WO2016155469A1 - 一种应用平行四边形原理的机器人 - Google Patents

一种应用平行四边形原理的机器人 Download PDF

Info

Publication number
WO2016155469A1
WO2016155469A1 PCT/CN2016/075793 CN2016075793W WO2016155469A1 WO 2016155469 A1 WO2016155469 A1 WO 2016155469A1 CN 2016075793 W CN2016075793 W CN 2016075793W WO 2016155469 A1 WO2016155469 A1 WO 2016155469A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
vertical
parallelogram
main shaft
horizontal
Prior art date
Application number
PCT/CN2016/075793
Other languages
English (en)
French (fr)
Inventor
陆盘根
葛文龙
胡国平
Original Assignee
苏州神运机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州神运机器人有限公司 filed Critical 苏州神运机器人有限公司
Priority to MX2016014317A priority Critical patent/MX364221B/es
Priority to JP2016555470A priority patent/JP6318264B2/ja
Priority to RU2016141913A priority patent/RU2663510C2/ru
Priority to KR1020167023994A priority patent/KR101879114B1/ko
Priority to US15/122,811 priority patent/US20210114202A1/en
Priority to PL423215A priority patent/PL423215A1/pl
Publication of WO2016155469A1 publication Critical patent/WO2016155469A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/106Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links
    • B25J9/1065Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links with parallelograms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/02Arms extensible
    • B25J18/04Arms extensible rotatable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0091Shock absorbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/046Revolute coordinate type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements

Definitions

  • the invention relates to the technical field of industrial robots, in particular to a robot applying the principle of parallelogram.
  • the single-arm swinging manipulator on the market, because its moving route is circular arc shape, it is difficult to achieve horizontal linear movement of the gripper suction cup. In order to keep the gripper suction cup horizontal, it is often necessary to assist the power mechanism, so correspondingly Increase manufacturing costs.
  • the transmission arm of the existing manipulator is generally a single arm, and its stability is low, and the manipulator is liable to sway during the moving process, which seriously affects the control precision of the manipulator and is difficult to meet the precision requirements of people.
  • the present invention provides a robot applying the principle of parallelogram, which can ensure that the robot can always operate during the operation by articulating the two sets of swing arm assemblies to each other, and forming two parallelogram hinge structures.
  • the workpiece that is grasped by the gripper is in a horizontal state, which improves the stability of the workpiece.
  • a robot applying the principle of parallelogram characterized in that it comprises a base, the base is provided with a horizontally rotatable spindle, and one end of the spindle is provided with a spindle servo motor for driving the spindle, the spindle The other end is connected with a swing arm assembly, and the spindle servo motor drives the swing arm assembly to swing around the main shaft by driving the main shaft to rotate.
  • the swing arm assembly including a first swing arm assembly and a second swing arm assembly hingedly coupled to each other, the first swing arm assembly including an articulated a first arm of the spindle end, one side of the first arm is provided with two first levers for assisting the swinging of the first arm, and the two first levers are formed with the first arm a parallelogram hinge structure, a parallelogram hinge structure is also formed between the two first control rods;
  • the second swing arm assembly includes a second arm and two second control rods, one end of the second arm Engaging with an end of the first arm remote from the main shaft, the other end of the second arm is hinged with the gripper, and the two second control rods are respectively hinged to the two first control rods
  • An end portion, two of the second control rods form an articulated parallelogram structure, and a hinged parallelogram structure is also formed between the two second control rods and the second arm;
  • the gripper includes a lateral drive component, a vertical drive component, and a terminal gripper, the lateral drive component including a horizontal lateral support, a horizontal lateral power component, the vertical drive component including a vertical power component, a vertical bracket,
  • the third arm is fastened to the horizontal lateral bracket after passing through the third arm rotating sleeve, and the horizontal lateral bracket is provided with a horizontal transverse rail, the vertical direction a bracket is mounted on the horizontal transverse rail, an output end of the horizontal lateral power assembly is connected to the vertical bracket, and the vertical bracket is reciprocally movable along the horizontal transverse rail, and the vertical bracket is disposed in the vertical bracket a vertical rail, a vertical slider is embedded in the vertical rail, the vertical slider is connected to the terminal gripper through a connecting rod, and an output end of the vertical power assembly is connected to the vertical slider ;
  • the horizontal transverse track has a length of 1500 mm;
  • the horizontal lateral power component includes a flexible shaft servo motor, a motor output flexible shaft, an active synchronous wheel, a driven synchronous wheel, a timing belt, and the flexible shaft servo motor is connected to the active synchronous wheel through a motor output flexible shaft, and the active
  • the synchronous wheel and the driven synchronous wheel are connected by the synchronous belt, and the synchronous belt is located in a lateral mounting groove of the horizontal lateral bracket, and the active synchronous wheel and the driven synchronous wheel are respectively disposed in the horizontal mounting groove.
  • the two ends of the timing belt are fastened to the outer end surface of the timing belt, and the vertical bracket is simultaneously mounted on the horizontal horizontal rail.
  • the flexible shaft servo motor drives the active synchronous wheel to rotate.
  • the timing belt drives the vertical bracket to horizontally move horizontally along the horizontal transverse rail, so that the terminal gripper can move horizontally in the horizontal direction, thereby ensuring a wider working range of the entire robot;
  • the horizontal lateral support is provided with a lateral balance block to ensure the stability of the entire structure during operation;
  • the horizontal balance block is embedded in the inner cavity of the horizontal lateral bracket, and the horizontal balance block is fastened to the horizontal horizontal track by the balance block connecting plate, so that the horizontal transverse track is arranged reasonably and the structure is stable;
  • the flexible shaft servo motor is fixed to the second arm, and the length of the motor output flexible shaft ensures normal operation of the robot without entanglement;
  • the vertical power component is specifically a vertical cylinder, and the vertical cylinder is fixed to the vertical bracket, and the piston rod of the vertical cylinder is connected to the vertical slider, and the vertical slider is suspended. Directly moving up and down the cylinder to move up and down along the vertical track, so that the terminal gripper can be finely adjusted in the vertical direction;
  • a gravity balance block is disposed at a position away from the first arm of the main shaft.
  • a center of gravity of the gravity balance block and a plane where the spindle axis is located are perpendicular to a horizontal plane, so that the driving power is correspondingly reduced. Small to reduce power consumption;
  • a damping brake mechanism is disposed at an end of the main shaft away from the first arm, which can obtain different damping forces according to the size of the rotation angle to reduce the motion inertia of the main shaft;
  • the first arm working module includes a first arm working push rod, one end of the first arm working push rod is hinged on the first arm, and the other end is hinged to the first slider, the first slider
  • the first slider is disposed in a guiding track of the first arm working module, and the first slider is driven by the first arm working module servo motor to perform linear reciprocating motion along an axial direction of the main shaft;
  • the first slider is coupled to the tail end of the first arm working module by a damping spring group, thereby reducing gravity and motion inertia when the first arm moves to -45° to -80°, thereby reducing the first
  • the driving force of the arm working module saves energy and makes the operation energy consumption small;
  • the second arm working module includes a second arm working push rod, one end of the second arm working push rod is hinged on the second arm, and the other end is hinged on the second sliding block, the second sliding The block is disposed in a guiding track of the second arm working module, and the second sliding block is linearly reciprocated by the second arm working module servo motor driving along the axial direction of the second arm;
  • a damping spring plate is disposed on an inner upper portion of the first arm, and the damping spring plate acts at an angle of -45° to -90° of the second arm at the first arm, and is located at a second arm relative to the first arm Different damping is generated at different angles to reduce the gravity and motion inertia of the second arm, reduce the driving force of the second arm working module, save energy, and make the operation energy consumption small;
  • the main shaft is supported by two wall panels vertically disposed on the base, and the two of the wall panels are parallel At intervals, the gravity balance block is disposed in the middle of the two of the wall panels.
  • the axis of the first arm working push rod, the axis of the second arm working push rod and the axis of the main shaft are all located in the same plane;
  • a parallelogram supporting seat is fastened on a protruding side of the main shaft of the base, a first connecting shaft is supported on an upper end surface of the parallelogram supporting seat, and two parallel bottoms of the first control rod are respectively respectively Hinged to the first connecting shaft, the hinged shaft of the second arm and the first arm is inserted with an articulated shaft, the hinge shaft is provided with a front convex central protruding rod, the central protruding rod, the The front end of the central protruding rod is provided with a connecting base, the connecting base, the central protruding rod and the hinge shaft are integrally formed, and the upper ends of the two parallel first control rods are hingedly connected to the connecting base, two The lower end of the second control rod parallel to the root is hingedly connected to the connection base;
  • the connecting bases are respectively provided with two parallel connecting shafts, which are respectively: a second connecting shaft at the lower portion and a third connecting shaft at the upper portion, and the upper ends of the two parallel first control rods are respectively hinged Connecting the second connecting shaft, the lower ends of the two parallel second control rods are respectively hingedly connected to the third connecting shaft.
  • the two sets of swing arm assemblies are hinged to each other, and each group forms two parallelogram hinge structures, thereby ensuring that the robot can always ensure that the workpiece grasped by the gripper is in a horizontal state during the running process.
  • the stability of the workpiece pick-up is improved, and there is no need to provide a special power driving device for driving the workpiece level like the conventional robot, thereby saving energy, and the overall structure is simple and the cost is low.
  • FIG. 1 is a schematic structural view of a front view of a first embodiment of the present invention
  • Figure 2 is a side view of Figure 1;
  • Figure 3 is a front elevational view of a swing arm assembly according to a first embodiment of the present invention
  • Figure 4 is a side view of Figure 3;
  • FIG. 5 is a front view showing a state in which a workpiece is fed into a device according to a specific embodiment of the present invention
  • Figure 6 is a side view of Figure 5;
  • Figure 7 is a schematic structural view of a front view of a second embodiment of the present invention.
  • Figure 8 is a perspective view showing the structure of a perspective view of a second embodiment of the present invention (the base 1 is cut away);
  • a robot applying the principle of parallelogram see Fig. 1 to Fig. 8: comprising a base 1, the base 1 is provided with a horizontally rotatable spindle 3, and one end of the spindle 3 is provided with a spindle for driving the spindle 3 to rotate
  • the servo motor 5 has a swing arm assembly connected to the other end of the main shaft.
  • the spindle servo motor 5 rotates by driving the main shaft 3 to drive the swing arm assembly to swing around the circumference of the main shaft 3.
  • the free end of the swing arm assembly is connected with a workpiece for gripping the workpiece.
  • the grip arm assembly includes a first swing arm assembly and a second swing arm assembly hingedly coupled to each other, the first swing arm assembly including a first arm 22 hinged at an end of the main shaft, one side of the first arm 22 being disposed Assisting the two first control rods 21 of the first arm swinging, the two first control rods 21 and the first arm 22 form a parallelogram hinge structure, and the two first control rods 21 also form a parallelogram hinge structure;
  • the second swing arm assembly includes a second arm 19 and two second control levers 18, one end of which is hinged to an end of the first arm 22 remote from the main shaft 3, and the other end of the second arm 19 is hinged to the gripper.
  • Two second control rods 18 are respectively hinged at the ends of the two first control rods 21, and the two second control rods 18 form an articulated parallelogram structure, and between the two second control rods 18 and the second arm 19 Forming a hinged parallelogram a first arm working module 4 is disposed between the first arm 22 and the main shaft 3, and the first arm working module 4 is configured to drive the first arm 22 to rotate toward or away from the workpiece processing position; the second arm 19 A second arm working module 25 is disposed between the first arm 22 and the second arm working module 25 for driving the second arm 19 to rotate toward or away from the workpiece processing position, and the second arm 19 is away from the first
  • One end end of the arm 22 is hinged with a third arm rotating sleeve 16, and the third arm rotating sleeve 16 may be provided with a rotatable third arm 15 whose one end extends horizontally toward the second control rod 18 side.
  • the parallel connection plate 14 is connected to the end of the second control rod 18; the end of the third arm 15 remote from the second control
  • FIG. 1 includes a base 1 on which a horizontally rotatable spindle 3 is disposed.
  • One end of the spindle 3 is provided with a spindle servo motor 5 for driving the spindle 3 to rotate, and the other end of the spindle 3
  • the swing arm assembly is connected, and the spindle servo motor 5 rotates by driving the spindle 3 to drive the swing arm assembly to swing around the circumference of the main shaft 3.
  • the free end of the swing arm assembly is connected for grasping a gripper 12 of the piece;
  • the swing arm assembly includes a first swing arm assembly and a second swing arm assembly hingedly coupled to each other, the first swing arm assembly including a first arm 22 hinged to an end of the main shaft 3, the first arm 22
  • One side is provided with two first control rods 21 for assisting the swinging of the first arm 22.
  • the control rod 21 is hinged on the base 1 by the support assembly 28, and the two first control rods 21 and the first arm 22 form a parallelogram hinge structure. Referring to the four hinge points B, C, D, and E in FIG. 3, a hinge structure of parallelograms is also formed between the two first control rods 21, and four hinges B1, C1, C, and B in FIG.
  • a second swing arm assembly includes a second arm 19 and two second control levers 18, one end of which is hinged to an end of the first arm 22 remote from the main shaft 3, and the other end of the second arm 19 is gripped by a gripper 12 hinged, two second control rods 18 are respectively hinged at the ends of the two first control rods 21, and the two second control rods 18 form an articulated parallelogram structure, see A1, B1, B, A in FIG. Four hinge points, and a hinged parallelogram structure is also formed between the two second control rods 18 and the second arm 19, Referring to the four hinge points A, B, E, and F in FIG.
  • a first arm working module is disposed between the first arm 22 and the main shaft 3, and the first arm working module is used to drive the first arm 22 toward the vicinity. Or rotating away from the machining position of the workpiece; a second arm working module is disposed between the second arm 19 and the first arm 22, and the second arm working module is used to drive the second arm 19 toward or away from the workpiece processing position.
  • the direction is rotated.
  • the two-axis bidirectional parallel trajectory robot of the present embodiment hinges the two sets of swing arm assemblies to each other, and each group forms two parallelogram hinge structures, thereby ensuring that the robot can always ensure that the workpiece grasped by the gripper is in operation.
  • the horizontal state improves the stability of the workpiece handling, and does not require a special power driving device for driving the workpiece level like the conventional robot, thereby saving energy, and the overall structure is simple and the cost is low.
  • the first arm working module 4 includes a first arm working push rod 10, one end of which is hinged on the first arm 22 and the other end is hinged on the first slider 7, and the first slider 7 is disposed at In the guiding track of the first arm working module 4, the first slider 7 is driven by the first arm working module servo motor 8 along the main The axial direction of the shaft 3 is linearly reciprocated, i.e., moved to the left or right side of FIG.
  • the second arm working module 25 includes a second arm working push rod 23, one end of which is hinged to the second arm 19 and the other end is hinged to the second slider 24, and the second slider 24 is disposed at In the guiding track of the second arm working module 25, the second slider 24 is driven by the second arm working module servo motor 26 to linearly reciprocate along the axial direction of the second arm 19, that is, to the left side of FIG. 5 or Right side movement.
  • a gravity balance block 2 is disposed below the main shaft 3.
  • the center of gravity of the gravity balance block 2 and the plane of the axis of the main shaft 3 are perpendicular to the horizontal plane, and the weight of the fixed block balance block 2 is based on the swing arm assembly and the gripper.
  • the weight of the workpiece is matched and the weight is between 18kg and 27kg.
  • the main shaft 3 is supported by two wall panels 27 vertically disposed on the base 1, two wall panels 27 are arranged in parallel, and the gravity balance block 2 is disposed in the middle of the two wall panels 27.
  • the axis of the first arm working push rod 10, the axis of the second arm working push rod 23, and the axis of the main shaft 3 are all in the same plane. This arrangement is convenient for ensuring stability when transporting the workpiece to or from the work table. And accuracy.
  • the one end of the second arm 19 remote from the first arm 22 is hinged with a third arm rotating sleeve 16 via a rotating sleeve coupling 17, and the third arm rotating sleeve 16 can be provided with a rotatable third arm 15 and a third arm 15
  • One end end extending toward one side of the second lever 18 is connected with a parallel fixing plate 14 which is hingedly connected to the end of the second lever 18 through the universal joint 13; the third arm 15 is away from One end of the second lever 18 passes through the third arm rotating sleeve 16 and is fixedly coupled to the gripper 12, and the gripper 12 and the second lever 18 are connected by the gripper coupling 11.
  • the bottom hinge point of the first lever 21 is on the same horizontal line as the bottom hinge point of the first arm 22. This arrangement is convenient for installation and also ensures smooth performance of the gripper movement.
  • a first T-shaped structural arrangement is formed between the first arm 22 and the two first control rods 21, and the two first control rods 21 are symmetrically disposed on both sides of the first arm 22, and the second arm 19 and the two second control rods 18 are A T-shaped structural arrangement is also formed, and two second control rods 18 are symmetrically disposed on both sides of the second arm 19, and the first swing arm assembly and the second swing arm assembly are hingedly connected by the coupling 9.
  • a spindle reducer 6 is disposed between the spindle servo motor 5 and the spindle 3, and the spindle servo motor 5 and the spindle reducer 6 are both fixed to one of the wall plates 27. .
  • the hand 12 includes a lateral drive member, a vertical drive member, and a terminal grip 34.
  • the lateral drive member includes a horizontal transverse bracket 20 and a horizontal lateral power assembly.
  • the vertical drive member includes a vertical power assembly, a vertical bracket 29, and a third arm 15 After the third arm rotates the sleeve 16, the horizontal horizontal bracket 20 is fastened, and the horizontal transverse bracket 20 is provided with a horizontal transverse rail 30, the vertical bracket 29 is mounted on the horizontal transverse rail 30, and the output of the horizontal lateral power assembly is connected vertically.
  • the vertical bracket 29 is reciprocally movable along the horizontal transverse rail 30, and a vertical rail 31 is vertically disposed in the bracket 29, and the vertical slider 32 is fitted in the vertical rail 31, and the slider 32 is vertically passed.
  • the connecting rod 33 is connected to the terminal gripper 34, and the output end of the power assembly is vertically connected to the vertical sliding block 32;
  • the horizontal transverse track 30 has a length of 1500 mm;
  • the horizontal lateral power component includes a flexible shaft servo motor 35, a motor output flexible shaft 36, an active synchronous wheel 37, a driven synchronous wheel 38, a timing belt 39, and the flexible shaft servo motor 35 is connected through a motor output flexible shaft 36.
  • the active synchronous wheel 37, the active synchronous wheel 37 and the driven synchronous wheel 38 are connected by a timing belt 39.
  • the timing belt 39 is located in the lateral mounting groove 40 of the horizontal transverse bracket 20, and the active synchronous wheel 37 and the driven synchronous wheel 38 are respectively arranged.
  • the outer end surface of the timing belt 39 is fastened to the vertical bracket 29, and the vertical bracket 29 is simultaneously mounted on the convex horizontal transverse rail 30, and the flexible shaft servo motor 35 drives the active synchronous wheel. 37 rotates, thereby driving the timing belt 38 to drive the vertical bracket 29 to horizontally move horizontally along the horizontal transverse rail 30, so that the terminal gripper 34 can move horizontally in the horizontal direction, thereby ensuring a wider working range of the entire robot;
  • a horizontal balance block 41 is disposed in the horizontal lateral bracket 20 to ensure stability of the entire structure during operation;
  • the horizontal balance block 41 is embedded in the inner cavity 42 of the horizontal cross bracket 20, and the lateral balance block 41 is fastened to the horizontal horizontal rail 30 by the balance block connecting plate 43, so that the horizontal transverse rail 30 is arranged reasonably and the structure is stable;
  • the flexible shaft servo motor 35 is fixed to the second arm 19, and the length of the motor output flexible shaft 36 ensures the normal operation of the robot without entanglement;
  • the vertical power component is specifically a vertical cylinder 44, and the vertical cylinder 44 is fixed to the upper end surface of the vertical bracket 29, and the lower end of the piston rod perpendicularly to the cylinder 44 is connected to the vertical slider 32, and the vertical slider 32 is vertically oriented to the cylinder.
  • the vertical movement of the vertical track 31 is performed, so that the terminal gripper 34 can be finely adjusted in the vertical direction, and the robot terminal gripper 34 moves up and down by 0 to 100 mm, so that the robot does not need to use the robot when grasping and placing the workpiece.
  • the power of each servo motor to reduce the power consumption of the robot during normal operation and extend the service life of each motor;
  • a gravity balance block 2 is disposed at a position away from the first arm 22 of the main shaft 3.
  • the center of gravity of the gravity balance block 2 and the plane of the axis of the main shaft 3 are perpendicular to the horizontal plane, so that the driving power is correspondingly reduced.
  • a damping brake mechanism 45 is provided at the end of the main shaft 3 away from the first arm 22, which can be large according to the rotation angle Smallly obtain different damping forces to reduce the moment of inertia of the spindle;
  • the first arm working module 4 includes a first arm working push rod 10, one end of which is hinged on the first arm 22 and the other end is hinged on the first slider 7, and the first slider 7 is disposed at In the guiding track of the first arm working module 4, the first slider 7 is driven by the first arm working module servo motor 8 to perform linear reciprocating motion along the axial direction of the main shaft 3;
  • the first slider 7 is connected to the tail end of the first arm working module 4 through the damping spring group 46, thereby reducing the gravity and the moving inertia when the first arm moves to -45° to -80°, thereby lowering the first arm.
  • the driving force of the working module 4 saves energy and makes the operation energy consumption small;
  • the second arm working module 25 includes a second arm working push rod 23, one end of which is hinged to the second arm 19 and the other end is hinged to the second slider 24, and the second slider 24 is disposed at In the guiding track of the second arm working module 25, the second slider 24 is driven by the second arm working module servo motor 26 to perform linear reciprocating motion along the axial direction of the second arm 19;
  • the inner upper portion of the first arm 22 is provided with a damper spring plate 47 which acts at an angle of -45° to -90° of the second arm 19 at the first arm 22, and relative to the first arm 19 at the second arm 19
  • a damper spring plate 47 which acts at an angle of -45° to -90° of the second arm 19 at the first arm 22, and relative to the first arm 19 at the second arm 19
  • the axis of the first arm working push rod 10, the axis of the second arm working push rod 23 and the axis of the main shaft 3 are all in the same plane;
  • a parallelogram supporting seat 48 is fastened on the convex side of the main shaft 3 on the protruding side of the main shaft 3.
  • the first connecting shaft 49 is supported on the upper end surface of the parallelogram supporting seat 48, and the bottoms of the two parallel first control rods 21 are respectively hinged to The first connecting shaft 49, the hinge position of the second arm 19 and the first arm 22 is inserted with the hinge shaft 50.
  • the hinge shaft 50 is provided with a front convex central protruding rod 51, and the front end of the central protruding rod 51 is provided with a connecting base 52.
  • the connecting base 52, the central protruding rod 51 and the hinge shaft 50 form a whole, two flat
  • the upper end of the first control rod 21 of the row is hingedly connected to the connection base 52, and the lower ends of the two parallel second control rods 18 are hingedly connected to the connection base 52;
  • the third arm 15, the central protrusion 51 and the main shaft 3 are arranged in parallel, ensuring that the two sets of swing arm assemblies are hinged to each other, and each group forms two parallelogram hinge structures;
  • the connecting base 52 is respectively provided with two parallel connecting shafts, which are respectively a second connecting shaft 53 located at the lower portion and a third connecting shaft 54 at the upper portion, and the upper ends of the two parallel first control rods 21 are respectively hinged Connecting the second connecting shaft 53, the lower ends of the two parallel second control rods 18 are respectively hingedly connected to the third connecting shaft 54;
  • the spindle reducer 6 in the second embodiment is specifically a gear box
  • the terminal gripper 34 is driven by the flexible shaft servo motor 35 to be movable 1500 mm in the lateral direction, and can be vertically moved up and down by 100 mm by driving vertically to the cylinder 44, which makes the working range of the terminal gripper 34 of the entire robot. Larger and more suitable for modern work.
  • a dust cover 55 may be attached to the base of the first embodiment and the second embodiment for dustproofing.

Abstract

一种应用平行四边形原理的机器人,包括底座(1),底座(1)上设置有水平可转动的主轴(3),主轴(3)的一端设置有驱动所述主轴(3)转动的主轴伺服电机(5),主轴(3)的另一端连接有摇摆臂组件,主轴伺服电机(5)通过驱动主轴(3)转动进而带动所述摇摆臂组件绕着主轴(3)的周向摆动,摇摆臂组件的自由端连接有用于抓取工件的抓手(12);摇摆臂组件包括相互铰接在一起的第一摇摆臂组件和第二摇摆臂组件,通过将两组摇摆臂组件首尾相互铰接,并各组形成两个平行四边形的铰接结构,进而保证机器人在运行过程中始终能够保证抓手(12)抓取的工件处于水平状态,提高了工件拿取的稳定性。

Description

一种应用平行四边形原理的机器人 技术领域
本发明涉及工业机器人的技术领域,具体为一种应用平行四边形原理的机器人。
背景技术
工业机器人自动化生产线成套设备已成为自动化装备的主流机器人发展前景及未来的发展方向。汽车行业、电子电器行业、工程机械等行业已经大量使用工业机器人自动化生产线,以保证产品质量,提高生产效率,同时避免了大量的工伤事故。
目前,市面上的单臂摇摆式机械手,由于其移动路线为圆弧形,抓手吸盘难以实现水平的直线移动,为了让抓手吸盘保持水平,往往需要动力机构的辅助,如此也会相应的提高制造成本。并且现有的机械手的传动臂普遍为单臂,其稳定性较低,机械手在移动过程中容易产生晃动,严重影响机械手的控制精度,难以达到人们的精度需求。
发明内容
针对上述问题,本发明提供了一种应用平行四边形原理的机器人,其通过将两组摇摆臂组件首尾相互铰接,并各组形成两个平行四边形的铰接结构,进而保证机器人在运行过程中始终能够保证抓手抓取的工件处于水平状态,提高了工件拿取的稳定性。
一种应用平行四边形原理的机器人,其特征在于:其包括底座,所述底座上设置有水平可转动的主轴,所述主轴的一端设置有驱动所述主轴转动的主轴伺服电机,所述主轴的另一端连接有摇摆臂组件,所述主轴伺服电机通过驱动所述主轴转动进而带动所述摇摆臂组件绕着所述主轴的周向摆动,所 述摇摆臂组件的自由端连接有用于抓取工件的抓手;所述摇摆臂组件包括相互铰接在一起的第一摇摆臂组件和第二摇摆臂组件,所述第一摇摆臂组件包括铰接在所述主轴端部的第一臂,所述第一臂的一侧设置有协助所述第一臂摆动的两个第一控制杆,两个所述第一控制杆与所述第一臂形成平行四边形的铰接结构,两个所述第一控制杆之间也形成平行四边形的铰接结构;所述第二摇摆臂组件包括第二臂和两个第二控制杆,所述第二臂的一端与所述第一臂的远离所述主轴的一端铰接,所述第二臂的另一端与所述抓手铰接,两个所述第二控制杆分别铰接在两个所述第一控制杆的端部,两个所述第二控制杆形成铰接的平行四边形结构,两个所述第二控制杆与所述第二臂之间也形成铰接的平行四边形结构;所述第一臂与所述主轴之间设置有第一臂工作模组,所述第一臂工作模组用于驱动所述第一臂向靠近或远离所述工件加工位置的方向转动;所述第二臂与所述第一臂之间设置有第二臂工作模组,所述第二臂工作模组用于驱动所述第二臂向所述靠近或远离所述工件加工位置的方向转动,所述第二臂的远离所述第一臂的一端端部铰接有第三臂转动套,第三臂转动套可设置有可转动的第三臂,所述第三臂的水平朝向所述第二控制杆一侧延伸的一端端部连接有平行固定板,所述平行固定板与所述第二控制杆的端部铰接连接;所述第三臂的远离所述第二控制杆的一端穿过所述第三臂转动套并与所述抓手固定连接。
其进一步特征在于:
所述抓手包括横向驱动部件、垂直向驱动部件、终端抓手,所述横向驱动部件包括水平横向支架、水平横向动力组件,所述垂直向驱动部件包括垂直向动力组件、垂直向支架,所述第三臂穿过所述第三臂转动套后紧固连接所述水平横向支架,所述水平横向支架内设置有水平横向轨道,所述垂直向 支架卡装于所述水平横向轨道,所述水平横向动力组件的输出端连接所述垂直向支架,所述垂直向支架可沿着所述水平横向轨道往复移动,所述垂直向支架内设置有垂直向轨道,垂直向滑块嵌装于所述垂直向轨道内,所述垂直向滑块通过连接杆连接所述终端抓手,所述垂直向动力组件的输出端连接所述垂直向滑块;
所述水平横向轨道的长度为1500mm;
所述水平横向动力组件包括软轴伺服电机、电机输出软轴、主动同步轮、从动同步轮、同步带,所述软轴伺服电机通过电机输出软轴连接所述主动同步轮,所述主动同步轮、从动同步轮之间通过所述同步带连接,所述同步带位于所述水平横向支架的横向安装槽内,所述主动同步轮、从动同步轮分别布置于所述横向安装槽的两端位置,所述同步带的外侧端面紧固连接有垂直向支架,所述垂直向支架同时卡装于外凸的所述水平横向轨道,所述软轴伺服电机驱动主动同步轮转动,进而带动同步带带动垂直向支架沿着水平横向轨道水平横向移动,使得终端抓手可以在水平横向移动,确保整个机器人的工作范围更广;
所述水平横向支架内设置有横向平衡块,确保整个结构工作时的稳定;
所述横向平衡块嵌装于所述水平横向支架的内部腔体内,所述横向平衡块通过平衡块连接板紧固连接水平横向轨道,使得水平横向轨道布置合理,且结构稳定;
所述软轴伺服电机固装于第二臂,所述电机输出软轴的长度确保机器人的正常工作、且不会发生缠绕;
所述垂直向动力组件具体为垂直向气缸,所述垂直向气缸固装于所述垂直向支架,所述垂直向气缸的活塞杆连接所述垂直向滑块,垂直向滑块在垂 直向气缸的带动下沿着垂直向轨道做上下运动,使得终端抓手可以在垂直方向进行精细调整;
所述主轴的远离于第一臂的位置处设置有重力平衡块,所述主轴未转动时,所述重力平衡块的重心与所述主轴轴线所在的平面垂直于水平面,可使驱动动力相应减小,以降低电耗;
在所述主轴远离第一臂的末端设有阻尼刹车机构,其可根据转角的大小获取不同的阻尼力,以降低主轴的运动惯量;
所述第一臂工作模组包括第一臂工作推杆,所述第一臂工作推杆的一端铰接在所述第一臂上、另一端铰接在第一滑块,所述第一滑块设置在第一臂工作模组的导向轨道内,所述第一滑块由第一臂工作模组伺服电机驱动沿着所述主轴的轴线方向做线性往复运动;
所述第一滑块通过阻尼弹簧组与所述第一臂工作模组的尾端连接,从而以减少第一臂运动到-45°~-80°时的重力和运动惯量,进而降低第一臂工作模组的驱动力,节约能源,使得操作能耗小;
所述第二臂工作模组包括第二臂工作推杆,所述第二臂工作推杆的一端铰接在所述第二臂上、另一端铰接在第二滑块上,所述第二滑块设置在第二臂工作模组的导向轨道内,所述第二滑块由第二臂工作模组伺服电机驱动沿着所述第二臂的轴线方向做线性往复运动;
所述第一臂的内侧上部设置有阻尼弹簧板,所述阻尼弹簧板在第二臂位于第一臂成角为-45°~-90°起作用,在第二臂相对于第一臂位于不同角度时产生不同的阻尼,以减少第二臂的重力和运动惯量,降低第二臂工作模组的驱动力,,节约能源,使得操作能耗小;
所述主轴由垂直设置在所述底座上的两个墙板支撑,两个所述墙板平行 间隔设置,所述重力平衡块设置在两个所述墙板的中间。
所述第一臂工作推杆的轴线、所述第二臂工作推杆的轴线及所述主轴的轴线均位于同一平面内;
所述底座的位于所述主轴的凸出一侧紧固有平行四边形支撑座,第一连接轴支承于所述平行四边形支承座的上端面,两根平行的所述第一控制杆的底部分别铰接于所述第一连接轴,所述第二臂与所述第一臂的铰接位置插装有铰接轴,所述铰接轴设置有前凸的中心凸杆,所述中心凸杆,所述中心凸杆的前端设置有连接基座,所述连接基座、中心凸杆、铰接轴三者形成一个整体,两根平行的所述第一控制杆的上端铰接连接所述连接基座,两根平行的所述第二控制杆的下端铰接连接所述连接基座;
所述连接基座的上分别设置有两根平行连接轴,其分别为:位于下部的第二连接轴、位于上部的第三连接轴,两根平行的所述第一控制杆的上端分别铰接连接所述第二连接轴,两根平行的所述第二控制杆的下端分别铰接连接所述第三连接轴。
采用上述技术方案后,其通过将两组摇摆臂组件首尾相互铰接,并各组形成两个平行四边形的铰接结构,进而保证机器人在运行过程中始终能够保证抓手抓取的工件处于水平状态,提高了工件拿取的稳定性,且无需像传统机器人那样设置专门的用于驱动工件水平的动力驱动装置,因此能够节约能源,且整体结构简单,造价较低。
附图说明
图1为本发明的具体实施例一的主视图结构示意图;
图2为本图1的侧视图;
图3为本发明具体实施例一的摇摆臂组件的主视图;
图4为图3的侧视图;
图5为本发明具体实施例一将工件送入设备内时的主视状态图;
图6为图5的侧视状态图;
图7为本发明具体实施例二的主视图结构示意图;
图8为本发明具体实施例二的立体图结构示意图(底座1进行了剖视);
图中序号所对应的名称如下:
底座1、重力平衡块2、主轴3、第一臂工作模组4、主轴伺服电机5、主轴减速器6、第一滑块7、第一臂工作模组伺服电机8、联轴器9、第一臂工作推杆10、抓手联接器11、抓手12、万向联轴器13、平行固定板14、第三臂15、第三臂转动套16、转动套联接器17、第二控制杆18、第二臂19、水平横向支架20、第一控制杆21、第一臂22、第二臂工作推杆23、第二滑块24、第二臂工作模组25、第二臂工作模组伺服电机26、墙板27、支撑组件28、垂直向支架29、水平横向轨道30、垂直向轨道31、垂直向滑块32、连接杆33、终端抓手34、软轴伺服电机35、电机输出软轴36、主动同步轮37、从动同步轮38、同步带39、横向安装槽40、横向平衡块41、内部腔体42、平衡块连接板43、垂直向气缸44、阻尼刹车机构45、阻尼弹簧组46、阻尼弹簧板47、平行四边形支撑座48、第一连接轴49、铰接轴50、中心凸杆51、连接基座52、第二连接轴53、第三连接轴54、防尘罩55。
具体实施方式
下面结合附图和实施例对本发明进一步说明,图中箭头方向为相应部件的转动方向。
一种应用平行四边形原理的机器人,见图1~图8:其包括底座1,底座1上设置有水平可转动的主轴3,主轴3的一端设置有驱动主轴3转动的主轴 伺服电机5,主轴的另一端连接有摇摆臂组件,主轴伺服电机5通过驱动主轴3转动进而带动摇摆臂组件绕着主轴3的周向摆动,摇摆臂组件的自由端连接有用于抓取工件的抓手,摇摆臂组件包括相互铰接在一起的第一摇摆臂组件和第二摇摆臂组件,第一摇摆臂组件包括铰接在主轴端部的第一臂22,第一臂22的一侧设置有协助第一臂摆动的两个第一控制杆21,两个第一控制杆21与第一臂22形成平行四边形的铰接结构,两个第一控制杆21之间也形成平行四边形的铰接结构;第二摇摆臂组件包括第二臂19和两个第二控制杆18,第二臂19的一端与第一臂22的远离主轴3的一端铰接,第二臂19的另一端与抓手铰接,两个第二控制杆18分别铰接在两个第一控制杆21的端部,两个第二控制杆18形成铰接的平行四边形结构,两个第二控制杆18与第二臂19之间也形成铰接的平行四边形结构;第一臂22与主轴3之间设置有第一臂工作模组4,第一臂工作模组4用于驱动第一臂22向靠近或远离工件加工位置的方向转动;第二臂19与第一臂22之间设置有第二臂工作模组25,第二臂工作模组25用于驱动第二臂19向靠近或远离工件加工位置的方向转动,第二臂19的远离第一臂22的一端端部铰接有第三臂转动套16,第三臂转动套16可设置有可转动的第三臂15,第三臂15的水平朝向第二控制杆18一侧延伸的一端端部连接有平行固定板14,平行固定板14与第二控制杆18的端部铰接连接;第三臂15的远离第二控制杆18的一端穿过第三臂转动套16并与抓手12固定连接。
具体实施例一,见图1到图6:其包括底座1,底座1上设置有水平可转动的主轴3,主轴3的一端设置有驱动主轴3转动的主轴伺服电机5,主轴3的另一端连接有摇摆臂组件,主轴伺服电机5通过驱动主轴3转动进而带动摇摆臂组件绕着主轴3的周向摆动,摇摆臂组件的自由端连接有用于抓取工 件的抓手12;摇摆臂组件包括相互铰接在一起的第一摇摆臂组件和第二摇摆臂组件,第一摇摆臂组件包括铰接在主轴3端部的第一臂22,第一臂22的一侧设置有协助第一臂22摆动的两个第一控制杆21,控制杆21通过支撑组件28铰接在底座1上,两个第一控制杆21与第一臂22形成平行四边形的铰接结构,参见图3中的B、C、D、E四个铰接点,两个第一控制杆21之间也形成平行四边形的铰接结构,参见图4中的B1、C1、C、B四个铰接点;第二摇摆臂组件包括第二臂19和两个第二控制杆18,第二臂19的一端与第一臂22的远离主轴3的一端铰接,第二臂19的另一端与抓手12铰接,两个第二控制杆18分别铰接在两个第一控制杆21的端部,两个第二控制杆18形成铰接的平行四边形结构,参见图4中的A1、B1、B、A四个铰接点,两个第二控制杆18与第二臂19之间也形成铰接的平行四边形结构,参见图3中的A、B、E、F四个铰接点;第一臂22与主轴3之间设置有第一臂工作模组,第一臂工作模组用于驱动第一臂22向靠近或远离工件加工位置的方向转动;第二臂19与第一臂22之间设置有第二臂工作模组,第二臂工作模组用于驱动第二臂19向靠近或远离工件加工位置的方向转动。本实施例的双轴双向平行轨迹机器人通过将两组摇摆臂组件首尾相互铰接,并各组形成两个平行四边形的铰接结构,进而保证机器人在运行过程中始终能够保证抓手抓取的工件处于水平状态,提高了工件拿取的稳定性,且无需像传统机器人那样设置专门的用于驱动工件水平的动力驱动装置,因此能够节约能源,且整体结构简单,造价较低。
第一臂工作模组4包括第一臂工作推杆10,第一臂工作推杆10一端铰接在第一臂22上、另一端铰接在第一滑块7上,第一滑块7设置在第一臂工作模组4的导向轨道内,第一滑块7由第一臂工作模组伺服电机8驱动沿着主 轴3的轴线方向做线性往复运动,即向图5的左侧或右侧运动。
第二臂工作模组25包括第二臂工作推杆23,第二臂工作推杆23一端铰接在第二臂19上、另一端铰接在第二滑块24上,第二滑块24设置在第二臂工作模组25的导向轨道内,第二滑块24由第二臂工作模组伺服电机26驱动沿着第二臂19的轴线方向做线性往复运动,即向图5的左侧或右侧运动。
主轴3的下方设置有重力平衡块2,主轴3未转动时,重力平衡块2的重心与主轴3轴线所在的平面垂直于水平面,固定块平衡块2的重量的根据摇摆臂组件及抓手、工件重量总和匹配,重量在18kg-27kg之间;一旦摇摆臂组件在图4的左右方向摆动,重力平衡块2都会随主轴的转动而转动,进而使重力平衡块2的重心升高,在重力平衡块2的重力作用下,会对主轴3施加一个与主轴3转动方向相反的扭力,进而减少驱动扭矩以降低驱动功率,是常规六轴机器人第二轴扭矩的3/5,从而降低造价并节约能耗。
主轴3由垂直设置在底座1上的两个墙板27支撑,两个墙板27平行间隔设置,重力平衡块2设置在两个墙板27的中间。
第一臂工作推杆10的轴线、第二臂工作推杆23的轴线及主轴3的轴线均位于同一平面内,这种设置方式便于保证向工作台输送或从工作台取出工件时的稳定性和准确性。
第二臂19的远离第一臂22的一端端部通过转动套联接件17铰接有第三臂转动套16,第三臂转动套16可设置有可转动的第三臂15,第三臂15的向第二控制杆18一侧延伸的一端端部连接有平行固定板14,平行固定板14通过万向联轴器13与第二控制杆18的端部铰接连接;第三臂15的远离第二控制杆18的一端穿过第三臂转动套16并与抓手12固定连接,抓手12与第二控制杆18之间通过抓手联接器11连接。
第一控制杆21的底部铰接点与第一臂22的底部铰接点位于同一水平线上,这种设置方式既便于安装,同时也便于保证抓手运动的平稳性能。
第一臂22与两个第一控制杆21之间形成T字形结构布置,两个第一控制杆21对称设置在第一臂22两侧,第二臂19与两个第二控制杆18之间也形成T字形结构布置,两个第二控制杆18对称设置在第二臂19两侧,第一摇摆臂组件与第二摇摆臂组件之间通过联轴器9铰接连接。
为了便于控制主轴3的转速,增大主轴3的驱动扭力,主轴伺服电机5与主轴3之间设置有主轴减速器6,主轴伺服电机5和主轴减速器6均固定在其中一个墙板27上。
具体实施例二,见图7、图8,具体为应用平行四边形原理的七轴机器人:在将两组摇摆臂组件首尾相互铰接,并各组形成两个平行四边形的铰接结构后,机器人的抓手12包括横向驱动部件、垂直向驱动部件、终端抓手34,横向驱动部件包括水平横向支架20、水平横向动力组件,垂直向驱动部件包括垂直向动力组件、垂直向支架29,第三臂15穿过第三臂转动套16后紧固连接水平横向支架20,水平横向支架20内设置有水平横向轨道30,垂直向支架29卡装于水平横向轨道30,水平横向动力组件的输出端连接垂直向支架29,垂直向支架29可沿着水平横向轨道30往复移动,垂直向支架29内设置有垂直向轨道31,垂直向滑块32嵌装于垂直向轨道31内,垂直向滑块32通过连接杆33连接终端抓手34,垂直向动力组件的输出端连接垂直向滑块32;
水平横向轨道30的长度为1500mm;
水平横向动力组件包括软轴伺服电机35、电机输出软轴36、主动同步轮37、从动同步轮38、同步带39,软轴伺服电机35通过电机输出软轴36连接 主动同步轮37,主动同步轮37、从动同步轮38之间通过同步带39连接,同步带39位于水平横向支架20的横向安装槽40内,主动同步轮37、从动同步轮38分别布置于横向安装槽40的两端位置,同步带39的外侧端面紧固连接有垂直向支架29,垂直向支架29同时卡装于外凸的水平横向轨道30,软轴伺服电机35驱动主动同步轮37转动,进而带动同步带38带动垂直向支架29沿着水平横向轨道30水平横向移动,使得终端抓手34可以在水平横向移动,确保整个机器人的工作范围更广;
水平横向支架20内设置有横向平衡块41,确保整个结构工作时的稳定;
横向平衡块41嵌装于水平横向支架20的内部腔体42内,横向平衡块41通过平衡块连接板43紧固连接水平横向轨道30,使得水平横向轨道30布置合理,且结构稳定;
软轴伺服电机35固装于第二臂19,电机输出软轴36的长度确保机器人的正常工作、且不会发生缠绕;
垂直向动力组件具体为垂直向气缸44,垂直向气缸44固装于垂直向支架29的上端面,垂直向气缸44的活塞杆下端连接垂直向滑块32,垂直向滑块32在垂直向气缸44的带动下沿着垂直向轨道31做上下运动,使得终端抓手34可以在垂直方向进行精细调整,机器人终端抓手34上下移动0~100mm,便于机器人在抓、放工件时不需动用机器人的各个伺服电机功率,以降低该机器人在正常工作时的电耗和延长各电机的使用寿命;
主轴3的远离于第一臂22的位置处设置有重力平衡块2,主轴3未转动时,重力平衡块2的重心与主轴3轴线所在的平面垂直于水平面,可使驱动动力相应减小,以降低电耗;
在主轴3远离第一臂22的末端设有阻尼刹车机构45,其可根据转角的大 小获取不同的阻尼力,以降低主轴的运动惯量;
第一臂工作模组4包括第一臂工作推杆10,第一臂工作推杆10一端铰接在第一臂22上、另一端铰接在第一滑块7上,第一滑块7设置在第一臂工作模组4的导向轨道内,第一滑块7由第一臂工作模组伺服电机8驱动沿着主轴3的轴线方向做线性往复运动;
第一滑块7通过阻尼弹簧组46与第一臂工作模组4的尾端连接,从而以减少第一臂运动到-45°~-80°时的重力和运动惯量,进而降低第一臂工作模组4的驱动力,节约能源,使得操作能耗小;
第二臂工作模组25包括第二臂工作推杆23,第二臂工作推杆23一端铰接在第二臂19上、另一端铰接在第二滑块24上,第二滑块24设置在第二臂工作模组25的导向轨道内,第二滑块24由第二臂工作模组伺服电机26驱动沿着第二臂19的轴线方向做线性往复运动;
第一臂22的内侧上部设置有阻尼弹簧板47,阻尼弹簧板47在第二臂19位于第一臂22成角为-45°~-90°起作用,在第二臂19相对于第一臂22位于不同角度时产生不同的阻尼,以减少第二臂19的重力和运动惯量,降低第二臂工作模组25的驱动力,节约能源,使得操作能耗小;
第一臂工作推杆10的轴线、第二臂工作推杆23的轴线及主轴3的轴线均位于同一平面内;
底座1的位于主轴3的凸出一侧紧固有平行四边形支撑座48,第一连接轴49支承于平行四边形支承座48的上端面,两根平行的第一控制杆21的底部分别铰接于第一连接轴49,第二臂19与第一臂22的铰接位置插装有铰接轴50,铰接轴50设置有前凸的中心凸杆51,中心凸杆51的前端设置有连接基座52,连接基座52、中心凸杆51、铰接轴50三者形成一个整体,两根平 行的第一控制杆21的上端铰接连接连接基座52,两根平行的第二控制杆18的下端铰接连接连接基座52;
第三臂15、中心凸杆51、主轴3三者平行向布置,确保两组摇摆臂组件首尾相互铰接,并各组形成两个平行四边形的铰接结构;
连接基座52的上分别设置有两根平行连接轴,其分别为:位于下部的第二连接轴53、位于上部的第三连接轴54,两根平行的第一控制杆21的上端分别铰接连接第二连接轴53,两根平行的第二控制杆18的下端分别铰接连接第三连接轴54;
具体实施例二中的主轴减速器6具体为齿轮箱;
具体实施例二中终端抓手34通过软轴伺服电机35驱动可在横向左右移动1500mm,并通过垂直向气缸44驱动可在垂直向移动上下100mm,其使得整个机器人的终端抓手34的工作范围更大、更适用于现代化的工作。
具体实施例一和二中的底座上均可加装防尘罩55,用于防尘。
以上对本发明的一个实施例进行了详细说明,但所述内容仅为本发明创造的较佳实施例,不能被认为用于限定本发明的实施范围。凡依本发明申请范围所作的任何等同变化,均应仍处于本发明的专利涵盖范围之内。

Claims (15)

  1. 一种应用平行四边形原理的机器人,其特征在于:其包括底座,所述底座上设置有水平可转动的主轴,所述主轴的一端设置有驱动所述主轴转动的主轴伺服电机,所述主轴的另一端连接有摇摆臂组件,所述主轴伺服电机通过驱动所述主轴转动进而带动所述摇摆臂组件绕着所述主轴的周向摆动,所述摇摆臂组件的自由端连接有用于抓取工件的抓手;所述摇摆臂组件包括相互铰接在一起的第一摇摆臂组件和第二摇摆臂组件,所述第一摇摆臂组件包括铰接在所述主轴端部的第一臂,所述第一臂的一侧设置有协助所述第一臂摆动的两个第一控制杆,两个所述第一控制杆与所述第一臂形成平行四边形的铰接结构,两个所述第一控制杆之间也形成平行四边形的铰接结构;所述第二摇摆臂组件包括第二臂和两个第二控制杆,所述第二臂的一端与所述第一臂的远离所述主轴的一端铰接,所述第二臂的另一端与所述抓手铰接,两个所述第二控制杆分别铰接在两个所述第一控制杆的端部,两个所述第二控制杆形成铰接的平行四边形结构,两个所述第二控制杆与所述第二臂之间也形成铰接的平行四边形结构;所述第一臂与所述主轴之间设置有第一臂工作模组,所述第一臂工作模组用于驱动所述第一臂向靠近或远离所述工件加工位置的方向转动;所述第二臂与所述第一臂之间设置有第二臂工作模组,所述第二臂工作模组用于驱动所述第二臂向所述靠近或远离所述工件加工位置的方向转动,所述第二臂的远离所述第一臂的一端端部铰接有第三臂转动套,第三臂转动套可设置有可转动的第三臂,所述第三臂的水平朝向所述第二控制杆一侧延伸的一端端部连接有平行固定板,所述平行固定板与所述第二控制杆的端部铰接连接;所述第三臂的远离所述第二控制杆的一端穿过所述第三臂转动套并与所述抓手固定连接。
  2. 根据权利要求1所述的一种应用平行四边形原理的机器人,其特征在于:所述抓手包括横向驱动部件、垂直向驱动部件、终端抓手,所述横向驱动部件包括水平横向支架、水平横向动力组件,所述垂直向驱动部件包括垂直向动力组件、垂直向支架,所述第三臂穿过所述第三臂转动套后紧固连接 所述水平横向支架,所述水平横向支架内设置有水平横向轨道,所述垂直向支架卡装于所述水平横向轨道,所述水平横向动力组件的输出端连接所述垂直向支架,所述垂直向支架可沿着所述水平横向轨道往复移动,所述垂直向支架内设置有垂直向轨道,垂直向滑块嵌装于所述垂直向轨道内,所述垂直向滑块通过连接杆连接所述终端抓手,所述垂直向动力组件的输出端连接所述垂直向滑块。
  3. 根据权利要求2所述的一种应用平行四边形原理的机器人,其特征在于:所述水平横向动力组件包括软轴伺服电机、电机输出软轴、主动同步轮、从动同步轮、同步带,所述软轴伺服电机通过电机输出软轴连接所述主动同步轮,所述主动同步轮、从动同步轮之间通过所述同步带连接,所述同步带位于所述水平横向支架的横向安装槽内,所述主动同步轮、从动同步轮分别布置于所述横向安装槽的两端位置,所述同步带的外侧端面紧固连接有垂直向支架,所述垂直向支架同时卡装于外凸的所述水平横向轨道,所述软轴伺服电机驱动主动同步轮转动,进而带动同步带带动垂直向支架沿着水平横向轨道水平横向移动。
  4. 根据权利要求3所述的一种应用平行四边形原理的机器人,其特征在于:所述水平横向支架内设置有横向平衡块,所述横向平衡块嵌装于所述水平横向支架的内部腔体内,所述横向平衡块通过平衡块连接板紧固连接水平横向轨道。
  5. 根据权利要求3所述的一种应用平行四边形原理的机器人,其特征在于:所述软轴伺服电机固装于第二臂,所述电机输出软轴的长度确保机器人的正常工作、且不会发生缠绕。
  6. 根据权利要求2所述的一种应用平行四边形原理的机器人,其特征在于:所述垂直向动力组件具体为垂直向气缸,所述垂直向气缸固装于所述垂直向支架,所述垂直向气缸的活塞杆连接所述垂直向滑块,垂直向滑块在垂 直向气缸的带动下沿着垂直向轨道做上下运动。
  7. 根据权利要求1或2所述的一种应用平行四边形原理的机器人,其特征在于:所述主轴的远离于第一臂的位置处设置有重力平衡块,所述主轴未转动时,所述重力平衡块的重心与所述主轴轴线所在的平面垂直于水平面。
  8. 根据权利要求1或2所述的一种应用平行四边形原理的机器人,其特征在于:在所述主轴远离第一臂的末端设有阻尼刹车机构,其可根据转角的大小获取不同的阻尼力。
  9. 根据权利要求1或2所述的一种应用平行四边形原理的机器人,其特征在于:所述第一臂工作模组包括第一臂工作推杆,所述第一臂工作推杆的一端铰接在所述第一臂上、另一端铰接在第一滑块,所述第一滑块设置在第一臂工作模组的导向轨道内,所述第一滑块由第一臂工作模组伺服电机驱动沿着所述主轴的轴线方向做线性往复运动。
  10. 根据权利要求9所述的一种应用平行四边形原理的机器人,其特征在于:所述第一滑块通过阻尼弹簧组与所述第一臂工作模组的尾端连接。
  11. 根据权利要求1或2所述的一种应用平行四边形原理的机器人,其特征在于:所述第二臂工作模组包括第二臂工作推杆,所述第二臂工作推杆的一端铰接在所述第二臂上、另一端铰接在第二滑块上,所述第二滑块设置在第二臂工作模组的导向轨道内,所述第二滑块由第二臂工作模组伺服电机驱动沿着所述第二臂的轴线方向做线性往复运动。
  12. 根据权利要求11所述的一种应用平行四边形原理的机器人,其特征在于:所述第一臂的内侧上部设置有阻尼弹簧板。
  13. 根据权利要求1或2所述的一种应用平行四边形原理的机器人,其特征在于:所述第一臂工作推杆的轴线、所述第二臂工作推杆的轴线及所述主轴的轴线均位于同一平面内。
  14. 根据权利要求1或2所述的一种应用平行四边形原理的机器人,其特征在于:所述底座的位于所述主轴的凸出一侧紧固有平行四边形支撑座,第 一连接轴支承于所述平行四边形支承座的上端面,两根平行的所述第一控制杆的底部分别铰接于所述第一连接轴,所述第二臂与所述第一臂的铰接位置插装有铰接轴,所述铰接轴设置有前凸的中心凸杆,所述中心凸杆,所述中心凸杆的前端设置有连接基座,所述连接基座、中心凸杆、铰接轴三者形成一个整体,两根平行的所述第一控制杆的上端铰接连接所述连接基座,两根平行的所述第二控制杆的下端铰接连接所述连接基座。
  15. 根据权利要求14所述的一种应用平行四边形原理的机器人,其特征在于:所述连接基座上分别设置有两根平行连接轴,其分别为:位于下部的第二连接轴、位于上部的第三连接轴,两根平行的所述第一控制杆的上端分别铰接连接所述第二连接轴,两根平行的所述第二控制杆的下端分别铰接连接所述第三连接轴。
PCT/CN2016/075793 2015-04-02 2016-03-07 一种应用平行四边形原理的机器人 WO2016155469A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2016014317A MX364221B (es) 2015-04-02 2016-03-07 Robot que usa el principio del paralelogramo.
JP2016555470A JP6318264B2 (ja) 2015-04-02 2016-03-07 平行四辺形の原理を適用するロボット
RU2016141913A RU2663510C2 (ru) 2015-04-02 2016-03-07 Робот, выполненный с использованием принципа параллелограмма
KR1020167023994A KR101879114B1 (ko) 2015-04-02 2016-03-07 평행사변형 원리를 응용한 로봇
US15/122,811 US20210114202A1 (en) 2015-04-02 2016-03-07 Robot using the parallelogram principle
PL423215A PL423215A1 (pl) 2015-04-02 2016-03-07 Robot stosujący zasadę równoległoboku

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510155279.5A CN104723334B (zh) 2015-04-02 2015-04-02 一种双轴双向平行轨迹机器人
CN201510155279.5 2015-04-02

Publications (1)

Publication Number Publication Date
WO2016155469A1 true WO2016155469A1 (zh) 2016-10-06

Family

ID=53448053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075793 WO2016155469A1 (zh) 2015-04-02 2016-03-07 一种应用平行四边形原理的机器人

Country Status (10)

Country Link
US (1) US20210114202A1 (zh)
JP (1) JP6318264B2 (zh)
KR (1) KR101879114B1 (zh)
CN (1) CN104723334B (zh)
GE (1) GEP20196981B (zh)
MX (1) MX364221B (zh)
MY (1) MY178271A (zh)
PL (1) PL423215A1 (zh)
RU (1) RU2663510C2 (zh)
WO (1) WO2016155469A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107020643A (zh) * 2017-05-24 2017-08-08 北京镁伽机器人科技有限公司 物体夹持部和机器人
CN110340876A (zh) * 2019-08-13 2019-10-18 唐山市德丰机械设备有限公司 一种煤矸石分选并联柔性三自由度机器人
CN110480620A (zh) * 2019-09-17 2019-11-22 洛阳戴梦特智能装备制造有限公司 一种机压成型耐火砖的搬运机器人
CN113433944A (zh) * 2021-07-06 2021-09-24 广州市新豪精密科技有限公司 一种并联机器人及其轨迹控制方法
CN114538068A (zh) * 2022-02-08 2022-05-27 重庆绿森钢化中空玻璃有限公司 一种玻璃制品生产摆放装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104723334B (zh) * 2015-04-02 2016-10-19 苏州神运机器人有限公司 一种双轴双向平行轨迹机器人
CN105082181A (zh) * 2015-08-31 2015-11-25 苏州神运机器人有限公司 一种带有平衡凸轮块的阻尼平衡装置
CN105090347B (zh) * 2015-08-31 2017-12-01 苏州神运机器人有限公司 一种阻尼平衡装置
CN105041965B (zh) * 2015-08-31 2017-06-06 苏州神运机器人有限公司 一种阻尼拉簧平衡装置
CN105522568B (zh) * 2016-02-02 2017-12-01 苏州神运机器人有限公司 一种有横向运动机构的七轴机器人
CN106272370A (zh) * 2016-08-12 2017-01-04 无锡百禾工业机器人有限公司 一种工业机械手臂
CN109454623B (zh) * 2018-12-30 2023-12-19 深圳市普渡科技有限公司 舱盖开关机构及机器人
CN109794949A (zh) * 2019-03-11 2019-05-24 桂林理工大学 一种抓取机构及射击机器人
CN109895072A (zh) * 2019-04-09 2019-06-18 徐伟锋 一种工业搬运机器人
CN110092126B (zh) * 2019-05-23 2023-11-24 深圳爱她他智能餐饮技术有限公司 一种连续块状可切割物料存取系统及其存取方法
JP2022019251A (ja) * 2020-07-17 2022-01-27 日本電産サンキョー株式会社 産業用ロボット
CN113351724B (zh) * 2021-07-06 2023-04-21 佛山市巨力数控机械科技有限公司 一种双轮旋压机
CN114047114B (zh) * 2021-11-12 2023-11-03 沈阳农业大学 户外便携式人工模拟降雨装置
CN114750668A (zh) * 2022-03-14 2022-07-15 上海金盾特种车辆装备有限公司 装卸机构及车辆
CN114939493B (zh) * 2022-05-05 2023-09-19 清华大学 混联喷涂装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07266265A (ja) * 1994-03-24 1995-10-17 Nachi Fujikoshi Corp 産業用ロボット
JP2007160413A (ja) * 2005-12-09 2007-06-28 Nachi Fujikoshi Corp 産業用ロボット
CN101049690A (zh) * 2007-04-25 2007-10-10 大连理工大学 悬臂式水火加工机器人
CN103056875A (zh) * 2012-12-27 2013-04-24 广西大学 一种大工作空间可控机构式码垛机
CN103192378A (zh) * 2013-02-06 2013-07-10 李月芹 码垛机械人
CN204123407U (zh) * 2014-09-06 2015-01-28 苏州神运机器人有限公司 一种压力机专用搬运机器人
CN104723334A (zh) * 2015-04-02 2015-06-24 苏州荣威工贸有限公司 一种双轴双向平行轨迹机器人
CN204525474U (zh) * 2015-04-02 2015-08-05 苏州荣威工贸有限公司 一种双轴双向平行轨迹机器人

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114487A (ja) * 1983-11-28 1985-06-20 不二輸送機工業株式会社 ロボツトのリンク機構均衡保持装置
JPS6195888A (ja) * 1984-10-15 1986-05-14 株式会社クボタ 産業用ロボツト
CN1005137B (zh) * 1985-06-01 1989-09-13 本田技研工业株式会社 滚焊机的工件送进装置
CH672089A5 (zh) * 1985-12-16 1989-10-31 Sogeva Sa
JPH02232193A (ja) * 1989-02-28 1990-09-14 Pentel Kk 多関節型ロボットのバランス装置
JPH04176576A (ja) * 1990-11-10 1992-06-24 Nippon Chemicon Corp 自動調芯機能を備えたワーク供給装置
RU2022769C1 (ru) * 1991-10-22 1994-11-15 Новочеркасский политехнический институт им.С.Орджоникидзе Манипулятор
JP2007089465A (ja) * 2005-09-28 2007-04-12 Iseki & Co Ltd 作業車両のアーム型作業機
JP4148280B2 (ja) * 2005-10-18 2008-09-10 セイコーエプソン株式会社 平行リンク機構及び産業用ロボット
JP3162342U (ja) * 2009-02-16 2010-09-02 兼光 文東 取出機
EP2319995B1 (en) * 2009-11-06 2012-10-03 Caterpillar, Inc. Apparatus for moving a platform
CN201573203U (zh) * 2009-12-29 2010-09-08 上海电机学院 一种机械手爪

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07266265A (ja) * 1994-03-24 1995-10-17 Nachi Fujikoshi Corp 産業用ロボット
JP2007160413A (ja) * 2005-12-09 2007-06-28 Nachi Fujikoshi Corp 産業用ロボット
CN101049690A (zh) * 2007-04-25 2007-10-10 大连理工大学 悬臂式水火加工机器人
CN103056875A (zh) * 2012-12-27 2013-04-24 广西大学 一种大工作空间可控机构式码垛机
CN103192378A (zh) * 2013-02-06 2013-07-10 李月芹 码垛机械人
CN204123407U (zh) * 2014-09-06 2015-01-28 苏州神运机器人有限公司 一种压力机专用搬运机器人
CN104723334A (zh) * 2015-04-02 2015-06-24 苏州荣威工贸有限公司 一种双轴双向平行轨迹机器人
CN204525474U (zh) * 2015-04-02 2015-08-05 苏州荣威工贸有限公司 一种双轴双向平行轨迹机器人

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107020643A (zh) * 2017-05-24 2017-08-08 北京镁伽机器人科技有限公司 物体夹持部和机器人
CN110340876A (zh) * 2019-08-13 2019-10-18 唐山市德丰机械设备有限公司 一种煤矸石分选并联柔性三自由度机器人
CN110480620A (zh) * 2019-09-17 2019-11-22 洛阳戴梦特智能装备制造有限公司 一种机压成型耐火砖的搬运机器人
CN113433944A (zh) * 2021-07-06 2021-09-24 广州市新豪精密科技有限公司 一种并联机器人及其轨迹控制方法
CN113433944B (zh) * 2021-07-06 2023-07-21 广州市新豪精密科技有限公司 一种并联机器人及其轨迹控制方法
CN114538068A (zh) * 2022-02-08 2022-05-27 重庆绿森钢化中空玻璃有限公司 一种玻璃制品生产摆放装置
CN114538068B (zh) * 2022-02-08 2024-03-29 重庆绿森钢化中空玻璃有限公司 一种玻璃制品生产摆放装置

Also Published As

Publication number Publication date
JP2017512660A (ja) 2017-05-25
CN104723334B (zh) 2016-10-19
GEP20196981B (en) 2019-06-25
US20210114202A1 (en) 2021-04-22
JP6318264B2 (ja) 2018-04-25
CN104723334A (zh) 2015-06-24
MY178271A (en) 2020-10-07
RU2016141913A3 (zh) 2018-07-17
KR101879114B1 (ko) 2018-07-16
PL423215A1 (pl) 2019-01-14
MX364221B (es) 2019-04-15
KR20160120743A (ko) 2016-10-18
RU2016141913A (ru) 2018-07-17
RU2663510C2 (ru) 2018-08-07
MX2016014317A (es) 2016-11-10

Similar Documents

Publication Publication Date Title
WO2016155469A1 (zh) 一种应用平行四边形原理的机器人
KR200484533Y1 (ko) 평행 원리에 의한 일종의 더블 로드(double-rod) 양방향 트렌스퍼 로봇
CN201922441U (zh) 用于板状工件搬运的末端执行器可侧翻机构
CN105751214B (zh) 一种具备示教作用的六轴机械手及其工作方法
JP6749991B2 (ja) 高速プレス搬送ロボット
WO2019210761A1 (zh) 一种电气复合驱动厚度异形板弹簧骨架柔性机械手
CN110978019B (zh) 一种可实现吸附、夹取双模式切换的机械手结构及机器人
CN101497196A (zh) 平动匀速夹紧机械手爪
CN102528793A (zh) 一种用于板状工件搬运的末端执行器可侧翻机构
CN109877813B (zh) 一种大转角2t2r四自由度并联机构
CN211491600U (zh) 一种智能机器人关节臂抓手
CN108942909B (zh) 一种抓取转运机械手结构
WO2021017187A1 (zh) 一种用于抓取工作的工业机器人
WO2020048467A1 (zh) 双驱动异形超柔弹性骨架的机械手
CN105459105A (zh) 一种应用平行四边形原理的七轴五动力机器人
CN114211474A (zh) 一种带伸缩结构可自动抓取的机械手臂
CN108406740B (zh) 一种具有多个自由度运动轨迹的抓夹机械手
CN109278031B (zh) 一种中空六关节工业机器人
CN112536793B (zh) 一种多自由度模块化工业机器人
CN107150334B (zh) 一种平面关节机器人
CN113319827A (zh) 一种五自由度完全并联加工机器人
CN110394777B (zh) 一种用于模型回收的多自由度并联抓取机器人
KR101707831B1 (ko) 수평유지 유닛을 구비한 다기능 고정형 로봇
CN113829332B (zh) 一种具有三移动和一转动的四自度并联机器人机构
CN211332579U (zh) 一种基于串并混联的磨削机构

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20167023994

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2016555470

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/014317

Country of ref document: MX

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771224

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016030163

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016141913

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 14568

Country of ref document: GE

ENP Entry into the national phase

Ref document number: 112016030163

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161221

WWE Wipo information: entry into national phase

Ref document number: P.423215

Country of ref document: PL

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771224

Country of ref document: EP

Kind code of ref document: A1