WO2016157553A1 - 電磁波シールド材 - Google Patents

電磁波シールド材 Download PDF

Info

Publication number
WO2016157553A1
WO2016157553A1 PCT/JP2015/067661 JP2015067661W WO2016157553A1 WO 2016157553 A1 WO2016157553 A1 WO 2016157553A1 JP 2015067661 W JP2015067661 W JP 2015067661W WO 2016157553 A1 WO2016157553 A1 WO 2016157553A1
Authority
WO
WIPO (PCT)
Prior art keywords
thickness
shielding material
metal foil
metal
insulating layer
Prior art date
Application number
PCT/JP2015/067661
Other languages
English (en)
French (fr)
Inventor
田中 幸一郎
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Priority to US15/562,246 priority Critical patent/US10272646B2/en
Priority to KR1020177026934A priority patent/KR101976969B1/ko
Priority to EP15887695.3A priority patent/EP3261421B1/en
Priority to CN201580078484.4A priority patent/CN107432102B/zh
Publication of WO2016157553A1 publication Critical patent/WO2016157553A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0084Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single continuous metallic layer on an electrically insulating supporting structure, e.g. metal foil, film, plating coating, electro-deposition, vapour-deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/50Treatment of iron or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/52Treatment of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/56Treatment of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment

Definitions

  • the present invention relates to an electromagnetic shielding material.
  • the present invention relates to a covering material or an exterior material for an electric / electronic device.
  • electromagnetic waves are radiated not only from automobiles but also from many electric / electronic devices including communication devices, displays and medical devices. Electromagnetic waves can cause malfunction of precision equipment, and there is also concern about the effects on the human body. For this reason, various techniques for reducing the influence of electromagnetic waves using electromagnetic shielding materials have been developed.
  • a copper foil composite formed by laminating a copper foil and a resin film is used as an electromagnetic shielding material (Japanese Patent Laid-Open No. 7-290449).
  • the copper foil has electromagnetic shielding properties, and the resin film is laminated for reinforcing the copper foil.
  • An electromagnetic wave shield structure in which metal layers are laminated on the inner side and the outer side of an intermediate layer made of an insulating material (Japanese Patent No. 4602680).
  • An electromagnetic wave shielding optical member comprising: a base substrate; and a laminated member formed on one surface of the base substrate and including a plurality of repeating unit films including a metal layer and a high refractive index layer (niobium pentoxide).
  • niobium pentoxide high refractive index layer
  • an electromagnetic shielding material composed of a laminate of a metal foil and an insulating layer is known.
  • sufficient research has not yet been made on the electromagnetic shielding properties of an electromagnetic shielding material having such a laminated structure. There is still room for improvement.
  • this invention makes it a subject to improve the electromagnetic wave shielding characteristic of the electromagnetic wave shielding material comprised with the laminated body of a metal layer and an insulating layer.
  • the present inventor has been studying the relationship between the electromagnetic shielding material composed of a laminate of a metal foil and an insulating layer and the electromagnetic shielding characteristics, and the thickness of the metal oxide layer at the interface between the metallic foil and the insulating layer is an electromagnetic wave. It was found that the shield characteristics were significantly affected. And even if it was the electromagnetic wave shielding material which has the same layer structure by controlling the thickness of this oxide layer, it turned out that a shielding effect can raise 50% or more by a dB value. Therefore, the thickness of the electromagnetic shielding material necessary to obtain the same shielding effect can be significantly reduced by appropriately controlling the thickness of the metal oxide layer at the interface with the insulating layer of the metal foil. It was found that it contributes greatly to the weight reduction of the shielding material. The present invention has been completed based on this finding.
  • the present invention is an electromagnetic wave shielding material having a structure in which at least two metal foils are laminated via an insulating layer, and the thickness of each metal oxide layer in contact with the insulating layer of each metal foil is 1
  • An electromagnetic shielding material having a thickness of ⁇ 30 nm.
  • the thickness of the metal oxide layer on the surface of the metallic foil is 1 to 30 nm.
  • the thickness of each metal foil is 4 to 50 ⁇ m.
  • the total thickness of the metal foil is 8 to 200 ⁇ m.
  • the dielectric constant of the insulating layer is 2.0 to 10.0 at 20 ° C.
  • the conductivity of each metal foil is 1.0 ⁇ 10 6 S / m or more at 20 ° C.
  • the thickness of the insulating layer is 6 to 500 ⁇ m.
  • the total thickness of the shielding material is 14 to 1000 ⁇ m.
  • the present invention is a covering material or an exterior material for an electric / electronic device provided with the electromagnetic wave shielding material according to the present invention.
  • the present invention is an electric / electronic device including the covering material or the exterior material according to the present invention.
  • the present invention it is possible to improve the electromagnetic shielding characteristics of an electromagnetic shielding material composed of a laminate of a metal layer and an insulating layer. For example, in automobiles, weight reduction is a major issue from the viewpoint of improving fuel efficiency. According to the present invention, the same shielding effect as that of the conventional art can be achieved with a thinner and lighter electromagnetic shielding material.
  • Example 6 is a graph showing an element concentration distribution in the vicinity of an M1 / R1 interface in Example 3. It is the elements on larger scale of FIG.
  • Metal foil Although there is no restriction
  • Such metals include iron conductivity of about 9.9 ⁇ 10 6 S / m, the conductivity of about 14.5 ⁇ 10 6 S / m of nickel, the conductivity of about 39.6 ⁇ 10 6 S Aluminum having a conductivity of about 58.0 ⁇ 10 6 S / m, and silver having a conductivity of about 61.4 ⁇ 10 6 S / m. In consideration of both electrical resistivity and cost, it is preferable in practical use to use aluminum or copper. All the metal foils used in the electromagnetic wave shielding material according to the present invention may be the same metal, or different metals may be used for each layer. Moreover, the metal alloy mentioned above can also be used.
  • the metal foil When copper foil is used as the metal foil, it is preferable to have high purity because the shielding performance is improved, and the purity is preferably 99.5% by mass or more, more preferably 99.8% by mass or more.
  • the copper foil a rolled copper foil, an electrolytic copper foil, a copper foil by metallization, or the like can be used, and a rolled copper foil excellent in flexibility and moldability is preferable.
  • alloy elements are added to the copper foil to obtain a copper alloy foil, the total content of these elements and inevitable impurities may be less than 0.5% by mass.
  • the copper foil contains at least one selected from the group consisting of Sn, Mn, Cr, Zn, Zr, Mg, Ni, Si, and Ag in a total amount of 200 to 2000 ppm by mass
  • a pure copper foil having the same thickness This is preferable because the elongation is further improved.
  • the electromagnetic wave shielding effect can be significantly improved.
  • the impedance of the metal oxide layer is generally larger than that of the metal foil and smaller than that of the insulating layer, so that the metal oxide exists at the interface with the insulating layer. It is assumed that the impedance mismatch is alleviated and the reflection is reduced, and the shielding effect is reduced. As the oxide layer becomes thicker, the reduction in the shielding effect increases due to the relaxation of the impedance mismatch. Therefore, the thinner the metal oxide layer, the better.
  • the thickness of the metal oxide layer at each interface is preferably 30 nm or less, more preferably 20 nm or less, and 15 nm or less. Even more preferred is 10 nm or less.
  • the electromagnetic shielding effect can be further enhanced.
  • the metal oxide layer on the outer surface becomes thinner, the contact resistance between the metal foil and the ground (in the embodiment, connected to the ground by contact with the KEC method measurement casing) is reduced.
  • the shielding effect is good because the potential of the metal foil is kept constant even when receiving electromagnetic waves.
  • the contact resistance is high, the shielding effect is reduced because the potential of the metal foil fluctuates due to electromagnetic waves.
  • the thickness of the metal oxide layer on the surface of the metal foil constituting the outer surface of the electromagnetic wave shielding material is preferably 30 nm or less, and is 20 nm or less. Is more preferably 15 nm or less, still more preferably 10 nm or less.
  • the thickness of the metal oxide layer is measured by the following procedure. Measurement is performed at three or more arbitrary locations, and the average value is taken as the measured value.
  • the electromagnetic wave shielding material to be measured is FIB (focused ion beam processing observation apparatus, Example In this case, cutting is performed in the thickness direction using Hitachi model FB-2100). Then, the exposed cross section is subjected to elemental analysis from the surface of the metal foil in the thickness direction at a measurement interval of 2 nm by a STEM (scanning transmission electron microscope), and the oxygen atom concentration at each measurement point is measured. The oxygen atom concentration is 2 at.
  • the range that maintains at least% is defined as the thickness of the oxide layer. That is, 2 at.
  • the distance to the point of less than% is the thickness of the metal oxide layer.
  • the range that maintains at least% is defined as the thickness of the metal oxide layer.
  • FIB focused ion beam processing observation apparatus
  • the exposed cross section is subjected to elemental analysis in the vicinity of the interface in the thickness direction at a measurement interval of 2 nm by a STEM (scanning transmission electron microscope), and the oxygen atom concentration at each measurement point is measured.
  • the atomic concentration and the insulating layer of the main component constituting the metal foil (the element having the highest component ratio, the total value if there are multiple elements having the highest component ratio; the same applies to the insulating layer)
  • the point where the atomic concentration of the main constituent component is reversed is defined as the metal foil / insulating layer interface, and the oxygen atom concentration is 2 at.
  • the range that maintains at least% is defined as the thickness of the metal oxide layer.
  • the measurement conditions for elemental analysis by STEM are as follows. Measuring equipment: Field emission transmission electron microscope with Cs collector (in the example, JEOL type JEM-2100F measuring equipment with Cs collector is used) Elemental analysis method: EDS analysis acceleration voltage: 200 kV Magnification: 500,000 times
  • the thickness of the metal foil used for the electromagnetic wave shielding material according to the present invention is preferably 4 ⁇ m or more per sheet. If it is less than 4 ⁇ m, the ductility of the metal foil is remarkably lowered, and the molding processability of the shield material may be insufficient. Further, if the thickness of the foil per sheet is less than 4 ⁇ m, it is necessary to laminate a large number of metal foils in order to obtain an excellent electromagnetic wave shielding effect, which causes a problem that the manufacturing cost increases. From such a viewpoint, the thickness of the metal foil is more preferably 10 ⁇ m or more, still more preferably 15 ⁇ m or more, still more preferably 20 ⁇ m or more, and further preferably 25 ⁇ m or more.
  • the thickness of the foil is preferably 50 ⁇ m or less, more preferably 45 ⁇ m or less, more preferably 40 ⁇ m, since the moldability deteriorates even if the thickness of the foil per sheet exceeds 50 ⁇ m. Even more preferably:
  • the metal foil it is necessary for the metal foil to be present in at least two layers in the electromagnetic shielding material from the viewpoint of securing excellent electromagnetic shielding characteristics while reducing the total thickness of the metallic foil, and it is preferable to have three or more layers.
  • the number of metal foil layers is three or more, the total thickness of the metal foil necessary for obtaining a magnetic field shielding characteristic of 30 dB or more can be suppressed in a low frequency region having a frequency of about 1 MHz, and the metal foil per sheet. Since there is no need to increase the thickness of the mold, the moldability is excellent.
  • the shielding effect is remarkably improved as compared with the case where the metal foil is a single layer or two layers.
  • the number of metal foils in the shield material is preferably 5 or less, and more preferably 4 or less.
  • the total thickness of the metal foil can be 8 to 200 ⁇ m, typically 15 to 150 ⁇ m, and can be 100 ⁇ m or less. It can also be 80 micrometers or less, and can also be 60 micrometers or less.
  • the thickness of the metal foil is defined as the thickness including the thickness of the oxide layer that can be formed on the surface of the metal foil.
  • Various surface treatment layers for the purpose of adhesion promotion, environmental resistance, heat resistance and rust prevention may be formed on the surface of the metal foil.
  • Au plating, Ag plating, Sn plating, Ni plating, Zn plating, Sn alloy plating (Sn—Ag) for the purpose of improving the environmental resistance and heat resistance required when the metal surface is the outermost layer.
  • Sn—Ni, Sn—Cu, etc. Sn—Ni, Sn—Cu, etc.
  • Sn plating or Sn alloy plating is preferable.
  • a roughening process, Ni plating, etc. can be performed in order to improve the adhesiveness of metal foil and an insulating layer. These processes may be combined.
  • a metal layer having a high relative permeability can be provided for the purpose of enhancing the shielding effect against a DC magnetic field.
  • the metal layer having a high relative magnetic permeability include Fe—Ni alloy plating and Ni plating.
  • a metal oxide layer may be formed depending on the type of surface treatment.
  • a chromate treatment is often performed.
  • the chromate treatment is not preferable because a chromium oxide layer is formed on the surface of the metal foil and causes a reduction in the electromagnetic shielding effect.
  • heat treatment may be accompanied, but even if the atmosphere is controlled, the metal oxide grows by reacting with the remaining oxygen. In order to prevent this, it is necessary to clean the surface and remove oxides under appropriate conditions after the heat treatment.
  • the dielectric constant of the insulating layer is small, specifically, it is 10.0 (a value at 20 ° C., the same shall apply hereinafter) or less. Preferably, it is 5.0 or less, more preferably 3.5 or less. In principle, the dielectric constant is never less than 1.0. Generally, it is about 2.0 at least for materials that can be obtained, and even if it is further lowered and approaches 1.0, the increase in shielding effect is limited, but the material itself becomes special and expensive. It becomes. Considering the balance between cost and action, the relative dielectric constant is preferably 2.0 or more, and more preferably 2.2 or more.
  • the material constituting the insulating layer includes glass, paper, natural resin, and synthetic resin, and synthetic resin is preferable from the viewpoint of processability. These materials can be mixed with fiber reinforcing materials such as carbon fiber, glass fiber and aramid fiber. Synthetic resins include polyesters such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate) and PBT (polybutylene terephthalate), olefinic resins such as polyethylene and polypropylene, polyamides, from the viewpoint of availability and processability.
  • Polyimide liquid crystal polymer, polyacetal, fluorine resin, polyurethane, acrylic resin, epoxy resin, silicone resin, phenol resin, melamine resin, ABS resin, polyvinyl alcohol, urea resin, polyvinyl chloride, polycarbonate, polystyrene, styrene butadiene rubber, etc.
  • PET, PEN, polyamide, and polyimide are preferred for reasons of processability and cost.
  • the synthetic resin may be an elastomer such as urethane rubber, chloroprene rubber, silicone rubber, fluoro rubber, styrene, olefin, vinyl chloride, urethane, and amide.
  • the synthetic resin itself may serve as an adhesive, and in this case, a structure in which metal foils are laminated via the adhesive is obtained.
  • the adhesive is not particularly limited, but acrylic resin, epoxy resin, urethane, polyester, silicone resin, vinyl acetate, styrene butadiene rubber, nitrile rubber, phenol resin, cyanoacrylate, etc. For reasons of ease of production and cost, urethane, polyester, and vinyl acetate are preferred.
  • metal oxide is excluded as a material constituting the “insulating layer”.
  • Resin material can be laminated in the form of a film or fiber. Further, the resin layer may be formed by applying an uncured resin composition to the metal foil and then curing the resin composition, but it is preferable to make a resin film that can be applied to the metal foil for ease of manufacture.
  • a PET film can be suitably used.
  • the strength of the shield material can be increased by using a biaxially stretched film as the PET film.
  • the thickness of the insulating layer is not particularly limited, but if the thickness per sheet is less than 6 ⁇ m, the (elongation) breaking strain of the shielding material tends to decrease, so the thickness per insulating layer is 6 ⁇ m or more. It is preferably 8 ⁇ m or more, more preferably 10 ⁇ m or more, even more preferably 20 ⁇ m or more, still more preferably 40 ⁇ m or more, and further preferably 80 ⁇ m or more. And more preferably 100 ⁇ m or more. On the other hand, even if the thickness per sheet exceeds 500 ⁇ m, the (elongation) breaking strain of the shielding material tends to decrease. Therefore, the thickness per insulating layer is preferably 500 ⁇ m or less, and more preferably 400 ⁇ m or less.
  • Examples of the method of laminating the insulating layer and the metal foil include a method using an adhesive between the insulating layer and the metal foil, or a method of simply overlapping without using an adhesive.
  • the metal surface and the resin are not heated press because the metal surface is oxidized by oxygen supply from atmospheric oxygen or resin remaining even if the atmosphere is controlled, A room temperature laminate is preferred. Even when a process such as drying of the adhesive is necessary, it is preferable to dry at a temperature as low as possible. Further, after lamination, it is preferable to clean the outer surface of the electromagnetic wave shielding material and remove the oxide under appropriate conditions, particularly when heated.
  • the adhesive is the same as described above, and there is no particular limitation, but acrylic resin, epoxy resin, urethane, polyester, silicone resin, vinyl acetate, styrene butadiene rubber, nitrile rubber, phenol Resin-based, cyanoacrylate-based and the like can be mentioned, and urethane-based, polyester-based, and vinyl acetate-based are preferable for ease of production and cost.
  • the thickness of the adhesive layer is preferably 6 ⁇ m or less. When the thickness of the adhesive layer exceeds 6 ⁇ m, only the metal foil is easily broken after being laminated on the metal foil composite. However, when the adhesive layer as described above also serves as the insulating layer, the thickness is not limited to this, and the thickness described in the description of the insulating layer can be used.
  • the electromagnetic wave shielding material according to the present invention needs to have a structure in which at least two metal foils are laminated via an insulating layer.
  • the following is mentioned as an example of the laminated structure which comprises the said requirements.
  • the layer indicated in parentheses may be added as appropriate.
  • one “metal foil” can be formed by laminating a plurality of metal foils without using an insulating layer, and one “insulating layer” can also be used without using a metal foil.
  • a plurality of insulating layers can be stacked.
  • layers other than an insulating layer and metal foil can also be provided.
  • the total thickness of the electromagnetic wave shielding material can be 14 to 1000 ⁇ m, can be 800 ⁇ m or less, can be 600 ⁇ m or less, and can be 400 ⁇ m or less. It can also be 200 micrometers or less.
  • the electromagnetic wave shielding material according to the present invention is particularly used for electric / electronic devices (for example, inverters, communication devices, resonators, electron tubes / discharge lamps, electric heating devices, electric motors, generators, electronic components, printed circuits, medical devices, etc.). Used for various electromagnetic shielding applications such as coating materials or exterior materials, harnesses and communication cable coating materials connected to electrical / electronic devices, electromagnetic shielding sheets, electromagnetic shielding panels, electromagnetic shielding bags, electromagnetic shielding boxes, electromagnetic shielding rooms, etc. It is possible.
  • electric / electronic devices for example, inverters, communication devices, resonators, electron tubes / discharge lamps, electric heating devices, electric motors, generators, electronic components, printed circuits, medical devices, etc.
  • electromagnetic shielding applications such as coating materials or exterior materials, harnesses and communication cable coating materials connected to electrical / electronic devices, electromagnetic shielding sheets, electromagnetic shielding panels, electromagnetic shielding bags, electromagnetic shielding boxes, electromagnetic shielding rooms, etc. It is possible.
  • the electromagnetic wave sealing material can have a magnetic field shielding characteristic of 20 dB or more (how much the signal has been attenuated on the receiving side) at 500 kHz, and preferably has a magnetic field shielding characteristic of 25 dB or more. More preferably, it can have a magnetic field shielding characteristic of 30 dB or more, for example, a magnetic field shielding characteristic of 20 to 40 dB.
  • the magnetic field shield characteristic is measured by the KEC method.
  • the KEC method refers to an “electromagnetic wave shielding characteristic measuring method” in the Kansai Electronics Industry Promotion Center.
  • Each metal foil and insulating film shown in Table 2 were prepared, and the electromagnetic shielding material of the Example and comparative example which have the laminated structure of Table 2 was produced. Each symbol described in Table 2 indicates the following.
  • the conductivity of the metal foil was measured by the double-brich method of JIS C2525: 1999.
  • the relative dielectric constant was measured by the B method described in JIS C 2151: 2006.
  • the thickness of the metal oxide layer at the locations shown in Table 2 was exposed by cross-section using FIB (focused ion beam processing observation apparatus, Hitachi model FB-2100), and then STEM (scanning transmission electron microscope: JEOL) Measurement was carried out by the measurement method described above according to JEM-2100F).
  • FIB focused ion beam processing observation apparatus, Hitachi model FB-2100
  • STEM scanning transmission electron microscope: JEOL
  • This electromagnetic shielding material was installed in a magnetic field shielding effect evaluation apparatus (Techno Science Japan Model TSES-KEC), and the magnetic field shielding effect was evaluated in the same manner as in Comparative Example 1. Further, the thickness of the metal oxide layer at the locations shown in Table 2 was exposed by cross-section using FIB (focused ion beam processing observation apparatus, Hitachi model FB-2100), and then STEM (scanning transmission electron microscope: JEOL) Measurement was carried out by the measurement method described above according to JEM-2100F). The order of the M1 layer, R1 layer, M2 layer, R2 layer, and M3 layer in Table 2 matches the order of the materials shown in “Laminated structure” in Table 2 (the same applies hereinafter). .
  • FIB focused ion beam processing observation apparatus, Hitachi model FB-2100
  • STEM scanning transmission electron microscope: JEOL
  • Comparative Example 5 excessive metal oxide layer
  • PI polyimide
  • a rolled copper foil having a thickness of 17 ⁇ m is used as the metal foil
  • the metal oxide surface is removed by degreasing and acid cleaning, and then the pressure is 220 N.
  • An electromagnetic wave shielding material having a laminated structure shown in Table 2 was produced by pressure bonding under the conditions of / cm 2 and a temperature of 200 ° C. to form a laminated body. This electromagnetic shielding material was installed in a magnetic field shielding effect evaluation apparatus (Techno Science Japan Model TSES-KEC), and the magnetic field shielding effect was evaluated in the same manner as in Comparative Example 1.
  • the thickness of the metal oxide layer at the locations shown in Table 2 was exposed by cross-section using FIB (focused ion beam processing observation apparatus, Hitachi model FB-2100), and then STEM (scanning transmission electron microscope: JEOL) Measurement was carried out by the measurement method described above according to JEM-2100F).
  • FIB focused ion beam processing observation apparatus, Hitachi model FB-2100
  • STEM scanning transmission electron microscope: JEOL
  • the thickness of the metal oxide layer at the locations shown in Table 2 was exposed by cross-section using FIB (focused ion beam processing observation apparatus, Hitachi model FB-2100), and then STEM (scanning transmission electron microscope: JEOL) Measurement was carried out by the measurement method described above according to JEM-2100F).
  • FIB focused ion beam processing observation apparatus, Hitachi model FB-2100
  • STEM scanning transmission electron microscope: JEOL
  • Example 1 By using the insulating film of the thickness and type shown in Table 2, and the metal foil of the thickness and type shown in Table 2, simply laminating without using an adhesive, the laminated structure shown in Table 2 An electromagnetic shielding material having a thickness of 10 was prepared. Each metal foil was used after removing the metal oxide by degreasing and acid cleaning the surface. In addition, by changing the concentration of acid used for cleaning in each example (acid cleaning was changed with 5 to 100 g / L of H 2 SO 4 aqueous solution) and cleaning time (changed with 1 to 60 seconds), the metal was changed. The thickness of the oxide layer was adjusted.
  • This electromagnetic shielding material was installed in a magnetic field shielding effect evaluation apparatus (Techno Science Japan Model TSES-KEC), and the magnetic field shielding effect was evaluated in the same manner as in Comparative Example 1. Further, the thickness of the metal oxide layer at the locations shown in Table 2 was exposed by cross-section using FIB (focused ion beam processing observation apparatus, Hitachi model FB-2100), and then STEM (scanning transmission electron microscope: JEOL) Measurement was carried out by the measurement method described above according to JEM-2100F).
  • FIB focused ion beam processing observation apparatus, Hitachi model FB-2100
  • STEM scanning transmission electron microscope: JEOL
  • FIG. 1 exemplarily shows the element concentration distribution near the M1 / R1 interface in Example 3. It can be seen that a point where the atomic concentration of Cu as the main component constituting the metal foil M1 and the atomic concentration of C as the main component constituting the insulating layer R1 are reversed exists at a distance of about 4 nm on the graph. This is the interface between the metal foil and the insulating layer.
  • FIG. 2 which is a partially enlarged view of FIG. 1, the oxygen atom concentration is 2 at. % Cannot be maintained at a distance of about 4 nm from the interface, indicating that the thickness of the metal oxide layer is 4 nm.
  • Example 2 Using the insulating film of the thickness and type shown in Table 2 and the metal foil of the thickness and type shown in Table 2, the adhesive (main agent RU-80, curing agent H-5, both manufactured by Rock Bond Co., Ltd.) ) was used to produce an electromagnetic wave shielding material having a laminated structure shown in Table 2. Each metal foil was used after removing the metal oxide by degreasing and acid cleaning the surface. Moreover, the thickness of the metal oxide layer was adjusted by changing the concentration of acid used for cleaning and the cleaning time in each example.
  • This electromagnetic shielding material was installed in a magnetic field shielding effect evaluation apparatus (Techno Science Japan Model TSES-KEC), and the magnetic field shielding effect was evaluated in the same manner as in Comparative Example 1.
  • the thickness of the metal oxide layer at the locations shown in Table 2 was exposed by cross-section using FIB (focused ion beam processing observation apparatus, Hitachi model FB-2100), and then STEM (scanning transmission electron microscope: JEOL) Measurement was carried out by the measurement method described above according to JEM-2100F).
  • FIB focused ion beam processing observation apparatus, Hitachi model FB-2100
  • STEM scanning transmission electron microscope: JEOL
  • Comparative Examples 1 to 3 are examples in which an electromagnetic shielding material was produced using only metal foil. Although the thickness of the metal oxide layer on the surface is small, since it is not a laminate with an insulating layer, a high electromagnetic shielding effect was not obtained. Comparative Examples 4 to 6 are electromagnetic wave shielding materials obtained by laminating a metal foil through an insulating layer. However, the thickness of the metal oxide layer at the outer surface of the metal foil and the interface with the insulating layer was large. An electromagnetic shielding effect was not obtained.
  • Examples 1 to 20 are electromagnetic shielding materials obtained by laminating metal foils via an insulating layer, and the thickness of the metal oxide layer at the outer surface of the metal foil and the interface with the insulating layer was small. A great improvement in the electromagnetic shielding effect was observed.
  • Example 6 and Comparative Example 5 have a laminated structure in which the number, type, and thickness of the metal foil and the insulating layer are the same, but the shielding effect is increased by 70% or more in dB value.
  • Example 19 and Comparative Example 6 have a laminated structure in which the number, type, and thickness of the metal foil and the insulating layer are the same, but the shielding effect is increased by 100% or more in dB value. This seems to be due to a synergistic effect of suppressing the thickness of the metal oxide layer and using three metal foils.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)

Abstract

 電磁波シールド特性が改善された電磁波シールド材を提供する。少なくとも二枚の金属箔が絶縁層を介して積層された構造を有する電磁波シールド材であり、各金属箔の絶縁層と接する界面の金属酸化物層の厚みがそれぞれ1~30nmである電磁波シールド材。

Description

電磁波シールド材
 本発明は電磁波シールド材に関する。とりわけ、本発明は電気・電子機器の被覆材又は外装材に関する。
 近年、地球環境問題に対する関心が全世界的に高まっており、電気自動車やハイブリッド自動車といった二次電池を搭載した環境配慮型自動車の普及が進展している。これらの自動車においては、搭載した二次電池から発生する直流電流をインバータを介して交流電流に変換した後、必要な電力を交流モータに供給し、駆動力を得る方式を採用するものが多い。インバータのスイッチング動作等に起因して電磁波が発生する。電磁波は車載の音響機器や無線機器等の受信障害となることから、インバータ或いはインバータと共にバッテリーやモータ等を金属製ケース内に収容して、電磁波シールドするという対策が行われてきた(特開2003-285002号公報)。
 また、自動車に限らず、通信機器、ディスプレイ及び医療機器を含め多くの電気・電子機器から電磁波が放射される。電磁波は精密機器の誤作動を引き起こす可能性があり、更には、人体に対する影響も懸念される。このため、電磁波シールド材を用いて電磁波の影響を軽減する各種の技術が開発されてきた。例えば、銅箔と樹脂フィルムとを積層してなる銅箔複合体が電磁波シールド材として用いられている(特開平7-290449号公報)。銅箔は電磁波シールド性を有し、樹脂フィルムは銅箔の補強のために積層される。また、絶縁材料からなる中間層の内側と外側にそれぞれ金属層を積層した電磁波シールド構造も知られている(特許第4602680号公報)。また、ベース基板と、前記ベース基板の一面に形成されて、金属層および高屈折率層(五酸化ニオブ)を含む複数の反復単位膜で構成された積層部材とを具備する電磁波遮断用光学部材も知られている(特開2008-21979号公報)。
特開2003-285002号公報 特開平7-290449号公報 特許第4602680号公報 特開2008-21979号公報
 このように、金属箔と絶縁層の積層体で構成された電磁波シールド材は知られているが、このような積層構造をもつ電磁波シール材の電磁波シールド特性については、未だ十分な研究がなされておらず未だ改善の余地が残されている。そこで、本発明は金属層と絶縁層の積層体で構成された電磁波シールド材の電磁波シールド特性を改善することを課題とする。
 本発明者は金属箔と絶縁層の積層体で構成された電磁波シールド材と電磁波シールド特性の関係について研究していく中で、金属箔の絶縁層との界面における金属酸化物層の厚みが電磁波シールド特性に有意な影響を与えることを見出した。そして、該酸化物層の厚みを制御することで同一の層構造を有する電磁波シールド材であってもシールド効果がdB値で5割以上も上昇し得ることが分かった。そのため、金属箔の絶縁層との界面における金属酸化物層の厚みを適切に制御することで同一のシールド効果を得るのに必要な電磁波シールド材の厚みを顕著に小さくすることが可能となり、電磁波シールド材の軽量化に大きく資することが分かった。本発明は当該知見に基づいて完成したものである。
 本発明は一側面において、少なくとも二枚の金属箔が絶縁層を介して積層された構造を有する電磁波シールド材であり、各金属箔の絶縁層と接する界面の金属酸化物層の厚みがそれぞれ1~30nmである電磁波シールド材である。
 本発明に係る電磁波シールド材の一実施形態においては、金属箔表面が電磁波シールド材の外表面を構成する場合、当該金属箔表面の金属酸化物層の厚みが1~30nmである。
 本発明に係る電磁波シールド材の別の一実施形態においては、各金属箔の厚みが4~50μmである。
 本発明に係る電磁波シールド材の更に別の一実施形態においては、金属箔の合計厚みが8~200μmである。
 本発明に係る電磁波シールド材の更に別の一実施形態においては、絶縁層の比誘電率が20℃で2.0~10.0である。
 本発明に係る電磁波シールド材の更に別の一実施形態においては、各金属箔の導電率が20℃で1.0×106S/m以上である。
 本発明に係る電磁波シールド材の更に別の一実施形態においては、絶縁層の厚みが6~500μmである。
 本発明に係る電磁波シールド材の更に別の一実施形態においては、シールド材の全体の厚みが14~1000μmである。
 本発明は別の一側面において、本発明に係る電磁波シールド材を備えた電気・電子機器用の被覆材又は外装材である。
 本発明は更に別の一側面において、本発明に係る被覆材又は外装材を備えた電気・電子機器である。
 本発明によれば、金属層と絶縁層の積層体で構成された電磁波シールド材の電磁波シールド特性を改善することが可能となる。例えば、自動車においては燃費向上の観点から軽量化が大きな課題となっているところ、本発明によれば、従来と同様のシールド効果をより薄く、軽量の電磁波シールド材により達成可能である。
実施例3におけるM1/R1界面付近の元素濃度分布を示すグラフである。 図1の部分拡大図である。
(金属箔)
 本発明に係る電磁波シールド材に使用する金属箔の材料としては特に制限はないが、交流磁界や交流電界に対するシールド特性を高める観点からは、導電性に優れた金属材料とすることが好ましい。具体的には、導電率が1.0×106S/m(20℃の値。以下同じ。)以上の金属によって形成することが好ましく、金属の導電率が10.0×106S/m以上であるとより好ましく、30.0×106S/m以上であると更により好ましく、50.0×106S/m以上であると最も好ましい。このような金属としては、導電率が約9.9×106S/mの鉄、導電率が約14.5×106S/mのニッケル、導電率が約39.6×106S/mのアルミニウム、導電率が約58.0×106S/mの銅、及び導電率が約61.4×106S/mの銀が挙げられる。電気抵抗率とコストの双方を考慮すると、アルミニウム又は銅を採用することが実用性上好ましい。本発明に係る電磁波シールド材中に使用する金属箔はすべて同一の金属であってもよいし、層毎に異なる金属を使用してもよい。また、上述した金属の合金を使用することもできる。
 金属箔として銅箔を使用する場合、シールド性能が向上することから、純度が高いものが好ましく、純度は好ましくは99.5質量%以上、より好ましくは99.8質量%以上である。銅箔としては、圧延銅箔、電解銅箔、メタライズによる銅箔等を用いることができるが、屈曲性及び成形加工性に優れた圧延銅箔が好ましい。銅箔中に合金元素を添加して銅合金箔とする場合、これらの元素と不可避的不純物との合計含有量が0.5質量%未満であればよい。特に、銅箔中に、Sn、Mn、Cr、Zn、Zr、Mg、Ni、Si、及びAgの群から選ばれる少なくとも1種以上を合計で200~2000質量ppm含有すると、同じ厚みの純銅箔より伸びが向上するので好ましい。
 電磁波シールド材に使用する各金属箔の絶縁層と接する界面における金属酸化物層を制御することにより電磁波シールド効果を有意に向上させることができる。理論によって本発明が限定されることを意図するものではないが、金属酸化物層のインピーダンスは一般に金属箔よりも大きく、絶縁層よりも小さいため、金属酸化物が絶縁層との界面に存在するとインピーダンスミスマッチが緩和されて反射が小さくなり、シールド効果が減少すると推察される。酸化物層が厚くなるほど、インピーダンスミスマッチの緩和によってシールド効果の減少は大きくなるため、金属酸化物層は薄いほど好ましい。参考に、500kHzにおける銅、酸化銅(Cu2O)及び樹脂(比誘電率=3)のインピーダンス(理論値又は文献値)を表1に示す。
500kHzにおける銅、銅酸化物及び樹脂のインピーダンスの比較
Figure JPOXMLDOC01-appb-T000001
Z=Z0×√(μr/εr
Z:求めるインピーダンス(Ω)
0:真空のインピーダンス=377Ω
μr:比透磁率(銅、銅酸化物、樹脂では1)
εr:比誘電率

*金属及び金属酸化物の比誘電率はεr=-jσ/(2πfε0)に近似される。
j:虚数単位
σ:導電率(S/m)、銅は58×106、Cu2Oは10-6~10-7(参考文献:神戸製鋼所技報Vol.62、No.2)
f:周波数(Hz)
ε0:真空の誘電率
 具体的には、シールド効果の向上効果が有意に現れることから、各界面における金属酸化物層の厚みが30nm以下であることが好ましく、20nm以下であることがより好ましく、15nm以下であることが更により好ましく、10nm以下であることが更により好ましい。金属酸化物層は薄いほど望ましいいが、金属表面は自然酸化するため0.5nm以下とするのは現実的に難しく、シールド効果に対する寄与も大きくない。そのため、各界面における金属酸化物層の厚みは0.5nm以上であるのが一般的であり、1nm以上であるのが典型的であり、2nm以上としてもよい。
 電磁波シールド材に使用する各金属箔の絶縁層と接する界面の金属酸化物層のみならず、電磁波シールド材の外表面が金属箔の表面である場合、当該表面における金属酸化物層を制御することで、電磁波シールド効果を更に高めることができる。理論によって本発明が限定されることを意図するものではないが、これは以下の理由によると推察される。外表面の金属酸化物層が薄くなると金属箔とアース(実施例ではKEC法測定筐体との接触でアースに接続している。)間の接触抵抗が小さくなる。金属箔とアース間の接触抵抗が低い場合が、電磁波を受けても金属箔の電位はアース電位のまま一定に保たれるためシールド効果は良好である。一方、当該接触抵抗が高いと金属箔の電位は電磁波によって変動するためシールド効果が減少する。
 具体的には、シールド効果の向上効果が有意に現れることから、電磁波シールド材の外表面を構成する金属箔表面における金属酸化物層の厚みが30nm以下であることが好ましく、20nm以下であることがより好ましく、15nm以下であることが更により好ましく、10nm以下であることが更により好ましい。金属酸化物層は薄いほど望ましいいが、金属表面は自然酸化するため0.5nm以下とするのは現実的に難しく、シールド効果に対する寄与も大きくない。そのため、電磁波シールド材の外表面を構成する金属箔表面金属酸化物層の厚みは0.5nm以上であるのが一般的であり、1nm以上であるのが典型的であり、2nm以上としてもよい。
 本発明において、金属酸化物層の厚みは以下の手順で測定する。測定は任意の3箇所以上行い、その平均値を測定値とする。
(1)金属箔が電磁波シールド材の外表面を構成する場合に、外表面における金属酸化物層の厚みを測定する場合
 測定対象となる電磁波シールド材をFIB(収束イオンビーム加工観察装置、実施例では日立製型式FB-2100を使用)により厚み方向に切断する。次いで、露出させた断面に対して、STEM(走査透過型電子顕微鏡)により、測定間隔2nmで厚み方向に金属箔表面から元素分析を行い、各測定点での酸素原子濃度を測定する。そして、酸素原子濃度が表面から2at.%以上を維持する範囲を酸化物層の厚みと定義する。すなわち、表面から最初に2at.%を下回った地点までの距離が金属酸化物層の厚みということである。金属箔と絶縁層が単に積層されているだけで接着していない場合は、金属箔と絶縁層を分離した上で測定してもよい。
(2)金属箔の絶縁層と接する界面における金属酸化物層の厚みを測定する場合
(2-1)金属箔と絶縁層が接着剤により接着しておらず容易に剥離可能な場合
 電磁波シールド材から、測定対象となる金属箔を絶縁層から分離した上で、FIB(収束イオンビーム加工観察装置、実施例では日立製型式FB-2100を使用)により厚み方向に切断する。次いで、露出させた断面に対して、STEM(走査透過型電子顕微鏡)により、測定間隔2nmで厚み方向に金属箔表面から元素分析を行い、各測定点での酸素原子濃度を測定する。そして、酸素原子濃度が表面から2at.%以上を維持する範囲を金属酸化物層の厚みと定義する。
(2-2)金属箔と絶縁層が接着剤により接着している場合
 電磁波シールド材をFIB(収束イオンビーム加工観察装置)により厚み方向に切断する。次いで、露出させた断面に対して、STEM(走査透過型電子顕微鏡)により、測定間隔2nmで厚み方向に界面付近の元素分析を行い、各測定点での酸素原子濃度を測定する。金属箔を構成する主成分(最も構成比率が高い元素を指し、構成比率の最も高い元素が複数ある場合は、その合計値とする。絶縁層の場合も同様。)の原子濃度と絶縁層を構成する主成分の原子濃度が逆転する点を金属箔/絶縁層の界面と定義し、界面よりも金属箔側で、酸素原子濃度が2at.%以上を維持する範囲を金属酸化物層の厚みと定義する。
 STEMによる元素分析の測定条件は以下とする。
測定機器:Csコレクタ付き電界放出型透過電子顕微鏡(実施例では日本電子製型式JEM-2100F Csコレクタ付測定機器を使用) 
元素分析手法:EDS分析
加速電圧:200kV
倍率:500000倍
 本発明に係る電磁波シールド材に使用する金属箔の厚みは、一枚当たり4μm以上であることが好ましい。4μm未満だと金属箔の延性が著しく低下し、シールド材の成形加工性が不十分となる場合がある。また、一枚当たりの箔の厚みが4μm未満だと優れた電磁波シールド効果を得るために多数の金属箔を積層する必要が出てくるため、製造コストが上昇するという問題も生じる。このような観点から、金属箔の厚みは一枚当たり10μm以上であることがより好ましく、15μm以上であることが更により好ましく、20μm以上であることが更により好ましく、25μm以上であることが更により好ましく、30μm以上であることが更により好ましい。一方で、一枚当たりの箔の厚みが50μmを超えても成形加工性を悪化させることから、箔の厚みは一枚当たり50μm以下であることが好ましく、45μm以下であることがより好ましく、40μm以下であることが更により好ましい。
 金属箔は電磁波シールド材中で少なくとも二層存在することが、金属箔の合計厚みを薄くしながらも優れた電磁波シールド特性を確保する観点から必要であり、三層以上とすることが好ましい。金属箔の層を三枚以上とすると、周波数が1MHz程度の低周波領域において30dB以上の磁界シールド特性を得るために必要な金属箔の合計厚みを小さく抑えることができ、一枚当たりの金属箔の厚みも大きくする必要がなくなるので成形加工性も優れている。また、金属箔を三枚以上積層することで、金属箔の合計厚みが同じだとしても金属箔が単層の場合や二枚積層する場合に比べて、シールド効果が顕著に向上する。ただし、金属箔の積層枚数は多い方が電磁波シールド特性は向上するものの、積層枚数を多くすると積層工程が増えるので製造コストの増大を招き、また、シールド向上効果も飽和する傾向にあるため、電磁波シールド材中の金属箔は五枚以下であるのが好ましく、四枚以下であるのがより好ましい。
 従って、本発明に係る電磁波シールド材の一実施形態においては、金属箔の合計厚みを8~200μmとすることができ、典型的には15~150μmとすることができ、100μm以下とすることもでき、80μm以下とすることもでき、60μm以下とすることもできる。なお、本発明において、金属箔の厚みは金属箔表面に形成され得る酸化物層の厚みを含めた厚みとして定義される。
 金属箔表面には接着促進、耐環境性、耐熱及び防錆などを目的とした各種の表面処理層が形成されていてもよい。例えば、金属面が最外層となる場合に必要とされる耐環境性、耐熱性を高めることを目的として、Auめっき、Agめっき、Snめっき、Niめっき、Znめっき、Sn合金めっき(Sn-Ag、Sn-Ni、Sn-Cuなど)などを施すことができる。これらの処理を組み合わせてもよい。コストの観点からSnめっきあるいはSn合金めっきが好ましい。また、金属箔と絶縁層との密着性を高めることを目的として、粗化処理、Niめっきなどを施すことができる。これらの処理を組み合わせてもよい。粗化処理が密着性を得られやすく好ましい。また、直流磁界に対するシールド効果を高めることを目的として、比透磁率の高い金属層を設けることができる。比透磁率の高い金属層としてはFe-Ni合金めっき、Niめっきなどが挙げられる。
 但し、表面処理の種類によっては金属酸化物層が形成される場合があるので注意するべきである。金属の表面処理としてはクロメート処理もよく行われるが、クロメート処理は金属箔表面にクロム酸化物層を形成してしまうことから電磁波シールド効果を低下させる要因となるため好ましくない。
 また、金属箔を製造する際には加熱処理を伴うこともあるが、雰囲気制御しても残留する酸素と反応して金属酸化物が成長する。これを防ぐためには熱処理後、適切な条件で表面を洗浄し酸化物を除去する必要がある。
(絶縁層)
 本発明に係る電磁波シールド材において、複数枚の金属箔を積層することによる電磁波シールド効果の顕著な改善は、金属箔と金属箔の間に絶縁層を挟み込むことで得られる。金属箔同士を直接重ねても、金属箔の合計厚みが増えることでシールド効果が向上するものの、顕著な向上効果は得られない。これは、金属箔間に絶縁層が存在することで電磁波の反射回数が増えて、電磁波が減衰されることによると考えられる。
 絶縁層としては、金属層とのインピーダンスの差が大きいものの方が優れた電磁波シールド効果を得る上では好ましい。大きなインピーダンスの差(インピーダンスミスマッチ)を生じさせるには、絶縁層の比誘電率が小さいことが必要であり、具体的には10.0(20℃の値。以下同じ。)以下であることが好ましく、5.0以下であることがより好ましく、3.5以下であることが更により好ましい。比誘電率は原理的には1.0より小さくなることはない。一般的に手に入る材料では低くても2.0程度であり、これ以上低くして1.0に近づけてもシールド効果の上昇は限られている一方、材料自体が特殊なものになり高価となる。コストと作用との兼ね合いを考えると、比誘電率は2.0以上であることが好ましく、2.2以上であることがより好ましい。
 具体的には、絶縁層を構成する材料としてはガラス、紙、天然樹脂、合成樹脂が挙げられ、加工性の観点から合成樹脂が好ましい。これらの材料には炭素繊維、ガラス繊維及びアラミド繊維などの繊維強化材を混入させることも可能である。合成樹脂としては、入手のしやすさや加工性の観点から、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)及びPBT(ポリブチレンテレフタレート)等のポリエステル、ポリエチレン及びポリプロピレン等のオレフィン系樹脂、ポリアミド、ポリイミド、液晶ポリマー、ポリアセタール、フッ素樹脂、ポリウレタン、アクリル樹脂、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ABS樹脂、ポリビニルアルコール、尿素樹脂、ポリ塩化ビニル、ポリカーボネート、ポリスチレン、スチレンブタジエンゴム等が挙げられ、これらの中でも加工性、コストの理由によりPET、PEN、ポリアミド、ポリイミドが好ましい。合成樹脂はウレタンゴム、クロロプレンゴム、シリコーンゴム、フッ素ゴム、スチレン系、オレフィン系、塩ビ系、ウレタン系、アミド系などのエラストマーとすることもできる。更には、合成樹脂自体が接着剤の役割を担ってもよく、この場合は金属箔が接着剤を介して積層された構造となる。接着剤としては特に制限はないが、アクリル樹脂系、エポキシ樹脂系、ウレタン系、ポリエステル系、シリコーン樹脂系、酢酸ビニル系、スチレンブタジエンゴム系、ニトリルゴム系、フェノール樹脂系、シアノアクリレート系などが挙げられ、製造しやすさとコストの理由により、ウレタン系、ポリエステル系、酢酸ビニル系が好ましい。
 なお、本発明においては「絶縁層」を構成する材料として金属酸化物は除外することとする。
 樹脂材料はフィルム状や繊維状の形態で積層することができる。また、金属箔に未硬化の樹脂組成物を塗布後に硬化させることで樹脂層を形成してもよいが、金属箔に貼付可能な樹脂フィルムとするのが製造しやすさの理由により好ましい。特にPETフィルムを好適に用いることができる。特に、PETフィルムとして2軸延伸フィルムを用いることにより、シールド材の強度を高めることができる。
 絶縁層の厚みは特に制限されないが、一枚当たりの厚みが6μmより薄いとシールド材の(伸び)破断歪が低下する傾向にあることから、絶縁層の一枚当たりの厚みは6μm以上であることが好ましく、8μm以上であることがより好ましく、10μm以上であることが更により好ましく、20μm以上であることが更により好ましく、40μm以上であることが更により好ましく、80μm以上であることが更により好ましく、100μm以上であることが更により好ましい。一方、一枚当たりの厚みが500μmを超えてもシールド材の(伸び)破断歪が低下する傾向にある。そこで、絶縁層の一枚当たりの厚みは500μm以下であることが好ましく、400μm以下であることがより好ましい。
 絶縁層と金属箔の積層方法としては、絶縁層と金属箔の間に接着剤を用いる方法又は接着剤を用いずに単に重ねる方法が挙げられる。電磁波シールド材の一体性を考慮すれば、少なくとも端部(例えばシールド材が四角形の場合は各辺)は接着剤により接合することが好ましい。一方、絶縁層を金属箔に熱圧着することで積層すると、雰囲気制御しても残留する雰囲気酸素や樹脂からの酸素供給により金属表面が酸化することから、金属箔と樹脂は加熱プレスではなく、常温ラミネートとするのが好ましい。接着剤の乾燥等の工程が必要な場合もできるだけ低温で乾燥させるのが好ましい。また、積層後は、加熱した場合には特に、適切な条件で電磁波シールド材の外表面を洗浄し酸化物を除去することが好ましい。
 接着剤としては先述したものと同様であり、特に制限はないが、アクリル樹脂系、エポキシ樹脂系、ウレタン系、ポリエステル系、シリコーン樹脂系、酢酸ビニル系、スチレンブタジエンゴム系、ニトリルゴム系、フェノール樹脂系、シアノアクリレート系などが挙げられ、製造しやすさとコストの理由により、ウレタン系、ポリエステル系、酢酸ビニル系が好ましい。
 接着剤層の厚みは6μm以下であることが好ましい。接着剤層の厚みが6μmを超えると、金属箔複合体に積層した後に金属箔のみが破断しやすくなる。ただし、先述したような接着剤層が絶縁層の役割を兼ねる場合は、この限りではなく、絶縁層の説明で述べた厚みとすることができる。
 本発明に係る電磁波シールド材は、少なくとも二枚の金属箔が絶縁層を介して積層された構造を有することを要する。当該要件を具備する積層構造の例としては、以下が挙げられる。括弧で表された層は適宜加えてもよいことを表す。
(1)(絶縁層)/金属箔/絶縁層/金属箔/(絶縁層)
(2)(絶縁層)/金属箔/絶縁層/金属箔/絶縁層/金属箔/(絶縁層)
(3)(絶縁層)/金属箔/絶縁層/金属箔/絶縁層/金属箔/絶縁層/金属箔/(絶縁層)
 (1)~(3)においては、一つの「金属箔」は絶縁層を介することなく複数の金属箔を積層して構成することができ、一つの「絶縁層」も金属箔を介することなく複数の絶縁層を積層して構成することができる。また、絶縁層や金属箔以外の層を設けることもできる。
 本発明に係る電磁波シールド材の一実施形態においては、電磁波シールド材の全体厚みを14~1000μmとすることができ、800μm以下とすることもでき、600μm以下とすることもでき、400μm以下とすることもでき、200μm以下とすることもできる。
 本発明に係る電磁波シールド材は、特に電気・電子機器(例えば、インバータ、通信機、共振器、電子管・放電ランプ、電気加熱機器、電動機、発電機、電子部品、印刷回路、医療機器等)の被覆材又は外装材、電気・電子機器に接続されたハーネスや通信ケーブルの被覆材、電磁波シールドシート、電磁波シールドパネル、電磁波シールド袋、電磁波シールド箱、電磁波シールド室など各種の電磁波シールド用途に利用することが可能である。
 本発明に係る電磁波シール材の一実施形態によれば、500kHzにおいて20dB以上の磁界シールド特性(受信側でどれだけ信号が減衰したか)をもつことができ、好ましくは25dB以上の磁界シールド特性をもつことができ、より好ましくは30dB以上の磁界シールド特性をもつことができ、例えば20~40dBの磁界シールド特性をもつことができる。本発明においては、磁界シールド特性はKEC法によって測定することとする。KEC法とは、関西電子工業振興センターにおける「電磁波シールド特性測定法」を指すものである。
 以下に本発明の実施例を比較例と共に示すが、これらは本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。
 表2に記載の各金属箔及び絶縁フィルムを準備して、表2に記載の積層構造を有する実施例及び比較例の電磁波シールド材を作製した。表2に記載の各記号は以下を示す。金属箔の導電率はJIS C2525:1999のダブルブリッチ法で測定した。比誘電率はJIS C 2151:2006に記載のB法により測定した。
Cu:圧延銅箔(20℃での導電率:58.0×106S/m)
Al:アルミ箔(20℃での導電率:39.6×106S/m)
電解Cu:電解銅箔(20℃での導電率:56.0×106S/m)
Ni:ニッケル箔(20℃での導電率:14.5×106S/m)
Fe:軟鉄箔(20℃での導電率:9.9×106S/m)
PI:ポリイミドフィルム(20℃での比誘電率:3.5)
PET:ポリエチレンテレフタレートフィルム(20℃での比誘電率:3.0)
PTFE:ポリテトラフルオロエチレンフィルム(20℃での比誘電率:2.1)
PA:ポリアミドフィルム(20℃での比誘電率:6.0)
PVC:ポリ塩化ビニル(20℃での比誘電率:3.3)
(比較例1~2:金属箔一枚)
 圧延銅箔(厚み:68μm)及びアルミ箔(厚み:100μm)について、表面を脱脂及び酸洗浄することで金属酸化物を除去した後、単層での磁界シールド効果を調査した。用意した金属材料を磁界シールド効果評価装置(テクノサイエンスジャパン社型式TSES-KEC)に設置して、周波数を500kHzとし、20℃の条件下で、KEC法により磁界シールド効果を評価した。また、表2に記載の箇所の金属酸化物層の厚みを、FIB(収束イオンビーム加工観察装置、日立製型式FB-2100)により断面露出させてから、STEM(走査透過型電子顕微鏡:日本電子製型式JEM-2100F)により先述した測定方法により測定した。
(比較例3:金属箔二枚)
 圧延銅箔(厚み:33μm)を二枚用意し、それぞれ表面を脱脂及び酸洗浄することで金属酸化物を除去した後、これを接着剤を介することなく単純に積層し、磁界シールド効果評価装置(テクノサイエンスジャパン社型式TSES-KEC)に設置して、比較例1と同様の方法で磁界シールド効果を評価した。また、表2に記載の箇所の金属酸化物層の厚みを、FIB(収束イオンビーム加工観察装置、日立製型式FB-2100)により断面露出させてから、STEM(走査透過型電子顕微鏡:日本電子製型式JEM-2100F)により先述した測定方法により測定した。
(比較例4:金属酸化物層過大)
 絶縁層として厚さ250μmのポリエチレンテレフタレート(PET)フィルムを用いた。金属箔として厚み7μmの圧延銅箔を用い、クロメート処理液(K2Cr27:4g/L、pH:3.5)中で電流密度3A/dm2で電解処理することで表面にクロメート層を設けた。用意した絶縁層及び金属箔を圧力220N/cm2、温度25℃の条件で圧着させて積層体とすることで、表2に記載の積層構造をもつ電磁波シールド材を作製した。この電磁波シールド材を磁界シールド効果評価装置(テクノサイエンスジャパン社型式TSES-KEC)に設置して、比較例1と同様の方法で磁界シールド効果を評価した。また、表2に記載の箇所の金属酸化物層の厚みを、FIB(収束イオンビーム加工観察装置、日立製型式FB-2100)により断面露出させてから、STEM(走査透過型電子顕微鏡:日本電子製型式JEM-2100F)により先述した測定方法により測定した。
 なお、表2中のM1層、R1層、M2層、R2層及びM3層の順序は表2中の「積層構造」において示されている材料の順序に一致する(以下、同様である。)。
(比較例5:金属酸化物層過大)
 絶縁層として厚さ100μmのポリイミド(PI)フィルムを用い、金属箔として厚み17μmの圧延銅箔を用い、金属箔表面を脱脂及び酸洗浄することで金属酸化物を除去した後、これらを圧力220N/cm2、温度200℃の条件で圧着させて積層体とすることで、表2に記載の積層構造をもつ電磁波シールド材を作製した。この電磁波シールド材を磁界シールド効果評価装置(テクノサイエンスジャパン社型式TSES-KEC)に設置して、比較例1と同様の方法で磁界シールド効果を評価した。また、表2に記載の箇所の金属酸化物層の厚みを、FIB(収束イオンビーム加工観察装置、日立製型式FB-2100)により断面露出させてから、STEM(走査透過型電子顕微鏡:日本電子製型式JEM-2100F)により先述した測定方法により測定した。
(比較例6:金属酸化物層過大)
 絶縁層として厚さ12μmのポリイミド(PI)フィルムを用い、金属箔として厚み17μmの銅箔を用い、金属箔表面の金属酸化物を除去しないまま、圧力220N/cm2、温度200℃の条件で積層体を圧着させて積層することで、表2に記載の積層構造をもつ電磁波シールド材を作製した。この電磁波シールド材を磁界シールド効果評価装置(テクノサイエンスジャパン社型式TSES-KEC)に設置して、比較例1と同様の方法で磁界シールド効果を評価した。また、表2に記載の箇所の金属酸化物層の厚みを、FIB(収束イオンビーム加工観察装置、日立製型式FB-2100)により断面露出させてから、STEM(走査透過型電子顕微鏡:日本電子製型式JEM-2100F)により先述した測定方法により測定した。
(実施例1、3~13、15~20)
 表2に記載の厚さ及び種類の絶縁フィルム、並びに、表2に記載の厚さ及び種類の金属箔を用い、接着剤を使用せずに単に積層することで、表2に記載の積層構造をもつ電磁波シールド材を作製した。各金属箔は、表面を脱脂及び酸洗浄することによって金属酸化物を除去してから用いた。また、各実施例における洗浄に用いる酸の濃度(酸洗浄はH2SO4水溶液5~100g/Lで変化させた)、洗浄時間(1~60秒で変化させた)を変化させることで金属酸化物層の厚みを調整した。この電磁波シールド材を磁界シールド効果評価装置(テクノサイエンスジャパン社型式TSES-KEC)に設置して、比較例1と同様の方法で磁界シールド効果を評価した。また、表2に記載の箇所の金属酸化物層の厚みを、FIB(収束イオンビーム加工観察装置、日立製型式FB-2100)により断面露出させてから、STEM(走査透過型電子顕微鏡:日本電子製型式JEM-2100F)により先述した測定方法により測定した。
 図1に、実施例3のM1/R1界面付近の元素濃度分布を例示的に示す。金属箔M1を構成する主成分であるCuの原子濃度と絶縁層R1を構成する主成分であるCの原子濃度が逆転する点がグラフ上で約4nmの距離に存在することが分かる。ここが金属箔と絶縁層の界面である。そして、図1の部分拡大図である図2には、界面よりも金属箔側で、酸素原子濃度が2at.%以上を維持できなくなる点が界面からの距離で約4nmのところに存在することから、金属酸化物層の厚みが4nmであることが分かる。
(実施例2、14)
 表2に記載の厚さ及び種類の絶縁フィルム、並びに、表2に記載の厚さ及び種類の金属箔を用い、接着剤(主剤RU-80、硬化剤H-5、いずれもロックボンド社製)を使用して積層することで、表2に記載の積層構造をもつ電磁波シールド材を作製した。各金属箔は、表面を脱脂及び酸洗浄することによって金属酸化物を除去してから用いた。また、各実施例における洗浄に用いる酸の濃度、洗浄時間を変化させることで金属酸化物層の厚みを調整した。この電磁波シールド材を磁界シールド効果評価装置(テクノサイエンスジャパン社型式TSES-KEC)に設置して、比較例1と同様の方法で磁界シールド効果を評価した。また、表2に記載の箇所の金属酸化物層の厚みを、FIB(収束イオンビーム加工観察装置、日立製型式FB-2100)により断面露出させてから、STEM(走査透過型電子顕微鏡:日本電子製型式JEM-2100F)により先述した測定方法により測定した。
(考察)
 結果を表2に示す。比較例1~3は金属箔のみを使用して電磁波シールド材を作製した例である。表面の金属酸化物層の厚みは小さいが、絶縁層との積層体ではないために、高い電磁波シールド効果は得られなかった。比較例4~6は絶縁層を介して金属箔を積層してなる電磁波シールド材であるが、金属箔の外表面及び絶縁層との界面における金属酸化物層の厚みが大きかったことから、高い電磁波シールド効果は得られなかった。
 一方、実施例1~20は絶縁層を介して金属箔を積層してなる電磁波シールド材であり、金属箔の外表面及び絶縁層との界面における金属酸化物層の厚みが小さかったことから、電磁波シールド効果の大きな向上が見られた。例えば、実施例6と比較例5は金属箔及び絶縁層の数、種類及び厚みが同じ積層構造をもつが、シールド効果はdB値で70%以上も上昇している。また、実施例19と比較例6は金属箔及び絶縁層の数、種類及び厚みが同じ積層構造をもつが、シールド効果はdB値で100%以上も上昇している。これは金属酸化物層の厚みを抑制したことと金属箔を三枚使用したこととの相乗効果によると思われる。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (10)

  1.  少なくとも二枚の金属箔が絶縁層を介して積層された構造を有する電磁波シールド材であり、各金属箔の絶縁層と接する界面の金属酸化物層の厚みがそれぞれ1~30nmである電磁波シールド材。
  2.  金属箔表面が電磁波シールド材の外表面を構成する場合、当該金属箔表面の金属酸化物層の厚みが1~30nmである請求項1に記載の電磁波シールド材。
  3.  各金属箔の厚みが4~50μmである請求項1又は2に記載の電磁波シールド材。
  4.  金属箔の合計厚みが8~200μmである請求項1~3の何れか一項に記載の電磁波シールド材。
  5.  絶縁層の比誘電率が20℃で2.0~10.0である請求項1~4の何れか一項に記載の電磁波シールド材。
  6.  各金属箔の導電率が20℃で1.0×106S/m以上である請求項1~5の何れか一項に記載の電磁波シールド材。
  7.  絶縁層の厚みが6~500μmである請求項1~6の何れか一項に記載の電磁波シールド材。
  8.  シールド材の全体の厚みが14~1000μmである請求項1~7の何れか一項に記載の電磁波シールド材。
  9.  請求項1~8の何れか一項記載の電磁波シールド材を備えた電気・電子機器用の被覆材又は外装材。
  10.  請求項9に記載の被覆材又は外装材を備えた電気・電子機器。
PCT/JP2015/067661 2015-03-31 2015-06-18 電磁波シールド材 WO2016157553A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/562,246 US10272646B2 (en) 2015-03-31 2015-06-18 Electromagnetic shielding material
KR1020177026934A KR101976969B1 (ko) 2015-03-31 2015-06-18 전자파 실드재
EP15887695.3A EP3261421B1 (en) 2015-03-31 2015-06-18 Electromagnetic shielding material
CN201580078484.4A CN107432102B (zh) 2015-03-31 2015-06-18 电磁波屏蔽材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015074342A JP6129232B2 (ja) 2015-03-31 2015-03-31 電磁波シールド材
JP2015-074342 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016157553A1 true WO2016157553A1 (ja) 2016-10-06

Family

ID=57006606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067661 WO2016157553A1 (ja) 2015-03-31 2015-06-18 電磁波シールド材

Country Status (7)

Country Link
US (1) US10272646B2 (ja)
EP (1) EP3261421B1 (ja)
JP (1) JP6129232B2 (ja)
KR (1) KR101976969B1 (ja)
CN (1) CN107432102B (ja)
TW (1) TWI611918B (ja)
WO (1) WO2016157553A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6341948B2 (ja) * 2016-03-31 2018-06-13 Jx金属株式会社 電磁波シールド材
CN109239429B (zh) * 2018-09-28 2022-01-25 上海联影医疗科技股份有限公司 超导磁体的屏蔽结构、真空容器及其磁共振成像系统
JP7008121B1 (ja) * 2020-12-09 2022-01-25 Jx金属株式会社 電磁波シールド材

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003060387A (ja) * 2001-08-17 2003-02-28 Furukawa Techno Research Kk 電磁波シールド材
JP2006135020A (ja) * 2004-11-04 2006-05-25 Kitagawa Ind Co Ltd 電磁波シールドフィルム
JP2006156946A (ja) * 2004-11-04 2006-06-15 Kitagawa Ind Co Ltd 電磁波シールドフィルム
JP2010168605A (ja) * 2009-01-20 2010-08-05 Nippon Mining & Metals Co Ltd 水濡れ性に優れた銅箔及びその製造方法
WO2011121801A1 (ja) * 2010-03-30 2011-10-06 Jx日鉱日石金属株式会社 電磁波シールド用複合体

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01207994A (ja) * 1988-02-16 1989-08-21 Seiko Epson Corp 電磁波シールド用基材
JPH07290449A (ja) 1994-04-27 1995-11-07 Matsushita Electric Works Ltd シート状の電磁波シールド成形材料及びその製造方法
JP4235396B2 (ja) 2002-03-29 2009-03-11 真和工業株式会社 インバータカバー
JP2004128158A (ja) 2002-10-01 2004-04-22 Fcm Kk 電磁波シールド材
FR2854940B1 (fr) 2003-05-16 2005-07-15 A T I Isolant multicouche
WO2005020655A1 (ja) 2003-08-25 2005-03-03 Asahi Glass Company, Limited 電磁波遮蔽積層体およびこれを用いたディスプレイ装置
JP4602680B2 (ja) 2004-03-22 2010-12-22 株式会社オーツカ 電磁波シールド構造
US8134084B2 (en) 2006-06-30 2012-03-13 Shin-Etsu Polymer Co., Ltd. Noise-suppressing wiring-member and printed wiring board
KR100962924B1 (ko) 2006-07-14 2010-06-10 삼성코닝정밀소재 주식회사 전자파 차폐용 광학 부재, 이를 포함하는 광학 필터 및디스플레이 장치
KR20090051007A (ko) 2006-09-04 2009-05-20 도레이 카부시키가이샤 광 투과성 전자파 실드 부재 및 그 제조 방법
KR100961224B1 (ko) * 2007-05-10 2010-06-03 삼성에스디아이 주식회사 필터 및 이를 구비한 디스플레이 장치
JP2008288613A (ja) 2008-08-04 2008-11-27 Idemitsu Kosan Co Ltd 電磁波シールド材
JP5318195B2 (ja) 2009-03-31 2013-10-16 Jx日鉱日石金属株式会社 電磁波シールド材及び電磁波シールド材の製造方法
JP2013145778A (ja) * 2012-01-13 2013-07-25 Zippertubing (Japan) Ltd 積層体及び電磁波シールドカバー
JP5887305B2 (ja) 2013-07-04 2016-03-16 Jx金属株式会社 電磁波シールド用金属箔、電磁波シールド材、及びシールドケーブル

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003060387A (ja) * 2001-08-17 2003-02-28 Furukawa Techno Research Kk 電磁波シールド材
JP2006135020A (ja) * 2004-11-04 2006-05-25 Kitagawa Ind Co Ltd 電磁波シールドフィルム
JP2006156946A (ja) * 2004-11-04 2006-06-15 Kitagawa Ind Co Ltd 電磁波シールドフィルム
JP2010168605A (ja) * 2009-01-20 2010-08-05 Nippon Mining & Metals Co Ltd 水濡れ性に優れた銅箔及びその製造方法
WO2011121801A1 (ja) * 2010-03-30 2011-10-06 Jx日鉱日石金属株式会社 電磁波シールド用複合体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3261421A4 *

Also Published As

Publication number Publication date
EP3261421B1 (en) 2020-09-09
CN107432102A (zh) 2017-12-01
TW201634269A (zh) 2016-10-01
EP3261421A4 (en) 2018-07-18
TWI611918B (zh) 2018-01-21
US20180079176A1 (en) 2018-03-22
US10272646B2 (en) 2019-04-30
CN107432102B (zh) 2019-07-30
JP2016195180A (ja) 2016-11-17
KR20170118920A (ko) 2017-10-25
EP3261421A1 (en) 2017-12-27
KR101976969B1 (ko) 2019-05-09
JP6129232B2 (ja) 2017-05-17

Similar Documents

Publication Publication Date Title
JP6278922B2 (ja) 電磁波シールド材
CN107710899B (zh) 电磁波屏蔽材料
KR101990243B1 (ko) 전자파 실드재
TWI790797B (zh) 電磁波屏蔽材料、電氣設備或電子設備用的覆蓋材料或外包裝材料及電氣設備或電子設備
JP6129232B2 (ja) 電磁波シールド材
CN108886883B (zh) 电磁波屏蔽材料
JP6563741B2 (ja) 電磁波シールド品
JP6557551B2 (ja) 電磁波シールド材
JP2016076664A (ja) 電磁波シールド材
TW202406445A (zh) 電磁波屏蔽材料、覆蓋材料或外裝材料以及電氣設備或電子設備
CN118077322A (zh) 电磁波屏蔽材料、覆盖材料或外装材料以及电气设备或电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887695

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177026934

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015887695

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15562246

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE