WO2016158343A1 - 冷間圧造性、および焼入れ焼戻し後の耐遅れ破壊性に優れたボルト用鋼線、並びにボルト - Google Patents

冷間圧造性、および焼入れ焼戻し後の耐遅れ破壊性に優れたボルト用鋼線、並びにボルト Download PDF

Info

Publication number
WO2016158343A1
WO2016158343A1 PCT/JP2016/057944 JP2016057944W WO2016158343A1 WO 2016158343 A1 WO2016158343 A1 WO 2016158343A1 JP 2016057944 W JP2016057944 W JP 2016057944W WO 2016158343 A1 WO2016158343 A1 WO 2016158343A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel wire
delayed fracture
content
fracture resistance
Prior art date
Application number
PCT/JP2016/057944
Other languages
English (en)
French (fr)
Inventor
洋介 松本
千葉 政道
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2016158343A1 publication Critical patent/WO2016158343A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B35/00Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor

Definitions

  • the present invention relates to a steel wire for bolts and a bolt obtained by using the steel wire, and more particularly to a steel wire for bolts and a bolt excellent in cold forgeability and delayed fracture resistance after quenching and tempering.
  • the hydrogen embrittlement phenomenon occurs when hydrogen generated by the corrosion reaction on the steel surface penetrates and diffuses into the steel (hereinafter sometimes referred to as “diffusible hydrogen”). Therefore, conventionally, it has been considered that improving the corrosion resistance of steel is an effective means for preventing delayed fracture. However, it has been pointed out that when the corrosion resistance is improved, the scale remains even after pickling for removing the scale, which may cause flaws during wire drawing and cracks during forging.
  • Patent Document 1 has a predetermined component composition, the austenite grain size number of the bolt shaft portion is 9.0 or more, and a G value (%) indicating the proportion of carbide precipitated at the austenite grain boundary of the bolt shaft portion. ) Satisfies (L / L0) ⁇ 100 ⁇ 60.
  • This technique increases the strength of the austenite grain boundary, which is the origin of delayed fracture, and reduces hydrogen trap sites such as carbides. Therefore, a high-strength bolt that exhibits excellent hydrogen embrittlement resistance can be obtained not only in an environment where the amount of hydrogen is relatively small but also in an environment where there is a large amount of hydrogen where all the hydrogen trap sites are consumed.
  • Patent Document 2 has a predetermined composition, the average crystal grain size Dc at the center of the steel rod is 80 ⁇ m or less, and the average crystal grain size Ds at the surface layer of the steel rod is 3.0 ⁇ m or more.
  • a spring steel wire rod excellent in decarburization resistance and wire drawing workability is disclosed. According to this technique, there is no decarburization after hot rolling, and a spring steel wire rod excellent in wire drawing workability can be obtained.
  • Patent Document 3 has a predetermined component composition and is a structure mainly composed of pearlite, and the average value Pave of pearlite nodule particle size numbers satisfies 6.0 ⁇ Pave ⁇ 12.0, and the entire surface layer
  • a steel wire for a high-strength spring capable of exhibiting good SV processability such that disconnection does not occur during SV processing in addition to good cutting performance and shavings discharge performance is obtained. It is done.
  • Patent Document 4 a steel material having a predetermined component composition is subjected to a first heating and holding, a second heating and holding, a first cooling, and a second cooling in that order to perform spheroidizing of carbides in the steel.
  • a method for producing hot forging steel is disclosed. According to this technique, even a steel material having a Cr amount of 0.4% or less can be reliably spheroidized and a steel material having excellent cold forgeability can be obtained.
  • Patent Document 3 since it is a metal structure mainly composed of pearlite, carbide dispersibility during annealing is poor, and cracks may occur during cold heading. Moreover, in the technique of patent document 4, since the addition amount of Si is low and a transition carbide cannot be stabilized, it is difficult to ensure delayed fracture resistance.
  • the present invention has been made in view of the circumstances as described above, and its purpose is excellent in cold heading and delayed fracture resistance after quenching and tempering (hereinafter referred to as “delayed fracture resistance”). It is providing the steel wire for bolts, and a bolt.
  • the bolt steel wire according to the present invention which has solved the above-mentioned problems and has excellent cold forging properties and delayed fracture resistance, is C: 0.3-0.6%, Si: 1.0- 3.0%, Mn: 0.10 to 1.5%, P: more than 0%, 0.020% or less, S: more than 0%, 0.020% or less, Cr: 0.3 to 1.5% , Al: 0.02 to 0.10%, N: 0.001 to 0.02%, the balance being iron and unavoidable impurities, and ferrite crystals at the diameter d ⁇ 1/4 position of the steel wire
  • the particle number is No.
  • the proportion of carbide having an aspect ratio of 2.0 or less in the entire carbide at the diameter d ⁇ 1/4 position of the steel wire is 70% or more
  • the C content at the depth of 0.1 mm from the surface layer is the base material C It is summarized that it is 60 to 120% of the amount.
  • the bolt wire of the present invention further contains one or more of the following (A), (B), (C), (D), and (E). is there.
  • C) Mo At least one selected from the group consisting of more than 0%, 3% or less, and W: more than 0%, 0.5% or less
  • Ca at least one selected from the group consisting of more than 0% and 0.01% or less
  • the tensile strength obtained using the above steel wire for bolts is 1400 MPa or more, both the surface layer and the austenite grain size number of the diameter d ⁇ 1/4 position are No. Also included are bolts with excellent delayed fracture resistance of 7 or more.
  • the steel wire of the present invention controls cold forgeability and delayed fracture resistance at a high level because the chemical composition, carbide spheroidization degree, ferrite grain size number, and decarburization rate are appropriately controlled. it can. Moreover, the bolt obtained using the steel wire for bolts of the present invention has high strength and excellent delayed fracture resistance.
  • the inventors of the present invention have made extensive studies in order to ensure cold heading and delayed fracture resistance. As a result, the inventors have found that the above problems can be achieved by appropriately controlling the chemical component composition, the degree of spheroidization of the carbide, the ferrite grain size number, and the decarburization rate, and have reached the present invention.
  • the present invention it is possible to improve delayed fracture resistance by increasing the Si content and decreasing the decarburization rate, and further refine the ferrite crystal grains within a predetermined range and increase the spheroidization rate of the carbide.
  • cold forging can be improved.
  • the steel wire for bolts of the present invention will be described.
  • the amount of C at a depth of 0.1 mm from the surface layer is 60 to 120% of the amount of base material C.
  • the C amount at a depth of 0.1 mm from the surface layer is 60% or more, preferably 70% or more, more preferably 75% or more of the base material C amount.
  • the amount of C becomes too high, the delayed fracture resistance deteriorates.
  • the C content at a depth of 0.1 mm from the surface layer is 120% or less, preferably 100% or less, more preferably 90% or less of the base material C content.
  • the amount of C in the base material is a value obtained by measuring the wire in accordance with the combustion-infrared absorption method (JIS G 1211 (2011)).
  • the ferrite grain size number at the diameter d ⁇ 1/4 position of the steel wire (hereinafter sometimes referred to as “d / 4 position”) is No. 6 or more, preferably no. 7 or more, more preferably 8 or more.
  • the ferrite grain size number is No. 12 or less, preferably no. 11 or less, more preferably No. 10 or less.
  • C is an element effective for securing the strength of steel.
  • the C content is 0.3% or more, preferably 0.35% or more, more preferably 0.38% or more.
  • the C content is 0.6% or less, preferably 0.55% or less, more preferably 0.52% or less.
  • Si acts as a deoxidizer and is an effective element for securing the strength of steel. In addition, it suppresses the precipitation of coarse cementite during tempering and also exhibits the effect of improving delayed fracture resistance. In order to effectively exhibit these effects, the Si content is 1.0% or more, preferably 1.3% or more, more preferably 1.5% or more. On the other hand, when the Si content is excessive, the strength of the steel wire is increased and the cold forgeability is deteriorated. The Si content is 3.0% or less, preferably 2.7% or less, more preferably 2.5% or less.
  • Mn is an element effective for ensuring the strength of the steel, and forming a compound with S to suppress the formation of FeS, which deteriorates delayed fracture resistance.
  • the Mn content is 0.10% or more, preferably 0.15% or more, more preferably 0.2% or more.
  • MnS becomes coarse and becomes a stress concentration source, thereby deteriorating cold heading property and delayed fracture resistance.
  • the Mn content is 1.5% or less, preferably 1.3% or less, more preferably 1.1% or less.
  • P is an impurity element that lowers the toughness of steel and concentrates the delayed fracture resistance by concentrating at the grain boundaries. Delayed fracture resistance can be improved by reducing the P content.
  • the P content is 0.020% or less, preferably 0.015% or less, more preferably 0.010% or less. The smaller the P content, the better. However, it is difficult to make it zero, and about 0.003% may be contained as an inevitable impurity.
  • S is an impurity element that lowers the toughness of steel by concentrating on the grain boundaries and degrades delayed fracture resistance. Delayed fracture resistance can be improved by reducing the S content.
  • the S content is 0.020% or less, preferably 0.015% or less, more preferably 0.010% or less. The smaller the S content, the better. However, it is difficult to make it zero, and about 0.003% may be contained as an inevitable impurity.
  • Cr 0.3-1.5%
  • Cr is an element effective for improving the corrosion resistance of steel and ensuring delayed fracture resistance.
  • Cr becomes a nucleus of spheroidization during spheroidizing annealing, softening is promoted.
  • the Cr content is 0.3% or more, preferably 0.4% or more, more preferably 0.5% or more.
  • the Cr content is 1.5% or less, preferably 1.4% or less, more preferably 1.3% or less.
  • Al acts as a deoxidizing agent and is an element effective in forming a nitride to refine crystal grains.
  • the Al content is 0.02% or more, preferably 0.03% or more, more preferably 0.035% or more.
  • the Al content is 0.10% or less, preferably 0.08% or less, more preferably 0.06% or less.
  • N is an element that is effective for producing Al and nitride and making the crystal grains finer.
  • the N content is 0.001% or more, preferably 0.003% or more, more preferably 0.004% or more.
  • the N content is 0.02% or less, preferably 0.01% or less, more preferably 0.008% or less.
  • the basic chemical composition of the steel wire for bolts according to the present invention is as described above, and the balance is substantially iron. However, it is naturally allowed that steel contains inevitable impurities brought in depending on the situation of raw materials, materials, manufacturing equipment, and the like. Moreover, it is also effective to make the steel wire for bolts of this invention contain the following elements as needed.
  • Cu at least one selected from the group consisting of more than 0%, 0.5% or less, Ni: more than 0%, 1.0% or less, and Sn: more than 0%, 0.5% or less]
  • Cu, Ni, and Sn are effective elements for improving the corrosion resistance of steel and improving delayed fracture resistance.
  • the Cu content is preferably 0.03% or more, more preferably 0.1% or more, and further preferably 0.15% or more.
  • Ni content becomes like this.
  • it is 0.1% or more, More preferably, it is 0.2% or more, More preferably, it is 0.3% or more.
  • the Sn content is preferably 0.03% or more, more preferably 0.1% or more, and still more preferably 0.15% or more.
  • the Cu content is preferably 0.5% or less, more preferably 0.4% or less, and still more preferably 0.35% or less. Further, when the content of Ni or Sn is excessive, the effect of improving the corrosion resistance is saturated.
  • the Ni content is preferably 1.0% or less, more preferably 0.8% or less, and even more preferably 0.7% or less.
  • the Sn content is preferably 0.5% or less, more preferably 0.4% or less, and still more preferably 0.3% or less.
  • Ti at least one selected from the group consisting of more than 0%, 0.1% or less, Nb: more than 0%, 0.1% or less, and Zr: more than 0%, 0.3% or less]
  • Ti, Nb, and Zr are elements that are effective in forming carbonitrides with C and N and refining crystal grains. Further, by forming nitride, the amount of N in a solid solution state is reduced, so that it is an element effective for improving cold heading.
  • the Ti content is preferably 0.02% or more, more preferably 0.03% or more, and further preferably 0.04% or more.
  • the Nb content is preferably 0.02% or more, more preferably 0.03% or more, and further preferably 0.04% or more.
  • the Zr content is 0.03% or more, more preferably 0.08% or more, and further preferably 0.10% or more.
  • the Ti content is preferably 0.1% or less, more preferably 0.08% or less, and still more preferably 0.06% or less.
  • the Nb content is preferably 0.1% or less, more preferably 0.08% or less, and still more preferably 0.06% or less.
  • the Zr content is preferably 0.3% or less, more preferably 0.25% or less, and still more preferably 0.2% or less.
  • Mo and W are elements that are effective in increasing the strength of steel and improving the delayed fracture resistance by forming fine precipitates in the steel. In order to obtain such an effect, it is preferable to contain at least one of Mo and W.
  • the Mo content is preferably 0.05% or more, more preferably 0.15% or more, and further preferably 0.20% or more.
  • the W content is preferably 0.03% or more, more preferably 0.08%, and even more preferably 0.10%.
  • the Mo content is preferably 3% or less, more preferably 2% or less, and even more preferably 1.5% or less.
  • the W content is preferably 0.5% or less, more preferably 0.4% or less, and still more preferably 0.35% or less.
  • V forms a solid solution during quenching heating and precipitates as a carbide during tempering to generate hydrogen trap sites, which is effective in improving delayed fracture resistance.
  • the V content is preferably 0.01% or more, more preferably 0.05% or more, and further preferably 0.08% or more.
  • the V content is preferably 0.5% or less, more preferably 0.4% or less, and even more preferably. Is 0.3% or less.
  • Mg and Ca are effective in forming carbonitrides, preventing coarsening of austenite crystal grains during quenching heating, improving toughness, and improving delayed fracture resistance.
  • the Mg content is preferably 0.001% or more, more preferably 0.002% or more, and further preferably 0.003% or more.
  • the Ca content is preferably 0.001% or more, more preferably 0.002% or more, and further preferably 0.003% or more.
  • the Mg content is preferably 0.01% or less, more preferably 0.007% or less, and still more preferably 0.005% or less.
  • the Ca content is preferably 0.01% or less, more preferably 0.007% or less, and still more preferably 0.005% or less.
  • the bolt steel wire of the present invention is obtained by subjecting a bolt wire obtained by melting, casting, and hot rolling a steel material having the above chemical components to descaling, heat treatment, coating treatment, and wire drawing as necessary. Can be manufactured.
  • the manufacturing method of the wire for bolts is not limited to the following manufacturing method, in order to improve pickling property and delayed fracture resistance, it is heated to 950 ° C. or higher during billet reheating before rolling (hereinafter referred to as “billet reheating temperature”). It is desirable to finish-roll into a wire or steel bar shape in the temperature range of 900 to 1100 ° C. and then cool at an average cooling rate of 0.5 to 13 ° C./second.
  • the billet reheating temperature is preferably 950 ° C. or higher, more preferably 1000 ° C. or higher in order to reduce deformation resistance during hot rolling. When this temperature is less than 950 ° C., the deformation resistance during hot rolling increases. On the other hand, if the billet reheating temperature becomes too high, it becomes close to the melting temperature of steel. Accordingly, the billet reheating temperature is preferably 1400 ° C. or lower, more preferably 1300 ° C. or lower, and further preferably 1250 ° C. or lower.
  • the finish rolling temperature is preferably 900 ° C. or higher, more preferably 950 ° C. or higher.
  • the finish rolling temperature is preferably 1100 ° C. or lower, more preferably 1050 ° C. or lower.
  • the temperature range similar to the said finish rolling temperature may be sufficient.
  • the finish rolling temperature is preferably 900 ° C. or higher, more preferably 950 ° C. or higher, the additive element can be precipitated in the steel as fine carbon / nitride.
  • the finish rolling temperature is preferably 1100 ° C. or lower, more preferably 1050 ° C. or lower, carbon / nitride can be sufficiently precipitated.
  • the average cooling rate after finish rolling is preferably 13 ° C./second or less, more preferably 8 ° C./second or less.
  • the average cooling rate after finish rolling is preferably 0.5 ° C./second or more, more preferably 1.0 ° C./second or more.
  • the manufacturing method of the steel wire for bolts of this invention from the obtained wire is demonstrated.
  • the steel wire for bolts of the present invention is not limited to the following production method, in order to improve cold heading property and delayed fracture resistance, the above-mentioned wire material may be subjected to (a) a descaling step and (b) heat treatment as necessary. It can manufacture by combining a process, (c) film processing process, and (d) wire drawing process. From the viewpoint of further improving the cold heading property, it is particularly important to control the heat treatment step (b).
  • a scale may adhere to the surface of the wire. Since the scale causes wrinkles during wire drawing and cracks during forging, when the scale is attached to the wire, it can be scaled by chemical methods such as hydrochloric acid or sulfuric acid, or by physical methods such as shot blasting and bending. Need to be removed. In the present invention, any of known chemical methods and physical methods can be employed. For example, when descaling a wire by a chemical method, the wire may be pickled by immersing the wire in a hydrochloric acid solution having a concentration of about 25% and a liquid temperature of about 70 ° C. for about 10 minutes. The number of treatments is not particularly limited, and may be repeated until the scale can be completely removed.
  • the heat treatment process not only softens the steel but also adjusts the crystal structure and suppresses excessive decarburization.
  • coarse cementite that adversely affects delayed fracture resistance is controlled by controlling heat treatment conditions, and at the same time, dissolution of Cr-containing cementite, which is a core of spherical carbide, and carbonitrides of V and Ti are suppressed.
  • the decarburization proceeds too much by the heat treatment, the quenching and tempering process coarsens the austenite crystal grain size of the surface layer and deteriorates the delayed fracture resistance. Therefore, the decarburization is controlled by controlling the heat treatment conditions. Specific heat treatment conditions are shown in the following (i) to (v).
  • the heat treatment temperature In order to dissolve coarse cementite, the heat treatment temperature is 700 ° C. or higher, preferably 715 ° C. or higher, more preferably 720 ° C. or higher. On the other hand, if the temperature becomes too high, the carbide that becomes the nucleus of the spherical carbide dissolves. Therefore, the heat treatment temperature is 800 ° C. or lower, preferably 780 ° C. or lower, more preferably 770 ° C. or lower. If the heat treatment temperature is within the above range, it is not always necessary to perform soaking.
  • (Ii) Heat treatment time In order to dissolve coarse cementite, the time for holding at the above heat treatment temperature is 2 hours or more, preferably 3 hours or more, more preferably 3.5 hours or more. On the other hand, if the heat treatment time is too long, the carbide that becomes the nucleus of the spherical carbide is dissolved. Therefore, the heat treatment time is 15 hours or less, preferably 12 hours or less, more preferably 10 hours or less.
  • (Iii) Average cooling rate Cooling after holding the heat treatment time.
  • the average cooling rate is preferably 20 ° C./hr or less, more preferably 15 ° C./hr or less.
  • the productivity is deteriorated, so that it is 3 ° C./hr or more, preferably 4 ° C./hr or more, more preferably 5 ° C./hr.
  • (Iv) Extraction temperature In order to sufficiently spheroidize the carbide, it is necessary to control the extraction temperature from the heat treatment furnace.
  • the extraction temperature is preferably 750 ° C. or lower, more preferably 720 ° C. or lower.
  • the extraction temperature is preferably 650 ° C. or higher, more preferably 680 ° C. or higher.
  • the atmosphere in the furnace must be a mixture of carbon monoxide and carbon dioxide, and the carbon potential in the furnace (hereinafter referred to as “CP value”) must be controlled.
  • the CP value is 60% or more of the amount of the base material C, preferably 65% or more, and more preferably 70% or more.
  • the CP value is 120% or less, preferably 100% or less, more preferably 90% or less of the amount of the base material C.
  • the CP value is a value obtained by measuring the carbon content of a coiled piano wire (hereinafter referred to as “CP coil”) installed in the furnace.
  • a lubricious coating is applied to prevent seizure and wrinkling during wire drawing and cold heading.
  • various known coating agents can be used. Examples of high-strength bolts of 1400 MPa or more include lime films, non-phosphorus films, and phosphate films.
  • the film treatment method is not particularly limited, and may be immersed in a lubricant solution or a film agent solution for about 3 to 15 minutes, for example.
  • wire drawing process In the wire drawing process, cold drawing is repeated with a die or the like to finish the wire with the desired wire diameter and performance.
  • the wire drawing may be performed by various known methods and is not particularly limited.
  • the above steps (a) to (d) may be repeated as necessary, and a combination may be appropriately selected according to required characteristics.
  • the steel wire obtained by the above manufacturing method has a tensile strength of 1400 MPa or more, the chemical composition is appropriately controlled, and the steel wire decarburization and carburization are also appropriately controlled, so that excellent delayed fracture resistance Have sex. Moreover, since the ferrite crystal grain size and the spheroidization rate are appropriately controlled, it has an excellent cold heading property.
  • the bolt of the present invention can be manufactured by forming the steel wire by means of cold heading or the like, and further subjecting it to quenching and tempering.
  • the heating temperature before quenching is preferably 930 ° C. or lower, more preferably 920 ° C. or lower, and further preferably 910 ° C. or lower.
  • the heating temperature before quenching is preferably 870 ° C. or higher, more preferably 880 ° C. or higher, and further preferably 890 ° C. or higher.
  • Heating time before quenching 10 to 45 minutes
  • Cooling method oil cooling, temperature: room temperature to 70 ° C
  • Furnace atmosphere Mixed atmosphere of carbon monoxide (RX gas) and carbon dioxide, nitrogen atmosphere, air atmosphere, etc.
  • Tempering conditions such as temperature and time can be appropriately changed according to the required strength.
  • a bolt exhibiting a tensile strength of 1400 MPa or more and excellent fracture resistance can be obtained.
  • the bolt of the present invention has fine austenite crystal grains.
  • the finer the austenite crystal grains the better the toughness and the delayed fracture resistance.
  • both the surface layer and the austenite grain size number at the d / 4 position are preferably Nos. 7 or more, more preferably 9 or more.
  • the austenite crystal grains are finer, the finer is preferable. 14 or less.
  • a steel material having a chemical composition shown in Table 1 below was melted, cast, and hot rolled to produce a wire rod having a diameter of 12 mm ⁇ or 9.3 mm ⁇ . At that time, wire rods were obtained under the conditions shown in Table 2 at the average cooling rate after billet reheating, finish rolling, and finish rolling.
  • a steel wire having a diameter of 9.06 mm was manufactured by performing (a) descaling step, (b) heat treatment step, (c) film treatment step, and (d) wire drawing step in the combinations shown in Table 2. The conditions for each step are as follows.
  • (C) Film treatment process “L” Lime film treatment was performed by immersing in a lime soap bath for 10 minutes.
  • the ferrite crystal grain size, spheroidization rate, and C content at a depth of 0.1 mm from the surface layer of each steel wire were measured.
  • Ferrite grain size After cutting at a cross section perpendicular to the axis of the steel wire (hereinafter referred to as “cross section”), the diameter d ⁇ 1/4 position (hereinafter referred to as “d / 4 position”) of the cross section. any area of 0.039 mm 2) of, and observed with 400 magnifications of an optical microscope, specified in JIS G 0551 (2015) - was measured ferrite grain size according to the "steel microscopic examination method of grain size.” Measurements were made with 4 fields of view, and the average value was defined as the ferrite grain size number.
  • a flange bolt of M10 mm ⁇ P1.5 mm and length 80 mm was produced from each steel wire by cold heading using a multistage former.
  • M represents the diameter of the shaft
  • P represents the pitch.
  • cold forging was evaluated based on the presence or absence of flange cracking.
  • the cold heading property was evaluated as acceptable “P” (Pass) when no cracking occurred and rejected “F” (Failure) when cracking occurred.
  • the prepared bolts were quenched and tempered under the conditions shown in Table 3. At this time, the heating time for quenching was 15 minutes, the atmosphere in the furnace was an air atmosphere, and the quenching was oil-cooled at 25 ° C. The heating time for tempering was 45 minutes. In addition, it excluded when the cold heading property failed.
  • the austenite grain size, tensile strength, and delayed fracture resistance of each bolt were evaluated.
  • Austenite grain size number After cutting the bolt shaft section with a cross section perpendicular to the bolt axis (hereinafter referred to as a cross section), the diameter d ⁇ 1/4 position of the cross section and any 0 of the outermost layer An area of .039 mm 2 was observed with an optical microscope having a magnification of 400 times, and the prior austenite grain size number was measured in accordance with the “steel-grain size microscopic test method” defined in JIS G 0551 (2015). Measurements were made with 4 fields of view, and the average value was defined as the austenite grain size number. The austenite grain size number is no. Pass 7 or higher. Less than 7 was rejected.
  • Test No. Reference numerals 1 to 18, 22, 29, and 43 to 45 are invention examples that satisfy the requirements defined in the present invention. All of them were high in strength, excellent in cold forging and delayed fracture resistance.
  • Reference numerals 19 to 21, 23 to 28, and 30 to 42 are examples that do not satisfy the requirements defined in the present invention.
  • Test No. 19 is an example in which the temperature during annealing was low.
  • the composite carbide was not sufficiently dissolved, the spheroidization rate was low, and the cold heading property was inferior.
  • Test No. 20 is an example in which the temperature during annealing was high.
  • the carbide serving as the nucleus of the spherical carbide was dissolved, the spheroidization rate was lowered, and the cold heading property was inferior.
  • Test No. 21 is an example in which the cooling rate during annealing was fast.
  • the spheroidization rate was low, and the cold heading property was inferior.
  • Test No. 23 is an example in which the annealing time was short. In this example, the softening was not sufficiently performed, the spheroidization rate was low, and the cold heading property was inferior.
  • Test No. 24 is an example in which the annealing time was long.
  • the carbide serving as the nucleus of the spherical carbide was dissolved, the spheroidization rate was lowered, and the cold heading property was inferior.
  • Test No. 25 is an example in which the CP value during annealing was low.
  • excessive decarburization occurred in the surface layer, and the austenite crystal grains became coarse during quenching, so that delayed fracture resistance was poor.
  • Test No. No. 26 is an example in which the CP value during annealing was high. In this example, excessive carburization occurred on the surface layer, and the toughness of the surface layer decreased, so that the delayed fracture resistance deteriorated.
  • Test No. No. 27 is an example in which the finish rolling temperature is low and rolling is performed in a two-phase region of ferrite-austenite. In this example, decarburization was promoted, and the austenite crystal grains in the surface layer were coarsened, so that delayed fracture resistance deteriorated.
  • Test No. 28 is an example in which the finish rolling temperature was high.
  • the ferrite crystal grains were coarsened and the cold heading property was deteriorated.
  • Test No. 30 is an example using steel type A1 whose C content is lower than the lower limit of the present invention. In this example, a tensile strength of 1400 MPa or more could not be secured.
  • Test No. No. 31 is an example using steel type B1 whose C content exceeds the upper limit of the present invention.
  • the delayed fracture resistance was inferior because the toughness decreased.
  • Test No. 32 is an example using steel type C1 whose Si content is lower than the lower limit of the present invention. In this example, coarse cementite precipitated during tempering, so delayed fracture resistance was poor.
  • Test No. 33 is an example using steel type D1 whose Si content exceeds the upper limit of the present invention. In this example, the strength of the steel wire became too high and the cold heading deteriorated.
  • Test No. 34 is an example using steel type E1 whose Mn content is lower than the lower limit of the present invention. In this example, a large amount of FeS was formed, so the delayed fracture resistance was poor.
  • Test No. 35 is an example using steel type F1 whose Mn content exceeds the upper limit of the present invention. In this example, since the MnS was coarsened, the cold heading was inferior.
  • Test No. 36 is an example using steel type G1 in which the P content exceeds the upper limit of the present invention.
  • the delayed fracture resistance was inferior because the toughness decreased.
  • Test No. 37 is an example using steel type H1 whose S content exceeds the upper limit of the present invention.
  • the delayed fracture resistance was inferior because the toughness decreased.
  • Test No. No. 38 is an example using the steel type I1 whose Cr addition amount is lower than the lower limit of the present invention. In this example, softening was not sufficiently performed, and cold forging was inferior.
  • Test No. 39 is an example using steel type J1 whose Cr content exceeds the upper limit of the present invention. In this example, coarse Cr carbide was generated and delayed fracture resistance was poor.
  • Test No. 40 is an example using the steel type K1 whose Al content is lower than the lower limit of the present invention. In this example, the ferrite crystal grains became coarse and the cold heading was inferior.
  • Test No. No. 41 is an example using steel type L1 whose Al content exceeds the upper limit of the present invention. In this example, since coarse AlN was generated, the cold heading was inferior.
  • Test No. 42 is an example using the steel type M1 whose N content exceeds the upper limit of the present invention. In this example, since the amount of dissolved N increased, the cold heading was inferior.

Abstract

 冷間圧造性、および焼入れ焼戻し後の耐遅れ破壊性に優れたボルト用鋼線を提供すること。質量%で、C:0.3~0.6%、Si:1.0~3.0%、Mn:0.10~1.5%、P:0%超、0.020%以下、S:0%超、0.020%以下、Cr:0.3~1.5%、Al:0.02~0.10%、N:0.001~0.02%を含有し、残部が鉄および不可避的不純物であって、鋼線の直径d×1/4位置におけるフェライト結晶粒度番号がNo.6~12、鋼線の直径d×1/4位置における炭化物全体に占めるアスペクト比2.0以下の炭化物の割合が70%以上、且つ表層から深さ0.1mm位置におけるC量が母材C量の60~120%である冷間圧造性、および焼入れ焼戻し後の耐遅れ破壊性に優れたボルト用鋼線。

Description

冷間圧造性、および焼入れ焼戻し後の耐遅れ破壊性に優れたボルト用鋼線、並びにボルト
 本発明は、ボルト用鋼線、および該鋼線を用いて得られるボルトに関し、詳細には冷間圧造性、および焼入れ焼戻し後の耐遅れ破壊性に優れたボルト用鋼線、並びにボルトに関する。
 自動車や各種産業機械等に用いられるボルトには、高強度化と共に耐遅れ破壊性の向上が望まれている。遅れ破壊の原因については様々な指摘がされているが、一般的には水素脆化現象が影響していると考えられている。
 水素脆化現象は、鋼表面の腐食反応によって生成した水素が鋼中に侵入・拡散すること(以下、「拡散性水素」ということがある)によって生じる。そのため従来は鋼の耐食性を向上させることが遅れ破壊を防止するための有効な手段であるとされてきた。ところが耐食性を向上させるとスケール除去のために酸洗を行ってもスケールが残存してしまい、伸線時の疵や圧造時の割れの原因となることが指摘されている。
 そこでSi添加量を多くしてε炭化物等の遷移炭化物を安定化させ、拡散性水素を無害化する技術などが提案されている。例えば特許文献1には所定の成分組成を有し、ボルト軸部のオーステナイト結晶粒度番号が9.0以上であり、ボルト軸部のオーステナイト結晶粒界に析出した炭化物の割合を示すG値(%)が、(L/L0)×100≦60を満たすことを特徴とするボルトが開示されている。この技術では遅れ破壊の起点となるオーステナイト結晶粒界の強度を高くし、かつ炭化物等の水素トラップサイトを低減させている。そのため、水素量が比較的少ない環境はもとより、水素トラップサイトがすべて消費されるような水素量の多い環境においても、優れた耐水素脆化特性を発揮する高強度ボルトが得られる。
 特許文献2には所定の成分組成を有し、 鋼線材の中心部の平均結晶粒径Dcが80μm以下で、且つ、 鋼線材の表層部の平均結晶粒径Dsが3.0μm以上であることを特徴とする耐脱炭性および伸線加工性に優れたばね用鋼線材が開示されている。この技術によれば、熱間圧延後の脱炭もなく、伸線加工性に優れたばね用鋼線材が得られる。
 また特許文献3には所定の成分組成を有し、パーライトを主体とする組織であり、パーライトノジュールの粒度番号の平均値Paveが6.0≦Pave≦12.0を満足すると共に、表層の全脱炭層深さが0.20mm以下であり、且つCr系合金炭化物量が7.5%以下であることを特徴とする皮削り性に優れた高強度ばね用鋼線材が開示されている。この技術によれば皮削り性および削り屑排出性が良好であることに加え、SV処理時に断線が生じないような、良好なSV処理性を発揮することのできる高強度ばね用鋼線材が得られる。
 特許文献4には所定の成分組成を有する鋼材を所定の条件で行う第1加熱保持、第2加熱保持、第1冷却、第2冷却の順に処理することで鋼材中の炭化物を球状化する冷間鍛造用鋼の製造方法が開示されている。この技術によればCr量が0.4%以下の鋼材であっても確実に球状化焼鈍することができ、冷間鍛造性に優れた鋼材が得られる。
特開2013-163865号公報 特開2009-068030号公報 特開2013-213238号公報 特開2014-201812号公報
 例えば特許文献1の技術では、仕上げ圧延後の冷却を通常の冷却速度で行っており、脱炭率が高い。そのためボルト加工後の焼入れ加熱時に異常粒成長によって耐遅れ破壊性が低下することがある。また特許文献2の技術では、圧延後の冷却速度が遅いためフェライト-パーライトの面積率が増加して球状化焼鈍時の炭化物分散性が悪く、冷間圧造してボルトを製造する際に割れが生じることがある。
 特許文献3の技術では、パーライトを主体とした金属組織であるため、焼鈍時の炭化物分散性が悪く、冷間圧造時に割れが生じることがある。また特許文献4の技術では、Siの添加量が低く、遷移炭化物を安定化させることができないため、耐遅れ破壊性の確保が困難である。
 本発明は、上記のような事情に鑑みてなされたものであり、その目的は、冷間圧造性、および焼入れ焼戻し後の耐遅れ破壊性(以下、「耐遅れ破壊性」という)に優れたボルト用鋼線、並びにボルトを提供することにある。
 上記課題を解決し得た冷間圧造性、および耐遅れ破壊性に優れた本発明のボルト用鋼線は、質量%で、C:0.3~0.6%、Si:1.0~3.0%、Mn:0.10~1.5%、P:0%超、0.020%以下、S:0%超、0.020%以下、Cr:0.3~1.5%、Al:0.02~0.10%、N:0.001~0.02%を含有し、残部が鉄および不可避的不純物であって、鋼線の直径d×1/4位置におけるフェライト結晶粒度番号がNo.6~12、鋼線の直径d×1/4位置における炭化物全体に占めるアスペクト比2.0以下の炭化物の割合が70%以上、且つ表層から深さ0.1mm位置におけるC量が母材C量の60~120%であることに要旨を有する。
 本発明のボルト用線材には、更に、以下の(A)、(B)、(C)、(D)、及び(E)のいずれかに属する1種以上を含有することも好ましい実施態様である。
(A)Cu:0%超、0.5%以下、Ni:0%超、1.0%以下、およびSn:0%超、0.5%以下よりなる群から選ばれる少なくとも1種
(B)Ti:0%超、0.1%以下、Nb:0%超、0.1%以下、およびZr:0%超、0.3%以下よりなる群から選ばれる少なくとも1種
(C)Mo:0%超、3%以下、およびW:0%超、0.5%以下よりなる群から選ばれる少なくとも1種
(D)V:0%超、0.5%以下
(E)Mg:0%超、0.01%以下、およびCa:0%超、0.01%以下よりなる群から選ばれる少なくとも1種
 本発明には上記ボルト用鋼線を用いて得られた引張強さ1400MPa以上、表層と直径d×1/4位置のオーステナイト結晶粒度番号が共にNo.7以上の耐遅れ破壊性に優れたボルトも含まれる。
 本発明の鋼線は、化学成分組成、炭化物の球状化度、フェライト結晶粒度番号、および脱炭率を適切に制御しているため、冷間圧造性、および耐遅れ破壊性を高いレベルで両立できる。また本発明のボルト用鋼線を用いて得られたボルトは、高強度、且つ優れた耐遅れ破壊性を有する。
 本発明者らは、冷間圧造性、および耐遅れ破壊性を確保すべく、鋭意検討を重ねた。その結果、化学成分組成、炭化物の球状化度、フェライト結晶粒度番号、および脱炭率を適切に制御することで、上記課題を達成できることを見出し、本発明に至った。
 特に本発明ではSi含有量を高くすると共に、脱炭率を低くすることで耐遅れ破壊性を向上でき、またフェライト結晶粒を所定の範囲に微細化すると共に、炭化物の球状化率を高めることで、冷間圧造を向上できる。以下、本発明のボルト用鋼線について説明する。
 [表層から深さ0.1mm位置におけるC量が母材C量の60~120%]
 表層にC欠乏層が形成された状態、すなわち脱炭率が高い状態で焼入れ焼戻し処理をすると、オーステナイト結晶物が粗大化して耐遅れ破壊性が悪化する。したがって耐遅れ破壊性向上には、脱炭率はできるだけ低いほうがよい。したがって表層から深さ0.1mm位置におけるC量は母材C量の60%以上、好ましくは70%以上、より好ましくは75%以上である。一方、C量が高くなりすぎても耐遅れ破壊性が劣化する。したがって表層から深さ0.1mm位置におけるC量は母材C量の120%以下、好ましくは100%以下、より好ましくは90%以下である。なお、母材のC量は線材を燃焼-赤外線吸収法(JIS G 1211(2011年))に準じて測定した値である。
 [フェライト結晶粒度番号:No.6~12]
 フェライト結晶粒が大きくなると、延性が低下し、冷間圧造性が劣化する。したがって鋼線の直径d×1/4位置(以下、「d/4位置」ということがある)におけるフェライト結晶粒度番号はNo.6以上、好ましくはNo.7以上、より好ましくはNo.8以上である。一方、フェライト結晶粒が細かくなりすぎると鋼の強度が上がり、冷間圧造性が劣化する。したがってフェライト結晶粒度番号はNo.12以下、好ましくはNo.11以下、より好ましくはNo.10以下である。
 [炭化物全体に占めるアスペクト比2.0以下の炭化物の割合:70%以上]
 棒状炭化物が増加すると、鋼の変形時に応力集中源が増加し、冷間圧造性が低下するため球状化率は高い方がよい。したがってd/4位置において、アスペクト比が2.0以下の炭化物の割合は70%以上、好ましくは80%以上、より好ましくは85%以上である。球状化率は高いほど良好な冷間圧造性が得られるため、上限は100%である。
 本発明に係るボルト用鋼線の化学成分組成の設定範囲を規定した理由は下記の通りである。
 [C:0.3~0.6%]
 Cは鋼の強度を確保するために有効な元素である。目標とする1400MPa以上のボルト引張強度を確保するため、C含有量は0.3%以上、好ましくは0.35%以上、より好ましくは0.38%以上である。しかしながらC含有量が過剰になると、耐遅れ破壊性が劣化するため、C含有量は0.6%以下、好ましくは0.55%以下、より好ましくは0.52%以下である。
 [Si:1.0~3.0%]
 Siは脱酸剤として作用すると共に、鋼の強度を確保するために有効な元素である。また、焼戻し時に粗大なセメンタイトの析出を抑制し、耐遅れ破壊性を向上させる作用も発揮する。これらの効果を有効に発揮させるためには、Si含有量は1.0%以上、好ましくは1.3%以上、より好ましくは1.5%以上である。一方、Si含有量が過剰になると、鋼線の強度が高くなって冷間圧造性が悪化する。Si含有量は3.0%以下、好ましくは2.7%以下、より好ましくは2.5%以下である。
 [Mn:0.10~1.5%]
 Mnは鋼の強度を確保すると共に、Sと化合物を形成し、耐遅れ破壊性を劣化させるFeSの生成を抑制する作用を発揮するのに有効な元素である。このような効果を発揮させるためには、Mn含有量は0.10%以上、好ましくは0.15%以上、より好ましくは0.2%以上である。一方、Mn含有量が過剰になると、MnSが粗大化し、応力集中源となって冷間圧造性や耐遅れ破壊性が悪化する。Mn含有量は1.5%以下、好ましくは1.3%以下、より好ましくは1.1%以下である。
 [P:0%超、0.020%以下]
 Pは結晶粒界に濃化することで鋼の靭延性を低下させ、耐遅れ破壊性を劣化させる不純物元素である。P含有量を低減することで耐遅れ破壊性を向上できる。P含有量は0.020%以下、好ましくは0.015%以下、より好ましくは0.010%以下である。P含有量は少ないほど好ましいが、ゼロとするのは製造上困難であり、0.003%程度は不可避的不純物として含有することがある。
 [S:0%超、0.020%以下]
 SもPと同様、結晶粒界上に濃化することで鋼の靭延性を低下させ、耐遅れ破壊性を劣化させる不純物元素である。S含有量を低減することで耐遅れ破壊性を向上できる。S含有量は0.020%以下、好ましくは0.015%以下、より好ましくは0.010%以下である。Sの含有量は少ないほど好ましいが、ゼロとするのは製造上困難であり、0.003%程度は不可避的不純物として含有することがある。
 [Cr:0.3~1.5%]
 Crは鋼の耐食性を向上させると共に、耐遅れ破壊性を確保するために有効な元素である。また球状化焼鈍の際にCrが球状化の核となるため軟質化が促進される。このような効果を発揮させるためには、Cr含有量は0.3%以上、好ましくは0.4%以上、より好ましくは0.5%以上である。一方、Cr含有量が過剰になると粗大なCr系炭化物が生成し、靭延性が低下する。したがってCr含有量は1.5%以下、好ましくは1.4%以下、より好ましくは1.3%以下である。
 [Al:0.02~0.10%]
 Alは脱酸剤として作用すると共に、窒化物を形成して結晶粒の微細化に有効な元素である。このような効果を発揮させるためには、Al含有量は0.02%以上、好ましくは0.03%以上、より好ましくは0.035%以上である。一方、Al含有量が過剰になると粗大な窒化物が生成し、結晶粒が粗大化することで冷間圧造性や耐遅れ破壊性が劣化する。したがってAl含有量は0.10%以下、好ましくは0.08%以下、より好ましくは0.06%以下である。
 [N:0.001~0.02%]
 Nは、Alと窒化物を生成し、結晶粒を微細化させるために有効な元素である。このような効果を発揮させるためには、N含有量は0.001%以上、好ましくは0.003%以上、より好ましくは0.004%以上である。一方、N含有量が過剰になると、化合物を形成しないで固溶状態となっているN量が増加し、冷間圧造性が低下する。したがってN含有量は0.02%以下、好ましくは0.01%以下、より好ましくは0.008%以下である。
 本発明に係るボルト用鋼線の基本的な化学成分組成は上記の通りであり、残部は実質的に鉄である。但し、原料、資材、製造設備等の状況によって持ち込まれる不可避的不純物が鋼中に含まれることは当然に許容される。また本発明のボルト用鋼線には、必要に応じて、以下の元素を含有させることも有効である。
 [Cu:0%超、0.5%以下、Ni:0%超、1.0%以下、およびSn:0%超、0.5%以下よりなる群から選ばれる少なくとも1種]
 Cu、Ni、Snは鋼の耐食性を向上させると共に、耐遅れ破壊性を向上させるのに有効な元素である。このような効果を発揮させるためには、Cu含有量は好ましくは0.03%以上、より好ましくは0.1%以上、さらに好ましくは0.15%以上である。またNi含有量は、好ましくは0.1%以上、より好ましくは0.2%以上、さらに好ましくは0.3%以上である。Sn含有量は、好ましくは0.03%以上、より好ましくは0.1%以上、さらに好ましくは0.15%以上である。
 一方、Cu含有量が過剰になると、熱間延性が低下して鋼の生産性が低下する。Cu含有量は好ましくは0.5%以下、より好ましくは0.4%以下、さらに好ましくは0.35%以下である。またNiやSnは含有量が過剰になると耐食性向上効果が飽和する。Ni含有量は好ましくは1.0%以下、より好ましくは0.8%以下、さらに好ましくは0.7%以下である。Sn含有量は好ましくは0.5%以下、より好ましくは0.4%以下、さらに好ましくは0.3%以下である。
 [Ti:0%超、0.1%以下、Nb:0%超、0.1%以下、およびZr:0%超、0.3%以下よりなる群から選ばれる少なくとも1種]
 Ti、NbおよびZrは、CやNと炭窒化物を形成し、結晶粒を微細化させるのに有効な元素である。また窒化物を形成することで、固溶状態のN量を低減させるため、冷間圧造性の向上にも有効な元素である。これらの効果を発揮させるためには、Ti含有量は好ましくは0.02%以上、より好ましくは0.03%以上、さらに好ましくは0.04%以上である。Nb含有量は好ましくは0.02%以上、より好ましくは0.03%以上、さらに好ましくは0.04%以上である。またZr含有量は0.03%以上、より好ましくは0.08%以上、さらに好ましくは0.10%以上である。
 一方、Ti、NbおよびZrが過剰になると、粗大な炭窒化物が形成され、冷間圧造性や耐遅れ破壊性が劣化する。Ti含有量は好ましくは0.1%以下、より好ましくは0.08%以下、さらに好ましくは0.06%以下である。Nb含有量は好ましくは0.1%以下、より好ましくは0.08%以下、さらに好ましくは0.06%以下である。Zr含有量は好ましくは0.3%以下、より好ましくは0.25%以下、さらに好ましくは0.2%以下である。
 [Mo:0%超、3%以下、およびW:0%超、0.5%以下よりなる群から選ばれる少なくとも1種]
 Mo、Wは鋼の強度を高めると共に、鋼中に微細な析出物を形成して耐遅れ破壊性を向上させるのに有効な元素である。このような効果を得るには、MoおよびWの少なくとも1種を含有させることが好ましい。Mo含有量は好ましくは0.05%以上、より好ましくは0.15%以上、さらに好ましくは0.20%以上である。W含有量は好ましくは0.03%以上、より好ましくは0.08%、さらに好ましくは0.10%である。一方、Mo、W含有量が過剰になると製造コストが上昇する。Mo含有量は好ましくは3%以下、より好ましくは2%以下、さらに好ましくは1.5%以下である。W含有量は好ましくは0.5%以下、より好ましくは0.4%以下、さらに好ましくは0.35%以下である。
 [V:0%超、0.5%以下]
 Vは焼入れ加熱時に固溶し、焼戻し時に炭化物として析出することで水素トラップサイトを生成し、耐遅れ破壊性向上に有効である。このような効果を発揮させるためには、V含有量は好ましくは0.01%以上、より好ましくは0.05%以上、さらに好ましくは0.08%以上である。一方、V含有量が過剰になると粗大な炭窒化物を形成し、冷間圧造性が悪化するため、V含有量は好ましくは0.5%以下、より好ましくは0.4%以下、さらに好ましくは0.3%以下である。
 [Mg:0%超、0.01%以下、およびCa:0%超、0.01%以下よりなる群から選ばれる少なくとも1種]
 Mg、Caは炭窒化物を形成し、焼入れ加熱時のオーステナイト結晶粒の粗大化を防止し、靭延性を向上させ、耐遅れ破壊性を向上させるのに有効である。このような効果を発揮させるためには、Mg含有量は好ましくは0.001%以上、より好ましくは0.002%以上、さらに好ましくは0.003%以上である。Ca含有量は好ましくは0.001%以上、より好ましくは0.002%以上、さらに好ましくは0.003%以上である。一方、Mg、Ca含有量が過剰になると上記効果が飽和して製造コストの増加を招く。Mg含有量は好ましくは0.01%以下、より好ましくは0.007%以下、さらに好ましくは0.005%以下である。Ca含有量は好ましくは0.01%以下、より好ましくは0.007%以下、さらに好ましくは0.005%以下である。
 本発明のボルト用鋼線は、上記化学成分を有する鋼材を溶製、鋳造、熱間圧延して得られたボルト用線材を、必要に応じて脱スケール、熱処理、皮膜処理、伸線して製造できる。
 まず、ボルト用線材の製造方法について説明する。ボルト用線材の製造方法は下記製造方法に限定されないが、酸洗性、および耐遅れ破壊性を向上させるには、圧延前のビレット再加熱時に950℃以上に加熱(以下、「ビレット再加熱温度」ということがある)し、900~1100℃の温度域で線材または棒鋼形状に仕上げ圧延した後、続いて0.5~13℃/秒の平均冷却速度で冷却することが望ましい。
 [ビレット再加熱温度:950℃以上]
 ビレット再加熱では、熱間圧延時の変形抵抗を下げるため、ビレット再加熱温度は好ましくは950℃以上、より好ましくは1000℃以上とする。この温度が950℃未満になると、熱間圧延時の変形抵抗が増大する。一方、ビレット再加熱温度が高くなりすぎると鋼の溶解温度に近くなる。したがってビレット再加熱温度は好ましくは1400℃以下、より好ましくは1300℃以下、さらに好ましくは1250℃以下である。
 [仕上げ圧延温度:900~1100℃]
 仕上げ圧延温度が低くなりすぎると、フェライト-オーステナイトの2相域となり、脱炭が促進される。またフェライト結晶粒が細かくなりすぎて強度が高くなり、冷間圧造性が悪化する。したがって仕上げ圧延温度は好ましくは900℃以上、より好ましくは950℃以上である。一方、仕上げ圧延温度が高くなりすぎるとフェライト結晶粒が粗大化し、冷間圧造性が劣化する。したがって仕上げ圧延温度は好ましくは1100℃以下、より好ましくは1050℃以下である。
 なお、TiやNb等の添加元素を含有する場合も上記仕上げ圧延温度と同様の温度範囲でよい。仕上げ圧延温度が好ましくは900℃以上、より好ましくは950℃以上であれば、添加元素を微細な炭・窒化物として鋼中に析出させることができる。一方、仕上げ圧延温度が好ましくは1100℃以下、より好ましくは1050℃以下であれば、十分に炭・窒化物を析出させることができる。
 [仕上げ圧延後の平均冷却速度:0.5~13℃/秒]
 仕上げ圧延後の平均冷却速度が速くなりすぎると、表層にマルテンサイトが生成し、酸洗性が悪化する。したがって仕上げ圧延後の平均冷却速度は好ましくは13℃/秒以下、より好ましくは8℃/秒以下である。一方、圧延後の平均冷却速度が遅くなりすぎると、生産性が悪化する。したがって仕上げ圧延後の平均冷却速度は好ましくは0.5℃/秒以上、より好ましくは1.0℃/秒以上である。
 次に得られた線材から本発明のボルト用鋼線の製造方法について説明する。本発明のボルト用鋼線は下記製造方法に限定されないが、冷間圧造性、および耐遅れ破壊性を向上させるには、上記線材に必要に応じて(a)脱スケール工程、(b)熱処理工程、(c)皮膜処理工程、(d)伸線工程を組み合わせて行うことで製造できる。冷間圧造性をより一層向上させる観点からは特に(b)熱処理工程の制御することが重要である。
 [(a)脱スケール工程]
 上記線材表面にはスケールが付着していることがある。スケールは伸線時の疵や圧造時の割れの原因となるため、線材にスケールが付着している場合は塩酸や硫酸などの化学的方法、またはショットブラスト、ベンディング等の物理的方法によって、スケールを除去する必要がある。本発明では公知の化学的方法、物理的方法のいずれも採用できる。例えば線材を化学的方法で脱スケール処理する場合は、濃度25%程度、液温70℃程度の塩酸溶液に線材を10分程度浸漬して酸洗すればよい。処理回数は特に限定されず、スケールが完全に除去できるまで繰返し行えばよい。
 [(b)熱処理工程]
 熱処理工程では鋼を軟化させるだけでなく、結晶組織を調整すると共に、過度の脱浸炭を抑制する。特に本発明では熱処理条件を制御して耐遅れ破壊性に悪影響を及ぼす粗大なセメンタイトを溶解させると共に、球状炭化物の核となるCr含有セメンタイト、VやTiの炭窒化物の溶解を抑制する。また熱処理によって脱炭が進行し過ぎると、焼入れ焼戻し処理によって表層のオーステナイト結晶粒径が粗大化して耐遅れ破壊性が悪化するため、熱処理条件を制御して脱炭を抑制する。具体的な熱処理条件を下記(i)~(v)に示す。
 (i)熱処理温度:粗大なセメンタイトを溶解させるため、熱処理温度は700℃以上、好ましくは715℃以上、より好ましくは720℃以上である。一方、温度が高くなりすぎると球状炭化物の核となる炭化物が溶解する。したがって熱処理温度は800℃以下、好ましくは780℃以下、より好ましくは770℃以下である。なお、熱処理温度が上記範囲内であれば必ずしも均熱する必要はない。
 (ii)熱処理時間:粗大なセメンタイトを溶解させるため、上記熱処理温度で保持する時間は、2時間以上、好ましくは3時間以上、より好ましくは3.5時間以上である。一方、熱処理時間が長くなりすぎると球状炭化物の核となる炭化物が溶解する。したがって熱処理時間は15時間以下、好ましくは12時間以下、より好ましくは10時間以下である。
 (iii)平均冷却速度:上記熱処理時間保持した後、冷却する。冷却過程で炭化物を球状化させるため、平均冷却速度は好ましくは20℃/hr以下、より好ましくは15℃/hr以下である。一方、平均冷却速度が遅くなりすぎると生産性が悪化するため、3℃/hr以上、好ましくは4℃/hr以上、より好ましくは5℃/hrである。
 (iv)抽出温度:炭化物を十分に球状化するには熱処理炉からの抽出温度を制御する必要がある。抽出温度は好ましくは750℃以下、より好ましくは720℃以下である。一方、抽出温度が低くなりすぎると生産性が悪化する。したがって抽出温度は好ましくは650℃以上、より好ましくは680℃以上である。
 (v)熱処理雰囲気:過度な脱炭が進行すると表層の結晶粒が粗大化し、耐遅れ破壊性や疲労特性が悪化する。過度の脱炭を抑制するためには炉内雰囲気を一酸化炭素と二酸化炭素の混合気とし、炉内のカーボンポテンシャル(以下、「CP値」という)を制御する必要がある。CP値は母材C量の60%以上、好ましくは65%以上、より好ましくは70%以上である。一方、CP値が高くなりすぎると浸炭して耐遅れ破壊性が悪化する。したがってCP値は母材C量の120%以下、好ましくは100%以下、より好ましくは90%以下である。なお、CP値は炉内に設置したコイル状のピアノ線(以下、「CPコイル」という)の炭素量を測定した値である。
 [(c)皮膜処理工程]
 皮膜処理工程では伸線加工や冷間圧造時の焼付きや疵を防止するために潤滑性のコーティングを施す。本発明では各種公知の皮膜剤を用いることができる。1400MPa以上の高強度ボルトには石灰皮膜、非りん皮膜、およびりん酸塩皮膜などが例示される。皮膜処理方法も特に限定されず、潤滑剤溶液や皮膜剤溶液に例えば3~15分程度浸漬させればよい。
 [(d)伸線工程]
 伸線工程ではダイス等で冷間伸線を繰り返して目的の線径、性能を有する線に仕上げる。伸線加工は各種公知の方法で行えばよく、特に限定されない。
 上記の(a)~(d)の各工程は必要に応じて繰り返してもよく、また組み合わせも要求特性などに応じて適宜選択すればよい。上記製造方法で得られた鋼線は引張強度1400MPa以上有し、化学成分組成が適切に制御されていると共に、鋼線の脱炭、浸炭も適切に制御されているため、優れた耐遅れ破壊性を有する。またフェライト結晶粒度と球状化率が適切に制御されているため優れた冷間圧造性を有する。
 本発明のボルトは上記鋼線を冷間圧造などによってボルト成型し、更に焼入れ焼戻し処理をすることによってボルトを製造できる。オーステナイト結晶粒径を制御するため、焼入れ前の加熱温度を好ましくは930℃以下、より好ましくは920℃以下、更に好ましくは910℃以下にすることが望ましい。一方、焼入れ前加熱温度が低すぎると焼入れ時にマルテンサイト変態が十分に行われず、必要な強度が得られない。したがって焼入れ前の加熱温度は好ましくは870℃以上、より好ましくは880℃以上、更に好ましくは890℃以上である。その他の焼入れ前加熱条件は、特に限定されないが、以下の条件が例示される。
 焼入れ前加熱時間:10~45分
 冷却方法:油冷、温度:室温~70℃
 炉内雰囲気:一酸化炭素(RXガス)と二酸化炭素の混合雰囲気、窒素雰囲気、大気雰囲気など
 温度、時間などの焼戻し条件は必要な強度に応じて適宜変更することができる。本発明の鋼線を用いることによって1400MPa以上の引張強度と優れた耐破壊性を示すボルトを得ることができる。
 本発明のボルトはオーステナイト結晶粒が微細化されている。オーステナイト結晶粒は、微細なほど靭延性が向上し、耐遅れ破壊性が向上する。本発明の化学成分組成、引張強さで耐遅れ破壊性を確保するためには、表層およびd/4位置でのオーステナイト結晶粒度番号が共に好ましくはNo.7以上、より好ましくはNo.9以上である。オーステナイト結晶粒は微細であれば微細であるほど好ましいが、通常の熱処理では概ねNo.14以下である。
 本願は、2015年3月27日に出願された日本国特許出願第2015-066204号に基づく優先権の利益を主張するものである。日本国特許出願第2015-066204号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 下記表1に示す化学成分組成の鋼材を溶製し、鋳造、熱間圧延して直径12mmφ、または9.3mmφの線材を製造した。その際、表2に示す条件でビレット再加熱、仕上げ圧延、仕上げ圧延後の平均冷却速度で行って線材を得た。該線材に表2に示す組み合わせで(a)脱スケール工程、(b)熱処理工程、(c)皮膜処理工程、(d)伸線工程を行って直径9.06mmの鋼線を製造した。各工程の条件は以下の通りである。
 (a)脱スケール工程:「P」
 25%塩酸(70℃)に10分間浸漬してスケールを除去した。
 (b)熱処理工程:「SA」
 (i)熱処理温度、(ii)熱処理時間、(iii)平均冷却速度は表2に示す条件で行った。(iv)抽出温度は690℃、(v)熱処理雰囲気は一酸化炭素(RXガス)と二酸化炭素の混合気とした。
 (c)皮膜処理工程:「L」
 石灰石鹸槽に10分間浸漬することで石灰皮膜処理を行った。
 (d)伸線工程:「Dr」
 φ12.0mmの圧延材:試験No.1~3、6、7、10、11、16、17、19~22、27、28、31~34、37~40,42~45:
 伸線ダイスを用いて伸線速度1m/秒でφ12.0mmからφ9.3mmまで伸線し、その後、熱処理、酸洗、皮膜処理を実施後、φ9.06mmまで仕上げ伸線を実施した。
 φ9.3mmの圧延材:試験No.4、5、8、9、12~15、18、23~26、29、30、35、36、41:
 伸線ダイスを用いて伸線速度1m/秒でφ9.06mmまで伸線した。
 上記各鋼線のフェライト結晶粒度、球状化率、表層から深さ0.1mm位置におけるC量を測定した。
 (1)フェライト結晶粒度
 鋼線の軸に対して垂直な断面(以下、「横断面」という)で切断後、該横断面の直径d×1/4位置(以下、「d/4位置」という)の任意の0.039mm2の領域を、倍率400倍の光学顕微鏡で観察し、JIS G 0551(2015)に規定の「鋼-結晶粒度の顕微鏡試験方法」に従ってフェライト結晶粒度を測定した。各4視野で測定し、その平均値をフェライト結晶粒度番号とした。
 (2)球状化率
 切断した鋼線の横断面のd/4位置の任意の箇所を、倍率4000倍、観察視野30μm×23μmの走査型電子顕微鏡で観察し、写真を10枚撮影した。各写真を画像解析し、炭化物の総数に対する、アスペクト比が2.0以下の炭化物の個数割合を算出し、10枚の写真の結果を算術平均したものを、各サンプルの球状化率とした。なお、走査型電子顕微鏡観察では、測定可能な0.0025μm2程度以上の面積を有する炭化物を対象とした。
 (3)表層から深さ0.1mm位置におけるC量
 表層から深さ0.1mm位置におけるC量は、EPMA(Electron Probe Micro Analyzer)ライン分析にて測定した。また該測定値を用いて表1に記載の母材C量に対する割合を算出した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 [ボルトの製造]
 上記各鋼線から多段フォーマーを用いてM10mm×P1.5mm、長さ80mmのフランジボルトを冷間圧造で作製した。尚、Mは軸部の直径、Pはピッチを意味する。
 (4)冷間圧造性
 上記冷間圧造した際、フランジ割れの有無により冷間圧造性を評価した。冷間圧造性は、割れが生じないときには合格「P」(Pass)、割れが生じたときは不合格「F」(Failure)と評価した。
 上記作製したボルトに表3に示す条件で焼入れ、焼戻し処理を施した。この際、焼入れの加熱時間は15分、炉内雰囲気を大気雰囲気、焼入れは25℃の油冷とした。また焼戻しの加熱時間は45分とした。なお、冷間圧造性が不合格の場合は除外した。
 各ボルトのオーステナイト結晶粒径、引張強度、耐遅れ破壊性を評価した。
 (5)オーステナイト結晶粒度番号
 ボルトの軸部をボルトの軸に対して垂直な断面(以下、横断面)で切断後、該横断面の直径d×1/4位置、および最表層の任意の0.039mm2の領域を、倍率400倍の光学顕微鏡で観察し、JIS G 0551(2015)に規定の「鋼-結晶粒度の顕微鏡試験方法」に従って旧オーステナイト結晶粒度番号を測定した。各4視野で測定し、その平均値をオーステナイト結晶粒度番号とした。オーステナイト結晶粒度番号がNo.7以上を合格、No.7未満を不合格とした。
 (6)引張強度
 JIS B 1051(2014)に従って引張試験を行ってボルトの引張強度を測定した。1400MPa以上を合格、1400MPa未満を不合格とした。
 (7)耐遅れ破壊性
 ボルトを冶具に降伏点狙いで締め付けた後、(a)冶具ごと1%HClに15分浸漬、(b)大気中で24時間暴露、(c)破断有無の確認、を1サイクルとし、これを10サイクル繰り返して評価した。ボルトは1水準に対し10本ずつ評価し、1本も破断しなかった場合は合格「P」とし、1本でも破断した場合は不合格「F」と評価した。
Figure JPOXMLDOC01-appb-T000003
 これらの結果から、次のように考察できる。試験No.1~18、22、29、43~45は、本発明で規定する要件を満足する発明例である。これらはいずれも高強度、且つ冷間圧造性および、耐遅れ破壊性に優れていた。
 試験No.19~21、23~28、30~42は、本発明で規定する要件を満足しない例である。
 試験No.19は焼鈍時の温度が低かった例である。この例では複合炭化物の溶解が不十分であり、また球状化率も低く、冷間圧造性が劣っていた。
 試験No.20は焼鈍時の温度が高かった例である。この例では球状炭化物の核となる炭化物が溶解し、球状化率が低くなり、冷間圧造性が劣っていた。
 試験No.21は焼鈍時の冷却速度が速かった例である。この例では、球状化率が低くなり、冷間圧造性が劣っていた。
 試験No.23は焼鈍時の時間が短かった例である。この例では軟質化が十分に行われず、球状化率が低くなり、冷間圧造性が劣っていた。
 試験No.24は焼鈍時の時間が長かった例である。この例では球状炭化物の核となる炭化物が溶解し、球状化率が低くなり、冷間圧造性が劣っていた。
 試験No.25は焼鈍時のCP値が低かった例である。この例では表層に過度な脱炭が生じ、焼入れ時にオーステナイト結晶粒が粗大化したため耐遅れ破壊性が劣っていた。
 試験No.26は焼鈍時のCP値が高かった例である。この例では表層に過度な浸炭が生じ、表層の靭延性が低下したため耐遅れ破壊性が劣化した。
 試験No.27は仕上げ圧延温度が低く、フェライト-オーステナイトの2相域で圧延した例である。この例では脱炭が促進し、表層のオーステナイト結晶粒が粗大化したことで耐遅れ破壊性が悪化した。
 試験No.28は仕上げ圧延温度が高かった例である。この例ではフェライト結晶粒が粗大化し、冷間圧造性が劣化した。
 試験No.30は、C含有量が本発明の下限を下回る鋼種A1を用いた例である。この例では1400MPa以上の引張強度を確保できなかった。
 試験No.31は、C含有量が本発明の上限を上回る鋼種B1を用いた例である。この例では靭延性が低下したため耐遅れ破壊性が劣っていた。
 試験No.32は、Si含有量が本発明の下限を下回る鋼種C1を用いた例である。この例では焼戻し時に粗大なセメンタイトが析出したため耐遅れ破壊性が劣っていた。
 試験No.33は、Si含有量が本発明の上限を上回る鋼種D1を用いた例である。この例では鋼線の強度が高くなりすぎて冷間圧造性が劣化した。
 試験No.34は、Mn含有量が本発明の下限を下回る鋼種E1を用いた例である。この例ではFeSが多く生成したため耐遅れ破壊性が劣っていた。
 試験No.35は、Mn含有量が本発明の上限を上回る鋼種F1を用いた例である。この例ではMnSが粗大化したため冷間圧造性が劣っていた。
 試験No.36は、P含有量が本発明の上限を上回る鋼種G1を用いた例である。この例では靭延性が低下したため耐遅れ破壊性が劣っていた。
 試験No.37は、S含有量が本発明の上限を上回る鋼種H1を用いた例である。この例では靭延性が低下したため耐遅れ破壊性が劣っていた。
 試験No.38は、Cr添加量が本発明の下限を下回る鋼種I1を用いた例である。この例では軟質化が十分に行われず、冷間圧造性が劣っていた。
 試験No.39は、Cr含有量が本発明の上限を上回る鋼種J1を用いた例である。この例では粗大なCr炭化物が生成し、耐遅れ破壊性が劣っていた。
 試験No.40は、Al含有量が本発明の下限を下回る鋼種K1を用いた例である。この例ではフェライト結晶粒が粗大化して冷間圧造性が劣っていた。
 試験No.41は、Al含有量が本発明の上限を上回る鋼種L1を用いた例である。この例では、粗大なAlNが生成したため冷間圧造性が劣っていた。
 試験No.42は、N含有量が本発明の上限を上回る鋼種M1を用いた例である。この例では、固溶N量が増加したため冷間圧造性が劣っていた。

Claims (3)

  1.  質量%で、
    C :0.3~0.6%、
    Si:1.0~3.0%、
    Mn:0.10~1.5%、
    P :0%超、0.020%以下、
    S :0%超、0.020%以下、
    Cr:0.3~1.5%、
    Al:0.02~0.10%、
    N :0.001~0.02%を含有し、
    残部が鉄および不可避的不純物であって、
     鋼線の直径d×1/4位置におけるフェライト結晶粒度番号がNo.6~12、
     鋼線の直径d×1/4位置における炭化物全体に占めるアスペクト比2.0以下の炭化物の割合が70%以上、且つ
     表層から深さ0.1mm位置におけるC量が母材C量の60~120%である冷間圧造性、および焼入れ焼戻し後の耐遅れ破壊性に優れたボルト用鋼線。
  2.  更に、以下の(A)、(B)、(C)、(D)、及び(E)のいずれかに属する1種以上を含有する請求項1に記載のボルト用鋼線。
    (A)Cu:0%超、0.5%以下、Ni:0%超、1.0%以下、およびSn:0%超、0.5%以下よりなる群から選ばれる少なくとも1種
    (B)Ti:0%超、0.1%以下、Nb:0%超、0.1%以下、およびZr:0%超、0.3%以下よりなる群から選ばれる少なくとも1種
    (C)Mo:0%超、3%以下、およびW:0%超、0.5%以下よりなる群から選ばれる少なくとも1種
    (D)V:0%超、0.5%以下
    (E)Mg:0%超、0.01%以下、およびCa:0%超、0.01%以下よりなる群から選ばれる少なくとも1種
  3.  請求項1又は2に記載のボルト用鋼線を用いて得られた引張強さ1400MPa以上、表層と直径d×1/4位置のオーステナイト結晶粒度番号が共にNo.7以上の耐遅れ破壊性に優れたボルト。
PCT/JP2016/057944 2015-03-27 2016-03-14 冷間圧造性、および焼入れ焼戻し後の耐遅れ破壊性に優れたボルト用鋼線、並びにボルト WO2016158343A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-066204 2015-03-27
JP2015066204A JP6461672B2 (ja) 2015-03-27 2015-03-27 冷間圧造性、および焼入れ焼戻し後の耐遅れ破壊性に優れたボルト用鋼線、並びにボルト

Publications (1)

Publication Number Publication Date
WO2016158343A1 true WO2016158343A1 (ja) 2016-10-06

Family

ID=57006704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057944 WO2016158343A1 (ja) 2015-03-27 2016-03-14 冷間圧造性、および焼入れ焼戻し後の耐遅れ破壊性に優れたボルト用鋼線、並びにボルト

Country Status (3)

Country Link
JP (1) JP6461672B2 (ja)
TW (1) TWI595101B (ja)
WO (1) WO2016158343A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111910124A (zh) * 2020-07-31 2020-11-10 深圳市润安科技发展有限公司 一种腕带内抗拉折部件及其制备方法
CN114058974A (zh) * 2021-11-30 2022-02-18 马鞍山钢铁股份有限公司 一种15.9级耐腐蚀高强度螺栓用钢及其生产方法和热处理方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101889172B1 (ko) * 2016-12-12 2018-08-16 주식회사 포스코 응력부식 저항성이 우수한 고강도 스프링용 강선 및 그 제조방법
US11333189B2 (en) 2018-01-30 2022-05-17 Nissan Motor Co., Ltd. Bolt
CN112899566B (zh) * 2020-10-22 2022-05-17 江苏省沙钢钢铁研究院有限公司 5000MPa级金刚线用盘条及其生产方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235149A (ja) * 2001-02-07 2002-08-23 Daido Steel Co Ltd 棒線材とその製造方法
JP2009046763A (ja) * 2007-07-20 2009-03-05 Kobe Steel Ltd ばね用線材及びその製造方法
JP2012017484A (ja) * 2010-07-06 2012-01-26 Kobe Steel Ltd ボルト用鋼、ボルトおよびボルトの製造方法
US20120227872A1 (en) * 2009-12-28 2012-09-13 Posco Ultra-high-strength steel wire having excellent resistance to delayed fracture and manufacturing method thereof
JP2012179647A (ja) * 2011-03-02 2012-09-20 Sumitomo Metal Ind Ltd 冷間鍛造用鋼線の製造方法
JP2014001442A (ja) * 2012-06-21 2014-01-09 Nippon Steel & Sumitomo Metal 耐候性ボルト用鋼材
JP2014015664A (ja) * 2012-07-09 2014-01-30 Kobe Steel Ltd 耐遅れ破壊性に優れたボロン添加高強度ボルト用鋼および高強度ボルト
JP2014101569A (ja) * 2012-11-22 2014-06-05 Kobe Steel Ltd ばね用鋼線材の製造方法
JP2015014031A (ja) * 2013-07-05 2015-01-22 株式会社神戸製鋼所 ボルト用鋼およびボルト、並びにそれらの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX363411B (es) * 2012-01-11 2019-03-22 Kobe Steel Ltd Acero para uso en pernos, pernos, y metodos para fabricar pernos.

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235149A (ja) * 2001-02-07 2002-08-23 Daido Steel Co Ltd 棒線材とその製造方法
JP2009046763A (ja) * 2007-07-20 2009-03-05 Kobe Steel Ltd ばね用線材及びその製造方法
US20120227872A1 (en) * 2009-12-28 2012-09-13 Posco Ultra-high-strength steel wire having excellent resistance to delayed fracture and manufacturing method thereof
JP2012017484A (ja) * 2010-07-06 2012-01-26 Kobe Steel Ltd ボルト用鋼、ボルトおよびボルトの製造方法
JP2012179647A (ja) * 2011-03-02 2012-09-20 Sumitomo Metal Ind Ltd 冷間鍛造用鋼線の製造方法
JP2014001442A (ja) * 2012-06-21 2014-01-09 Nippon Steel & Sumitomo Metal 耐候性ボルト用鋼材
JP2014015664A (ja) * 2012-07-09 2014-01-30 Kobe Steel Ltd 耐遅れ破壊性に優れたボロン添加高強度ボルト用鋼および高強度ボルト
JP2014101569A (ja) * 2012-11-22 2014-06-05 Kobe Steel Ltd ばね用鋼線材の製造方法
JP2015014031A (ja) * 2013-07-05 2015-01-22 株式会社神戸製鋼所 ボルト用鋼およびボルト、並びにそれらの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111910124A (zh) * 2020-07-31 2020-11-10 深圳市润安科技发展有限公司 一种腕带内抗拉折部件及其制备方法
CN114058974A (zh) * 2021-11-30 2022-02-18 马鞍山钢铁股份有限公司 一种15.9级耐腐蚀高强度螺栓用钢及其生产方法和热处理方法

Also Published As

Publication number Publication date
JP6461672B2 (ja) 2019-01-30
JP2016186098A (ja) 2016-10-27
TWI595101B (zh) 2017-08-11
TW201704499A (zh) 2017-02-01

Similar Documents

Publication Publication Date Title
JP6479527B2 (ja) 酸洗性、および焼入れ焼戻し後の耐遅れ破壊性に優れたボルト用線材、並びにボルト
JP5482971B2 (ja) 冷間鍛造性に優れた鋼線材または棒鋼
JP6107437B2 (ja) 耐硫化物応力腐食割れ性に優れた油井用低合金高強度継目無鋼管の製造方法
JP6267618B2 (ja) ボルト用鋼およびボルト
JP2007162128A (ja) 鍛造性と結晶粒粗大化防止特性に優れた肌焼鋼およびその製造方法並びに浸炭部品
JP5913214B2 (ja) ボルト用鋼およびボルト、並びにそれらの製造方法
WO1999005333A1 (fr) Acier cemente particulierement capable d'empecher la recristallisation secondaire des particules pendant la cementation, procede de fabrication, et matiere brute formee pour pieces cementees
JP6461672B2 (ja) 冷間圧造性、および焼入れ焼戻し後の耐遅れ破壊性に優れたボルト用鋼線、並びにボルト
JP6065121B2 (ja) 高炭素熱延鋼板およびその製造方法
JP5630523B2 (ja) 窒化処理用鋼板およびその製造方法
CN109790602B (zh)
EP3748030A1 (en) High-carbon hot-rolled steel sheet and method for manufacturing same
JP2017133052A (ja) 浸炭時の粗大粒防止特性と疲労特性と被削性に優れた肌焼鋼およびその製造方法
JP4867638B2 (ja) 耐遅れ破壊特性および耐腐食性に優れた高強度ボルト
JP5489497B2 (ja) 焼入性に優れたボロン鋼鋼板の製造方法
JP6614349B2 (ja) 圧延線材
CN115386808A (zh) 一种耐腐蚀油套管及其制备方法与应用
JP7135485B2 (ja) 浸炭用鋼及び部品
JP7444096B2 (ja) 熱延鋼板およびその製造方法
JP7444097B2 (ja) 熱延鋼板およびその製造方法
CN117363970A (zh) 一种油缸用管材及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772226

Country of ref document: EP

Kind code of ref document: A1