgröße ein Sollwert-Signal C, durch das für den oder die zu regelnden Parameter ein entsprechender Sollwert vorgegeben wird. Diese drei Signale A, B und C werden im Regler 50 verarbeitet, der als Ergebnis ein Ausgangssignal D produziert, um eine nachgeschaltete Justiereinrichtung 54 ent- sprechend anzusteuern .
Fig. 3 zeigt schematisch ein erstes erfindungsgemäßes Ausführungsbeispiel im Ausschnitt einen Saugbandförderer mit in die Kanalwangen 102, 1 04 eingelassenen Koaxialresonatoren 206, 207. Diese können , müssen aber nicht, wie die Kanalwangen 16a, 16b aus Fig. 2 ausgebildet sein . Vorzugsweise sind sie außerhalb von Mikrowellenmesseinrichtungen massiv ausgebildet.
Es ist ein Ausschnitt eines Strangführungskanals 100 gezeigt, wobei die Strangförderrichtung 108 bzw. der Förderweg 108 mit Pfeilen gekennzeichnet ist. Zwischen den Kanalwangen 102, 104 erstreckt sich ein Saugband 106, das in Strangförderrichtung (Pfeil) bewegt wird und auf dem Material aufgeschauert ist, bis zu einer Füllhöhe 1 12, die, da von unten aufgeschauert ist, auch eine Fülltiefe ist. Oberhalb des Saugbands 106 ist ein Deckel 1 1 0 angeordnet, der Abstrahlungen eines Mikrowellenmessfeldes aus den Koaxialresonatoren 206, 207 nach oben begrenzt. In der schematischen Darstellung ist die hintere Kanalwange 102 solide, die vordere Kanalwange 1 04 halbdurchsichtig dargestellt. Auch der Deckel 1 10 ist eigentlich einstückig und besteht nicht aus zwei Hälften , wie die schematische Darstellung in Fig. 3a) lediglich der Übersichtlichkeit halber darstellt.
Die Koaxialresonatoren 206, 207 der Mikrowellenmesseinrichtung 200 weisen jeweils einen Resonatorhohlraum 202, 203 auf, wie in Fig. 3b) gut zu erkennen ist. Zentriert in dem Resonatorhohlraum 202, 203 ist jeweils eine Koaxialantenne 208, 209 angeordnet. Zum Führungskanal 100 hin öffnen sich die Resonatorhohlräume 202, 203 mit Öffnungen 204, 205, so dass ein mit Pfeilen angedeutetes elektromagnetisches Mikrowellenfeld in den Führungskanal 100 eindringt.
Sowohl in Fig. 3a) als auch in Fig. 3b) ist jeweils ein Koordinatensystem dargestellt, bei dem die Z-Richtung mit dem Förderweg 108 übereinstimmt, die X- Richtung in horizontaler Richtung senkrecht auf die Z-Achse steht und die Y- Richtung in vertikaler Richtung. Bei den Koaxialresonatoren 206, 207 handelt es sich bevorzugt um am Ende kurzgeschlossene λ/4-Koaxialresonatoren . Die größte Feldstärke tritt an der Grenzfläche des offenen Endes der jeweiligen Koaxialresonators 206, 207 auf und schwächt sich zum Zentrum des Führungskanals 100 hin ab. Die Koaxialresonatoren 206, 207 weisen eine Abstrahlcharakteristik mit besonders in Z- und in X-Richtung ausgeprägten Maxi- ma auf.
In Fig. 4 ist ein alternatives erfindungsgemäßes Ausführungsbeispiel schematisch dargestellt. Bei der Mikrowellenmesseinrichtung 220 in Fig. 4a) und 4b) handelt es sich im Gegensatz zur Mikrowellenmesseinrichtung 200 aus Fig. 3 um einen symmetrischen Aufbau mit zwei im Querschnitt rechteckigen Resonatorhohlräumen 222, 223, die zum Führungskanal 100 hin mit jeweils einer Öffnung 224, 225 geöffnet sind. Die Ausdehnung der Resonatorhohlräume 222, 223 in Richtung des Förderwegs 108 ist deutlich größer als quer dazu, so dass sich ein elektrisches Feld mit vorwiegender Y-Komponente (Ey) bildet. Die entsprechenden Antennen 228, 229 dringen in vertikaler Richtung von unten in die Resonatorhohlräume 222, 223 ein , um das Mikrowellenfeld mit dominanter Y- Komponente zu erzeugen.
Die Feldstärkenverteilung der Ey-Feldkomponente ist in Fig. 4b) dargestellt. Es zeigt sich eine gute Durchdringung des Führungskanals 100. Die vertikale Dimension der Resonatorhohlräume 222, 223 ist deutlich kleiner als eine halbe Wellenlänge der Wellenlänge des verwendeten Mikrowellenmessfelds von zwischen 4 und 6 GHz, während die Dimension in Strangrichtung größer ist als eine halbe Wellenlänge, damit sich eine Mode, deren Feldkomponente in Y- Richtung, vertikal zur Strangrichtung (Z-Richtung) ausbreiten kann .
Ebenfalls in Fig. 4b) sehr gut erkennbar ist der geringe Abstand des Deckels 1 10 zum Saugband 106. Mit steigendem Abstand des Deckels 1 10 zum Saugband 106 nähern sich die Resonanzfrequenzen der unterschiedlichen Moden, die angeregt werden , aneinander an , was messtechnische Vorteile hat. Gleichzeitig steigt jedoch auch die unerwünschte Abstrahlung an , so dass für die Ab- strahlung ein geringerer Deckelabstand wünschenswert ist.
Fig. 5 zeigt schematisch ein weiteres Ausführungsbeispiel eines erfindungs- gemäßen Saugbandförderers mit einer Mikrowellenmesseinrichtung 240. Wie in Fig. 5a) perspektivisch zu erkennen ist, handelt es sich wiederum um zwei in die Kanalwangen 1 02, 104 eingelassene Rechteck-Resonatoren 246, 247 mit rechteckigen Resonatorhohlräumen 242, 243, die, wie in den vorangegangenen Ausführungsbeispielen auch, miteinander fluchten und den Führungskanal 100 auf der Höhe des auf das Saugband 106 aufgeschauerten Materials durchdringen. Die rechteckigen Resonatorhohlräume 242, 243 weisen nunmehr eine geringe Ausdehnung von weniger als einer halben Wellenlänge des Mik- rowellenmessfelds in Strangrichtung auf und von mehr als einer halben Wellenlänge quer dazu in einer vertikalen Richtung.
Wie in Fig. 5b) zu sehen ist, sind die Antennen 248, 249 mit ihren Antennenkabeln 248a, 249a beidseitig symmetrisch angeordnet und ragen in Strangrichtung, also in Z-Richtung, in die Resonatorhohlräume 242, 243 hinein . Es wird als Hauptkomponente ein Feld mit elektrischen Feldlinien in Z-Richtung (Ez) angeregt. Dieses dringt jeweils an den Orten der Öffnungen 244, 245 zum Führungskanal 100 in das Material im Führungskanal 100 ein und schwächt sich zum Zentrum hin ab. Insgesamt wird das Material durch das elektrische Feld gut durchdrungen und das Messfenster in Z-Richtung ist schmaler als bei dem Ey-Resonator der Fig. 4. Die X-Komponente des elektrischen Felds breitet sich jedoch in der Kanalwange aus und führt, wie in Fig. 5c) zu sehen ist, anhand der dort gezeigten Abstrahlcharakteristik, zu einer Streuabstrahlung in Z- Richtung.
Fig. 6 stellt schematisch ein weiteres Ausführungsbeispiel mit einer Mikrowellenmesseinrichtung 260 mit einem geschlitzten Rechteck-Resonator 266 dar, der sich umgekehrt „U"-förmig um den Führungskanal 100 bzw. das Material unterhalb des Saugbands 106 erstreckt und nach unten offen ist, um einen Saugbandwechsel zu ermöglichen . Zentral sind in Fig. 6a) schlitzförmige Öffnungen 265 zu erkennen , die ein in Z-Richtung sehr schmales Messfenster definieren . Der Resonatorhohlraum 262 des geschlitzten Rechteck-Resonators 266 ist in Fig. 6b) im Querschnitt perspektivisch schematisch dargestellt. Zum Zentrum, also zum Führungskanal 100 mit dem Material hin , verengt sich der Querschnitt des Resonatorhohlraums 262 in Z-Richtung mittels eines Kragens 272. Es sind die Einkopplungen 268a, 269a von zwei Antennen 268, 269 dargestellt, die in Z-Richtung in den Resonatorhohlraum 262 hineinragen . Das Mikrowellenfeld im Resonator bildet sich in dem gesamten U-förmigen Resonator aus.
Fig. 6c) zeigt einen Querschnitt in der Y-Z-Ebene durch den Führungskanal 100 und den geschlitzten Rechteck-Resonator 266, in dem die Ausführung des Kragens 272 gut erkennbar ist, ebenso wie die Anordnung der in Z-Richtung in den Resonatorhohlraum 266 hineinragenden Antenne 269 und außerhalb davon des Antennenkabels 269.
Fig. 6d) zeigt die Feldverteilung der elektrischen Feldstärke in frontaler Ansicht mit der Querschnittsebene im Zentrum des Schlitzes 265 für den Resonator 266 gemäß Fig. 6a) bis 6c). Das elektrische Feld verringert sich bei der gezeigten Struktur nach unten und zur Mitte hin , hat jedoch den Vorteil , dass es unmittelbar an das Material angrenzt und keine konstruktionsbedingten Abstände vorhanden sind , bis auf für Mikrowellen durchlässige Fenster, die eine Verschmutzung des Resonatorhohlraums 262 verhindern. Der Sensor weist die größte Empfindlichkeit aller bislang dargestellten Mikrowellenmesseinrichtun- gen auf.
Die in Fig. 6e) gezeigte Abstrahlung ist in Z-Richtung am größten und hat, zum Vergleich mit den anderen Ausführungsbeispielen , eine maximale Abstrahlung .
In den Fig. 7a) bis 7c) sind unterschiedliche Konfigurationen der Ansteuerung des geschlitzten Rechteck-Resonators 266 gezeigt.
Bei einem symmetrischen Resonator, wie der geschlitzte Rechteck-Resonator 266, werden zwei ausbreitungsfähige Moden angeregt: die „Gleichtakf-Mode, bei der die elektrischen Feldlinien (E) im Strang sich (vornehmlich) parallel zu diesem verlaufen und das magnetische Feld (H) beide Antennen umschließt, sowie die „Gegentakt"-Mode, bei der die elektrischen Feldlinien (vornehmlich) orthogonal zum Strang, zwischen den Antennen verlaufen . Die tatsächliche Feldverteilung ist schließlich eine Überlagerung der beiden Moden. Getrennt voneinander anregen ließen sich Gleich- bzw. Gegentaktmode, wenn Ein- und Auskopplungsantenne (Koppelelement) im Gleichtakt (Fig.7a) bzw. Gegentakt (Fig. 7b) angeregt werden . Es hat sich gezeigt, dass es ich bei der Gegentaktmode um die Mode handelt, welche in der Kanalwange sogenannte Plattenmoden anregt, die sich hier ausbreiten und abstrahlen können , wie in Fig. 7b) dargestellt.
Die Fig. 7c zeigt ein erfindungsgemäßes Ausführungsbeispiel bei dem die Erkenntnisse über die gleichphasige Anregung zur Verringerung der Abstrahlung vorteilhaft umgesetzt werden .
Gemäß dem dargestellten Ausführungsbeispiel werden die beiden symmetrische angeordneten Antennen 268, 269 gleichphaisg angeregt (z. B. über eine einfache Signalteilung per Wilkinon-Divider) und stellen effektiv eine Elektrode (Ein- oder Auskopplung) dar. Die andere Elektrode wird in der Symmetrieebene eingefügt wie in Fig. 7c) dargestellt. Durch diese Anordnung werden keine Feldverteilungen angeregt, die horizontale Feldkomponenten senkrecht zum Strang besitzen , wodurch eine Abstrahlung der Mikrowellenleistung in die Umgebung vorteilhaft zumindest teilweise unterdrückt werden kann .
Es ist auch eine Anordnung ohne die zweite Elektrode in Sym metrieebene denkbar. I n diesem Fall wird der Resonator in Reflexion betrieben.
Die Abmessungen des geschlitzten Rechteck-Resonators 266 bewegen sich im Bereich von etwa 50 bis 100 mm in Z-Richtung, ebenfalls 50 bis 1 00 mm in Y- Richtung und etwa 70 mm in X-Richtung. Andere Dimensionierungen sind erfindungsgemäß natürlich ebenfalls möglich und realisierbar.
Eine Möglichkeit, Abstrahlungen , insbesondere durch Plattenmoden in den Kanalwangen , zu verringern, ist in Fig. 8a), 8b) schematisch dargestellt. Fig. 8a) zeigt eine schematische Ausschnittsdarstellung des Führungskanals 100 mit Kanalwangen 102, 1 04, in die gegenüberliegend voneinander absorbierende Elemente 300, 302 aus einem Material mit komplexer Dielektrizitätskonstante eingelassen sind, beispielsweise einem mikrowellenabsorbierenden Gummima- terial, Schaumstoff oder Ähnlichem. Diese entziehen dem abgestrahlten Mikrowellenfeld Leistung, so dass sich die Abstrahlung nach außen verringert. Fig. 8b) zeigt die Anordnung von solchen absorbierenden Elementen 300, 302, 304, 306 stromaufwärts und stromabwärts des geschlitzten Rechteck-Resonators 266 in den Kanalwangen 102, 1 04. Die entsprechenden absorbierenden Elemente 300 bis 306 sind beispielsweise in dafür eigens geschaffene Kavitäten in den Kanalwangen 1 02, 104 entlang der Ausbreitungsrichtung einzufügen. Die erzielte Dämpfung steigt mit Größe und Schichtdicke des absorbierenden Materials. I m Falle zweier seitlich angebrachter 3 x 3 Zentimeterschichten ist eine Grundmode der TEM-Plattenmode um mehr als 10 dB in Ausbreitungsrichtung dämpfbar.
In der Fig. 9) ist eine Draufsicht auf einen erfindungsgemäßen Saugbandförderer mit einem Strangführungskanal 1 00, der durch die Kanalwangen 1 6a, 16b begrenzt ist, und einer kapazitiven Messeinrichtung 320 dargestellt.
Die kapazitive Messeinrichtung umfasst zwei, einander gegenüberliegend in den Kanalwangen 16a, 16b vorgesehene Aussparungen (Kavitäten) 321 , 322, die mit Luft oder Dielektrikum gefüllt sind. I n jeder Aussparung ist eine Elektrode 323, 324 eingefügt. Wie aus der Fig. 9 ersichtlich , ähnelt die Struktur der kapazitiven Messeinrichtung einem Plattenkondensator.
Das effektive Messfenster wird durch die Feldlinien bestimmt, die in der Fig. 9) durch Pfeile dargestellt sind . Diese Feldlinien bestimmen auch die tatsächliche effektive Messkapazität. Die restlichen Feldlinien sind Streukapazitäten zuzuordnen.
Alle genannten Merkmale, auch die den Zeichnungen allein zu entnehmenden sowie auch einzelne Merkmale, die in Kombination mit anderen Merkmalen offenbart sind, werden allein und in Kombination als erfindungswesentlich angesehen. Erfindungsgemäße Ausführungsformen können durch einzelne Merkmale oder eine Kombination mehrerer Merkmale erfüllt sein . Im Rahmen der Erfindung sind Merkmale, die mit„insbesondere" oder„vorzugsweise" gekennzeichnet sind , als fakultative Merkmale zu verstehen . Bezuqszeichenliste
1 Schleuse
2 Vorverteiler
3 Entnahmewalze
4 Vorratsbehälter
5 Steilförderer
6 Stauschacht
7 Stiftwalze
8 Ausschlagwalze
9 Streutuch
1 1 Sichteinrichtung
12 Stiftwalze
13 Wand
14 Trichter
16 Strangführungskanal
16a Kanalwange
16b Kanalwange
16c Hohlraum und Querschnitt des Strangführungskanals
17 Saugband
17a Untertrum
18 Unterdruckkammer
19 Trimmer
21 Zigarettenpapierstreifen
22 Bobine
23 Druckwerk
24 Formatband
26 Format
27 Tandemnahtplätte
28 Zigarettenstrang
29 Messgerät
31 Messerapparat
32 doppelt lange Zigaretten
34 Übergabevorrichtung
36 Übernahmetrommel 37 Filteransetzmaschine
38 Schneidtrommel
39 Förderband
41 Förderband
42 Behälter
46 Rahmen
48 Antriebseinrichtung
50 Regler
52 Abstandssensor
54 Justiereinrichtung
56 Abstandssensor
100 Strangführungskanal
102 Kanalwange
104 Kanalwange
106 Saugband
108 Förderweg
1 1 0 Deckel
1 12 Füllhöhe
160 Saugbandförderer
200 Mikrowellenmesseinrichtung, 203 Resonatorhohl räum
, 205 Öffnung
, 207 Koaxialresonator
, 209 Koaxialantenne
220 Mikrowellenmesseinrichtung, 223 Resonatorhohl räum
, 225 Öffnung
, 227 Rechteck-Resonator, 229 Antenne
240 Mikrowellenmesseinrichtung, 243 Resonatorhohl räum
, 245 Öffnung
, 247 Rechteck-Resonator, 249 Antenne 248a, 249a Antennenkabel
260 Mikrowellenmesseinrichtung
262 Resonatorhohl räum
264, 265 Öffnung
266 geschlitzter Rechteck-Resonator
268, 269 Antenne
268a, 269a Antennenkabel
270 Antenne
272 Kragen
300, 302 absorbierendes Element
304, 306 absorbierendes Element
320 kapazitive Messeinrichtung
321 , 322 Aussparungen
323, 324 Elektroden

Claims

Saugbandförderer und Strangmaschine der Tabak verarbeitenden Industrie, Verwendung und Verfahren zum Messen von Materialeigenschaften eines Materialstrangs der Tabak verarbeitenden I ndustrie Patentansprüche
1 . Saugbandförderer (1 60) einer Strangmaschine der Tabak verarbeitenden Industrie zur Förderung von Material, insbesondere Tabak, umfassend wenigstens einen nach unten offenen Strangführungskanal (100), der durch zwei seitliche Kanalwangen (1 02, 1 04) und ein Saugband (106) entlang eines Förderwegs (1 08) begrenzt ist, dadurch gekennzeichnet, dass zur Bestimmung von Eigenschaften des geförderten Materials an wenigstens einer Position entlang des Förderwegs (1 08) wenigstens eine elektromagnetische Messeinrichtung (200, 220, 240, 260, 320) in die Kanalwangen (1 02, 104) des Saugbandförderers integriert ist.
2. Saugbandförder (160) nach Anspruch 1 , dadurch gekennzeichnet, dass die Messeinrichtung als Mikrowellenmesseinrichtung mit wenigstens einem Resonatorhohlraum (202, 203, 222, 223, 242, 243, 262) ausgebildet ist.
Saugbandförderer (1 60) nach Anspruch 2, dadurch gekennzeichnet, dass die Mikrowellenmesseinrichtung (200, 220, 240, 260) wenigstens eine zum Förderweg ausgerichtete Messöffnung (204, 205, 224, 225, 244, 245, 264, 265) umfasst.
Saugbandförderer (160) nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Mikrowellenmesseinrichtung (200) zwei einander gegenüberliegende, in die beiden Kanalwangen (1 02, 1 04) eingelassene Koaxialresonatoren (206, 207) umfasst.
Saugbandförderer (160) nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die wenigstens eine Mikrowellenmesseinrichtung (220, 240) in den beiden gegenüberliegenden Kanalwangen jeweils einen Resonatorhohlraum (222, 223, 242, 243) mit rechteckigem Querschnitt aufweist, die zueinander fluchtend beiderseits des Strangführungskanals (1 00) angeordnet sind .
Saugbandförderer (1 60) nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass die wenigstens eine Mikrowellenmesseinrichtung (260), insbesondere zusätzlich, einen umgekehrt "U"-förmigen geschlitzten Rechteck-Resonator (266) umfasst, der den Strangführungskanal (100) an drei Seiten umschließt.
Saugbandförderer (1 60) nach Anspruch 6, dadurch gekennzeichnet, dass der geschlitzte Rechteck-Resonator (266) drei Ein- und Auskoppelantennen (268, 269, 270) aufweist, von denen zwei Antennen (268, 269) symmetrisch zu beiden Seiten des Strangführungskanals (1 00) angeordnet sind und die dritte Antenne (270) in einer Symmetrieebene des Resonatorhohlraums (262) oberhalb des Strangführungskanals (1 00), wobei die beiden symmetrisch angeordneten Antennen (268, 269) gleichphasig angeregt werden und die mittlere Antenne (270) als Auskoppelantenne dient, oder die mittlere Antenne (270) angeregt wird und die beiden symmetrisch angeordneten Antennen (268, 269) als Auskoppelantennen dienen .
8. Saugbandförderer (1 60) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass eine oder beide Kanalwangen (102, 104) in einer Förderrichtung (1 08) des Saugbands (106) stromabwärts und/oder stromaufwärts des wenigstens einen Resonatorhohlraums (202, 203, 222, 223, 242, 243, 262) einen oder mehrere in die Kanalwange oder Kanalwangen (102, 1 04) eingelassene Mikrowellen absorbierende Flächenkörper (300, 302, 304, 206) aufweist.
9. Saugbandförderer (1 60) nach Anspruch 1 , dadurch gekennzeichnet, dass die Messeinrichtung als kapazitive Messeinrichtung (320) ausgebildet ist.
10. Saugbandförderer (1 60) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass eine Leistungs- und/oder Messelektronik am Saugbandförderer angeordnet ist.
1 1 . Strangmaschine der Tabak verarbeitenden I ndustrie, insbesondere Tabakstrangmaschine, mit einem Saugbandförderer nach einem der Ansprüche 1 bis 1 1 .
12. Verwendung einer Mikrowellenmesseinrichtung (200, 220, 240, 260) in einem Saugbandförderer einer Strangmaschine der Tabak verarbeitenden Industrie nach einem der Ansprüche 1 bis 1 1 zur Messung von Materialeigenschaften eines auf ein Saugband (1 06) von unten aufgeschauerten und mit Saugluft am Saugband (1 06) gehaltenen Tabakmaterials.
13. Verfahren zum Messen von Materialeigenschaften eines Materialstrangs, insbesondere Tabakstrangs, der Tabak verarbeitenden Industrie, wobei die Materialeigenschaften des auf ein Saugband (1 06) eines Saugbandförderers nach einem der Ansprüche 1 bis 1 1 von unten aufgeschauerten und mit dem Saugband (1 06) entlang eines Förderwegs (1 08) durch einen Führungskanal (1 00) des Saugbandförderers geförderten Materials entlang des Förderwegs (1 08) im Führungskanal (1 00) mittels einer elektromagnetischen Messeinrichtung (200, 220, 240, 260) des Saugbandförderers gemessen werden .
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die Materialeigenschaften mittels einer Mikrowellenmesseinrichtung gemessen werden.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass die Mikrowellenmesseinrichtung mittels eines resonanten Verfahrens gemessen werden, dass vorzugsweise als Transmissionsverfahren durchgeführt wird .
PCT/EP2016/057302 2015-04-09 2016-04-04 Saugbandförderer und strangmaschine der tabak verarbeitenden industrie, verwendung und verfahren zum messen von materialeigenschaften eines materialstrangs der tabak verarbeitenden industrie WO2016162292A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16713474.1A EP3297461B1 (de) 2015-04-09 2016-04-04 Saugbandförderer und strangmaschine der tabak verarbeitenden industrie, verwendung und verfahren zum messen von materialeigenschaften eines materialstrangs der tabak verarbeitenden industrie
JP2017552801A JP7115854B2 (ja) 2015-04-09 2016-04-04 たばこ加工産業の吸着ベルトコンベヤ及びロッド製造機並びにたばこ加工産業の材料ロッドの材料特性を測定するための使用及び方法
PL16713474.1T PL3297461T3 (pl) 2015-04-09 2016-04-04 Taśmowy przenośnik podciśnieniowy i maszyna do wytwarzania kabli przemysłu tytoniowego, zastosowanie i sposób pomiaru własności materiałowych kabla materiału przemysłu tytoniowego
KR1020177032194A KR102624354B1 (ko) 2015-04-09 2016-04-04 타바코 가공 산업의 흡착 벨트 컨베이어와 스트랜드 형성 기계 및 타바코 가공 산업의 재료 스트랜드의 재료 특성들의 측정을 위한 용도와 방법
CN201680020944.2A CN107529813B (zh) 2015-04-09 2016-04-04 抽吸带输送机和烟草加工业的制条机、用于对烟草加工业的材料条的材料特性进行测量的方法以及使用
US15/726,926 US11178901B2 (en) 2015-04-09 2017-10-06 Suction belt conveyor and rod-forming machine of the tobacco processing industry, and use and method for measuring material properties of a material rod of the tobacco processing industry

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015105353.5A DE102015105353A1 (de) 2015-04-09 2015-04-09 Saugbandförderer und Strangmaschine der Tabak verarbeitenden Industrie, Verwendung und Verfahren zum Messen von Materialeigenschaften eines Materialstrangs der Tabak verarbeitenden Industrie
DE102015105353.5 2015-04-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/726,926 Continuation US11178901B2 (en) 2015-04-09 2017-10-06 Suction belt conveyor and rod-forming machine of the tobacco processing industry, and use and method for measuring material properties of a material rod of the tobacco processing industry

Publications (1)

Publication Number Publication Date
WO2016162292A1 true WO2016162292A1 (de) 2016-10-13

Family

ID=55646612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/057302 WO2016162292A1 (de) 2015-04-09 2016-04-04 Saugbandförderer und strangmaschine der tabak verarbeitenden industrie, verwendung und verfahren zum messen von materialeigenschaften eines materialstrangs der tabak verarbeitenden industrie

Country Status (8)

Country Link
US (1) US11178901B2 (de)
EP (1) EP3297461B1 (de)
JP (1) JP7115854B2 (de)
KR (1) KR102624354B1 (de)
CN (1) CN107529813B (de)
DE (1) DE102015105353A1 (de)
PL (1) PL3297461T3 (de)
WO (1) WO2016162292A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019170725A1 (de) 2018-03-06 2019-09-12 Hauni Maschinenbau Gmbh Saugbandförderer und strangmaschine der tabak verarbeitenden industrie sowie verwendung einer messeinrichtung in einem saugbandförderer einer strangmaschine der tabak verarbeitenden industrie
IT201800003717A1 (it) * 2018-03-19 2019-09-19 Gd Spa Stazione di trasporto e ispezione di un semilavorato dell’industria del tabacco
DE102018116533A1 (de) 2018-07-09 2020-01-09 Hauni Maschinenbau Gmbh Messvorrichtung für einen Saugbandförderer und Saugbandförderer mit einer Messvorrichtung
WO2021008745A1 (de) 2019-07-15 2021-01-21 Tews Elektronik Gmbh & Co. Kg Zigarettenmaschine mit einem saugbandförderer

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017123503A1 (de) * 2017-10-10 2019-04-11 Hauni Maschinenbau Gmbh Verfahren und System zum Herstellen von stabförmigen Produkten der Tabak verarbeitenden Industrie
WO2020058897A1 (en) * 2018-09-21 2020-03-26 G.D S.P.A. Apparatus for the conveying and inspection of a semi-finished product of the tobacco industry
CN112740022B (zh) * 2018-09-21 2024-05-24 吉地股份公司 用于检测烟草工业的产品的性质的电磁检测器
CH715607A1 (de) * 2018-12-03 2020-06-15 Koch Roger Zigarettenmaschine und Verfahren zur Herstellung von Zigaretten.
RU2736959C2 (ru) * 2019-12-25 2020-11-23 Хауни Машиненбау Гмбх Измерительное устройство для вакуумного ленточного транспортера и вакуумный ленточный транспортер с измерительным устройством
CN115626419B (zh) * 2022-11-01 2024-02-20 邳州市新世界木业有限公司 一种木工机械输送带

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3624236A1 (de) * 1985-07-31 1987-02-26 Hauni Werke Koerber & Co Kg Verfahren und vorrichtung zum pruefen der dichte eines umhuellten tabakstrangs
DE19825592A1 (de) * 1998-06-09 1999-12-16 Focke & Co Verfahren und Vorrichtung zum Bestimmen der Dichte von Tabak
DE69515482T2 (de) * 1994-05-19 2000-11-23 Molins Plc, Milton Keynes Zigarettenherstellung
DE102011082625A1 (de) 2011-09-13 2013-03-14 Hauni Maschinenbau Ag Regelungsvorrichtung zur Regelung mindestens eines Parameters eines Artikels der Tabak verarbeitenden Industrie
DE102013213936A1 (de) * 2013-07-16 2015-01-22 Hauni Maschinenbau Ag Anordnung und Verfahren zur Überprüfung von stabförmigen Artikeln der Tabak verarbeitenden Industrie

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4474190A (en) 1981-03-21 1984-10-02 Hauni-Werke Korber & Co. Kg Method and apparatus for regulating the operation of machines for the production of cigarettes or the like
DE3207124A1 (de) * 1981-03-21 1982-09-30 Hauni-Werke Körber & Co KG, 2050 Hamburg Verfahren und maschine zum herstellen von stabfoermigen rauchartikeln
US4538453A (en) * 1982-03-27 1985-09-03 Molins Plc Method and apparatus for determining the mass and moisture content of tobacco
JPS60234575A (ja) 1984-05-08 1985-11-21 日本たばこ産業株式会社 シガレツト製造機の中味たばこ量制御装置
DE3613957C1 (de) 1986-04-24 1987-06-25 Bat Cigarettenfab Gmbh Verfahren und Vorrichtung zur Regelung von mindestens zwei der fuer die Qualitaet des fertigen Produktes massgeblichen physikalischen Eigenschaften eines aus rauchbarem Material hergestellten Strangs
DE3705576A1 (de) * 1987-02-21 1988-09-01 Hauni Werke Koerber & Co Kg Verfahren und anordnung zum bilden eines stranges aus tabak
DE3725364A1 (de) * 1987-07-31 1989-02-09 Hauni Werke Koerber & Co Kg Verfahren und anordnung zum bilden eines stranges aus fasern von tabak oder einem anderen rauchfaehigen material
DE3725366A1 (de) 1987-07-31 1989-02-09 Hauni Werke Koerber & Co Kg Vorrichtung zur messung der dichte eines tabakstranges
CN1052150A (zh) 1989-11-30 1991-06-12 鞍山钢铁公司 一种低合金耐硫酸露点腐蚀钢
DE4004119A1 (de) 1990-02-10 1991-08-14 Tews Elektronik Dipl Ing Manfr Verfahren zur messung der feuchte eines messgutes mit hilfe von mikrowellen und vorrichtung zur durchfuehrung des verfahrens
US5736864A (en) * 1995-07-14 1998-04-07 Hauni Maschinenbau Ag Apparatus for ascertaining the complex dielectric constant of tobacco
JPH10325813A (ja) * 1997-05-23 1998-12-08 Matsushita Electric Works Ltd マイクロ波水分計測装置
DE29716639U1 (de) 1997-09-16 1999-01-21 Tews Elektronik, 22459 Hamburg Mikrowellen-Streufeldsensor zur Feuchte- und/oder Dichtemessung
JPH11346747A (ja) * 1998-06-12 1999-12-21 Japan Tobacco Inc たばこの巻上装置
SE9803850L (sv) 1998-11-11 2000-05-12 Kildal Antenna Consulting Ab Dielektrisk mikrovågssensor
DE10112499B4 (de) * 2001-03-15 2010-08-19 Hauni Maschinenbau Ag Resonatoreinrichtung, insbesondere Mikrowellenresonatoreinrichtung
DE10117081A1 (de) 2001-04-06 2002-10-10 Hauni Maschinenbau Ag Vorrichtung und Verfahren zur Erzeugung einer Aussage über die Eigenschaft(en) eines Faserstranges
TWI357425B (en) 2003-09-09 2012-02-01 Laird Technologies Inc Microwave-absorbing form-in-place paste
DE202005001756U1 (de) * 2004-02-12 2005-05-04 Trützschler GmbH & Co KG Mikrowellensensor zur Messung einer dielektrischen Eigenschaft eines Produkts
DE102004063228B4 (de) * 2004-12-22 2007-06-28 Hauni Maschinenbau Ag Meßvorrichtung und -verfahren zur Bestimmung einer dielektrischen Eigenschaft, insbesondere der Feuchte und/oder Dichte, eines Produkts
DE202007018481U1 (de) 2007-08-28 2008-09-11 Tews Elektronik Dipl.-Ing. Manfred Tews Vorrichtung zur Messung eines Feuchtewertes von dielektrischen Stoffen
JP6232868B2 (ja) 2012-10-23 2017-11-22 株式会社島津製作所 モータ駆動装置および真空ポンプ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3624236A1 (de) * 1985-07-31 1987-02-26 Hauni Werke Koerber & Co Kg Verfahren und vorrichtung zum pruefen der dichte eines umhuellten tabakstrangs
DE69515482T2 (de) * 1994-05-19 2000-11-23 Molins Plc, Milton Keynes Zigarettenherstellung
DE19825592A1 (de) * 1998-06-09 1999-12-16 Focke & Co Verfahren und Vorrichtung zum Bestimmen der Dichte von Tabak
DE102011082625A1 (de) 2011-09-13 2013-03-14 Hauni Maschinenbau Ag Regelungsvorrichtung zur Regelung mindestens eines Parameters eines Artikels der Tabak verarbeitenden Industrie
DE102013213936A1 (de) * 2013-07-16 2015-01-22 Hauni Maschinenbau Ag Anordnung und Verfahren zur Überprüfung von stabförmigen Artikeln der Tabak verarbeitenden Industrie

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
L. DE CASTRO FOLGUERAS ET AL.: "Dielectric Properties of Microwave Absorbing Sheets Produced with Silicone and Polyaniline", MATERIALS RESEARCH, vol. 13, no. 2, 2010, pages 197 - 201

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019170725A1 (de) 2018-03-06 2019-09-12 Hauni Maschinenbau Gmbh Saugbandförderer und strangmaschine der tabak verarbeitenden industrie sowie verwendung einer messeinrichtung in einem saugbandförderer einer strangmaschine der tabak verarbeitenden industrie
DE102018105111A1 (de) 2018-03-06 2019-09-12 Hauni Maschinenbau Gmbh Saugbandförderer und Strangmaschine der Tabak verarbeitenden Industrie sowie Verwendung einer Messeinrichtung in einem Saugbandförderer einer Strangmaschine der Tabak verarbeitenden Industrie
IT201800003717A1 (it) * 2018-03-19 2019-09-19 Gd Spa Stazione di trasporto e ispezione di un semilavorato dell’industria del tabacco
WO2019180540A1 (en) * 2018-03-19 2019-09-26 G.D S.P.A. A station for the conveying and inspection of a semi-finished product of the tobacco industry
DE102018116533A1 (de) 2018-07-09 2020-01-09 Hauni Maschinenbau Gmbh Messvorrichtung für einen Saugbandförderer und Saugbandförderer mit einer Messvorrichtung
EP3593653A2 (de) 2018-07-09 2020-01-15 Hauni Maschinenbau GmbH Messvorrichtung für einen saugbandförderer und saugbandförderer mit einer messvorrichtung
WO2021008745A1 (de) 2019-07-15 2021-01-21 Tews Elektronik Gmbh & Co. Kg Zigarettenmaschine mit einem saugbandförderer

Also Published As

Publication number Publication date
KR20170134696A (ko) 2017-12-06
CN107529813A (zh) 2018-01-02
JP2018511330A (ja) 2018-04-26
DE102015105353A1 (de) 2016-10-13
EP3297461A1 (de) 2018-03-28
EP3297461B1 (de) 2022-08-24
JP7115854B2 (ja) 2022-08-09
PL3297461T3 (pl) 2023-01-16
US11178901B2 (en) 2021-11-23
CN107529813B (zh) 2021-10-01
US20180027868A1 (en) 2018-02-01
KR102624354B1 (ko) 2024-01-11

Similar Documents

Publication Publication Date Title
EP3297461B1 (de) Saugbandförderer und strangmaschine der tabak verarbeitenden industrie, verwendung und verfahren zum messen von materialeigenschaften eines materialstrangs der tabak verarbeitenden industrie
EP2762016B2 (de) Messvorrichtung, Maschine und Verfahren der Tabak verarbeitenden Industrie
DE102011006416B4 (de) Verfahren und System zum Herstellen eines Filterstrangs
EP3354143B1 (de) Verfahren und vorrichtung zum überwachen und herstellen eines filterstrangs der tabak verarbeitenden industrie
EP2433510A2 (de) Vorrichtung und Verfahren zur Messung von Eigenschaften eines bewegten Materialstrangs, insbesondere Zigarettenstrangs, mittels eine Mikrowellenresonators, dessen Ausgangssignal herabgemischt wird
DE202005001756U1 (de) Mikrowellensensor zur Messung einer dielektrischen Eigenschaft eines Produkts
DE2630614A1 (de) Verfahren und vorrichtung zur herstellung strangartiger gegenstaende in der tabakindustrie
EP3374762B1 (de) Vorrichtung und verfahren zur bestimmung des anteils mindestens eines zusatzstoffs in einem tabakhaltigen stoff, und maschine der tabak verarbeitenden industrie
EP2404512B1 (de) Vorrichtung zur Herstellung von Zigaretten in der tabakverarbeitenden Industrie
DE102006062339A1 (de) Mikrowellenresonator für eine oder an einer Textilmaschine, insb. Karde, Strecke, Kämmmaschine o. dgl.
EP3176567A1 (de) Anordnung, maschine, verfahren und verwendung zum überprüfen einer zigarettenkopfqualität
EP2570037A2 (de) Regelungsvorrichtung zur Regelung mindestens eines Parameters eines Artikels der Tabak verarbeitenden Industrie
DE2833124A1 (de) Verfahren und anordnung zum bilden eines stranges aus rauchfaehigen, vorzugsweise tabak bestehenden fasern
EP1321049B1 (de) Verfahren und Vorrichtung zur Messung des Feuchtigkeitsgrades von Zigaretten vor dem Verpacken
EP1532876B1 (de) Kühlung für eine Wand zum Führen eines Strangs der tabakverarbeitenden Industrie
EP3593653B1 (de) Messvorrichtung für einen saugbandförderer und saugbandförderer mit einer messvorrichtung
WO2019072625A1 (de) Verfahren und system zum herstellen von stabförmigen produkten der tabak verarbeitenden industrie
EP2998723B1 (de) Mikrowellenstrangmessvorrichtung, verfahren und verwendung
EP1532874B1 (de) Kanalwange
CH697758B1 (de) Mikrowellensensor zur Messung einer dielektrischen Eigenschaft, insbesondere der Dichte und/oder Feuchte, eines Produkts.
DE102015109950A1 (de) Vorrichtung und Verfahren zur Bestimmung von Anteilen und/oder Mischungsverhältnissen von Tabakbestandteilen in einer Zigarettenherstellmaschine
DE102014107747A1 (de) Messmodul, Messanordnung und Strangmaschine in der Tabak verarbeitenden Industrie
DE102010039088A1 (de) Umhüllungspapierstreifen der Tabak verarbeitenden Industrie und Verfahren zu dessen Herstellung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16713474

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017552801

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177032194

Country of ref document: KR

Kind code of ref document: A