WO2021157442A1 - 成形材料および繊維強化複合材料 - Google Patents
成形材料および繊維強化複合材料 Download PDFInfo
- Publication number
- WO2021157442A1 WO2021157442A1 PCT/JP2021/002756 JP2021002756W WO2021157442A1 WO 2021157442 A1 WO2021157442 A1 WO 2021157442A1 JP 2021002756 W JP2021002756 W JP 2021002756W WO 2021157442 A1 WO2021157442 A1 WO 2021157442A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fiber
- epoxy resin
- reinforced composite
- composite material
- resin composition
- Prior art date
Links
- 239000012778 molding material Substances 0.000 title claims abstract description 59
- 239000000463 material Substances 0.000 title claims description 176
- 239000003733 fiber-reinforced composite Substances 0.000 title claims description 151
- 239000003822 epoxy resin Substances 0.000 claims abstract description 198
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 198
- 239000003365 glass fiber Substances 0.000 claims abstract description 127
- 239000000203 mixture Substances 0.000 claims abstract description 122
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 89
- 239000004917 carbon fiber Substances 0.000 claims abstract description 89
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 83
- 239000000835 fiber Substances 0.000 claims abstract description 70
- 238000005452 bending Methods 0.000 claims abstract description 63
- 238000010521 absorption reaction Methods 0.000 claims abstract description 37
- 125000000524 functional group Chemical group 0.000 claims abstract description 31
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 claims abstract description 31
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 19
- CXOFVDLJLONNDW-UHFFFAOYSA-N Phenytoin Chemical group N1C(=O)NC(=O)C1(C=1C=CC=CC=1)C1=CC=CC=C1 CXOFVDLJLONNDW-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000003054 catalyst Substances 0.000 claims abstract description 12
- 239000011208 reinforced composite material Substances 0.000 claims abstract description 9
- 238000002835 absorbance Methods 0.000 claims description 68
- 238000000034 method Methods 0.000 claims description 47
- 238000012360 testing method Methods 0.000 claims description 47
- 239000007822 coupling agent Substances 0.000 claims description 23
- WDGCBNTXZHJTHJ-UHFFFAOYSA-N 2h-1,3-oxazol-2-id-4-one Chemical group O=C1CO[C-]=N1 WDGCBNTXZHJTHJ-UHFFFAOYSA-N 0.000 claims description 20
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 19
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 17
- 238000000465 moulding Methods 0.000 claims description 17
- 229910052760 oxygen Inorganic materials 0.000 claims description 17
- 239000001301 oxygen Substances 0.000 claims description 17
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 16
- 229910052710 silicon Inorganic materials 0.000 claims description 16
- 239000010703 silicon Substances 0.000 claims description 16
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 13
- 239000011521 glass Substances 0.000 claims description 11
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 claims description 10
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 10
- 125000003277 amino group Chemical group 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 7
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical group OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 claims description 6
- 238000013507 mapping Methods 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 238000012937 correction Methods 0.000 claims description 5
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 claims description 5
- 230000035945 sensitivity Effects 0.000 claims description 5
- 125000003396 thiol group Chemical group [H]S* 0.000 claims description 4
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 239000011152 fibreglass Substances 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 25
- 230000007423 decrease Effects 0.000 abstract description 9
- 238000001723 curing Methods 0.000 description 107
- 229920005989 resin Polymers 0.000 description 72
- 239000011347 resin Substances 0.000 description 72
- 239000012783 reinforcing fiber Substances 0.000 description 46
- 239000011342 resin composition Substances 0.000 description 30
- 238000005470 impregnation Methods 0.000 description 28
- 238000005259 measurement Methods 0.000 description 24
- 239000002759 woven fabric Substances 0.000 description 22
- 239000011159 matrix material Substances 0.000 description 19
- 238000002347 injection Methods 0.000 description 18
- 239000007924 injection Substances 0.000 description 18
- 239000000126 substance Substances 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 15
- -1 amine compound Chemical class 0.000 description 14
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 12
- 230000014759 maintenance of location Effects 0.000 description 12
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 description 10
- 239000012948 isocyanate Substances 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- 239000004745 nonwoven fabric Substances 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 229920001187 thermosetting polymer Polymers 0.000 description 9
- 238000011049 filling Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000011162 core material Substances 0.000 description 7
- LJGHYPLBDBRCRZ-UHFFFAOYSA-N 3-(3-aminophenyl)sulfonylaniline Chemical compound NC1=CC=CC(S(=O)(=O)C=2C=C(N)C=CC=2)=C1 LJGHYPLBDBRCRZ-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 6
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 5
- 150000004756 silanes Chemical class 0.000 description 5
- HACRKYQRZABURO-UHFFFAOYSA-N 2-phenylethyl isocyanate Chemical compound O=C=NCCC1=CC=CC=C1 HACRKYQRZABURO-UHFFFAOYSA-N 0.000 description 4
- 229930185605 Bisphenol Natural products 0.000 description 4
- 229910000906 Bronze Inorganic materials 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 4
- 239000010974 bronze Substances 0.000 description 4
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 4
- 238000000113 differential scanning calorimetry Methods 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- 230000020169 heat generation Effects 0.000 description 4
- 229920002635 polyurethane Polymers 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- DDFYFBUWEBINLX-UHFFFAOYSA-M tetramethylammonium bromide Chemical compound [Br-].C[N+](C)(C)C DDFYFBUWEBINLX-UHFFFAOYSA-M 0.000 description 4
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 150000002513 isocyanates Chemical class 0.000 description 3
- IGALFTFNPPBUDN-UHFFFAOYSA-N phenyl-[2,3,4,5-tetrakis(oxiran-2-ylmethyl)phenyl]methanediamine Chemical compound C=1C(CC2OC2)=C(CC2OC2)C(CC2OC2)=C(CC2OC2)C=1C(N)(N)C1=CC=CC=C1 IGALFTFNPPBUDN-UHFFFAOYSA-N 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 125000005372 silanol group Chemical group 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 3
- HHRACYLRBOUBKM-UHFFFAOYSA-N 2-[(4-tert-butylphenoxy)methyl]oxirane Chemical compound C1=CC(C(C)(C)C)=CC=C1OCC1OC1 HHRACYLRBOUBKM-UHFFFAOYSA-N 0.000 description 2
- PULOARGYCVHSDH-UHFFFAOYSA-N 2-amino-3,4,5-tris(oxiran-2-ylmethyl)phenol Chemical compound C1OC1CC1=C(CC2OC2)C(N)=C(O)C=C1CC1CO1 PULOARGYCVHSDH-UHFFFAOYSA-N 0.000 description 2
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 2
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 2
- FVCSARBUZVPSQF-UHFFFAOYSA-N 5-(2,4-dioxooxolan-3-yl)-7-methyl-3a,4,5,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C(C(OC2=O)=O)C2C(C)=CC1C1C(=O)COC1=O FVCSARBUZVPSQF-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 238000004566 IR spectroscopy Methods 0.000 description 2
- 239000005058 Isophorone diisocyanate Substances 0.000 description 2
- 229920006282 Phenolic fiber Polymers 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 239000003677 Sheet moulding compound Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 238000000441 X-ray spectroscopy Methods 0.000 description 2
- UMHKOAYRTRADAT-UHFFFAOYSA-N [hydroxy(octoxy)phosphoryl] octyl hydrogen phosphate Chemical compound CCCCCCCCOP(O)(=O)OP(O)(=O)OCCCCCCCC UMHKOAYRTRADAT-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000010951 brass Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000011258 core-shell material Substances 0.000 description 2
- HTDKEJXHILZNPP-UHFFFAOYSA-N dioctyl hydrogen phosphate Chemical compound CCCCCCCCOP(O)(=O)OCCCCCCCC HTDKEJXHILZNPP-UHFFFAOYSA-N 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000006260 foam Chemical group 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000012784 inorganic fiber Substances 0.000 description 2
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 2
- VYKXQOYUCMREIS-UHFFFAOYSA-N methylhexahydrophthalic anhydride Chemical compound C1CCCC2C(=O)OC(=O)C21C VYKXQOYUCMREIS-UHFFFAOYSA-N 0.000 description 2
- JAYXSROKFZAHRQ-UHFFFAOYSA-N n,n-bis(oxiran-2-ylmethyl)aniline Chemical compound C1OC1CN(C=1C=CC=CC=1)CC1CO1 JAYXSROKFZAHRQ-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000013001 point bending Methods 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 230000008719 thickening Effects 0.000 description 2
- 150000004992 toluidines Chemical class 0.000 description 2
- 238000001721 transfer moulding Methods 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- GFNDFCFPJQPVQL-UHFFFAOYSA-N 1,12-diisocyanatododecane Chemical compound O=C=NCCCCCCCCCCCCN=C=O GFNDFCFPJQPVQL-UHFFFAOYSA-N 0.000 description 1
- FKTHNVSLHLHISI-UHFFFAOYSA-N 1,2-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC=C1CN=C=O FKTHNVSLHLHISI-UHFFFAOYSA-N 0.000 description 1
- ZTNJGMFHJYGMDR-UHFFFAOYSA-N 1,2-diisocyanatoethane Chemical compound O=C=NCCN=C=O ZTNJGMFHJYGMDR-UHFFFAOYSA-N 0.000 description 1
- ZGDSDWSIFQBAJS-UHFFFAOYSA-N 1,2-diisocyanatopropane Chemical compound O=C=NC(C)CN=C=O ZGDSDWSIFQBAJS-UHFFFAOYSA-N 0.000 description 1
- RTTZISZSHSCFRH-UHFFFAOYSA-N 1,3-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC(CN=C=O)=C1 RTTZISZSHSCFRH-UHFFFAOYSA-N 0.000 description 1
- IKYNWXNXXHWHLL-UHFFFAOYSA-N 1,3-diisocyanatopropane Chemical compound O=C=NCCCN=C=O IKYNWXNXXHWHLL-UHFFFAOYSA-N 0.000 description 1
- FVLCBDPSQUONII-UHFFFAOYSA-N 1,4-diisocyanato-2,3-dimethylbutane Chemical compound O=C=NCC(C)C(C)CN=C=O FVLCBDPSQUONII-UHFFFAOYSA-N 0.000 description 1
- OVBFMUAFNIIQAL-UHFFFAOYSA-N 1,4-diisocyanatobutane Chemical compound O=C=NCCCCN=C=O OVBFMUAFNIIQAL-UHFFFAOYSA-N 0.000 description 1
- SIZPGZFVROGOIR-UHFFFAOYSA-N 1,4-diisocyanatonaphthalene Chemical compound C1=CC=C2C(N=C=O)=CC=C(N=C=O)C2=C1 SIZPGZFVROGOIR-UHFFFAOYSA-N 0.000 description 1
- DFPJRUKWEPYFJT-UHFFFAOYSA-N 1,5-diisocyanatopentane Chemical compound O=C=NCCCCCN=C=O DFPJRUKWEPYFJT-UHFFFAOYSA-N 0.000 description 1
- VZXPHDGHQXLXJC-UHFFFAOYSA-N 1,6-diisocyanato-5,6-dimethylheptane Chemical compound O=C=NC(C)(C)C(C)CCCCN=C=O VZXPHDGHQXLXJC-UHFFFAOYSA-N 0.000 description 1
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 1
- HIQAWCBKWSQMRQ-UHFFFAOYSA-N 16-methylheptadecanoic acid;2-methylprop-2-enoic acid;propan-2-ol;titanium Chemical compound [Ti].CC(C)O.CC(=C)C(O)=O.CC(=C)C(O)=O.CC(C)CCCCCCCCCCCCCCC(O)=O HIQAWCBKWSQMRQ-UHFFFAOYSA-N 0.000 description 1
- IZXIZTKNFFYFOF-UHFFFAOYSA-N 2-Oxazolidone Chemical compound O=C1NCCO1 IZXIZTKNFFYFOF-UHFFFAOYSA-N 0.000 description 1
- KKOHCQAVIJDYAF-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid;propan-2-ol;titanium Chemical compound [Ti].CC(C)O.CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O.CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O.CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O KKOHCQAVIJDYAF-UHFFFAOYSA-N 0.000 description 1
- ZADOWCXTUZWAKL-UHFFFAOYSA-N 3-(3-trimethoxysilylpropyl)oxolane-2,5-dione Chemical compound CO[Si](OC)(OC)CCCC1CC(=O)OC1=O ZADOWCXTUZWAKL-UHFFFAOYSA-N 0.000 description 1
- REWYMBAFAAYCAR-UHFFFAOYSA-N 3-[bis(2-methoxyethoxy)-phenylsilyl]propanoic acid Chemical compound COCCO[Si](CCC(O)=O)(OCCOC)C1=CC=CC=C1 REWYMBAFAAYCAR-UHFFFAOYSA-N 0.000 description 1
- OZFSDOFRXYCNKS-UHFFFAOYSA-N 3-[diethoxy(1-phenylpropan-2-yloxy)silyl]-n-ethenylpropan-1-amine Chemical compound C=CNCCC[Si](OCC)(OCC)OC(C)CC1=CC=CC=C1 OZFSDOFRXYCNKS-UHFFFAOYSA-N 0.000 description 1
- HXLAEGYMDGUSBD-UHFFFAOYSA-N 3-[diethoxy(methyl)silyl]propan-1-amine Chemical compound CCO[Si](C)(OCC)CCCN HXLAEGYMDGUSBD-UHFFFAOYSA-N 0.000 description 1
- MBNRBJNIYVXSQV-UHFFFAOYSA-N 3-[diethoxy(methyl)silyl]propane-1-thiol Chemical compound CCO[Si](C)(OCC)CCCS MBNRBJNIYVXSQV-UHFFFAOYSA-N 0.000 description 1
- IKYAJDOSWUATPI-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propane-1-thiol Chemical compound CO[Si](C)(OC)CCCS IKYAJDOSWUATPI-UHFFFAOYSA-N 0.000 description 1
- FLROJJGKUKLCAE-UHFFFAOYSA-N 3-amino-2-methylphenol Chemical compound CC1=C(N)C=CC=C1O FLROJJGKUKLCAE-UHFFFAOYSA-N 0.000 description 1
- OXKAXHPVFLEQHV-UHFFFAOYSA-N 3-tri(propan-2-yloxy)silylpropan-1-amine Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)CCCN OXKAXHPVFLEQHV-UHFFFAOYSA-N 0.000 description 1
- DCQBZYNUSLHVJC-UHFFFAOYSA-N 3-triethoxysilylpropane-1-thiol Chemical compound CCO[Si](OCC)(OCC)CCCS DCQBZYNUSLHVJC-UHFFFAOYSA-N 0.000 description 1
- AXEFESAPMLYPEF-UHFFFAOYSA-N 3-triethoxysilylpropanoic acid Chemical compound CCO[Si](OCC)(OCC)CCC(O)=O AXEFESAPMLYPEF-UHFFFAOYSA-N 0.000 description 1
- LVACOMKKELLCHJ-UHFFFAOYSA-N 3-trimethoxysilylpropylurea Chemical compound CO[Si](OC)(OC)CCCNC(N)=O LVACOMKKELLCHJ-UHFFFAOYSA-N 0.000 description 1
- JKTORXLUQLQJCM-UHFFFAOYSA-N 4-phosphonobutylphosphonic acid Chemical compound OP(O)(=O)CCCCP(O)(O)=O JKTORXLUQLQJCM-UHFFFAOYSA-N 0.000 description 1
- GHBRMZFUMLMOKO-UHFFFAOYSA-N 5-[diethoxy(methyl)silyl]pentane-1,3-diamine Chemical compound CCO[Si](C)(OCC)CCC(N)CCN GHBRMZFUMLMOKO-UHFFFAOYSA-N 0.000 description 1
- OSSMYOQKNHMTIP-UHFFFAOYSA-N 5-[dimethoxy(methyl)silyl]pentane-1,3-diamine Chemical compound CO[Si](C)(OC)CCC(N)CCN OSSMYOQKNHMTIP-UHFFFAOYSA-N 0.000 description 1
- DGRMXVRKGHVYEQ-UHFFFAOYSA-N 5-tri(propan-2-yloxy)silylpentane-1,3-diamine Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)CCC(N)CCN DGRMXVRKGHVYEQ-UHFFFAOYSA-N 0.000 description 1
- ZOTKGMAKADCEDH-UHFFFAOYSA-N 5-triethoxysilylpentane-1,3-diamine Chemical compound CCO[Si](OCC)(OCC)CCC(N)CCN ZOTKGMAKADCEDH-UHFFFAOYSA-N 0.000 description 1
- KHLRJDNGHBXOSV-UHFFFAOYSA-N 5-trimethoxysilylpentane-1,3-diamine Chemical compound CO[Si](OC)(OC)CCC(N)CCN KHLRJDNGHBXOSV-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000696426 Epiclines Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- OMRDSWJXRLDPBB-UHFFFAOYSA-N N=C=O.N=C=O.C1CCCCC1 Chemical compound N=C=O.N=C=O.C1CCCCC1 OMRDSWJXRLDPBB-UHFFFAOYSA-N 0.000 description 1
- INWVTRVMRQMCCM-UHFFFAOYSA-N N=C=O.N=C=O.C=1C=CC=CC=1C(C)(C)C1=CC=CC=C1 Chemical compound N=C=O.N=C=O.C=1C=CC=CC=1C(C)(C)C1=CC=CC=C1 INWVTRVMRQMCCM-UHFFFAOYSA-N 0.000 description 1
- HDONYZHVZVCMLR-UHFFFAOYSA-N N=C=O.N=C=O.CC1CCCCC1 Chemical compound N=C=O.N=C=O.CC1CCCCC1 HDONYZHVZVCMLR-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 240000007182 Ochroma pyramidale Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 102220569696 Pyridoxal-dependent decarboxylase domain-containing protein 1_M11S_mutation Human genes 0.000 description 1
- 229910008051 Si-OH Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910006358 Si—OH Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229920003734 UBESTA® Polymers 0.000 description 1
- GKXVJHDEWHKBFH-UHFFFAOYSA-N [2-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC=C1CN GKXVJHDEWHKBFH-UHFFFAOYSA-N 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000004760 aramid Chemical group 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 229920003235 aromatic polyamide Chemical group 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 238000005102 attenuated total reflection Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000009841 combustion method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate Chemical compound [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 description 1
- 125000004386 diacrylate group Chemical group 0.000 description 1
- KORSJDCBLAPZEQ-UHFFFAOYSA-N dicyclohexylmethane-4,4'-diisocyanate Chemical compound C1CC(N=C=O)CCC1CC1CCC(N=C=O)CC1 KORSJDCBLAPZEQ-UHFFFAOYSA-N 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- KIQKWYUGPPFMBV-UHFFFAOYSA-N diisocyanatomethane Chemical compound O=C=NCN=C=O KIQKWYUGPPFMBV-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- XHWQYYPUYFYELO-UHFFFAOYSA-N ditridecyl phosphite Chemical compound CCCCCCCCCCCCCOP([O-])OCCCCCCCCCCCCC XHWQYYPUYFYELO-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000004761 fibrosis Effects 0.000 description 1
- 238000009730 filament winding Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000001891 gel spinning Methods 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 238000009787 hand lay-up Methods 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 150000004693 imidazolium salts Chemical class 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000000654 isopropylidene group Chemical group C(C)(C)=* 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- ARYZCSRUUPFYMY-UHFFFAOYSA-N methoxysilane Chemical compound CO[SiH3] ARYZCSRUUPFYMY-UHFFFAOYSA-N 0.000 description 1
- AYLRODJJLADBOB-QMMMGPOBSA-N methyl (2s)-2,6-diisocyanatohexanoate Chemical compound COC(=O)[C@@H](N=C=O)CCCCN=C=O AYLRODJJLADBOB-QMMMGPOBSA-N 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 1
- DRRZZMBHJXLZRS-UHFFFAOYSA-N n-[3-[dimethoxy(methyl)silyl]propyl]cyclohexanamine Chemical compound CO[Si](C)(OC)CCCNC1CCCCC1 DRRZZMBHJXLZRS-UHFFFAOYSA-N 0.000 description 1
- CLYWMXVFAMGARU-UHFFFAOYSA-N n-benzyl-3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCNCC1=CC=CC=C1 CLYWMXVFAMGARU-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920003192 poly(bis maleimide) Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920006389 polyphenyl polymer Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000011593 sulfur Chemical group 0.000 description 1
- 229910052717 sulfur Chemical group 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- UDUKMRHNZZLJRB-UHFFFAOYSA-N triethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OCC)(OCC)OCC)CCC2OC21 UDUKMRHNZZLJRB-UHFFFAOYSA-N 0.000 description 1
- JXUKBNICSRJFAP-UHFFFAOYSA-N triethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCOCC1CO1 JXUKBNICSRJFAP-UHFFFAOYSA-N 0.000 description 1
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000002166 wet spinning Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/76—Polyisocyanates or polyisothiocyanates cyclic aromatic
- C08G18/7657—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
- C08G18/7664—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
- C08J5/241—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
- C08J5/243—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/58—Epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/4007—Curing agents not provided for by the groups C08G59/42 - C08G59/66
- C08G59/4014—Nitrogen containing compounds
- C08G59/4028—Isocyanates; Thioisocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/50—Amines
- C08G59/504—Amines containing an atom other than nitrogen belonging to the amine group, carbon and hydrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/68—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
- C08G59/686—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/0405—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
- C08J5/042—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/0405—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
- C08J5/043—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
- C08J5/241—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
- C08J5/244—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/06—Elements
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/14—Glass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2363/00—Characterised by the use of epoxy resins; Derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/003—Additives being defined by their diameter
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Definitions
- the present invention relates to a molding material and a fiber reinforced composite material.
- Fiber reinforced composite material consisting of reinforcing fiber and matrix resin
- FRP Fiber reinforced composite material
- the reinforcing fiber glass fiber, aramid fiber, carbon fiber, boron fiber and the like are used. Further, as the matrix resin, both a thermosetting resin and a thermoplastic resin are used, but from the viewpoint of heat resistance and productivity, a thermosetting resin is often used.
- a thermosetting resin epoxy resin, unsaturated polyester resin, vinyl ester resin, phenol resin, bismaleimide resin, cyanate resin and the like are used. Of these, epoxy resins are preferably used from the viewpoints of adhesiveness and dimensional stability between the resin and the reinforcing fiber, and mechanical properties such as strength and rigidity of the obtained composite material.
- the fiber-reinforced composite material When the fiber-reinforced composite material is used for large members such as automobiles, aircraft, and blades for wind turbine power generation, the fiber-reinforced composite material is required to be lightweight and have high strength. Further, since these are often used outdoors, it is required that the strength does not decrease even when exposed to moisture such as rain or humidity. Therefore, the matrix resin and the reinforcing fiber base material used for these fiber-reinforced composite materials are required to have good impregnation properties.
- the matrix resin used in the molding method of the fiber-reinforced composite material as described above uses a liquid or semi-solid, that is, a low-molecular-weight thermosetting resin at room temperature in order to sufficiently impregnate the reinforcing fiber base material. is doing. Since a cured product of a thermosetting resin generally has lower toughness than a thermoplastic resin, it is a problem that a fiber-reinforced composite material using such a thermosetting resin has a relatively low impact resistance. was.
- carbon fiber is preferably used because it is possible to obtain a fiber-reinforced composite material which is lightweight but has excellent mechanical properties such as strength and elastic modulus.
- the carbon fiber is often electrochemically or chemically treated to introduce a functional group such as a hydroxyl group or a carboxy group on the surface.
- a functional group such as a hydroxyl group or a carboxy group
- Cited Document 1 uses an amine-cured epoxy resin as the matrix resin, and is characterized in that core-shell rubber particles are added in order to improve toughness.
- Cited Document 2 an acid anhydride-curable epoxy resin is used as the matrix resin, and is characterized by having low viscosity and quick-curing property.
- glass fiber is also preferably used as the reinforcing fiber because it is possible to reduce the cost and weight.
- the obtained fiber-reinforced composite material is required to have high strength and weather resistance so that the reinforcing fiber base material during molding can be impregnated with the resin and can withstand a harsh usage environment for a long period of time.
- Cited Document 3 is characterized by having low viscosity and low water absorption by using a predetermined epoxy resin component and an amine compound as the matrix resin of the fiber-reinforced composite material.
- Cited Document 4 uses an acid anhydride-curable epoxy resin as the matrix resin, and is characterized by having low viscosity and quick-curing property.
- the epoxy resin of Cited Document 1 is still inferior in toughness, and due to the addition of core-shell rubber particles, the viscosity at the injection temperature is high and the impregnation property is also inferior. Further, the epoxy resin of Cited Document 1 has poor adhesiveness to reinforcing fibers, and the impact resistance of the fiber-reinforced composite material obtained by using the epoxy resin is also inferior. It cannot be said that the epoxy resin of Cited Document 2 has sufficient toughness and adhesiveness to reinforcing fibers, and there is a problem in improving the impact resistance of the fiber-reinforced composite material obtained by using the epoxy resin.
- the epoxy resin of Cited Document 3 has low viscosity and low water absorption, the adhesiveness when combined with the reinforcing fiber is still insufficient, and there is a problem in the strength of the fiber reinforced composite material obtained by using the epoxy resin. be.
- the epoxy resin of Cited Document 4 is excellent in impregnation property of the resin into the reinforcing fiber base material, it cannot be said that the water absorption and the adhesiveness with the reinforcing fiber are sufficient, and the fiber reinforced composite material obtained by using the epoxy resin is not sufficient. There is a problem with the strength and weather resistance of the resin.
- An object of the present invention is to provide a molding material for obtaining a carbon fiber reinforced composite material having excellent impact resistance and tensile strength by using an epoxy resin composition having good impregnation property. Further, by using the epoxy resin composition having good impregnation property and the glass fiber having excellent adhesion to the epoxy resin composition, it has high bending strength and impact resistance, and also has excellent weather resistance. That is, it is an object of the present invention to provide a molding material for obtaining a glass fiber reinforced composite material capable of suppressing a decrease in bending strength after water absorption.
- the molding material of the present invention for solving the above problems is a molding material composed of an epoxy resin composition and carbon fibers and / or glass fibers, and the epoxy resin composition has the following [A] to [C]. All of them are contained, the carbon fiber satisfies the following conditions [a] and [b], and the glass fiber has a surface functional group capable of forming a covalent bond with the isocyanate group.
- [B] Epoxy resin curing agent having at least two isocyanate groups in the molecule
- Catalyst [a] Has a substantially perfect circular cross section [a] b]
- the average fiber diameter is in the range of 4.0 to 8.0 ⁇ m.
- the epoxy resin composition having good impregnation property and the reinforcing fiber base material can be used while being resistant to resistance.
- a fiber-reinforced composite material having excellent impact resistance and tensile strength can be obtained.
- a glass fiber satisfying a specific condition in combination with an epoxy resin composition having a specific composition high bending strength and resistance can be obtained while using an epoxy resin composition having good impregnation property and a reinforcing fiber base material. It is possible to obtain a fiber-reinforced composite material having impact resistance and capable of suppressing a decrease in bending strength after water absorption.
- the molding material of the present invention is a molding material composed of an epoxy resin composition and carbon fibers and / or glass fibers.
- the epoxy resin composition contains all of the following [A] to [C], and the carbon fibers are described below. The conditions [a] and [b] are satisfied, and the glass fiber has a surface functional group capable of forming a covalent bond with the isocyanate group.
- [B] Epoxy resin curing agent having at least two isocyanate groups in the molecule
- Catalyst [a] Has a substantially perfect circular cross section [a] b]
- the average fiber diameter is in the range of 4.0 to 8.0 ⁇ m.
- the first preferred embodiment of the molding material of the present invention comprises an epoxy resin composition and carbon fibers.
- the carbon fiber has a substantially perfect circular cross section.
- the fact that the cross-sectional shape is substantially circular means that the ratio (r / R) of the major axis R to the minor axis r of the cross section of the single yarn measured by using an optical microscope is 0.9 or more.
- the major axis R refers to the diameter of the circumscribed circle of the cross-sectional shape of the single thread
- the minor axis r refers to the diameter of the inscribed circle of the cross-sectional shape of the single thread. If it is not perfectly circular, the injection time into the reinforcing fiber base material using the carbon fiber coated with the matrix resin becomes long, which may cause the generation of unimpregnated regions.
- the average fiber diameter of the carbon fiber measured by using an optical microscope is in the range of 4.0 to 8.0 ⁇ m, and the average fiber diameter is 5.0 to 7.0 ⁇ m. It is preferably in the range, more preferably in the range of 5.3 to 7.0 ⁇ m. If the average fiber diameter is less than 4.0 ⁇ m, the impact resistance of the fiber-reinforced composite material using such carbon fibers is lowered. On the other hand, when the average fiber system exceeds 8.0 ⁇ m, the tensile strength of the fiber-reinforced composite material using the carbon fiber decreases.
- the carbon fiber further satisfies the following condition [c].
- the surface specific oxygen concentration O / C is in the range of 0.03 to 0.20.
- the surface specific oxygen concentration O / C is more preferably in the range of 0.05 to 0.20, and even more preferably in the range of 0.05 to 0.15. When the O / C is 0.20 or less, the fiber-reinforced composite material using such carbon fibers tends to have sufficient tensile strength.
- the fiber-reinforced composite material using such carbon fibers tends to have sufficient impact resistance.
- means for setting the surface specific oxygen concentration O / C within the above range include methods such as changing the type and concentration of the electrolytic solution during the electrolytic oxidation treatment, and changing the amount of electricity.
- inorganic fibers such as glass fibers, metal fibers and ceramic fibers, polyamide fibers and polyester fibers.
- Polyethylene fiber, organic synthetic fiber such as novoloid fiber, metal wire made of gold, silver, copper, bronze, brass, phosphorus bronze, aluminum, nickel, steel, stainless steel, etc., metal mesh, metal non-woven fabric, etc. are used in combination. be able to.
- the content of carbon fibers in the total fibers is preferably 30% by mass or more, more preferably 50% by mass or more, and 70% by mass or more. It is more preferable to have.
- the carbon fiber content is in the above range, a fiber-reinforced composite material that is lightweight and has excellent mechanical properties such as impact resistance, strength, and elastic modulus can be obtained, which is preferable.
- the carbon fiber may be either a short fiber or a continuous fiber, or both may be used in combination.
- continuous fibers are preferable.
- the carbon fiber may be used in the form of a strand, but a base material made of carbon fiber obtained by processing the carbon fiber into a form such as a mat, a woven fabric, a knit, a blade, or a unidirectional sheet is preferable.
- a base material made of carbon fiber obtained by processing the carbon fiber into a form such as a mat, a woven fabric, a knit, a blade, or a unidirectional sheet.
- a woven fabric in which a fiber-reinforced composite material having a high Vf is easily obtained and has excellent handleability is preferably used.
- the ratio of the net volume of carbon fibers to the apparent volume of the woven fabric is defined as the filling rate of the woven fabric.
- the filling rate of the woven fabric is calculated by the formula of W / (1000t ⁇ ⁇ f) from the grain W (unit: g / m 2 ), thickness t (unit: mm), and carbon fiber density ⁇ f (unit: g / cm 3). Be done.
- the basis weight and thickness of the woven fabric are determined in accordance with JIS R 7602: 1995.
- the filling rate of the woven fabric is 0.10 to 0.85, preferably 0.40 to 0.85, and more preferably 0.50. It is preferably in the range of ⁇ 0.85.
- a second preferred embodiment of the molding material of the present invention comprises an epoxy resin composition and glass fiber.
- the glass fiber has a surface functional group capable of forming a covalent bond with the isocyanate group.
- silicon (Si—OH) to which a hydroxyl group is bonded which is called a silanol group, is present on the surface of the glass fiber, and a coupling agent or the like having various functional groups is bonded to the silanol group as needed.
- the chemical properties of the glass fiber surface can be improved by making the glass fiber surface.
- having a surface functional group capable of forming a covalent bond with an isocyanate group means that at least one functional group capable of forming a covalent bond with the isocyanate group by a chemical reaction is present on the surface of the glass fiber.
- the epoxy resin curing agent having at least two isocyanate groups in the [B] molecule contained in the epoxy resin composition and the glass fiber are chemically combined.
- the adhesiveness between the glass fiber and the epoxy resin composition is improved, and high strength is easily exhibited.
- the adhesiveness between the glass fiber and the epoxy resin composition is improved too much, the impact resistance may decrease as described later, and the surface of the glass fiber may be appropriately treated with a coupling agent or the like. preferable.
- the surface functional group of the glass fiber is preferably at least one functional group selected from the group consisting of a hydroxyl group, an oxylan group, an amino group, a thiol group, and a carboxy group.
- the glass fiber has the above-mentioned surface functional group, it becomes easy to develop excellent adhesiveness at the interface between the glass fiber and the epoxy resin composition.
- the surface functional group of the glass fiber is an amino group.
- the glass fiber has a functional group having active hydrogen on its surface.
- active hydrogen refers to a highly reactive hydrogen atom that is bonded to nitrogen, oxygen, and sulfur in an organic compound.
- one amino group has two active hydrogens.
- functional groups having active hydrogen include hydroxyl groups, amino groups, thiol groups, carboxy groups and the like.
- the surface functional group of the glass fiber is formed by being treated with at least one selected from the group consisting of a silane coupling agent, a titanium coupling agent, an aluminum coupling agent, and a zirconium coupling agent.
- a silane coupling agent one type may be used alone or two or more types may be used in combination. If there are too many silanol groups on the surface of the glass fiber surface, the glass fiber is chemically strongly bonded and adhered to the epoxy resin curing agent having at least two isocyanate groups in the [B] molecule contained in the epoxy resin composition. Although the property is improved, the impact resistance may be lowered because the strength of the fiber cannot be utilized and the epoxy resin is broken when the fiber is broken by an impact. Therefore, it is preferable that the surface of the glass fiber is appropriately treated with a coupling agent or the like.
- examples of the silane coupling agent used for glass fibers include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltriisopropoxysilane, and ⁇ -aminopropylmethyldimethoxy.
- Silane ⁇ -aminopropylmethyldiethoxysilane, ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane, ⁇ - (2-aminoethyl) aminopropylmethyldimethoxysilane, ⁇ - (2-aminoethyl) aminopropyltri Ethoxysilane, ⁇ - (2-aminoethyl) aminopropylmethyldiethoxysilane, ⁇ - (2-aminoethyl) aminopropyltriisopropoxysilane, ⁇ -ureidopropyltrimethoxysilane, N-phenyl- ⁇ -aminopropyltri Amino group-containing silanes such as methoxysilane, N-benzyl- ⁇ -aminopropyltrimethoxysilane, N-vinylbenzyl- ⁇ -aminopropyltriethoxysilane; ⁇ -mercaptopropyltri
- titanium coupling agent examples include isopropyltri (N-aminoethyl-aminoethyl) titanate, tetraoctylbis (ditridecylphosphite) titanate, and tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phos.
- Fight titanate bis (dioctylpyrophosphate) oxyacetate titanate, bis (dioctylpyrophosphate) ethylene titanate, isopropyltrioctanoyl titanate, isopropyldimethacrylisostearoyl titanate, isopropyltridodecylbenzenesulfonyl titanate, isopropylisostearoyl diacrylic titanate, isopropyl Examples thereof include tri (dioctylphosphate) titanate, isopropyltricylphenyl titanate, tetraisopropylbis (dioctylphosphate) titanate and the like.
- a silane coupling agent of amino group-containing silanes is preferable because it is easily compatible with the epoxy resin composition and can appropriately improve the adhesive strength and the impact resistance.
- the molding material of the present invention contains a coupling agent
- a coupling agent it is preferably 0.01 to 5 parts by mass, more preferably 0.05 to 4 parts by mass, and 0. It is more preferably 1 to 3 parts by mass.
- the content of the coupling agent is within the above range, the wettability of the epoxy resin composition with respect to the glass fiber is improved, the adhesiveness and impregnation property are appropriately improved, and the impact resistance can be improved, which is preferable.
- Examples of the method for forming the coupling agent layer include a method in which a solution containing the coupling agent is applied to the surface of the glass fiber base material and then heat-treated.
- the solvent used for solubilizing the coupling agent is not particularly limited as long as it does not react with the coupling agent, but for example, an aliphatic hydrocarbon solvent such as hexane and an aromatic solvent such as benzene, toluene and xylene are used. Examples thereof include a system solvent, an ether solvent such as tetrahydrofuran, an alcohol solvent such as methanol and propanol, a ketone solvent such as acetone, water and the like, and one or a mixture of two or more of these solvents is used. ..
- any kind of glass fiber can be used as the glass fiber depending on the application.
- glass fibers include E-glass, A-glass, C-glass, D-glass, R-glass, S-glass, ECR glass, NE-glass, quartz and fluorine-free and / or boron-free fibrosis commonly known as E-glass derivatives. Examples include those prepared from possible glass compositions.
- inorganic fibers such as carbon fibers, metal fibers, and ceramic fibers, polyamide fibers, polyester fibers, and polyolefin fibers are not impaired to the extent that the effects of the second preferred embodiment of the molding material of the present invention are not impaired.
- Organic synthetic fibers such as novoloid fiber, metal wire made of gold, silver, copper, bronze, brass, phosphorus bronze, aluminum, nickel, steel, stainless steel and the like, metal mesh, metal non-woven fabric and the like can be used in combination.
- the content of glass fibers in the total fibers is preferably 30% by mass or more, more preferably 50% by mass or more, and 70% by mass or more. It is more preferable to have.
- a fiber-reinforced composite material having excellent mechanical properties such as impact resistance and strength and weather resistance can be obtained, which is preferable.
- the glass fiber may be either a continuous fiber or a short fiber, or both may be used in combination. Further, continuous fibers may be cut into chopped strands (short fibers).
- glass fiber As the form of glass fiber, it can be suitably used as a base material processed into strands, mats, non-woven fabrics, woven fabrics, knits, blades, unidirectional sheets and the like.
- a woven fabric is preferably used because it is easy to obtain a fiber-reinforced composite material having a high fiber volume content (Vf) and it is excellent in handleability.
- a conventionally known two-dimensional woven fabric can be used.
- Such a structure is preferably any one selected from the group consisting of plain weave, twill weave, leno weave, imitation weave, diagonal pattern weave, double weave, and satin weave, and these weave structures are used alone or in combination. You may.
- the ratio of the net volume of glass fiber to the apparent volume of the woven fabric is defined as the filling rate of the woven fabric.
- the filling rate of the woven fabric is determined by the formula of grain W (unit: g / m 2 ), thickness t (unit: mm), glass fiber density ⁇ f (unit: g / cm 3 ) to W / (1000 t ⁇ ⁇ f). Desired.
- the basis weight and thickness of the woven fabric are determined in accordance with JIS R 7602: 1995.
- the filling rate of the woven fabric is 0.10 to 0.85, preferably 0.40 to 0.85. , More preferably in the range of 0.50 to 0.85.
- the average fiber length is not limited, but is 1 to 20 mm, preferably 3 to 10 mm.
- the average fiber length in the glass fiber reinforced composite material becomes appropriate, the physical properties such as bending strength are improved, and the handling when mixed with the epoxy resin composition is improved. Tend to do.
- the molding material of the present invention contains an epoxy resin composition. It is essential that such an epoxy resin composition contains an epoxy resin having at least two oxylan groups in the molecule [A] (hereinafter, may be referred to as a component [A]). By having such a structure, the mechanical properties and moldability of the fiber-reinforced composite material can be obtained.
- the component [A] has a number average molecular weight of 200 to 800 because it has a low viscosity and excellent impregnation property into reinforcing fibers, and also has excellent mechanical properties such as heat resistance and elastic modulus when used as a fiber-reinforced composite material. It is preferable that the epoxy resin is in the range of the above and contains an aromatic component in the skeleton.
- the number average molecular weight of the epoxy resin can be determined by GPC (Gel Permeation Chromatography) using, for example, a polystyrene standard sample.
- GPC Gel Permeation Chromatography
- a numerical value calculated from the product of the epoxy equivalent and the number of epoxy functional groups can also be used.
- epoxy resin examples include bisphenol type epoxy resin and amine type epoxy resin.
- bisphenol type epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, halogens, alkyl substituents, hydrogenated products and the like. Specific examples of such an epoxy resin include the following.
- Examples of commercially available bisphenol F type epoxy resins include “jER (registered trademark)” 806, “jER (registered trademark)” 807, and “jER (registered trademark)” 4004P (all manufactured by Mitsubishi Chemical Corporation).
- "EPICLON (registered trademark)” 830 manufactured by DIC Co., Ltd.
- “Epototo (registered trademark)” YD-170 is added to the resin.
- “Epototo (registered trademark)” YDF-8170C examples of commercially available bisphenol F type epoxy resins
- YDF-870GS examples of commercially available bisphenol F type epoxy resins
- Examples of commercially available bisphenol AD type epoxy resins include EPOX-MK R710 and EPOX-MK R1710 (all manufactured by Printec Co., Ltd.).
- amine type epoxy resin examples include tetraglycidyl diaminodiphenylmethane, tetraglycidyl diaminodiphenyl sulfone, triglycidyl aminophenol, triglycidyl aminocresol, diglycidyl aniline, diglycidyl toluidine, tetraglycidyl xylylene diamine, or halogens and alkyls thereof. Substitutes, hydrogenated products, etc. may be mentioned. Specific examples of such an epoxy resin include the following.
- Examples of commercially available products of tetraglycidyl diaminodiphenyl sulfone include TG3DAS (manufactured by Mitsui Kagaku Fine Co., Ltd.).
- Examples of commercially available products of diglycidyl aniline include GAN (manufactured by Nippon Kayaku Co., Ltd.) and PxGAN (manufactured by Toray Fine Chemicals Co., Ltd.).
- Examples of commercially available diglycidyl toluidine include GOT (manufactured by Nippon Kayaku Co., Ltd.).
- Examples of commercially available products of tetraglycidylxylylenediamine and its hydrogenated products include "TETRAD (registered trademark)" -X and “TETRAD (registered trademark)” -C (all manufactured by Mitsubishi Gas Chemical Company, Inc.). ..
- tetraglycidyldiaminodiphenylmethane and triglycidyldiaminophenol are preferably used because they have both high elastic modulus and high heat resistance.
- the epoxy resin composition used in the present invention is essential to contain an epoxy resin curing agent having at least two isocyanate groups in the [B] molecule (hereinafter, may be referred to as a component [B]).
- an isocyanate group mainly reacts with the oxylane group of the component [A] to form a bond point of an oxazolidone ring, and high heat resistance can be exhibited.
- the component [B] contains an aromatic structure because it gives higher heat resistance.
- component [B] examples include ethylene diisocyanate, trimethylene diisocyanate, dodecamethylene diisocyanate, hexamethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, propylene-1,2-diisocyanate, and 2,3-dimethyltetramethylene diisocyanate.
- Examples of commercially available aliphatic isocyanate products include HDI (above, manufactured by Tosoh Corporation), “Duranate (registered trademark)” D101, “Duranate (registered trademark)” D201 (above, manufactured by Asahi Kasei Corporation), and the like. ..
- aromatic isocyanates include “Luplanate®” MS, “Luplanate®” MI, “Luplanate®” M20S, “Luplanate®” M11S, and “Luplanate®”. ) “M5S,” Luplanate® “T-80,” Luplanate® “MM-103,” Luplanate® “MM-102,” Luplanate® “MM-301 (above, BASF INOAC Polyurethane Co., Ltd., "Millionate (registered trademark)” MT, “Millionate (registered trademark)” MT-F, “Millionate (registered trademark)” MT-NBP, “Millionate (registered trademark)” NM, “ Millionate® MR-100, Millionate® MR-200, Millionate® MR-400, Coronate® T-80, Coronate® T-65, “Coronate (registered trademark)” T-100 (all manufactured by Toso Co., Ltd.), “Cosmonate (registere
- alicyclic isocyanates examples include "Takenate (registered trademark)” 600 and “Fortimo (registered trademark)” 1,4-H6XDI (all manufactured by Mitsui Chemicals, Inc.).
- the epoxy resin composition used in the present invention is indispensable to contain the [C] catalyst.
- a catalyst comprises a compound capable of accelerating the curing reaction between the oxylan group of [A] and the isocyanate group of [B]. By including such a catalyst, it is possible to exhibit excellent productivity, high activity and highly selective oxazolidone cyclization reaction, and well-balanced mechanical properties.
- the catalyst used in the present invention is not particularly limited, but a basic catalyst is preferably used, and more preferably amines or derivatives thereof or ammonium salts, imidazoles or derivatives thereof or imidazolium salts are used. These catalysts may be used alone or in combination of two or more.
- the molding material of the present invention has a specific degree of curing in which the absorbance ratio Da / (Da + Db) at the degree of curing X is in the range of 0.4 to 1 when cured while raising the temperature from 30 ° C. to 10 ° C./min. It is preferable that X is in the range of 85 to 95%. That is, when the product is cured while raising the temperature from 30 ° C. to 10 ° C./min, the absorbance ratio Da / (Da + Db) in any range of the curing degree X in the range of 85 to 95% (for example, curing degree 90%) is 0. It is preferably in the range of 4-1.
- the absorbance ratio described here is an oxazolidone ring of a cured product of an epoxy resin composition using FT-IR of Attenuated Total Reflection (total reflection measurement method, hereinafter also referred to simply as “ATR method”).
- ATR method Total reflection measurement method
- the FT-IR (ATR method), resolution 4 cm -1, when measuring the number of integrations in 32 times, and Da absorbance absorption around 1760 cm -1, the absorbance of absorption around 1710 cm -1 Db It can be calculated from the above.
- the absorbance ratio Da / (Da + Db) at the specific degree of curing X is preferably in the range of 0.4 to 1, more preferably in the range of 0.5 to 1, and further preferably in the range of 0.7 to 1.
- a structure with few cross-linking points is formed while maintaining heat resistance, and a cured product having high strength and high toughness can be easily obtained.
- a means for setting the absorbance ratio Da / (Da + Db) in the above range for example, a method of increasing the content of the component [A] or raising the curing temperature can be mentioned.
- the epoxy resin composition used in the present invention has an absorbance ratio Da / (Da + Db) of 0.01 to 1 at a degree of curing Y when cured while raising the temperature from 30 ° C. to 10 ° C./min. It is preferable that the specific degree of curing Y is in the range of 15 to 25%.
- a means for setting the degree of curing Y in the above range for example, a method of increasing the content of the component [A] or increasing the curing temperature can be mentioned. That is, when cured while raising the temperature from 30 ° C. to 10 ° C./min, the absorbance ratio Da / (Da + Db) in any range of the curing degree Y in the range of 15 to 25% (for example, curing degree 20%) is 0. It is preferably in the range of 0.01 to 1.
- the absorbance ratio Da / (Da + Db) at the specific degree of curing Y is in the range of 0.01 to 1, preferably in the range of 0.05 to 1, and more preferably in the range of 0.1 to 1. It is possible to suppress the reaction in which the number of cross-linking points is likely to increase, and the resulting fiber-reinforced composite material is less likely to become brittle. In addition, since it is possible to avoid significant thickening in the initial stage of curing, the surface quality is further improved.
- a second preferred embodiment of the molding material of the present invention is that a high bending strength can be exhibited in the obtained fiber-reinforced composite material by using a specific glass fiber and an epoxy resin composition in combination.
- bending strength is a value calculated from the relationship between strain and stress when a rectangular parallelepiped test piece is leveled, both ends of the test piece are supported, and the central part is compressed with an indenter, and the bending load. Represents the stress at which cracks and fractures occur. Places where the fiber-reinforced composite material is destroyed when a bending load is applied include the interface between the fiber and the resin or the inside of the resin. If the interface between the fiber and the resin is strong or the resin is brittle, the inside of the resin is used.
- the bending strength can be an index showing both the interfacial adhesion between the fiber and the resin and the strength of the resin itself.
- a second preferred embodiment of the molding material of the present invention has a degree of curing of 85 to 95% because of excellent adhesiveness at the interface between the glass fiber and the epoxy resin composition and the epoxy resin composition itself having high bending strength.
- the bending strength in the bending test using a strip-shaped test piece (length 60 mm, width 10 mm, thickness 2 mm) which is in any of the above ranges (for example, 90% curing degree) is preferably 250 MPa or more, more preferably. Is 260 MPa or more, more preferably 270 MPa or more.
- the upper limit of the bending strength is not particularly limited, but is, for example, 1000 MPa.
- the molding material of the present invention has the above bending strength of, for example, 250 to 1000 MPa, 260 to 1000 MPa, 270 to 1000 MPa and the like.
- the component [A] and the configuration for changing the type of the silane coupling agent, the concentration of the silane coupling agent solution, and the immersion time in the silane coupling agent solution are changed.
- a method of using an element [B] having an aromatic structure can be mentioned.
- both the glass fiber and the epoxy resin composition have low water absorption, it is possible to suppress a decrease in bending strength before and after water absorption.
- a strip-shaped test piece (length 60 mm, width 10 mm, thickness 2 mm) having a curing degree in the range of 85 to 95% (for example, curing degree 90%) in a constant temperature water bath at 98 ° C. for 48 hours.
- the retention rate of the bending strength obtained from the bending test to be performed is preferably 75% or more, more preferably 80% or more, still more preferably 85% or more. Since the retention rate of bending strength after water absorption is excellent, it can be suitably used for long-term outdoor use such as a blade for wind turbine power generation.
- the bending test in the second preferred embodiment of the molding material of the present invention shall be carried out in accordance with JIS K7171-1994 except that the length of the test piece is 60 mm and the thickness is 2 mm.
- the excellent adhesiveness of the interface between the glass fiber and the epoxy resin composition in the second preferred embodiment of the molding material of the present invention is also determined by the amount of resin adhered to the surface of the glass fiber exposed on the fracture surface of the test piece after the bending test. Can be evaluated. If the adhesiveness between the glass fiber and the epoxy resin composition is excellent, the fracture mode in the bending test is not interface fracture but cohesive fracture, and the glass fiber surface exposed on the fracture surface of the test piece after the bending test A lot of resin will adhere. On the other hand, if the adhesiveness between the glass fiber and the epoxy resin composition is insufficient, the fracture mode in the bending test is not agglomeration fracture but interface fracture, and the glass fiber surface exposed on the fracture surface of the test piece after the bending test. The amount of resin adhering to is small.
- the amount of resin adhered to the exposed glass fiber surface of the fracture surface of the test piece after the bending test (based on JIS K7171-1994) in the second preferred embodiment of the molding material of the present invention is the scanning electron microscope-energy.
- the element mapping image obtained by observing the entire fracture surface of the test piece by distributed X-ray spectroscopy (SEM-EDX) the part displayed in white when the silicon element is displayed in white and the carbon element is displayed in black. Can be determined by calculating the area ratio of the above using image analysis software (Media Cybernetics Image Pro Plus Ver3.0). The larger the area ratio of the silicon element, the more the silicon element on the glass fiber surface is detected, which means that the glass fiber surface is exposed and the resin is not attached.
- the "whole fracture surface" of the observed test piece means that both the fracture surface of the test piece 1 and the test piece 2 are observed when the test piece is broken and divided into the test piece 1 and the test piece 2. (Corresponds to width 10 mm x thickness 4 mm).
- the area ratio (S1) of the silicon element on the glass fiber surface in the element mapping image obtained when observed by the type X-ray spectroscopy (SEM-EDX) is preferably in the range of 0 to 0.90, and is 0 to 0.
- the area ratio (S1) of the silicon element is more preferably in the range of .85, and even more preferably in the range of 0 to 0.80.
- a means for setting the area ratio (S1) of the silicon element within the above range for example, a method of changing the type of the silane coupling agent, the concentration of the silane coupling agent solution, and the immersion time in the silane coupling agent solution. Can be mentioned.
- the first aspect of the fiber-reinforced composite material of the present invention is obtained by curing the molding material of the present invention.
- the second aspect of the fiber-reinforced composite material of the present invention comprises a cured epoxy resin containing 1 mmol / g or more of an oxazolidone ring, and carbon fibers satisfying the following conditions [a] and [b].
- [A] It has a substantially perfect circular cross section, and [b] the average fiber diameter is in the range of 4.0 to 8.0 ⁇ m.
- a third aspect of the fiber-reinforced composite material of the present invention comprises a cured epoxy resin containing 1 mmol / g or more of an oxazolidone ring and a glass fiber having a surface functional group covalently bonded to an isocyanate group in the cured epoxy resin.
- Element mapping image obtained when the fracture surface after the bending test (based on JIS K7171-1994) described in the specification is observed by scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX).
- SEM-EDX scanning electron microscope-energy dispersive X-ray spectroscopy
- the area ratio (S1) of the silicon element on the surface of the glass fiber in the above is in the range of 0 to 0.9.
- the epoxy resin composition used in the present invention has the characteristics that the initial viscosity increase is small, the injection time is long, and the curing can be performed in a short time. Therefore, it is most suitable for the RTM method that keeps the mold temperature constant from injection to demolding. It can be applied to any molding method using a liquid thermosetting resin such as winding, and any molding method is effective in shortening the molding time and improving the impregnation property of the reinforcing fiber.
- a vacuum bag method in which a reinforcing fiber base material is impregnated with varnish and molded by stacking, covered with a flexible mold for applying pressure, and airtightly sealed is vacuum (decompressed) molded. Examples thereof include a press method in which a molding material (for example, a sheet molding compound (SMC)) obtained by preliminarily forming a sheet of an epoxy resin composition containing reinforcing fibers is compression-molded with a mold.
- SMC sheet molding compound
- the above-mentioned RTM method will be described in more detail by taking as an example.
- the heated epoxy resin composition is injected into a base material made of reinforcing fibers placed in a heated molding mold and impregnated to produce a molding material, and the molded material is cured in the molding mold.
- a method of producing a fiber reinforced composite material can be mentioned.
- the temperature at which the epoxy resin composition is heated is determined from the relationship between the initial viscosity of the epoxy resin composition and the increase in viscosity from the viewpoint of impregnation property into the base material made of reinforcing fibers. Specifically, the temperature for heating the epoxy resin composition is preferably 30 to 100 ° C, more preferably 40 to 80 ° C.
- the molding temperature (heat curing temperature) of the epoxy resin composition is preferably in the range of 100 to 200 ° C, more preferably in the range of 120 to 180 ° C.
- a fiber-reinforced composite to be obtained is obtained by using a molding mold having a plurality of injection ports and injecting the epoxy resin composition from the plurality of injection ports at the same time or sequentially with a time lag. It is preferable to select appropriate conditions according to the material because it has a degree of freedom to accommodate molded products of various shapes and sizes. There is no limit to the number and shape of such injection ports, but it is better to have more injection ports to enable injection in a short time, and the arrangement is such that the flow length of the resin can be shortened according to the shape of the molded product. Is preferable.
- the injection pressure when injecting the epoxy resin composition is usually 0.1 to 1.0 MPa, preferably 0.1 to 0.6 MPa from the viewpoint of injection time and equipment economy. Further, a VaRTM (Vacum-Assisted Resin Transfer Molding) method in which the inside of the mold is vacuum-sucked and the epoxy resin composition is injected can also be used. Even in the case of pressure injection, it is preferable to suck the inside of the mold into a vacuum before injecting the epoxy resin composition because the generation of voids is suppressed.
- VaRTM Va-Assisted Resin Transfer Molding
- Equation 1 is also used when determining the amount of resin adhered to the exposed glass fiber surface of the fracture surface of the test piece after the bending test (based on JIS K7171-1994) in the third aspect of the fiber-reinforced composite material of the present invention.
- the area ratio (S1) of the silicon element on the glass fiber surface is 0 to 0.90. Yes, it is preferably 0 to 0.85, and more preferably 0 to 0.80.
- the means for setting the area ratio (S1) of the silicon element within the above range is as described above.
- the fiber-reinforced composite material of the present invention preferably has an absorbance ratio Da / (Da + Db) in the range of 0.4 to 1, more preferably 0.5 to 1, and 0.7 to 1. It is more preferably in the range.
- the absorbance ratio Da / (Da + Db) is lower than 0.4, the number of cross-linking points becomes too large, and the strength and toughness decrease. The closer the absorbance ratio Da / (Da + Db) is to 1, the lower the crosslink and the better the heat resistance, which is preferable.
- the absorbance ratio of the product is almost equal to Da / (Da + Db), and in the present invention, even if the absorbance ratio of the cured product at a specific curing degree of the epoxy resin composition is the absorbance ratio of the fiber-reinforced composite material at the specific curing degree. good.
- the degree of curing of the fiber-reinforced composite material obtained by curing the epoxy resin composition and the molding material containing the reinforcing fibers and the degree of curing of the cured product of the epoxy resin composition contained in the fiber-reinforced composite material Is the same value.
- the fiber volume content Vf of the fiber-reinforced composite material referred to here is a value defined and measured as follows in accordance with ASTM D3171: 1999, and is an epoxy for a base material made of reinforcing fibers. The state after injecting and curing the resin composition.
- the fiber volume content Vf of the fiber-reinforced composite material can be calculated from the thickness h of the fiber-reinforced composite material by using the following (Equation 2).
- Vf (%) (Af ⁇ N) / ( ⁇ f ⁇ h) / 10 ...
- Af 1 base material made of reinforcing fibers , mass per 1 m 2 (g / m 2 )
- N Number of laminated base materials made of reinforcing fibers (sheets)
- ⁇ f Density of reinforcing fibers (g / cm 3 )
- h Thickness (mm) of the fiber-reinforced composite material (test piece).
- the base material made of reinforcing fibers may be separated from the fiber-reinforced composite material and taken out by any of a combustion method, a nitrate decomposition method, and a sulfate decomposition method based on 7075: 1991.
- a combustion method a nitrate decomposition method, and a sulfate decomposition method based on 7075: 1991.
- the density of the reinforcing fibers used in this case the value measured based on JIS R 7603: 1999 is used.
- the thickness h of the fiber-reinforced composite material is preferably measured with a micrometer specified in JIS B 7502: 1994 or a material having an accuracy equal to or higher than that. If the fiber-reinforced composite has a complicated shape and is difficult to measure, a sample (a sample having a certain shape and size for measurement) is cut out from the fiber-reinforced composite. , May be measured.
- Another method for calculating the fiber volume content (Vf) is to heat the fiber-reinforced composite material in an electric furnace or the like to burn off organic substances such as matrix resin. For example, a few g of a test piece is cut out from a fiber-reinforced composite material, the mass of the test piece is measured, and then the test piece is heated in an electric furnace heated to 500 ° C. for 1 hour to burn off organic substances such as matrix resin and reach room temperature. After cooling, the mass of the remaining reinforcing fibers is measured.
- Measure the ratio of the mass of the reinforcing fibers to the mass of the sample before burning off organic substances such as matrix resin obtain the respective volumes from the density of the matrix resin and the density of the glass fibers, and measure the volume content of the reinforcing fibers. be able to.
- One of the preferred forms of the fiber-reinforced composite material of the present invention is a veneer.
- a sandwich structure in which a veneer-shaped fiber-reinforced composite material is arranged on both sides of a core material a hollow structure in which a veneer-shaped structure is surrounded by a veneer-shaped structure, or a veneer-shaped fiber. Examples thereof include a so-called canappe structure in which a reinforced composite material is arranged on one side of a core material.
- a foam core is preferably used because a lightweight fiber-reinforced composite material can be obtained.
- the second aspect and the third aspect of the fiber-reinforced composite material of the present invention include an epoxy resin cured product containing 1 mmol / g or more of an oxazolidone ring.
- the content of the oxazolidone ring in the cured epoxy resin is preferably 1.5 mmol / g or more, and more preferably 2 mmol / g or more.
- the upper limit of the content is not particularly limited, but is usually about 10 mmol / g. When the content is in the above range, an excellent balance of mechanical properties is exhibited.
- the content of such an oxazolidone ring can be calculated from, for example, the result of infrared spectroscopy (IR).
- IR infrared spectroscopy
- a fiber-reinforced composite material having excellent impact resistance and tensile strength can be obtained only by combining the above carbon fiber and the above epoxy resin composition.
- the isocyanate group contained in such an epoxy resin composition has high reactivity with a functional group such as a hydroxyl group, and efficiently reacts with a functional group such as a hydroxyl group on the surface of carbon fibers when the epoxy resin composition is cured. That is, even if carbon fibers having low adhesiveness are usually used, good adhesiveness to the matrix resin is exhibited, and it is possible to obtain a fiber-reinforced composite material having both impact resistance and tensile strength at a high level. ..
- a fiber-reinforced composite material having excellent bending strength, impact resistance, and weather resistance can be obtained only by combining the above glass fiber and the above epoxy resin composition.
- the isocyanate group contained in the epoxy resin composition has high reactivity with a functional group such as an amino group, and efficiently reacts with a surface functional group existing on the surface of the glass fiber when the epoxy resin composition is cured. That is, it is possible to obtain a fiber-reinforced composite material excellent in bending strength, impact resistance, and weather resistance by exhibiting appropriate adhesiveness between the glass fiber and the matrix resin.
- Examples 1 to 7 and Comparative Examples 1 to 6 are as described below (including Tables 1 and 2).
- the sizing agent and the like were removed from the carbon fiber bundle to be measured with a solvent, cut to about 5 mm, spread on a stainless steel sample support and arranged, and then measured under the following conditions.
- the binding energy value of the main peak of C 1S B. E. was adjusted to 284.6 eV.
- the C 1s peak area [O 1s ] is obtained by drawing a straight line baseline in the range of 282 to 296 eV
- the O 1s peak area [C 1s ] is obtained by drawing a straight line baseline in the range of 528 to 540 eV. I asked.
- the surface specific oxygen concentration O / C was calculated by the following equation from the ratio of the O 1s peak area [O 1s ] and the C 1s peak area [C 1s ], and the sensitivity correction value peculiar to the apparatus.
- O / C ([O 1s ] / [C 1s ]) / (Sensitivity correction value)
- ESCA-750 manufactured by Shimadzu Corporation was used as the measuring device, and the sensitivity correction value peculiar to the device was set to 2.85.
- Carbon fibers [I] to [V] were prepared by the following production methods.
- the precursor fibers are heated in air at 240 to 280 ° C. at a draw ratio of 1.05 to be converted into flame-resistant fibers, and the temperature rise rate in the temperature range of 300 to 900 ° C. in a nitrogen atmosphere is 200 ° C./min. After heating at a stretching ratio of 1.10, it was calcined to 1400 ° C. to proceed with carbonization.
- the basis weight of the obtained carbon fibers was 0.50 g / m, and the density was 1.80 g / cm 3 .
- the surface specific oxygen concentration O / C of the carbon fiber [I] was 0.08, the average fiber diameter was 5.5 ⁇ m, and the cross-sectional shape was r / R of 0.95, which was substantially a perfect circle.
- the carbon fiber [II] was obtained by producing under the same conditions as the carbon fiber [I] except that the amount of electricity during the electrolytic oxidation treatment was 30 C / g / tank.
- the surface specific oxygen concentration O / C of the carbon fiber [II] was 0.18, the average fiber diameter was 5.5 ⁇ m, and the cross-sectional shape was r / R of 0.95, which was substantially a perfect circle.
- the carbon fiber [III] was obtained by producing under the same conditions as the carbon fiber [I] except that the amount of electricity during the electrolytic oxidation treatment was 1 C / g / tank.
- the surface specific oxygen concentration O / C of the carbon fiber [III] was 0.03, the average fiber diameter was 5.5 ⁇ m, and the cross-sectional shape was r / R of 0.95, which was substantially a perfect circle.
- the carbon fiber [IV] was obtained by producing under the same conditions as the carbon fiber [I] except that the amount of electricity during the electrolytic oxidation treatment was 100 C / g / tank.
- the surface specific oxygen concentration O / C of the carbon fiber [IV] was 0.22, the average fiber diameter was 5.5 ⁇ m, and the cross-sectional shape was r / R of 0.95, which was substantially a perfect circle.
- the surface specific oxygen concentration O / C of the carbon fiber [V] was 0.05, the average fiber diameter was 5.4 ⁇ m, and the cross-sectional shape was flat with an r / R of 0.8.
- non-woven fabric made of "UBESTA” (registered trademark) 3014U (polyamide 12, manufactured by Ube Industries, Ltd.) was prepared by the melt blow method.
- the weight of the obtained non-woven fabric was 7 g / m 2 , and the average fiber diameter was 8 ⁇ m.
- the predetermined temperature is determined by the measurement described in (7) below.
- the temperature at which the epoxy resin composition reaches a specific curing degree X (curing degree 90% in this example) and a specific curing degree Y (curing degree 20% in this example) is determined. Calculated.
- Epoxy resin having at least two oxylan groups in the molecule ⁇ "jER (registered trademark)” 828 (bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Co., Ltd.)
- Epoxy resin curing agent having at least two isocyanate groups in the molecule "Luplanate (registered trademark)” M20S (manufactured by BASF INOC Polyurethane Co., Ltd.)
- DBU registered trademark
- Undec-7-en manufactured by San-Apro Co., Ltd.
- TMAB Tetramethylammonium bromide, manufactured by Tokyo Chemical Industry Co., Ltd.
- Epoxy resins other than [A] -4-tert-butylphenylglycidyl ether manufactured by Tokyo Chemical Industry Co., Ltd.
- 2-Phenylethyl isocyanate an epoxy resin curing agent having an isocyanate group other than [B]
- Epoxy resin curing agents other than [B] ⁇ 3,3'-DAS (3,3'-diaminodiphenyl sulfone, manufactured by Mitsui Kagaku Fine Co., Ltd.) -HN-5500 (Methylhexahydrophthalic anhydride, manufactured by Hitachi Kasei Co., Ltd.).
- DBU registered trademark
- ⁇ Resin composition [iii]> 100 parts by mass of "jER (registered trademark)” 828 and 4 parts by mass of "DBU (registered trademark)” were kneaded to obtain a transparent viscous liquid, and then 78 parts by mass of 2-phenylethyl isocyanate was added, and further. The mixture was kneaded to obtain an epoxy resin composition.
- the temperature of the resin composition [iv] was raised from 30 ° C. to 10 ° C./min, but a cured product having a curing degree of 90% could not be obtained.
- ⁇ Resin composition > 89 parts by mass of HN-5500 and 6 parts by mass of TMAB were kneaded at 80 ° C. to obtain a transparent curing agent liquid. This was added to 100 parts by mass of "jER (registered trademark)" 828 and further kneaded to obtain an epoxy resin composition.
- the epoxy resin composition was kept at a predetermined injection temperature, reduced to atmospheric pressure ⁇ 0.1 MPa by a vacuum pump, and preheated to a predetermined injection temperature, and injected at a pressure of 0.2 MPa. ..
- the temperature was raised to a predetermined curing temperature at 5 ° C./min, and after a predetermined curing time had elapsed, the mold was opened and demolded to obtain a fiber-reinforced composite material.
- the tensile breaking strength of the obtained fiber-reinforced composite material was measured in accordance with ASTM D3039.
- the amount of voids in the fiber-reinforced composite material is less than 1%, those with substantially no voids are "Good", and the appearance of the fiber-reinforced composite material does not show any resin-impregnated part, but in the fiber-reinforced composite material
- the one having a void amount of 1% or more was designated as "Fair”, and the one in which a resin-unimpregnated portion was observed in the appearance of the fiber-reinforced composite material was designated as "Bad”.
- the amount of voids in the fiber-reinforced composite material was calculated from the area ratio of the voids in the fiber-reinforced composite material by observing the cross section of the smoothly polished fiber-reinforced composite material with a tilting optical microscope.
- Example 1 Using [I] as the carbon fiber and [i] as the epoxy resin composition, a fiber-reinforced composite material was prepared under the curing conditions shown in Table 1. In each case, the obtained fiber-reinforced composite material was excellent in both post-impact compressive strength and tensile breaking strength. In addition, no resin-unimpregnated portion and voids were observed, and the impregnation property was excellent.
- Example 5 A fiber-reinforced composite material was prepared in the same manner as in Example 4 except that [II] was used as the carbon fiber.
- the obtained fiber-reinforced composite material had excellent post-impact compressive strength, and the tensile breaking strength was at a level that was not a problem. In addition, no resin-unimpregnated portion and voids were observed, and the impregnation property was excellent.
- Example 6 A fiber-reinforced composite material was prepared in the same manner as in Example 4 except that [III] was used as the carbon fiber.
- the compressive strength of the obtained fiber-reinforced composite material after impact was at a level that was not a problem, and the tensile breaking strength was excellent.
- no resin-unimpregnated portion and voids were observed, and the impregnation property was excellent.
- Example 7 A fiber-reinforced composite material was prepared in the same manner as in Example 4 except that [IV] was used as the carbon fiber.
- the obtained fiber-reinforced composite material had excellent post-impact compressive strength, and the tensile breaking strength was at a level that was not a problem. In addition, no resin-unimpregnated portion and voids were observed, and the impregnation property was excellent.
- Example 1 A fiber-reinforced composite material was produced in the same manner as in Example 4 except that [V] was used as the carbon fiber.
- the obtained fiber-reinforced composite material was slightly inferior in compressive strength after impact and inferior in tensile breaking strength. In addition, it took time to inject the resin composition, and voids were observed in the cross section of the obtained fiber-reinforced composite material.
- Example 2 A fiber-reinforced composite material was prepared in the same manner as in Example 4 except that [ii] was used as the epoxy resin composition. Since a monofunctional epoxy resin is used, it is significantly inferior in compressive strength and tensile breaking strength after impact. There was also a problem with impregnation.
- Example 3 A fiber-reinforced composite material was produced in the same manner as in Example 4 except that [iii] was used as the epoxy resin composition. Since a monofunctional isocyanate is used, it is significantly inferior in compressive strength and tensile breaking strength after impact. There was also a problem with impregnation.
- ⁇ Glass fiber [I]> As a glass fiber base material, an untreated cloth of KS7781 (manufactured by Nitto Boseki Co., Ltd., basis weight 303 g / m 2 , vertical density 58 lines / 25 mm, horizontal density 53 lines / 25 mm) was prepared and cut into a length of 3 mm.
- ⁇ Glass fiber [II]> As a glass fiber base material, an untreated cloth of KS7781 (manufactured by Nitto Boseki Co., Ltd., basis weight 303 g / m 2 , vertical density 58 lines / 25 mm, horizontal density 53 lines / 25 mm) was prepared and cut into a length of 3 mm. The cut glass fiber is immersed in a methanol solution (1% by mass) of 3-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBM-403) as a coupling agent for 7 hours, and then at 110 ° C. The solvent was removed by drying in a hot air oven for 5 hours.
- a methanol solution 1% by mass
- 3-glycidoxypropyltrimethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBM-403
- ⁇ Glass fiber [IV]> It was produced under the same conditions as glass fiber [II] except that the coupling agent was 3-mercaptopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name KBM-803) to obtain glass fiber [IV]. ..
- the glass fiber [II] was prepared under the same conditions as the glass fiber [II] except that the coupling agent was 3-trimethoxysilylpropyl succinic anhydride (manufactured by Shinetsu Chemical Industry Co., Ltd., trade name X-12-967C). V] was obtained.
- ⁇ Glass fiber [VI]> It was produced under the same conditions as glass fiber [II] except that the coupling agent was vinyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name KBM-1003) to obtain glass fiber [VI].
- the coupling agent was vinyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name KBM-1003) to obtain glass fiber [VI].
- the predetermined temperature is determined by the measurement described in (3) below.
- the degree of curing of the epoxy resin cured plate thus obtained is assumed to be the same value as the degree of curing of the fiber-reinforced composite material containing glass fiber in the epoxy resin cured plate.
- the temperature at which the epoxy resin composition reaches a specific curing degree X (curing degree 90% in this example) and a specific curing degree Y (curing degree 20% in this example) is determined. Calculated.
- the absorbance ratio at a specific curing degree of the epoxy resin cured plate thus obtained is the absorbance ratio at the specific curing degree of the fiber-reinforced composite material containing glass fiber in the epoxy resin cured plate. It was assumed that it was the same value as.
- Epoxy resin having at least two oxylan groups in the molecule ⁇ "jER (registered trademark)” 828 (bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Co., Ltd.)
- Epoxy resin curing agent having at least two isocyanate groups in the molecule "Luplanate (registered trademark)” M20S (manufactured by BASF INOC Polyurethane Co., Ltd.)
- DBU registered trademark
- Undec-7-en manufactured by San-Apro Co., Ltd.
- TMAB Tetramethylammonium bromide, manufactured by Tokyo Chemical Industry Co., Ltd.
- Epoxy resins other than [A] -4-tert-butylphenylglycidyl ether manufactured by Tokyo Chemical Industry Co., Ltd.
- 2-Phenylethyl isocyanate an epoxy resin curing agent having an isocyanate group other than [B]
- Epoxy resin curing agents other than [B] ⁇ 3,3'-DAS (3,3'-diaminodiphenyl sulfone, manufactured by Mitsui Kagaku Fine Co., Ltd.) -HN-5500 (Methylhexahydrophthalic anhydride, manufactured by Hitachi Kasei Co., Ltd.).
- DBU registered trademark
- ⁇ Resin composition [iii]> 100 parts by mass of "jER (registered trademark)” 828 and 4 parts by mass of "DBU (registered trademark)” were kneaded to obtain a transparent viscous liquid, and then 78 parts by mass of 2-phenylethyl isocyanate was added, and further. The mixture was kneaded to obtain an epoxy resin composition.
- the temperature of the resin composition [iv] was raised from 30 ° C. to 10 ° C./min, but a cured product having a curing degree of 90% could not be obtained.
- ⁇ Resin composition > 89 parts by mass of HN-5500 and 6 parts by mass of TMAB were kneaded at 80 ° C. to obtain a transparent curing agent liquid. This was added to 100 parts by mass of "jER (registered trademark)" 828 and further kneaded to obtain an epoxy resin composition.
- the glass fiber prepared in (1) above and the epoxy resin composition prepared in (5) above have a fiber mass content (Wf) of 30% in the fiber reinforced composite material.
- the fibers were mixed so as to be so that they were set in a mold having a plate-shaped cavity of 400 mm ⁇ 400 mm ⁇ 2.4 mm, and the mold was fastened with a press device. This was heated to a predetermined curing temperature at 5 ° C./min, and after a predetermined curing time had elapsed, the mold was opened and demolded to obtain a fiber-reinforced composite material.
- the Vf measured in accordance with ASTM D3171: 1999 at this time was 18%.
- the SEM observation conditions are as follows. Equipment: "SU8220” manufactured by Hitachi High-Technologies Corporation, acceleration voltage: 5kV, WD setting: 10 to 15mm, current: 10mA, magnification: 2000 times.
- the measurement conditions by EDX are as follows. Equipment: "Xflash5060” made by BRUKER, acceleration voltage: 5kV, WD setting: 10 to 15mm, current: 5 to 15mA, magnification: 2000 times.
- the amount of voids in the fiber-reinforced composite material is less than 1%, those with substantially no voids are "Good", and the appearance of the fiber-reinforced composite material does not show any resin-impregnated part, but in the fiber-reinforced composite material
- the one having a void amount of 1% or more was designated as "Fair”, and the one in which a resin-unimpregnated portion was observed in the appearance of the fiber-reinforced composite material was designated as "Bad”.
- the amount of voids in the fiber-reinforced composite material was calculated from the area ratio of the voids in the fiber-reinforced composite material by observing the cross section of the smoothly polished fiber-reinforced composite material with a tilting optical microscope.
- Example 12 A fiber-reinforced composite material was produced in the same manner as in Example 11 except that [II] was used as the glass fiber.
- the Charpy impact value of the obtained fiber-reinforced composite material was excellent, and the bending strength and the retention rate of the bending strength after water absorption were at a level without any problem. Further, although the amount of resin adhered to the fracture surface was slightly inferior, no resin-unimpregnated portion and voids were observed, and the impregnation property was excellent.
- Example 13 A fiber-reinforced composite material was produced in the same manner as in Example 11 except that [III] was used as the glass fiber. Both the bending strength of the obtained fiber-reinforced composite material and the retention rate of the bending strength after water absorption were very excellent, and the Charpy impact value was excellent. In addition, the amount of resin adhered to the fracture surface was sufficient, no resin-impregnated portion and voids were observed, and the impregnation property was excellent.
- Example 14 A fiber-reinforced composite material was produced in the same manner as in Example 11 except that [IV] was used as the glass fiber.
- the bending strength of the obtained fiber-reinforced composite material, the Charpy impact value, and the retention rate of the bending strength after water absorption were all excellent.
- the amount of resin adhered to the fracture surface was sufficient, no unimpregnated portion of resin and voids were observed, and the impregnation property was excellent.
- Example 15 A fiber-reinforced composite material was produced in the same manner as in Example 11 except that [V] was used as the glass fiber.
- the bending strength and Charpy impact value of the obtained fiber-reinforced composite material were excellent, and the retention rate of the bending strength after water absorption was at a level without any problem.
- the amount of resin adhered to the fracture surface was sufficient, no unimpregnated portion of resin and voids were observed, and the impregnation property was excellent.
- Example 7 A fiber-reinforced composite material was produced in the same manner as in Example 11 except that [VI] was used as the glass fiber.
- the glass fiber having a surface functional group that does not form a covalent bond with the isocyanate group By using the glass fiber having a surface functional group that does not form a covalent bond with the isocyanate group, the bending strength and the charpy impact value of the obtained fiber-reinforced composite material were inferior. In addition, the amount of resin adhered to the fracture surface was insufficient, and voids were observed in the cross section of the obtained fiber-reinforced composite material.
- Example 8 A fiber-reinforced composite material was produced in the same manner as in Example 11 except that [VII] was used as the glass fiber.
- the glass fiber having a surface functional group that does not form a covalent bond with the isocyanate group By using the glass fiber having a surface functional group that does not form a covalent bond with the isocyanate group, the bending strength and the charpy impact value of the obtained fiber-reinforced composite material were inferior. In addition, the amount of resin adhered to the fracture surface was insufficient, and voids were observed in the cross section of the obtained fiber-reinforced composite material.
- Example 9 A fiber-reinforced composite material was prepared in the same manner as in Example 4 except that [ii] was used as the epoxy resin composition. Since a monofunctional epoxy resin having one oxylan group in the molecule is used, the bending strength, the Charpy impact value, and the retention rate of the bending strength after water absorption are significantly inferior.
- Example 10 A fiber-reinforced composite material was produced in the same manner as in Example 11 except that [iii] was used as the epoxy resin composition. Since a monofunctional isocyanate curing agent having one isocyanate group in the molecule is used, the bending strength, the Charpy impact value, and the retention rate of the bending strength after water absorption are significantly inferior.
- the epoxy resin composition since the epoxy resin composition has a low viscosity and the carbon fibers have a perfect circular cross-sectional shape, the epoxy resin composition is excellent in impregnation property when the epoxy resin composition is injected into the reinforcing fibers. Since the cured product of No. 1 has excellent mechanical properties, it is possible to provide a fiber-reinforced composite material having both high impact resistance and high tensile strength. As a result, the application of fiber-reinforced composite materials to aircraft and automobile parts applications will progress, and it is expected that further weight reduction will contribute to improved fuel efficiency and reduction of greenhouse gas emissions.
- the epoxy resin composition has a low viscosity and the glass fiber has a surface functional group capable of forming a covalent bond with the isocyanate group, the epoxy resin composition is excellent in impregnation property when injected into the reinforcing fiber, and further, it is applied. Since the adhesiveness between the reinforcing fiber and the epoxy resin composition is appropriately improved, it is possible to provide a fiber-reinforced composite material having high bending strength and impact resistance. Further, since the epoxy resin composition used in the present invention has low water absorption, it is possible to provide a fiber-reinforced composite material that suppresses a decrease in bending strength after water absorption.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Reinforced Plastic Materials (AREA)
- Laminated Bodies (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
Description
[A]分子内に少なくとも2つのオキシラン基を有するエポキシ樹脂
[B]分子内に少なくとも2つのイソシアネート基を有するエポキシ樹脂硬化剤
[C]触媒
[a]実質的に真円状の断面を有する
[b]平均繊維径が4.0~8.0μmの範囲にある
[A]分子内に少なくとも2つのオキシラン基を有するエポキシ樹脂
[B]分子内に少なくとも2つのイソシアネート基を有するエポキシ樹脂硬化剤
[C]触媒
[a]実質的に真円状の断面を有する
[b]平均繊維径が4.0~8.0μmの範囲にある。
[c]表面比酸素濃度O/Cが0.03~0.20の範囲にある。
S1=S/(Vf/100)・・・(式1)
S1:ガラス繊維表面のケイ素元素の面積率
S:破断面全体のケイ素元素の面積率
Vf:ガラス繊維強化複合材料の繊維体積含有率(%)。
[a]実質的に真円状の断面を有する
[b]平均繊維径が4.0~8.0μmの範囲にある。
Vf(%)=(Af×N)/(ρf×h)/10 ・・・(式2)
Af:強化繊維からなる基材1枚・1m2当たりの質量(g/m2)
N:強化繊維からなる基材の積層枚数(枚)
ρf:強化繊維の密度(g/cm3)
h:繊維強化複合材料(試験片)の厚み(mm)。
表面比酸素濃度O/Cは、次の手順に従ってX線光電子分光法により求めた。
・光電子脱出角度:90度・X線源:MgKα1,2
・試料チャンバー内真空度:1×10-8Torr
次に、測定時の帯電に伴うピークの補正のため、C1Sの主ピークの結合エネルギー値B.E.を284.6eVに合わせた。
O/C=([O1s]/[C1s])/(感度補正値)
尚、ここでは、測定装置として島津製作所(株)製、ESCA-750を用い、前記装置固有の感度補正値を2.85とした。試験サンプル数n=3とし、その平均値を採用した。
炭素繊維束を包埋用エポキシ樹脂で包埋し、サンドペーパーを用いて繊維と直交方向に研磨した後、光学顕微鏡で、倍率1000倍にて断面を観察した。視野の中から無作為に単糸20本を選択し、それらの長径Rと短径rを測定し、それぞれの平均値を算出し、{(Rの平均値)+(rの平均値)}/2を平均繊維径とした。また、(rの平均値)/(Rの平均値)が0.9を超える場合、実質的に真円状であると判断した。
下記製法により炭素繊維[I]~[V]を作製した。
アクリロニトリル99.4mol%とメタクリル酸0.6mol%からなる共重合体を用いて、乾湿式紡糸法により単繊維繊度0.08tex、フィラメント数12000のアクリル系前駆体繊維を得た。
電解酸化処理時の電気量を30C/g・槽とした以外は、炭素繊維[I]と同一の条件で作製し、炭素繊維[II]を得た。
電解酸化処理時の電気量を1C/g・槽とした以外は、炭素繊維[I]と同一の条件で作製し、炭素繊維[III]を得た。
電解酸化処理時の電気量を100C/g・槽とした以外は、炭素繊維[I]と同一の条件で作製し、炭素繊維[IV]を得た。
アクリル系前駆体繊維の紡糸法を湿式紡糸法に変更し、得られたアクリル系前駆体繊維の単繊維繊度が0.09texであった以外は、炭素繊維[I]と同一の条件で作製し、炭素繊維[V]を得た。得られた炭素繊維の目付は0.50g/m、密度は1.80g/cm3であった。
上記で得られた炭素繊維を経糸として引き揃えて一方向性シート状強化繊維束群を形成した。緯糸としてガラス繊維ECE225 1/0 1Z(日東紡(株)製)を用い、前記一方向性シート状強化繊維束群に直交する方向に3本/cmの密度で配列し、織機を用いて該経糸と該緯糸が互いに交差するように織り込み、実質的に炭素繊維が一方向に配列された、目付が190g/m2の炭素繊維織物を得た。
“UBESTA”(商標登録)3014U(ポリアミド12、宇部興産(株)製)からなる不織布を、メルトブロー法により作製した。得られた不織布の目付は7g/m2であり、平均の繊維径は8μmであった。
エポキシ樹脂組成物を真空中で脱泡した後、予備加熱したプレートに注型し、動的粘弾性試験装置(ATD:アルファテクノロジーズLLC製)を用いて、30℃から所定温度まで10℃/分で昇温することでエポキシ樹脂硬化板を作製した。
エポキシ樹脂組成物を5mg採取し、示差走査熱量測定装置(DSC2910:TAインスツルメンツ社製)を用いて、10℃/分の昇温速度で30℃から350℃まで昇温測定し、発熱カーブを取得し、その発熱ピークを積分することにより、熱硬化性樹脂の総発熱量QTを算出した。分解反応などによる発熱または吸熱のピークが見られる場合は、それらピーク以下の温度範囲で測定を行った。
上記(6)で作製した特定の硬化度X(本実施例では、硬化度90%)および特定の硬化度Y(本実施例では、硬化度20%)のエポキシ樹脂硬化物を採取し、FT-IR装置(7000FT-IR:Varian製)を用いて、FT-IR(ATR法)を実施した。測定条件は、分解能を4cm-1、積算回数を32回とした。
下記製法により樹脂組成物[i]~[iii]を調製した。ここで用いた原料は、以下に示す通りである。
・“jER(登録商標)”828(ビスフェノールA型エポキシ樹脂、三菱ケミカル(株)製)
[B]分子内に少なくとも2つのイソシアネート基を有するエポキシ樹脂硬化剤
・“ルプラネート(登録商標)”M20S(BASF INOAC ポリウレタン(株)製)
[C]触媒
・“DBU(登録商標)”(1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、サンアプロ(株)製))
・TMAB(テトラメチルアンモニウムブロミド、東京化成工業(株)製)。
・4-tert-ブチルフェニルグリシジルエーテル(東京化成工業(株)製)
[B]以外のイソシアネート基を有するエポキシ樹脂硬化剤
・2-フェニルエチルイソシアナート(東京化成工業(株)製)
[B]以外のエポキシ樹脂硬化剤
・3,3’-DAS(3,3’-ジアミノジフェニルスルホン、三井化学ファイン(株)製)
・HN-5500(メチルヘキサヒドロフタル酸無水物、日立化成(株)製)。
“jER(登録商標)”828 100質量部、“DBU(登録商標)” 4質量部を混練し、透明な粘調液を得た、その後、“ルプラネート(登録商標)”M20S 72質量部を添加し、さらに混練し、エポキシ樹脂組成物を得た。
4-tert-ブチルフェニルグリシジルエーテル 100質量部、“DBU(登録商標)” 4質量部を混練し、透明な粘調液を得た、その後、“ルプラネート(登録商標)”M20S 66質量部を添加し、さらに混練し、エポキシ樹脂組成物を得た。
“jER(登録商標)”828 100質量部、“DBU(登録商標)” 4質量部を混練し、透明な粘調液を得た、その後、2-フェニルエチルイソシアネート 78質量部を添加し、さらに混練し、エポキシ樹脂組成物を得た。
“jER(登録商標)”828 100質量部、“ルプラネート(登録商標)”M20S 72質量部を混練し、エポキシ樹脂組成物を得た。
“jER(登録商標)”828 100質量部、3,3’-DAS 33質量部を混練し、エポキシ樹脂組成物を得た。
HN-5500 89質量部、TMAB 6質量部を80℃で混練し、透明な硬化剤液を得た。これを“jER(登録商標)”828 100質量部に添加し、さらに混練し、エポキシ樹脂組成物を得た。
400mm×400mm×4.8mmの板状キャビティーを持つ金型に、395mm×395mmに切り出した上記で得られた炭素繊維織物を、炭素繊維方向を0°として、不織布を1枚おきに挟みながら(45°/0°/-45°/90°)を3回繰り返して12枚積層した上に、不織布を1枚おきに挟みながら(90°/-45°/0°/45°)を3回繰り返して12枚積層したものをセットし、プレス装置で型締めを行った。次に、所定の注入温度に保持し、真空ポンプにより、大気圧-0.1MPaに減圧し、予め所定の注入温度に加温しておいたエポキシ樹脂組成物を0.2MPaの圧力で注入した。所定の硬化温度まで5℃/minで昇温し、所定の硬化時間経過後に金型を開き、脱型して、繊維強化複合材料を得た。
400mm×400mm×1.2mmの板状キャビティーを持つ金型に、上記で得られた炭素繊維織物を395mm×395mmに切り出したものを、炭素繊維方向を揃えて、不織布を1枚おきに挟みながら6枚積層したものをセットし、プレス装置で型締めを行った。次に、所定の注入温度に保持し、真空ポンプにより、大気圧-0.1MPaに減圧し、予め所定の注入温度に加温しておいたエポキシ樹脂組成物を0.2MPaの圧力で注入した。所定の硬化温度まで5℃/minで昇温し、所定の硬化時間経過後に金型を開き、脱型して、繊維強化複合材料を得た。
上記(10)の繊維強化複合材料の作製の際の樹脂注入工程における含浸性について、繊維強化複合材料中のボイド量を基準に次の3段階で比較評価した。繊維強化複合材料中のボイド量が1%未満と、ボイドが実質的に存在しないものを「Good」、繊維強化複合材料の外観に樹脂未含浸部分は認められないが、繊維強化複合材料中のボイド量が1%以上であるものを「Fair」、繊維強化複合材料の外観に樹脂未含浸部分が認められるものを「Bad」とした。
炭素繊維として[I]、エポキシ樹脂組成物として[i]を用いて、表1に記載の硬化条件で繊維強化複合材料を作製した。いずれにおいても、得られた繊維強化複合材料の衝撃後圧縮強度および引張破断強度がともに優れていた。また、樹脂未含浸部分およびボイドは見られず、含浸性に優れていた。
炭素繊維として[II]を用いた以外は、実施例4と同様にして繊維強化複合材料を作製した。得られた繊維強化複合材料の衝撃後圧縮強度は優れており、引張破断強度は問題ないレベルであった。また、樹脂未含浸部分およびボイドは見られず、含浸性に優れていた。
炭素繊維として[III]を用いた以外は、実施例4と同様にして繊維強化複合材料を作製した。得られた繊維強化複合材料の衝撃後圧縮強度は問題ないレベルであり、引張破断強度は優れていた。また、樹脂未含浸部分およびボイドは見られず、含浸性に優れていた。
炭素繊維として[IV]を用いた以外は、実施例4と同様にして繊維強化複合材料を作製した。得られた繊維強化複合材料の衝撃後圧縮強度は優れており、引張破断強度は問題ないレベルであった。また、樹脂未含浸部分およびボイドは見られず、含浸性に優れていた。
炭素繊維として[V]を用いた以外は、実施例4と同様にして繊維強化複合材料を作製した。断面形状が扁平な炭素繊維を用いたことで、得られた繊維強化複合材料は衝撃後圧縮強度がやや劣り、引張破断強度に劣った。また、樹脂組成物の注入に時間を要し、得られた繊維強化複合材料の断面にボイドが見られた。
エポキシ樹脂組成物として[ii]を用いた以外は、実施例4と同様にして繊維強化複合材料を作製した。単官能エポキシ樹脂を用いているため、衝撃後圧縮強度、引張破断強度に大きく劣った。含浸性にも問題があった。
エポキシ樹脂組成物として[iii]を用いた以外は、実施例4と同様にして繊維強化複合材料を作製した。単官能イソシアネートを用いているため、衝撃後圧縮強度、引張破断強度に大きく劣った。含浸性にも問題があった。
エポキシ樹脂組成物として[iv]を用いたが、表2に記載の硬化条件では硬化度90%の硬化物が得られなかった。
炭素繊維として[I]、エポキシ樹脂組成物として[v]を用いて、表1に記載の硬化条件で繊維強化複合材料を作製した。得られた繊維強化複合材料はオキサゾリドン環が形成されず、衝撃後圧縮強度が劣った。また、樹脂組成物の注入に時間を要し、得られた繊維強化複合材料の断面にボイドが見られた。
炭素繊維として[I]、エポキシ樹脂組成物として[vi]を用いて、表1に記載の硬化条件で繊維強化複合材料を作製した。得られた繊維強化複合材料はオキサゾリドン環が形成されず、衝撃後圧縮強度が劣った。
下記製法により、ガラス繊維[I]~[VII]を用意した。
ガラス繊維基材として、KS7781(日東紡(株)製、目付303g/m2、たて密度58本/25mm、よこ密度53本/25mm)の未処理クロスを用意し、3mm長にカットした。
ガラス繊維基材として、KS7781(日東紡(株)製、目付303g/m2、たて密度58本/25mm、よこ密度53本/25mm)の未処理クロスを用意し、3mm長にカットした。カットしたガラス繊維を、カップリング剤として3-グリシドキシプロピルトリメトキシシラン(信越化学工業社製、商品名:KBM-403)のメタノール溶液(1質量%)に7時間浸漬後、110℃の熱風オーブン内で5時間乾燥させて溶媒を除去した。
カップリング剤を3-アミノプロピルトリメトキシシラン(信越化学工業社製、商品名KBM-903)とした以外は、ガラス繊維[II]と同一の条件で作製し、ガラス繊維[III]を得た。
カップリング剤を3-メルカプトプロピルトリメトキシシラン(信越化学工業社製、商品名KBM-803)とした以外は、ガラス繊維[II]と同一の条件で作製し、ガラス繊維[IV]を得た。
カップリング剤を3-トリメトキシシリルプロピルコハク酸無水物(信越化学工業社製、商品名X-12-967C)とした以外は、ガラス繊維[II]と同一の条件で作製し、ガラス繊維[V]を得た。
カップリング剤をビニルトリメトキシシラン(信越化学工業株式会社製、商品名KBM-1003)とした以外は、ガラス繊維[II]と同一の条件で作製し、ガラス繊維[VI]を得た。
カップリング剤をメチルトリメトキシシラン(関東化学株式会社製)とした以外は、ガラス繊維[II]と同一の条件で作製し、ガラス繊維[VII]を得た。
エポキシ樹脂組成物を真空中で脱泡した後、予備加熱したプレートに注型し、動的粘弾性試験装置(ATD:アルファテクノロジーズLLC製)を用いて、30℃から所定温度まで10℃/分で昇温することでエポキシ樹脂硬化板を作製した。
エポキシ樹脂組成物を5mg採取し、示差走査熱量測定装置(DSC2910:TAインスツルメンツ社製)を用いて、10℃/分の昇温速度で30℃から350℃まで昇温測定し、発熱カーブを取得し、その発熱ピークを積分することにより、熱硬化性樹脂の総発熱量QTを算出した。分解反応等による発熱または吸熱のピークが見られる場合は、それらピーク以下の温度範囲で測定を行った。
上記(2)で作製した特定の硬化度X(本実施例では、硬化度90%)および特定の硬化度Y(本実施例では、硬化度20%)のエポキシ樹脂硬化物を採取し、FT-IR装置(7000FT-IR:Varian製)を用いて、FT-IR(ATR法)を実施した。測定条件は、分解能を4cm-1、積算回数を32回とした。
下記製法により樹脂組成物[i]~[vi]を調製した。ここで用いた原料は、以下に示す通りである。
・“jER(登録商標)”828(ビスフェノールA型エポキシ樹脂、三菱ケミカル(株)製)
[B]分子内に少なくとも2つのイソシアネート基を有するエポキシ樹脂硬化剤
・“ルプラネート(登録商標)”M20S(BASF INOAC ポリウレタン(株)製)
[C]触媒
・“DBU(登録商標)”(1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、サンアプロ(株)製))
・TMAB(テトラメチルアンモニウムブロミド、東京化成工業(株)製)。
・4-tert-ブチルフェニルグリシジルエーテル(東京化成工業(株)製)
[B]以外のイソシアネート基を有するエポキシ樹脂硬化剤
・2-フェニルエチルイソシアナート(東京化成工業(株)製)
[B]以外のエポキシ樹脂硬化剤
・3,3’-DAS(3,3’-ジアミノジフェニルスルホン、三井化学ファイン(株)製)
・HN-5500(メチルヘキサヒドロフタル酸無水物、日立化成(株)製)。
“jER(登録商標)”828 100質量部、“DBU(登録商標)” 4質量部を混練し、透明な粘調液を得た、その後、“ルプラネート(登録商標)”M20S 72質量部を添加し、さらに混練し、エポキシ樹脂組成物を得た。
4-tert-ブチルフェニルグリシジルエーテル 100質量部、“DBU(登録商標)” 4質量部を混練し、透明な粘調液を得た、その後、“ルプラネート(登録商標)”M20S 66質量部を添加し、さらに混練し、エポキシ樹脂組成物を得た。
“jER(登録商標)”828 100質量部、“DBU(登録商標)” 4質量部を混練し、透明な粘調液を得た、その後、2-フェニルエチルイソシアネート 78質量部を添加し、さらに混練し、エポキシ樹脂組成物を得た。
“jER(登録商標)”828 100質量部、“ルプラネート(登録商標)”M20S 72質量部を混練し、エポキシ樹脂組成物を得た。
“jER(登録商標)”828 100質量部、3,3’-DAS 33質量部を混練し、エポキシ樹脂組成物を得た。
HN-5500 89質量部、TMAB 6質量部を80℃で混練し、透明な硬化剤液を得た。これを“jER(登録商標)”828 100質量部に添加し、さらに混練し、エポキシ樹脂組成物を得た。
上記(1)で作製したガラス繊維と、上記(5)で調製したエポキシ樹脂組成物を、繊維強化複合材料中の繊維質量含有率(Wf)が30%となるよう混合し、400mm×400mm×2.4mmの板状キャビティーを持つ金型にセットし、プレス装置で型締めを行った。これを所定の硬化温度まで5℃/minで昇温し、所定の硬化時間経過後に金型を開き、脱型して、繊維強化複合材料を得た。なお、このときのASTM D3171:1999に準拠して測定されたVfは18%であった。
上記(6)で作製した繊維強化複合材料から長さ60mm、幅10mmの短冊状の試験片を切り出し、インストロン万能試験機を用い、スパン長を32mm、クロスヘッドスピードを2.0mm/分とし、JIS K7171(1999)に従って3点曲げを実施し、曲げ強度(σ1)を測定した。
上記(6)で作製した繊維強化複合材料から長さ60mm、幅10mmの短冊状の試験片を切り出し、98℃の恒温水槽に48時間浸漬した。これを、インストロン万能試験機を用い、スパン長を32mm、クロスヘッドスピードを2.0mm/分とし、JIS K7171(1999)に従って3点曲げを実施し、吸水後の曲げ強度(σ2)を測定した。
ここで、吸水後の曲げ強度の保持率(%)は、保持率(%)=σ2/σ1×100で求めた。
上記(7)で破壊した試験片の破断面における露出したガラス繊維表面への樹脂付着量を、走査型電子顕微鏡-エネルギー分散型X線分光法(SEM-EDX)により観察される元素マッピング画像より次の4段階で比較評価した。ガラス繊維表面のケイ素元素の面積率(S1)が、0以上0.85以下であるものを「Very Good」、0.85を超え0.90以下であるものを「Good」、0.90を超え0.95以下であるものを「Fair」、0.95を超え1.0以下であるものを「Bad」とした。
上記(6)の繊維強化複合材料の作製の際の樹脂注入工程における含浸性について、繊維強化複合材料中のボイド量を基準に次の3段階で比較評価した。繊維強化複合材料中のボイド量が1%未満と、ボイドが実質的に存在しないものを「Good」、繊維強化複合材料の外観に樹脂未含浸部分は認められないが、繊維強化複合材料中のボイド量が1%以上であるものを「Fair」、繊維強化複合材料の外観に樹脂未含浸部分が認められるものを「Bad」とした。
上記(6)で作製した繊維強化複合材料から長さ80mm、幅10mmの短冊状の試験片を切り出し、インストロン振子型試験機を用い、ISO179/1eAに従って試験片ノッチ背面をハンマー打撃して、シャルピー衝撃値を測定した。
ガラス繊維として[I]、エポキシ樹脂組成物として[i]を用いて、表3に記載の硬化条件で繊維強化複合材料を作製した。得られた繊維強化複合材料の曲げ強度および吸水後の曲げ強度の保持率はともに優れており、シャルピー衝撃値は問題ないレベルであった。また、破断面の樹脂付着量は十分であり、樹脂の未含浸部分およびボイドは見られず、含浸性に優れていた。
ガラス繊維として[II]を用いた以外は、実施例11と同様にして繊維強化複合材料を作製した。得られた繊維強化複合材料のシャルピー衝撃値は優れており、曲げ強度および吸水後の曲げ強度の保持率は問題ないレベルであった。また、破断面の樹脂付着量は少し劣ったものの、樹脂未含浸部分およびボイドは見られず、含浸性に優れていた。
ガラス繊維として[III]を用いた以外は、実施例11と同様にして繊維強化複合材料を作製した。得られた繊維強化複合材料の曲げ強度および吸水後の曲げ強度の保持率はともに非常に優れており、シャルピー衝撃値は優れていた。また、破断面の樹脂付着量は十分であり、樹脂未含浸部分およびボイドは見られず、含浸性に優れていた。
ガラス繊維として[IV]を用いた以外は、実施例11と同様にして繊維強化複合材料を作製した。得られた繊維強化複合材料の曲げ強度、シャルピー衝撃値および吸水後の曲げ強度の保持率はともに優れていた。また、破断面の樹脂付着量は十分であり、樹脂の未含浸部分およびボイドは見られず、含浸性に優れていた。
ガラス繊維として[V]を用いた以外は、実施例11と同様にして繊維強化複合材料を作製した。得られた繊維強化複合材料の曲げ強度、シャルピー衝撃値は優れており、吸水後の曲げ強度の保持率は問題ないレベルであった。また、破断面の樹脂付着量は十分であり、樹脂の未含浸部分およびボイドは見られず、含浸性に優れていた。
ガラス繊維として[VI]を用いた以外は、実施例11と同様にして繊維強化複合材料を作製した。イソシアネート基と共有結合を形成しない表面官能基を有するガラス繊維を用いたことで、得られた繊維強化複合材料の曲げ強度およびシャルピー衝撃値が劣った。また、破断面の樹脂付着量が不十分であり、得られた繊維強化複合材料の断面にボイドが見られた。
ガラス繊維として[VII]を用いた以外は、実施例11と同様にして繊維強化複合材料を作製した。イソシアネート基と共有結合を形成しない表面官能基を有するガラス繊維を用いたことで、得られた繊維強化複合材料の曲げ強度およびシャルピー衝撃値が劣った。また、破断面の樹脂付着量が不十分であり、得られた繊維強化複合材料の断面にボイドが見られた。
エポキシ樹脂組成物として[ii]を用いた以外は、実施例4と同様にして繊維強化複合材料を作製した。分子内に1つのオキシラン基を有する単官能エポキシ樹脂を用いているため、曲げ強度、シャルピー衝撃値および吸水後の曲げ強度の保持率が大きく劣った。
エポキシ樹脂組成物として[iii]を用いた以外は、実施例11と同様にして繊維強化複合材料を作製した。分子内に1つのイソシアネート基を有する単官能イソシアネート硬化剤を用いているため、曲げ強度、シャルピー衝撃値および吸水後の曲げ強度の保持率が大きく劣った。
エポキシ樹脂組成物として[iv]を用いたが、指定の条件では硬化度90%の硬化物が得られなかった。
ガラス繊維として[I]、エポキシ樹脂組成物として[v]を用いて、表4に記載の硬化条件で繊維強化複合材料を作製した。得られた繊維強化複合材料はオキサゾリドン環が形成されず、また、樹脂組成物の注入に時間を要し、得られた繊維強化複合材料の断面にボイドが見られた。
ガラス繊維として[I]、エポキシ樹脂組成物として[vi]を用いて、表4に記載の硬化条件で繊維強化複合材料を作製した。得られた繊維強化複合材料はオキサゾリドン環が形成されず、ガラス繊維との接着性にも劣ったため、曲げ強度およびシャルピー衝撃値が劣った。
Claims (15)
- エポキシ樹脂組成物と、炭素繊維および/またはガラス繊維とからなる成形材料であって、エポキシ樹脂組成物は下記[A]~[C]を全て含み、炭素繊維は下記条件[a]および[b]を満たし、ガラス繊維はイソシアネート基と共有結合を形成可能である表面官能基を有する、成形材料。
[A]分子内に少なくとも2つのオキシラン基を有するエポキシ樹脂
[B]分子内に少なくとも2つのイソシアネート基を有するエポキシ樹脂硬化剤
[C]触媒
[a]実質的に真円状の断面を有する
[b]平均繊維径が4.0~8.0μmの範囲にある - エポキシ樹脂組成物と炭素繊維からなる、請求項1に記載の成形材料。
- 炭素繊維が、さらに下記条件[c]を満たす、請求項1または2に記載の成形材料。
[c]表面比酸素濃度O/Cが0.03~0.20の範囲にある
(ここで、表面比酸素濃度は、X線光電子分光法において、O1sピーク面積[O1s]と、C1sピーク面積[C1s]から表面比酸素濃度O/C=([O1s]/[C1s])/(感度補正値)を算出することにより特定される。) - エポキシ樹脂組成物とガラス繊維からなる、請求項1に記載の成形材料。
- 明細書に記載される曲げ試験(JIS K7171-1994に準拠)における曲げ強度が250MPa以上である、請求項1または4に記載の成形材料。
- 明細書に記載される曲げ試験(JIS K7171-1994に準拠)後の破断面を走査型電子顕微鏡-エネルギー分散型X線分光法(SEM-EDX)で観察した際に得られる元素マッピング画像におけるガラス繊維表面のケイ素元素の面積率(S1)が0~0.90の範囲にある、請求項1、4、5のいずれかに記載の成形材料。
- ガラス繊維の表面官能基が、水酸基、オキシラン基、アミノ基、チオール基、およびカルボキシ基からなる群から選ばれる少なくとも1つの官能基である、請求項1、4~6のいずれかに記載の成形材料。
- ガラス繊維の表面官能基が、シランカップリング剤、チタンカップリング剤、アルミニウムカップリング剤、およびジルコニウムカップリング剤からなる群から選ばれる少なくとも1つで処理されることで形成される、請求項1、4~7のいずれかに記載の成形材料。
- 30℃から10℃/分で昇温しながら硬化した際に、硬化度Xにおける吸光度比Da/(Da+Db)が0.4~1の範囲となるある特定の硬化度Xが85~95%の範囲に存在する、請求項1~8のいずれかに記載の成形材料。
(ここで、吸光度比は、FT-IR(ATR法)において、オキサゾリドン環のカルボキシル基のC=O二重結合に起因する吸収の吸光度Daと、イソシアヌレート環のカルボキシル基のC=O二重結合に起因する吸収の吸光度Dbから吸光度比=Da/(Da+Db)を算出することにより特定される。また、硬化度は、昇温速度10℃/分でのDSCにより得られるエポキシ樹脂組成物の総発熱量QTと、その硬化物の残存発熱量QRから硬化度(%)=(QT-QR)/QT×100を算出することにより特定される。) - 30℃から10℃/分で昇温しながら硬化した際に、硬化度Yにおける吸光度比Da/(Da+Db)が0.01~1の範囲となるある特定の硬化度Yが15~25%の範囲に存在する、請求項1~9のいずれかに記載の成形材料。
- 請求項1~10のいずれかに記載の成形材料を硬化させてなる繊維強化複合材料。
- 吸光度比Da/(Da+Db)が0.4~1の範囲にある、請求項11に記載の繊維強化複合材料。
(ここで、吸光度比は、FT-IR(ATR法)において、オキサゾリドン環のカルボキシル基のC=O二重結合に起因する吸収の吸光度Daと、イソシアヌレート環のカルボキシル基のC=O二重結合に起因する吸収の吸光度Dbから吸光度比=Da/(Da+Db)を算出することにより特定される。) - オキサゾリドン環を1mmol/g以上含むエポキシ樹脂硬化物と、下記条件[a]および[b]を満たす炭素繊維からなる繊維強化複合材料。
[a]実質的に真円状の断面を有する
[b]平均繊維径が4.0~8.0μmの範囲にある - オキサゾリドン環を1mmol/g以上含むエポキシ樹脂硬化物と、エポキシ樹脂硬化物中のイソシアネート基と共有結合している表面官能基を有するガラス繊維を含み、明細書に記載される曲げ試験(JIS K7171-1994に準拠)後の破断面を走査型電子顕微鏡-エネルギー分散型X線分光法(SEM-EDX)で観察した際に得られる元素マッピング画像におけるガラス繊維表面のケイ素元素の面積率(S1)が0~0.90の範囲にある、繊維強化複合材料。
- 吸光度比Da/(Da+Db)が0.4~1の範囲にある、請求項13または14に記載の繊維強化複合材料。
(ここで、吸光度比は、FT-IR(ATR法)において、オキサゾリドン環のカルボキシル基のC=O二重結合に起因する吸収の吸光度Daと、イソシアヌレート環のカルボキシル基のC=O二重結合に起因する吸収の吸光度Dbから吸光度比=Da/(Da+Db)を算出することにより特定される。)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2021217266A AU2021217266A1 (en) | 2020-02-03 | 2021-01-27 | Molding material and fiber reinforced composite material |
JP2021505442A JPWO2021157442A1 (ja) | 2020-02-03 | 2021-01-27 | |
US17/785,582 US20230027417A1 (en) | 2020-02-03 | 2021-01-27 | Molding material and fiber reinforced composite material |
CN202180011336.6A CN115052920B (zh) | 2020-02-03 | 2021-01-27 | 成型材料及纤维增强复合材料 |
EP21751209.4A EP4101878A4 (en) | 2020-02-03 | 2021-01-27 | MOLDING MATERIAL AND FIBER REINFORCED COMPOSITE MATERIAL |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020015995 | 2020-02-03 | ||
JP2020-015995 | 2020-02-03 | ||
JP2020027904 | 2020-02-21 | ||
JP2020-027904 | 2020-02-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021157442A1 true WO2021157442A1 (ja) | 2021-08-12 |
Family
ID=77199477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/002756 WO2021157442A1 (ja) | 2020-02-03 | 2021-01-27 | 成形材料および繊維強化複合材料 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230027417A1 (ja) |
EP (1) | EP4101878A4 (ja) |
JP (1) | JPWO2021157442A1 (ja) |
CN (1) | CN115052920B (ja) |
AU (1) | AU2021217266A1 (ja) |
WO (1) | WO2021157442A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022102467A1 (ja) * | 2020-11-16 | 2022-05-19 | 東レ株式会社 | 熱硬化性エポキシ樹脂組成物とその成形品、繊維強化複合材料、繊維強化複合材料用成形材料、および繊維強化複合材料の製造方法 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5659847A (en) * | 1979-10-19 | 1981-05-23 | Matsushita Electric Works Ltd | Production of laminated board |
JPS6020922A (ja) * | 1983-06-27 | 1985-02-02 | シ−メンス、アクチエンゲゼルシヤフト | 成形物質の製造方法 |
JPS6069121A (ja) * | 1983-06-27 | 1985-04-19 | シ−メンス、アクチエンゲゼルシヤフト | 反応樹脂成形物質の製造方法 |
JPS6092844A (ja) * | 1983-10-26 | 1985-05-24 | 鐘淵化学工業株式会社 | 電気用積層板および金属箔張り積層板 |
JP2002194670A (ja) * | 2000-12-21 | 2002-07-10 | Unitika Glass Fiber Co Ltd | ガラスクロス表面処理剤 |
JP2002249956A (ja) * | 2001-02-20 | 2002-09-06 | Mitsubishi Rayon Co Ltd | 炭素繊維織物およびこれを用いたプリプレグ |
JP2009074009A (ja) * | 2007-09-25 | 2009-04-09 | Toray Ind Inc | プリプレグおよびゴルフクラブシャフト |
JP2010037694A (ja) * | 2008-08-07 | 2010-02-18 | Toray Ind Inc | 強化繊維基材、積層体および複合材料 |
WO2011077094A1 (en) | 2009-12-23 | 2011-06-30 | Cytec Technology Corp | Modified resin systems for liquid resin infusion applications & process methods related thereto |
WO2012050171A1 (ja) * | 2010-10-13 | 2012-04-19 | 三菱レイヨン株式会社 | 炭素繊維前駆体繊維束、炭素繊維束、及びそれらの利用 |
WO2012081407A1 (ja) * | 2010-12-13 | 2012-06-21 | 東レ株式会社 | 炭素繊維プリプレグおよびその製造方法、炭素繊維強化複合材料 |
WO2016158757A1 (ja) | 2015-03-27 | 2016-10-06 | 東レ株式会社 | 繊維強化複合材料用2液型エポキシ樹脂組成物および繊維強化複合材料 |
JP2017226773A (ja) | 2016-06-23 | 2017-12-28 | Dic株式会社 | 硬化性組成物及び繊維強化複合材料 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1285051A (en) * | 1969-03-27 | 1972-08-09 | Ici Ltd | Fibre reinforced polymer compositions |
JPS5659747A (en) * | 1979-10-18 | 1981-05-23 | Kuraray Co Ltd | Substituted cyclopropanecarboxylic acid ester, and insecticide containing said compound as effective component |
CA1259439A (en) * | 1983-03-17 | 1989-09-12 | Masaharu Abe | Flame retarded epoxy resin composition for use in the manufacture of electrical laminates |
-
2021
- 2021-01-27 EP EP21751209.4A patent/EP4101878A4/en active Pending
- 2021-01-27 CN CN202180011336.6A patent/CN115052920B/zh active Active
- 2021-01-27 AU AU2021217266A patent/AU2021217266A1/en active Pending
- 2021-01-27 US US17/785,582 patent/US20230027417A1/en active Pending
- 2021-01-27 WO PCT/JP2021/002756 patent/WO2021157442A1/ja unknown
- 2021-01-27 JP JP2021505442A patent/JPWO2021157442A1/ja active Pending
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5659847A (en) * | 1979-10-19 | 1981-05-23 | Matsushita Electric Works Ltd | Production of laminated board |
JPS6020922A (ja) * | 1983-06-27 | 1985-02-02 | シ−メンス、アクチエンゲゼルシヤフト | 成形物質の製造方法 |
JPS6069121A (ja) * | 1983-06-27 | 1985-04-19 | シ−メンス、アクチエンゲゼルシヤフト | 反応樹脂成形物質の製造方法 |
JPS6092844A (ja) * | 1983-10-26 | 1985-05-24 | 鐘淵化学工業株式会社 | 電気用積層板および金属箔張り積層板 |
JP2002194670A (ja) * | 2000-12-21 | 2002-07-10 | Unitika Glass Fiber Co Ltd | ガラスクロス表面処理剤 |
JP2002249956A (ja) * | 2001-02-20 | 2002-09-06 | Mitsubishi Rayon Co Ltd | 炭素繊維織物およびこれを用いたプリプレグ |
JP2009074009A (ja) * | 2007-09-25 | 2009-04-09 | Toray Ind Inc | プリプレグおよびゴルフクラブシャフト |
JP2010037694A (ja) * | 2008-08-07 | 2010-02-18 | Toray Ind Inc | 強化繊維基材、積層体および複合材料 |
WO2011077094A1 (en) | 2009-12-23 | 2011-06-30 | Cytec Technology Corp | Modified resin systems for liquid resin infusion applications & process methods related thereto |
WO2012050171A1 (ja) * | 2010-10-13 | 2012-04-19 | 三菱レイヨン株式会社 | 炭素繊維前駆体繊維束、炭素繊維束、及びそれらの利用 |
WO2012081407A1 (ja) * | 2010-12-13 | 2012-06-21 | 東レ株式会社 | 炭素繊維プリプレグおよびその製造方法、炭素繊維強化複合材料 |
WO2016158757A1 (ja) | 2015-03-27 | 2016-10-06 | 東レ株式会社 | 繊維強化複合材料用2液型エポキシ樹脂組成物および繊維強化複合材料 |
JP2017226773A (ja) | 2016-06-23 | 2017-12-28 | Dic株式会社 | 硬化性組成物及び繊維強化複合材料 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4101878A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022102467A1 (ja) * | 2020-11-16 | 2022-05-19 | 東レ株式会社 | 熱硬化性エポキシ樹脂組成物とその成形品、繊維強化複合材料、繊維強化複合材料用成形材料、および繊維強化複合材料の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP4101878A4 (en) | 2024-02-28 |
CN115052920A (zh) | 2022-09-13 |
AU2021217266A1 (en) | 2022-08-18 |
CN115052920B (zh) | 2024-05-03 |
EP4101878A1 (en) | 2022-12-14 |
US20230027417A1 (en) | 2023-01-26 |
JPWO2021157442A1 (ja) | 2021-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6052426B2 (ja) | エポキシ樹脂組成物、樹脂硬化物、プリプレグおよび繊維強化複合材料 | |
JP5768893B2 (ja) | エポキシ樹脂組成物及びこれを用いたフィルム、プリプレグ、繊維強化プラスチック | |
EP3395851B1 (en) | Epoxy resin composition, fiber-reinforced composite material, molded article, and pressure vessel | |
WO2014030638A1 (ja) | エポキシ樹脂組成物、及びこれを用いたフィルム、プリプレグ、繊維強化プラスチック | |
KR20100133963A (ko) | 에폭시 수지 조성물, 프리프레그 및 섬유 강화 복합 재료 | |
TW201842018A (zh) | 預浸體及碳纖維強化複合材料 | |
KR101950627B1 (ko) | 에폭시 수지 조성물, 및 이것을 이용한 필름, 프리프레그 및 섬유 강화 플라스틱 | |
JP6776649B2 (ja) | エポキシ樹脂組成物、並びにこれを用いたフィルム、プリプレグ及び繊維強化プラスチック | |
JPWO2018173716A1 (ja) | エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料 | |
CN110959023A (zh) | 预浸料及碳纤维强化复合材料 | |
JP6658986B1 (ja) | エポキシ樹脂組成物、繊維強化複合材料用成形材料および繊維強化複合材料 | |
WO2021157442A1 (ja) | 成形材料および繊維強化複合材料 | |
US11745485B2 (en) | Epoxy resin composition for carbon-fiber-reinforced composite materials, prepreg, and carbon-fiber-reinforced composite material | |
EP4063436A1 (en) | Method for forming fiber-reinforced composite material and epoxy resin composition for use therein | |
JP5668329B2 (ja) | エポキシ樹脂組成物およびそれを用いた繊維強化複合材料 | |
US20230416521A1 (en) | Thermosetting epoxy resin composition, molded article from thermosetting epoxy resin, molding material for fiber-reinforced composite material, fiber-reinforced composite material, and method for producing fiber-reinforced composite material | |
WO2022102467A1 (ja) | 熱硬化性エポキシ樹脂組成物とその成形品、繊維強化複合材料、繊維強化複合材料用成形材料、および繊維強化複合材料の製造方法 | |
JP2017190380A (ja) | プリプレグの製造方法 | |
WO2022163611A1 (ja) | エポキシ樹脂組成物、繊維強化複合材料およびその製造方法 | |
JP7160219B1 (ja) | 熱硬化性エポキシ樹脂組成物とその成形品、繊維強化複合材料、繊維強化複合材料用成形材料、および繊維強化複合材料の製造方法 | |
CN116615480A (zh) | 热固性环氧树脂组合物及其成型品、纤维增强复合材料、纤维增强复合材料用成型材料、以及纤维增强复合材料的制造方法 | |
WO2019142735A1 (ja) | プリプレグおよび繊維強化複合材料 | |
TW202128815A (zh) | 環氧樹脂組成物、預浸漬物及纖維強化複合材料 | |
JP5039625B2 (ja) | 複合材料中間材用樹脂組成物 | |
CN117043217A (zh) | 环氧树脂组合物、预浸料及纤维增强复合材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021505442 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21751209 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021217266 Country of ref document: AU Date of ref document: 20210127 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021751209 Country of ref document: EP Effective date: 20220905 |