WO2016158757A1 - 繊維強化複合材料用2液型エポキシ樹脂組成物および繊維強化複合材料 - Google Patents

繊維強化複合材料用2液型エポキシ樹脂組成物および繊維強化複合材料 Download PDF

Info

Publication number
WO2016158757A1
WO2016158757A1 PCT/JP2016/059635 JP2016059635W WO2016158757A1 WO 2016158757 A1 WO2016158757 A1 WO 2016158757A1 JP 2016059635 W JP2016059635 W JP 2016059635W WO 2016158757 A1 WO2016158757 A1 WO 2016158757A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
fiber
component
resin composition
reinforced composite
Prior art date
Application number
PCT/JP2016/059635
Other languages
English (en)
French (fr)
Inventor
岡英樹
富岡伸之
本田史郎
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2016518216A priority Critical patent/JP6137407B2/ja
Priority to EP16772638.9A priority patent/EP3275924B1/en
Priority to US15/562,002 priority patent/US10717831B2/en
Priority to CN201680017626.0A priority patent/CN107406607B/zh
Priority to KR1020177026585A priority patent/KR101900640B1/ko
Publication of WO2016158757A1 publication Critical patent/WO2016158757A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins

Definitions

  • the present invention relates to a two-pack type epoxy resin composition used for a fiber-reinforced composite material, and a fiber-reinforced composite material using the same.
  • Fiber reinforced composite materials composed of reinforced fibers and matrix resins can be designed using the advantages of reinforced fibers and matrix resins, so the applications are expanded to aerospace, sports and general industrial fields. .
  • the reinforcing fiber glass fiber, aramid fiber, carbon fiber, boron fiber, or the like is used.
  • the matrix resin either a thermosetting resin or a thermoplastic resin is used, but a thermosetting resin that can be easily impregnated into the reinforcing fiber is often used.
  • the thermosetting resin epoxy resin, unsaturated polyester resin, vinyl ester resin, phenol resin, bismaleimide resin, cyanate resin and the like are used.
  • a prepreg method For the production of a fiber reinforced composite material, methods such as a prepreg method, a hand lay-up method, a filament winding method, a pultrusion method, and an RTM (Resin Transfer Molding) method are applied.
  • a prepreg method For the production of a fiber reinforced composite material, methods such as a prepreg method, a hand lay-up method, a filament winding method, a pultrusion method, and an RTM (Resin Transfer Molding) method are applied.
  • RTM Resin Transfer Molding
  • the RTM method capable of dealing with complex shapes using high-rigidity and high-strength carbon fibers as continuous fibers is a promising forming method.
  • a base made of reinforcing fibers is placed in the lower mold and then the upper mold is closed. After the matrix resin is injected from the resin injection port and impregnated into the reinforcing fibers, the resin is cured and the upper mold is opened. Then, a fiber reinforced composite material is obtained by taking out the molded product.
  • productivity is a major issue for the spread of carbon fiber composite materials in automobiles, which becomes a barrier and is only slightly adopted in some luxury cars.
  • the two-pack type epoxy resin composition is a main component liquid containing an epoxy resin as a main component and a hardener solution containing a curing agent as a main component in a state of being stored in separate containers. It is an epoxy resin composition used by mixing two liquids, a liquid and a curing agent liquid.
  • an epoxy resin composition that is handled in a state where all components including a main agent and a curing agent are mixed into one is called a one-pack type epoxy resin composition.
  • a one-pack type epoxy resin composition since the curing reaction proceeds during storage, frozen storage is required.
  • the curing agent is often selected to be a solid with low reactivity, and in order to impregnate the reinforcing fiber with the one-pack type epoxy resin composition, it is not necessary to use a press roll or the like at high pressure. Must not.
  • both the main agent liquid and the curing agent liquid are liquid, and the epoxy resin composition obtained by mixing these main agent liquid and the curing agent liquid is also a low viscosity liquid. Therefore, the reinforcing fiber can be easily impregnated. Further, since the main agent liquid and the curing agent liquid can be stored separately, the storage conditions can be stored for a long time without any particular limitation.
  • the epoxy resin composition after mixing and preparation is stable while suppressing an increase in viscosity for a long period of time when kept at a low temperature of 40 ° C., that is, excellent in viscosity stability at 40 ° C.
  • the epoxy resin composition has a low viscosity during the resin injection step into the reinforcing fiber base, and the increase in viscosity is suppressed during the injection step, so that the impregnation property is excellent.
  • an epoxy resin composition for optical applications (Patent Document 1) having an intermediate temperature fast curability and no metal corrosiveness, combining an acid anhydride with a curing agent and an ammonium organic acid salt with an accelerator,
  • An epoxy resin composition (Patent Document 2) that combines an acid anhydride with a curing agent and a quaternary phosphonium salt with an accelerator to suppress coloring during heat curing (Patent Document 2), non-aromatic acid anhydride curing on an alicyclic epoxy
  • An epoxy resin composition (Patent Document 3) that is excellent in ultraviolet resistance and heat-resistant yellowing is disclosed using an agent, a salt of a quaternary phosphonium cation and an organic sulfonate anion as an accelerator.
  • Patent Documents 1 to 3 were not sufficiently high-speed cured.
  • the material described in Patent Document 4 has a problem that the cured product is colored when it is molded at a high temperature to shorten the curing time.
  • the object of the present invention is to improve the above-mentioned drawbacks of the prior art, to improve the viscosity stability of the epoxy resin composition after mixing and preparation at a low temperature (for example, 40 ° C.), and to maintain a low viscosity when injected into the reinforcing fiber.
  • Two-component epoxy resin composition that provides a fiber-reinforced composite material that has excellent impregnation properties, is cured in a short time during molding, and has high transparency of the cured product and excellent molded product quality, and a fiber-reinforced composite material using the same Is to provide.
  • the present invention is to solve the above-mentioned problems, and one embodiment (referred to as the present invention 1) of the two-pack type epoxy resin composition for fiber-reinforced composite material of the present invention comprises the following components [A] to A two-component epoxy resin composition for fiber-reinforced composite materials, which contains component [C], and the content of component [C] is 6 to 25 parts by mass with respect to 100 parts by mass of component [A].
  • component [C] is a quaternary ammonium halide.
  • the component [C] is quaternary phosphonium bromide.
  • the component [C] is tetraphenylphosphonium halide.
  • the component [C] is an imidazolium halide.
  • Another embodiment of the two-component epoxy resin composition for fiber-reinforced composite material of the present invention includes the following component [A] and component [B], and 5 minutes after mixing all the components.
  • the viscosity after 1 minute after mixing is 1.5 times or more and 4.0 times or less, and the viscosity after 20 minutes after mixing is 1.0 time or more and 2.0 times or less than the viscosity after 5 minutes after mixing.
  • the content of the component [C] is 6 to 25 parts by mass with respect to 100 parts by mass of the component [A]. is there.
  • the component [C] is a quaternary phosphonium bromide.
  • the component [C] is tetraphenylphosphonium halide.
  • the two-pack type epoxy resin composition for fiber-reinforced composite material of the present invention it further contains a component [D] reinforcing fiber.
  • the present invention 1 and the present invention 2 may be collectively abbreviated as the present invention, and so on.
  • the component [D] is carbon fiber.
  • the component [B] is an acid anhydride having an alicyclic structure.
  • the present invention is to solve the above problems, and the fiber reinforced composite material of the present invention is formed by curing the above-described two-pack type epoxy resin composition for fiber reinforced composite material.
  • the epoxy resin composition after mixing and preparation is excellent in viscosity stability at a low temperature (for example, 40 ° C.), has a low viscosity when injected into a reinforcing fiber, has excellent impregnation properties, and is short in molding.
  • a two-pack type epoxy resin composition for fiber-reinforced composite material can be obtained which can provide a fiber composite material excellent in heat resistance, excellent in transparency, high in transparency and excellent in molded product quality with high productivity.
  • the two-component epoxy resin composition for fiber-reinforced composite material of the present invention cures in a short time during molding and gives a high-quality fiber-reinforced composite material. It can be provided with high productivity.
  • the application of fiber-reinforced composite materials for automobiles is especially advanced, and it can be expected to contribute to the improvement of fuel economy and the reduction of greenhouse gas emissions by further reducing the weight of automobiles.
  • the two-pack type epoxy resin composition for fiber-reinforced composite material of the present invention 1 includes the following components [A] to [C], and the content of the component [C] is the above component [A] 100. The amount is 6 to 25 parts by mass with respect to parts by mass.
  • the two-component epoxy for fiber-reinforced composite material of the present invention 1 Each component of the resin composition will be described. including.
  • Component [A] used in the present invention is an epoxy resin.
  • An epoxy resin means a compound having two or more epoxy groups in one molecule.
  • component [A] in the present invention examples include an aromatic glycidyl ether obtained from a phenol having a plurality of hydroxyl groups, an aliphatic glycidyl ether obtained from an alcohol having a plurality of hydroxyl groups, a glycidyl amine obtained from an amine, and an oxirane ring.
  • aromatic glycidyl ether obtained from a phenol having a plurality of hydroxyl groups
  • an aliphatic glycidyl ether obtained from an alcohol having a plurality of hydroxyl groups
  • a glycidyl amine obtained from an amine
  • an oxirane ring examples include glycidyl esters obtained from epoxy resins and carboxylic acids having a plurality of carboxyl groups.
  • aromatic glycidyl ether examples include, for example, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol AD diglycidyl ether, and bisphenol S diglycidyl ether.
  • Diglycidyl ether obtained from bisphenol such as polyglycidyl ether of novolak obtained from phenol or alkylphenol, diglycidyl ether of resorcinol, diglycidyl ether of hydroquinone, diglycidyl ether of 4,4′-dihydroxybiphenyl, 4,4 Diglycidyl ether of '-dihydroxy-3,3', 5,5'-tetramethylbiphenyl, diglycidyl ether of 1,6-dihydroxynaphthalene, 9, Diglycidyl ether of '-bis (4-hydroxyphenyl) fluorene, triglycidyl ether of tris (p-hydroxyphenyl) methane, tetraglycidyl ether of tetrakis (p-hydroxyphenyl) ethane, and diglycidyl ether of bisphenol A And diglycidyl ether having an oxazolidone skeleton obtained by reacting
  • Examples of the aliphatic glycidyl ether that can be used as the component [A] in the present invention include, for example, diglycidyl ether of ethylene glycol, diglycidyl ether of propylene glycol, diglycidyl ether of 1,4-butanediol, 1, 6-hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether, cyclohexanedimethanol diglycidyl ether, glycerin diglycidyl ether, glycerin triglycidyl ether, trimethylolethane diglycidyl ether, trimethylolethane triglyceride Glycidyl ether, trimethylolpropane diglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether Ether, diglycidyl
  • Examples include alkyl-substituted products and hydrogenated products.
  • Examples of the epoxy resin having an oxirane ring that can be used as the component [A] in the present invention include vinylcyclohexene dioxide, dipentene dioxide, 3,4-epoxycyclohexanecarboxylic acid 3,4-epoxycyclohexylmethyl, adipine Examples thereof include bis (3,4-epoxycyclohexylmethyl) acid, dicyclopentadiene dioxide, bis (2,3-epoxycyclopentyl) ether, and oligomers of 4-vinylcyclohexene dioxide.
  • glycidyl ester examples include, for example, phthalic acid diglycidyl ester, terephthalic acid diglycidyl ester, hexahydrophthalic acid diglycidyl ester, and dimer acid diglycidyl ester. It is done.
  • diglycidyl ethers of bisphenol compounds that is, bisphenol type epoxy resins, particularly bisphenol A type epoxy resins, balance the viscosity of the epoxy resin composition with the heat resistance of the resulting cured product and mechanical properties such as elastic modulus. Since it is excellent, it is preferably used as the component [A] in the present invention.
  • the bisphenol A type epoxy resin preferably has a repeating unit number in the range of 0 to 0.2, and more preferably in the range of 0 to 0.1.
  • the number of repeating units is the following chemical formula
  • Such a bisphenol A type epoxy resin preferably has an epoxy equivalent in the range of 170 to 220, and more preferably in the range of 170 to 195.
  • the epoxy equivalent generally has a relationship such that it increases as the number of the above repeating units increases and decreases as it decreases.
  • the epoxy equivalent is less than 170, low molecular weight impurities may be included, which may lead to deterioration of the surface quality due to volatilization during molding.
  • this epoxy equivalent exceeds 220, while the viscosity of an epoxy resin composition rises and the impregnation property to a reinforced fiber deteriorates, the rigidity of the fiber reinforced composite material obtained may become inadequate.
  • Component [B] used in the present invention is an acid anhydride, specifically a carboxylic acid anhydride, and more specifically, an acid anhydride capable of reacting with an epoxy group of component [A] (epoxy resin). It refers to a compound having one or more groups in one molecule, and acts as a curing agent for epoxy resins. In a preferred embodiment, the number of acid anhydride groups is 4 or less per molecule.
  • Component [B] used in the present invention may be an acid anhydride having an aromatic ring but not an alicyclic structure such as phthalic anhydride, and an aromatic ring such as succinic anhydride.
  • An acid anhydride having no alicyclic structure may be used, but it is a low-viscosity liquid and easy to handle, and from the viewpoint of heat resistance and mechanical properties of the cured product, an acid anhydride having an alicyclic structure.
  • a compound having a cycloalkane ring or a cycloalkene ring is more preferably used.
  • the acid anhydride having such an alicyclic structure include, for example, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyldihydronadic acid anhydride, 1,2,4,5- Cyclopentanetetracarboxylic dianhydride, 1,2,3,6-tetrahydrophthalic anhydride, methyl-1,2,3,6-tetrahydrophthalic anhydride, nadic acid anhydride, methyl nadic acid anhydride, Bicyclo [2,2,2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride and 4- (2,5-dioxotetrahydrofuran-3-yl) -3-methyl- Examples include 1,2,5,6-tetrahydrophthalic anhydride.
  • hexahydrophthalic acid anhydride, tetrahydrophthalic acid anhydride, nadic acid anhydride and acid anhydrides selected from their alkyl-substituted types are the viscosity of the epoxy resin composition, the heat resistance of the resulting cured product, Since it is excellent in balance with mechanical properties such as elastic modulus, it is preferably used as component [B] in the present invention. Even when an acid anhydride having an alicyclic structure is used as the component [B], the two-component epoxy resin composition according to the present invention contains an acid anhydride having no alicyclic structure. be able to.
  • the blending amount of component [A] and component [B] in the present invention is the ratio of the number of acid anhydride groups (H) in component [B] to the total number of epoxy groups (E) in component [A], H / E.
  • the blending amount is preferably in the range of 0.8 to 1.1, more preferably in the range of 0.85 to 1.05, and in the range of 0.9 to 1.0. It is a more preferable aspect that the blending amount satisfies the above.
  • the H / E ratio is less than 0.8, the polymerization between the excessively existing epoxy resins proceeds and the physical properties of the cured product are deteriorated.
  • the H / E ratio exceeds 1.1 the concentration of the reaction points of the system decreases due to excessive curing agent components, the reaction rate decreases, and sufficient high-speed curability cannot be exhibited. There is.
  • the two-pack type epoxy resin composition for fiber-reinforced composite material of the present invention 2 includes the component [A] and the component [B], and the viscosity after 5 minutes from the mixing of all the components is 1 minute after the mixing.
  • the temperature T1 is 1.5 times or more and 4.0 times or less of the viscosity, and the viscosity after 20 minutes from the mixing is 1.0 to 2.0 times the viscosity after 5 minutes from the mixing, It is a two-pack type epoxy resin composition for fiber-reinforced composite materials whose temperature T1 is 30 ° C. or higher and 60 ° C. or lower.
  • the two-pack type epoxy resin composition for fiber-reinforced composite material of the present invention 2 has a viscosity of 1.7 times or more and 4.0 times or less of the viscosity after 1 minute from the mixing of all components. This is a preferred embodiment. Furthermore, in the two-component epoxy resin composition for fiber-reinforced composite material of the present invention 2, the viscosity after 20 minutes from mixing is more than 1.0 times and less than 1.6 times the viscosity after 5 minutes from mixing. This is a preferred embodiment.
  • the viscosity after 5 minutes from the mixing of all components is 1.5 times to 4.0 times the viscosity after 1 minute from the mixing, and the viscosity after 20 minutes from the mixing is the viscosity after 5 minutes from the mixing.
  • the temperature T1 is 1.0 times or more and 2.0 times or less, the viscosity is measured at three points of 30 ° C., 40 ° C., and 60 ° C., and the above-mentioned viscosity at any temperature.
  • the condition is satisfied, it is determined that the temperature T1 exists, and when the viscosity condition is not satisfied at any temperature, it is determined that the temperature T1 does not exist. That is, the temperature T1 is a numerical value selected from any of 30 ° C., 40 ° C., and 60 ° C.
  • the two-pack type epoxy resin composition for fiber reinforced composite material of the present invention 2 can control the resin flow after impregnation into the reinforced fiber by exhibiting the above-mentioned viscosity behavior. Since it is difficult for the resin to enter the slight gap between the parts, the burr of the molded body is reduced.
  • the filament winding method can suppress the dripping of the resin after the resin is impregnated into the reinforcing fiber and can reduce the loss of the resin material. It becomes possible and also improves the quality of the molded product.
  • the viscosity after 5 minutes from the mixing of all components is 1.5 to 4.0 times the viscosity after 1 minute from the mixing, and 20 minutes after the mixing.
  • the method for adjusting the temperature T1 to 30 ° C. or more and 60 ° C. or less having a temperature T1 that is 1.0 to 2.0 times the viscosity 5 minutes after mixing can be given. That is, it is preferable that the two-pack type epoxy resin composition for fiber-reinforced composite material of the present invention 2 contains the component [C].
  • Component [C] Quaternary ammonium salt, quaternary phosphonium halide or imidazolium salt
  • Component [C] used in the present invention 1 and the preferred embodiment of the present invention 2 is a quaternary ammonium salt, a quaternary phosphonium halide or an imidazolium salt. These act as curing accelerators for rapid curing.
  • the quaternary ammonium salt has a curing time in spite of little increase in viscosity at room temperature after mixing the main agent liquid and the curing agent liquid. Therefore, when the fiber reinforced composite material is molded, the fiber reinforced composite material is excellent in impregnation into the reinforced fiber base material, and the fiber reinforced composite material can be molded with high productivity.
  • quaternary ammonium salt used as the component [C] in the present invention include, for example, a quaternary ammonium oxoacid salt composed of a quaternary ammonium cation and an oxoacid anion, a quaternary ammonium cation and a 17th acid.
  • Examples of the quaternary ammonium oxoacid salt include, for example, tetramethylammonium perchlorate, tetramethylammonium sulfate, tetramethylammonium acetate, tetramethylammonium hydrogensulfate, tetraethylammonium nitrate, tetraethylammonium perchlorate, Cetyltrimethylammonium perchlorate, hexadecyltrimethylammonium perchlorate, tetrabutylammonium perchlorate, tri-n-octylmethylammonium hydrogensulfate, tetrabutylammonium acetate, tetrabutylammonium hydrogensulfate, tetramethylammonium p- Examples include toluene sulfonate, tetraethylammonium p-toluenesulfonate, and
  • Examples of the quaternary ammonium halide include, for example, tetramethylammonium chloride, methyltriethylammonium chloride, tetraethylammonium chloride, tributylmethylammonium chloride, decyltrimethylammonium chloride, trimethyl-n-octylammonium chloride, lauryltrimethylammonium chloride, Dodecyltrimethylammonium chloride, trimethyldodecylammonium chloride, trimethylmyristylammonium chloride, tetradecyltrimethylammonium chloride, trimethyltetradecylammonium chloride, tetrapropylammonium chloride, cetyltrimethylammonium chloride, hexadecyltrimethylammonium chloride, trimethylocta Silammonium chloride, tri-n-octylmethylammonium chloride, dilauryldimethylam
  • Examples of the quaternary ammonium borate salt include, for example, tetramethylammonium tetrafluoroborate, triethylmethylammonium tetrafluoroborate, tetraethylammonium tetrafluoroborate, cetyltrimethylammonium tetrafluoroborate, hexadecyltrimethylammonium tetrafluoroborate, tetra Examples include butylammonium tetrafluoroborate, 1-ethyl-1-methylpyrrolidinium tetrafluoroborate, and tetrabutylammonium tetraphenylborate.
  • quaternary ammonium halides are preferably used and quaternary ammonium bromides are more preferably used from the viewpoints of solubility in epoxy resin and curing agent and cost.
  • the quaternary phosphonium halide has a viscosity of 5 minutes after mixing all components at a temperature of 30 ° C. to 60 ° C. at a level that does not impair impregnation. Viscosity of 1.5 to 4.0 times the viscosity after 1 minute from mixing, and 1.0 to 2.0 times the viscosity after 5 minutes from mixing. It is preferably used as component [C] in the present invention because it exhibits behavior and can often control the flow of resin. Recently, the shape of the molded body has become complicated, and in order to cope with this, the mold has become more complicated, such as being able to be divided into a plurality of parts.
  • the resin may enter a slight gap between the mold parts, which may increase the burr of the molded body.
  • Resin flow is controlled by increasing the viscosity moderately.
  • the RTM method makes it difficult for the resin to enter the slight gaps in the mold parts, reducing burrs on the molded product, and the filament winding method reduces resin dripping. It is preferable because it is possible.
  • the quaternary phosphonium halide used as the component [C] in the present invention includes quaternary phosphonium from the viewpoint of the solubility and cost in the component [A] and the component [B], and the above-mentioned specific viscosity behavior.
  • Bromide is a preferred embodiment, and specific examples thereof include tetraethylphosphonium bromide, tetrabutylphosphonium bromide, tributyl-n-octylphosphonium bromide, tetra-n-octylphosphonium bromide, tributyldodecylphosphonium bromide, tributylhexadecylphosphonium bromide, methyl Triphenylphosphonium bromide, tetraphenylphosphonium bromide, ethyltriphenylphosphonium bromide, butyltriphenylphosphonium bromide, triphenylpropylphosphonium bromide Amyl bromide, benzyl triphenyl phosphonium bromide, hexyl bromide, heptyl bromide and triphenyl (tetradecyl) phosphonium bromide, and the like.
  • the quaternary phosphonium halide used as the component [C] in the present invention is preferably a tetraphenylphosphonium halide from the viewpoint of the physical properties of the cured product. Specific examples thereof include tetraphenylphosphonium bromide and tetraphenylphosphonium chloride. And tetraphenylphosphonium iodide.
  • the content of the component [C] used in the preferred embodiments of the present invention 1 and the present invention 2 is preferably 6 to 25 parts by mass, and 6 to 20 parts by mass with respect to 100 parts by mass of the component [A]. Is a more preferred embodiment.
  • the amount of the component [C] is less than 6 parts by mass, the time required for curing becomes long and sufficient high-speed curability may not be exhibited.
  • the time which maintains a low viscosity becomes short and the impregnation to a reinforced fiber may become difficult.
  • imidazolium salt used as the component [C] in the present invention include, for example, 1-butyl-3-methylimidazolium bromide, 1-butyl-3-methylimidazolium chloride, 1-butyl-3-methyl.
  • Imidazolium tetrafluoroborate 1-butyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, 1-butyl-2,3-dimethylimidazolium chloride, 1-butyl-2 , 3-dimethylimidazolium hexafluorophosphate, 1-butyl-2,3-dimethylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide, 1-butyl-3-methylimidazole Um tetrachloroferrate, 1-butyl-3-methylimidazolium iodide, 1-butyl-2,3-dimethylimidazolium bis (trifluoromethanesulfonyl) imide, 1-butyl-3-methylimidazolium trifluoro (tri Fluoro
  • Viscosity of two-component epoxy resin composition In the two-pack type epoxy resin composition of the present invention, the above-described components are properly blended so that the viscosity after 1 minute from the mixing of all components at 40 ° C. is 0.1 to 2.0 Pa ⁇ s. It is preferable that the pressure is 0.1 to 1.5 Pa ⁇ s. By setting the viscosity to 2.0 Pa ⁇ s or less, the viscosity at the molding temperature can be lowered, and when the fiber reinforced composite material is molded, the injection time into the reinforcing fiber base is shortened, and the cause of non-impregnation is reduced. Because you can.
  • the viscosity at the molding temperature does not become too low, and pits that are generated by entraining air at the time of injection into the reinforcing fiber substrate when molding the fiber reinforced composite material This is because it is possible to prevent the occurrence of an unimpregnated region caused by uneven impregnation.
  • the viscosity in the present invention can be determined by measuring the viscosity immediately after mixing and preparing the two-component epoxy resin composition based on a measurement method using a cone-plate type rotational viscometer in ISO 2884-1 (1999). Examples of the measuring device include TVE-33H type manufactured by Toki Sangyo Co., Ltd.
  • the viscosity immediately after mixing preparation is the viscosity one minute after mixing preparation.
  • Dielectric measurement cannot be uniquely associated with viscosity and elastic modulus, but is useful for obtaining a curing profile of a thermosetting resin that changes from a low viscosity liquid to a high elastic modulus amorphous solid.
  • a curing profile is obtained from a time change of ion viscosity (equivalent resistivity) calculated from a complex dielectric constant measured by applying a high-frequency electric field to a thermosetting resin.
  • an MDE-10 cure monitor manufactured by Holometrix-Micromet can be used as the dielectric measurement device.
  • a Viton O-ring having an inner diameter of 32 mm and a thickness of 3 mm is installed on the lower surface of the programmable mini press MP2000 in which a TMS-1 inch type sensor is embedded in the lower surface, and the temperature of the press is set to a predetermined value. Set to temperature T.
  • the epoxy resin composition is poured inside the O-ring, the press is closed, and the time change of the ionic viscosity of the epoxy resin composition is followed.
  • Dielectric measurement is performed at frequencies of 1, 10, 100, 1000, and 10000 Hz, and the logarithm Log ( ⁇ ) of ion viscosity independent of frequency is obtained by using software (Umetric) attached to the apparatus.
  • the cure index at the curing required time t is obtained by the following (Equation 4), and the time for the cure index to reach 10% is set to t10, and the time for the cure index to reach 90% is set to t90.
  • Cure index ⁇ log ( ⁇ t) ⁇ log ( ⁇ min) ⁇ / ⁇ log ( ⁇ max) ⁇ log ( ⁇ min) ⁇ ⁇ 100 (Equation 4) ⁇ Cure index: (Unit:%) ⁇ t: Ionic viscosity at time t (unit: ⁇ ⁇ cm) ⁇ ⁇ min: Minimum value of ion viscosity (unit: ⁇ ⁇ cm) ⁇ max: Maximum value of ion viscosity (unit: ⁇ ⁇ cm).
  • ion viscosity by dielectric measurement is relatively easy even if the curing reaction is fast. Furthermore, the ionic viscosity can be measured after gelation, and increases with the progress of curing, and saturates as the curing is completed. Therefore, it can be used not only for the initial viscosity change but also for tracking the progress of the curing reaction.
  • the value obtained by standardizing the logarithm of the ionic viscosity so that the minimum value is 0% and the saturation value (maximum value) is 100% is called the cure index, and describes the curing profile of the thermosetting resin. Used to do.
  • t10 proportional to the time (flowable time) in which the two-component epoxy resin composition can flow at the specific temperature T2 is 0.5 minutes or more and 2 minutes or less.
  • Equation 1 t90 proportional to the time in which demolding is possible (demoldable time) is 0.5 minutes to 5 minutes
  • Forma 2 t90 proportional to the time in which demolding is possible
  • Forma 3 the ratio of the demoldable time and flowable time of the epoxy resin composition is greater than 1 and 2.5 or less
  • t90 / t10 is more preferably smaller in the range of 1 to 2.5.
  • the molding temperature (heat curing temperature) of the epoxy resin composition that is, the specific temperature T2 is preferably in the range of 100 to 140 ° C.
  • the range of the specific temperature T2 is preferably in the range of 100 to 140 ° C.
  • the two-pack type epoxy resin composition of the present invention is first composed of a main agent liquid containing the component [A] and a component [B] as main components (note that the main component here is based on mass in the hardener solution. It is meant that the component is the maximum amount.)
  • the curing agent liquid contained as above is blended in the above-mentioned blending amounts, and the main agent liquid and the curing agent liquid are mixed so that the blending amount is set immediately before use. It is obtained by mixing.
  • the above-mentioned component [C] can be blended in either the main agent liquid or the curing agent liquid, but is more preferably included in the curing agent liquid.
  • the main agent liquid and the curing agent liquid are preferably heated separately before mixing, and mixed using a mixer immediately before use, such as injection into a mold, to obtain a two-part epoxy resin composition. It is preferable from the viewpoint of the pot life of the resin.
  • the two-component epoxy resin composition of the present invention may contain reinforcing fibers as component [D] as necessary.
  • the reinforcing fiber in this case, glass fiber, aramid fiber, carbon fiber, boron fiber and the like are preferably used.
  • carbon fiber is preferably used because it is lightweight and a fiber-reinforced composite material having excellent mechanical properties such as strength and elastic modulus can be obtained.
  • the reinforcing fiber may be either a short fiber or a continuous fiber, and both may be used in combination.
  • continuous fibers are preferably used.
  • the form of the reinforcing fiber may be used as a strand, but the reinforcing fiber may be used as a reinforcing fiber base material processed into a mat, woven fabric, knit, braid, unidirectional sheet or the like.
  • a woven fabric is preferably used because it is relatively easy to increase the fiber volume content Vf (details will be described later) of the fiber-reinforced composite material and it is excellent in handleability.
  • the higher the filling rate of the fabric the easier it is to obtain a fiber-reinforced composite material having a high fiber volume content Vf. Therefore, the filling rate of the fabric is preferably 0.10 to 0.85, more preferably 0. .40 to 0.85, more preferably within the range of 0.50 to 0.85.
  • the filling rate of the woven fabric is a ratio of the net volume of the reinforcing fiber to the apparent volume of the woven fabric, and is obtained by the formula of W / (1000 t ⁇ ⁇ f).
  • W basis weight (unit: g / m 2 )
  • T Thickness (unit: mm)
  • ⁇ f density of reinforcing fiber (unit: g / cm 3 )
  • the fabric weight and thickness of the fabric used here are determined in accordance with JIS R 7602 (1995).
  • the fiber-reinforced composite material of the present invention is obtained by combining the two-pack type epoxy resin composition of the present invention and the reinforcing fiber as the component [D], and subsequently curing the two-pack type epoxy resin composition.
  • a molding method of the fiber reinforced composite material of the present invention a molding method using a two-component resin, such as a hand lay-up method, a filament winding method, a pultrusion method, and an RTM (Resin Transfer Molding) method is preferable. Used for.
  • the RTM molding method is particularly preferably used from the viewpoint of productivity and the degree of freedom of shape of the molded body.
  • a reinforcing fiber composite material is obtained by injecting a resin into a reinforcing fiber base disposed in a mold and curing the resin.
  • the method for producing the fiber-reinforced composite material of the present invention will be described taking the RTM molding method as an example.
  • the two-pack type epoxy resin composition according to the present invention is obtained.
  • the fiber reinforced composite material of the present invention is injected and impregnated with the heated two-component epoxy resin composition into a reinforcing fiber base disposed in a mold heated to a specific temperature T. It is preferable to be produced by curing with.
  • the temperature at which the two-component epoxy resin composition is heated is determined from the relationship between the initial viscosity and the viscosity increase of the two-component epoxy resin composition from the viewpoint of impregnation into the reinforcing fiber substrate, and preferably 30 to 70. ° C, more preferably 50 to 60 ° C.
  • a mold having a plurality of injection ports is used, and the two-component epoxy resin composition is injected sequentially from the plurality of injection ports simultaneously or with a time difference.
  • the two-component epoxy resin composition is injected sequentially from the plurality of injection ports simultaneously or with a time difference.
  • the number and shape of the above-mentioned injection ports are not limited, but in order to enable injection in a short time, it is better that there are many injection ports, and the arrangement thereof depends on the shape of the fiber-reinforced composite material to be molded. A position where the flow length of the resin can be shortened is preferable.
  • the injection pressure of the two-pack type epoxy resin composition is usually 0.1 to 1.0 MPa, and VaRTM (Vacuum Assist Resin Transfer Molding) method in which the epoxy resin composition is injected by vacuum suction inside the mold can also be used.
  • VaRTM Vaum Assist Resin Transfer Molding
  • it is preferably 0.1 to 0.6 MPa in view of the injection time and the economical efficiency of the equipment. Even when pressure injection is performed, generation of voids can be suppressed by reducing the pressure in the mold before injecting the two-component epoxy resin composition.
  • the reinforcing fiber used is as described in [Component [D]: Reinforcing fiber].
  • the fiber volume content Vf is preferably 40 to 85%, more preferably 45 to 85%. is there.
  • the fiber volume content Vf of the fiber reinforced composite material referred to here is a value defined and measured by the following in accordance with ASTM D3171 (1999), and is an epoxy resin composition with respect to the reinforced fiber substrate. Is in a state after being injected and cured. That is, the measurement of the fiber volume content Vf of the fiber reinforced composite material can be expressed by the following (Formula 5) from the thickness h of the fiber reinforced composite material.
  • Fiber volume content Vf (%) (Af ⁇ N) / ( ⁇ f ⁇ h) / 10 (Expression 5) -Af: One fiber base material-Mass per 1 m 2 (g / m 2 ) ⁇ N: Number of laminated fiber base materials (sheets) ⁇ f: density of reinforcing fiber (g / cm 3 ) H: Thickness (mm) of the fiber reinforced composite material (test piece).
  • the combustion method, nitric acid decomposition method and sulfuric acid decomposition method based on JIS K 7075 (1991) The fiber volume content of the fiber reinforced composite material can be measured by any of the methods.
  • the density measured in accordance with JIS R 7603 (1999) is used as the density of the reinforcing fibers used in this case.
  • the thickness of the fiber reinforced composite material can be correctly measured. As described in JIS K 7072 (1991), JIS B 7502 (1994). Measure with a micrometer specified in the above or with a precision equivalent to or better than this. If the fiber reinforced composite material has a complicated shape and cannot be measured, cut out a sample (a sample having a certain shape and size for measurement) from the fiber reinforced composite material and measure it. be able to.
  • a veneer can be mentioned.
  • a sandwich structure in which a single plate-like fiber reinforced composite material is disposed on both surfaces of the core material, a hollow structure having a single plate-like structure covered with the periphery, and a single plate-like shape Examples include a so-called canaging structure in which a fiber-reinforced composite material is disposed on one side of a core material.
  • Core materials for sandwich and canacher structures include honeycomb cores made of aluminum or aramid, polyurethane, polystyrene, polyamide, polyimide, polyvinyl chloride, phenolic resin, acrylic resin, epoxy resin foam cores, balsa, etc. Wood and the like. Among them, a foam core is preferably used as the core material because a lightweight fiber-reinforced composite material can be obtained.
  • the fiber-reinforced composite material of the present invention is excellent in mechanical properties such as strength and elastic modulus while being lightweight. Therefore, it is preferably used for structural members and outer plates of aircraft, space satellites, industrial machines, railway vehicles, ships, and automobiles. Moreover, it is excellent in color tone and surface quality. Therefore, it is preferably used particularly for automobile outer plate applications.
  • Epoxy resin “jER” registered trademark 1001 (manufactured by Mitsubishi Chemical Corporation): bisphenol A type epoxy resin, epoxy equivalent 475 "Epototo” (registered trademark) YD-128 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.): bisphenol A type epoxy resin, epoxy equivalent 189 "Epototo” (registered trademark) YDF-170 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.): bisphenol F type epoxy resin, epoxy equivalent 170 "Celoxide” (registered trademark) 2021P (manufactured by Daicel Corporation): alicyclic epoxy resin, epoxy equivalent 137 2.
  • Acid anhydride, HN-5500 (manufactured by Hitachi Chemical Co., Ltd.): Methylhexahydrophthalic acid anhydride, “Kayahard” (registered trademark) MCD (manufactured by Nippon Kayaku Co., Ltd.): Methyl nadic acid anhydride Quaternary ammonium salt, tetramethylammonium bromide (Tokyo Chemical Industry Co., Ltd.) ⁇ Tetramethylammonium chloride (manufactured by Tokyo Chemical Industry Co., Ltd.) ⁇ Trimethylphenylammonium bromide (Tokyo Chemical Industry Co., Ltd.) 4).
  • Imidazolium salt 1-butyl-3-methylimidazolium chloride (manufactured by Tokyo Chemical Industry Co., Ltd.) ⁇ 1-Butyl-3-methylimidazolium bromide (Tokyo Chemical Industry Co., Ltd.) ⁇ 1-ethyl-3-methylimidazolium bromide (manufactured by Tokyo Chemical Industry Co., Ltd.) 6).
  • Dielectric measurements were taken to track the cure of the epoxy resin.
  • an MDE-10 cure monitor manufactured by Holometrix-Micromet was used as a dielectric measurement apparatus.
  • a Viton O-ring with an inner diameter of 32 mm and a thickness of 3 mm was installed on the lower surface of the programmable mini press MP2000 with a TMS-1 inch type sensor embedded in the lower surface, the press temperature was set to 120 ° C, and the O-ring
  • the epoxy resin composition was poured inside, the press was closed, and the time change of the ionic viscosity of the epoxy resin composition was followed.
  • Dielectric measurement was performed at each frequency of 1, 10, 100, 1000, and 10000 Hz, and logarithm Log ( ⁇ ) of frequency-independent ion viscosity was obtained using attached software.
  • Cure index ⁇ log ( ⁇ t) ⁇ log ( ⁇ min) ⁇ / ⁇ log ( ⁇ max) ⁇ log ( ⁇ min) ⁇ ⁇ 100 (Expression 4) ⁇ Cure index: (Unit:%) ⁇ t: Ionic viscosity at time t (unit: ⁇ ⁇ cm) ⁇ ⁇ min: Minimum value of ion viscosity (unit: ⁇ ⁇ cm) ⁇ max: Maximum value of ion viscosity (unit: ⁇ ⁇ cm).
  • ⁇ Creation of cured resin plate> A copper spacer having a thickness of 2 mm, in which a square with a side of 50 mm was cut out, was placed on the lower surface of the press device, the press temperature was set to 120 ° C., the epoxy resin composition was poured inside the spacer, and the press was closed. After 20 minutes, the press was opened to obtain a cured resin plate.
  • Tg of cured product A test piece having a width of 12.7 mm and a length of 40 mm was cut out from the cured resin plate and subjected to torsional DMA measurement using a rheometer (ARES manufactured by TA Instruments). The measurement conditions are a heating rate of 5 ° C./min. The temperature at the inflection point of the storage elastic modulus G ′ obtained by the measurement was defined as Tg.
  • ⁇ Hardened product coloring> The presence or absence of coloring was judged about said resin hardening board. Specifically, a 30 mm square and 2 mm thick test piece cut out from a cured resin plate was used, and the color tone of the cured product was changed to L using a spectrocolorimeter (CM-700d, manufactured by Konica Minolta Co., Ltd.). * A * b * color system.
  • the L * a * b * color system is used to represent the color of a substance. L * represents lightness, and a * and b * represent chromaticity.
  • a * indicates the red direction
  • -a * indicates the green direction
  • b * indicates the yellow direction
  • -b * indicates the blue direction.
  • the measurement conditions were a spectral transmittance in a wavelength range of 380 to 780 nm under a condition that does not include a D65 light source, a 10 ° field of view, and regular reflection light.
  • ⁇ 5 “no coloring” was designated, and the others were “colored”.
  • Cavity carbon fiber fabric CO6343 (carbon fiber: T300-3K, organization: plain weave, basis weight: 198 g / m 2 , manufactured by Toray Industries, Inc.) as a reinforcing fiber in a mold having a plate-like cavity of 350 mm ⁇ 700 mm ⁇ 2 mm
  • a mold having a plate-like cavity of 350 mm ⁇ 700 mm ⁇ 2 mm
  • the main agent liquid and the curing agent liquid were mixed using a resin injection machine and injected at a pressure of 0.2 MPa. Twenty minutes after the start of injection of the epoxy resin composition, the mold was opened and demolded to obtain a fiber-reinforced composite material.
  • the amount of voids in the fiber reinforced composite material is less than 1%, and “A” indicates that the voids are not substantially present.
  • the fiber reinforced composite material has no resin non-impregnated portion.
  • the case where the void amount was 1% or more was designated as “B”, and the case where the resin-unimpregnated portion was observed in the appearance of the fiber reinforced composite material was designated as “C”.
  • the amount of voids in the fiber reinforced composite material was calculated from the area ratio of the voids in the fiber reinforced composite material by observing a smoothly polished fiber reinforced composite material cross section with a tilt-down optical microscope.
  • the epoxy resin composition was mixed and prepared as described above, and the viscosity measurement and dielectric measurement were performed as described above. Moreover, the resin cured plate was produced by the above-described method using this epoxy resin composition, and the glass transition temperature Tg was measured and the color evaluation was performed. Furthermore, the fiber reinforced composite material was produced by the above-mentioned method using the epoxy resin composition.
  • Example 1 As shown in Table 1, a main agent solution composed of 100 parts by mass of bisphenol A type epoxy resin “Epototo” (registered trademark) YD-128, and 89 parts by mass of acid anhydride “HN-5500” with tetramethylammonium bromide An epoxy resin composition was mixed and prepared from a hardener solution in which 6 parts by mass were heated at 80 ° C. and dissolved. Even if this epoxy resin composition was kept at a temperature of 40 ° C., the viscosity increase ratio was kept low, and the low viscosity state was maintained. Further, since the demoldable time represented by t90 at a temperature of 120 ° C.
  • the molding time of the fiber-reinforced composite material is also effective for shortening the molding time.
  • the cured product of the epoxy resin composition had a Tg higher than the molding temperature (120 ° C.) and was not colored. For this reason, the fiber reinforced composite material produced using this epoxy resin composition was able to be easily demolded without being deformed when the molded product was taken out from the mold. The results are shown in Table 1.
  • Example 2 The same procedure as in Example 1 was performed except that 18 parts by mass (Example 2) and 25 parts by mass (Example 3) of tetramethylammonium bromide were used, respectively. All were excellent in viscosity stability at 40 ° C., and the demoldable time was short. Moreover, since the cured product of this epoxy resin composition had a Tg higher than the molding temperature (120 ° C.) and was not colored, the fiber-reinforced composite material produced using this epoxy resin composition takes out the molded product from the mold. The mold could be easily removed without deformation. The results are shown in Table 1.
  • Example 4 Bisphenol F-type epoxy resin “Epototo” (registered trademark) YDF-170 100 parts by weight of the main agent liquid, the curing agent liquid is 74 parts by weight of acid anhydride “HN-5500” and “Kayahard” (registered trademark) ) MCD "26 parts by mass, tetramethylammonium chloride was carried out in the same manner as in Example 1 except that Example 4 was 7 parts by mass and Example 5 was 23 parts by mass. All were excellent in viscosity stability at 40 ° C., and the demoldable time was short.
  • Example 6 and 7 A main agent liquid composed of 75 parts by mass of a bisphenol A type epoxy resin “jER” (registered trademark) 1001 and 25 parts by mass of an alicyclic epoxy resin “Celoxide” (registered trademark) 2021P; The same procedure as in Example 1 was performed except that 100 parts by mass of the product “HN-5500” and trimethylphenylammonium bromide were 6 parts by mass in Example 6 and 22 parts by mass in Example 7. All were excellent in viscosity stability at 40 ° C., and the demoldable time was short.
  • Example 1 The same operation as in Example 1 was carried out except that tetramethylammonium bromide was changed to 2 parts by mass and 4 parts by mass, respectively. Although both are excellent in viscosity stability at 40 ° C., the amount of the component [C] is insufficient, and the curing time is longer than in the examples. Therefore, the fiber-reinforced composite produced using this epoxy resin composition The material has a longer demoldable time, and the productivity at the time of molding is inferior. The results are shown in Table 1.
  • Example 3 The same operation as in Example 1 was carried out except that 40 parts by mass of tetramethylammonium bromide was used. Since there is too much quantity of component [C] and the viscosity increase at 40 degreeC is remarkably inferior to the viscosity stability at 40 degreeC of an epoxy resin composition, it is going to produce a fiber reinforced composite material using this epoxy resin composition. Then, the impregnation property of the resin to the reinforcing fiber was inferior. Moreover, since the Tg of the cured product of the epoxy resin composition was lower than the molding temperature (120 ° C.), it was deformed when the fiber-reinforced composite material was demolded. The results are shown in Table 1.
  • Example 5 The main agent liquid consisting of 100 parts by mass of the bisphenol A type epoxy resin “Epototo” (registered trademark) YD-128, and the curing agent liquid containing 18 parts by mass of metaxylenediamine without containing the components [B] and [C]. Except for this, the same procedure as in Example 1 was performed. In this comparative example, since the component [B] and the component [C] are not included, the viscosity of the epoxy resin composition is high, and the viscosity increase rate is high and the stability of the viscosity is poor. Therefore, fibers using this epoxy resin composition In the reinforced composite material molding, the impregnation property to the reinforcing fiber was inferior. The results are shown in Table 1.
  • Comparative Example 6 The same operation as in Example 1 was carried out except that 10 parts by mass of tri-p-tolylphosphine was used instead of component [C]. Although this comparative example had a short curing time, it was colored when cured at a temperature of 120 ° C. The results are shown in Table 1.
  • the main agent liquid consisting of 100 parts by mass of the bisphenol F type epoxy resin “Epototo” (registered trademark) YDF-170 and the curing agent liquid includes 74 parts by mass of the acid anhydride “HN-5500”.
  • a curing agent solution in which 6 parts by mass of ethyltriphenylphosphonium bromide was dissolved in 26 parts by mass of “Kayahard” (registered trademark) MCD at 90 ° C. to prepare an epoxy resin composition.
  • this epoxy resin composition When this epoxy resin composition is kept at a temperature of 40 ° C., it shows a steep increase in viscosity until 5 minutes after mixing preparation, and after 20 minutes there is no increase in viscosity, and a low viscosity state is maintained. It was. Further, since the demoldable time represented by t90 at a temperature of 120 ° C. is short, it was found that the molding time of the fiber-reinforced composite material is also effective for shortening the molding time. Moreover, the cured product of this epoxy resin composition has a Tg higher than the molding temperature (120 ° C.) and is not colored. When the fiber reinforced composite material produced using this epoxy resin composition is taken out of the mold, The mold could be easily removed without deformation, and there were few burrs on the molded body. The results are shown in Table 2.
  • Example 9 The same procedure as in Example 8 was carried out except that ethyltriphenylphosphonium bromide was changed to the amounts shown in Table 2. All were excellent in viscosity increase after mixing preparation and the subsequent viscosity stability at 40 ° C., and the demoldable time was short. In addition, since the cured product of this epoxy resin composition had a Tg higher than the molding temperature (120 ° C.) and was not colored, the fiber-reinforced composite material produced using this epoxy resin composition was deformed when taken out from the mold. The mold could be easily removed without any burrs, and there were few burrs. The results are shown in Table 2.
  • Example 11 to 13 The main agent liquid composed of bisphenol A type epoxy resin “Epototo” (registered trademark) YD-128, and the curing agent liquid contained acid anhydride “HN-5500” and tetraphenylphosphonium bromide in the amounts shown in Table 2, respectively.
  • the same operation as in Example 8 was carried out except that. All of them were excellent in viscosity increase after mixing preparation and viscosity stability at 40 ° C., and the demoldable time was short.
  • the cured product of this epoxy resin composition had a Tg higher than the molding temperature (120 ° C.) and was not colored, the fiber-reinforced composite material produced using this epoxy resin composition was deformed when taken out from the mold. The mold could be easily removed without any burrs, and there were few burrs. The results are shown in Table 2.
  • Example 14 A main agent solution in which bisphenol A type epoxy resin “Epototo” (registered trademark) YD-128 ”and“ “Celoxide” (registered trademark) 2021P ”are combined at 25 ° C. at room temperature, and an acid is contained in the curing agent solution.
  • the same procedure as in Example 8 was conducted except that the amounts of anhydride “HN-5500” and tetraphenylphosphonium bromide were changed to those shown in Table 2. All of them were excellent in viscosity increase after mixing preparation and viscosity stability at 40 ° C., and the demoldable time was short.
  • Example 16 As shown in Table 2, a bisphenol A type epoxy resin “jER” (registered trademark) 1001 and a bisphenol F type epoxy resin “Epototo” (registered trademark) YDF-170 ”were combined and heated at 90 ° C. The same procedure as in Example 8 was conducted, except that the compatible main agent solution and curing agent solution were acid anhydride “HN-5500” and tetraphenylphosphonium chloride in amounts shown in Table 2. All of them were excellent in viscosity increase after mixing preparation and viscosity stability at 40 ° C., and the demoldable time was short.
  • the compatible main agent solution and curing agent solution were acid anhydride “HN-5500” and tetraphenylphosphonium chloride in amounts shown in Table 2. All of them were excellent in viscosity increase after mixing preparation and viscosity stability at 40 ° C., and the demoldable time was short.
  • Comparative Example 7 Comparative Example 7 was carried out in the same manner as Example 12 except that ethyl triphenylphosphonium bromide was 5 parts by mass. Although it has excellent viscosity increase after mixing preparation and viscosity stability at 40 ° C., the amount of component [C] is insufficient, and the curing time becomes longer than in Examples, and viscosity increase after mixing preparation In the fiber reinforced composite material produced using this epoxy resin composition, many burrs were generated at the time of molding, and the quality of the molded product was lowered. The results are shown in Table 2.
  • Example 8 The same operation as in Example 14 except that 30 parts of tetraphenylphosphonium bromide was used. Since the amount of the component [C] is too large and the viscosity increase at 40 ° C. is remarkably inferior in viscosity stability at 40 ° C., the fiber-reinforced composite material produced using this epoxy resin composition is impregnated into the reinforcing fibers. The productivity was inferior, and the product was inferior in productivity when it was taken out from the mold. The results are shown in Table 2.
  • Comparative Example 9 The same operation as in Example 12 was carried out except that 17 parts by mass of tetraphenylphosphonium tetra-p-tolylborate was used instead of the component [C].
  • the curing time is longer than in the Examples, and the viscosity increase after mixing preparation is as shown in Table 3, in addition to 40 ° C. Even at 30 ° C. and 60 ° C., an increase in viscosity after mixing preparation was not exhibited.
  • many burrs were generated in the molded body, and the quality of the molded body was lowered. The results are shown in Table 2.
  • Comparative Example 10 The same operation as in Example 12 was carried out except that 18 parts by mass of tetrabutylphosphonium decanoate was used instead of component [C].
  • component [C] since the component [C] is not included, the curing time is longer than in the Example, and the viscosity increase after mixing preparation is as shown in Table 3, in addition to 40 ° C. Even at 30 ° C. and 60 ° C., an increase in viscosity after mixing preparation was not exhibited.
  • many burrs were generated in the molded body, and the quality of the molded body was lowered. The results are shown in Table 2.
  • Example 11 The same procedure as in Example 8 was conducted, except that the acid anhydride “HN-5500” was used as the curing agent solution, and 10 parts by mass of tri-p-tolylphosphine was used instead of the component [C]. Although this comparative example had a short curing time, it was colored when cured at a temperature of 120 ° C. Further, as shown in Table 3, the increase in viscosity after mixing preparation, as shown in Table 3, the increase in viscosity after mixing preparation did not appear at 30 ° C. and 60 ° C. in addition to 40 ° C. Many burrs were generated in the molded body, and the quality of the molded body was lowered. The results are shown in Table 2.
  • Example 19 As shown in Table 4, a main agent solution consisting of 100 parts by mass of a bisphenol A type epoxy resin “Epototo” (registered trademark) YD-128, and 89 parts by mass of acid anhydride “HN-5500” with 1-butyl- An epoxy resin composition was mixed and prepared from a hardener solution in which 6 parts by mass of 3-methylimidazolium chloride was dissolved at 80 ° C. Even if this epoxy resin composition was held at a temperature of 40 ° C., the viscosity increase ratio was kept low, and the low viscosity state was maintained. Further, since the demoldable time represented by t90 at a temperature of 120 ° C.
  • the molding time of the fiber-reinforced composite material is also effective for shortening the molding time.
  • the cured product of the epoxy resin composition had a Tg higher than the molding temperature (120 ° C.) and was not colored. For this reason, the fiber reinforced composite material produced using this epoxy resin composition was able to be easily demolded without being deformed when the molded product was taken out from the mold. The results are shown in Table 4.
  • Example 20 The same as Example 19 except that 1-butyl-3-methylimidazolium chloride was changed to 10 parts by mass (Example 20), 18 parts by mass (Example 21), and 25 parts by mass (Example 22), respectively. Carried out. All were excellent in viscosity stability at 40 ° C., and the demoldable time was short. Moreover, since the cured product of this epoxy resin composition had a Tg higher than the molding temperature (120 ° C.) and was not colored, the fiber-reinforced composite material produced using this epoxy resin composition takes out the molded product from the mold. The mold could be easily removed without deformation. The results are shown in Table 4.
  • Example 25 and 26 A main agent liquid composed of 75 parts by mass of a bisphenol A type epoxy resin “jER” (registered trademark) 1001 and 25 parts by mass of an alicyclic epoxy resin “Celoxide” (registered trademark) 2021P; Except that 100 parts by mass of the product “HN-5500” and 6 parts by mass (Example 25) and 22 parts by mass (Example 26) of 1-ethyl-3-methylimidazolium bromide were used, respectively. Implemented. All were excellent in viscosity stability at 40 ° C., and the demoldable time was short.
  • Example 12 The same operation as in Example 19 was carried out except that 4 parts by mass of 1-butyl-3-methylimidazolium chloride was used. Although both are excellent in viscosity stability at 40 ° C., the amount of the component [C] is insufficient, and the curing time is longer than in the examples. Therefore, the fiber-reinforced composite produced using this epoxy resin composition The material has a longer demoldable time, and the productivity at the time of molding is inferior. The results are shown in Table 4.
  • Example 13 The same operation as in Example 19 except that 40 parts by mass of 1-butyl-3-methylimidazolium chloride was used. Since there is too much quantity of component [C] and the viscosity increase at 40 degreeC is remarkably inferior to the viscosity stability at 40 degreeC of an epoxy resin composition, it is going to produce a fiber reinforced composite material using this epoxy resin composition. Then, the impregnation property of the resin to the reinforcing fiber was inferior. Moreover, since the Tg of the cured product of the epoxy resin composition was lower than the molding temperature (120 ° C.), it was deformed when the fiber-reinforced composite material was demolded. The results are shown in Table 4.
  • Comparative Example 14 The same operation as in Example 19 except that 10 parts by mass of 1,2-dimethylimidazole was used instead of the component [C].
  • the component [C] since the component [C] is not included, the ratio of increase in viscosity after 20 minutes at 40 ° C. is high and the stability of the viscosity is inferior to that of the Example, so that the fiber-reinforced composite material molding using this epoxy resin composition is performed Then, the impregnation property to the reinforcing fiber was inferior, and the cured product was colored. The results are shown in Table 4.
  • the epoxy epoxy resin composition of the present invention is suitable for molding a fiber reinforced composite material, and a fiber reinforced composite material excellent in appearance and surface quality can be obtained in a short time with good productivity by the RTM method. It is done.
  • the epoxy epoxy resin composition of the present invention is excellent in molding a fiber-reinforced composite material having a large shape, and is particularly suitable for application to automobile members.
  • the two-pack type epoxy resin composition of the present invention is excellent in workability at the time of preparing an epoxy resin, excellent in viscosity stability at a low temperature (for example, 40 ° C.) of the epoxy resin composition after mixing and prepared, and in a short time during molding. Since it hardens and gives a high-quality fiber-reinforced composite material, it becomes possible to provide a high-quality fiber-reinforced composite material with high productivity by the RTM method or the like. As a result, the application of fiber-reinforced composite materials for automobiles is especially advanced, and it can be expected to contribute to the improvement of fuel economy and the reduction of greenhouse gas emissions by further reducing the weight of automobiles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)

Abstract

 本発明は、混合調製後のエポキシ樹脂組成物の低温(40℃)での粘度安定性に優れ、強化繊維への注入時に低粘度を保持し含浸性に優れ、また含浸後に樹脂粘度が適度に上昇することで樹脂フローを制御し例えば成形体のバリを少なくなくでき、かつ成形時に短時間で硬化し、硬化物の透明性が高く成形体品位が優れる繊維強化複合材料を与える2液型エポキシ樹脂組成物、およびそれを用いてなる繊維強化複合材料を提供することを課題とする。 本発明の繊維強化複合材料用2液型エポキシ樹脂組成物は、次の成分[A]~成分[C]を含み、成分[C]の含有量が成分[A]100質量部に対し、6~25質量部である、繊維強化複合材料用2液型エポキシ樹脂組成物であり、本発明の繊維強化複合材料は、前記の繊維強化複合材料用2液型エポキシ樹脂組成物と強化繊維を組み合わせ、硬化せしめてなる繊維強化複合材料である。 [A]:エポキシ樹脂 [B]:酸無水物 [C]:第四級アンモニウム塩または第四級ホスホニウムハライドまたはイミダゾリウム塩

Description

繊維強化複合材料用2液型エポキシ樹脂組成物および繊維強化複合材料
 本発明は、繊維強化複合材料に用いられる2液型エポキシ樹脂組成物、およびそれを用いてなる繊維強化複合材料に関するものである。
 強化繊維とマトリックス樹脂とからなる繊維強化複合材料は、強化繊維とマトリックス樹脂の利点を生かした材料設計ができるため、航空宇宙分野を始め、スポーツ分野および一般産業分野などに用途が拡大されている。
 強化繊維としては、ガラス繊維、アラミド繊維、炭素繊維およびボロン繊維などが用いられる。また、マトリックス樹脂としては、熱硬化性樹脂および熱可塑性樹脂のいずれも用いられるが、強化繊維への含浸が容易な熱硬化性樹脂が用いられることが多い。熱硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、ビスマレイミド樹脂およびシアネート樹脂などが用いられる。
 繊維強化複合材料の製造には、プリプレグ法、ハンドレイアップ法、フィラメントワインディング法、プルトルージョン法およびRTM(Resin Transfer Molding:樹脂注入成形)法などの方法が適用される。
 近年、世界的に自動車の環境規制が厳しくなる中、内外の自動車メーカーは燃費性能を左右する車体の軽量化に取り組んでおり、中でも、質量で鉄の半分、またアルミニウムの7割程度となる炭素繊維複合材料の適用が活発に検討されている。自動車用の各種部材は、軽量化とともに高い剛性と強度特性が求められ、かつ、三次元的な複雑形状を有する場合が多い。
 従って、高剛性と高強度な炭素繊維を連続繊維として用い、複雑形状に対応可能なRTM法が有力な成形方法となっている。RTM法とは、下型内に強化繊維からなる基材を配置した後に上型を閉じ、樹脂注入口からマトリックス樹脂を注入し強化繊維に含浸させた後に樹脂を硬化させ、上型を開放して成形品を取り出すことで繊維強化複合材料を得る方法である。ここで、自動車への炭素繊維複合材料普及の大きな課題が生産性であり、これが障壁となり一部の高級車に僅かに採用されるにとどまっている。
 ハンドレイアップ法、フィラメントワインディング法、プルトルージョン法およびRTM法では、成形加工性の観点から、2液型エポキシ樹脂組成物が用いられることが多い。2液型エポキシ樹脂組成物とは、エポキシ樹脂を主成分として含む主剤液と、硬化剤を主成分として含む硬化剤液とが、別々の容器に入れられた状態で保存され、使用直前に主剤液と硬化剤液の2液を混合して用いられるエポキシ樹脂組成物のことである。
 それに対し主剤と硬化剤を含め、すべての成分が1つに混合された状態で取り扱われるエポキシ樹脂組成物を1液型エポキシ樹脂組成物という。1液型エポキシ樹脂組成物の場合、保管中にも硬化反応が進行するため冷凍保管が必要となる。また、硬化剤は反応性の低い固形状のものを選択する場合が多く、強化繊維に1液型エポキシ樹脂組成物を含浸させるためには、プレスロールなどを使用して高い圧力で押し込まなくてはならない。
 一方、2液型エポキシ樹脂組成物では、主剤液および硬化剤液とも液状のものとすることにより、これらの主剤液と該硬化剤液とを混合したエポキシ樹脂組成物も低粘度な液状とすることができるため、強化繊維へ含浸させることが容易になる。また、主剤液と硬化剤液とを別々に保管することができるため、保管条件に特に制限なく長期保管も可能である。
 例えば、RTM法において、前記したような高いレベルでの生産性を実現するためには、単に樹脂の硬化時間が短いというばかりでなく、次に挙げる4つの条件(課題)を一挙に満たすものであることが具体的に求められる。1つ目に、混合調製後のエポキシ樹脂組成物が40℃の低温保持下では長時間粘度の上昇が抑えられ安定である、すなわち40℃での粘度安定性に優れることである。2つ目に、強化繊維基材への樹脂注入工程の際、エポキシ樹脂組成物が低粘度であり、かつ注入工程の間、粘度の上昇が抑えられることで含浸性に優れることである。3つ目に、温度120℃付近の中温領域で十分な高速硬化ができることにより、成形設備を簡素化でき副資材等の耐熱性も不要となり、また樹脂自体が着色せずコスト低減と成形体品位が両立することである。4つ目に、成形後の脱型工程の際、樹脂が硬化により十分な剛性に到達しており、歪みを生じることが無くスムーズに脱型でき、更に塗装工程を経ても歪みや変形を生じることがないことである。
 これらの課題に対し、硬化剤に酸無水物、促進剤にアンモニウム有機酸塩を組み合わせた、中温速硬化性を有し金属腐食性が無い光学用途向けエポキシ樹脂組成物(特許文献1)や、硬化剤に酸無水物、促進剤に第四級ホスホニウム塩を組み合わせ、加熱硬化時の着色を抑えたエポキシ樹脂組成物(特許文献2)、脂環式エポキシに非芳香族系酸無水物系硬化剤、第四級ホスホニウムカチオンと有機スルホン酸アニオンとの塩を促進剤とし、耐紫外線性、耐熱黄変性に優れるエポキシ樹脂組成物(特許文献3)が開示されている。
 また、硬化剤に酸無水物、促進剤に有機リン化合物を組み合わせたエポキシ樹脂組成物を用いることで、100℃付近の一定温度条件における、低粘度保持時間と硬化時間のバランスに優れたエポキシ樹脂組成物が開示されている(特許文献4)。
特開平6-256473号公報 特開2006-206862号公報 特開2010-106131号公報 国際公開2007/125759号パンフレット
 特許文献1~3記載の材料は、十分に高速硬化できるものではなかった。特許文献4に記載される材料では、硬化時間を短くするべく高温で成形した場合に、硬化物が着色することが問題となっていた。
 そこで本発明の目的は、上記従来技術の欠点を改良し、混合調製後のエポキシ樹脂組成物の低温(例えば40℃)での粘度安定性に優れ、強化繊維への注入時に低粘度を保持し含浸性に優れ、かつ成形時に短時間で硬化し、硬化物の透明性が高く成形体品位が優れる繊維強化複合材料を与える2液型エポキシ樹脂組成物、およびそれを用いてなる繊維強化複合材料を提供することにある。
 本発明は、上記の課題を解決せんとするものであり、本発明の繊維強化複合材料用2液型エポキシ樹脂組成物の一つの態様(本発明1という)は、次の成分[A]~成分[C]を含み、成分[C]の含有量が成分[A]100質量部に対し、6~25質量部である、繊維強化複合材料用2液型エポキシ樹脂組成物である。
成分[A]:エポキシ樹脂
成分[B]:酸無水物
成分[C]:第四級アンモニウム塩または第四級ホスホニウムハライドまたはイミダゾリウム塩
 本発明1の繊維強化複合材料用2液型樹脂組成物の好ましい態様によれば、前記の成分[C]は、第四級アンモニウムハライドである。
 本発明1の繊維強化複合材料用2液型樹脂組成物の好ましい態様によれば、前記の成分[C]は、第四級ホスホニウムブロミドである。
 本発明1の繊維強化複合材料用2液型樹脂組成物の好ましい態様によれば、前記の成分[C]は、テトラフェニルホスホニウムハライドである。
 本発明1の繊維強化複合材料用2液型樹脂組成物の好ましい態様によれば、前記の成分[C]は、イミダゾリウムハライドである。
 また、本発明の繊維強化複合材料用2液型エポキシ樹脂組成物の別の態様(本発明2という)は、次の成分[A]、成分[B]を含み、全成分混合から5分後の粘度が混合から1分後の粘度の1.5倍以上4.0倍以下であり、混合から20分後の粘度が混合から5分後の粘度の1.0倍以上2.0倍以下である温度T1を有し、その温度T1が30℃以上60℃以下である、繊維強化複合材料用2液型エポキシ樹脂組成物である。
成分[A]:エポキシ樹脂
成分[B]:酸無水物
 本発明2の繊維強化複合材料用2液型エポキシ樹脂組成物の好ましい態様によれば、更に成分[C]として第四級ホスホニウムハライドを含む。
 本発明2の繊維強化複合材料用2液型エポキシ樹脂組成物の好ましい態様によれば、前記の成分[C]の含有量が、成分[A]100質量部に対し、6~25質量部である。
 本発明2の繊維強化複合材料用2液型エポキシ樹脂組成物の好ましい態様によれば、前記の成分[C]は、第四級ホスホニウムブロミドである。
 本発明2の繊維強化複合材料用2液型エポキシ樹脂組成物の好ましい態様によれば、前記の成分[C]は、テトラフェニルホスホニウムハライドである。
 本発明の繊維強化複合材料用2液型エポキシ樹脂組成物の好ましい態様によれば、更に成分[D]強化繊維を含む。なお、ここで本発明1と本発明2を総称して本発明と略記する場合があり、以降同様である。
 本発明の繊維強化複合材料用2液型エポキシ樹脂組成物の好ましい態様によれば、前記の成分[D]は炭素繊維である。
 本発明の繊維強化複合材料用2液型エポキシ樹脂組成物の好ましい態様によれば、前記の成分[B]は脂環式構造を有する酸無水物である。
 また、本発明は、上記の課題を解決せんとするものであり、本発明の繊維強化複合材料は、前記した繊維強化複合材料用2液型エポキシ樹脂組成物を硬化してなる。
 本発明によれば、混合調製後のエポキシ樹脂組成物の低温(例えば40℃)での粘度安定性に優れ、強化繊維への注入時に低粘度を保持し含浸性に優れ、かつ成形時に短時間で硬化し、耐熱性に優れ、透明性が高く成形体品位の優れた繊維複合材料を高い生産性で提供することが可能になる繊維強化複合材料用2液型エポキシ樹脂組成物が得られる。
 また、本発明の繊維強化複合材料用2液型エポキシ樹脂組成物は、成形時に短時間で硬化し、高品位の繊維強化複合材料を与えるため、RTM法などによって高品位の繊維強化複合材料を高い生産性で提供可能となる。これにより、特に自動車用途への繊維強化複合材料の適用が進み、自動車の更なる軽量化による燃費向上、地球温暖化ガス排出削減への貢献が期待できる。
 本発明の繊維強化複合材料用の2液型エポキシ樹脂組成物の望ましい実施の形態について、詳細に説明する。
 本発明1の繊維強化複合材料用2液型エポキシ樹脂組成物は、次の成分[A]~成分[C]を含み、かつ前記の成分[C]の含有量が前記の成分[A]100質量部に対し、6~25質量部である。
成分[A]:エポキシ樹脂
成分[B]:酸無水物
成分[C]:第四級アンモニウム塩、第四級ホスホニウムハライドまたはイミダゾリウム塩
 まず、本発明1の繊維強化複合材料用2液型エポキシ樹脂組成物の各成分について説明する。
を含む。
 [成分[A]:エポキシ樹脂]
 本発明で用いられる成分[A]は、エポキシ樹脂である。エポキシ樹脂とは、1分子内に2個以上のエポキシ基を有する化合物を意味する。
 本発明における成分[A]の具体例としては、水酸基を複数有するフェノールから得られる芳香族グリシジルエーテル、水酸基を複数有するアルコールから得られる脂肪族グリシジルエーテル、アミンから得られるグリシジルアミン、オキシラン環を有するエポキシ樹脂、およびカルボキシル基を複数有するカルボン酸から得られるグリシジルエステルなどが挙げられる。
 本発明における成分[A]として用いることができる芳香族グリシジルエーテルの例としては、例えば、ビスフェノールAのジグリシジルエーテル、ビスフェノールFのジグリシジルエーテル、ビスフェノールADのジグリシジルエーテル、ビスフェノールSのジグリシジルエーテル等のビスフェノールから得られるジグリシジルエーテル、フェノールやアルキルフェノール等から得られるノボラックのポリグリシジルエーテル、レゾルシノールのジグリシジルエーテル、ヒドロキノンのジグリシジルエーテル、4,4’-ジヒドロキシビフェニルのジグリシジルエーテル、4,4’-ジヒドロキシ-3,3’,5,5’-テトラメチルビフェニルのジグリシジルエーテル、1,6-ジヒドロキシナフタレンのジグリシジルエーテル、9,9’-ビス(4-ヒドロキシフェニル)フルオレンのジグリシジルエーテル、トリス(p-ヒドロキシフェニル)メタンのトリグリシジルエーテル、テトラキス(p-ヒドロキシフェニル)エタンのテトラグリシジルエーテル、およびビスフェノールAのジグリシジルエーテルと2官能イソシアネートを反応させて得られるオキサゾリドン骨格を有するジグリシジルエーテルなどが挙げられる。
 本発明における成分[A]として用いることができる脂肪族グリシジルエーテルの例としては、例えば、エチレングリコールのジグリシジルエーテル、プロピレングリコールのジグリシジルエーテル、1,4-ブタンジオールのジグリシジルエーテル、1,6-ヘキサンジオールのジグリシジルエーテル、ネオペンチルグリコールのジグリシジルエーテル、シクロヘキサンジメタノールのジグリシジルエーテル、グリセリンのジグリシジルエーテル、グリセリンのトリグリシジルエーテル、トリメチロールエタンのジグリシジルエーテル、トリメチロールエタンのトリグリシジルエーテル、トリメチロールプロパンのジグリシジルエーテル、トリメチロールプロパンのトリグリシジルエーテル、ペンタエリスリトールのテトラグリシジルエーテル、ドデカヒドロビスフェノールAのジグリシジルエーテル、およびドデカヒドロビスフェノールFのジグリシジルエーテルなどが挙げられる。
 本発明における成分[A]として用いることができるグリシジルアミンの例としては、例えば、ジグリシジルアニリン、ジグリシジルトルイジン、トリグリシジルアミノフェノール、テトラグリシジルジアミノジフェニルメタン、テトラグリシジルキシリレンジアミンや、これらのハロゲン、アルキル置換体、および水添品などが挙げられる。
 本発明における成分[A]として用いることができるオキシラン環を有するエポキシ樹脂の例としては、ビニルシクロヘキセンジオキシド、ジペンテンジオキシド、3,4-エポキシシクロヘキサンカルボン酸3,4-エポキシキクロヘキシルメチル、アジピン酸ビス(3,4-エポキシキクロヘキシルメチル)、ジシクロペンタジエンジオキシド、ビス(2,3-エポキシシクロペンチル)エーテル、および4-ビニルシクロヘキセンジオキシドのオリゴマーなどが挙げられる。
 本発明における成分[A]として用いることができるグリシジルエステルの例としては、例えば、フタル酸ジグリシジルエステル、テレフタル酸ジグリシジルエステル、ヘキサヒドロフタル酸ジグリシジルエステル、およびダイマー酸ジグリシジルエステル等が挙げられる。
 中でも、ビスフェノール化合物のジグリシジルエーテル、すなわちビスフェノール型エポキシ樹脂、特にビスフェノールA型エポキシ樹脂は、エポキシ樹脂組成物の粘度と、得られる硬化物の耐熱性や、弾性率等の力学物性とのバランスに優れることから、本発明における成分[A]として好ましく用いられる。
 前記のビスフェノールA型エポキシ樹脂は、繰り返し単位数が0~0.2の範囲内にあることが好ましく、0~0.1の範囲内にあることがより好ましい態様である。
 繰り返し単位数は、次の化学式
Figure JPOXMLDOC01-appb-C000001
で示されるビスフェノールA型エポキシ樹脂の化学構造式におけるnに対応する。繰り返し単位数が0.2を上回る場合、エポキシ樹脂組成物の粘度が上昇し強化繊維への含浸性が悪化するとともに、得られる繊維強化複合材料の耐熱性が不十分となる場合がある。
 このようなビスフェノールA型エポキシ樹脂は、そのエポキシ当量が170~220の範囲内にあることが好ましく、170~195の範囲内にあることがより好ましい態様である。エポキシ当量は、通常、上記の繰り返し単位数が大きいほど大きくなり、小さいほど小さくなるという関係にある。エポキシ当量が170を下回る場合、低分子量の不純物が含まれていることがあり、成形時の揮発による表面品位の悪化に繋がる場合がある。また、かかるエポキシ当量が220を上回る場合、エポキシ樹脂組成物の粘度が上昇し強化繊維への含浸性が悪化するとともに、得られる繊維強化複合材料の剛性が不十分となる場合がある。
 [成分[B]:酸無水物]
 本発明で用いられる成分[B]は、酸無水物、具体的にはカルボン酸無水物であり、より具体的には、成分[A](エポキシ樹脂)のエポキシ基と反応可能な酸無水物基を一分子中に1個以上有する化合物を指し、エポキシ樹脂の硬化剤として作用する。酸無水物基は、一分子中に4個以下であることが望ましい態様である。
 本発明で用いられる成分[B]は、フタル酸無水物のように、芳香環を有するが脂環式構造を持たない酸無水物であっても良く、無水コハク酸のように、芳香環、脂環式構造のいずれも持たない酸無水物であっても良いが、低粘度な液状で取り扱いやすく、また硬化物の耐熱性や機械的物性の観点から、脂環式構造を有する酸無水物が用いられることが好ましく、中でもシクロアルカン環またはシクロアルケン環を有する化合物がより好ましく用いられる。
 このような脂環式構造を有する酸無水物の具体例としては、例えば、ヘキサヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、メチルジヒドロナジック酸無水物、1,2,4,5-シクロペンタンテトラカルボン酸二無水物、1,2,3,6-テトラヒドロフタル酸無水物、メチル-1,2,3,6-テトラヒドロフタル酸無水物、ナジック酸無水物、メチルナジック酸無水物、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、および4-(2,5-ジオキソテトラヒドロフラン-3-イル)-3-メチル-1,2,5,6-テトラヒドロフタル酸無水物などが挙げられる。中でも、ヘキサヒドロフタル酸無水物、テトラヒドロフタル酸無水物、ナジック酸無水物およびそれらのアルキル置換タイプから選ばれる酸無水物は、エポキシ樹脂組成物の粘度と、得られる硬化物の耐熱性や、弾性率等の力学物性とのバランスに優れることから、本発明における成分[B]として好ましく用いられる。成分[B]として、脂環式構造を有する酸無水物を用いる場合であっても、本発明に係る2液型エポキシ樹脂組成物には、脂環式構造を持たない酸無水物を含有させることができる。
 本発明における成分[A]と成分[B]の配合量は、成分[B]中の酸無水物基数(H)と、成分[A]中のエポキシ基総数(E)の比、H/E比が0.8~1.1の範囲を満たす配合量であることが好ましく、0.85~1.05の範囲を満たす配合量であることがより好ましく、0.9~1.0の範囲を満たす配合量であることがより好ましい態様である。H/E比が0.8を下回る場合、過剰に存在するエポキシ樹脂同士の重合が進み、硬化物の物性の低下を招く。また、H/E比が1.1を上回る場合、過剰に存在する硬化剤成分のために系の反応点の濃度が減少し、反応速度が低下し、十分な高速硬化性を発揮できなくなる場合がある。
 また、本発明2の繊維強化複合材料用2液型エポキシ樹脂組成物は、前記の成分[A]、成分[B]を含み、全成分の混合から5分後の粘度が混合から1分後の粘度の1.5倍以上4.0倍以下であり、混合から20分後の粘度が混合から5分後の粘度の1.0倍以上2.0倍以下である温度T1を有し、その温度T1が30℃以上60℃以下である、繊維強化複合材料用2液型エポキシ樹脂組成物である。そして本発明2の繊維強化複合材料用2液型エポキシ樹脂組成物は、全成分の混合から5分後の粘度が混合から1分後の粘度の1.7倍以上4.0倍以下がより好ましい態様である。さらに本発明2の繊維強化複合材料用2液型エポキシ樹脂組成物は、混合から20分後の粘度が混合から5分後の粘度の1.0倍以上1.6倍以下であることがより好ましい態様である。
 なお、全成分の混合から5分後の粘度が混合から1分後の粘度の1.5倍以上4.0倍以下であり、混合から20分後の粘度が混合から5分後の粘度の1.0倍以上2.0倍以下である温度T1を有するか否かを判断するに際しては、30℃、40℃、60℃の3点において粘度測定を行い、いずれかの温度で上記の粘度条件を満たす場合に、前記温度T1があると判断し、いずれの温度においても上記の粘度条件を満たすことがない場合に、前記温度T1はないと判断する。つまり、温度T1は30℃、40℃、60℃のいずれかから選択される数値である。
 本発明2の繊維強化複合材料用2液型エポキシ樹脂組成物は、前述の粘度挙動を示すことで、強化繊維への含浸後の樹脂フローを制御することができ、例えばRTM法では金型のパーツの僅かな隙間に樹脂が入り込みにくくなるため成形体のバリを少なくなり、例えばフィラメントワインディング法では強化繊維への樹脂含浸後の樹脂の垂れ落ちを抑制でき、樹脂材料のロスを少なくすることが可能になるとともに、成形体品位も向上する。
 繊維強化複合材料用2液型エポキシ樹脂組成物において、全成分の混合から5分後の粘度が混合から1分後の粘度の1.5倍以上4.0倍以下で、混合から20分後の粘度が混合から5分後の粘度の1.0倍以上2.0倍以下である温度T1を有し、その温度T1を30℃以上60℃以下とするための方法は特に限定されないが、例えば後述する成分[C]を繊維強化複合材料用2液型エポキシ樹脂組成物中に含める方法をあげることができる。つまり本発明2の繊維強化複合材料用2液型エポキシ樹脂組成物は、成分[C]を含むことが好ましい。
 [成分[C]:第四級アンモニウム塩、第四級ホスホニウムハライドまたはイミダゾリウム塩]
 本発明1、および、本発明2の好ましい態様、において用いられる成分[C]は、第四級アンモニウム塩、第四級ホスホニウムハライドまたはイミダゾリウム塩である。これらは速硬化性発現のための硬化促進剤として作用する。
 第四級アンモニウム塩、第四級ホスホニウムハライド、イミダゾリウム塩を本発明に適用すると、詳細な機構は定かではないが、後述する主剤液と硬化剤液を混合した後の粘度上昇が少なく安定であり繊維強化複合材料を成形する際に強化繊維基材への含浸性に優れる一方で、硬化反応中後期での反応速度が十分に速く硬化時間を短縮でき、また無色透明の硬化物を得られること(※)を見いだした。
 以下では、成分[C]として用いられる(i)第四級アンモニウム塩、(ii)第四級ホスホニウムハライド、(iii)イミダゾリウム塩のそれぞれについて、より詳細を述べる。
 (i)第四級アンモニウム塩
 第四級アンモニウム塩は上記の特徴(※)に加え、特に主剤液と硬化剤液を混合した後の常温下での粘度上昇が少ないにもかかわらず、硬化時間が短い傾向があるため、繊維強化複合材料を成形する際に強化繊維基材への含浸性に優れるとともに、高い生産性で繊維強化複合材料を成形することが可能となることから好ましい。
 本発明における成分[C]として用いられる第四級アンモニウム塩の具体例としては、例えば、第四級アンモニウムカチオンとオキソ酸アニオンからなる第四級アンモニウムオキソ酸塩、第四級アンモニウムカチオンと第17族元素のアニオンからなる第四級アンモニウムハライド、および第四級アンモニウムカチオンとホウ素を含むボレートアニオンからなる第四級アンモニウムボレート塩などが挙げられる。
 前記第四級アンモニウムオキソ酸塩の例としては、例えば、過塩素酸テトラメチルアンモニウム、テトラメチルアンモニウムサルファート、酢酸テトラメチルアンモニウム、テトラメチルアンモニウム硫酸水素塩、硝酸テトラエチルアンモニウム、過塩素酸テトラエチルアンモニウム、過塩素酸セチルトリメチルアンモニウム、過塩素酸ヘキサデシルトリメチルアンモニウム、過塩素酸テトラブチルアンモニウム、トリ-n-オクチルメチルアンモニウム硫酸水素塩、酢酸テトラブチルアンモニウム、テトラブチルアンモニウム硫酸水素塩、テトラメチルアンモニウムp-トルエンスルホナート、テトラエチルアンモニウムp-トルエンスルホナート、およびサリチル酸テトラブチルアンモニウムなどが挙げられる。
 前記第四級アンモニウムハライドの例としては、例えば、テトラメチルアンモニウムクロリド、メチルトリエチルアンモニウムクロリド、テトラエチルアンモニウムクロリド、トリブチルメチルアンモニウムクロリド、デシルトリメチルアンモニウムクロリド、トリメチル-n-オクチルアンモニウムクロリド、ラウリルトリメチルアンモニウムクロリド、ドデシルトリメチルアンモニウムクロリド、トリメチルドデシルアンモニウムクロリド、トリメチルミリスチルアンモニウムクロリド、テトラデシルトリメチルアンモニウムクロリド、トリメチルテトラデシルアンモニウムクロリド、テトラプロピルアンモニウムクロリド、セチルトリメチルアンモニウムクロリド、ヘキサデシルトリメチルアンモニウムクロリド、トリメチルオクタデシルアンモニウムクロリド、トリ-n-オクチルメチルアンモニウムクロリド、ジラウリルジメチルアンモニウムクロリド、テトラブチルアンモニウムクロリド、ジメチルジオクタデシルアンモニウムクロリド、ジメチルジステアリルアンモニウムクロリド、テトラペンチルアンモニウムクロリド、テトラアミルアンモニウムクロリド、フェニルトリメチルアンモニウムクロリド、ベンジルトリメチルアンモニウムクロリド、1,1-ジメチルピペリジニウムクロリド、フェニルベンジルジメチルアンモニウムクロリド、フェニルトリエチルアンモニウムクロリド、ベンジルトリエチルアンモニウムクロリド、ベンジルトリブチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、トリメチルプロピルアンモニウムブロミド、テトラエチルアンモニウムブロミド、ヘキシルトリメチルアンモニウムブロミド、デシルトリメチルアンモニウムブロミド、トリメチル-n-オクチルアンモニウムブロミド、ノニルトリメチルアンモニウムブロミド、ラウリルトリメチルアンモニウムブロミド、テトラプロピルアンモニウムブロミド、ミリスチルトリメチルアンモニウムブロミド、ジデシルジメチルアンモニウムブロミド、ジメチルジオクチルアンモニウムブロミド、セチルトリメチルアンモニウムブロミド、ヘキシルジメチルオクチルアンモニウムブロミド、トリメチルヘプタデシルアンモニウムブロミド、トリメチルオクタデシルアンモニウムブロミド、トリメチルステアリルアンモニウムブロミド、ジドデシルジメチルアンモニウムブロミド、ジメチルジテトラドデシルアンモニウムブロミド、テトラブチルアンモニウムブロミド、セチルエチルジメチルアンモニウムブロミド、エチルヘキサデシルジメチルアンモニウムブロミド、ジメチルジステアリルアンモニウムブロミド、ジヘキサデシルジメチルアンモニウムブロミド、テトラペンチルアンモニウムブロミド、テトラヘキシルアンモニウムブロミド、テトラヘプチルアンモニウムブロミド、テトラ(デシル)アンモニウムブロミド、テトラ-n-オクチルアンモニウムブロミド、フェニルトリメチルアンモニウムブロミド、1-ブチル-1-メチルピロリジニウムブロミド、ベンジルトリメチルアンモニウムブロミド、1-ブチル-1-メチルピペリジニウムブロミド、1-メチル-1-プロピルピペリジニウムブロミド、ベンジルトリエチルアンモニウムブロミド、ベンジルドデシルジメチルアンモニウムブロミド、トリブチルベンジルアンモニウムブロミド、テトラメチルアンモニウムヨージド、エチルトリメチルアンモニウムヨージド、テトラエチルアンモニウムヨージド、エチルトリプロピルアンモニウムヨージド、テトラプロピルアンモニウムヨージド、テトラブチルアンモニウムヨージド、ジメチルジステアリルアンモニウムヨージド、テトラヘキシルアンモニウムヨージド、テトラペンチルアンモニウムヨージド、テトラヘプチルアンモニウムヨージド、テトラ-n-オクチルアンモニウムヨージド、トリメチルフェニルアンモニウムヨージド、トリエチルフェニルアンモニウムヨージド、およびベンジルトリエチルアンモニウムヨージドなどが挙げられる。
 前記第四級アンモニウムボレート塩の例としては、例えば、テトラメチルアンモニウムテトラフルオロボレート、トリエチルメチルアンモニウムテトラフルオロボレート、テトラエチルアンモニウムテトラフルオロボレート、セチルトリメチルアンモニウムテトラフルオロボレート、ヘキサデシルトリメチルアンモニウムテトラフルオロボレート、テトラブチルアンモニウムテトラフルオロボレート、1-エチル-1-メチルピロリジニウムテトラフルオロボレート、およびテトラブチルアンモニウムテトラフェニルボレートなどが挙げられる。
 以上の中でも、エポキシ樹脂と硬化剤への溶解性やコストの観点から、第四級アンモニウムハライドが好ましく用いられ、第四級アンモニウムブロミドがより好ましく用いられる。
 (ii)第四級ホスホニウムハライド
 第四級ホスホニウムハライドは上記の特徴(※)に加え、含浸性を損なわないレベルで30℃以上60℃以下の温度において、全成分混合から5分後の粘度が混合から1分後の粘度の1.5倍以上4.0倍以下で、かつ、混合から20分後の粘度が混合から5分後の粘度の1.0倍以上2.0倍以下という粘度挙動を示し、樹脂のフローをコントロールできることが多いことから本発明における成分[C]として好ましく用いられる。昨今成形体の形状は複雑になっており、それに対応するため金型も複数のパーツに分割が可能になるなど複雑化している。そのため、繊維強化複合材料を成形する際の強化繊維基材への含浸後は金型のパーツ間の僅かな隙間に樹脂が入り込み、成形体のバリが多くなる可能性があるが、含浸後に樹脂粘度が適度に上昇することで樹脂フローを制御し、たとえばRTM法では金型のパーツの僅かな隙間に樹脂が入り込みにくくなり成形体のバリを少なくでき、フィラメントワインディング法では樹脂の垂れ落ちを低減できることから好ましい。
 本発明における成分[C]として用いられる第四級ホスホニウムハライドの具体例としては、テトラエチルホスホニウムブロミド、トリブチルメチルホスホニウムヨージド、トリブチル(シアノメチル)ホスホニウムクロリド、テトラキス(ヒドロキシメチル)ホスホニウムクロリド、テトラブチルホスホニウムブロミド、テトラブチルホスホニウムクロリド、トリブチル-n-オクチルホスホニウムブロミド、テトラ-n-オクチルホスホニウムブロミド、トリブチルドデシルホスホニウムブロミド、トリブチルヘキサデシルホスホニウムブロミド、メチルトリフェニルホスホニウムヨージド、メチルトリフェニルホスホニウムブロミド、メチルトリフェニルホスホニウムクロリド、テトラフェニルホスホニウムブロミド、テトラフェニルホスホニウムクロリド、テトラフェニルホスホニウムヨージド、エチルトリフェニルホスホニウムブロミド、エチルトリフェニルホスホニウムヨージド、イソプロピルトリフェニルホスホニウムヨージド、ブチルトリフェニルホスホニウムブロミド、トリフェニルプロピルホスホニウムブロミド、アミルトリフェニルホスホニウムブロミド、ベンジルトリフェニルホスホニウムクロリド、ベンジルトリフェニルホスホニウムブロミド、ヘキシルトリフェニルホスホニウムブロミド、ヘプチルトリフェニルホスホニウムブロミド、トリフェニル(テトラデシル)ホスホニウムブロミド、および(1-ナフチルメチル)トリフェニルホスホニウムクロリドなどが挙げられる。
 本発明における成分[C]として用いられる第四級ホスホニウムハライドとしては、成分[A]や成分[B]への溶解性やコスト、さらに前述の特異的な粘度挙動発現の観点から第四級ホスホニウムブロミドが好ましい態様であり、その具体例としては、テトラエチルホスホニウムブロミド、テトラブチルホスホニウムブロミド、トリブチル-n-オクチルホスホニウムブロミド、テトラ-n-オクチルホスホニウムブロミド、トリブチルドデシルホスホニウムブロミド、トリブチルヘキサデシルホスホニウムブロミド、メチルトリフェニルホスホニウムブロミド、テトラフェニルホスホニウムブロミド、エチルトリフェニルホスホニウムブロミド、ブチルトリフェニルホスホニウムブロミド、トリフェニルプロピルホスホニウムブロミド、アミルトリフェニルホスホニウムブロミド、ベンジルトリフェニルホスホニウムブロミド、ヘキシルトリフェニルホスホニウムブロミド、ヘプチルトリフェニルホスホニウムブロミド、およびトリフェニル(テトラデシル)ホスホニウムブロミドなどが挙げられる。
 本発明における成分[C]として用いられる第四級ホスホニウムハライドとしては、硬化物の物性の観点からテトラフェニルホスホニウムハライドが好ましい態様であり、その具体例としては、テトラフェニルホスホニウムブロミド、テトラフェニルホスホニウムクロリド、およびテトラフェニルホスホニウムヨージドが挙げられる。
 (iii)イミダゾリウム塩
 イミダゾリウム塩は上記の特徴(※)に加え、特に主剤液と硬化剤液を混合した後の常温下での粘度上昇が少ないにもかかわらず、硬化時間が短い傾向があるため、繊維強化複合材料を成形する際に強化繊維基材への含浸性に優れるとともに、高い生産性で繊維強化複合材料を成形することが可能となることから好ましい。
 本発明1および本発明2の好ましい態様で用いられる成分[C]の含有量は、成分[A]100質量部に対し6~25質量部であることが好ましく、6~20質量部であることがより好ましい態様である。成分[C]が6質量部よりも少ない場合、硬化に要する時間が長くなり十分な高速硬化性を発揮できない場合がある。一方、成分[C]が25質量部よりも多い場合、低粘度を維持する時間が短くなり、強化繊維への含浸が困難となる場合がある。成分[B]と成分[C]を適切な配合量で用いることにより、硬化速度向上と低温での粘度安定性の両立をより容易に実現できることから好ましい。
 本発明における成分[C]として用いられるイミダゾリウム塩の具体例としては、例えば、1-ブチル-3-メチルイミダゾリウムブロミド、1-ブチル-3-メチルイミダゾリウムクロリド、1-ブチル-3-メチルイミダゾリウムテトラフルオロボレート、1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェート、1-ブチル-3-メチルイミダゾリウムトリフルオロメタンスルホネート、1-ブチル-2,3-ジメチルイミダゾリウムクロリド、1-ブチル-2,3-ジメチルイミダゾリウムヘキサフルオロホスフェート、1-ブチル-2,3-ジメチルイミダゾリウムテトラフルオロボレート、1-ブチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-ブチル-3-メチルイミダゾリウムテトラクロロフェラート、1-ブチル-3-メチルイミダゾリウムヨージド、1-ブチル-2,3-ジメチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-ブチル-3-メチルイミダゾリウムトリフルオロ(トリフルオロメチル)ボレート、1-ブチル-3-メチルイミダゾリウムトリブロミド、1-ブチル-3-メチルイミダゾリウムチオシアネート、1-ブチル-2,3-ジメチルイミダゾリウムトリフルオロメタンスルホネート、1,3-ジメチルイミダゾリウムジメチルホスフェート、1,3-ジメチルイミダゾリウムクロリド、1,3-ジメシチルイミダゾリウムクロリド、1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾリウムクロリド、1,3-ジ(1-アダマンチル)イミダゾリウムテトラフルオロボレート、1,3-ジイソプロピルイミダゾリウムテトラフルオロボレート、1,3-ジ-tert-ブチルイミダゾリウムテトラフルオロボレート、1,3-ジシクロヘキシルイミダゾリウムテトラフルオロボレート、1,3-ジシクロヘキシルイミダゾリウムクロリド、1,2-ジメチル-3-プロピルイミダゾリウムヨージド、2,3-ジメチル-1-プロピルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-デシル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1,3-ジメチルイミダゾリウムヨージド、1-エチル-3-メチルイミダゾリウムクロリド、1-エチル-3-メチルイミダゾリウムヘキサフルオロホスフェート、1-エチル-3-メチルイミダゾリウムトリフルオロメタンスルホネート、1-エチル-3-メチルイミダゾリウムテトラフルオロボレート、1-エチル-3-メチルイミダゾリウムブロミド、1-エチル-3-メチルイミダゾリウムヨージド、1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-エチル-3-メチルイミダゾリウムエチルスルファート、1-エチル-3-メチルイミダゾリウムp-トルエンスルホネート、1-エチル-3-メチルイミダゾリウムジシアナミド、1-エチル-3-メチルイミダゾリウムテトラクロロフェラート、1-エチル-2、3-ジメチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-エチル-3-メチルイミダゾリウム硫酸水素塩、1-エチル-3-メチルイミダゾリウムメタンスルホネート、1-エチル-3-メチルイミダゾリウムトリフルオロ(トリフルオロメチル)ボレート、1-エチル-3-メチルイミダゾリウムアセテート、1-ヘキシル-3-メチルイミダゾリウムクロリド、1-ヘキシル-3-メチルイミダゾリウムヘキサフルオロホスフェート、1-ヘキシル-3-メチルイミダゾリウムテトラフルオロボレート、1-ヘキシル-3-メチルイミダゾリウムトリフルオロメタンスルホネート、1-ヘキシル-3-メチルイミダゾリウムブロミド、1-ヘキシル-2,3-ジメチルイミダゾリウムヨージド、1-ヘキシル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-(2-ヒドロキシエチル)-3-メチルイミダゾリウムテトラフルオロボレート、1-メチル-3-プロピルイミダゾリウム ヨージド、1-メチル-3-n-オクチルイミダゾリウムブロミド、1-メチル-3-n-オクチルイミダゾリウムクロリド、1-メチル-3-n-オクチルイミダゾリウムヘキサフルオロホスフェート、1-メチル-3-[6-(メチルスルフィニル)ヘキシル]イミダゾリウムp-トルエンスルホネート、1-メチル-3-[6-(メチルチオヘキシル]イミダゾリウムp-トルエンスルホネート、1-メチル-3-n-オクチルイミダゾリウムトリフルオロメタンスルホネート、1-メチル-3-n-オクチルイミダゾリウムテトラフルオロボレートなどが挙げられる。この中でも、エポキシ樹脂と硬化剤への溶解性やコストの観点から、イミダゾリウムハライドが好ましく用いられる。
 [2液型エポキシ樹脂組成物の粘度]
 本発明の2液型エポキシ樹脂組成物は、前記した成分を適正に配合して、40℃における全成分混合から1分後の粘度が0.1~2.0Pa・sであるようにすることが好ましく、0.1~1.5Pa・sであるようにすることがより好ましい態様である。粘度を2.0Pa・s以下とすることにより、成形温度における粘度を低くでき、繊維強化複合材料を成形する際に強化繊維基材への注入時間が短くなり、未含浸の原因を低減することができるからである。また、粘度を0.1Pa・s以上とすることにより、成形温度での粘度が低くなりすぎず、繊維強化複合材料を成形する際に強化繊維基材への注入時に空気を巻き込んで生じるピットを防ぐことができ、含浸が不均一になって生じる未含浸領域の発生を防ぐことができるからである。
 本発明における粘度は、ISO 2884-1(1999)における円錐-平板型回転粘度計を使用した測定方法に基づき、2液型エポキシ樹脂組成物の混合調製直後の粘度を測定することで求められる。測定装置としては、例えば、東機産業(株)製のTVE-33H型などを挙げることができる。なお、混合調製直後の粘度とは、混合調製後1分後の粘度である。
 [2液型エポキシ樹脂組成物のキュアインデックス]
 本発明に係る2液型エポキシ樹脂組成物は、定温保持下での誘電測定で求められるキュアインデックスが、10%および90%となる時間を、それぞれ、t10およびt90としたとき、t10とt90が、次の3つの関係式(式1)~(式3)を満たす特定温度T2を有することが好ましい。
・0.5≦t10≦2・・・・・(式1)
・0.5≦t90≦5・・・・・(式2)
・1<t90/t10≦2.5・・・(式3)
(ここで、t10は、温度T2における測定開始からキュアインデックスが10%に到達するまでの時間(分)を表し、t90は、温度T2における測定開始からキュアインデックスが90%に到達する時間(分)を表す)。
 誘電測定は、粘度や弾性率との一義的な対応はとれないが、低粘度液体から高弾性率非晶質固体まで変化する熱硬化性樹脂の硬化プロファイルを求める上で有益である。誘電測定では、熱硬化性樹脂に高周波電界を印加して測定される複素誘電率から計算されるイオン粘度(等価抵抗率)の時間変化から、硬化プロファイルを求める。
 誘電測定装置としては、例えば、Holometrix-Micromet社製のMDE-10キュアモニターを使用することができる。測定方法としては、まず、TMS-1インチ型センサーを下面に埋め込んだプログラマブルミニプレスMP2000の下面に、内径が32mmで、厚さが3mmのバイトン製Oリングを設置し、プレスの温度を所定の温度Tに設定する。次に、Oリングの内側にエポキシ樹脂組成物を注ぎ、プレスを閉じてエポキシ樹脂組成物のイオン粘度の時間変化を追跡する。誘電測定は、1、10、100、1000、および10000Hzの各周波数で行い、装置付属のソフトウェア(ユーメトリック)を用いて、周波数非依存のイオン粘度の対数Log(σ)を得る。
 硬化所要時間tにおけるキュアインデックスは、次(式4)で求められ、キュアインデックスが10%に達する時間をt10、90%に達する時間をt90とした。
・キュアインデックス={log(αt)-log(αmin)}/{log(αmax)-log(αmin)}×100・・・(式4)
 ・キュアインデックス:(単位:%)
 ・αt:時間tにおけるイオン粘度(単位:Ω・cm)
 ・αmin:イオン粘度の最小値(単位:Ω・cm)
 ・αmax:イオン粘度の最大値(単位:Ω・cm)。
 誘電測定によるイオン粘度の追跡は、硬化反応が速くても比較的容易である。さらに、イオン粘度は、ゲル化以降も測定が可能であり、硬化の進行とともに増加し、硬化完了に伴って飽和するという性質をもつ。そのため、初期の粘度変化だけではなく硬化反応の進行を追跡するためにも用いることができる。上記のようにイオン粘度の対数を、最小値が0%になり、飽和値(最大値)が100%になるように規格化した数値をキュアインデックスといい、熱硬化性樹脂の硬化プロファイルを記述するために用いられる。初期の粘度上昇の速さに関わる指標としてキュアインデックスが10%に到達する時間を用い、硬化時間に関わる指標としてキュアインデックスが90%に到達する時間を用いることにより、初期の粘度上昇が小さく、短時間で硬化できるために好ましい条件を記述することができる。
 本発明における上記3つの関係式の意味を要約すると、特定温度T2において2液型エポキシ樹脂組成物の流動が可能となる時間(流動可能時間)に比例するt10が0.5分以上2分以下(式1)であり、2液型エポキシ樹脂組成物の硬化がほぼ完了し、脱型が可能となる時間(脱型可能時間)に比例するt90が0.5分以上5分以下(式2)であり、そして、エポキシ樹脂組成物の脱型可能時間と流動可能時間の比が1より大きく2.5以下(式3)、となる。すなわち、上記の範囲の中ではt10が大きい場合、2液型エポキシ樹脂組成物は繊維強化複合材料を成形する際に強化繊維基材に含浸しやすく、t90は小さい場合、2液型エポキシ樹脂組成物の硬化が速いことを意味するので、t90/t10は1より大きく2.5以下の範囲において小さい方がより好ましい。
 なお、後述する成形温度とのバランスを考慮すると、エポキシ樹脂組成物の成形温度(加熱硬化温度)、すなわち、前記特定温度T2は100~140℃の範囲であることが好ましい。特定温度T2の範囲を100~140℃とすることにより、硬化に要する時間を短縮するのと同時に、脱型後の熱収縮を緩和させることにより、表面品位の良好な繊維強化複合材料を得ることができる。
 [2液型エポキシ樹脂組成物の配合]
 本発明の2液型エポキシ樹脂組成物は、まず、成分[A]を含む主剤液と、成分[B]を主成分(なお、ここでいう主成分とは、硬化剤液中において質量基準で最大量の成分であることを意味する。)として含む硬化剤液とを、それぞれ前記した配合量で配合しておき、使用直前に前記した配合量となるように、主剤液と硬化剤液を混合して得られる。前記した成分[C]は、主剤液、硬化剤液のどちらに配合することができるが、硬化剤液に含まれることがより好ましい態様である。
 他の配合成分は、主剤液と硬化剤液のどちらに配合しても良く、あらかじめどちらかあるいは両方に混合して使用することができる。主剤液と硬化剤液は、混合前に、別々に加温しておくことが好ましく、成形型への注入など、使用の直前にミキサーを用いて混合して2液型エポキシ樹脂組成物を得ることが、樹脂の可使時間の点から好ましい。
 [成分[D]:強化繊維]
 本発明の2液型エポキシ樹脂組成物には、必要に応じ成分[D]として強化繊維を含んでいても良い。かかる場合の強化繊維としては、ガラス繊維、アラミド繊維、炭素繊維およびボロン繊維等が好適に用いられる。中でも、軽量でありながら、強度や、弾性率等の力学物性が優れる繊維強化複合材料が得られるという理由から、炭素繊維が好適に用いられる。
 強化繊維は、短繊維および連続繊維いずれであってもよく、両者を併用することもできる。高Vfの繊維強化複合材料を得るためには、連続繊維が好ましく用いられる。
 強化繊維として連続繊維を用いる場合、強化繊維の形態はストランドで用いられることもあるが、強化繊維をマット、織物、ニット、ブレイド、および一方向シート等に加工した強化繊維基材として用いることが好ましい。中でも、繊維強化複合材料の繊維体積含有率Vf(詳細は後述する)を高くすることが比較的容易であり、かつ取扱い性に優れていることから織物が好適に用いられる。かかる場合、織物の充填率は、高い方が高い繊維体積含有率Vfの繊維強化複合材料を得やすいため、織物の充填率は、好ましくは0.10~0.85であり、より好ましくは0.40~0.85であり、更に好ましくは0.50~0.85の範囲内であることが好ましい。
 ここで、織物の充填率とは、織物の見かけ体積に対する、強化繊維の正味の体積の比をであり、W/(1000t・ρf)の式により求められる。
 ・W:目付(単位:g/m
 ・t:厚み(単位:mm)
 ・ρf:強化繊維の密度(単位:g/cm
 ここで用いる織物の目付と厚みは、JIS R 7602(1995)に準拠して求められる。
 [繊維強化複合材料]
 本発明の2液型エポキシ樹脂組成物と成分[D]である強化繊維を組み合わせ、続いて2液型エポキシ樹脂組成物を硬化させることで、本発明の繊維強化複合材料が得られる。本発明の繊維強化複合材料の成形方法としては、ハンドレイアップ法、フィラメントワインディング法、プルトルージョン法、RTM(Resin Transfer Molding:樹脂注入成形)法などの、2液型樹脂を用いる成形方法が好適に用いられる。これらのうち、生産性や成形体の形状自由度という観点から、特にRTM成形法が好適に用いられる。RTM成形法とは、成形型内に配置した強化繊維基材に樹脂を注入し硬化して強化繊維複合材料を得るものである。
 次に、RTM成形法を例に、本発明の繊維強化複合材料を製造する方法について説明する。まず、前記したようにして、本発明に係る2液型エポキシ樹脂組成物を得る。本発明の繊維強化複合材料は、加温した前記の2液型エポキシ樹脂組成物を、特定温度Tに加熱した成形型内に配置した強化繊維基材に注入して含浸させ、その成形型内で硬化することにより製造されることが好ましい。
 2液型エポキシ樹脂組成物を加温する温度は、強化繊維基材への含浸性の点から、2液型エポキシ樹脂組成物の初期粘度と粘度上昇の関係から決められ、好ましくは30~70℃であり、より好ましくは50~60℃である。
 また、本発明の繊維強化複合材料の製造方法においては、成形型に複数の注入口を有するものを用い、2液型エポキシ樹脂組成物を複数の注入口から同時に、または時間差を設けて順次注入するなど、得ようとする繊維強化複合材料に応じて適切な条件を選ぶことが、様々な形状や大きさの成形体に対応できる自由度が得られるために好ましい態様である。前記の注入口の数や形状に制限はないが、短時間での注入を可能にするために注入口は多い程良く、また、その配置は、成形される繊維強化複合材料の形状に応じて樹脂の流動長を短くできる位置が好ましい。
 2液型エポキシ樹脂組成物の注入圧力は、通常0.1~1.0MPaで、型内を真空吸引してエポキシ樹脂組成物を注入するVaRTM(Vacuum Assist Resin Transfer Molding)法も用いることができるが、注入時間と設備の経済性の点から0.1~0.6MPaであることが好ましい。また、加圧注入を行う場合でも、2液型エポキシ樹脂組成物を注入する前に型内を減圧しておくと、ボイドの発生を抑えることができる。
 本発明の繊維強化複合材料において、用いられる強化繊維は、[成分[D]:強化繊維]に述べた通りである。
 [繊維強化複合材料の繊維体積含有率]
 本発明の繊維強化複合材料が高い比強度、あるいは比弾性率をもつためには、その繊維体積含有率Vfが、好ましくは40~85%であり、より好ましくは45~85%の範囲内である。ここで言う、繊維強化複合材料の繊維体積含有率Vfとは、ASTM D3171(1999)に準拠して、下記により定義され、測定される値であり、強化繊維基材に対してエポキシ樹脂組成物を注入され、硬化された後の状態でのものをいう。すなわち、繊維強化複合材料の繊維体積含有率Vfの測定は、繊維強化複合材料の厚みhから、下記の(式5)を用いて表すことができる。
・繊維体積含有率Vf(%)=(Af×N)/(ρf×h)/10 ・・・(式5)
 ・Af:繊維基材1枚・1m当たりの質量(g/m
 ・N:繊維基材の積層枚数(枚)
 ・ρf:強化繊維の密度(g/cm
 ・h:繊維強化複合材料(試験片)の厚み(mm)。
 繊維基材1枚・1m当たりの質量Afや、繊維基材の積層枚数Nおよび強化繊維の密度ρfが明らかでない場合は、JIS K 7075(1991)に基づく燃焼法、硝酸分解法および硫酸分解法のいずれかにより、繊維強化複合材料の繊維体積含有率を測定することができる。この場合に用いられる強化繊維の密度は、JIS R 7603(1999)に基づき測定した値を用いる。
 具体的な繊維強化複合材料の厚みhの測定方法としては、繊維強化複合材料の厚みを正しく測定できる方法であり、JIS K 7072(1991)に記載されているように、JIS B 7502(1994)に規定のマイクロメーターまたはこれと同等以上の精度をもつもので測定する。繊維強化複合材料が複雑な形状をしていて、測定ができない場合には、繊維強化複合材料からサンプル(測定用としてのある程度の形と大きさを有しているサンプル)を切り出して、測定することができる。
 本発明の繊維強化複合材料の好ましい形態の一つとして、単板が挙げられる。また、別の好ましい形態として、単板状の繊維強化複合材料がコア材の両面に配置されたサンドイッチ構造体、単板状の構造体に周囲を覆われた中空構造体、および単板状の繊維強化複合材料がコア材の片面に配置されたいわゆるカナッペ構造体などが挙げられる。
 サンドイッチ構造体やカナッペ構造体のコア材としては、アルミニウムやアラミドからなるハニカムコアや、ポリウレタン、ポリスチレン、ポリアミド、ポリイミド、ポリ塩化ビニル、フェノール樹脂、アクリル樹脂、エポキシ樹脂等のフォームコア、およびバルサなどの木材等が挙げられる。中でも、コア材としては、軽量の繊維強化複合材料が得られるという理由から、フォームコアが好適に用いられる。
 本発明の繊維強化複合材料は、軽量でありながら強度や弾性率等の力学特性が優れている。そのため、航空機や宇宙衛星、産業機械、鉄道車両、船舶、および自動車などの構造部材や外板などに好ましく用いられる。また、色調、表面品位にも優れている。そのため、特に自動車外板用途に好ましく用いられる。
 次に、実施例により、本発明の繊維強化複合材料用2液型エポキシ樹脂組成物と繊維強化複合材料について、さらに詳細に説明する。
 <樹脂原料>
 各実施例の2液型エポキシ樹脂組成物を得るために、次の樹脂原料を用いた。表1、2中のエポキシ樹脂組成物の含有割合の単位は、特に断らない限り「質量部」を意味する。
1.エポキシ樹脂
・“jER”(登録商標)1001(三菱化学(株)製):ビスフェノールA型エポキシ樹脂、エポキシ当量475
・“エポトート”(登録商標)YD-128(新日鉄住金化学(株)製):ビスフェノールA型エポキシ樹脂、エポキシ当量189
・“エポトート”(登録商標)YDF-170(新日鉄住金化学(株)製):ビスフェノールF型エポキシ樹脂、エポキシ当量170
・“セロキサイド”(登録商標)2021P((株)ダイセル製):脂環式エポキシ樹脂、エポキシ当量137
2.酸無水物
・HN-5500(日立化成(株)製):メチルヘキサヒドロフタル酸無水物
・“カヤハード”(登録商標)MCD(日本化薬(株)製):メチルナジック酸無水物
3.第四級アンモニウム塩
・テトラメチルアンモニウムブロミド(東京化成工業(株)製)
・テトラメチルアンモニウムクロリド(東京化成工業(株)製)
・トリメチルフェニルアンモニウムブロミド(東京化成工業(株)製)
4.第四級ホスホニウムハライド
・テトラフェニルホスホニウムブロミド(東京化成工業(株)製)
・エチルトリフェニルホスホニウムブロミド(東京化成工業(株)製)
・テトラフェニルホスホニウムクロリド(東京化成工業(株)製)
5.イミダゾリウム塩
・1-ブチル-3-メチルイミダゾリウムクロリド(東京化成工業(株)製)
・1-ブチル-3-メチルイミダゾリウムブロミド(東京化成工業(株)製)
・1-エチル-3-メチルイミダゾリウムブロミド(東京化成工業(株)製)
6.その他物質
・トリエチレンジアミン(東京化成工業(株)製)
・メタキシレンジアミン(東京化成工業(株)製)
・テトラフェニルホスホニウムテトラ-p-トリルボレート(北興化学工業(株)製)
・テトラブチルホスホニウムデカン酸塩(北興化学工業(株)製)
・トリ-p-トリルホスフィン(東京化成工業(株)製)
・1,2-ジメチルイミダゾール(四国化成工業(株)製)
・2-エチル-4-メチルイミダゾール(四国化成工業(株)製)。
 <エポキシ樹脂組成物の調製>
 表1~4に記載した配合比により、エポキシ樹脂を配合し主剤液とした。表1~4に記載した配合比で、成分[B](各酸無水物)と成分[C](第四級アンモニウム塩、第四級ホスホニウムハライド、イミダゾリウム塩、その他の物質)を配合して硬化剤液とした。これらの主剤液と硬化剤液とを用い、これらを表1~4に記載した配合比で混合して、エポキシ樹脂組成物を調製した。
 <エポキシ樹脂組成物の粘度の測定>
ISO 2884-1(1999)における円錐平板型回転粘度計を使用した測定方法に準拠し、エポキシ樹脂組成物の混合調製後の粘度を測定し、粘度安定性の指標とした。装置には、東機産業(株)製のTVE-33H型を用いた。ここでローターは1゜34’×R24を用い、測定温度は40℃、サンプル量は1cmとした。
 <誘電測定>
 エポキシ樹脂の硬化を追跡するために、誘電測定を行った。誘電測定装置として、Holometrix-Micromet社製のMDE-10キュアモニターを使用した。TMS-1インチ型センサーを下面に埋め込んだプログラマブルミニプレスMP2000の下面に、内径が32mmで、厚さが3mmのバイトン製Oリングを設置し、プレスの温度を120℃に設定し、Oリングの内側にエポキシ樹脂組成物を注ぎプレスを閉じ、エポキシ樹脂組成物のイオン粘度の時間変化を追跡した。誘電測定は、1、10、100、1000および10000Hzの各周波数で行い、付属のソフトウェアを用いて、周波数非依存のイオン粘度の対数Log(α)を得た。
 次に、次の(式4)によりキュアインデックスを求め、キュアインデックスが10%と90%に到達する時間t10、t90を求めた。
・キュアインデックス={log(αt)-log(αmin)}/{log(αmax)-log(αmin)}×100 ・・・(式4)
 ・キュアインデックス:(単位:%)
 ・αt:時間tにおけるイオン粘度(単位:Ω・cm)
 ・αmin:イオン粘度の最小値(単位:Ω・cm)
 ・αmax:イオン粘度の最大値(単位:Ω・cm)。
 <樹脂硬化板の作成>
 プレス装置下面に、一辺50mmの正方形をくり抜いた、厚さ2mmの銅製スペーサーを設置し、プレスの温度を120℃に設定し、エポキシ樹脂組成物をスペーサーの内側に注ぎ、プレスを閉じた。20分後にプレスを開け、樹脂硬化板を得た。
 <硬化物のガラス転移温度Tg測定>
 樹脂硬化板から幅12.7mm、長さ40mmの試験片を切り出し、レオメーター(TAインスツルメンツ社製ARES)を用いて、ねじりDMA測定を行った。測定条件は、昇温速度5℃/分である。測定で得られた貯蔵弾性率G’の変曲点での温度を、Tgとした。
 <硬化物着色>
 上記の樹脂硬化板について着色の有無を判断した。具体的には、樹脂硬化板から切り出した30mm角、厚さ2mmの試験片を使用し、分光測色計(CM-700d、コニカミノルタ(株)製)を用いて、硬化物の色調をL*a*b*表色系で表した。L*a*b*表色系は物質の色を表すのに用いられているものでL*で明度を表し、a*とb*で色度を表す。ここで、a*は赤方向、-a*は緑方向、b*は黄方向、-b*は青方向を示す。測定条件は波長380~780nmの範囲において、D65光源、10°視野、正反射光を含まない条件での分光透過率を測定した。このとき、|a*|≦2であって、かつ|b*|≦5であるものは「着色無し」、それ以外を「着色あり」とした。
 <繊維強化複合材料の作製>
 力学試験用の繊維強化複合材料としては、下記のRTM成形法によって作製した繊維強化複合材料を用いた。
 350mm×700mm×2mmの板状キャビティーを持つ金型に、強化繊維として炭素繊維織物CO6343(炭素繊維:T300-3K、組織:平織、目付:198g/m、東レ(株)製)をキャビティー内に9枚積層し、プレス装置で型締めを行った。次に、100℃の温度(成形温度)に保持した金型内を、真空ポンプにより、大気圧-0.1MPaに減圧し、あらかじめ50℃の温度に加温しておいたエポキシ樹脂組成物の主剤液と硬化剤液を、樹脂注入機を用いて混合し、0.2MPaの圧力で注入した。エポキシ樹脂組成物の注入開始後20分で金型を開き、脱型して、繊維強化複合材料を得た。
 <強化繊維への樹脂含浸性>
 上記の繊維強化複合材料の作製の際の樹脂注入工程における含浸性について、繊維強化複合材料中のボイド量を基準に次の3段階で比較評価した。繊維強化複合材料中のボイド量が1%未満と、ボイドが実質的に存在しないものを「A」、繊維強化複合材料の外観に樹脂未含浸部分は認められないが、繊維強化複合材料中のボイド量が1%以上であるものを「B」、繊維強化複合材料の外観に樹脂未含浸部分が認められるものを「C」とした。
 繊維強化複合材料中のボイド量は、平滑に研磨した繊維強化複合材料断面を落斜型光学顕微鏡で観察し、繊維強化複合材料中のボイドの面積率から算出した。
 <繊維強化複合材料の脱型作業性>
 上記の繊維強化複合材料の作製の際の脱型工程における作業性について、次の3段階で比較評価した。金型を開き、繊維強化複合材料をスパチュラで金型から引き剥がす際、抵抗なく簡単に脱型されるものを「A」、抵抗はあるものの繊維強化複合材料が塑性変形することなく脱型できるもの(脱型作業に時間を要するため実用上は「A」に劣る)を「B」、脱型困難もしくは脱型の際に繊維強化複合材料が塑性変形してしまうものを「C」とした。
 <繊維強化複合材料のバリ発生抑制について>
 上記方法により作製された繊維強化複合材料のバリの発生について、次の3段階で目視により比較評価した。バリが発生しなかったものを「A」、僅かに発生したものを「B」、全周にわたり発生したものを「C」とした。
 表1~4の配合比に従い、前記したようにしてエポキシ樹脂組成物を混合調製し、前記したように粘度測定、誘電測定を行った。また、このエポキシ樹脂組成物で前記した方法で樹脂硬化板を作製し、ガラス転移温度Tg測定、着色評価を行った。さらに、エポキシ樹脂組成物を用いて、前記した方法で繊維強化複合材料を作製した。
 (実施例1)
 表1に示したように、ビスフェノールA型エポキシ樹脂「“エポトート”(登録商標)YD-128」100質量部からなる主剤液と、酸無水物「HN-5500」89質量部にテトラメチルアンモニウムブロミド6質量部を80℃で加熱して相溶させた硬化剤液と、からエポキシ樹脂組成物を混合調製した。このエポキシ樹脂組成物は、40℃の温度で保持しても増粘倍率が低く抑えられ、低粘度状態が維持されていた。また、120℃の温度でのt90で表される脱型可能時間が短いため、繊維強化複合材料の成形において、成形時間の短縮にも効果的であることが分かった。また、このエポキシ樹脂組成物の硬化物は、Tgが成形温度(120℃)を上回り、また着色も無かった。このため、このエポキシ樹脂組成物を用いて作製した繊維強化複合材料は、成形品を金型から取り出す際に変形することなく容易に脱型することができた。結果を表1に示す。
 (実施例2、3)
 テトラメチルアンモニウムブロミドをそれぞれ18質量部(実施例2)、25質量部と(実施例3)したこと以外は、実施例1と同様に実施した。いずれも40℃での粘度安定性に優れ、また脱型可能時間が短かった。また、このエポキシ樹脂組成物の硬化物はTgが成形温度(120℃)を上回り、着色も無かったため、このエポキシ樹脂組成物を用いて作製した繊維強化複合材料は、成形品を金型から取り出す際に変形することなく容易に脱型することができた。結果を表1に示す。
 (実施例4、5)
 ビスフェノールF型エポキシ樹脂「“エポトート”(登録商標)YDF-170」100質量部からなる主剤液と、硬化剤液には酸無水物「HN-5500」74質量部と「“カヤハード”(登録商標)MCD」26質量部、テトラメチルアンモニウムクロリドを実施例4は7質量部、実施例5は23質量部としたこと以外は、実施例1と同様に実施した。いずれも40℃での粘度安定性に優れ、また脱型可能時間が短かった。また、このエポキシ樹脂組成物の硬化物はTgが成形温度(120℃)を上回り、着色も無かったため、このエポキシ樹脂組成物を用いて作製した繊維強化複合材料は、成形品を金型から取り出す際に変形することなく脱型することができた。結果を表1に示す。
 (実施例6、7)
 ビスフェノールA型エポキシ樹脂「“jER”(登録商標)1001」75質量部と脂環式エポキシ樹脂「“セロキサイド”(登録商標)2021P」25質量部からなる主剤液と、硬化剤液には酸無水物「HN-5500」100質量部、トリメチルフェニルアンモニウムブロミドを実施例6は6質量部、実施例7は22質量部としたこと以外は、実施例1と同様に実施した。いずれも40℃での粘度安定性に優れ、また脱型可能時間が短かった。また、このエポキシ樹脂組成物の硬化物はTgが成形温度(120℃)を上回り、着色も無かったため、このエポキシ樹脂組成物を用いて作製した繊維強化複合材料は、成形品を金型から取り出す際に変形することなく容易に脱型することができた。結果を表1に示す。
 (比較例1、2)
 テトラメチルアンモニウムブロミドをそれぞれ2質量部、4質量部としたこと以外は、実施例1と同様に実施した。いずれも40℃での粘度安定性に優れるものの、成分[C]の量が不十分であり、実施例に比べて硬化時間が長くなるため、このエポキシ樹脂組成物を用いて作製した繊維強化複合材料は脱型可能時間が長くなり、成形時の生産性が劣った。結果を表1に示す。
 (比較例3)
 テトラメチルアンモニウムブロミドを40質量部としたこと以外は、実施例1と同様に実施した。成分[C]の量が多すぎ、40℃での増粘が著しくエポキシ樹脂組成物の40℃での粘度安定性に劣るため、このエポキシ樹脂組成物を用いて繊維強化複合材料を作製しようとすると、強化繊維への樹脂の含浸性が劣った。また、このエポキシ樹脂組成物の硬化物はTgが成形温度(120℃)を下回るため、繊維強化複合材料を脱型する際に変形してしまった。結果を表1に示す。
 (比較例4)
 ビスフェノールF型エポキシ樹脂「“エポトート”(登録商標)YDF-170」100質量部からなる主剤液と、硬化剤液には酸無水物「HN-5500」99質量部とトリエチレンジアミン6質量部としたこと以外は、実施例1と同様に実施した。本比較例では、成分[C]を含まないため、実施例に比べ硬化時間が長くなっており、このエポキシ樹脂組成物を用いた繊維強化複合材料成形では生産性が劣ると共に、硬化物が着色しており成形体の品位が低下した。結果を表1に示す。
 (比較例5)
 ビスフェノールA型エポキシ樹脂「“エポトート”(登録商標)YD-128」100質量部からなる主剤液と、硬化剤液に成分[B]、成分[C]を含まずメタキシレンジアミン18質量部としたこと以外は、実施例1と同様に実施した。本比較例では、成分[B]および成分[C]を含まないためエポキシ樹脂組成物の粘度が高く、また増粘倍率が高く粘度の安定性に劣るため、このエポキシ樹脂組成物を用いた繊維強化複合材料成形では、強化繊維への含浸性が劣った。結果を表1に示す。
 (比較例6)
 成分[C]の代わりにトリ-p-トリルホスフィンを10質量部としたこと以外は、実施例1と同様に実施した。本比較例は、硬化時間は短いものの、120℃の温度での硬化では着色していた。結果を表1に示す。
 (実施例8)
 表2に示したように、ビスフェノールF型エポキシ樹脂「“エポトート”(登録商標)YDF-170」100質量部からなる主剤液と、硬化剤液には酸無水物「HN-5500」74質量部と「“カヤハード”(登録商標)MCD」26質量部に、エチルトリフェニルホスホニウムブロミド6質量部を90℃で加熱して相溶させた硬化剤液と、からエポキシ樹脂組成物を調製した。このエポキシ樹脂組成物は、40℃の温度での保持時に、混合調製後5分後までは急な粘度上昇を示し、そこから20分後までは増粘が抑えられ、低粘度状態が維持されていた。また、120℃の温度でのt90で表される脱型可能時間が短いため、繊維強化複合材料の成形において、成形時間の短縮にも効果的であることが分かった。また、このエポキシ樹脂組成物の硬化物は、Tgが成形温度(120℃)を上回り、また着色も無く、このエポキシ樹脂組成物を用いて作製した繊維強化複合材料は、金型から取り出す際に変形することなく容易に脱型することができ、また成形体のバリも少なかった。結果を表2に示す。
 (実施例9、10)
 エチルトリフェニルホスホニウムブロミドをそれぞれ表2に示した量としたこと以外は、実施例8と同様に実施した。いずれも混合調製後の粘度上昇とその後の40℃での粘度安定性に優れ、また脱型可能時間が短かった。また、このエポキシ樹脂組成物の硬化物はTgが成形温度(120℃)を上回り、着色も無かったため、このエポキシ樹脂組成物を用いて作製した繊維強化複合材料は、金型から取り出す際に変形することなく容易に脱型することができ、またバリも少なかった。結果を表2に示す。
 (実施例11~13)
ビスフェノールA型エポキシ樹脂「“エポトート”(登録商標)YD-128」からなる主剤液と、硬化剤液には酸無水物「HN-5500」、テトラフェニルホスホニウムブロミドをそれぞれ表2に示した量としたこと以外は、実施例8と同様に実施した。いずれも混合調製後の粘度上昇と40℃での粘度安定性に優れ、また脱型可能時間が短かった。また、このエポキシ樹脂組成物の硬化物はTgが成形温度(120℃)を上回り、着色も無かったため、このエポキシ樹脂組成物を用いて作製した繊維強化複合材料は、金型から取り出す際に変形することなく容易に脱型することができ、またバリも少なかった。結果を表2に示す。
 (実施例14、15)
 ビスフェノールA型エポキシ樹脂「“エポトート”(登録商標)YD-128」と「“セロキサイド”(登録商標)2021P」を組み合わせ、室温下25℃で相溶させた主剤液と、硬化剤液には酸無水物「HN-5500」、テトラフェニルホスホニウムブロミドを表2に示した量としたこと以外は、実施例8と同様に実施した。いずれも混合調製後の粘度上昇と40℃での粘度安定性に優れ、また脱型可能時間が短かった。また、このエポキシ樹脂組成物の硬化物は、Tgが成形温度(120℃)近傍であり、着色も無かったため、このエポキシ樹脂組成物を用いて作製した繊維強化複合材料は、金型から取り出す際に変形することなく容易に脱型することができ、またバリも少なかった。結果を表2に示す。
 (実施例16~18)
 表2に示したように、ビスフェノールA型エポキシ樹脂「“jER”(登録商標)1001」とビスフェノールF型エポキシ樹脂「“エポトート”(登録商標)YDF-170」を組み合わせ、90℃で加熱して相溶させた主剤液と、硬化剤液には酸無水物「HN-5500」、テトラフェニルホスホニウムクロリドを表2に示した量としたこと以外は、実施例8と同様に実施した。いずれも混合調製後の粘度上昇と40℃での粘度安定性に優れ、また脱型可能時間が短かった。また、このエポキシ樹脂組成物の硬化物はTgが成形温度(120℃)近傍であり、着色も無かったため、このエポキシ樹脂組成物を用いて作製した繊維強化複合材料は、金型から取り出す際に変形することなく容易に脱型することができ、またバリも少なかった。結果を表2に示す。
 (比較例7)
 比較例7はエチルトリフェニルホスホニウムブロミドを5質量部としたこと以外は、実施例12と同様に実施した。混合調製後の粘度上昇と40℃での粘度安定性に優れるものの、成分[C]の量が不十分であり、実施例に比べて硬化時間が長くなるたり、また、混合調製後の粘度上昇が不十分であり、このエポキシ樹脂組成物を用いて作製した繊維強化複合材料は、成形時に多数のバリが生じ成形体品位が低下した。結果を表2に示す。
 (比較例8)
 テトラフェニルホスホニウムブロミドを30部としたこと以外は、実施例14と同様に実施した。成分[C]の量が多すぎ、40℃での増粘が著しく40℃での粘度安定性に劣るため、このエポキシ樹脂組成物を用いて作製した繊維強化複合材料は、強化繊維への含浸性が劣り、金型から取り出す際に変形を伴い、生産性が劣った。結果を表2に示す。
 (比較例9)
 成分[C]に代わりテトラフェニルホスホニウムテトラ-p-トリルボレート17質量部としたこと以外は、実施例12と同様に実施した。比較例9では、成分[C]を含まないため、実施例に比べ硬化時間が長くなっており、また、混合調製後の粘度上昇は、表3に示したように、40℃のほかに、30℃、60℃においても、混合調製後の粘度上昇は発現しなかった。このエポキシ樹脂組成物を用いた繊維強化複合材料成形は、成形体に多数のバリが生じ成形体の品位が低下した。結果を表2に示す。
 (比較例10)
 成分[C]に代わりテトラブチルホスホニウムデカン酸塩18質量部としたこと以外は、実施例12と同様に実施した。比較例10では、成分[C]を含まないため、実施例に比べ硬化時間が長くなっており、また、混合調製後の粘度上昇は、表3に示したように、40℃のほかに、30℃、60℃においても、混合調製後の粘度上昇は発現しなかった。このエポキシ樹脂組成物を用いた繊維強化複合材料成形は、成形体に多数のバリが生じ成形体の品位が低下した。結果を表2に示す。
 (比較例11)
 硬化剤液に酸無水物「HN-5500」と、成分[C]に代わりトリ-p-トリルホスフィンを10質量部としたこと以外は、実施例8と同様に実施した。本比較例は、硬化時間は短いものの、120℃の温度での硬化では着色していた。また、混合調製後の粘度上昇、表3に示したように、40℃のほかに、30℃、60℃においても、混合調製後の粘度上昇は発現しなかった。成形体に多数のバリが生じ成形体の品位が低下した。結果を表2に示す。
 (実施例19)
 表4に示したように、ビスフェノールA型エポキシ樹脂「“エポトート”(登録商標)YD-128」100質量部からなる主剤液と、酸無水物「HN-5500」89質量部に1-ブチル-3-メチルイミダゾリウムクロリド6質量部を80℃で加熱して相溶させた硬化剤液と、からエポキシ樹脂組成物を混合調製した。このエポキシ樹脂組成物は、40℃の温度で保持しても増粘倍率が低く抑えられ、低粘度の状態が維持されていた。また、120℃の温度でのt90で表される脱型可能時間が短いため、繊維強化複合材料の成形において、成形時間の短縮にも効果的であることが分かった。また、このエポキシ樹脂組成物の硬化物は、Tgが成形温度(120℃)を上回り、また着色も無かった。このため、このエポキシ樹脂組成物を用いて作製した繊維強化複合材料は、成形品を金型から取り出す際に変形することなく容易に脱型することができた。結果を表4に示す。
 (実施例20~22)
 1-ブチル-3-メチルイミダゾリウムクロリドをそれぞれ10質量部(実施例20)、18質量部(実施例21)、25質量部(実施例22)としたこと以外は、実施例19と同様に実施した。いずれも40℃での粘度安定性に優れ、また脱型可能時間が短かった。また、このエポキシ樹脂組成物の硬化物はTgが成形温度(120℃)を上回り、着色も無かったため、このエポキシ樹脂組成物を用いて作製した繊維強化複合材料は、成形品を金型から取り出す際に変形することなく容易に脱型することができた。結果を表4に示す。
 (実施例23、24)
 ビスフェノールF型エポキシ樹脂「“エポトート”(登録商標)YDF-170」100質量部からなる主剤液と、硬化剤液には酸無水物「HN-5500」74質量部と「“カヤハード”(登録商標)MCD」26質量部、1-ブチル-3-メチルイミダゾリウムブロミドをそれぞれ7質量部(実施例23)、24質量部(実施例24)としたこと以外は、実施例19と同様に実施した。いずれも40℃での粘度安定性に優れ、また脱型可能時間が短かった。また、このエポキシ樹脂組成物の硬化物はTgが成形温度(120℃)を上回るか近傍であり、着色も無かったため、このエポキシ樹脂組成物を用いて作製した繊維強化複合材料は、成形品を金型から取り出す際に変形することなく脱型することができた。結果を表4に示す。
 (実施例25、26)
 ビスフェノールA型エポキシ樹脂「“jER”(登録商標)1001」75質量部と脂環式エポキシ樹脂「“セロキサイド”(登録商標)2021P」25質量部からなる主剤液と、硬化剤液には酸無水物「HN-5500」100質量部、1-エチル-3-メチルイミダゾリウムブロミドをそれぞれ6質量部(実施例25)、22質量部(実施例26)としたこと以外は、実施例19と同様に実施した。いずれも40℃での粘度安定性に優れ、また脱型可能時間が短かった。また、このエポキシ樹脂組成物の硬化物はTgが成形温度(120℃)を上回り、着色も無かったため、このエポキシ樹脂組成物を用いて作製した繊維強化複合材料は、成形品を金型から取り出す際に変形することなく容易に脱型することができた。結果を表4に示す。
 (比較例12)
 1-ブチル-3-メチルイミダゾリウムクロリドを4質量部としたこと以外は、実施例19と同様に実施した。いずれも40℃での粘度安定性に優れるものの、成分[C]の量が不十分であり、実施例に比べて硬化時間が長くなるため、このエポキシ樹脂組成物を用いて作製した繊維強化複合材料は脱型可能時間が長くなり、成形時の生産性が劣った。結果を表4に示す。
 (比較例13)
 1-ブチル-3-メチルイミダゾリウムクロリドを40質量部としたこと以外は、実施例19と同様に実施した。成分[C]の量が多すぎ、40℃での増粘が著しくエポキシ樹脂組成物の40℃での粘度安定性に劣るため、このエポキシ樹脂組成物を用いて繊維強化複合材料を作製しようとすると、強化繊維への樹脂の含浸性が劣った。また、このエポキシ樹脂組成物の硬化物はTgが成形温度(120℃)を下回るため、繊維強化複合材料を脱型する際に変形してしまった。結果を表4に示す。
 (比較例14)
 成分[C]の代わりに1,2-ジメチルイミダゾール10質量部としたこと以外は、実施例19と同様に実施した。比較例14では、成分[C]を含まないため、実施例に比べ40℃20分後の増粘倍率が高く粘度の安定性に劣るため、このエポキシ樹脂組成物を用いた繊維強化複合材料成形では、強化繊維への含浸性が劣り、硬化物が着色していた。結果を表4に示す。
 (比較例15)
 ビスフェノールA型エポキシ樹脂「“エポトート”(登録商標)YD-128」100質量部からなる主剤液と、硬化剤液に成分[B]、成分[C]を含まず2-エチル-4-メチルイミダゾール10質量部としたこと以外は、実施例19と同様に実施した。本比較例では、成分[B]および成分[C]を含まないためエポキシ樹脂組成物の粘度が高く、また増粘倍率が高く粘度の安定性に劣るため、このエポキシ樹脂組成物を用いた繊維強化複合材料成形では、強化繊維への含浸性が劣り、また硬化物が着色していた。った。結果を表4に示す。
 以上のように、本発明のエポキシエポキシ樹脂組成物は繊維強化複合材料の成形に適しており、RTM法などにより、外観、表面品位にも優れた繊維強化複合材料を生産性良く短時間で得られる。また、本発明のエポキシエポキシ樹脂組成物は大きな形状の繊維強化複合材料の成形にも優れており、特に自動車部材への適用に好適である。
[規則91に基づく訂正 03.08.2016] 
Figure WO-DOC-TABLE-1
[規則91に基づく訂正 03.08.2016] 
Figure WO-DOC-TABLE-2
[規則91に基づく訂正 03.08.2016] 
Figure WO-DOC-TABLE-3
[規則91に基づく訂正 03.08.2016] 
Figure WO-DOC-TABLE-4
 本発明の2液型エポキシ樹脂組成物は、エポキシ樹脂調製時の作業性に優れ、混合調製後のエポキシ樹脂組成物の低温(例えば40℃)での粘度安定性に優れ、成形時に短時間で硬化し、高品位の繊維強化複合材料を与えるため、RTM法などによって高品位の繊維強化複合材料を高い生産性で提供可能となる。これにより、特に自動車用途への繊維強化複合材料の適用が進み、自動車の更なる軽量化による燃費向上、地球温暖化ガス排出削減への貢献が期待できる。
 

Claims (14)

  1.  次の成分[A]~成分[C]を含み、
     成分[C]の含有量が成分[A]100質量部に対し、6~25質量部である、繊維強化複合材料用2液型エポキシ樹脂組成物。
    成分[A]:エポキシ樹脂
    成分[B]:酸無水物
    成分[C]:第四級アンモニウム塩または第四級ホスホニウムハライドまたはイミダゾリウム塩
  2.  成分[C]が、第四級アンモニウムハライドである請求項1記載の繊維強化複合材料用2液型エポキシ樹脂組成物。
  3.  成分[C]が、第四級ホスホニウムブロミドである、請求項1記載の繊維強化複合材料用2液型エポキシ樹脂組成物。
  4.  成分[C]が、テトラフェニルホスホニウムハライドである、請求項1または3に記載の繊維強化複合材料用2液型エポキシ樹脂組成物。
  5.  成分[C]が、イミダゾリウムハライドである、請求項1記載の繊維強化複合材料用2液型エポキシ樹脂組成物。
  6.  次の成分[A]、成分[B]を含み、全成分の混合から5分後の粘度が混合から1分後の粘度の1.5倍以上4.0倍以下であり、混合から20分後の粘度が混合から5分後の粘度の1.0倍以上2.0倍以下である温度T1を有し、その温度T1が30℃以上60℃以下である、繊維強化複合材料用2液型エポキシ樹脂組成物。
    成分[A]:エポキシ樹脂
    成分[B]:酸無水物
  7.  更に成分[C]として第四級ホスホニウムハライドを含む、請求項6に記載の繊維強化複合材料用2液型エポキシ樹脂組成物。
  8.  成分[C]の含有量が、成分[A]100質量部に対し、6~25質量部である、請求項7に記載の繊維強化複合材料用2液型エポキシ樹脂組成物。
  9.  成分[C]が、第四級ホスホニウムブロミドである、請求項7または8に記載の繊維強化複合材料用2液型エポキシ樹脂組成物。
  10.  成分[C]が、テトラフェニルホスホニウムハライドである、請求項7または8に記載の繊維強化複合材料用2液型エポキシ樹脂組成物。
  11.  成分〔D〕として強化繊維を含む、請求項1~10のいずれかに記載の繊維強化複合材料用2液型エポキシ樹脂組成物。
  12.  成分〔D〕が炭素繊維である、請求項11に記載の繊維強化複合材料用2液型エポキシ樹脂組成物。
  13.  成分[B]が脂環式構造を有する、請求項1から12のいずれかに記載の繊維強化複合材料用2液型エポキシ樹脂組成物。
  14.  請求項11~13のいずれかに記載の繊維強化複合材料用2液型エポキシ樹脂組成物を硬化してなる、繊維強化複合材料。
     
PCT/JP2016/059635 2015-03-27 2016-03-25 繊維強化複合材料用2液型エポキシ樹脂組成物および繊維強化複合材料 WO2016158757A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016518216A JP6137407B2 (ja) 2015-03-27 2016-03-25 繊維強化複合材料用2液型エポキシ樹脂組成物および繊維強化複合材料
EP16772638.9A EP3275924B1 (en) 2015-03-27 2016-03-25 Two-pack type epoxy resin composition for fiber-reinforced composite material, and fiber-reinforced composite material
US15/562,002 US10717831B2 (en) 2015-03-27 2016-03-25 Two-component type epoxy resin composition for fiber-reinforced composite material, and fiber-reinforced composite material
CN201680017626.0A CN107406607B (zh) 2015-03-27 2016-03-25 纤维强化复合材料用双组分型环氧树脂组合物及纤维强化复合材料
KR1020177026585A KR101900640B1 (ko) 2015-03-27 2016-03-25 섬유 강화 복합재료용 2액형 에폭시 수지 조성물 및 섬유 강화 복합재료

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015066657 2015-03-27
JP2015-066657 2015-03-27
JP2015-128657 2015-06-26
JP2015128657 2015-06-26

Publications (1)

Publication Number Publication Date
WO2016158757A1 true WO2016158757A1 (ja) 2016-10-06

Family

ID=57004680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059635 WO2016158757A1 (ja) 2015-03-27 2016-03-25 繊維強化複合材料用2液型エポキシ樹脂組成物および繊維強化複合材料

Country Status (6)

Country Link
US (1) US10717831B2 (ja)
EP (1) EP3275924B1 (ja)
JP (1) JP6137407B2 (ja)
KR (1) KR101900640B1 (ja)
CN (1) CN107406607B (ja)
WO (1) WO2016158757A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017221542A1 (ja) * 2016-06-24 2017-12-28 東レ株式会社 繊維強化複合材料用2液型エポキシ樹脂組成物および繊維強化複合材料
WO2021157442A1 (ja) 2020-02-03 2021-08-12 東レ株式会社 成形材料および繊維強化複合材料

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6447557B2 (ja) * 2016-03-24 2019-01-09 日亜化学工業株式会社 発光装置の製造方法
CN107964217B (zh) * 2017-12-14 2020-11-17 郑州四维特种材料有限责任公司 一种碳纤维增强复合材料树脂基体、碳纤维增强复合材料及其制备方法、乒乓球拍底板
US11364690B2 (en) * 2018-02-08 2022-06-21 Giant Manufacturing Co., Ltd. Resin-based composite structure and method for forming resin-based composite structure
JP2024530693A (ja) * 2021-08-13 2024-08-23 ヒューズ、ロバート、ケー、ジュニア 繊維強化エポキシ供給システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57133123A (en) * 1980-12-29 1982-08-17 Ciba Geigy Ag Transparent acid anhydride curable epoxy- forming resin composition
JPH01272657A (ja) * 1988-04-26 1989-10-31 Sanyo Chem Ind Ltd エポキシ樹脂組成物
WO2009014270A1 (ja) * 2007-07-26 2009-01-29 Ajinomoto Co., Inc. 樹脂組成物
JP2012144831A (ja) * 2010-12-24 2012-08-02 Toray Ind Inc サイジング剤塗布炭素繊維の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218445A (ja) * 1988-07-06 1990-01-22 Toshiba Corp 注形用エポキシ樹脂組成物
JP2716643B2 (ja) * 1993-03-04 1998-02-18 住友ベークライト株式会社 液状エポキシ樹脂組成物
PT787348E (pt) * 1994-07-01 2003-12-31 Bosch Gmbh Robert Composicao de moldagem de resina epoxica
EP0834523A4 (en) * 1995-06-15 2000-08-30 Nissan Chemical Ind Ltd EPOXY RESIN COMPOSITION CONTAINING CARBONIC ACID ANHYDRIDE
US6613839B1 (en) * 1997-01-21 2003-09-02 The Dow Chemical Company Polyepoxide, catalyst/cure inhibitor complex and anhydride
JP2005330335A (ja) * 2004-05-18 2005-12-02 Nitto Denko Corp 光半導体素子封止用エポキシ樹脂組成物およびそれを用いた光半導体装置
JP2006036862A (ja) * 2004-07-23 2006-02-09 Daicel Chem Ind Ltd 電気絶縁性注型用エポキシ樹脂組成物及び硬化物、並びに熱硬化性接着剤組成物
JP4752326B2 (ja) * 2004-12-27 2011-08-17 Dic株式会社 成形用エポキシ樹脂組成物、成形硬化物、及びその成形硬化物の製造方法
JP5604771B2 (ja) 2006-04-24 2014-10-15 東レ株式会社 エポキシ樹脂組成物、繊維強化複合材料およびその製造方法
US8053546B2 (en) * 2007-06-11 2011-11-08 Basf Se Catalyst for curing epoxides
JP5260639B2 (ja) * 2007-06-14 2013-08-14 ビーエーエスエフ ソシエタス・ヨーロピア エポキシドの硬化のための触媒
TW200913181A (en) * 2007-07-10 2009-03-16 Arakawa Chem Ind Optical semiconductor-sealing composition
JP5159561B2 (ja) * 2008-10-29 2013-03-06 新日本理化株式会社 エポキシ樹脂系組成物及びエポキシ樹脂系薄膜
CN102959154B (zh) * 2010-06-30 2014-07-02 东丽株式会社 上浆剂涂布碳纤维的制造方法及上浆剂涂布碳纤维
JP5733301B2 (ja) * 2011-01-27 2015-06-10 東レ株式会社 繊維強化複合材料rtm成形用エポキシ樹脂組成物、繊維強化複合材料およびその製造方法
JP5647071B2 (ja) * 2011-05-24 2014-12-24 日東電工株式会社 光半導体装置用エポキシ樹脂組成物およびそれを用いた光半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57133123A (en) * 1980-12-29 1982-08-17 Ciba Geigy Ag Transparent acid anhydride curable epoxy- forming resin composition
JPH01272657A (ja) * 1988-04-26 1989-10-31 Sanyo Chem Ind Ltd エポキシ樹脂組成物
WO2009014270A1 (ja) * 2007-07-26 2009-01-29 Ajinomoto Co., Inc. 樹脂組成物
JP2012144831A (ja) * 2010-12-24 2012-08-02 Toray Ind Inc サイジング剤塗布炭素繊維の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3275924A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017221542A1 (ja) * 2016-06-24 2017-12-28 東レ株式会社 繊維強化複合材料用2液型エポキシ樹脂組成物および繊維強化複合材料
WO2021157442A1 (ja) 2020-02-03 2021-08-12 東レ株式会社 成形材料および繊維強化複合材料

Also Published As

Publication number Publication date
KR20170131434A (ko) 2017-11-29
JP6137407B2 (ja) 2017-05-31
US20180057645A1 (en) 2018-03-01
US10717831B2 (en) 2020-07-21
EP3275924B1 (en) 2021-11-24
KR101900640B1 (ko) 2018-09-19
CN107406607B (zh) 2020-07-10
EP3275924A1 (en) 2018-01-31
JPWO2016158757A1 (ja) 2017-04-27
EP3275924A4 (en) 2018-12-05
CN107406607A (zh) 2017-11-28

Similar Documents

Publication Publication Date Title
JP6137407B2 (ja) 繊維強化複合材料用2液型エポキシ樹脂組成物および繊維強化複合材料
JP5733301B2 (ja) 繊維強化複合材料rtm成形用エポキシ樹脂組成物、繊維強化複合材料およびその製造方法
JP5604771B2 (ja) エポキシ樹脂組成物、繊維強化複合材料およびその製造方法
JP6007794B2 (ja) 繊維強化複合材料用2液型エポキシ樹脂組成物および繊維強化複合材料
WO2015046030A1 (ja) 繊維強化複合材料用2液型エポキシ樹脂組成物および繊維強化複合材料
KR20200133738A (ko) 프리프레그 및 섬유 강화 복합재료
WO2017221542A1 (ja) 繊維強化複合材料用2液型エポキシ樹脂組成物および繊維強化複合材料
WO2014157099A1 (ja) 繊維強化複合材料の製造方法
JP2010163573A (ja) エポキシ樹脂組成物およびそれを用いた繊維強化複合材料
WO2018029743A1 (ja) 繊維強化複合材料用2液型エポキシ樹脂組成物および繊維強化複合材料
JP2014214169A (ja) 繊維強化複合材料用2液型エポキシ樹脂組成物および繊維強化複合材料
JP2012077124A (ja) Rtm成形用エポキシ樹脂組成物および繊維強化複合材料

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016518216

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772638

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177026585

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15562002

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016772638

Country of ref document: EP