WO2016152851A1 - 多孔質炭素電極基材、その製造方法、ガス拡散層、および燃料電池用膜-電極接合体 - Google Patents

多孔質炭素電極基材、その製造方法、ガス拡散層、および燃料電池用膜-電極接合体 Download PDF

Info

Publication number
WO2016152851A1
WO2016152851A1 PCT/JP2016/058976 JP2016058976W WO2016152851A1 WO 2016152851 A1 WO2016152851 A1 WO 2016152851A1 JP 2016058976 W JP2016058976 W JP 2016058976W WO 2016152851 A1 WO2016152851 A1 WO 2016152851A1
Authority
WO
WIPO (PCT)
Prior art keywords
short
layer
porous carbon
carbon electrode
resin
Prior art date
Application number
PCT/JP2016/058976
Other languages
English (en)
French (fr)
Inventor
井上幹夫
織田貴行
鈴木保
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2016527487A priority Critical patent/JP6729373B2/ja
Priority to EP16768754.0A priority patent/EP3276718B1/en
Priority to CA2977344A priority patent/CA2977344A1/en
Priority to US15/558,456 priority patent/US10651477B2/en
Priority to CN201680015135.2A priority patent/CN107408706B/zh
Priority to KR1020177028668A priority patent/KR102564231B1/ko
Publication of WO2016152851A1 publication Critical patent/WO2016152851A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8817Treatment of supports before application of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0243Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a porous carbon electrode substrate suitably used for a gas diffusion layer or a fuel cell membrane-electrode assembly and a method for producing the same.
  • a fuel cell for example, a polymer electrolyte fuel cell, supplies a reaction gas (a fuel gas and an oxidant gas) to a membrane electrode assembly in which a polymer electrolyte membrane is sandwiched between a pair of catalyst layers via a gas diffusion layer.
  • a reaction gas a fuel gas and an oxidant gas
  • a membrane electrode assembly in which a polymer electrolyte membrane is sandwiched between a pair of catalyst layers via a gas diffusion layer.
  • the gas diffusion layer of the fuel cell is formed by subjecting a porous carbon electrode substrate such as carbon paper to water repellent treatment and providing a microporous layer on the surface in contact with the catalyst layer.
  • a porous carbon electrode substrate such as carbon paper
  • water repellent treatment providing a microporous layer on the surface in contact with the catalyst layer.
  • Patent Document 1 discloses a porous carbon electrode base in which a gas is blown onto at least one surface of a porous carbon electrode base material, and carbon short fibers from which the binding by resin carbide has been removed are sufficiently removed. The method of manufacturing the material is shown.
  • an insulating member having a plurality of communication holes is disposed on the water repellent layer side of a gas diffusion layer formed by laminating a carbon fiber layer and a water repellent layer, and further insulated from the gas diffusion layer.
  • the member is sandwiched between a pair of electrodes, a pair of surface pressure plates are disposed and sandwiched between the back surfaces of the pair of electrodes, and the gas diffusion layer is pressurized by the pair of surface pressure plates.
  • Patent Document 3 a sheet having elasticity is arranged on at least one surface of a carbon sheet in which short carbon fibers are bound by carbon, and a linear pressure is 5 kN / m to 30 kN using a continuous pressing means.
  • a method of continuously removing carbon powder adhering to a carbon sheet after pressurizing at / m by a method of sweeping with a brush or the like, a method of sucking, or a method of ultrasonic cleaning is shown.
  • JP 2010-70433 A JP 2012-33458 A JP 2012-204142 A
  • the surface of the gas diffusion layer can be cleaned to some extent, but when the gas diffusion layer is compressed, such as a joining process with a polymer electrolyte membrane, new carbon fiber protrusion occurs. As a result, they pierce the polymer electrolyte membrane and cause a large short-circuit current.
  • the present invention overcomes the above-described problems, and is a porous carbon electrode base material in which short carbon fibers that are not easily short-circuited when used in a fuel cell and insufficiently bonded on the surface are sufficiently removed.
  • the purpose is to provide.
  • a porous carbon electrode base material in which short carbon fibers are bound with resin carbide A porous carbon electrode substrate characterized in that the average value of short-circuit current measured from one surface (referred to as surface A) is 10 mA or less.
  • a porous carbon electrode base material in which short carbon fibers are bound with resin carbide A porous carbon electrode substrate characterized by having a short-circuit current of 10 mA or less at a measurement point of 90% or more when a short-circuit current is measured from one surface (referred to as surface A).
  • a porous carbon electrode group that heats a composition containing carbon short fibers and a resin having a residual carbon ratio of 35% (mass basis) or more (hereinafter referred to as resin A) to carbonize the resin A.
  • a method for producing a material wherein the mass ratio of the short carbon fibers to the resin A in the composition is 70 to 250 parts by mass of the resin A with respect to 100 parts by mass of the short carbon fibers.
  • a method for producing a porous carbon electrode substrate according to (2) (4) A microporous layer is provided on one surface of the porous carbon electrode substrate according to (1) or (2). Characteristic gas diffusion layer.
  • a membrane-electrode assembly for a fuel cell comprising the porous carbon electrode substrate according to (1) or (2).
  • the porous carbon electrode substrate of the present invention is a porous carbon electrode substrate in which short carbon fibers are bound with resin carbide.
  • the porous carbon electrode base material whose average value of the short circuit current measured from one surface (it is called surface A) is 10 mA or less is called this invention 1, and when measuring a short circuit current from surface A, 90% or more A porous carbon electrode substrate having a short-circuit current of 10 mA or less at the measurement point is referred to as Invention 2.
  • the present invention 1 and the present invention 2 are collectively referred to simply as the present invention.
  • carbon fiber such as polyacrylonitrile (PAN), pitch, or rayon
  • PAN polyacrylonitrile
  • PAN-based or pitch-based, particularly PAN-based carbon fibers because an electrode substrate having excellent mechanical strength and appropriate flexibility can be obtained.
  • Such carbon fibers are preferably selected so that the average diameter (average diameter of single fibers) is in the range of 4 to 20 ⁇ m.
  • the average diameter of the carbon fibers is preferably 4 to 20 ⁇ m.
  • the average diameter of the carbon fiber single fiber is measured from a photograph of a cross-sectional photograph of the carbon fiber single fiber.
  • the average value of the major axis and the minor axis is taken as the diameter.
  • the average value of the diameter of five single fibers be an average diameter. The same applies when the carbon fiber is a short carbon fiber.
  • the short carbon fiber of the present invention means a carbon fiber having an average fiber length of 3 to 20 mm. That is, the short carbon fiber can be obtained by cutting the above-described carbon fiber. At that time, it is important to cut the carbon fiber so that the average fiber length is in the range of 3 to 20 mm.
  • carbon fibers having an average fiber length of less than 3 mm are used, mechanical properties such as maximum load and elastic modulus against bending of the obtained porous carbon electrode substrate may be deteriorated.
  • carbon fibers having an average fiber length of more than 20 mm are used, dispersibility at the time of papermaking, which will be described later, deteriorates, and variation in the basis weight of the carbon fibers in the obtained porous carbon electrode base material increases, resulting in poor quality. There is.
  • the carbon short fiber sheet in which the carbon short fibers are dispersed can be obtained by either the dry paper making method or the wet paper making method.
  • the wet paper making method using water as the paper making medium tends to make the carbon short fibers face the sheet surface. Therefore, it is preferable. That is, when the wet papermaking method is used, the short carbon fibers are difficult to be oriented in the direction of passing through the sheet, so it is difficult to cause a short circuit penetrating the fuel cell membrane, and the short circuit current can be kept low. Since a good homogeneous sheet can be obtained, the short-circuit current can be kept low at a large number of measurement points, which is preferable.
  • a flameproof yarn, organic fiber, and pulp having the same mass or less as the carbon short fiber may be mixed into the carbon short fiber sheet.
  • the total content of the flameproof yarn, the organic fiber, and the pulp is 100 mass of the short carbon fiber in the porous carbon electrode base material. The amount is preferably 0 part by mass or more and 50 parts by mass or less with respect to part by mass.
  • an organic binder such as polyvinyl alcohol, cellulose, polyester, epoxy resin, phenol resin, acrylic resin in the carbon short fiber sheet, in that case The total of these is preferably in the range of 1 to 30% by mass.
  • the basis weight of the short carbon fiber in the short carbon fiber sheet is preferably 10 to 50 g / m 2 .
  • the resulting porous carbon electrode substrate has excellent mechanical strength, and at the same time, sufficient flexibility can be maintained. it can.
  • the basis weight of the short carbon fiber in the short carbon fiber sheet is set to 10 to 50 g / m 2 .
  • the basis weight of the short carbon fibers in the short carbon fiber sheet is more preferably 15 to 35 g / m 2 .
  • the obtained carbon short fiber sheet is impregnated with a resin having a residual carbon ratio of 35% (mass basis) or more (hereinafter referred to as “resin A”).
  • resin A a resin having a residual carbon ratio of 35% (mass basis) or more
  • a porous carbon electrode substrate can be obtained by preparing a composition containing the mixture and heating the composition to carbonize the resin A.
  • the resin A is carbonized by heating in an inert atmosphere, and becomes a resin carbide that binds the short carbon fibers.
  • the resin A that is a resin having a residual carbon ratio of 35% (mass basis) or more include a phenol resin, an epoxy resin, a furan resin, and a melamine resin.
  • a thermosetting resin is used as the resin A, it is cured by heating under conditions suitable for each resin before raising the temperature to 800 ° C. In the production conditions of the porous carbon electrode base material, heating exceeding 2000 ° C. may be performed, but since the resin mass decrease mainly occurs up to 800 ° C., in the present invention, by the method of heating to 800 ° C. Define the remaining coal rate.
  • porous carbon plate heated and carbonized at a temperature of 2000 ° C. or more is impregnated with resin A. If the porous carbon plate contains a solvent, the solvent is dried and removed as necessary. After the resin A is cured, it is carbonized under the above conditions.
  • the porous carbon plate carbonized at 2000 ° C. or more is a material substantially made of carbon.
  • a porous carbon electrode base material in which short carbon fibers are bound with resin carbide can be used. Since the porous carbon plate carbonized at 2000 ° C.
  • the porous carbon plate impregnated with resin A is carbonized before and after carbonization of the porous carbon plate impregnated with resin A. By subtracting the mass, the mass of the resin A before and after carbonization can be obtained.
  • a carbon short fiber sheet containing resin A (this is called a composite sheet) is used as a composition containing carbon short fibers and resin A, it is formed by heating and pressurizing before carbonization by heating of the sheet. It is also preferable to keep it.
  • the thickness and porosity of the porous carbon electrode substrate can be set to more appropriate values.
  • the molding temperature is preferably 100 to 250 ° C.
  • the applied pressure is preferably 0.01 to 5 MPa.
  • surface A the average value of the short-circuit current measured from one surface
  • the porous carbon electrode base material of this invention 2 it is preferable that the average value of the short circuit current measured from the surface A is 10 mA or less.
  • the short-circuit current defined in the present invention means a value specified by the following procedures (1) to (3).
  • the polymer electrolyte membrane “Nafion” (registered trademark) NR211 (manufactured by DuPont) with a film thickness of 25 ⁇ m is superimposed on one surface (referred to as surface A) of the porous carbon electrode substrate.
  • the porous carbon electrode base material is a square with a side of 4 cm
  • the polymer electrolyte membrane is a square with a side of 5.5 cm or more
  • each side of the polymer electrolyte membrane is parallel to each side of the porous carbon electrode base material.
  • the polymer electrolyte membrane and the porous carbon electrode base material are overlapped so that the center thereof coincides with the center of the porous carbon electrode substrate.
  • the average value of the short-circuit current is obtained by changing the measurement sample of the porous carbon electrode base material, repeating the procedures (1) to (3) 20 times, and averaging the obtained 20 short-circuit current values. .
  • This short-circuit current measurement method is a test method that simulates a short circuit of a polymer electrolyte membrane on one surface of a porous carbon electrode substrate in a fuel cell.
  • a microporous layer and a catalyst layer exist between the porous carbon electrode substrate and the polymer electrolyte membrane, the test conditions are more emphasized than the actual fuel cell.
  • each side described in the items (1) and (2) is a porous carbon electrode substrate in which the entire surface of a porous carbon electrode substrate that is a square with a side of 4 cm overlaps the polymer electrolyte membrane, and the porous carbon electrode The entire surface of the porous carbon electrode substrate is covered by covering the entire surface of the base material with the stainless block electrode and covering the entire surface of the stainless block electrode with a square of 5 cm on each side with a polymer electrolyte membrane. This is to prevent contact between the two stainless steel blocks at the same time as the pressure is applied.
  • the porous carbon electrode substrate of the present invention 1 that the average value of the short-circuit current measured from the surface A is 10 mA or less.
  • the porous carbon electrode base material of this invention 2 is 10 mA or less in average value of the short circuit current measured from the surface A.
  • the average value of the short-circuit current measured from the surface A of the porous carbon electrode substrate is preferably 0 mA or more and 5 mA or less, more preferably 0 mA or more and 1 mA or less from the viewpoint of suppressing a decrease in power generation performance. .
  • the porous carbon electrode substrate of the present invention 2 it is important that the short-circuit current is 10 mA or less at 90% or more measurement points when the short-circuit current is measured from one surface (referred to as surface A).
  • the short-circuit current at 90% or more of the measurement points specified in the present invention is 10 mA or less
  • the measurement sample is changed, and the procedure of (1) to (3) in the measurement of the short-circuit current is performed 20 times. Repeatedly, it means that 90% or more of the obtained 20 short-circuit current values (that is, 18 or more short-circuit current values) is 10 mA or less.
  • the porous carbon electrode substrate of the present invention 2 can suppress a decrease in power generation performance by setting the short-circuit current to 10 mA or less at a measurement point of 90% or more. .
  • the porous carbon electrode substrate of the present invention 1 further suppresses the decrease in power generation performance by setting the short-circuit current to 10 mA or less at a measurement point of 90% or more. This is preferable.
  • the short-circuit current is more preferably 10 mA or less at a measurement point of 95% or more and 100% or less.
  • the method for suppressing the short-circuit current to be low and further suppressing the short-circuit current at a large number of measurement points can be achieved by increasing the ratio of the resin carbide binding the short carbon fibers in the porous carbon electrode base material, although it is possible by increasing the density of the material, on the other hand, means for reducing the gas permeability of the porous carbon electrode substrate is not preferred.
  • a preferable method for suppressing the short-circuit current to be low and further suppressing the short-circuit current at a large number of measurement points is to heat the composition containing the short carbon fibers and the resin A to carbonize the resin A to form a porous carbon electrode substrate.
  • there is a method of increasing the temperature rising rate during heating When the rate of temperature increase is increased, the amount of shrinkage in thickness during heating and carbonization of the porous carbon electrode substrate is reduced, and the binding between the carbide of resin A and the short carbon fibers is less likely to come off.
  • the heating rate during heating and carbonization is preferably such that the average heating rate from the furnace inlet (room temperature) to the maximum temperature in the furnace is 2000 to 15000 ° C./min.
  • the furnace inlet room temperature
  • the maximum temperature in the furnace is 2000 to 15000 ° C./min.
  • the linear pressure for calendering is preferably 80 to 150 N / cm. If the pressure is too low, the effect of folding the short carbon fibers is small, and if the pressure is too high, the porous carbon electrode substrate may be broken, and the short carbon fibers may fall off and fuzz. After the calendering process, the carbon short fibers that are broken or broken are removed by blowing or sucking air to efficiently remove the burned carbon short fibers by Joule heat of the next current. be able to. By carrying out calendering before removal by combustion, the short carbon fibers protruding on the surface of the porous carbon electrode substrate are damaged near the roots of the short carbon fibers that are closer to the resin carbide than the supple fibers.
  • the damaged portion in the vicinity of the root has a high electric resistance value, and thus is easily cut off by energized combustion.
  • by making the thickness of the porous carbon electrode base material uniform by calendering it is possible to prevent overcurrent caused by thickness variation.
  • Over-energization is a phenomenon in which short carbon fibers are not burnt out even when current flows when a large number of energized locations occur in the thick part of the porous carbon electrode substrate, and this is prevented by calendering. can do.
  • the average value of the short circuit current of the surface A can be made 10 mA or less, and the short circuit current can be made 10 mA or less at the measurement points of 90% or more of the surface A.
  • the porous carbon electrode substrate of the present invention is a method for producing a porous carbon electrode substrate, wherein the composition containing carbon short fibers and the resin A is heated to carbonize the resin A.
  • the mass ratio of the short carbon fibers to the resin A is preferably obtained by a production method in which the resin A is 70 to 250 parts by mass with respect to 100 parts by mass of the short carbon fibers. Since the porous carbon electrode base material obtained by such a method has a strong bond between the carbide of the resin A and the short carbon fibers, and the short carbon fibers are less likely to fall off from the porous carbon electrode base material, It can be kept low.
  • the mass ratio of the short carbon fibers to the resin A in the composition is 100 to 150 parts by mass of the resin A with respect to 100 parts by mass of the short carbon fibers.
  • the resin A preferably contains carbon powder such as graphite powder, carbon black, carbon nanotube, graphene, and the like.
  • carbon powder such as graphite powder, carbon black, carbon nanotube, graphene, and the like.
  • the obtained porous carbon electrode base material also contains the carbon powder, and shrinkage and crack generation when the resin A is carbonized are suppressed. It is possible to prevent the short carbon fibers from dropping and the polymer electrolyte membrane from being short-circuited due to the decrease in fiber binding, and as a result, the short-circuit current can be kept low.
  • the carbon powder preferably has an average particle size (average particle size D50 by laser diffraction method) of 1 to 10 ⁇ m.
  • the porous carbon electrode substrate of the present invention is a method for producing a porous carbon electrode substrate, in which a composition containing carbon short fibers, resin A, and carbon powder is heated to carbonize resin A.
  • the content of carbon powder in the product is preferably obtained by a production method in which carbon powder is 5 to 70 parts by mass with respect to 100 parts by mass of resin A in the composition.
  • the porous carbon electrode substrate obtained by such a method can suppress the shrinkage and crack generation during carbonization of the resin A, and further make the resin A carbide an appropriate amount when binding the carbon short fibers or the carbon powder. be able to.
  • the amount of the carbon powder with respect to 100 parts by mass of the resin A in the composition is more preferably 11 to 30 parts by mass.
  • the amount is preferably 50 to 220 parts by mass of the short carbon fibers and the carbon powder with respect to 100 parts by mass of the resin A in the composition.
  • the bulk density of a porous carbon electrode base material can suppress that the bulk density of a porous carbon electrode base material becomes high too much, and can be set as the porous carbon electrode base material which has the outstanding gas permeability and electric power generation performance. Furthermore, it can be set to an amount suitable for binding of carbon short fibers and carbon powder by the carbide of resin A.
  • the total of the short carbon fibers and the carbon powder with respect to 100 parts by mass of the resin A is more preferably 80 to 130 parts by mass.
  • the bulk density of the porous carbon electrode substrate is preferably 0.20 to 0.50 g / cm 3 .
  • the bulk density is calculated from the mass and thickness of a sample cut into a 10 cm square. The thickness is measured using a dial gauge having a diameter of 5 mm ⁇ , and the measurement pressure is 0.15 MPa.
  • the bulk density of the porous carbon electrode substrate By setting the bulk density of the porous carbon electrode substrate to 0.20 to 0.50 g / cm 3 , the short carbon fibers can be prevented from falling off, the short circuit current can be kept low, and the gas permeability and power generation performance can be reduced. Can be made an excellent value.
  • the bulk density is more preferably 0.25 to 0.40 g / cm 3 , further preferably 0.25 to 0.35 g / cm 3 .
  • the porous carbon electrode substrate is faced About the layer obtained by equally dividing into 3 in the straight direction (thickness direction), it is preferable that the layer filling rate is different between the layer close to one surface and the layer close to the other surface.
  • the 50% filling rate refers to the surface filling rate obtained by measuring the surface filling rate for each fixed length from one surface of the porous carbon electrode substrate to the other surface. The average value is obtained, and 50% of the obtained average value.
  • the layer filling rate means an average value obtained by using the filling rate of the surface on which the layer is formed.
  • the porous carbon electrode base For the layer obtained by dividing the material into three equal parts in the direction perpendicular to the surface, the layer having the largest layer filling rate near one surface is the layer X, and the layer near the other surface having a smaller layer filling rate than the layer X
  • the layer located between the layer Y and the layer X and the layer Y is the layer Z
  • it is preferable that the filling rate of the layer becomes smaller in the order of the layer X, the layer Y, and the layer Z.
  • the filling rate of layer Y is set to 1. Sometimes it is more preferred that the packing rate of layer X is 1.03 or more.
  • the filling rate of the layer Y is 1, it is more preferable that the filling rate of the layer X is 1.03 or more and the filling rate of the layer Z is 0.97 or less. More preferably, the filling factor of the layer X is 1.05 or more and the filling factor of the layer Z is 0.90 or less.
  • the filling rate of layer X, layer Y, and layer Z is obtained by three-dimensional measurement X-ray CT.
  • Three-dimensional data of the carbon sheet is acquired by scanning the entire area in the perpendicular direction with a three-dimensional X-ray CT for each fixed length from one surface of the carbon sheet to the other surface. By analyzing such three-dimensional data, the filling rate in the measured surface can be acquired, and the filling rate in a specific layer can be obtained.
  • the above-mentioned fixed length (henceforth a slice pitch) can be set arbitrarily, it shall be 1/3 or less of the average diameter of the carbon short fiber which comprises a carbon sheet.
  • the filling ratio of the surface at a predetermined position in the direction perpendicular to the surface of the carbon sheet is determined by using the image processing program “J-trim” for the slice image at the position in the three-dimensional data, and the maximum and minimum brightness in brightness.
  • the image is divided into 256 levels, and binarization is performed using the minimum 175 gradation steps as a threshold value.
  • the ratio of the area on the bright side binarized in the entire area is the filling ratio of the surface at a predetermined position.
  • the filling rate of the surface at this predetermined position is determined for each fixed length from one surface of the carbon sheet to the other surface, and the distribution of the filling rate of the surface for each fixed length in the perpendicular direction is calculated. obtain.
  • An average value is obtained using the filling rate values of all the surfaces thus obtained, and a value of 50% (1/2) of the average value is defined as a 50% filling rate.
  • the layer obtained by equally dividing the carbon sheet into three in the perpendicular direction The average value obtained using the filling rate of the surface on which the layer is formed is taken as the filling rate of the layer.
  • the layer having the highest packing ratio near one surface is the layer X
  • the layer near the other surface and having a lower packing ratio than the layer X is the layer Y
  • the layer positioned between the layers X and Y is the layer Let it be Z.
  • one measurement visual field for calculating the filling rate of the surface depends on the slice pitch
  • a plurality of measurements are performed so that the total of the measurement visual fields is 5 mm 2 or more, and an average value is obtained to fill the layer. Find the rate.
  • the three-dimensional X-ray CT used for measurement is SMX-160CTS manufactured by Shimadzu Corporation or an equivalent apparatus.
  • the slice pitch is 2.1 ⁇ m
  • the measurement visual field is 1070 ⁇ m
  • the measurement visual field is 5 mm 2 or more
  • the filling factor of the surface is obtained.
  • the number of measurements for determining the filling rate was 7 times.
  • the porous carbon electrode substrate of the present invention in which the packing ratio of the layers is made smaller in the order of layer X, layer Y, and layer Z is the average diameter of the short carbon fibers constituting the porous carbon electrode substrate and the porous carbon electrode substrate. Is obtained by a method of controlling the distribution of the resin A in the composite sheet before carbonization, heating, and carbonization in the direction perpendicular to the plane (thickness direction), but it is more preferable to control the distribution of the resin A.
  • the method of controlling the distribution of the resin A in the direction perpendicular to the surface is prepared by preparing three composite sheets having different resin A impregnation amounts in the composite sheet in which the carbon short fiber sheet is impregnated with the resin A, and laminating them.
  • Resin by using a method obtained by carbonization after molding and joining, or a resin application method in which a distribution is formed in the amount of resin A deposited when impregnating resin A into a porous body such as a carbon short fiber sheet It may be obtained by preparing a single composite sheet having a distribution in the amount of adhesion, and molding and carbonizing without laminating, but when obtaining by laminating composite sheets having different resin A impregnation amounts, Since a rapid change in the filling rate is likely to occur at the lamination interface, a method of producing from one composite sheet is preferable.
  • the method of producing from one composite sheet is suitable for adjusting the thickness to a preferred range because it is easy to reduce the thickness of the obtained porous carbon electrode substrate.
  • the preferred thickness range is 50 ⁇ m to 200 ⁇ m, more preferably 90 ⁇ m to 150 ⁇ m.
  • the thickness is small, the porous carbon electrode substrate is fragile and difficult to handle.
  • the output of the fuel cell is low because the permeability of hydrogen and oxygen is low.
  • a microporous layer can be provided on one surface of the porous carbon electrode substrate to form a gas diffusion layer for a fuel cell.
  • the microporous layer is composed of carbon particles and a fluororesin, and is provided on the surface of the porous carbon electrode substrate.
  • the carbon particles are not particularly limited, but carbon particles such as carbon black, “VGCF” (registered trademark) (manufactured by Showa Denko KK), carbon nanotubes, etc., having at least one dimension of 1 ⁇ m or less among the three dimensions indicating the size. (This is referred to as carbon fine particles).
  • the fluororesin is not particularly limited, but a fully fluorinated resin such as PTFE, FEP, PFA and the like is preferable.
  • the gas diffusion layer may form a microporous layer on any surface of the porous carbon electrode substrate, but preferably has a microporous layer on the surface A of the porous carbon electrode substrate. Since surface A has few protrusions such as carbon short fibers, surface A is a smooth surface with few convex portions. Therefore, by forming a microporous layer on surface A, the resulting microporous layer of the gas diffusion layer can be further increased. As a result, the fuel cell obtained by using such a gas diffusion layer is less likely to cause a short circuit.
  • a part of the microporous layer may penetrate into the porous carbon electrode substrate.
  • a microporous layer is provided on the A surface of the porous carbon electrode substrate, and further, the microporous layer is incorporated in the fuel cell so as to face the polymer electrolyte membrane with the catalyst layer interposed therebetween. It can contribute to improvement of moisture retention and drainage and prevention of short circuit of the membrane.
  • the membrane-electrode assembly of the present invention includes the porous carbon electrode substrate of the present invention. That is, the catalyst layer on both sides of the polymer electrolyte membrane, the outer surface of the catalyst layer (the surface of the catalyst layer different from the surface in contact with the polymer electrolyte membrane), and the outer surface of the microporous layer (microporous) A membrane-electrode assembly for a fuel cell in which a porous carbon electrode base material is provided on a layer different from the surface in contact with the catalyst layer). At that time, by providing a microporous layer on the A surface of the porous carbon electrode substrate, it is possible to contribute to improvement of moisture retention and drainage of the fuel cell and prevention of short circuit of the membrane.
  • OCV open circuit voltage
  • a catalyst solution was applied to 9001 (manufactured by Nichias Co., Ltd.) by spraying and dried at room temperature to prepare a PTFE sheet with a catalyst layer having a platinum amount of 0.3 mg / cm 2 .
  • a solid polymer electrolyte membrane “Nafion” (registered trademark) NR-211 (manufactured by DuPont) cut to 8 cm ⁇ 8 cm is sandwiched between two PTFE sheets with a catalyst layer, and pressed to 5 MPa with a flat plate press.
  • the catalyst layer was transferred to a solid polymer electrolyte membrane by pressing at a temperature of 130 ° C. for 5 minutes. After pressing, the PTFE sheet was peeled off to produce a solid polymer electrolyte membrane with a catalyst layer.
  • a solid polymer electrolyte membrane with a catalyst layer is sandwiched between two gas diffusion layers cut to 5 cm x 5 cm, pressed for 5 minutes at a temperature of 130 ° C while pressing to 3 MPa with a flat plate press, and membrane-electrode bonding The body was made.
  • the gas diffusion layer was disposed so that the surface having the microporous layer was in contact with the catalyst layer side.
  • a single cell for fuel cell evaluation was assembled using the obtained membrane-electrode assembly and a separator.
  • a serpentine type separator having a single flow path of 1.0 mm was used for each of the groove width, groove depth, and rib width.
  • the cell temperature was 80 ° C.
  • non-pressurized hydrogen was supplied to the anode side
  • non-pressurized air was supplied to the cathode side. Both hydrogen and air were humidified by a humidification pot set at a temperature of 40 ° C.
  • the anode-side separator and the cathode-side separator were not electrically connected by an external circuit. Hydrogen and air were supplied for 2 hours in an open circuit state, and then the potential difference (OCV) between the anode and the cathode was measured.
  • OCV potential difference
  • Example 1 A PAN-based carbon fiber “Torayca” (registered trademark) T300 (average diameter: 7 ⁇ m) manufactured by Toray Industries, Inc. was cut into an average length of 12 mm of short fibers, dispersed in water, and continuously made by wet paper making. Furthermore, a 10% by mass aqueous solution of polyvinyl alcohol as a binder was applied to the paper and dried to prepare a carbon short fiber sheet having a carbon short fiber basis weight of 30 g / m 2 . The adhesion amount of polyvinyl alcohol was 22 parts by mass with respect to 100 parts by mass of the carbon fiber.
  • the residual carbon ratio of the phenol resin obtained by mixing the resol type phenol resin and the novolak type phenol resin so that the non-volatile content was a mass ratio of 1: 1 was 59%. Furthermore, carbon powder became 50 mass parts with respect to 100 mass parts of resin A in a composition.
  • the carbon short fiber sheet was immersed in a mixed solution of the resin composition and squeezed by being sandwiched between rolls. At this time, two rolls were arranged horizontally with a certain clearance, and the carbon short fiber sheet was pulled up vertically to adjust the total amount of the resin composition.
  • one of the two rolls was a smooth metal roll having a structure capable of removing excess resin composition with a doctor blade, and the other roll was a roll having a rugged gravure roll. .
  • sandwiching one surface side of the carbon short fiber sheet with a metal roll and the other surface side with a gravure roll and squeezing the impregnating solution of the resin composition the resin composition of one surface and the other surface of the carbon short fiber sheet A difference was made in the amount of deposits.
  • the composite sheet which is a carbon short fiber sheet containing a phenol resin.
  • the adhesion amount of the phenol resin in the composite sheet is 120 parts by mass with respect to 100 parts by mass of the short carbon fibers.
  • molding was performed by heating for 5 minutes at a temperature of 180 ° C. while pressing with a flat plate press. A spacer was placed on the flat plate press during the pressurization, and the distance between the upper and lower press face plates was adjusted so that the thickness of the composite sheet after molding was 195 ⁇ m.
  • the base material obtained by heat-treating the composite sheet after molding was introduced into a heating furnace having a maximum temperature of 2400 ° C. maintained in a nitrogen gas atmosphere to obtain a porous carbon electrode base material. Heating was performed in two stages in a low temperature furnace having a maximum temperature of 750 ° C. and a high temperature furnace having a maximum temperature of 2400 ° C. At this time, the average temperature increase rate in the low temperature furnace was 2900 ° C./min, and the average temperature increase rate in the high temperature furnace was 4200 ° C./min.
  • Kraft paper (weighing 70 g / m 2 ) was placed on both sides of this porous carbon electrode substrate, and calendering was performed at a linear pressure of 85 N / cm.
  • static air 08 type on the porous carbon electrode substrate subjected to calendering
  • the removal process of the carbon short fiber which protruded by one side combustion surface which the gravure roll contacted at the time of resin squeezing
  • electrical combustion was performed according to the procedure described later.
  • the thickness of the porous carbon electrode substrate after energization combustion was 143 ⁇ m, and the filling rates of layers X, Z, and Y were different.
  • the physical properties are shown in Table 1.
  • the short-circuit current was measured with the surface on the side where the electric combustion was performed as the surface A.
  • the surface A was the layer X layer side with a high filling rate.
  • the graphite rod passes through the porous carbon electrode substrate with a gap of 30 ⁇ m, and the carbon short fiber protruding more than 30 ⁇ m from the surface of the porous carbon electrode substrate. An electric current flows and is removed by combustion.
  • Example 2 A porous carbon electrode substrate was obtained in the same manner as in Example 1 except that a large amount of the resin composition mixture was removed from the whole. The physical properties are shown in Table 1.
  • Example 2 the short-circuit current was measured with the surface on the side subjected to electro-combustion in the same manner as in Example 1, and the value was listed in the table.
  • the average value of the short-circuit current measured from the surface on the different side was 12.0 mA, and the ratio of the short-circuit current of 10 mA or less measured from the surface on the side different from the surface subjected to the energization combustion was 70%.
  • Example 3 A porous carbon electrode base material was obtained in the same manner as in Example 1 except that a large amount of the resin composition mixture was removed from the whole, and drying at the time of preparing the composite sheet was performed at a higher temperature. The purpose of drying at a higher temperature is to suppress resin movement in the thickness direction during drying. The physical properties are shown in Table 1.
  • Example 4 A porous carbon electrode substrate was obtained in the same manner as in Example 3 except that much of the mixed liquid of the resin composition was removed from the surface Y, and drying at the time of preparing the composite sheet was performed at a higher temperature. The purpose of drying at a higher temperature is to suppress resin movement in the thickness direction during drying. The physical properties are shown in Table 1.
  • LLKP hardwood bleached kraft pulp
  • the mixing ratio of parts by mass / 77 parts by mass, the two rolls for squeezing the impregnated resin liquid are smooth metal rolls, and the composite sheet is 110 parts by mass of phenol resin with respect to 100 parts by mass of carbon short fibers.
  • the same surface of the two composite sheets facing each other when pressed with a flat plate press, and the composite sheet after molding (two composite sheets bonded to form a single sheet) of A porous carbon electrode base material was obtained in the same manner as in Example 1 except that the interval between the upper and lower press face plates was adjusted so that the thickness was 165 ⁇ m, and that the electric combustion was performed on the lower face during pressing. .
  • the physical properties are shown in Table 1.
  • the average value of the short circuit current of Examples 1 to 5 is significantly lower than the surface on the side different from the surface where the electric combustion was performed in Example 2, and the short circuit current is 10 mA or less.
  • the ratio is markedly high.
  • the average value of the short-circuit current of Examples 1 to 4 is low, the ratio of the short-circuit current of 10 mA or less is high, and the average value of the short-circuit current equivalent to that of Examples 1 and 2 is particularly high even in Examples 3 and 4 where the density is low.
  • the ratio of the short circuit current of 10 mA or less is shown.
  • Example 6 Using the porous carbon electrode substrate of Example 5, a microporous layer was formed by the following procedure to produce a gas diffusion layer.
  • Carbon powder A Acetylene black: “DENKA BLACK” (registered trademark) (manufactured by Denki Kagaku Kogyo Co., Ltd.)
  • B Water repellent material: Aqueous dispersion of PTFE resin ("Polyflon” (registered trademark) PTFE dispersion D-210C (manufactured by Daikin Industries))
  • Material C Surfactant “TRITON” (registered trademark) X-100 (manufactured by Nacalai Tesque)
  • the above materials and purified water were mixed using a disperser to form a carbon powder-containing coating solution.
  • the thickness and basis weight are values as the gas diffusion layer.
  • the average value of the short circuit current and the ratio of the short circuit current of 10 mA or less indicate values measured from the surface of the gas diffusion layer having the microporous layer (that is, the surface of the microporous layer in the gas diffusion layer).
  • a fuel cell membrane-electrode is formed by stacking one catalyst electrolyte membrane with a catalyst and two gas diffusion layers so that the catalyst layer and the microporous layer face each other and heating and pressurizing at 3 MPa and 130 ° C for 5 minutes with a flat plate press It can be set as a joined body.
  • the average value of the short circuit current measured from one surface (referred to as surface A) of the porous carbon electrode substrate of the present invention is 10 mA or less, and in many cases, the ratio of the short circuit current of 10 mA is 90%.
  • surface A the average value of the short circuit current measured from one surface of the porous carbon electrode substrate of the present invention
  • Such membrane-electrode assemblies are subject to rapid deterioration of performance due to thinning of the membrane and short-circuiting due to repeated start-up and stop of power generation, and the effect of this in a fuel cell stack in which many membrane-electrode assemblies are connected in series Becomes even more prominent.
  • the durability of power generation is improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Materials Engineering (AREA)

Abstract

本発明は、燃料電池に用いた際に短絡が生じにくい、基材表面から突き出した炭素繊維や、面直方向に加圧することで基材表面から突き出す炭素繊維、さらには表面において結着が不十分な炭素短繊維が十分に除去された多孔質炭素電極基材を提供する。本発明は、炭素短繊維が樹脂炭化物で結着された多孔質炭素電極基材であって、一方の表面(面Aという)から測定した短絡電流の平均値が10mA以下であることを特徴とする、多孔質炭素電極基材である。

Description

多孔質炭素電極基材、その製造方法、ガス拡散層、および燃料電池用膜-電極接合体
 本発明は、ガス拡散層や燃料電池用膜-電極接合体に好適に用いられる多孔質炭素電極基材およびその製造方法に関する。
 燃料電池、例えば、固体高分子型燃料電池は、高分子電解質膜を一対の触媒層で挟んだ膜電極接合体にガス拡散層を介してそれぞれ反応ガス(燃料ガスおよび酸化剤ガス)を供給して電気化学反応を引き起こすことにより、物質の持つ化学エネルギーを直接電気エネルギーに変換する。
 燃料電池のガス拡散層は、カーボンペーパー等の多孔質炭素電極基材を撥水処理するとともに触媒層と接する側の表面にマイクロポーラス層を設けて構成されており、多孔質炭素電極基材の炭素繊維の単繊維が高分子電解質膜を貫通すると、短絡や貫通した部分を起点とした高分子電解質膜の劣化により、燃料電池の性能が低下するおそれがある。特に初期の発電への影響は小さくても、燃料電池の起動、停止の繰り返しによる膜の膨潤、収縮の繰り返しにより、短絡や高分子電解質膜の劣化が進行し燃料電池の耐久性を低下させる。
 そこで、特許文献1には、多孔質炭素電極基材の、少なくとも片側表面に、気体を吹き付ける処理を行い、樹脂炭化物による結着が外れた炭素短繊維が十分に除去された多孔質炭素電極基材の製造方法が示されている。
 また、特許文献2には、炭素繊維から成る層と撥水層とが積層して成るガス拡散層の撥水層側に複数の連通孔を有する絶縁部材を配置し、さらにガス拡散層と絶縁部材を一対の電極で挟み、一対の電極のそれぞれの背面に一対の面圧板を配置して挟み込み、一対の面圧板によりガス拡散層を加圧する。加圧状態のまま、一対の電極に電圧が印加されると、絶縁部材の連通孔を介して撥水層側の電極に接触している炭素繊維の突き出し部分に電流を流しジュール熱により突出した炭素繊維を燃焼除去する方法が示されている。
 一方、特許文献3には、炭素短繊維が炭素により結着された炭素シートの少なくとも一方の面に弾性を有するシートを配置し、連続的な加圧手段を用いて線圧5kN/m~30kN/mで加圧した後、炭素シートに付着した炭素粉を、刷毛などで掃く方法、吸引する方法、超音波洗浄などの方法で連続的に除去する方法が示されている。
特開2010-70433号公報 特開2012-33458号公報 特開2012-204142号公報
 しかしながら、特許文献1に記載の方法では、ガス拡散層の表面はある程度清浄にできるが、高分子電解質膜との接合工程など、ガス拡散層が圧縮された際に新たに炭素繊維の突き出しが発生してしまい、それらが高分子電解質膜に突き刺さってしまって大きな短絡電流が発生してしまうという問題がある。
 特許文献2に記載の方法では、発熱の大きい、突出した炭素繊維の細い部分や、放熱の少ない、突出した炭素繊維の長手方向中央付近での燃焼、切断が発生しやすいため、ガス拡散層から切断部まで突出した炭素繊維が残ったり、切断部より先の突出した炭素繊維が混入して、高分子電解質膜の短絡を起こす問題がある。
 また、特許文献3に記載の方法でも、炭素シートの少なくとも一方の面に弾性を有するシートを配置することで、加圧による力が分散され炭素短繊維を折り、除去する効果が低減してしまう問題がある。
 そこで本発明は、前記のような問題点を克服し、燃料電池に用いた際に短絡が生じにくい、表面において結着が不十分な炭素短繊維が十分に除去された多孔質炭素電極基材を提供することを目的とする。
 前記課題は以下の発明によって解決される。
(1) 炭素短繊維が樹脂炭化物で結着された多孔質炭素電極基材であって、
 一方の表面(面Aという)から測定した短絡電流の平均値が10mA以下であることを特徴とする、多孔質炭素電極基材。
(2) 炭素短繊維が樹脂炭化物で結着された多孔質炭素電極基材であって、
 一方の表面(面Aという)から短絡電流を測定した場合において、90%以上の測定点において短絡電流が10mA以下であることを特徴とする、多孔質炭素電極基材。
(3) 炭素短繊維、及び、残炭率35%(質量基準)以上の樹脂(以下、樹脂Aとする)を含む組成物を加熱して、前記樹脂Aを炭化させる、多孔質炭素電極基材の製造方法であって、前記組成物中の炭素短繊維と樹脂Aの質量比率が、炭素短繊維100質量部に対して樹脂Aが70~250質量部であることを特徴とする、(1)又は(2)に記載の多孔質炭素電極基材の製造方法
(4) (1)又は(2)に記載の多孔質炭素電極基材の一方の表面に、マイクロポーラス層を有することを特徴とする、ガス拡散層。
(5) (1)又は(2)に記載の多孔質炭素電極基材を含むことを特徴とする、燃料電池用膜-電極接合体。
 燃料電池に用いた際に短絡が生じにくい、基材表面から突き出した炭素繊維や、面直方向に加圧することで基材表面から突き出す炭素繊維、さらには基材表面において結着が不十分な炭素短繊維や樹脂炭化物が十分に除去された多孔質炭素電極基材を得ることができる。
 本発明の多孔質炭素電極基材は、炭素短繊維が樹脂炭化物で結着された多孔質炭素電極基材である。
 そして一方の表面(面Aという)から測定した短絡電流の平均値が10mA以下である多孔質炭素電極基材を本発明1といい、面Aから短絡電流を測定した場合において、90%以上の測定点において短絡電流が10mA以下である多孔質炭素電極基材を本発明2という。そして本発明1と本発明2とを総称して、単に本発明という。
 炭素短繊維を構成する炭素繊維としては、ポリアクリロニトリル(PAN)系、ピッチ系、レーヨン系等の炭素繊維を用いることができる。なかでも、機械強度に優れ、しかも、適度な柔軟性を有する電極基材が得られることから、PAN系やピッチ系、特にPAN系の炭素繊維を用いるのが好ましい。
 そのような炭素繊維は、平均直径(単繊維の平均直径)が4~20μmの範囲内にあるものを選択するのが好ましい。炭素繊維の平均直径を4~20μmとすることによって、多孔質炭素電極基材の柔軟性や機械特性を向上させることができる。なお炭素短繊維はこのような炭素繊維から得られるため、炭素短繊維の平均直径も4~20μmであることが好ましい。
 炭素繊維の単繊維の平均直径は、炭素繊維の単繊維の断面写真を撮影し、撮影した画像から測定する。断面が円形でない場合は、長径と短径の平均値を直径とする。5本の単繊維の直径の平均値を平均直径とする。炭素繊維が炭素短繊維である場合も同様である。
 本発明の炭素短繊維は、平均繊維長が3~20mmの炭素繊維を意味する。つまり炭素短繊維は、上述した炭素繊維をカットすることによって得られるが、そのとき、平均繊維長が3~20mmの範囲内になるように炭素繊維をカットすることが大切である。平均繊維長が3mm未満の炭素繊維を用いると、得られる多孔質炭素電極基材の曲げに対する最大荷重や弾性率等の機械的特性が低下することがある。また、平均繊維長が20mmを超える炭素繊維を用いると、後述する抄紙時における分散性が悪くなり、得られる多孔質炭素電極基材における炭素繊維の目付のばらつきが大きくなって品質が悪くなることがある。
 炭素短繊維を分散した炭素短繊維シートは、乾式抄紙法及び湿式抄紙法のいずれによっても得ることができるが、水を抄紙媒体とする湿式抄紙法の方が炭素短繊維がシート面を向きやすいため好ましい。すなわち湿式抄紙法を用いると、炭素短繊維がシートを貫く方向に向きにくいため、燃料電池の膜を貫通する短絡を起こしにくく短絡電流を低く抑えることができ、しかも、炭素短繊維の分散性のよい均質なシートが得られるため、多数の測定点において短絡電流を低く抑えることができるため好ましい。多孔質炭素電極基材の細孔構造を制御するため、炭素短繊維シート中には炭素短繊維と同質量以下の耐炎化糸、有機繊維、パルプを混合抄紙してもよい。多孔質炭素電極基材からの炭素短繊維の脱落を防止するためには、耐炎化糸、有機繊維、及びパルプの合計の含有量は、多孔質炭素電極基材中の炭素短繊維の質量100質量部に対して0質量部以上50質量部以下が好ましい。また、形態保持性やハンドリング性等を向上させるためには、炭素短繊維シートにポリビニルアルコール、セルロース、ポリエステル、エポキシ樹脂、フェノール樹脂、アクリル樹脂等の有機質バインダを含有させることが好ましく、その場合はこれらの合計が1~30質量%の範囲であることが好ましい。
 炭素短繊維シートの製造にあたっては、炭素短繊維シート中の炭素短繊維の目付が10~50g/mになるようにするのが好ましい。炭素短繊維シート中の炭素短繊維の目付を10~50g/mとすることで、得られる多孔質炭素電極基材の機械強度が優れたものとなり、同時に十分な柔軟性を維持することができる。さらに炭素短繊維シート中の炭素短繊維の目付を10~50g/mとすることで、炭素短繊維がシートを貫く方向に向くことが抑制できるため、燃料電池の膜を貫通する短絡を抑えることができ、結果として短絡電流を低く抑え、同時に多数の測定点における短絡電流も低く抑えることができる。炭素短繊維シート中の炭素短繊維の目付は15~35g/mであることがより好ましい。
 さて、本発明においては、得られた炭素短繊維シートに、残炭率35%(質量基準)以上の樹脂(以下、樹脂Aとする)を含浸するなどして、炭素短繊維及び樹脂Aを含む組成物を準備して、この組成物を加熱して、前記樹脂Aを炭化させることで、多孔質炭素電極基材とすることができる。
 ここで樹脂Aは、不活性雰囲気での加熱により炭化し、炭素短繊維同士を結着する樹脂炭化物となる。残炭率35%(質量基準)以上の樹脂である樹脂Aの例としては、フェノール樹脂、エポキシ樹脂、フラン樹脂、メラミン樹脂等を挙げることができる。
 ここで残炭率は、樹脂を窒素雰囲気中において0.5~5℃/分の昇温条件で800℃まで加熱して炭化した際の、炭化前質量WA(g)と炭化後質量WC(g)を用いて、残炭率(%)=(WC/WA)×100にて算出する。樹脂Aとして熱硬化性樹脂を使用する場合、800℃までの昇温の前に、それぞれの樹脂に適した条件で加熱して硬化させておく。多孔質炭素電極基材の製造条件においては、2000℃を超える加熱を行う場合もあるが、樹脂の質量減少は主に800℃までに起こるため、本発明においては上記800℃まで加熱する方法により残炭率を定義する。さらに残炭率の測定に際しては、2000℃以上の温度で加熱し炭化した多孔質炭素板に樹脂Aを含浸させ、多孔質炭素板が溶媒を含む場合、溶媒を乾燥除去し、必要に応じて樹脂Aを硬化させた後、上記条件で炭化する。2000℃以上で炭化した多孔質炭素板は実質的に炭素のみからなる材料であり、例えば炭素短繊維が樹脂炭化物で結着された多孔質炭素電極基材を用いることができる。2000℃以上で炭化した多孔質炭素板は800℃までの窒素雰囲気では減量しないため、樹脂Aを含浸した多孔質炭素板の炭化前、炭化後の質量から樹脂A含浸前の多孔質炭素板の質量を引くことで樹脂Aの炭化前、炭化後の質量を求めることができる。
 炭素短繊維及び樹脂Aを含む組成物として、樹脂Aを含む炭素短繊維シート(これを複合シートという)を用いる場合には、このシートの加熱による炭化の前に、加熱及び加圧して成形しておくのも好ましい。この成形により、多孔質炭素電極基材の厚さや空孔率をより適切な値とできる。成形する際の温度は100~250℃が好ましく、加える圧力は0.01~5MPa が好ましい。
 <短絡電流の平均値>
 本発明1の多孔質炭素電極基材は、一方の表面(面Aという)から測定した短絡電流の平均値が10mA以下であることが重要である。そして、本発明2の多孔質炭素電極基材は、面Aから測定した短絡電流の平均値が10mA以下であることが好ましい。
 ここで本発明で規定する短絡電流は、以下の(1)~(3)の手順により特定される値を意味する。
 (1)高分子電解質膜“Nafion”(登録商標)NR211(DuPont社製)膜厚25μmを、多孔質炭素電極基材の一方の表面(面Aとする)と重ねる。ここで多孔質炭素電極基材は1辺4cmの正方形、高分子電解質膜は1辺5.5cm以上の正方形として、高分子電解質膜の各辺と多孔質炭素電極基材の各辺とを平行にして、高分子電解質膜の中心と多孔質炭素電極基材の中心とが一致するように重ねる。
 (2)前記の重ねた高分子電解質膜と多孔質炭素電極基材を、金メッキしたステンレスブロック電極2個で挟み(挟む面は1辺5cmの正方形)、多孔質炭素電極基材の占める16cmの面積に圧力が1.0MPaとなるように加圧する。この際、2つの金メッキしたステンレスブロック電極が直接接触しないように、ステンレスブロック電極の挟む面の各辺と多孔質炭素電極基材の各辺とを平行にして、ステンレスブロック電極の中心と多孔質炭素電極基材の中心とが一致するように挟む。
 (3)デジタルマルチメーター(KEITHLEY Model196 SYSTEM DMM)を用いて金メッキしたステンレスブロック電極間に1.0Vの直流電圧を印加し、電極間の電流を測定し、得られた値を短絡電流とする。
 そして短絡電流の平均値は、多孔質炭素電極基材の測定サンプルを変更して(1)~(3)の手順を20回繰り返し、得られた20の短絡電流の値を平均することによって求める。
 この短絡電流の測定法は、燃料電池内での多孔質炭素電極基材の一方の面における高分子電解質膜の短絡を模擬した試験法である。実際の燃料電池においては、多孔質炭素電極基材と高分子電解質膜の間にはマイクロポーラス層および触媒層が存在するので、実際の燃料電池より強調した試験条件となっている。また(1)、(2)項記載の各辺の平行、中心合わせは、1辺4cmの正方形である多孔質炭素電極基材の全面が高分子電解質膜と重なっており、かつ多孔質炭素電極基材の全面がステンレスブロック電極により挟まれていること、および、1辺5cmの正方形であるステンレスブロック電極の挟む面の全面を高分子電解質膜で覆うことで、多孔質炭素電極基材の全面を加圧すると同時に、2つのステンレスブロック間の接触を防止するためである。
 多孔質炭素電極基材の一方の表面(面Aという)から測定した短絡電流の平均値が10mAを超えると、多孔質炭素電極基材から突き出した炭素短繊維などの凸部によって、高分子電解質膜に短絡が生じている可能性があり、燃料電池の長期運転下での発電性能低下の原因となる可能性がある。そのため本発明1の多孔質炭素電極基材は、面Aから測定した短絡電流の平均値が10mA以下であることが重要である。また、本発明2の多孔質炭素電極基材は、面Aから測定した短絡電流の平均値が10mA以下であることが好ましい。さらに、多孔質炭素電極基材の面Aから測定した短絡電流の平均値は、発電性能の低下を抑制する点から0mA以上5mA以下であることが好ましく、0mA以上1mA以下であることがさらに好ましい。
 <短絡電流が10mA以下である測定点の割合>
 本発明2の多孔質炭素電極基材は、一方の表面(面Aという)から短絡電流を測定した場合に、90%以上の測定点において短絡電流が10mA以下であることが重要である。そして、本発明1の多孔質炭素電極基材は、面Aから短絡電流を測定した場合に、90%以上の測定点において短絡電流が10mA以下であることが好ましい。
 ここで本発明で規定する、90%以上の測定点における短絡電流が10mA以下とは、測定サンプルを変更して、上述の短絡電流の測定における、(1)~(3)の手順を20回繰り返し、得られた20の短絡電流の値の90%以上の値(すなわち18以上の短絡電流の値)が10mA以下であることを意味する。
 本発明2の多孔質炭素電極基材は、面Aから短絡電流を測定した場合に、90%以上の測定点において短絡電流を10mA以下とすることで、発電性能の低下を抑制することができる。また、本発明1の多孔質炭素電極基材は、面Aから短絡電流を測定した場合に、90%以上の測定点において短絡電流を10mA以下とすることで、発電性能の低下をより抑制することができるので好ましい。さらに、本発明の多孔質炭素電極基材は、面Aから短絡電流を測定した場合に、95%以上100%以下の測定点において短絡電流が10mA以下であることがさらに好ましい。
 短絡電流を低く抑え、さらに多数の測定点において短絡電流を低く抑えるための方法は、多孔質炭素電極基材中の炭素短繊維を結着する樹脂炭化物の比率を高めたり、多孔質炭素電極基材の密度を高めることで可能であるが、一方で多孔質炭素電極基材のガス透過性を低下させる手段は好ましくない。
 短絡電流を低く抑え、さらに多数の測定点において短絡電流を低く抑えるための好ましい方法は、炭素短繊維及び樹脂Aを含む組成物を加熱して樹脂Aを炭化させることで多孔質炭素電極基材とする製造方法において、加熱の際の昇温速度を高める方法がある。昇温速度を高めると、多孔質炭素電極基材の加熱、炭化の際の厚さ収縮量が小さくなり、樹脂Aの炭化物と炭素短繊維の結着が外れにくくなる。さらに、昇温速度を高めた場合は加熱、炭化の際の厚さ収縮量が小さいため、前工程である成形工程で高圧をかけ予め薄くしておく必要があり、この点からも樹脂Aの炭化物と炭素短繊維の結着が強固になり外れにくくなる。加熱、炭化時の昇温速度は、炉入口(室温)から炉内最高温度までの平均昇温速度が2000~15000℃/分が好ましい。低温炉と高温炉の2段加熱を行う場合には少なくとも一方の炉が、好ましくは両方の炉がこの範囲であると多孔質炭素電極基材表面の炭素短繊維の突き出し抑制に有効である。
 また、短絡電流の平均値を10mA以下に抑え、さらに90%以上の測定点において短絡電流を10mA以下に抑えるためには、これまでに説明したいくつかの方法を単独で用いるだけでは困難であり、これまでに述べた方法と共に、多孔質炭素電極基材の表面に突き出した炭素短繊維を除去する方法を併用することが好ましく、特に、多孔質炭素電極基材をカレンダー加工し、空気の吹き付けや吸引を行った後、炭素短繊維の突き出し部分に電流を流しジュール熱により突き出した炭素短繊維を燃焼除去し、続いて空気の吹き付けや吸引を行う方法が好ましい。なお、電流を流すことで突き出した炭素短繊維を燃焼して除去する方法を、通電燃焼という。
 カレンダー加工の際には多孔質炭素電極基材の片面または両面に多孔質炭素電極基材より表面粗さの小さい紙やフィルムを重ねてカレンダー加工をしても構わないが、その圧縮弾性率は特に限定する必要はない。多孔質炭素電極基材の両面に紙やフィルムを重ねてカレンダー加工後、多孔質炭素基材とは別に回収することで、多孔質炭素電極基材から脱落した炭素短繊維や樹脂炭化物や炭素粉末のロールへの付着を防止し、さらにはロールからの脱落、多孔質炭素電極基材への再付着を防止することができる。ロールに付着した炭素短繊維や樹脂炭化物の清掃機構を備えて、ロールで直接加圧する方法もロールによる加圧力の分散を防止し多孔質炭素電極基材から突き出した炭素短繊維や樹脂炭化物を取り除くため、さらには紙やフィルムが不用となるため好ましい。
 カレンダー加工の線圧は80~150N/cmが好ましい。圧力が低すぎると炭素短繊維を折り取る効果が小さく、圧力が高すぎると多孔質炭素電極基材が壊れ、炭素短繊維の脱落、毛羽立ちを誘起することがある。カレンダー加工の後、空気の吹き付けや吸引により、折れた、ないしは折れかかった炭素短繊維を除去しておくことで、次の電流のジュール熱による突き出した炭素短繊維の燃焼除去を効率的に行うことができる。燃焼除去の前にカレンダー加工を実施することで、多孔質炭素電極基材の表面に突き出した炭素短繊維はしなやかな繊維部分よりも樹脂炭化物による結着箇所に近い炭素短繊維の根元近傍が損傷し、その根元近傍の損傷箇所は電気抵抗値が高くなるため、通電燃焼によって切れやすくなる。その結果、カレンダー加工なしでの通電処理で問題となる炭素短繊維の根元寄り部分の焼け残りを防止できる。さらにカレンダー加工で多孔質炭素電極基材の厚さを均一にすることにより、厚さのバラツキに起因する過通電を防止することができる。過通電とは、多孔質炭素電極基材の厚い部分で通電箇所が多数発生すると、電流密度が低下して電流が流れても炭素短繊維が焼き切れない現象であり、カレンダー加工によりこれを防止することができる。通電燃焼による炭素繊維の突き出し除去の後は、再び空気の吹き付けや吸引を実施し、脱落した炭素短繊維や、突き出した炭素短繊維の弱くなった部分を除去することで一層の短絡電流低減が達成される。これにより、面Aの短絡電流の平均値を10mA以下として、なおかつ、面Aの90%以上の測定点において短絡電流を10mA以下とすることができる。
 本発明の多孔質炭素電極基材は、炭素短繊維及び樹脂Aを含む組成物を加熱して、樹脂Aを炭化させる、多孔質炭素電極基材の製造方法であって、前記組成物中の炭素短繊維と樹脂Aの質量比率が、炭素短繊維100質量部に対して樹脂Aが70~250質量部である製造方法によって得ることが好ましい。このような方法によって得られる多孔質炭素電極基材は、樹脂Aの炭化物と炭素短繊維の結着が強くなり、多孔質炭素電極基材から炭素短繊維が脱落しにくくなるので、短絡電流を低く抑えることができる。さらに多孔質炭素電極基材のかさ密度が高くなりすぎるのを抑制して、優れた気体透過性や発電性能とすることができる。より好ましい前記組成物中の炭素短繊維と樹脂Aの質量比率は、炭素短繊維100質量部に対して樹脂Aが100~150質量部である。
 樹脂Aには、黒鉛粉末、カーボンブラック、カーボンナノチューブ、グラフェンなどの炭素粉末を含有させることも好ましい。樹脂Aに炭素粉末を含有させることにより、得られる多孔質炭素電極基材も炭素粉末を含有することとなり、樹脂Aが炭化する際の収縮やクラック発生が抑制され、樹脂Aの炭化物と炭素短繊維の結着低下による炭素短繊維の脱落や高分子電解質膜の短絡を防止することができ、結果として短絡電流を低く抑えることができる。このような効果を奏するために、炭素粉末は平均粒径(レーザー回折法による平均粒子径D50)が1~10μmであることが好ましい。
 本発明の多孔質炭素電極基材は、炭素短繊維、樹脂A、及び炭素粉末を含む組成物を加熱して、樹脂Aを炭化させる、多孔質炭素電極基材の製造方法であって、組成物中の炭素粉末の含有量が、組成物中の樹脂A100質量部に対し、炭素粉末5~70質量部とする製造方法によって得ることが好ましい。このような方法によって得られる多孔質炭素電極基材は、樹脂Aの炭化時の収縮やクラック発生を抑制でき、さらに炭素短繊維や炭素粉末の結着に際して樹脂Aの炭化物を適切な量とすることができる。組成物中の樹脂A100質量部に対する炭素粉末の量は、11~30質量部であることがより好ましい。
 炭素短繊維、樹脂A、及び炭素粉末を含む組成物を加熱して、樹脂Aを炭化させることで多孔質炭素電極基材を製造する際における、組成物中の炭素短繊維と炭素粉末の含有量は、組成物中の樹脂A100質量部に対し、炭素短繊維と炭素粉末の合計が50~220質量部であることが好ましい。このようにすることで、炭素短繊維および炭素粉末を結着する樹脂Aの炭化物の量を適切に保つと同時に、樹脂Aの炭化時の収縮やクラック発生を抑制することで、多孔質炭素電極基材から炭素短繊維が脱落しにくくなるので、短絡電流を低く抑えることができる。さらに、多孔質炭素電極基材のかさ密度が高くなりすぎるのを抑制して、優れた気体透過性や発電性能を有する多孔質炭素電極基材とすることができる。さらに樹脂Aの炭化物による炭素短繊維と炭素粉末の結着に適切な量とすることができる。樹脂A100質量部に対する炭素短繊維と炭素粉末の合計は、80~130質量部であることがより好ましい
 多孔質炭素電極基材のかさ密度は0.20~0.50g/cmが好ましい。かさ密度は10cm角に切り出したサンプルの質量と厚さから算出する。厚さの測定は、直径5mmφの測定子のダイヤルゲージを用い、測定圧力は0.15MPaとする。多孔質炭素電極基材のかさ密度を0.20~0.50g/cmとすることで、炭素短繊維の脱落を抑制し、短絡電流を低く抑えることができ、さらに気体透過性および発電性能を優れた値とすることができる。かさ密度は0.25~0.40g/cmがより好ましく、0.25~0.35g/cmがさらに好ましい。
 多孔質炭素電極基材の、一方の表面にもっとも近い50%充填率を有する面から、他方の表面にもっとも近い50%充填率を有する面までの区間において、前記多孔質炭素電極基材を面直方向(厚さ方向)に3等分して得られる層について、一方の表面に近い層と他方の表面に近い層とで、層の充填率が異なることが好ましい。ここで50%充填率とは、多孔質炭素電極基材の一方の表面から他方の表面に向かって、一定の長さ毎に面の充填率を測定し、続いて得られた面の充填率の平均値を求め、さらに得られた平均値の50%の値をいう。さらに層の充填率とは、層を形成する面の充填率を用いて得られる平均値をいう。
 ここで、多孔質炭素電極基材の、一方の表面にもっとも近い50%充填率を有する面から、他方の表面にもっとも近い50%充填率を有する面までの区間において、前記多孔質炭素電極基材を面直方向に3等分して得られる層について、一方の表面に近く層の充填率が最も大きい層を層X、他方の表面に近く層の充填率が層Xよりも小さい層を層Y、層Xと層Yの間に位置する層を層Zとすると、層の充填率が、層X、層Y、層Zの順に小さくなることが好ましい。
 さらに、一方の表面に近く層の充填率が最も大きい層を層X、他方の表面に近く層の充填率が層Xよりも小さい層を層Yとすると、層Yの充填率を1とした時に、層Xの充填率が1.03以上であることがさらに好ましい。層Xに近い側の表面を面Aとして選択することにより、面Aの短絡電流を低下させることができる。
 そして、層Yの充填率を1とした時に、層Xの充填率が1.03以上であり、層Zの充填率が0.97以下であることがより好ましい。層Xの充填率が1.05以上であり、層Zの充填率が0.90以下であることがさらに好ましい。層Xに近い側の表面を面Aとして選択することにより、面Aの短絡電流を低下させることができ、層Zの充填率が低いことにより高い発電性能を得ることができる。
 層X、層Y、および層Zの充填率は、三次元計測X線CTによって得られる。炭素シートの一方の表面から他方の表面に向かって一定の長さ毎に面直方向全域を三次元X線CTでスキャンすることで、当該炭素シートの三次元データを取得する。このような三次元データを解析することによって、測定した面における充填率を取得でき、特定の層における充填率を求めることができる。なお、上述の一定の長さ(以下、スライスピッチという)は任意に設定することができるが、炭素シートを構成する炭素短繊維の平均直径の3分の1以下とする。
 炭素シートの面直方向における所定の位置における面の充填率は、3次元データにおける当該位置のスライス画像を、画像処理プログラムである「J-trim」を用い、輝度で明るさの最大と最小を256段階に区切り、最小から175階調段階の部分を閾値として二値化を行なう。全体の面積中の、二値化された明るい側の面積の割合が、所定の位置における面の充填率である。この所定の位置における面の充填率を、炭素シートの一方の表面から他方の表面に至るまで、一定の長さ毎に求め、面直方向における一定の長さ毎の面の充填率の分布を得る。こうして得た全ての面の充填率の値を用いて平均値を求め、その平均値の50%(2分の1)の値を50%充填率とする。
 そして一方の表面にもっとも近い50%充填率を有する面から、他方の表面に最も近い50%充填率を有する面までの区間において、炭素シートを面直方向に3等分して得られる層について、層を形成する面の充填率を用いて得られる平均値を、層の充填率とする。
 一方の表面に近く層の充填率が最も高い層を層X、他方の表面に近く層の充填率が層Xよりも小さい層を層Y、層Xと層Yの間に位置する層を層Zとする。
 なお、面の充填率を算出するための1回の測定視野はスライスピッチに依存するが、測定視野の合計が5mm以上となるように複数回の測定を行って平均値を求め層の充填率を求める。
 測定に用いる三次元X線CTは、島津製作所製SMX-160CTSまたは同等の装置とする。また後述の実施例においては、炭素短繊維の平均直径が7μmであるため、スライスピッチは2.1μm、測定視野1070μmとして、測定視野を5mm以上として面の充填率を求めるため、1つの面の充填率を求める際の測定回数を7回とした。
 層の充填率を層X、層Y、層Zの順に小さくした本発明の多孔質炭素電極基材は、多孔質炭素電極基材を構成する炭素短繊維の平均直径や多孔質炭素電極基材の密度、加熱、炭化前の複合シート中の樹脂Aの分布を面直方向(厚さ方向)に制御する方法によって得られるが、樹脂Aの分布を制御することがより好ましい。
 樹脂Aの分布を面直方向に制御する方法は、前述の炭素短繊維シートに樹脂Aを含浸させた複合シートにおいて、樹脂Aの含浸量の異なる3枚の複合シートを用意し、これらを積層成形して接合した後、炭化することで得る方法や、炭素短繊維シートなどの多孔体に樹脂Aを含浸する際に樹脂Aの付着量に分布が形成される樹脂付与方法を用いることで樹脂付着量に分布を持つ1枚の複合シートを用意し、積層せずに成形して炭化する方法で得ても良いが、樹脂Aの含浸量の異なる複合シートを積層することにより得る場合には、積層界面で充填率の急激な変化が生じ易いことから、1枚の複合シートから作製される方法が好ましい。
 また、1枚の複合シートから作製する方法は、得られる多孔質炭素電極基材の厚さを小さくすることが容易であるため、厚さを好ましい範囲に調整するためにも好適である。厚さの好ましい範囲は50μm~200μmであり、さらに好ましくは90μmから150μmである。厚さが薄い場合は多孔質炭素電極基材が壊れやすく取り扱いが難しい。厚さが厚い場合は水素や酸素の透過性が低いため燃料電池の出力が低くなる。
 多孔質炭素電極基材の一方の表面に、マイクロポーラス層を設けて燃料電池のガス拡散層とすることができる。マイクロポーラス層は、炭素粒子とフッ素樹脂によって構成され、多孔質炭素電極基材の表面に設けられる。炭素粒子については特に限定されないが、カーボンブラック、“VGCF”(登録商標)(昭和電工(株)製)、カーボンナノチューブ等の、大きさを示す3次元のうち少なくとも1次元が1μm以下の炭素粒子(これを炭素微粒子という)であることが好ましい。またフッ素樹脂についても特に限定されないが、PTFE、FEP、PFAなどの完全フッ素化した樹脂が好ましい。
 ガス拡散層は、多孔質炭素電極基材のいずれの表面にマイクロポーラス層を形成しても構わないが、多孔質炭素電極基材の面Aにマイクロポーラス層を有することが好ましい。面Aは炭素短繊維などの突き出しが少ないため、面Aは凸部の少ない平滑な面であるので、面Aにマイクロポーラス層を形成することで、得られるガス拡散層のマイクロポーラス層もさらに凸部の少ないものとすることができ、結果としてこのようなガス拡散層を用いて得られる燃料電池は短絡が生じにくいものとなる。
 なおマイクロポーラス層は、その一部が多孔質炭素電極基材の内部に浸入していてもよい。本発明のガス拡散層においては、多孔質炭素電極基材のA面にマイクロポーラス層を設け、さらにマイクロポーラス層が触媒層を挟んで高分子電解質膜と対向するように燃料電池に組み込むことにより、保湿性、排水性向上、膜の短絡防止に寄与することができる。
 本発明の膜-電極接合体は、本発明の多孔質炭素電極基材を含む。つまり高分子電解質膜の両面に触媒層、触媒層の外側の面(触媒層の、高分子電解質膜を接する面とは別の面)にマイクロポーラス層、マイクロポーラス層の外側の面(マイクロポーラス層の、触媒層と接する面とは別の面)に多孔質炭素電極基材を設けた燃料電池用膜-電極接合体とすることができる。その際、多孔質炭素電極基材のA面にマイクロポーラス層を設けることで、燃料電池の保湿性、排水性向上、膜の短絡防止に寄与することができる。
 なお、固体高分子型燃料電池の開回路電圧(OCV)測定は以下の手順で実施した。
 (1)白金担持炭素(田中貴金属工業(株)製、白金担持量:50質量%)1.0gと、精製水1.0g、“Nafion”(登録商標)溶液(Aldrich社製“Nafion”(登録商標)5.0質量%)8.0gと、イソプロピルアルコール(ナカライテスク社製)18.0gとを順に加えることにより、触媒液を作製した。
 次に、5cm×5cmにカットした“ナフロン”(登録商標)PTFEテープ“TOMBO”(登録商標)No.9001(ニチアス(株)製)に、触媒液をスプレーで塗布し、常温で乾燥させ、白金量が0.3mg/cmの触媒層付きPTFEシートを作製した。続いて、8cm×8cmにカットした固体高分子電解質膜“Nafion”(登録商標)NR-211(DuPont社製)を、2枚の触媒層付きPTFEシートで挟み、平板プレスで5MPaに加圧しながら130℃の温度で5分間プレスし、固体高分子電解質膜に触媒層を転写した。プレス後、PTFEシートを剥がし、触媒層付き固体高分子電解質膜を作製した。
 (2)触媒層付き固体高分子電解質膜を、5cm×5cmにカットした2枚のガス拡散層で挟み、平板プレスで3MPaに加圧しながら130℃の温度で5分間プレスし、膜-電極接合体を作製した。ガス拡散層は、マイクロポーラス層を有する面が触媒層側と接するように配置した。
 (3)得られた膜-電極接合体とセパレータを用いて燃料電池評価用単セルを組んだ。セパレータとしては、溝幅、溝深さ、リブ幅がいずれも1.0mmの一本流路のサーペンタイン型セパレータを用いた。セル温度は80℃とし、アノード側には無加圧の水素を、カソード側には無加圧の空気を供給した。水素と空気はともに40℃の温度に設定した加湿ポットにより加湿を行った。アノード側セパレータとカソード側セパレータは外部回路による電気的接続はせず、開回路状態で水素と空気の供給を2時間行い、その後アノードとカソードの電位差(OCV)を測定した。
 (実施例1)
 東レ(株)製PAN系炭素繊維“トレカ”(登録商標)T300(平均直径:7μm)を短繊維の平均長さ12mmにカットし、水中に分散させて湿式抄紙法により連続的に抄紙した。さらに、バインダーとしてポリビニルアルコールの10質量%水溶液を当該抄紙に塗布して乾燥させ、炭素短繊維の目付が30g/mの炭素短繊維シートを作製した。ポリビニルアルコールの付着量は、炭素繊維100質量部に対して22質量部であった。
 次に、熱硬化性樹脂としてレゾール型フェノール樹脂とノボラック型フェノール樹脂を不揮発分が1:1の質量比となるように混合したフェノール樹脂と、炭素粉末として鱗片状黒鉛粉末(平均粒径5μm)と、溶媒としてメタノールを用い、熱硬化性樹脂(不揮発分)/炭素粉末/溶媒=10質量部/5質量部/85質量部の配合比でこれらを混合し、均一に分散した樹脂組成物(混合液)を得た。
 なお、レゾール型フェノール樹脂とノボラック型フェノール樹脂を不揮発分が1:1の質量比となるように混合したフェノール樹脂の残炭率は59%であった。さらに組成物中では樹脂A100質量部に対して炭素粉末が50質量部となった。
 次に、炭素短繊維シートを樹脂組成物の混合液に浸漬し、ロールで挟んで絞った。この際、ロールは一定のクリアランスをあけて水平に2本配置して炭素短繊維シートを垂直に上に引き上げることで全体の樹脂組成物の付着量を調整した。また、2本のうち一方のロールはドクターブレードで余分な樹脂組成物を取り除くことができる構造を持つ平滑な金属ロールで、他方のロールを凹凸のついたグラビアロールとした構成のロールを用いた。炭素短繊維シートの一方の表面側を金属ロールで、他方の表面側をグラビアロールで挟み、樹脂組成物の含浸液を絞ることで、炭素短繊維シートの一方の表面と他方の表面の樹脂組成物の付着量に差を付けた。その後、100℃の温度で5分間加熱して乾燥させ、フェノール樹脂を含む炭素短繊維シートである複合シートを作製した。複合シートにおけるフェノール樹脂の付着量は、炭素短繊維100質量部に対し、120質量部である。
 次に、平板プレスで加圧しながら、180℃の温度で5分間加熱し、成形を行った。加圧の際に平板プレスにスペーサーを配置して、成形後の複合シートの厚さが195μmになるように、上下プレス面板の間隔を調整した。
 この成形後の複合シートを熱処理した基材を、窒素ガス雰囲気に保たれた最高温度が2400℃の加熱炉に導入し、多孔質炭素電極基材を得た。加熱は最高温度750℃の低温炉、最高温度2400℃の高温炉での2段加熱を行った。この際、低温炉での平均昇温速度は2900℃/分、高温炉での平均昇温速度は4200℃/分であった。
 この多孔質炭素電極基材の両面にクラフト紙(目付70g/m)を配し、85N/cmの線圧でカレンダー加工を行った。カレンダー加工を行った多孔質炭素電極基材にドクターエシャリッヒ社製の非接触式ダスト除去クリーナー スタティックエア08型を用いて、多孔質炭素電極基材の両面に、3.0L/分/mmの空気を吹き付け、両面から4.5L/分/mmの空気を吸引した。吸引後の片面(樹脂絞り時にグラビアロールが接触した面)に通電燃焼により突き出した炭素短繊維の除去処理を行った。通電燃焼は後述する手順で実施した。
 通電燃焼後の多孔質炭素電極基材の厚さは143μmであり、層X、Z、Yの充填率が異なった。物性を表1に示す。通電燃焼を行った側の面を面Aとして短絡電流の測定を行った。また、面Aは充填率の高い層X層側であった。
 [通電燃焼の手順]
 (1)鉄板上に多孔質炭素電極基材を置き、端部を粘着テープで固定した。多孔質炭素電極基材は、樹脂絞り時にグラビアロールと接触した面を上に向けて置いた。
 (2)多孔質炭素電極基材の端部に厚さ30μmの帯状フィルムを置いた。
 (3)上記鉄板、12V直流電源、黒鉛製角棒をこの順で被覆電線で接続した。
 (4)上記帯状フィルム上に黒鉛製角棒を乗せて、多孔質炭素電極基材の一辺から対向する辺まで移動させた。
 上記(4)項の手順により、多孔質炭素電極基材の上を30μmの隙間を空けて黒鉛棒が通過することになり、多孔質炭素電極基材の表面から30μm以上突き出した炭素短繊維に電流が流れ燃焼除去される。
 (実施例2)       
 樹脂組成物の混合液を全体から多く取り除いた以外は実施例1と同様にして多孔質炭素電極基材を得た。物性を表1に示す。
 なお参考までに、実施例2では実施例1と同様に通電燃焼を行った側の面を面Aとして短絡電流の測定を行いその値を表に記しているが、通電燃焼を行った面とは異なる側の面から測定した短絡電流の平均値は12.0mAで、通電燃焼を行った面とは異なる側の面から測定した短絡電流10mA以下の比率は70%であった。
 (実施例3)
 樹脂組成物の混合液を全体から多く取り除き、さらに複合シート作成時の乾燥をより高温で行った以外は実施例1と同様にして多孔質炭素電極基材を得た。乾燥をより高温で行ったのは、乾燥時の厚さ方向への樹脂移動を抑制する目的である。物性を表1に示す。
 (実施例4)
樹脂組成物の混合液を面Yから多く取り除き、さらに複合シート作成時の乾燥をより高温で行った以外は実施例3と同様にして多孔質炭素電極基材を得た。乾燥をより高温で行ったのは、乾燥時の厚さ方向への樹脂移動を抑制する目的である。物性を表1に示す。
 (実施例5)
 抄紙する炭素短繊維の平均長さを6mmとしたこと、炭素短繊維100質量部に対して広葉樹晒クラフトパルプ(LBKP)40質量部を混合して抄紙したこと、抄紙時の炭素短繊維の目付が14g/mであること、ポリビニルアルコールの付着量が炭素短繊維100質量部に対して33質量部であること、熱硬化性樹脂(不揮発分)/炭素粉末/溶媒=20質量部/3質量部/77質量部の配合比としたこと、含浸した樹脂液を絞る2本のロールが平滑な金属ロールであること、複合シートは炭素短繊維100質量部に対してフェノール樹脂を110質量部としたこと、平板プレスで加圧する際に2枚の複合シートの同じ面を向かい合わせて重ねたこと、成形後の複合シート(成形により2枚の複合シートが接着し1枚になったもの)の厚さが165μmになるように、上下プレス面板の間隔を調整したこと、プレス時の下面に対し通電燃焼を行ったこと以外は実施例1と同様にして、多孔質炭素電極基材を得た。物性を表1に示す。
 なお、炭素短繊維シートを樹脂組成物の混合液に浸漬する際の混合液(組成物)中では、樹脂A100質量部に対して炭素粉末が15質量部となった。
 (比較例1~5)
カレンダー加工と通電燃焼による突き出し毛羽除去処理を行わなかった以外は実施例1~5と同様にして多孔質炭素電極基材を得た。そして両面について短絡電流の平均値を測定したが、表においては平均値が小さな値を示した側の面の値を記す。具体的には、比較例1~4はグラビアロールが接する側の面を、比較例5はプレス時の下面について短絡電流を測定した際の値を表に記す。
 比較例1~5と比べて、さらには実施例2の通電燃焼を行った面とは異なる側の面に比べて実施例1~5の短絡電流の平均値は顕著に低く、短絡電流10mA以下の比率は顕著に高い値を示す。なかでも実施例1~4の短絡電流の平均値は低く、短絡電流10mA以下の比率は高く、特に密度の低い実施例3,4でも実施例1,2と同等の短絡電流の平均値、および短絡電流10mA以下の比率を示している。
 (実施例6)
 実施例5の多孔質炭素電極基材を用い、以下の手順でマイクロポーラス層を形成してガス拡散層を製造した。
 実施例5の多孔質炭素電極基材を、PTFE樹脂(撥水材)の水分散液(“ポリフロン”(登録商標)PTFEディスパージョンD-210C(ダイキン工業(株)製)に浸漬することにより、多孔質炭素電極基材に撥水材を含浸した。その後、温度が100℃の乾燥機炉内で5分間加熱し乾燥し、撥水材を含む多孔質炭素電極基材を得た。なお乾燥する際は、多孔質炭素電極基材を垂直に配置し、1分毎に上下方向を変更した。また、撥水材の水分散液は、乾燥後において多孔質炭素電極基材95質量部に対し撥水材が5質量部付与されるように適切な濃度に希釈して使用した。
 <ガス拡散層の作製>
 [材料]
・炭素粉末A:アセチレンブラック:“デンカ ブラック”(登録商標)(電気化学工業(株)製)
・材料B:撥水材:PTFE樹脂の水分散液(“ポリフロン”(登録商標)PTFEディスパージョンD-210C(ダイキン工業(株)製))
・材料C:界面活性剤“TRITON”(登録商標)X-100(ナカライテスク(株)製)
 上記の各材料と精製水を分散機を用いて混合し、炭素粉末含有塗液を形成した。この炭素粉末含有塗液をスリットダイコーターを用いて、撥水材を含む多孔質炭素電極基材(実施例5の多孔質炭素電極基材)の一方の表面(通電燃焼を行った側の面)に面状に塗布した後、120℃の温度で10分間、続いて380℃の温度で10分間加熱した。このようにして、撥水材を含む多孔質炭素電極基材上にマイクロポーラス層を形成して、ガス拡散層を作製した。面A側にマイクロポーラス層を設けることで短絡電流を小さくすることができる。
 物性を表1に示すが、表中の実施例6について、厚さ及び目付はガス拡散層としての値を記す。さらに短絡電流の平均値及び短絡電流10mA以下の比率は、ガス拡散層におけるマイクロポーラス層を有する側の面(つまりガス拡散層におけるマイクロポーラス層の面)から測定した値を記す。
 ここで用いた炭素粉末含有塗液には、炭素粉末A:材料B:材料C:精製水=7.0:2.5:14:75.8の質量比となるように配合したものを用いた。そして材料C(PTFE樹脂)の配合量は、PTFE樹脂の水分散液の配合量ではなく、PTFE樹脂自体の配合量を表す。
 触媒付き高分子電解質膜の1枚とガス拡散層2枚を、触媒層とマイクロポーラス層が向かい合うように重ね、平板プレスで3MPa、130℃で5分間加熱加圧することで燃料電池用膜-電極接合体とすることができる。
 表1より、本発明の多孔質炭素電極基材が一方の表面(面Aという)から測定した短絡電流の平均値が10mA以下であり、かつ多くの場合において、短絡電流10mAの比率が90%以上であり、膜-電極接合体内部における短絡を防止し、燃料電池の耐久性を高めることができる。
 さらに実施例3、4、比較例3、4の多孔質炭素電極基材を用いて、各5個の膜-電極接合体のOCVを測定した結果、実施例3及び4では全て0.95V以上となった。一方、比較例3及び4では0.94Vを下回る水準が各1点あった。実施例と比較例におけるこの測定値の違いは、実施例については多孔質炭素電極基材の短絡電流の平均値を小さくできたのに対して、比較例については多孔質炭素電極基材の短絡電流の平均値が大きいため、膜-電極接合体内部でも、膜の局部的薄層化が多く発生したことによる効果と考えられる。このような膜-電極接合体は、発電の起動、停止の繰り返しで、膜の薄層化、短絡による性能低下が早く、多数の膜-電極接合体を直列に接続する燃料電池スタックではその影響が一層顕著になる。これに対し、本発明の多孔質炭素電極基材を用いた燃料電池では、発電の耐久性が改善する。
Figure JPOXMLDOC01-appb-T000001

Claims (12)

  1.  炭素短繊維が樹脂炭化物で結着された多孔質炭素電極基材であって、
     一方の表面(面Aという)から測定した短絡電流の平均値が10mA以下であることを特徴とする、多孔質炭素電極基材。
  2.  面Aから短絡電流を測定した場合において、90%以上の測定点において短絡電流が10mA以下であることを特徴とする、請求項1に記載の多孔質炭素電極基材。
  3.  炭素短繊維が樹脂炭化物で結着された多孔質炭素電極基材であって、
     一方の表面(面Aという)から短絡電流を測定した場合において、90%以上の測定点において短絡電流が10mA以下であることを特徴とする、多孔質炭素電極基材。
  4.  面Aから測定した短絡電流の平均値が10mA以下であることを特徴とする、請求項3に記載の多孔質炭素電極基材。
  5.  かさ密度が0.20~0.50g/cmであることを特徴とする、請求項1~4のいずれかに記載の多孔質炭素電極基材。
  6.  一方の表面にもっとも近い50%充填率を有する面から、他方の表面にもっとも近い50%充填率を有する面までの区間において、前記多孔質炭素電極基材を面直方向に3等分して得られる層について、一方の表面に近い層と他方の表面に近い層とで、層の充填率が異なることを特徴とする、請求項1~5のいずれかに記載の多孔質炭素電極基材。
  7.  一方の表面にもっとも近い50%充填率を有する面から、他方の表面にもっとも近い50%充填率を有する面までの区間において、前記多孔質炭素電極基材を面直方向に3等分して得られる層について、一方の表面に近く層の充填率が最も大きい層を層X、他方の表面に近く層の充填率が層Xよりも小さい層を層Y、層Xと層Yの間に位置する層を層Zとすると、層の充填率が、層X、層Y、層Zの順に小さくなることを特徴とする、請求項1~6のいずれかに記載の多孔質炭素電極基材。
  8.  層Yの充填率を1とした時に、層Xの充填率が1.03以上であり、層Zの充填率が0.97以下である、請求項7に記載の多孔質炭素電極基材。
  9.  炭素短繊維、及び、残炭率35%(質量基準)以上の樹脂(以下、樹脂Aとする)を含む組成物を加熱して、前記樹脂Aを炭化させる、多孔質炭素電極基材の製造方法であって、
     前記組成物中の炭素短繊維と樹脂Aの質量比率が、炭素短繊維100質量部に対して樹脂Aが70~250質量部であることを特徴とする、請求項1~8のいずれかに記載の多孔質炭素電極基材の製造方法。
  10.  炭素短繊維、残炭率35%(質量基準)以上の樹脂(以下、樹脂Aとする)、及び炭素粉末を含む組成物を加熱して、前記樹脂Aを炭化させる、多孔質炭素電極基材の製造方法であって、
     前記組成物中の樹脂Aと炭素粉末の質量比率が、樹脂A 100質量部に対して炭素粉末が5~70質量部であることを特徴とする、請求項1~8のいずれかに記載の多孔質炭素電極基材の製造方法。
  11.  請求項1~8のいずれかに記載の多孔質炭素電極基材の一方の表面に、マイクロポーラス層を有することを特徴とする、ガス拡散層。
  12.  請求項1~8のいずれかに記載の多孔質炭素電極基材を含むことを特徴とする、燃料電池用膜-電極接合体。
PCT/JP2016/058976 2015-03-25 2016-03-22 多孔質炭素電極基材、その製造方法、ガス拡散層、および燃料電池用膜-電極接合体 WO2016152851A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016527487A JP6729373B2 (ja) 2015-03-25 2016-03-22 多孔質炭素電極基材、その製造方法、ガス拡散層、および燃料電池用膜−電極接合体
EP16768754.0A EP3276718B1 (en) 2015-03-25 2016-03-22 Porous carbon electrode base material, method for manufacturing same, gas diffusion layer, and membrane-electrode assembly for fuel cell
CA2977344A CA2977344A1 (en) 2015-03-25 2016-03-22 Porous carbon electrode substrate, method for manufacturing same, gas diffusion layer, and membrane-electrode assembly for fuel cell
US15/558,456 US10651477B2 (en) 2015-03-25 2016-03-22 Porous carbon electrode substrate, method of manufacturing same, gas diffusion layer, and membrane-electrode assembly for fuel cell
CN201680015135.2A CN107408706B (zh) 2015-03-25 2016-03-22 多孔碳电极基材、其制造方法、气体扩散层、以及燃料电池用膜-电极接合体
KR1020177028668A KR102564231B1 (ko) 2015-03-25 2016-03-22 다공질 탄소 전극 기재, 그의 제조 방법, 가스 확산층 및 연료 전지용 막-전극 접합체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-062063 2015-03-25
JP2015062063 2015-03-25

Publications (1)

Publication Number Publication Date
WO2016152851A1 true WO2016152851A1 (ja) 2016-09-29

Family

ID=56978261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058976 WO2016152851A1 (ja) 2015-03-25 2016-03-22 多孔質炭素電極基材、その製造方法、ガス拡散層、および燃料電池用膜-電極接合体

Country Status (8)

Country Link
US (1) US10651477B2 (ja)
EP (1) EP3276718B1 (ja)
JP (1) JP6729373B2 (ja)
KR (1) KR102564231B1 (ja)
CN (1) CN107408706B (ja)
CA (1) CA2977344A1 (ja)
TW (1) TWI705610B (ja)
WO (1) WO2016152851A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018085333A (ja) * 2016-11-11 2018-05-31 三菱ケミカル株式会社 多孔質電極基材及び、ガス拡散層、及びガス拡散電極とその製造方法
WO2019049934A1 (ja) * 2017-09-07 2019-03-14 東洋紡株式会社 燃料電池用ガス拡散層基材、燃料電池用ガス拡散層、燃料電池

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10790516B2 (en) * 2015-12-24 2020-09-29 Toray Industries, Inc. Gas diffusion electrode and method for manufacturing same
JP7209221B2 (ja) * 2018-07-23 2023-01-20 パナソニックIpマネジメント株式会社 電気化学式水素ポンプ
KR102169124B1 (ko) * 2018-12-19 2020-10-22 주식회사 제이앤티지 흑연화 탄소 기재 및 이를 채용한 기체확산층
US11804606B2 (en) * 2019-07-29 2023-10-31 Toray Industries, Inc. Gas diffusion electrode, method for producing the same and membrane electrode assembly
CN111762771A (zh) * 2020-07-10 2020-10-13 山东理工大学 一种高长径比纤维碳的自焊接工艺
CN115101771A (zh) * 2022-06-28 2022-09-23 广东德氢氢能科技有限责任公司 燃料电池气体扩散层及其制备方法、燃料电池膜电极
DE102022127234A1 (de) 2022-10-18 2024-04-18 Carl Freudenberg Kg Gasdiffusionslage mit geringer plastischer Verformbarkeit und hoher Oberflächengüte und Verfahren zu ihrer Herstellung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070433A (ja) * 2008-09-22 2010-04-02 Toray Ind Inc 多孔質炭素シートおよびその製造方法
JP2012033458A (ja) * 2010-07-05 2012-02-16 Nippon Soken Inc 燃料電池のガス拡散層の製造方法、製造装置および燃料電池
JP2013065413A (ja) * 2011-09-15 2013-04-11 Toyota Motor Corp 燃料電池
JP2013145640A (ja) * 2012-01-13 2013-07-25 Toyota Motor Corp 燃料電池用拡散層の製造方法および燃料電池用拡散層
JP2015041456A (ja) * 2013-08-21 2015-03-02 凸版印刷株式会社 触媒層の製造装置及び触媒層の製造方法並びに固体高分子形燃料電池用膜・電極接合体
WO2016060044A1 (ja) * 2014-10-17 2016-04-21 東レ株式会社 炭素シート、ガス拡散電極基材、および燃料電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100527496C (zh) * 2004-06-21 2009-08-12 三菱丽阳株式会社 多孔质电极基材及其制造方法
CA2767211C (en) * 2009-11-24 2018-07-31 Mitsubishi Rayon Co., Ltd. Porous electrode substrate and method for producing the same
KR101571227B1 (ko) * 2011-01-27 2015-11-23 미쯔비시 레이온 가부시끼가이샤 다공질 전극 기재, 그의 제조 방법, 전구체 시트, 막-전극 접합체 및 고체 고분자형 연료 전지
JP5485212B2 (ja) * 2011-03-25 2014-05-07 三菱レイヨン株式会社 多孔質炭素電極基材及びその製造方法
JP2013143317A (ja) * 2012-01-12 2013-07-22 Toyota Motor Corp ガス拡散層基材およびガス拡散層基材の製造方法
KR101484762B1 (ko) * 2012-06-29 2015-01-21 주식회사 제이앤티씨 기체확산층용 탄소기재, 이를 이용한 기체확산층, 및 이를 포함하는 연료전지용 전극
US10790516B2 (en) 2015-12-24 2020-09-29 Toray Industries, Inc. Gas diffusion electrode and method for manufacturing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070433A (ja) * 2008-09-22 2010-04-02 Toray Ind Inc 多孔質炭素シートおよびその製造方法
JP2012033458A (ja) * 2010-07-05 2012-02-16 Nippon Soken Inc 燃料電池のガス拡散層の製造方法、製造装置および燃料電池
JP2013065413A (ja) * 2011-09-15 2013-04-11 Toyota Motor Corp 燃料電池
JP2013145640A (ja) * 2012-01-13 2013-07-25 Toyota Motor Corp 燃料電池用拡散層の製造方法および燃料電池用拡散層
JP2015041456A (ja) * 2013-08-21 2015-03-02 凸版印刷株式会社 触媒層の製造装置及び触媒層の製造方法並びに固体高分子形燃料電池用膜・電極接合体
WO2016060044A1 (ja) * 2014-10-17 2016-04-21 東レ株式会社 炭素シート、ガス拡散電極基材、および燃料電池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018085333A (ja) * 2016-11-11 2018-05-31 三菱ケミカル株式会社 多孔質電極基材及び、ガス拡散層、及びガス拡散電極とその製造方法
JP7052301B2 (ja) 2016-11-11 2022-04-12 三菱ケミカル株式会社 多孔質電極基材及び、ガス拡散層、及びガス拡散電極とその製造方法
JP2022082646A (ja) * 2016-11-11 2022-06-02 三菱ケミカル株式会社 多孔質電極基材及び、ガス拡散層、及びガス拡散電極とその製造方法
JP7355143B2 (ja) 2016-11-11 2023-10-03 三菱ケミカル株式会社 多孔質電極基材及び、ガス拡散層、及びガス拡散電極とその製造方法
WO2019049934A1 (ja) * 2017-09-07 2019-03-14 東洋紡株式会社 燃料電池用ガス拡散層基材、燃料電池用ガス拡散層、燃料電池
JPWO2019049934A1 (ja) * 2017-09-07 2020-10-15 東洋紡株式会社 燃料電池用ガス拡散層基材、燃料電池用ガス拡散層、燃料電池

Also Published As

Publication number Publication date
EP3276718A4 (en) 2018-11-21
EP3276718A1 (en) 2018-01-31
JP6729373B2 (ja) 2020-07-22
KR102564231B1 (ko) 2023-08-08
US10651477B2 (en) 2020-05-12
TWI705610B (zh) 2020-09-21
CN107408706B (zh) 2020-10-27
TW201701521A (zh) 2017-01-01
CN107408706A (zh) 2017-11-28
KR20170130460A (ko) 2017-11-28
EP3276718B1 (en) 2023-02-22
CA2977344A1 (en) 2016-09-29
JPWO2016152851A1 (ja) 2018-01-11
US20180069245A1 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
JP6729373B2 (ja) 多孔質炭素電極基材、その製造方法、ガス拡散層、および燃料電池用膜−電極接合体
US10249886B2 (en) Fuel-cell gas diffusion layer, and method of producing same
CA3009605C (en) Gas diffusion electrode and method for manufacturing same
JP6686437B2 (ja) ガス拡散電極基材およびガス拡散電極基材の製造方法
JP5988009B1 (ja) 多孔質炭素シートおよびその前駆体繊維シート
JP5835527B1 (ja) ガス拡散電極基材ならびにそれを備える膜電極接合体および燃料電池
US10854887B2 (en) Carbon sheet, gas diffusion electrode substrate and fuel cell
JP5987484B2 (ja) ガス拡散電極基材およびその製造方法
JP6743805B2 (ja) 炭素シート、ガス拡散電極基材、および燃料電池
JPWO2015125749A1 (ja) ガス拡散電極基材ならびにそれを備える膜電極接合体および燃料電池
JP7355143B2 (ja) 多孔質電極基材及び、ガス拡散層、及びガス拡散電極とその製造方法
JP2017171550A (ja) 導電性多孔質基材、ガス拡散電極、および、燃料電池
JP2017182900A (ja) 炭素シート、ガス拡散電極基材、および燃料電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016527487

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768754

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2977344

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15558456

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016768754

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177028668

Country of ref document: KR

Kind code of ref document: A