WO2016153228A1 - 그래핀 적층체 및 그의 제조방법 - Google Patents

그래핀 적층체 및 그의 제조방법 Download PDF

Info

Publication number
WO2016153228A1
WO2016153228A1 PCT/KR2016/002761 KR2016002761W WO2016153228A1 WO 2016153228 A1 WO2016153228 A1 WO 2016153228A1 KR 2016002761 W KR2016002761 W KR 2016002761W WO 2016153228 A1 WO2016153228 A1 WO 2016153228A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
group
laminate
electron donor
layer
Prior art date
Application number
PCT/KR2016/002761
Other languages
English (en)
French (fr)
Inventor
조길원
김해나
Original Assignee
재단법인 나노기반소프트일렉트로닉스연구단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 나노기반소프트일렉트로닉스연구단 filed Critical 재단법인 나노기반소프트일렉트로닉스연구단
Priority to CN201680018073.0A priority Critical patent/CN107454894B/zh
Priority to US15/561,039 priority patent/US10804480B2/en
Publication of WO2016153228A1 publication Critical patent/WO2016153228A1/ko

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • H10K10/84Ohmic electrodes, e.g. source or drain electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • C01B32/192Preparation by exfoliation starting from graphitic oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/02Single layer graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/04Specific amount of layers or specific thickness
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a graphene laminate and a method for manufacturing the same. More specifically, a method for producing a graphene stack and a graphene laminate in which conductivity is improved by doping graphene with an amino group-modified graphene. And electronic devices.
  • Graphene is a material composed only of carbon having a two-dimensional honeycomb structure. It is a new material that is excellent in electrical, mechanical, and optical properties, and is currently being actively researched in the natural sciences and engineering fields. Another advantage is that it is very easy to process two-dimensional nano-patterns.
  • Graphene can be used not only to control semiconductor-conductor properties, but also to produce a wide range of functional devices such as sensors and memories by utilizing the chemical bonds of carbon. Research into transparent electrodes, solar cells, pressure sensors, and the like in active displays has also been actively carried out. In these applications, the modification of the electrical properties of graphene is essential and has been to date.
  • Korean Patent Laid-Open No. 2012-0064980 discloses the use of nitrogen-doped graphene.
  • the manufacturing method and the nitrogen-doped graphene produced by the present invention are disclosed.
  • Further studies on chemical doping have been conducted to improve the dirac voltage up to 120V in device measurement.
  • An object of the present invention is to improve the electrical properties of graphene by doping graphene with an amino group-modified graphene, which can be used for transparent flexible electrodes, organic solar cells, organic light emitting diodes, and the like.
  • the present invention provides a method for producing a graphene laminate, and an electronic device including the same.
  • a first graphene layer comprising an electron donor functional group; and a second graphene layer located on the first graphene layer, including graphene;
  • the graphene layer is provided with a graphene stack n-doped by the first graphene layer.
  • the electron donor functional group is an amino group, an aminoalkyl group of C1 to C10, and C2 to
  • It may be one or more selected from the group consisting of C 10 methoxyalkyl groups.
  • the electron donor functional group may be an amino group or an aminoalkyl group of C1 to C10.
  • the amino group or amino alkyl group of C1 to C10 is a graphene layer and
  • the first graphene layer may include a single layer or multiple graphene layers.
  • a graphene oxide solution is prepared.
  • the compound containing the electron donor functional group is alkylene diamine (alkylene
  • It may be one or more] selected from the group consisting of dimethylamino alkyl amine.
  • the compound including the electron donor functional group may be an alkylene diamine, and the alkylene diamine may be C1 to C10 alkylene diamine.
  • step a the step of preparing the graphene oxide solution to which the carboxyl group is bonded by reacting the graphene oxide solution and an acid (step a ') may further include.
  • step a to react the graphene oxide solution with hydrogen halide
  • Producing a carboxyl group-bonded graphene oxide solution may include.
  • step c a step of reducing the graphene layer including the electron donor functional group (step c ′) may be further included.
  • the reduction treatment can be carried out at a temperature of 70 to 300 ° C.
  • It may be any one selected from the group consisting of enmethylpyridone.
  • step b a carbodiimide derivative or thionyl chloride may be further added to the graphene oxide solution.
  • the graphene laminate comprising the
  • An electrode is provided. :
  • an electronic device comprising the electrode.
  • the electronic device may be any one selected from organic thin film transistors, organic solar cells, organic light emitting diodes, and organic photodetectors.
  • a source or drain electrode of the organic thin film transistor may include the graphene laminate.
  • Doping of the graphene in the graphene laminate of the present invention is performed by doping the graphene with amino group-modified graphene without reducing the transparency of the graphene. It is adjustable and has a long lasting doping effect without a protective layer.
  • FIG. 1 is a schematic diagram of a graphene laminate of the present invention.
  • FIG. 2 is a flow chart sequentially showing a method of manufacturing the graphene laminate of the present invention.
  • FIG. 3 is a process diagram schematically showing a manufacturing process of an organic thin film transistor including a graphene laminate of the present invention as an electrode.
  • FIG. 4 is a conceptual diagram illustrating a manufacturing process of graphene modified with an amino group of Preparation Example 1.
  • FIG. 5 is a conceptual diagram of a manufacturing process of graphene modified with an amino group of Preparation Example 2.
  • FIG. 6 is a conceptual diagram illustrating a manufacturing process of graphene modified with an amino group of Preparation Example 3.
  • FIG. 7 is a side cross-sectional view of an organic transistor manufactured according to Device Example 1.
  • FIG. 8 is an FESEM image of graphene laminates prepared according to Examples 1 to 3.
  • FIG. 8 is an FESEM image of graphene laminates prepared according to Examples 1 to 3.
  • FIG. 9 shows the XPS analysis results for the graphene modified with the amino group of the laminate prepared according to Examples 1 to 3.
  • FIG. 9 shows the XPS analysis results for the graphene modified with the amino group of the laminate prepared according to Examples 1 to 3.
  • FIG. 10 shows the results of XPS analysis on graphene or graphene oxide prepared according to Comparative Examples 2 and 3.
  • FIG. 11 shows the results of UPS analysis on graphene laminates or graphenes prepared according to Example 1 and Comparative Examples 1 and 2.
  • FIG. 11 shows the results of UPS analysis on graphene laminates or graphenes prepared according to Example 1 and Comparative Examples 1 and 2.
  • FIG. 12 shows a comparison of graphene laminates or UPS analysis results for graphenes of Examples 1, 2, and Comparative Example 1.
  • FIG. 12 shows a comparison of graphene laminates or UPS analysis results for graphenes of Examples 1, 2, and Comparative Example 1.
  • FIG. 13 shows the results of analyzing the electrical properties of the graphene laminate or the graphene laminate prepared according to Examples 1 and Comparative Examples 1 to 3.
  • FIG. 13 shows the results of analyzing the electrical properties of the graphene laminate or the graphene laminate prepared according to Examples 1 and Comparative Examples 1 to 3.
  • FIG. 14 shows the output characteristics and the transfer characteristics of the organic thin film transistors manufactured in accordance with Device Example 2 and Comparative Example 1.
  • FIG. 14 shows the output characteristics and the transfer characteristics of the organic thin film transistors manufactured in accordance with Device Example 2 and Comparative Example 1.
  • FIG. 1 is a schematic diagram of a graphene laminate of the present invention.
  • the graphene laminate of the present invention includes a first graphene layer 10 including an electron donor functional group; and a second graphene layer 20 disposed on the first graphene layer 10 and including graphene. And the second graphene layer 20 may be n-doped by the first graphene layer 10.
  • the graphene laminate may further include a substrate (30) under the first graphene layer (10).
  • the electron donor functional group is an amino group, an aminoalkyl group of C1 to C10, C2 to
  • C10 may be a methoxyalkyl group and the like, preferably an amino group or a C1 to C10 aminoalkyl group.
  • the aminoalkyl group may be more preferably an C1 to C5 aminoalkyl group, even more preferably a C1 to C3 aminoalkyl group.
  • the first graphene layer 10 is derived from graphene oxide, and the electron donor functional group is bonded to a position of a functional group having oxygen such as a carboxyl group, an epoxy group, and a hydroxyl group of the graphene oxide.
  • the amino group or aminoalkyl group may be amide bonded to the graphene oxide thin film.
  • the first graphene layer 10 may include a single layer or multiple graphene layers,
  • it may comprise a single layer of graphene layer.
  • the graphene layer 10 has a hydroxyl group, an epoxy group, a carbonyl group, and a carboxyl group.
  • the electron donor functional group such as an amino group, is capable of n-doping the second graphene layer 20 with the property of pushing electrons.
  • the electron donor functional group may be further bonded to the first graphene layer 10.
  • the functional groups such as hydroxyl group, epoxy group, carbonyl group and carboxyl group are electron acceptor functional groups having the property of attracting electrons, so that the 2 graphene layer 20 can be P-doped. Can be adjusted precisely.
  • FIG. 2 is a flow chart sequentially showing a method of manufacturing the graphene laminate of the present invention.
  • FIG. Hereinafter, a method of manufacturing the graphene laminate of the present invention will be described with reference to FIG. 2.
  • a graphene oxide solution is prepared (step a).
  • the graphene oxide solution may contain 0.01 to 10 mg of graphene oxide per 1 ml of solvent, more preferably 0.1 to 7 mg, and more preferably 0.2 to 5 mg.
  • the solvent may be water, dimethylformamide, enmethylpyridone, but the scope of the present invention is not limited thereto.
  • the graphene oxide solution may be reacted with an acid (add) to further prepare a carboxyl group-bonded graphene oxide solution (step a ′).
  • the hydrogen halide may be HCl, HBr, or HI.
  • step a'-1 is reacted with dicarboxylic acid to prepare a graphene oxide solution having a carboxyl group bonded thereto (step a'-2).
  • the dicarboxylic acid is oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, water Suberic acid and chloroacetic acid can be used.
  • a graphene solution containing an electron donor functional group is prepared by mixing a compound containing an electron donor functional group with the graphene oxide solution (step b).
  • the compound including the electron donor functional group is alkylene diamine (alkylene
  • Dimethylamino alkyl amine and the like, but preferably alkylene diamine.
  • the alkylenediamine may be C1 to C10 alkylenediamine
  • the carbodiimide derivative or thionyl chloride may be further mixed with the graphene oxide solution, but it is more preferable to mix the carbodiimide derivative.
  • the carbodiimide derivative may promote the dehydration condensation reaction at the carboxyl group of the graphene oxide and the amino group of the alkylene diamine so that an amide bond may be formed.
  • EDC N-ethyl-N0- (3-dimethylaminopropyl-) carbodiimidemethiodide
  • step c Coating to form a graphene layer comprising electron donor functionality
  • the coating may be applied with various coating methods, for example, spin coating, dip coating, drop casting, doctor blade coating, spray coating, and the like.
  • various coating methods for example, spin coating, dip coating, drop casting, doctor blade coating, spray coating, and the like.
  • the scope of the present invention is not limited thereto, and various coating methods applicable to the present invention may be applied.
  • step c ′ a process of reducing the graphene layer including the electron donor functional group may be further performed.
  • the reduction treatment is hydrazine, hydrazine hydrazine
  • the reduction treatment may be carried out by heat treatment, and the heat treatment temperature is preferably 70 to 300 ° C., more preferably 80 to 200 ° C.
  • the heat treatment time is 1 to 30 hours.
  • it is more preferably 5 to 20 hours, more preferably 8 to 12 hours.
  • the scope of the present invention is not limited here, and the time of the heat treatment may vary depending on the heat treatment temperature.
  • the reduction process can remove hydroxyl groups, epoxy groups, carbonyl groups, and carboxyl groups, which are oxygen-containing functional groups bonded to the graphene layer including the electron donor functional group, and thus, will be laminated in a later step. It is possible to further increase the n-doping level of the pinned layer.
  • graphene is deposited on the graphene layer including the electron donor functional group.
  • Lamination forms an n-doped graphene layer (step d).
  • the method of laminating the graphene on the graphene layer including the electron donor functional group may be transferred onto the graphene layer including the electron donor functional group by using a support layer supporting the graphene layer.
  • the range is not limited here, Various methods can be used for laminating the graphene layer.
  • the transfer may be performed by any one selected from wet transfer and dry transfer.
  • a support layer for supporting the graphene layer is provided.
  • the support layer is polymethyl methacrylate, polybutadiene, and amorphous.
  • the increased average molecular weight of the polymer used as the support layer is preferably 5,000 to 1,000,000, preferably 10,000 to 500,000, more preferably. Can be 30,000 to 300,000 days.
  • the amorphous fluoropolymer is to use CYTOP (BELLEX).
  • the CYTOP is a type A terminal terminal group is a carboxy group (-COOH), M type terminal group is an amino-silane coupling agent (-CONH ⁇ SiOR), terminal group
  • perfluoroalkyl group (-CF 3) is S-type.
  • the present invention provides an electrode including the graphene laminate.
  • the electronic device of the present invention may include the graphene laminate as an electrode, and may be applied to an organic thin film transistor, an organic solar cell, an organic light emitting diode, an organic photodetector, and the like.
  • the organic thin film transistor will be described.
  • FIG. 3 is a process diagram schematically illustrating a manufacturing process of an organic thin film transistor including the graphene laminate of the present invention as an electrode.
  • a graphene laminate of the present invention is included as a source and a drain electrode. The manufacturing process and structure of organic thin film transistor will be described.
  • a metal is deposited on the n-doped graphene layer of the graphene laminate to form a pattern of a source and a drain electrode.
  • the metal may be aluminum, gold, copper, nickel, or the like.
  • the scope of the invention is not limited here, and any metal that can be melted with an etchant and does not damage graphene can be used.
  • the source and drain electrodes may be formed by etching the metal pattern by etching in an etchant.
  • the semiconductor material is formed on the silicon substrate on which the source and drain electrodes are formed.
  • the organic thin film transistor can be manufactured by coating and forming a gate electrode.
  • the organic thin film transistor described above is a bottom contact type, but the scope of the present invention
  • the semiconductor layer may use an n-type semiconductor material, for example, a fullerene derivative.
  • PTCDI-C13 N, N'-Ditridecylperylene-3,4,9,10-tetracarboxylic diimide
  • N2200 poly (N, N'-bis-2-octyldodecylnaphtalene-l, 4,5,8-bis-dicarboximide-2,6-diyl-alt -5,5-2,2-bithiophene)
  • N2200 poly (N, N'-bis-2-octyldodecylnaphtalene-l, 4,5,8-bis-dicarboximide-2,6-diyl-alt -5,5-2,2-bithiophene)
  • the scope of the present invention is not limited thereto.
  • A is a fullerene of C60, C70, C72, C76, C78, C80, C82, C84, or C90,
  • Each R 1 is independently a hydrogen atom or a C 1 to C 10 alkoxy group
  • Each R 2 is independently a hydrogen atom or a C 1 to C 10 alkyl group
  • m is independently one of 1 to 5 integers
  • n is each independently one of 0 to 6 integers
  • p is any one of 1 to 5 integers.
  • the fullerene derivative represented by Structural Formula 1 is more preferably
  • PC61 BM ([6,6] -phenyl-C61 -butyric acid methyl ester)
  • PC71 BM phenyl-C71 -butyric acid methyl ester
  • bisPCBM bisadduct of phenyl C61 -butyric acid methyl ester
  • txisPCBM trisadduct of phenyl It may be any one selected from C61 -butyric acid methyl ester.
  • Graphene oxide powder was prepared using the Hummers method (W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc, 1958, 80, 1339.).
  • Graphene oxide powder 25 mg of water in 50 ⁇ and dispersed using an ultrasonic dispersion to produce a graphene oxide solution, EDA (ethylenediamine) 4mg and EDC (l-ethyl-3- (3-dimethylaminopropyl-) carbodiimidemethiodide) 3 ⁇ 4: 600 mg was added and stirred at room temperature for 4 hours. After the reaction, the solution was placed in a dialysis tube and dialyzed for 24 hours to remove any remaining reactants or by-products. It was.
  • EDA ethylenediamine
  • EDC l-ethyl-3- (3-dimethylaminopropyl-) carbodiimidemethiodide
  • FIG. 4 is a conceptual diagram illustrating a manufacturing process of the graphene oxide modified with the amino group of Preparation Example 1.
  • Carboxyl-modified graphene oxide was prepared and filtered.
  • graphene oxide having an aminoethyl group bonded thereto was prepared in the same manner as in Preparation Example 1.
  • FIG. 1 A conceptual diagram of the manufacturing process of the graphene oxide of Preparation Example 3 is shown in FIG.
  • An amino group-modified graphene oxide solution was prepared.
  • the amino-group-modified graphene oxide solution was added dropwise onto a Si0 2 / Si substrate and left there for 40 seconds. Then, after spin coating for 100 seconds at 100 rpm, 4000 rpm After spin coating for 30 seconds to form a silicon substrate (Si0 2 / Si) on which a graphene layer modified with an amino group was formed.
  • PMMA polymethyl methacrylate, 150k
  • the PMMA / graphene film suspended in the aqueous solution was transferred to a distillation bath and transferred onto a silicon substrate (Si0 2 / Si) on which a graphene oxide layer modified with the amino group was formed.
  • the silicon substrate is immersed in hydrogen fluoride diluent (5 wt%) to form silicon oxide.
  • Etching was performed to obtain a graphene oxide layered laminate modified with a PMMA / graphene layer / amino group.
  • the PMMA / graphene layered / amino group-modified graphene oxide layered laminate was dried using a substrate treated with HMDS (Hexamethyldisilazane), and then PMMA. Was removed to prepare a graphene laminate.
  • HMDS Hexamethyldisilazane
  • a graphene laminate was prepared in the same manner as in Example 1, except that graphene modified with an amino group prepared in Preparation Example 2 was used instead of Preparation Example 1.
  • a graphene laminate was prepared in the same manner as in Example 1 except that oxide was used.
  • Graphene thin film was prepared by using HMDS (Hexamethyldisilazane) 7 ⁇ treated substrate and removing PMMA.
  • Graphene oxide powder O.lg prepared by the method was dispersed in 1L of the solvent, and a graphene laminate containing graphene oxide was prepared in the same manner as in Example 1 except that a graphene oxide solution was used.
  • An organic thin film transistor was manufactured using the graphene laminate of Example 1 as a source and a drain electrode.
  • An organic thin film transistor was manufactured in the same manner as in Example 1 except for the same.
  • An organic thin film transistor was manufactured in the same manner as in Example 1 except for the same.
  • An organic thin film transistor was manufactured in the same manner as in Example 1 except for the same.
  • An organic thin film transistor was manufactured in the same manner as in Example 1, except that the graphene laminate including the graphene oxide layer prepared according to Comparative Example 2 was used instead of Example 1.
  • Test Example 1 FESEM image of graphene laminate
  • FIG. 8 A FESEM image of the graphene laminate prepared according to Example 1 is shown in FIG. 8. It was confirmed that the graphene was transferred onto the substrate on which the graphene layer containing the electron-extracting functional group was formed.
  • Example 2 which additionally performed the reduction process, it can be seen that the C-0 peak is reduced compared to Example 1, and in Example 3, the C-N peak is stronger than that of Example 2.
  • FIG. 11 is a comparison of the results of the analysis of ultraviolet photoemission spectra (UPS) on graphene laminates or graphenes prepared according to Examples 1 and Comparative Examples 1 and 2.
  • FIG. 12 is Examples 1 and 2 And the graphene stack for Comparative Example 1 or the UPS analysis results for graphene.
  • UPS ultraviolet photoemission spectra
  • Equation 1 the work function was measured by the UPS and calculated according to Equation 1 below.
  • Equation 2 E sec is onset of secondary emission, and E FE is Fermi edge (-128.1 eV) when the voltage applied to the graphene laminate is -20V.
  • n -doping effect of the amino group is further improved by removing the attracting carbonyl group, hydroxyl group and epoxy group.
  • FIG. 13 shows the results of analyzing electrical characteristics by depositing gold on a graphene laminate or a graphene laminate prepared according to Examples 3 and Comparative Examples 1 to 3.
  • FIG. 13 shows the results of analyzing electrical characteristics by depositing gold on a graphene laminate or a graphene laminate prepared according to Examples 3 and Comparative Examples 1 to 3.
  • ( a ) is a comparative example 1 and 2
  • (b) is a comparative example 1 and 3
  • (c) is a result for Comparative Example 1 and Example 3.
  • the graphene oxide doped with the carboxyl group of Comparative Example 3 is 60 V or more, compared to the dirac voltage of graphene that is doped with the graphene oxide of Comparative Example 2 by about 30V.
  • the dirac voltage of the graphene changed more than + 60V, and the graphene doped with the graphene modified with the amino group of Example 3 was confirmed to change by -55V.
  • the dirac voltage of graphene can be changed by -115V by replacing the carboxyl group with an amino group.
  • Test Example 5 Resting abutment containing a graphitic red sperm source / Dray low electrode
  • the mobility of the transistor of device comparison example 1 is 1.72 X cmW-'s 1
  • the mobility of the transistor of device example 2 is 1, 19 XK ⁇ cm ⁇ , and high.
  • the on / off ratio was high, and the S-shaped non-ohmic tendency at low drain voltages in the transfer curve was greatly reduced by the addition of graphene oxide. This change is due to the low sheet resistance of the electrode consisting of the n-doped graphene layer / amino group modified graphene layer and the doping effect of the amino group modified graphene layer.
  • the work function of the graphene layer electrode modified with the graphene layer / amino group matches the LUMO level of the PCBM so that the carrier injection barrier is lowered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 전자주개 작용기를 포함하는 제 1그래핀층; 및 제 1그래핀층 상에 위치하고, 그래핀을 포함하는 제 2그래핀층;을포함하고,제 2그래핀층은 상기 제 1그래핀층에 의해 n-도핑되는 그래핀 적층체에 관한 것이다. 이에 의하여, 그래핀을 아미노기로 개질된 그래핀으로 도핑하여 그래핀의 투명도를 저하시키지 않고,그래핀의 도핑정도를 조절할 수 있으며,보호층 없이 장시간 도핑효과가 지속될수 있다.

Description

명세서
발명의명칭:그래핀적층체및그와제조방법 기술분야
[1] 본발명은그래핀적층체및그의제조방법에관한것으로,보다상세하게는 아미노기로개질된그래핀으로그래핀을도핑하여 전도성을개선시킨그래핀 적충체,그래핀적층체의제조방법및전자소자에관한것이다.
배경기술
[2] 그래핀은 2차원의 벌집구조를가지는탄소로만이루어진물질로서 전기적, 기계적,광학적으로매우우수한신소재로현재자연과학및공학분야에서 활발히 연구되고있으며,상대적으로가벼운원소인탄소만으로이루어져 1 차원또는 2차원나노패턴올가공하기가매우용이하다는장점이 있다.
[3] 그래핀을이용하여 반도체-도체성질을조절할수있을뿐아니라탄소가 가지는화학결합의다양성을이용해센서,메모리등광범위한기능성소자의 제작이가능하다.또한,이러한그래핀을이용하여생활에웅용될수있는 디스플레이에서의투명전극,태양전지,압력센서등으로의 연구또한활발하게 이루어지고있다.이러한응용에 있어서그래핀의 전기적특성 개질은 필수적이며,현재까지연구증에 있다.
[4] 지금까지 P-도편트나 n-도편트를이용한그래핀의 전도성 개선에 대한연구는 활발하게진행되어왔다.예를들어,대한민국공개특허제 2012-0064980호는 질소가도핑된그래핀의 제조방법및이에의하여 제조되는질소가도핑된 그래핀에 대하여 개시하고있다.또한,화학적도핑에 대해선행된연구들은 소자측정에 있어디락전압을최대 120V가량개선시키는연구가있었다.
[5] 그러나강한도핑효과를주면서 안정하고,저온공정에서조절가능한
작용기를지니는그래핀으로그래핀올도핑하는방법에 대한연구는아직 보고되지않았다.
발명의상세한설명
기술적과제
[6] 본발명의목적은아미노기로개질된그래핀으로그래핀을도핑함으로써 그래핀의 일함수등의 전기적특성올개선시켜투명한유연전극,유기 태양 전지,유기발광다이오드등에사용할수있는그래핀적층체,그래핀적층체의 제조방법,및그를포함하는전자소자등을제공하는데 있다.
과제해결수단
[7] 본발명의 일측면에따르면,전자주개작용기를포함하는제 1그래핀층;및 상기제 1그래핀층상에위치하고,그래핀을포함하는제 2그래핀층;올 포함하고,상기 제 2그래핀층은상기제 1그래핀층에의해 n-도핑되는그래핀 적층체가제공된다. [8] 상기전자주개작용기가아미노기, C1내지 C10의아미노알킬기,및 C2내지
C10의메톡시알킬기로이루어진군에서선택된 1종이상일수있다.
[9] 상기전자주개작용기가아미노기또는 C1내지 C10의아미노알킬기일수 있다.
[10] 상기아미노기또는 C1내지 C10의아미노알킬기가상기게 1그래핀층과
아마이드결합될수있다.
[11] 상기제 1그래핀층이단층또는다층의그래핀층을포함할수있다.
[12] 본발명의다른하나의측면에따르면,그래핀옥사이드용액을준비하는
단계 (단계 a);상기그래핀옥사이드용액에전자주개작용기를포함하는 화합물올흔합하여전자주개작용기를포함하는그래핀용액을제조하는 단계 (단계 b);기판상에상기전자주개작용기를포함하는그래핀용액을 코팅하여전자주개작용기를포함하는그래핀층을형성하는단계 (단계 c);및 상기전자주개작용기를포함하는그래핀층상에그래핀을적층하여 n-도핑된 그래핀층을형성하는단계 (단계 d);를포함한다.
[13] 상기전자주개작용기를포함하는화합물이알킬렌다이아민 (alkylene
diamine),메톡시알킬아민 (methoxy alkyl amine),및다이메틸아미노
알킬아민 (dimethylamino alkyl amine)으로이루어진군에서선택된】종이상일수 있다.
[14] 상기전자주개작용기를포함하는화합물이알킬렌다이아민이고,상기알킬렌 다이아민이 C1내지 C10의알킬렌다이아민일수있다.
[15] 단계 a이후,상기그래핀옥사이드용액과산 (acid)을반웅시켜카르복시기가 결합된그래핀옥사이드용액을제조하는단계 (단계 a');를추가로포함할수 있다.
[16] 단계 a'가,상기그래핀옥사이드용액과할로겐화수소를반응시키는
단계 (단계 a'-l);및단계 a'-l의결과물을디카르복시산과반응시켜
카르복시기가결합된그래핀옥사이드용액을제조하는단계 (단계 a' -2);를 포함할수있다.
[17] 단계 c이후,상기전자주개작용기를포함하는그래핀층을환원처리하는 단계 (단계 c');를추가로포함할수있다.
[18] 상기환원처리가하이드라진 (hydrazine),하이드라진수화물 (hydrazine
monohydrate),및디메틸하이드라진 (dimethylhydrazine)으로이루어진군에서 선택된어느하나의기체분위기하에서수행될수있다.
[19] 상기환원처리가 70내지 300°C의온도에서수행될수있다.
[20] 상기그래핀옥사이드용액에포함되는용매가물,디메틸포름아미드,및
엔메틸피를리돈으로이루어진군에서선택된어느하나일수있다.
[21] 단계 b에서상기그래핀옥사이드용액에카르보디이미드 (carbodiimide)유도체 또는싸이오닐클로라이드를추가로흔합할수있다.
[22] 상기카르보디이미드유도체가 EDC(N-ethyl-N0-(3-dimethylaminopropyl-)carbodiimidemethiodide)일수있다.
[23] 본발명의다른또하나의측면에따르면,상기그래핀적층체를포함하는
전극이제공된다. :
[24] 본발명의 다른또하나의측면에따르면,상기 전극을포함하는전자소자가 제공된다.
[25] 상기 전자소자가유기박막트랜지스터,유기 태양전지,유기 발광다이오드및 유기광검출기중에서선택된어느하나일수있다.
[26] 상기유기박막트랜지스터의소스또는드레인전극이상기그래핀적층체를 포함할수있다.
발명의효과
[27] 본발명의그래핀적층체의그래핀을아미노기로개질된그래핀으로도핑을 하여그래핀의투명도를저하시키지않고,화학적으로다양하게조절가능한 그래핀을이용하여그래핀의도핑 정도를조절할수있으며,보호층없이 장시간도핑효과가지속되는효과가있다.
도면의간단한설명
[28] 도 1은본발명의그래핀적층체의 개략도이다.
[29] 도 2는본발명의그래핀적층체의 제조방법을순차적으로나타낸흐름도이다.
[30] 도 3는본발명의그래핀적층체를전극으로포함하는유기박막트랜지스터의 제조공정을개략적으로나타낸공정도이다.
[31] 도 4는제조예 1의아미노기로개질된그래핀의제조과정에 대한개념도이다.
[32] 도 5는제조예 2의아미노기로개질된그래핀의제조과정에 대한개념도이다.
[33] 도 6은제조예 3의아미노기로개질된그래핀의제조과정에 대한개념도이다.
[34] 도 7은소자실시예 1에따라제조된유기트랜지스터의측단면도이다.
[35] 도 8은실시예 1내지 3에따라제조된그래핀적층체의 FESEM이미지이다.
[36] 도 9는실시예 1내지 3에따라제조된적층체의아미노기로개질된그래핀에 대한 XPS분석결과를나타낸것이다.
[37] 도 10은비교예 2및 3에따라제조된그래핀또는그래핀옥사이드에 대한 XPS 분석결과를나타낸것이다.
[38] 도 11는실시예 1,비교예 1및 2에따라제조된그래핀적층체또는그래핀에 대한 UPS분석 결과를비교하여나타낸것이다.
[39] 도 12는실시예 1, 2및비교예 1에 대한그래핀적층체또는그래핀에 대한 UPS 분석 결과를비교하여나타낸것이다.
[40] 도 13은실시예 1,및비교예 1내지 3에 따라제조된그래핀적층체또는그래핀 적층체의전기적특성을분석한결과를나타낸것이다.
[41] 도 14는소자실시예 2및소자비교예 1에따라제조된유기박막트랜지스터의 출력특성및전달특성을비교하여나타낸것이다.
발명의실시를위한최선의형태 [42] 이하,본발명이속하는기술분야에서통상의지식을가진자가용이하게 실시할수있도록첨부된도면을참조하여본발명의실시예를상세히
설명하도록한다.
[43] 그러나,이하의설명은본발명을특정한실시형태에대해한정하려는것이 아니며,본발명을설명함에있어서관련된공지기술에대한구체적인설명이 본발명의요지를흐릴수있다고판단되는경우그상세한설명을생략한다.
[44] 본원에서사용한용어는단지특정한실시예를설명하기위해사용된것으로, 본발명을한정하려는의도가아니다.단수의표현은문맥상명백하게다르게 뜻하지않는한,복수의표현을포함한다.본출원에서, "포함하다"또는 "가지다" 등의용어는명세서상에기재된특징,숫자,단계,동작,구성요소,또는이들을 조합한것이존재함을지정하려는것이지,하나또는그이상의다른특징들이나 ^자,단계,동작,구성요소,또는이들을조합한것들의존재또는부가가능성을 미리배제하지않는것으로이해되어야한다.
[45] 이하,본발명에대하여상세히설명하기로한다.다만,이는예시로서제시되는 것으로,이에의해본발명이제한되지는않으며본발명은후술할청구범위의 범주에의해정의될뿐이다.
[46]
[47] 도 1은본발명의그래핀적층체의개략도이다.
[48] 이하,도 1을참조하여본발명의그래핀적층체에대해설명하도록한다.
[49] 본발명의그래핀적층체는전자주개작용기를포함하는제 1그래핀층 (10);및 제 1그래핀층 (10)상에위치하고,그래핀을포함하는제 2그래핀층 (20);을 포함하고,제 2그래핀층 (20)은제 1그래핀층 (10)에의해 n-도핑될수있다.
[50] 상기그래핀적층체는제 1그래핀층 (10)하에기판 (30)올추가로포함할수
있다.
[51] 상기전자주개작용기는아미노기, C1내지 C10의아미노알킬기, C2내지
C10의메톡시알킬기등일수있고,바람직하게는아미노기또는 C1내지 C10의 아미노알킬기일수있다.
[52] 상기아미노알킬기는더욱바람직하게는 C1내지 C5의아미노알킬기,더욱더 바람직하게는 C1내지 C3의아미노알킬기일수있다.
[53] 제 1그래핀층 (10)은그래핀옥사이드에서유래한것으로,그래핀옥사이드의 카르복시기,에폭시기,하이드록시기등의산소를갖는작용기의위치에상기 전자주개작용기가결합된것이다.
[54] 상기아미노기또는아미노알킬기는상기그래핀옥사이드박막과아마이드 결합될수있다.
[55] 제 1그래핀층 (10)은단층또는다층의그래핀층을포함할수있고,
바람직하게는단층의그래핀층을포함할수있다.
[56] 계 1그래핀층 (10)은하이드록시기,에폭시기,카르보닐기,및카르복시기
증에서선택된 1종이상의산소를갖는작용기와추가로결합될수있다. [57] 아미노기등의상기전자주개작용기는전자를밀어내는성질을가져제 2 그래핀층 (20)을 n-도핑되도록할수있다.이에반해,제 1그래핀층 (10)에추가로 결합될수있는하이드록시기,에폭시기,카르보닐기,카르복시기등의작용기는 전자를끌어당기는성질을갖는전자받개작용기이므로계 2그래핀층 (20)이 P-도핑되도록할수있다.따라서,상기작용기의양을변화시켜도핑정도를 정밀하게조절할수있다.
ί58]
[59] 도 2는본발명의그래핀적층체의제조방법을순차적으로나타낸흐름도이다. 이하,도 2를참조하여본발명의그래핀적층체의제조방법에대해설명하도록 한다.
[60] 먼저,그래핀옥사이드용액을준비한다 (단계 a).
[61] 상기그래핀옥사이드용액은용매 1ml당그래핀옥사이드 0.01내지 10mg, 더욱바람직하게는 0.1내지 7mg,더욱더바람직하게는 0.2내지 5mg이포함될 수있다.
[62] 상기용매는물,디메틸포름아미드,엔메틸피를리돈둥을사용할수있으나,본 발명의범위가여기에한정되지않는다.
[63] 단계 a이후,선택적으로상기그래핀옥사이드용액과산 (add)을반응시켜 카르복시기가결합된그래핀옥사이드용액을제조하는과정을추가로수행할 수있다 (단계 a').
[64] 구체적으로먼저,상기그래핀옥사이드용액과할로겐화수소를
반웅시킨다 (단계 a'-l).
[65] 상기할로겐화수소는 HCl, HBr, HI둥일수있다.
[66] 상기반응에따라상기그래핀옥사이드에결합되어있는에폭시기를
히드록시기로환원시킬수있다ᅳ
[67] 이후,단계 a'-l의결과물을디카르복시산과반웅시켜카르복시기가결합된 그래핀옥사이드용액을제조한다 (단계 a'-2).
[68] 상기디카르복시산은옥살산 (oxalic acid),말론산 (malonic acid),호박산 (succinic acid),글루타르산 (glutaric acid),아디프산 (adipic acid),피멜산 (pimelic acid), 수베르산 (suberic acid),클로로아세트산 (chloroacetic acid)등을사용할수있다.
[69] 상기그래핀옥사이드용액에전자주개작용기를포함하는화합물을흔합하여 전자주개작용기를포함하는그래핀용액을제조한다 (단계 b).
[70] 상기전자주개작용기를포함하는화합물은알킬렌다이아민 (alkylene
diamine),메톡시알킬아민 (methoxy alkyl amine),다이메틸아미노
알킬아민 (dimethylamino alkyl amine)등일수있으나,바람직하게는알킬렌 다이아민일수있다.
[71] 상기알킬렌다이아민은 C1내지 C10의알킬렌다이아민일수있고,
바람직하게는 C1내지 C5의알킬렌다이아민일수있고,더욱바람직하게는 C2 내지 C4의알킬렌다이아민일수있다. [72] 바람직하게는,상기그래핀옥사이드용액에카르보디이미드 (carbodiimide) 유도체또는싸이오닐클로라이드 (thionyl chloride)를추가로혼합할수있으나, 카르보디이미드유도체를흔합하는것이더욱바람직하다.
[73] 카르보디이드유도체나싸이오닐클로라이드중어떤물질을사용하느냐에 따라용매둥반웅조건이달라질수있다.
[74] 상기카르보디이미드유도체는상기그래핀옥사이드의카르복시기와알킬렌 다이아민의아미노기에서탈수축합반웅을촉진하여아마이드결합이형성될 수있도록할수있다.상기카르보디이미드유도체는
EDC(N-ethyl-N0-(3-dimethylaminopropyl-)carbodiimidemethiodide)인것이 바람직하다.
[75] 다음으로,기판상에상기전자주개작용기를포함하는그래핀용액을
코팅하여전자주개작용기를포함하는그래핀층을형성한다 (단계 c).
[76] 상기코팅은다양한코팅법을적용할수있으며,예를들면,스핀코팅 (spin coating),딥코팅 (dip coating),드롭캐스팅 (drop casting),닥터블레이드 코팅 (doctor blade coating),스프레이코팅 (spray coating)둥을들수있다.그러나 본발명의범위가여기에한정되지않으며,본발명에적용될수있는다양한 코팅방법이적용될수있다ᅳ
[77] 이후,선택적으로상기전자주개작용기를포함하는그래핀층을환원처리하는 공정을추가로수행할수있다 (단계 c').
[78] 상기환원처리는하이드라진 (hydrazine),하이드라진수화물 (hydrazine
monohydrate),디메틸하이드라진 (dimethylhydrazine)등의기체분위기하에서 수행될수있다.
[79] 상기환원처리는열처리에의해수행될수있으며 ,열처리온도는 70내지 300°C인것이바람직하고,더욱바람직하게는 80내지 200°C,더욱더
바람직하게는 90내지 150oC일수있다.
[80] 상기온도에서수행될때,상기열처리의시간은 1내지 30시간인것이
바람직하고,더욱바람직하게는 5내지 20시간,더욱더바람직하게는 8내지 12시간일수있다.그러나본발명의범위가여기에한정되지않으며 ,상기 열처리의시간은열처리온도에따라달라질수있다.
[81] 상기환원처리에의해상기전자주개작용기를포함하는그래핀층에결합되어 있는산소를갖는작용기인하이드록시기,에폭시기,카르보닐기,카르복시기 등을제거할수있으며,이에따라,이후단계에서적층될그래핀층의 n-도핑 수준을더욱높일수있다.
[82] 마지막으로,상기전자주개작용기를포함하는그래핀층상에그래핀을
적층하여 n-도핑된그래핀층을형성한다 (단계 d).
[83] 상기 전자주개작용기를포함하는그래핀층상에그래핀을적층하는방법은 그래핀층을지지하는지지층을사용하여상기전자주개작용기를포함하는 그래핀층상에전사시킬수있으나,본발명의범위가여기에한정되지않으며 , 그래핀층을적층하는방법은다양한방법을적용할수있다.
[84] 상기전사는습식전사,건식전사중쎄서선택된어느하나로수행될수있다.
[85] 상가그래핀층을전사하는과정에서상기그래핀층올지지하는지지층을
사용할수있다.
[86] 상기지지층은폴리메틸메타크릴레이트,폴리부타디엔,및비정질
플루오로폴리머중에서선택된어느하나를포함할수있으나,바람직하게는 폴리메틸메타크릴레이트를사용할수있다.상기지지층으로사용하는 폴리머의증량평균분자량은 5,000내지 1,000,000,바람직하게는 10,000내지 500,000,보다바람직하게는 30,000내지 300,000일수있다.
[87] 상기폴리메틸메타크릴레이트를사용하는경우레시듀 (residue)효과를
최소화할수있다.
[88] 상기비정질플루오로폴리머는 CYTOP(BELLEX사)를사용하는것이
바람직하고,상기 CYTOP은말단기가카르복시기 (-COOH)인 A타입 ,말단기가 아미노 -실란커플링에이전트 (-CONH ~ SiOR)인 M타입,말단기가
퍼플루오로기 (-CF3)인 S타입등이있다.
[89]
[90] 본발명은상기그래핀적층체를포함하는전극을제공한다.
[91]
[92] 본발명의전자소자는상기그래핀적층체를전극으로포함할수있으며,유기 박막트랜지스터,유가태양전지,유기발광다이오드,유기광검출기등에 적용될수있고,이중상기그래핀적층체를전극으로포함하는유기박막 트랜지스터에대해서설명하도록한다.
[93] 도 3는본발명의그래핀적층체를전극으로포함하는유기박막트랜지스터의 제조공정을개략적으로나타낸공정도이다,도 3을참조하여본발명의그래핀 적층체를소스및드레인전극으로포함하는유기박막트랜지스터의제조공정 및구조에대해설명하도록한다.
[94] 먼저,상기그래핀적층체의상기 n-도핑된그래핀층에금속을증착하여소스 및드레인전극의패턴을형성한다.상기금속은알루미늄,금,구리,니켈등을 사용할수있으나,본발명의범위가여기에한정되지않으며 ,에천트 (etchant)로 녹일수있고,그래핀에손상을주지않는금속은모두사용할수있다.
[95] 다음으로,금속패턴이형성되지않은부분의 n-도핑된그래핀층을제거한후, 에천트 (etchant)에담궈상기금속패턴을에칭 (etching)함으로써소스및드레인 전극을형성할수있다.
[96] 이후 상기소스및드레인전극이형성된실리콘기판상에반도체물질을
코팅하고,게이트전극을형성하여유기박막트랜지스터를제조할수있다.
[97] 상술한유기박막트랜지스터는바텀컨텍트형이지만,본발명의범위가
여기에한정되지않으며,경우에따라,탑컨텍트형으로제조될수있다.
[98] 상기반도체층은 n-형반도체물질을사용할수있으며 그예로풀러렌유도체 PTCDI-C13(N,N'-Ditridecylperylene-3,4,9,10-tetracarboxylic diimide),
N2200(poly(N,N'-bis-2-octyldodecylnaphtalene-l,4,5,8-bis-dicarboximide-2,6-diyl-alt -5,5-2,2-bithiophene))등을사용할수있으나본발명의범위가여기에한정되지 않는다.
[99] 표시될수있다.
[100]
[101]
Figure imgf000009_0001
[102] 구조식 1에서,
[103] A는 C60, C70, C72, C76, C78, C80, C82, C84,또는 C90의풀러렌이고,
[104] R1은각각독립적으로수소원자또는 C1내지 C10알콕시기이고,
[105] R2는각각독립적으로수소원자또는 C1내지 C10알킬기이고,
[106] m은각각독립적으로 1내지 5의정수중어느하나이고,
[107] n은각각독립적으로 0내지 6의정수중어느하나이고,
[108] p는 1내지 5의정수중어느하나이다.
[109]
[1 10] 상기구조식 1로표시되는풀러렌유도체는더욱바람직하게는,
PC61 BM([6,6]-phenyl-C61 -butyric acid methyl ester), PC71 BM(phenyl-C71 -butyric acid methyl ester), bisPCBM(bisadduct of phenyl C61 -butyric acid methyl ester), txisPCBM(trisadduct of phenyl C61 -butyric acid methyl ester)증에서선택된어느 하나일수있다.
발명의실시를위한형태
[1 11] [실시예]
[112]
[113] 제조예 1:아미노기로개짐뒤그래휘옥사이드제조
[1 14] 자연그래파이트 (Alfa Aesar, 99.999% purity, -200 mesh)로부터 modified
Hummers method(W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc, 1958, 80, 1339.)를이용하여그래핀옥사이드분말을제조하였다.
[115] 상세하게는,그래파이트분말 20g과 460ml의황산을플라스크에넣고 60g의 과산화망간을천천히약 1시간동안첨가하였다.이후,상기용액을 2시간동안 얼음물배스에서교반시킨후상온에서 3일동안강하게교반시켰다ᅳ그후 얼음물배스에서상기용액에 920ml의증류수와 50ml의과산화수소 (30\^%)를 첨가하고,상온에서 2시간동인:교반하였다.그후상기용액을동결건조기에서 -70°C의온도로 3일동안동결건조하여 C/0(탄소원자 /산소원자)비가 1.14인 그래핀옥사이드분말을제조하였다.이와같이제조된그래핀옥사이드분말은 하기방법에따라아미노에 ¾기를결합시켰다.
[116] 상기그래핀옥사이드분밀 : 25mg을물 50 ^에넣고초음파분산기를이용하여 분산시켜그래핀옥사이드용액을제조하고, EDA(ethylenediamine) 4mg와 EDC(l-ethyl-3-(3-dimethylaminopropyl-)carbodiimidemethiodide)¾: 600mg을 넣어준후 4시간동안상온에서교반시켰다.반웅후남아있는반응물이나 부산물을제거하기위해용액을투석튜브 (dialysis tube)에넣고 24시간투석시켜 아미노기로개질된그래핀옥사이드를제조하였다.
[117] 제조예 1의아미노기로개질된그래핀옥사이드의제조과정의개념도를도 4에나타내었다.
[118]
[1 19] 제조예 2:아미노기로:개짐되그래피제조
[120] 제조예 1에따라제조된아미노에틸기가결합된그래핀옥사이드를 100°C에서 10시간동안하이드라진기체를이용한환원을추가로수행하여산소를 포함하는작용기들이제거되고,아미노기로개질된그래핀을제조하였다.
[121] . 제조예 2의아미노기로개질된그래핀의제조과정의개념도를도 5에
나타내었다.
[122]
[123] 제조예 3·.카르복시기로개질후아미노에팀기가겸합된그래휘옥사이드 제조
[124] 제조예 1에서와동일한방법으로제조된그래핀옥사이드분말올 2.5g/L의 농도로물에분산시킨용액 30 ^에 HBr 5m£를넣고 12시간동안상온에서 강하게교반시킨뒤,옥살산 (oxalic acid)을넣고 4시간동안교반시켜
카르복시기로개질된그래핀옥사이드를제조하고필터에걸렀다.
[125] 그래핀옥사이드대신에카르복시기로개질된그래핀옥사이드를사용한것을 제외하고는제조예 1과동일한방법으로아미노에틸기가결합된그래핀 옥사이드를제조하였다.
[126] 제조예 3의그래핀옥사이드의제조과정의개념도를도 6에나타내었다.
[127]
[128] 심시예 1 :그래? 1 적층체의 제조
[129] 제조예 1에따라제조된그래핀옥사이드를물에분산시켜 0.8g L농도의
아미노기로개질된그래핀옥사이드용액을준비하였다.상기아미노기로 개질된그래핀옥사이드용액을 Si02/Si기판상에적하한후 40초동안그대로 두었다.이후, lOOOrpm으로 100초동안스핀코팅후, 4000rpm으로 30초동안 스핀코팅을하여아미노기로개질된그래핀층이형성된실리콘기판 (Si02/Si)을 제조하였다. [130] 구리포일위에성장된 ί래핀상에 PMMA (폴리메틸메타크릴레이트, 150k)를 코팅하고,코팅 의반대편에존재하는그래핀은산소플라즈마를통해제거한 후, 0.1M의과황산암모늄수용액에넣었다.구리포일이다에칭된후에상기 수용액에떠있는 PMMA/그래핀필름을증류수배스에옮간후상기아미노기로 개질된그래핀옥사이드층이형성된실리콘기판 (Si02/Si)으로떠서전사시켰다.
[131] 상기실리콘기판을불화수소희석액 (5wt%)에담궈실리콘옥사이드를
에칭하여 PMMA/그래핀층 /아미노기로개질된그래핀옥사이드층적층체를 얻었다.상기 PMMA/그래핀층 /아미노기로개질된그래핀옥사이드층적층체를 HMDS(Hexamethyldisilazane)가처리된기판을이용하여건져내고 PMMA를 제거하여그래핀적층체를제조하였다.
[132]
[133] 심시예 2:그래휘 적충체의제조
[134] 제조예 1대신에제조예 2에따라제조된아미노기로개질된그래핀을사용한 것을제외하고는실시예 1과동일한방법으로그래핀적층체를제조하였다.
[135]
[136] 심시예 3:그래휘적층체의 제조
[137] 제조예 1대신에제조예 3에따라제조된아미노기로개질된그래핀
옥사이드를사용한것을제외하고는실시예 1과동일한방법으로그래핀 적층체를제조하였다.
[138]
[139] 비교예 1:그래핀박막의제조
[140] 구리포일위에성장된그래핀상에 PMMA(150k)를코팅하고,코팅면의
반대편에존재하는그래핀은산소플라즈마를통해제거한후, 0.1M의
과황산암모늄수용액에넣는다.구리포일이다에칭된후에상기수용액에 떠있는 PMMA/그래핀필름을증류수배스에옮긴후실리콘기판으로떠서 전사한다.상기기판을불화수소희석액 (5wt«¾)에담궈실리콘옥사이드를 에칭하여 PMMA/그래핀필름을희석액에띄운다.상기필름을
HMDS (Hexamethyldisilazane) 7\처리된기판을이용하여건져내고 PMMA를 제거하여그래핀박막을제조하였다.
[141]
[142] 비교예 2:그래휘옥사이드총음포함하는그래휘 적충체의제조
[143] 아미노기로개질된그래핀옥사이드용액대신에제조예 1에서와동일한
방법으로제조된그래핀옥사이드분말 O.lg을용매인물 1L에분산시켜그래핀 옥사이드용액을사용한것을제외하고는실시예 1과동일한방법으로그래핀 옥사이드충을포함하는그래핀적층체를제조하였다.
[144]
[145] 비교예 3:카르복시기로개짐뒤그래휘옥사이드총음포함하는그래휘
적층체의 제조 [146] 제조예 1에서의그래핀옥사이드대신에제조예 3에서와동일한방법으로 제조된카르복시기로개질된그래핀옥사이드를사용한것을제외하고는 샬시예 1과동일한방법으로카르복시기로개질된그래판옥사이드층을 포함하는그래핀적층체를제조하였다.
[147]
[148] 소자심시예 1:휴기 박막트래지스터의제조
[149] 실시예 1의그래핀적층체를소스와드레인전극으로사용하여유기박막 트랜지스터를제조하였다.
[150] 상세하게는,실시예 1의그래핀적층체상에마스크패턴을이용하여
알루미늄을적층하고,산소플라즈마로알루미늄이없는부분의그래핀을 제거하여그래핀패턴을형성하였다.그후,알루미늄을에천트에담궈에칭 시키고그위에 PC61BM을 2000rpm으로 60초동안스핀코팅하여유기박막 트랜지스터를제조하였다.이와같이제조된유기트랜지스터의측단면도를도 7에나타내었다.
[151]
[152] 소자심시예 2:유기 박막트래지스터의제조
[153] 실시예 1대신에실시예 2에따라제조된그래핀적층체를사용한것을
제외하고는소자실시예 1과동일한방법으로유기박막트랜지스터를 제조하였다.
[154]
[155] 소자심시예 3유기박막트래지스터의 제조
[156] 실시예 1대신에실시예 3따라제조된그래핀적층체를사용한것을
제외하고는소자실시예 1과동일한방법으로유기박막트랜지스터를 제조하였다.
[157]
[158] 소자비교예 1 :유기박막트래지스터의제조
[159] 실시예 1대신에비교예 1에따라제조된그래핀박막을사용한것을
제외하고는소자실시예 1과동일한방법으로유기박막트랜지스터를 제조하였다.
[16이
[161] 소자비교예 2:유기박막트래지스터의제조
[162] 실시예 1대신에비교예 2에따라제조된그래핀옥사이드층을포함하는 그래핀적층체를사용한것을제외하고는소자실시예 1과동일한방법으로 유기박막트랜지스터를제조하였다.
[163]
[164] 소자비교예 3:유기박막트래지스터의체조
[165] 실시예 1대신에비교예 3에따라제조된카르복시기로개질된그래핀
옥사이드층을포함하는적층체를사용한것을제외하고는소자실시예 I과 동일한방법으로유기박막트랜지스터를제조하였다.
[166]
[167] [시험예]
[168]
[169] 시험예 1:그래휘적층체의 FESEM이미지
[170] 실시예 1에따라제조된그래핀적층체의 FESEM이미지를도 8에나타내었다. 그래핀이전자추개작용기를포함하는그래핀층이형정된기판상에전사된 것을확인할수있었다.
[171]
[172] 시험예 2: XPSCX-rav Photoelectron Spectroscopy 분석 ¾과
[173] 실시예 1내지 3에따라제조된적층체의아미노기로개질된그래핀층에대한 XPS분석결과를도 9에나타내고,비교예 2및 3에따라제조된그래핀또는 그래핀옥사이드에대한 XPS분석결과를도 10에나타내었다.
[174] 도 9및 10에따르면,실시예 1에따라제조된그래핀적층체는비교예 1내지 ' 3에나타나지않는 C-N피크가나타나아미노기가도입된것을확인할수있다. 또한,환원과정을추가로수행한실시예 2에서는실시예 1에비하여 C-0피크가 감소한것을확인할수있고,실시예 3의경우실시예 2에비하여 C-N피크가더 강하게나타나는것을확인할수있다.
[175]
[176] 시험예 3: UPS분석에따른도 효과분석
[177] 도 11는실시예 1,비교예 1및 2에따라제조된그래핀적층체또는그래핀에 대한 UPS (Ultraviolet Photoemission Spectra)분석결과를비교하여나타낸것이고, 도 12는실시예 1, 2및비교예 1에대한그래핀적층체또는그래핀에대한 UPS 분석결과를비교하여나타낸것이다.
[178] 여기서,일함수는 UPS를통해측정하였으며,아래의식 1에따라계산되었다.
[179] [식 1]
[180] Φ^ω - Ι^ - ^Ι
[181] 상기식 2에서, Esec는 2차전자방출 (secondary emission)의 onset, EFE는그래핀 적층체에인가된전압의 -20V일때의 Fermi edge(-128.1eV)이다.
[182] 도 11및 12에따르면,비교예 1의그래핀옥사이드가그래핀을 0.43eV만큼
P-도핑시키는반면에,실시예 1의아미노기로개질된그래핀옥사이드층은 그래핀을 0.3eV만큼 n-도핑시킨다는것을확인할수있었다.
[183] 또한,실시예 2의추가환원된아미노기로개질된그래핀층은실시예 1의
아미노기로개질된그래핀옥사이드층에비하여 O.leV만큼그래핀을더 n도핑 시키는것을확인할수있었다.이와같은결과는남아있는전자를잘
끌어당기는카르보닐기,하이드록실기,에폭시기를제거하여아미노기의 n-도핑 효과를더향상시킨것으로판단된다. [184]
[185] 시 예 4:저기적특성에따론도핑 효과분석
[186] 도 13은실시예 3,및비교예 1내지 3에따라제조된그래핀적층체또는그래핀 적층체에금을중착하여전기적특성을분석한결과를나타낸것이다.
구체적으로, (a)는비교예 1과 2, (b)는비교예 1과 3, (c)는비교예 1과실시예 3에 대한결과이다.
[187] 도 13에따르면,비교예 2의그래핀옥사이드로도핑된경우그래핀의 dirac voltage가 30V정도변화한것에비해비교예 3의카르복시기로개질된그래핀 옥사이드로도핑된그래핀은 60V이상변화하는것을확인할수있었다.이와 같은결과는카르복시기로개질된그래핀옥사이드가일반적인그래핀 옥사이드보다훨씬더우수한 p도핑효과를나타내는것을나타낸다.
[188] 또한,비교예 3의카르복시기로개질된그래핀옥사이드로도핑된경우
그래핀의 dirac voltage가 +60V이상변화하였고,실시예 3의아미노기로개질된 그래핀으로도핑된그래핀은 -55V만큼변화하는것을확인할수있었다.
그러므로,카르복시기를아미노기로치환시킴으로써그래핀의 dirac voltage가 -115V만큼변화시킬수있을것으로기대할수있다.
[189]
[190] 시험예 5:그래휘 적충체름소스 /드레이 저극으로포함하는휴기 받막
트래지스티의특성분석
[191] 소자실시예 2및소자비교예 1에따라제조된유기박막트랜지스터의
출력특성및전달특성을비교하여도 14에나타내었다.
[192] 도 14에따르면,소자비교예 1의트랜지스터의이동도는 1.72 X cmW-'s 1인 반면에,소자실시예 2의트랜지스터의이동도는 1 , 19 X K^ cm ^로높고, 온 /오프비 (on/off ratio)도높은것을확인할수있었다.또한,전달곡선에서낮은 드레인전압 (drain voltage)에서의 S-모양의비음 (non-ohmic)경향도그래핀 옥사이드를첨가함으로써매우감소하는것을확인할수있었다.이러한변화는 n-도핑된그래핀층 /아미노기로개질된그래핀층으로이루어진전극의낮은 면저항과아미노기로개질된그래핀층의도핑효과로인해 n-도핑된
그래핀층 /아미노기로개질된그래핀층전극의일함수와 PCBM의 LUMO레벨이 잘맞아캐리어의주입장벽이낮아졌기때문인것으로판단할수있다.
[193]
[194] 이상,본발명의바람직한실시예들을들어상세하게설명하였으나,본발명은 상기실시예들에한정되지않으며,본발명의기술적사상의범위내에서 당분야에통상의지식을가진자에의하여여러가지변형이가능하다.
산업상이용가능성
[195] 본발명의그래핀적층체의그래핀을아미노기로개질된그래핀으로도핑을 하여그래핀의투명도를저하시키지않고,화학적으로다양하게조절가능한 그래핀을이용하여그래 의 : E핑정도를초절할수밌으며,보호층없。 장시간도핑효과가지속되는효과가있다.

Claims

청구범위
[청구항 1] 전자주개작용기를포함하는제 1그래핀층;및
상기제 1그래핀층상에위치하고,그래핀을포함하는제 2그래핀층;을 . 포함하고, :
상기제 2그래핀층은상기제 1그래핀층에의해 n-도핑되는그래핀 적층체.
[청구항 2] 제 1항에있어서,
상기전자주개작용기가아미노기, C1내지 C10의아미노알킬기,및 C2 내지 C10의메록시알킬기로이루어진군에서선택된 1종이상인것을 특징으로하는그래핀적층체 .
[청구항 3] 제 2항에있어서,
상기전자주개작용기가아미노기또는 C1내지 C10의아미노알킬기인 것을특징으로하는그래핀적층체
[청구항 4] 제 3항에있어서,
상기아미노기또는 C1내지 C10의아미노알킬기가상기제 1그래핀층과 아마이드결합된것을특징으로하는그래핀적층체.
[청구항 5] 제 1항에있어서,
상기제 1그래핀층이단층또는다층의그래핀층을포함하는것을 특징으로하는그래핀적층체.
[청구항 6] 그래핀옥사이드용액을준비하는단계 (단계 a);
' 상기그래핀옥사이드용액에전자주개작용기를포함하는화합물을 흔합하여전자주개작용기를포함하는그래핀용액을제조하는 단계 (단계 b);
기판상에상기전자주개작용기를포함하는그래핀용액을코팅하여 전자주개작용기를포함하는그래핀층을형성하는단계 (단계 c);및 상기전자주개작용기를포함하는그래핀층상에그래핀을적층하여 n-도핑된그래핀층을형성하는단계 (단계 d);를
포함하는그래핀적층체의제조방법.
[청구항 7] 제 6항에있어서,
상기전자주개작용기를포함하는화합물이알킬렌다이아민 (alkylene diamine),메톡시알킬아민 (methoxy alkyl amine),및다이메틸아미노 알킬아민 (dimethylamino alkyl amine)으로이루어진군에서선택된 1종 . 이상인것을특징으로하는그래핀적층체의제조방법.
[청구항 8] 제 7항에있어서,
상기전자주개작용기를포함하는화합물이알킬렌다이아민이고,상기 알킬렌다이아민이 C1내지 C10의알킬렌다이아민인것을특징으로 하는그래핀적층체의제조방법ᅳ
[청구항 9] 제 6항에 있어서,
단계 a이후,상기그래핀옥사이 H용액과산 (acid)을반웅시켜 카르복시기가결합된그래핀옥사이드용액을제조하는 ¾계 (단계 a');를 추가로포함하는것을특징으로하는그래핀적층체의제조방법.
[청구항 10] 제 9항에 있어서,
단계 a'가,
상기그래핀옥사이드용액과할로겐화수소를반웅시키는단계 (단계 a'-l);및
단계 a'-l의결과물을디카르복시산과반웅시켜카르복시기가결합된 그래핀옥사이드용액을제조하는단계 (단계 a'-2);를포함하는것을 특징으로하는그래핀적층체의제조방법 .
[청구항 11] 제 6항에 있어서, .
단계 c이후,상기 전자주개작용기를포함하는그래핀층을환원 처리하는단계 (단계 c');를추가로포함하는것을특징으로하는그래핀 적층체의 제조방법.
[청구항 12] 제 11항에 있어서,
상기환원처리가하이드라진 (hydrazine),하이드라진수화물 (hydrazine monohydrate),및디메틸하이드라진 (dimethylhydrazine)으로이루어진 군에서선택된어느하나의 기체분위기하에서수행되는것을특징으로 하는그래핀적층체의제조방법.
[청구항 13] 제 11항에 있어서,
상기환원처리가 70내지 300°C의온도에서수행되는것을특징으로 하는그래핀적층체의제조방법 .
[청구항 14] 제 6항에 있어서,
상기그래핀옥사이드용액에포함되는용매가물,디메틸포름아미드,및 엔메틸피롤리돈으로이루어진군에서선택된어느하나인것을특징으로 하는그래핀적층체의제조방법.
[청구항 15] 제 8항에 있어서,
단계 b에서상기그래핀옥사이드용액에카르보디이미드 (carbodiimide) 유도체또는싸이오닐클로라이드를추가로흔합하는것을특징으로 하는그래핀적층체의제조방법.
[청구항 16] 제 15항에 있어서,
상기카르보디이미드유도체가
EDC(N-ethyl-N0-(3-dimethylaminopropyl-)carbodiimidemethiodide)인것을 특징으로하는그래핀적층체의제조방법.
[청구항 17] 제 1항에따른그래핀적층체를포함하는전극.
[청구항 18] 제 17항에따른전극을포함하는전자소자.
[청구항 19] 제 18항에 있어서, 상기전자소자가유기박막트랜지스터,유기태양전지,유기발광 다이오드및유기광검출기중에서선택된어느하나인것을특징으로 하는전자소자.
[청구항 20] 제 19항에있어서,
상기유기박막트랜지스터의소스또는드레인전극이상기그래핀 적층체 *포함하는것을특징으로하는전자소자.
PCT/KR2016/002761 2015-03-23 2016-03-18 그래핀 적층체 및 그의 제조방법 WO2016153228A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680018073.0A CN107454894B (zh) 2015-03-23 2016-03-18 石墨烯层压制品及其制备方法
US15/561,039 US10804480B2 (en) 2015-03-23 2016-03-18 Graphene laminate and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150039813A KR101911745B1 (ko) 2015-03-23 2015-03-23 그래핀 적층체 및 그의 제조방법
KR10-2015-0039813 2015-03-23

Publications (1)

Publication Number Publication Date
WO2016153228A1 true WO2016153228A1 (ko) 2016-09-29

Family

ID=56977680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002761 WO2016153228A1 (ko) 2015-03-23 2016-03-18 그래핀 적층체 및 그의 제조방법

Country Status (4)

Country Link
US (1) US10804480B2 (ko)
KR (1) KR101911745B1 (ko)
CN (1) CN107454894B (ko)
WO (1) WO2016153228A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019010997A1 (zh) * 2017-07-11 2019-01-17 Tcl集团股份有限公司 发光二极管及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180330842A1 (en) * 2017-05-15 2018-11-15 The Trustees Of Columbia University In The City Of New York Layered metal-graphene-metal laminate structure
CN109935663B (zh) * 2017-12-15 2021-06-22 Tcl科技集团股份有限公司 一种复合材料薄膜的制备方法与qled器件
EP3788659A4 (en) * 2018-04-30 2021-07-07 Greatcell Energy Pty Ltd ELECTRICAL AND ELECTRONIC DEVICES WITH CARBON BASED COLLECTORS
US11261787B2 (en) 2018-06-22 2022-03-01 General Electric Company Aircraft anti-icing system
EP3911600A4 (en) * 2019-01-14 2022-10-19 Khalifa University of Science and Technology 3D REDUCED GRAPHENE OXIDE/SIO2 COMPOSITE FOR ICE NUCLEATION
CN110148557B (zh) * 2019-05-20 2021-06-11 浙江农林大学 一种基于碳基材料的pn结的制备方法
GB201916745D0 (en) * 2019-11-18 2020-01-01 Cambridge Entpr Ltd Device fabrication techniques
KR102373704B1 (ko) * 2019-12-05 2022-03-14 주식회사 포스코 그래핀 코팅 강판 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110115539A (ko) * 2010-04-15 2011-10-21 국립대학법인 울산과학기술대학교 산학협력단 층상 자기조립법을 이용한 그래핀 투명 박막의 제조방법
KR101160909B1 (ko) * 2011-01-26 2012-06-29 성균관대학교산학협력단 환원 그래핀 옥사이드와 탄소나노튜브로 구성된 전도성 박막의 제조방법 및 이에 의해 제조된 전도성 박막을 포함하는 투명전극
KR101275636B1 (ko) * 2011-08-30 2013-06-17 전자부품연구원 도핑 폴리머층을 포함하는 그래핀 기반 적층체
KR101286581B1 (ko) * 2011-08-10 2013-07-22 동의대학교 산학협력단 그래핀 분산액의 제조 방법
KR20140017787A (ko) * 2012-08-01 2014-02-12 재단법인 나노기반소프트일렉트로닉스연구단 그래핀을 포함한 적층체 및 그의 제조방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7452519B2 (en) * 2002-11-18 2008-11-18 William Marsh Rice University Sidewall functionalization of single-wall carbon nanotubes through C-N bond forming substitutions of fluoronanotubes
WO2008023399A1 (fr) * 2006-08-21 2008-02-28 Fujitsu Limited NANOTUBES DE CARBONE SEMICONDUCTEURS DE TYPE n, PROCÉDÉ DE PRODUCTION DE CEUX-CI, ET PROCÉDÉ DE PRODUCTION DE DISPOSITIFS SEMICONDUCTEURS
US20120141799A1 (en) * 2010-12-03 2012-06-07 Francis Kub Film on Graphene on a Substrate and Method and Devices Therefor
US20120202047A1 (en) * 2011-02-07 2012-08-09 Baker Hughes Incorporated Nano-coatings for articles
KR101706130B1 (ko) * 2012-09-05 2017-02-14 코쿠리츠켄큐카이하츠호징 붓시쯔 자이료 켄큐키코 부분 환원 그래핀 계층체-연결체, 부분 환원 그래핀 계층체-연결체의 제조방법, 부분 환원 그래핀 계층체-연결체 함유 분말, 부분 환원 그래핀 계층체-연결체 함유 필름, 그래핀 전극 필름, 그래핀 전극 필름의 제조방법, 및 그래핀 커패시터
CN103011150B (zh) * 2012-12-27 2015-06-17 上海交通大学 一种柔性石墨烯复合薄膜及其制备方法
KR20140116577A (ko) 2013-03-25 2014-10-06 인텔렉추얼디스커버리 주식회사 발광소자 제조방법 및 이를 통해서 형성된 발광소자
CN104377252B (zh) 2014-11-24 2017-03-22 中南大学 一种柔性铜基硫属半导体薄膜太阳电池窗口层结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110115539A (ko) * 2010-04-15 2011-10-21 국립대학법인 울산과학기술대학교 산학협력단 층상 자기조립법을 이용한 그래핀 투명 박막의 제조방법
KR101160909B1 (ko) * 2011-01-26 2012-06-29 성균관대학교산학협력단 환원 그래핀 옥사이드와 탄소나노튜브로 구성된 전도성 박막의 제조방법 및 이에 의해 제조된 전도성 박막을 포함하는 투명전극
KR101286581B1 (ko) * 2011-08-10 2013-07-22 동의대학교 산학협력단 그래핀 분산액의 제조 방법
KR101275636B1 (ko) * 2011-08-30 2013-06-17 전자부품연구원 도핑 폴리머층을 포함하는 그래핀 기반 적층체
KR20140017787A (ko) * 2012-08-01 2014-02-12 재단법인 나노기반소프트일렉트로닉스연구단 그래핀을 포함한 적층체 및 그의 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019010997A1 (zh) * 2017-07-11 2019-01-17 Tcl集团股份有限公司 发光二极管及其制备方法

Also Published As

Publication number Publication date
CN107454894B (zh) 2021-03-16
US10804480B2 (en) 2020-10-13
KR20160113769A (ko) 2016-10-04
KR101911745B1 (ko) 2018-10-25
US20180076404A1 (en) 2018-03-15
CN107454894A (zh) 2017-12-08

Similar Documents

Publication Publication Date Title
WO2016153228A1 (ko) 그래핀 적층체 및 그의 제조방법
Xu et al. Graphene as transparent electrodes: fabrication and new emerging applications
Huang et al. Effective work function modulation of graphene/carbon nanotube composite films as transparent cathodes for organic optoelectronics
Rana et al. A graphene-based transparent electrode for use in flexible optoelectronic devices
Qu et al. Noncovalent functionalization of graphene attaching [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM) and application as electron extraction layer of polymer solar cells
US8734683B2 (en) Graphene nano-sheets and methods for making the same
US9728605B2 (en) Roll-to-roll doping method of graphene film, and doped graphene film
Kang et al. Direct exfoliation of graphite using a non-ionic polymer surfactant for fabrication of transparent and conductive graphene films
US20130048949A1 (en) Carbonaceous Nanomaterial-Based Thin-Film Transistors
Ito et al. Selective growth of vertical ZnO nanowire arrays using chemically anchored gold nanoparticles
US10367130B2 (en) Method for producing nanomaterial-dopant composition composite, nanomaterial-dopant composition composite, and dopant composition
Chang et al. Graphene anodes and cathodes: tuning the work function of graphene by nearly 2 eV with an aqueous intercalation process
Camic et al. Fabrication of a transparent conducting electrode based on graphene/silver nanowires via layer-by-layer method for organic photovoltaic devices
KR102027362B1 (ko) 반도체 조성물
Mattevi et al. Solution-processable organic dielectrics for graphene electronics
KR20130095662A (ko) 반도체 박막소자용 투명전극
WO2014161100A1 (en) Silane functionalized buffer layers and electronic devices comprising the same
Gupta et al. Solution-processed layered hexagonal boron nitride dielectrics: a route toward fabrication of high performance flexible devices
Diker et al. Dispersion stability of amine modified graphene oxides and their utilization in solution processed blue OLED
Hong et al. Ultra-stable ZnO nanobelts in electrochemical environments
KR102049323B1 (ko) 나노패치 그래핀 복합체 및 그의 제조방법
Wu et al. Using a layer-by-layer assembly method to fabricate a uniform and conductive nitrogen-doped graphene anode for indium–tin oxide-free organic light-emitting diodes
US20120263939A1 (en) Graphene Composite Electrode And Method Of Making Thereof
Kwon et al. Synthesis of atomically thin alloyed molybdenum-tungsten disulfides thin films as hole transport layers in organic light-emitting diodes
Im et al. High uniformity and stability of graphene transparent conducting electrodes by dual-side doping

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16769046

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15561039

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16769046

Country of ref document: EP

Kind code of ref document: A1