WO2016158034A1 - 光源装置 - Google Patents

光源装置 Download PDF

Info

Publication number
WO2016158034A1
WO2016158034A1 PCT/JP2016/054259 JP2016054259W WO2016158034A1 WO 2016158034 A1 WO2016158034 A1 WO 2016158034A1 JP 2016054259 W JP2016054259 W JP 2016054259W WO 2016158034 A1 WO2016158034 A1 WO 2016158034A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
cooling
cooling surface
source device
light emitting
Prior art date
Application number
PCT/JP2016/054259
Other languages
English (en)
French (fr)
Inventor
寛之 高田
井上 正樹
理 大澤
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Priority to US15/560,271 priority Critical patent/US9989237B2/en
Publication of WO2016158034A1 publication Critical patent/WO2016158034A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0087Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for illuminating phosphorescent or fluorescent materials, e.g. using optical arrangements specifically adapted for guiding or shaping laser beams illuminating these materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/68Details of reflectors forming part of the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/69Details of refractors forming part of the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/503Cooling arrangements characterised by the adaptation for cooling of specific components of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/51Cooling arrangements using condensation or evaporation of a fluid, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/71Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks using a combination of separate elements interconnected by heat-conducting means, e.g. with heat pipes or thermally conductive bars between separate heat-sink elements
    • F21V29/713Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks using a combination of separate elements interconnected by heat-conducting means, e.g. with heat pipes or thermally conductive bars between separate heat-sink elements in direct thermal and mechanical contact of each other to form a single system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/76Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section
    • F21V29/763Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section the planes containing the fins or blades having the direction of the light emitting axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/008Combination of two or more successive refractors along an optical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0025Combination of two or more reflectors for a single light source
    • F21V7/0033Combination of two or more reflectors for a single light source with successive reflections from one reflector to the next or following
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • F21V9/35Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material at focal points, e.g. of refractors, lenses, reflectors or arrays of light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/644Heat extraction or cooling elements in intimate contact or integrated with parts of the device other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/648Heat extraction or cooling elements the elements comprising fluids, e.g. heat-pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0071Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar

Definitions

  • the present invention relates to a light source device including a light emitting element that emits excitation light and a fluorescent element that converts and reflects at least part of the excitation light emitted from the light emitting element into fluorescence.
  • a light source device including a light emitting element that emits excitation light and a fluorescent element that converts excitation light emitted from the light emitting element into fluorescence is reflected (for example, Patent Document 1).
  • the light emitting element generates heat when emitting light
  • the fluorescent element generates heat when converting excitation light into fluorescence. Therefore, in the light source device according to Patent Document 1, it is necessary to separately provide a means for cooling the light emitting element and a means for cooling the fluorescent element.
  • an object of the present invention is to provide a light source device that can share means for cooling the light emitting element and the fluorescent element.
  • the light source device includes a light emitting element that emits excitation light, a phosphor, a fluorescent element that converts and reflects at least part of the excitation light emitted from the light emitting element into fluorescence, and cools the light emitting element and the fluorescent element.
  • a first cooling surface connected to the light emitting element for cooling the light emitting element, and a cooling body connected to the fluorescent element for cooling the fluorescent element.
  • the first cooling surface and the second cooling surface are arranged so as to be parallel to each other and to face the same direction.
  • the first cooling surface and the second cooling surface may be arranged on the same plane.
  • the light source device includes at least one condenser lens that collects the reflected light by the reflected light reflected by the fluorescent element being incident from the first surface and emitting the reflected light from the second surface. And the condensing lens condenses the excitation light by the excitation light emitted from the light emitting element being incident from the second surface and emitting the excitation light from the first surface toward the fluorescent element. It may be configured as follows.
  • the light source device includes a lens holder that holds the condenser lens and is connected to the second cooling surface to cool the condenser lens, and the lens holder includes the condenser lens and the lens A configuration may be employed in which the fluorescent element is sealed by cooperating with the second cooling surface.
  • the cooling capacity on the first cooling surface may be larger than the cooling capacity on the second cooling surface.
  • the light source device has an excellent effect that means for cooling the light emitting element and the fluorescent element can be made common.
  • the light source device 1 includes a plurality of light emitting elements 2 that emit excitation light, and fluorescence that converts a part of the excitation light emitted from the light emitting elements 2 into fluorescence and reflects the fluorescence.
  • An element 3 and a common cooling body 4 for cooling the light emitting element 2 and the fluorescent element 3 are provided.
  • the light source device 1 also has a first optical system (excitation light optical system) 5 that makes excitation light emitted from the light emitting element 2 travel toward the fluorescent element 3, and reflected light reflected by the fluorescent element 3 to the outside.
  • a second optical system (reflected light optical system) 6 is provided.
  • the light source device 1 includes a housing 7 that houses the light emitting element 2, the fluorescent element 3, the first optical system 5, and the second optical system 6.
  • the housing 7 is provided with an emission port 7a having translucency in order to emit the reflected light reflected by the fluorescent element 3 to the outside.
  • Fluorescent element 3 has a phosphor.
  • the fluorescent element 3 is a plate-like polycrystal formed by mixing a phosphor, which is a YAG-based crystal material, with aluminum oxide or the like.
  • the fluorescent element 3 may be formed by mixing a powdered phosphor in a binder such as silicone and applying it to a substrate.
  • the fluorescent element 3 is provided with a reflection film made of a dielectric multilayer film on the entire surface on the cooling body 4 side (the lower surface in FIG. 2) so that the incident light is reflected toward the second optical system 6. I have.
  • the reflected light reflected by the fluorescent element 3 is not only the light that is specularly reflected (specularly reflected) by the fluorescent element 3 but also the light that is diffusely reflected (diffusely reflected) by the fluorescent element 3 and is incident on the fluorescent element 3 and scattered. After that, the light that enters the second optical system 6 (specifically, the first condenser lens 10 described later) is also included.
  • the fluorescent element 3 converts a part of the excitation light emitted from the light emitting element 2 into fluorescence. Therefore, the reflected light reflected by the fluorescent element 3 includes fluorescence converted by the fluorescent element 3 and unconverted light (light as excitation light) that has not been converted by the fluorescent element 3.
  • the fluorescent element 3 applies a part of blue light, which is excitation light emitted from the light emitting element 2, to yellow-green fluorescence (for example, the wavelength has a peak at 525 to 575 nm and is applied to 450 to 800 nm). Light with a wide visible spectrum).
  • the fluorescent element 3 is disposed between the light emitting elements 2. Specifically, the fluorescent elements 3 are arranged between a pair of groups of light emitting elements 2 arranged in parallel (in the present embodiment, three). The traveling direction of the reflected light reflected by the fluorescent element 3 is substantially the same as the traveling direction of the excitation light emitted from the light emitting element 2 (upward direction in FIG. 2).
  • the cooling body 4 includes a heat sink 8 having a plurality of fins 8a formed in a thin plate shape, and a heat pipe 9 in which a porous material is lined in a sealed pipe and a liquid is enclosed.
  • the heat sink 8 includes a base body 8b having one side (upper side in FIG. 2) connected to the light emitting element 2 and the fluorescent element 3 and the other side (lower side in FIG. 2) connected to the fin 8a. Yes.
  • the heat sink 8 is connected to the pair of first cooling surfaces 8 c and 8 c connected to the light emitting element 2 to cool the light emitting element 2 and to the fluorescent element 3 to cool the fluorescent element 3.
  • a second cooling surface 8d a second cooling surface 8d.
  • the elements 2 and 3 may be directly connected to the cooling surfaces 8c and 8d, and a heat transfer member is interposed between the cooling surfaces 8c and 8d so that the cooling surfaces 8c and 8d are connected to the cooling surfaces 8c and 8d. It may be connected.
  • the first cooling surface 8c and the second cooling surface 8d are arranged so as to be parallel to each other (not only completely parallel but also substantially parallel) and to face the same direction.
  • the first cooling surface 8c and the second cooling surface 8d are arranged on the same plane (not only on the completely same plane but also on substantially the same plane).
  • the pair of first cooling surfaces 8c, 8c are arranged on both sides of the second cooling surface 8d so as to sandwich the second cooling surface 8d.
  • the second cooling surface 8d is disposed between the pair of first cooling surfaces 8c, 8c.
  • the heat pipe 9 is disposed closer to the first cooling surface 8c than to the second cooling surface 8d. Thereby, the cooling capacity in the 1st cooling surface 8c is larger than the cooling capacity in the 2nd cooling surface 8d.
  • FIG. 5 shows the path (one-dot chain line) to the fluorescent element 3 in the excitation light L1 emitted from the light emitting element 2 in the left half, and the reflected light reflected by the fluorescent element 3 in the right half.
  • a path (two-dot chain line) to the outside in L2 is shown.
  • the reflected light L2 reflected by the fluorescent element 3 is incident from the first surfaces 10a, 11a, and 12a, and the reflected light L2 is emitted from the second surfaces 10b, 11b, and 12b.
  • the reflected light L2 is collected. Note that the light collection includes not only focusing the light but also making the light parallel and that the spread of the outgoing light is smaller than the spread of the incident light.
  • the lens holder 13 is formed in a cylindrical shape, and the condenser lenses 10, 11, and 12 are disposed inside.
  • the lens holder 13 is connected to the second cooling surface 8d of the heat sink 8 in order to cool the condenser lenses 10, 11, and 12.
  • the lens holder 13 seals the fluorescent element 3 by cooperating with the first surface 10 a of the first condenser lens 10 and the second cooling surface 8 d of the heat sink 8.
  • the lens holding body 13 may be directly connected to the second cooling surface 8d, and is connected to the second cooling surface 8d with a heat transfer member interposed between the lens holding body 13 and the second cooling surface 8d. Also good.
  • the lens holder 13 has thermal conductivity.
  • the lens holder 13 is made of a material having excellent thermal conductivity, for example, aluminum.
  • each of the condenser lenses 10, 11, and 12 may be held by the lens holder 13 by, for example, mechanical fixing means. Furthermore, each condensing lens 10, 11, and 12 may be hold
  • the first optical system 5 includes a collimator lens 15 that collimates the excitation light L1 emitted from the light emitting element 2, and a collimator lens support 16 that supports the collimator lens 15.
  • the first optical system 5 includes a reflection mirror 17 that reflects the excitation light L ⁇ b> 1 emitted from the collimator lens 15, and a mirror support 18 that supports the reflection mirror 17.
  • the first optical system 5 includes a prism lens 19 and a diffusion plate 20 that transmit the excitation light L1 reflected by the reflection mirror 17.
  • each of the condensing lenses 10, 11, 12 and the optical element 14 constituting the second optical system 6 also constitutes the first optical system 5. That is, the first optical system 5 and the second optical system 6 share a part of the configuration. Specifically, the first optical system 5 and the second optical system 6 share the condensing lenses 10, 11, 12 and the optical element 14.
  • the optical element 14 reflects the excitation light L1 transmitted through the prism lens 19 and the diffusion plate 20.
  • the excitation light L1 reflected by the optical element 14 is incident from the second surfaces 10b, 11b, and 12b, and the excitation light L1 is transmitted from the first surfaces 10a, 11a, and 12a.
  • the excitation light L1 is condensed.
  • the optical element 14 is disposed in a part of the base portion 14a in order to reflect the base portion 14a having translucency and the excitation light L1 transmitted through the diffusion plate 20.
  • the reflection part 14b is provided.
  • the base portion 14a is made of optical glass
  • the reflecting portion 14b is made of a dielectric multilayer film.
  • the excitation light L1 emitted from the light emitting element 2 is linearly polarized laser light consisting only of the S-polarized component.
  • the polarization component of the excitation light L1 is maintained even through the collimator lens 15, the reflection mirror 17, the prism lens 19, and the diffusion plate 20.
  • the reflecting portion 14b is disposed at a position where the excitation light L1 transmitted through the diffusion plate 20 is incident.
  • the reflection unit 14b is configured to reflect the S-polarized component and transmit the P-polarized component.
  • the polarization component of the reflected light L2 reflected by the fluorescent element 3 has not only the S polarization component but also the P polarization component.
  • the S-polarized component light L2a is reflected by the reflecting portion 14b, while the P-polarized component light L2b is reflected.
  • the light passes through the portion 14b and also passes through the base portion 14a.
  • the reflected light L2 is directly incident on the position between the reflecting portions 14b and 14b, that is, the base portion 14a, the reflected light L2 is transmitted through the base portion 14a.
  • the lights L2 and L2b that have passed through the optical element 14 pass through the exit port 7a of the housing 7 and are emitted toward the outside.
  • the light emitted from the emission port 7a is a mixture of yellow-green light (fluorescence) converted by the fluorescent element 3 and blue light (unconverted light) not converted by the fluorescent element 3.
  • white light is obtained.
  • the light source device 1 includes the light emitting element 2 that emits the excitation light L1 and the phosphor, and converts at least a part of the excitation light L1 emitted from the light emitting element 2 into fluorescence and reflects it.
  • the first cooling surface 8 c connected to the light emitting element 2 to cool the light emitting element 2, and the second cooling surface 8 d connected to the fluorescent element 3 to cool the fluorescent element 3. are arranged in parallel to each other. Moreover, the first cooling surface 8c and the second cooling surface 8d are arranged to face the same direction.
  • the cooling body 4 can be downsized, that is, the light source device 1 can be downsized.
  • the first cooling surface 8c and the second cooling surface 8d are arranged on the same plane.
  • the configuration of the cooling body 4 can be simplified. Thereby, manufacture of the cooling body 4 can be made easy, for example.
  • the reflected light L2 reflected by the fluorescent element 3 is incident from the first surfaces 10a, 11a, and 12a, and the reflected light L2 is transmitted from the second surfaces 10b, 11b, and 12b. It is provided with at least one (specifically, three) condensing lenses 10, 11, and 12 for condensing the reflected light L2 by being emitted, and the condensing lenses 10, 11, and 12 include the light emission.
  • Excitation light L1 emitted from the element 2 is incident from the second surfaces 10b, 11b, and 12b, and the excitation light L1 is emitted from the first surfaces 10a, 11a, and 12a toward the fluorescent element 3, whereby the excitation light L1 is emitted.
  • the light is condensed.
  • the condensing lenses 10, 11, and 12 have the excitation light L1 emitted from the light emitting element 2 incident from the second surfaces 10b, 11b, and 12b, and the excitation light L1 is incident on the first surfaces 10a, 11a, and 12b.
  • the excitation light L1 is condensed by being emitted from 12a toward the fluorescent element 3.
  • the reflected light L2 reflected by the fluorescent element 3 is incident from the first surfaces 10a, 11a, and 12a, and the reflected light L2 is emitted from the second surfaces 10b, 11b, and 12b.
  • the reflected light L2 is collected.
  • the condensing lenses 10, 11, and 12 that collect the excitation light L1 directed toward the fluorescent element 3 and the condensing lenses 10, 11, and 12 that collect the reflected light L2 reflected by the fluorescent element 3 are shared.
  • the condensing lenses 10, 11, and 12 can be downsized, that is, the light source device 1 can be downsized.
  • the light source device 1 holds the condenser lenses 10, 11, and 12 and is connected to the second cooling surface 8d to cool the condenser lenses 10, 11, and 12.
  • a holding body 13 is provided, and the lens holding body 13 is configured to seal the fluorescent element 3 in cooperation with the condenser lens 12 and the second cooling surface 8d.
  • the lens holder 13 that holds the condenser lenses 10, 11, and 12 is connected to the second cooling surface 8d, the lens holder 13 and the condenser lenses 10, 11, and 12 are connected to each other. Can be cooled. Thereby, it can suppress that the condensing lenses 10, 11, and 12 thermally deteriorate.
  • the lens holder 13 can be prevented from thermal expansion, it is possible to prevent the condenser lenses 10, 11, and 12 from being displaced.
  • the lens holder 13 cooperates with the condenser lens 10 and the second cooling surface 8d to seal the fluorescent element 3, dust or the like can be prevented from adhering to the fluorescent element 3. Thereby, it can prevent that the performance which the fluorescent substance of the fluorescent element 3 converts into fluorescence falls.
  • the cooling capacity of the first cooling surface 8c is greater than the cooling capacity of the second cooling surface 8d.
  • the light emitting element 2 having a heat generation amount larger than the heat generation amount of the fluorescent element 3 is appropriately set. Can be cooled.
  • the light source device is not limited to the configuration of the above-described embodiment, and is not limited to the above-described operational effects. It goes without saying that the light source device can be variously modified without departing from the gist of the present invention. For example, it is needless to say that configurations, methods, and the like according to various modifications described below may be arbitrarily selected and employed in the configurations, methods, and the like according to the above-described embodiments.
  • the first cooling surface 8c and the second cooling surface 8d are arranged on the same plane.
  • the light source device is not limited to such a configuration.
  • the first cooling surface 8 c and the second cooling surface 8 d may be arranged in steps.
  • the first cooling surface 8c and the second cooling surface 8d may be disposed so as to be parallel to each other and to face the same direction.
  • the fluorescent element 3 has a configuration in which a part of the excitation light L1 emitted from the light emitting element 2 is converted into fluorescence and reflected.
  • the light source device is not limited to such a configuration.
  • the fluorescent element 3 may be configured such that all of the excitation light emitted from the light emitting element 2 is converted into fluorescence and reflected.
  • the light emitting element 2 is disposed on both sides so as to sandwich the fluorescent element 3, and the first cooling surface 8c is disposed on both sides so as to sandwich the second cooling surface 8d. It is the configuration of being arranged.
  • the light source device is not limited to such a configuration.
  • the light emitting element 2 may be disposed only on one side of the fluorescent element 3, and the first cooling surface 8c may be disposed only on one side of the second cooling surface 8d.
  • the heat pipe 9 is disposed near the first cooling surface 8c, so that the cooling capacity in the first cooling surface 8c is higher than the cooling capacity in the second cooling surface 8d.
  • the configuration is large.
  • the light source device is not limited to such a configuration.
  • the surface area of the fin 8a disposed on the first cooling surface 8c side is larger than the surface area of the fin 8a disposed on the second cooling surface 8d side, so that the cooling on the first cooling surface 8c is performed.
  • a configuration in which the capacity is larger than the cooling capacity in the second cooling surface 8d may be employed.
  • the cooling capacity on the first cooling surface 8c may be the same as the cooling capacity on the second cooling surface 8d.
  • the plurality of condensing lenses 10, 11, and 12 that collect the excitation light L ⁇ b> 1 that travels toward the fluorescent element 3, and the reflected light L ⁇ b> 2 that is reflected by the fluorescent element 3 is collected.
  • the plurality of condenser lenses 10, 11, and 12 are configured in common.
  • the light source device is not limited to such a configuration.
  • a plurality of condensing lenses that condense the excitation light L1 toward the fluorescent element 3 and a plurality of condensing lenses that condense the reflected light L2 reflected by the fluorescent element 3 are partially It is also possible to adopt a configuration in which only these are shared. Further, for example, in the light source device, the condensing lens that condenses the excitation light L1 that travels toward the fluorescent element 3 and the condensing lens that condenses the reflected light L2 reflected by the fluorescent element 3 are completely shared. However, it may be a completely separate member.
  • DESCRIPTION OF SYMBOLS 1 ... Light source device, 2 ... Light emitting element, 2a ... Light emission part, 3 ... Fluorescence element, 4 ... Cooling body, 5 ... 1st optical system (optical system for excitation light), 6 ... 2nd optical system (Optical for reflected light) System), 7 ... housing, 7a ... emission port, 8 ... heat sink, 8a ... fin, 8b ... base body, 8c ... first cooling surface, 8d ... second cooling surface, 9 ... heat pipes 10, 11, DESCRIPTION OF SYMBOLS 12 ... Condensing lens, 10a, 11a, 12a ... 1st surface, 10b, 11b, 12b ... 2nd surface, 13 ...
  • Lens holding body 14 ... Optical element, 14a ... Base part, 14b ... Reflection part, 15 ... Collimator Lens, 16 ... Collimator lens support, 17 ... Reflection mirror, 18 ... Mirror support, 19 ... Prism lens, 20 ... Diffuser

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)
  • Projection Apparatus (AREA)

Abstract

 光源装置は、励起光を発する発光素子と、蛍光体を有し、発光素子から発する励起光の少なくとも一部を蛍光に変換して反射する蛍光素子と、発光素子及び蛍光素子を冷却する共通の冷却体と、を備え、冷却体は、発光素子を冷却するために発光素子と接続される第1冷却面と、蛍光素子を冷却するために蛍光素子と接続される第2冷却面と、を備え、第1冷却面と第2冷却面とは、互いに平行となるように配置されると共に、同じ方向を向くように配置される。

Description

光源装置
 本発明は、励起光を発する発光素子と、発光素子から発する励起光の少なくとも一部を蛍光に変換して反射する蛍光素子とを備える光源装置に関する。
 従来、光源装置として、励起光を発する発光素子と、発光素子から発する励起光を蛍光に変換して反射する蛍光素子とを備える光源装置が、知られている(例えば、特許文献1)。斯かる光源装置においては、発光素子は、発光する際に、発熱し、また、蛍光素子は、励起光を蛍光に変換する際に、発熱する。そこで、特許文献1に係る光源装置は、発光素子を冷却する手段と、蛍光素子を冷却する手段とを別々に設ける必要がある。
日本国特開2007-294754号公報
 よって、本発明は、斯かる事情に鑑み、発光素子及び蛍光素子を冷却する手段を共通にすることができる光源装置を提供することを課題とする。
 光源装置は、励起光を発する発光素子と、蛍光体を有し、前記発光素子から発する励起光の少なくとも一部を蛍光に変換して反射する蛍光素子と、前記発光素子及び前記蛍光素子を冷却する共通の冷却体と、を備え、前記冷却体は、前記発光素子を冷却するために前記発光素子と接続される第1冷却面と、前記蛍光素子を冷却するために前記蛍光素子と接続される第2冷却面と、を備え、前記第1冷却面と前記第2冷却面とは、互いに平行となるように配置されると共に、同じ方向を向くように配置される。
 光源装置においては、前記第1冷却面と前記第2冷却面とは、同一平面上に配置される、という構成でもよい。
 また、光源装置は、前記蛍光素子で反射される反射光が第1面から入射され、該反射光を第2面から出射することで、該反射光を集光する少なくとも一つの集光レンズを備え、前記集光レンズは、前記発光素子から発する励起光が第2面から入射され、該励起光を第1面から前記蛍光素子に向けて出射することで、該励起光を集光する、という構成でもよい。
 また、光源装置は、前記集光レンズを保持し、前記集光レンズを冷却するために前記第2冷却面に接続されるレンズ保持体を備え、前記レンズ保持体は、前記集光レンズ及び前記第2冷却面と協働することにより、前記蛍光素子を密閉する、という構成でもよい。
 また、光源装置においては、前記第1冷却面における冷却能力は、前記第2冷却面における冷却能力よりも大きい、という構成でもよい。
 以上の如く、本発明に係る光源装置は、発光素子及び蛍光素子を冷却する手段を共通にすることができる、という優れた効果を奏する。
一実施形態に係る光源装置の全体斜視図である。 同実施形態に係る光源装置の全体縦断面図である。 同実施形態に係る光源装置の要部縦断面図である。 同実施形態に係る光源装置の要部縦断面図である。 同実施形態に係る光源装置の要部縦断面図であって、光の進行を示す図である。 同実施形態に係る光源装置における縦断面図であって、励起光の進行を示す図である。 同実施形態に係る光源装置における縦断面図であって、反射光の進行を示す図である。 他の実施形態に係る光源装置の全体縦断面図である。
 以下、光源装置における一実施形態について、図1~図7を参酌して説明する。なお、各図(図8も同様)において、図面の寸法比と実際の寸法比とは、必ずしも一致していない。
 図1及び図2に示すように、本実施形態に係る光源装置1は、励起光を発する複数の発光素子2と、発光素子2から発する励起光の一部を蛍光に変換して反射する蛍光素子3と、発光素子2及び蛍光素子3を冷却する共通の冷却体4とを備えている。また、光源装置1は、発光素子2から発する励起光を蛍光素子3に向けて進行させる第1光学系(励起光用光学系)5と、蛍光素子3で反射する反射光を外部に向けて進行させる第2光学系(反射光用光学系)6とを備えている。
 そして、光源装置1は、発光素子2、蛍光素子3、第1光学系5、及び第2光学系6を収容する筐体7を備えている。該筐体7は、蛍光素子3で反射する反射光を外部に向けて出射するために、透光性を有する出射口部7aを備えている。
 発光素子2は、半導体レーザとしている。本実施形態においては、発光素子2は、発光部2aが2行(図2の左右方向)×12列(図2の紙面に対して垂直方向)を有するアレイタイプとしている。なお、発光素子2は、発光部2aを一つ有するCANタイプの半導体レーザでもよく、また、LEDでもよい。また、本実施形態においては、発光素子2は、青色光(例えば、波長が430~470nmの光)を発している。
 蛍光素子3は、蛍光体を有する。本実施形態においては、蛍光素子3は、YAG系の結晶材料である蛍光体を酸化アルミ等と混晶して形成されたプレート状の多結晶体である。なお、蛍光素子3は、粉状の蛍光体を、シリコーン等のバインダーに混入し、基材に塗布して形成してもよい。
 そして、蛍光素子3は、入射された光が第2光学系6に向けて反射するように、冷却体4側の面(図2における下面)の全体に、誘電体多層膜からなる反射膜を備えている。なお、蛍光素子3で反射する反射光は、蛍光素子3で鏡面反射(正反射)する光だけでなく、蛍光素子3で拡散反射(乱反射)する光、及び、蛍光素子3に入射して散乱した後に第2光学系6(具体的には、後述する第1集光レンズ10)に入射する光も含む。
 また、蛍光素子3は、発光素子2から発せられた励起光の一部を、蛍光に変換する。したがって、蛍光素子3で反射する反射光は、蛍光素子3で変換された蛍光と、蛍光素子3で変換されなかった未変換光(励起光のままの光)とを含んでいる。本実施形態においては、蛍光素子3は、発光素子2から発せられた励起光である青色光の一部を、黄緑色の蛍光(例えば、波長が525~575nmにピークを持ち、450~800nmにかけた広い可視域のスペクトルを持った光)に変換する。
 蛍光素子3は、発光素子2の間に配置されている。具体的には、蛍光素子3は、複数(本実施形態においては、3つ)並列されている発光素子2の一対の群の間に配置されている。そして、蛍光素子3が反射する反射光の進行方向は、発光素子2が発する励起光の進行方向と略同じ方向(図2における上方向)である。
 冷却体4は、薄板状に形成される複数のフィン8aを有するヒートシンク8と、密閉されたパイプ内に多孔質材などを内張りし、液体を封入したヒートパイプ9とを備えている。そして、ヒートシンク8は、一方側(図2の上方側)が発光素子2及び蛍光素子3に接続されて且つ他方側(図2の下方側)がフィン8aに接続されるベース体8bを備えている。
 図3に示すように、ヒートシンク8は、発光素子2を冷却するために発光素子2と接続される一対の第1冷却面8c,8cと、蛍光素子3を冷却するために蛍光素子3と接続される第2冷却面8dとを備えている。なお、各素子2,3は、各冷却面8c,8dに直接に接続されていてもよく、各冷却面8c,8dとの間に伝熱体を介在させて、各冷却面8c,8dに接続されていてもよい。
 第1冷却面8cと第2冷却面8dとは、互いに平行(完全な平行だけでなく、略平行も含む)となるように配置されていると共に、同じ方向を向くように配置されている。本実施形態においては、第1冷却面8cと第2冷却面8dとは、同一平面上(完全な同一平面上だけでなく、略同一平面上も含む)に配置されている。一対の第1冷却面8c,8cは、第2冷却面8dを挟むように、第2冷却面8dの両側に配置されている。換言すると、第2冷却面8dは、一対の第1冷却面8c,8cの間に配置されている。
 ヒートパイプ9は、第2冷却面8dよりも、第1冷却面8cの近くに配置されている。これにより、第1冷却面8cにおける冷却能力は、第2冷却面8dにおける冷却能力よりも大きくなっている。
 図4及び図5に示すように、第2光学系6は、蛍光素子3で反射される反射光L2が入射される第1~第3集光レンズ10,11,12と、各集光レンズ10,11,12を保持するレンズ保持体13とを備えている。また、第2光学系6は、第3集光レンズ12から出射した反射光L2の少なくとも一部を透過する光学素子14を備えている。
 本実施形態においては、集光レンズ10,11,12は、3つ備えられているが、1つ、2つ、又は4つ以上備えられていてもよい。また、図5は、左半分で、発光素子2から発せられた励起光L1における蛍光素子3までの進路(1点鎖線)を示しており、右半分で、蛍光素子3で反射された反射光L2における外部までの進路(2点鎖線)を示している。
 各集光レンズ10,11,12は、蛍光素子3で反射される反射光L2が第1面10a,11a,12aから入射され、該反射光L2を第2面10b,11b,12bから出射することで、該反射光L2を集光している。なお、集光は、光を集束することだけでなく、光を平行にすること、及び、入射光の広がりよりも出射光の広がりの方が小さくなることも含む。
 レンズ保持体13は、筒状に形成されており、各集光レンズ10,11,12を内部に配置している。そして、レンズ保持体13は、各集光レンズ10,11,12を冷却するために、ヒートシンク8の第2冷却面8dに接続されている。また、レンズ保持体13は、第1集光レンズ10の第1面10a及びヒートシンク8の第2冷却面8dと協働することにより、蛍光素子3を密閉している。
 なお、レンズ保持体13は、第2冷却面8dに直接に接続されていてもよく、第2冷却面8dとの間に伝熱体を介在させて、第2冷却面8dに接続されていてもよい。そして、レンズ保持体13は、熱伝導性を有している。本実施形態においては、レンズ保持体13は、熱伝導性に優れる材質、例えば、アルミで形成されている。
 また、各集光レンズ10,11,12は、例えば、機械的な固定手段により、レンズ保持体13に保持されてもよい。さらに、各集光レンズ10,11,12は、接着剤により、レンズ保持体13に保持されてもよい。例えば、レンズ保持体13がヒートシンク8に冷却されているため、接着剤が加熱されて燃焼することを防止できる。また、例えば、機械的な固定手段に対して、部品点数を減らすことができるため、設計を容易にすることができる。
 第1光学系5は、発光素子2から発せられた励起光L1を平行光にするコリメータレンズ15と、コリメータレンズ15を支持するコリメータレンズ支持体16とを備えている。そして、第1光学系5は、コリメータレンズ15から出射された励起光L1を反射する反射ミラー17と、反射ミラー17を支持するミラー支持体18とを備えている。また、第1光学系5は、反射ミラー17で反射した励起光L1を透過するプリズムレンズ19及び拡散板20を備えている。
 ところで、第2光学系6を構成する各集光レンズ10,11,12及び光学素子14は、第1光学系5も構成している。即ち、第1光学系5と第2光学系6とは、一部の構成を共通化している。具体的には、第1光学系5と第2光学系6とは、各集光レンズ10,11,12及び光学素子14を共通化している。
 光学素子14は、プリズムレンズ19及び拡散板20を透過した励起光L1を反射する。そして、各集光レンズ10,11,12は、光学素子14で反射された励起光L1が第2面10b,11b,12bから入射され、該励起光L1を第1面10a,11a,12aから蛍光素子3に向けて出射することで、該励起光L1を集光している。
 図6及び図7に示すように、光学素子14は、透光性を有するベース部14aと、拡散板20を透過した励起光L1を反射するために、ベース部14aの一部に配置される反射部14bとを備えている。本実施形態においては、ベース部14aは、光学ガラスで形成されており、反射部14bは、誘電体多層膜で形成されている。
 ところで、本実施形態において、発光素子2から発せられる励起光L1は、S偏光成分のみからなる直線偏光のレーザ光としている。そして、該励起光L1の偏光成分は、コリメータレンズ15、反射ミラー17、プリズムレンズ19、及び拡散板20を経由しても、維持される。
 それに対して、反射部14bは、拡散板20を透過した励起光L1が入射される位置に、配置されている。そして、反射部14bは、S偏光成分を反射し且つP偏光成分を透過するように、構成されている。これにより、図6に示すように、S偏光成分のみの直線偏光である励起光L1は、反射部14bに入射すると、反射部14bで反射され、第3集光レンズ12の第2面12bに入射する。
 一方、蛍光素子3で反射された反射光L2の偏光成分は、S偏光成分だけでなく、P偏光成分も有する。これにより、図7に示すように、反射光L2が反射部14bに入射した場合には、S偏光成分の光L2aは、反射部14bで反射される一方、P偏光成分の光L2bは、反射部14bを透過し、さらに、ベース部14aも透過する。また、反射光L2が、反射部14b,14bの間の位置、即ち、ベース部14aに直接に入射した場合には、反射光L2は、ベース部14aを透過する。
 そして、光学素子14を透過した光L2,L2bは、筐体7の出射口部7aを透過して、外部に向けて出射される。このとき、出射口部7aから出射される光は、蛍光素子3で変換された黄緑色光(蛍光)と、蛍光素子3で変換されなかった青色光(未変換光)とが混合されることにより、白色光となる。
 以上より、本実施形態に係る光源装置1は、励起光L1を発する発光素子2と、蛍光体を有し、前記発光素子2から発する励起光L1の少なくとも一部を蛍光に変換して反射する蛍光素子3と、前記発光素子2及び前記蛍光素子3を冷却する共通の冷却体4と、を備え、前記冷却体4は、前記発光素子2を冷却するために前記発光素子2と接続される第1冷却面8cと、前記蛍光素子3を冷却するために前記蛍光素子3と接続される第2冷却面8dと、を備え、前記第1冷却面8cと前記第2冷却面8dとは、互いに平行となるように配置されると共に、同じ方向を向くように配置される。
 斯かる構成によれば、発光素子2を冷却するために発光素子2と接続される第1冷却面8cと、蛍光素子3を冷却するために蛍光素子3と接続される第2冷却面8dとは、互いに平行となるように配置されている。しかも、第1冷却面8cと第2冷却面8dとは、同じ方向を向くように配置されている。これにより、共通の冷却体4が発光素子2及び蛍光素子3を冷却する構造において、例えば、冷却体4の小型化、即ち、光源装置1の小型化を図ることができる。
 また、本実施形態に係る光源装置1においては、前記第1冷却面8cと前記第2冷却面8dとは、同一平面上に配置される、という構成である。
 斯かる構成によれば、第1冷却面8cと第2冷却面8dとが同一平面上に配置されているため、例えば、冷却体4の構成を簡素化することができる。これにより、例えば、冷却体4の製造を容易にすることができる。
 また、本実施形態に係る光源装置1は、前記蛍光素子3で反射される反射光L2が第1面10a,11a,12aから入射され、該反射光L2を第2面10b,11b,12bから出射することで、該反射光L2を集光する少なくとも一つ(具体的には、3つ)の集光レンズ10,11,12を備え、前記集光レンズ10,11,12は、前記発光素子2から発する励起光L1が第2面10b,11b,12bから入射され、該励起光L1を第1面10a,11a,12aから前記蛍光素子3に向けて出射することで、該励起光L1を集光する、という構成である。
 斯かる構成によれば、集光レンズ10,11,12は、発光素子2から発する励起光L1が第2面10b,11b,12bから入射され、該励起光L1を第1面10a,11a,12aから蛍光素子3に向けて出射することで、該励起光L1を集光している。また、集光レンズ10,11,12は、蛍光素子3で反射される反射光L2が第1面10a,11a,12aから入射され、該反射光L2を第2面10b,11b,12bから出射することで、該反射光L2を集光している。
 これにより、蛍光素子3に向かう励起光L1を集光する集光レンズ10,11,12と、蛍光素子3で反射される反射光L2を集光する集光レンズ10,11,12とを共通化することができる。これにより、例えば、集光レンズ10,11,12の小型化、即ち、光源装置1の小型化を図ることができる。
 また、本実施形態に係る光源装置1は、前記集光レンズ10,11,12を保持し、前記集光レンズ10,11,12を冷却するために前記第2冷却面8dに接続されるレンズ保持体13を備え、前記レンズ保持体13は、前記集光レンズ12及び前記第2冷却面8dと協働することにより、前記蛍光素子3を密閉する、という構成である。
 斯かる構成によれば、集光レンズ10,11,12を保持するレンズ保持体13が、第2冷却面8dに接続されているため、レンズ保持体13及び集光レンズ10,11,12を冷却することができる。これにより、集光レンズ10,11,12が熱劣化することを抑制することができる。また、例えば、レンズ保持体13が熱膨張することを抑制できるため、集光レンズ10,11,12が位置ずれすることを抑制できる。
 そして、レンズ保持体13が、集光レンズ10及び第2冷却面8dと協働することにより、蛍光素子3を密閉しているため、粉塵等が蛍光素子3に付着することを防止できる。これにより、蛍光素子3の蛍光体が蛍光に変換する性能が低下することを防止できる。
 また、本実施形態に係る光源装置1においては、前記第1冷却面8cにおける冷却能力は、前記第2冷却面8dにおける冷却能力よりも大きい、という構成である。
 斯かる構成によれば、第1冷却面8cにおける冷却能力が、第2冷却面8dにおける冷却能力よりも大きいため、蛍光素子3の発熱量よりも大きい発熱量である発光素子2を、適切に冷却することができる。
 なお、光源装置は、上記した実施形態の構成に限定されるものではなく、また、上記した作用効果に限定されるものではない。また、光源装置は、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、下記する各種の変更例に係る構成や方法等を任意に選択して、上記した実施形態に係る構成や方法等に採用してもよいことは勿論である。
 上記実施形態に係る光源装置1においては、第1冷却面8cと第2冷却面8dとは、同一平面上に配置されている、という構成である。しかしながら、光源装置は、斯かる構成に限られない。例えば、光源装置においては、図8に示すように、第1冷却面8cと第2冷却面8dとは、段違いに配置されている、という構成でもよい。要するに、第1冷却面8cと第2冷却面8dとは、互いに平行となるように配置されると共に、同じ方向を向くように配置されていればよい。
 また、上記実施形態に係る光源装置1においては、蛍光素子3は、発光素子2から発する励起光L1の一部を蛍光に変換して反射する、という構成である。しかしながら、光源装置は、斯かる構成に限られない。例えば、光源装置においては、蛍光素子3は、発光素子2から発する励起光の全部を蛍光に変換して反射する、という構成でもよい。
 また、上記実施形態に係る光源装置1においては、発光素子2は、蛍光素子3を挟むように両側に配置されており、第1冷却面8cは、第2冷却面8dを挟むように両側に配置されている、という構成である。しかしながら、光源装置は、斯かる構成に限られない。例えば、光源装置においては、発光素子2は、蛍光素子3の片側のみに配置されており、第1冷却面8cは、第2冷却面8dの片側のみに配置されている、という構成でもよい。
 また、上記実施形態に係る光源装置1においては、ヒートパイプ9が第1冷却面8cの近くに配置することで、第1冷却面8cにおける冷却能力が、第2冷却面8dにおける冷却能力よりも大きい、という構成である。しかしながら、光源装置は、斯かる構成に限られない。
 例えば、光源装置においては、第1冷却面8c側に配置されるフィン8aの表面積が、第2冷却面8d側に配置されるフィン8aの表面積よりも大きいことで、第1冷却面8cにおける冷却能力が、第2冷却面8dにおける冷却能力よりも大きい、という構成でもよい。また、例えば、光源装置においては、第1冷却面8cにおける冷却能力は、第2冷却面8dにおける冷却能力と同じである、という構成でもよい。
 また、上記実施形態に係る光源装置1においては、蛍光素子3に向かう励起光L1を集光する複数の集光レンズ10,11,12と、蛍光素子3で反射される反射光L2を集光する複数の集光レンズ10,11,12とは、全て共通化されている、という構成である。しかしながら、光源装置は、斯かる構成に限られない。
 例えば、光源装置においては、蛍光素子3に向かう励起光L1を集光する複数の集光レンズと、蛍光素子3で反射される反射光L2を集光する複数の集光レンズとは、一部のみ共通化されている、という構成でもよい。また、例えば、光源装置においては、蛍光素子3に向かう励起光L1を集光する集光レンズと、蛍光素子3で反射される反射光L2を集光する集光レンズとは、全く共通化されておらず、全く別部材である、という構成でもよい。
 1…光源装置、2…発光素子、2a…発光部、3…蛍光素子、4…冷却体、5…第1光学系(励起光用光学系)、6…第2光学系(反射光用光学系)、7…筐体、7a…出射口部、8…ヒートシンク、8a…フィン、8b…ベース体、8c…第1冷却面、8d…第2冷却面、9…ヒートパイプ、10,11,12…集光レンズ、10a,11a,12a…第1面、10b,11b,12b…第2面、13…レンズ保持体、14…光学素子、14a…ベース部、14b…反射部、15…コリメータレンズ、16…コリメータレンズ支持体、17…反射ミラー、18…ミラー支持体、19…プリズムレンズ、20…拡散板
 

Claims (5)

  1.  励起光を発する発光素子と、
     蛍光体を有し、前記発光素子から発する励起光の少なくとも一部を蛍光に変換して反射する蛍光素子と、
     前記発光素子及び前記蛍光素子を冷却する共通の冷却体と、を備え、
     前記冷却体は、前記発光素子を冷却するために前記発光素子と接続される第1冷却面と、前記蛍光素子を冷却するために前記蛍光素子と接続される第2冷却面と、を備え、
     前記第1冷却面と前記第2冷却面とは、互いに平行となるように配置されると共に、同じ方向を向くように配置される光源装置。
  2.  前記第1冷却面と前記第2冷却面とは、同一平面上に配置される請求項1に記載の光源装置。
  3.  前記蛍光素子で反射される反射光が第1面から入射され、該反射光を第2面から出射することで、該反射光を集光する少なくとも一つの集光レンズを備え、
     前記集光レンズは、前記発光素子から発する励起光が第2面から入射され、該励起光を第1面から前記蛍光素子に向けて出射することで、該励起光を集光する請求項1又は2に記載の光源装置。
  4.  前記集光レンズを保持し、前記集光レンズを冷却するために前記第2冷却面に接続されるレンズ保持体を備え、
     前記レンズ保持体は、前記集光レンズ及び前記第2冷却面と協働することにより、前記蛍光素子を密閉する請求項3に記載の光源装置。
  5.  前記第1冷却面における冷却能力は、前記第2冷却面における冷却能力よりも大きい請求項1~4の何れか1項に記載の光源装置。
     
PCT/JP2016/054259 2015-03-30 2016-02-15 光源装置 WO2016158034A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/560,271 US9989237B2 (en) 2015-03-30 2016-02-15 Light source device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-069728 2015-03-30
JP2015069728A JP6008218B1 (ja) 2015-03-30 2015-03-30 光源装置

Publications (1)

Publication Number Publication Date
WO2016158034A1 true WO2016158034A1 (ja) 2016-10-06

Family

ID=57006957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054259 WO2016158034A1 (ja) 2015-03-30 2016-02-15 光源装置

Country Status (3)

Country Link
US (1) US9989237B2 (ja)
JP (1) JP6008218B1 (ja)
WO (1) WO2016158034A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131946A1 (ja) * 2019-12-25 2021-07-01 ソニーグループ株式会社 光源装置、ヘッドライト、表示装置及び照明装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6968339B2 (ja) 2017-11-17 2021-11-17 ウシオ電機株式会社 蛍光光源装置
CN115053178A (zh) * 2020-02-05 2022-09-13 麦克赛尔株式会社 光源装置和投射型影像显示装置
JP2022142927A (ja) 2021-03-17 2022-10-03 セイコーエプソン株式会社 光源装置及びプロジェクター
DE102021114225A1 (de) 2021-06-01 2022-12-01 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Beleuchtungseinrichtung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013265A (ja) * 2004-06-28 2006-01-12 Kyocera Corp 発光装置およびそれを用いた照明装置
JP2007208116A (ja) * 2006-02-03 2007-08-16 Fuji Electric Systems Co Ltd 風冷式冷却体
JP2011243808A (ja) * 2010-05-19 2011-12-01 Mitsubishi Electric Corp 半導体モジュール
CN102720954A (zh) * 2012-01-14 2012-10-10 深圳市光峰光电技术有限公司 发光装置和发光系统
JP2012244085A (ja) * 2011-05-24 2012-12-10 Panasonic Corp 照明装置
WO2013008361A1 (ja) * 2011-07-12 2013-01-17 パナソニック株式会社 光学素子及びそれを用いた半導体発光装置
JP2015015274A (ja) * 2013-07-03 2015-01-22 三菱電機株式会社 電力用半導体装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK300689A (da) * 1988-06-21 1989-12-22 Rohm Co Ltd Apparat til optisk skrivning af informationer
JP4822919B2 (ja) 2006-04-26 2011-11-24 シャープ株式会社 発光装置および車両用ヘッドランプ
JP2014123014A (ja) * 2012-12-21 2014-07-03 Casio Comput Co Ltd 光源装置、プロジェクタ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013265A (ja) * 2004-06-28 2006-01-12 Kyocera Corp 発光装置およびそれを用いた照明装置
JP2007208116A (ja) * 2006-02-03 2007-08-16 Fuji Electric Systems Co Ltd 風冷式冷却体
JP2011243808A (ja) * 2010-05-19 2011-12-01 Mitsubishi Electric Corp 半導体モジュール
JP2012244085A (ja) * 2011-05-24 2012-12-10 Panasonic Corp 照明装置
WO2013008361A1 (ja) * 2011-07-12 2013-01-17 パナソニック株式会社 光学素子及びそれを用いた半導体発光装置
CN102720954A (zh) * 2012-01-14 2012-10-10 深圳市光峰光电技术有限公司 发光装置和发光系统
JP2015015274A (ja) * 2013-07-03 2015-01-22 三菱電機株式会社 電力用半導体装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131946A1 (ja) * 2019-12-25 2021-07-01 ソニーグループ株式会社 光源装置、ヘッドライト、表示装置及び照明装置

Also Published As

Publication number Publication date
US20180073716A1 (en) 2018-03-15
US9989237B2 (en) 2018-06-05
JP2016189440A (ja) 2016-11-04
JP6008218B1 (ja) 2016-10-19

Similar Documents

Publication Publication Date Title
JP6265568B2 (ja) フルスペクトルled照明器
WO2016158034A1 (ja) 光源装置
TWI474099B (zh) 光源裝置及投影機
US9869453B2 (en) Light source, light source unit, and light source module using same
JP5673247B2 (ja) 光源装置及びプロジェクター
US9151468B2 (en) High brightness illumination devices using wavelength conversion materials
JP6354725B2 (ja) 蛍光光源装置
CN108693685B (zh) 光源装置以及投影仪
WO2013183556A1 (ja) 光源装置および照明装置
JP6686878B2 (ja) 光源装置、及び画像表示装置
CN110082996B (zh) 光源装置以及投影仪
JP2012169049A (ja) 光源装置
JP2012014972A (ja) 光源装置及びプロジェクター
JP7081094B2 (ja) 波長変換素子、光源装置及びプロジェクター
JP6187023B2 (ja) 光源装置及びプロジェクター
JP2019211536A (ja) 照明装置の光源装置
KR20190032380A (ko) 합성 광학계 유닛 및 프로젝터
JP2017188297A (ja) 蛍光装置
CN112068390B (zh) 波长转换元件、光源装置和投影仪
JP6663579B2 (ja) 光源装置
JP2017062889A (ja) 蛍光光源装置
JP2021026122A (ja) 光源装置およびプロジェクター
JP2019045529A (ja) 光源装置、照明装置およびプロジェクター
JP2017111859A (ja) 波長変換素子、光源装置及びプロジェクター
JP2023072374A (ja) 光源装置および投射型表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771918

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15560271

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771918

Country of ref document: EP

Kind code of ref document: A1