WO2016152657A1 - 強化ガラス板の製造方法、ならびに強化用ガラス板の製造方法 - Google Patents

強化ガラス板の製造方法、ならびに強化用ガラス板の製造方法 Download PDF

Info

Publication number
WO2016152657A1
WO2016152657A1 PCT/JP2016/058180 JP2016058180W WO2016152657A1 WO 2016152657 A1 WO2016152657 A1 WO 2016152657A1 JP 2016058180 W JP2016058180 W JP 2016058180W WO 2016152657 A1 WO2016152657 A1 WO 2016152657A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
glass plate
tempered glass
ion permeation
permeation suppression
Prior art date
Application number
PCT/JP2016/058180
Other languages
English (en)
French (fr)
Inventor
睦 深田
利之 梶岡
清貴 木下
佐々木 博
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201680004512.2A priority Critical patent/CN107108347B/zh
Priority to KR1020177017513A priority patent/KR102493138B1/ko
Priority to JP2017508260A priority patent/JPWO2016152657A1/ja
Priority to US15/560,224 priority patent/US10723651B2/en
Publication of WO2016152657A1 publication Critical patent/WO2016152657A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/02Tempering or quenching glass products using liquid
    • C03B27/03Tempering or quenching glass products using liquid the liquid being a molten metal or a molten salt
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/212TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/214Al2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/215In2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/216ZnO
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/355Temporary coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a method for producing a tempered glass plate, and more specifically to a method for producing a tempered glass plate chemically strengthened by an ion exchange method.
  • a tempered glass plate that has been chemically strengthened as a cover glass has been used for touch panel displays mounted on electronic devices such as smartphones and tablet PCs.
  • Such a tempered glass plate is generally produced by chemically treating a glass plate containing an alkali metal as a composition with a tempering solution to form a compressive stress layer on the surface. Since such a tempered glass plate has a compressive stress layer on the main surface, the impact resistance to the main surface is improved. On the other hand, a tensile stress layer is formed inside such a tempered glass plate corresponding to the compressive stress layer on the main surface. And the damage (what is called self-destruction) by the crack of an end surface developing resulting from this tensile stress became a problem. Further, when the compressive stress layer is formed shallow on the entire glass plate so as to reduce such tensile stress, there is a problem that sufficient impact resistance cannot be obtained at the end face.
  • Patent Document 1 the depth of the compressive stress layer on the main surface is reduced without reducing the compressive stress layer on the end surface by previously forming a film on the main surface and suppressing the progress of chemical strengthening from the end surface.
  • a technique for controlling internal tension to reduce internal tensile stress is disclosed.
  • Cited Document 1 discloses a tempered glass in which the balance between the compressive stresses of the main surface and the end face is appropriately set, a method for efficiently producing the tempered glass has not been sufficiently studied, and there is room for improvement. was there.
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to be able to efficiently manufacture a tempered glass sheet that hardly causes self-destruction and has high impact resistance at the end face.
  • the method for producing a tempered glass plate of the present invention is a method for producing a tempered glass plate tempered using an ion exchange method, and the surface of the original glass plate is covered with an ion permeation suppression film that inhibits permeation of alkali metal ions.
  • the film-forming glass plate is obtained, and after the film-forming step, the ion permeation suppressing film is coated by applying at least one of cutting, drilling, and end face processing to the film-coated glass plate.
  • the balance between the tensile stress of the tempered glass sheet and the compressive stress of the end face can be easily adjusted suitably by performing a processing step such as cutting after the film forming step and before the strengthening step. Therefore, it is possible to efficiently produce a tempered glass plate having high impact resistance at the end face.
  • the ion permeation suppression film at least one of a metal oxide film, a metal nitride film, a metal carbide film, a metal oxynitride film, a metal oxycarbide film, and a metal carbonitride film may be formed. preferable.
  • SiO 2 , Al 2 O 3 , SiN, SiC, Al 2 O 3 , AlN, ZrO 2 , TiO 2 , Ta 2 O 5 , Nb 2 O 5 , HfO 2 , SnO 2 are used as the ion permeation suppressing film. It is preferable to form a film layer containing at least one of the above.
  • an inorganic film having a composition containing 60 to 96% SiO 2 and 4 to 40% Al 2 O 3 by mass% is formed as an ion permeation suppression film so as to have a thickness of 5 to 300 nm. It is preferable.
  • the film forming step it is preferable to form an inorganic film having a composition containing 99% or more of SiO 2 by mass as the ion permeation suppression film.
  • an ion permeation suppression film having a high ion permeation suppression effect and strength can be formed with a relatively inexpensive material.
  • the film forming step it is preferable to form the ion permeation suppression film so as to have a thickness of 20 to 150 nm.
  • the Young's modulus of the ion permeation suppression film is preferably 0.5 to 2.0 times that of the original glass plate.
  • the function of the antireflection film can be obtained in the ion permeation suppression film.
  • the strengthening step it is preferable to immerse the strengthening glass plate in a molten potassium nitrate at 350 to 500 ° C. for 2 to 24 hours.
  • the original glass plate contains, as a glass composition, mass%, SiO 2 45 to 75%, Al 2 O 3 1 to 30%, Na 2 O 0 to 20%, K 2 O 0 to 20%, and thickness 0 It is preferably 0.01 to 1.5 mm.
  • the easily peelable film is preferably an inorganic film containing at least one of In 2 O 3 and ZnO.
  • the ion permeation suppression film can be easily peeled off without using a solvent that is highly toxic to the human body such as HF.
  • the remaining ion permeation suppression film can be used as a functional film such as an antireflection film.
  • the method for producing a strengthening glass plate according to the present invention is a method for producing a strengthening glass plate that is subjected to a strengthening treatment using an ion exchange method, and is an ion that suppresses permeation of alkali metal ions on the surface of the original glass plate.
  • a processing step of forming an exposed portion that is not covered with the ion permeation suppression film in the film-coated glass plate is a method for producing a strengthening glass plate that is subjected to a strengthening treatment using an ion exchange method, and is an ion that suppresses permeation of alkali metal ions on the surface of the original glass plate.
  • FIGS. 1A to 1E are diagrams showing an example of a method for producing a strengthened glass sheet and a strengthening glass sheet according to an embodiment of the present invention.
  • the tempered glass sheets G4 and G5 of the present embodiment have an end face that reduces the internal tensile stress because the balance between the compressive stress value of the main surface and the compressive stress value of the end face is suitably controlled in the manufacturing process. High resistance to impact on The details will be described below.
  • the preparation step is a step of preparing the original glass plate G1.
  • the original glass plate G1 is a glass that can be tempered using an ion exchange method.
  • the original glass plate G1 preferably contains SiO 2 45 to 75%, Al 2 O 3 1 to 30%, Na 2 O 0 to 20%, K 2 O 0 to 20% by mass% as a glass composition. . If the glass composition range is regulated as described above, it becomes easy to achieve both ion exchange performance and devitrification resistance at a high level.
  • the original glass plate G1 has a thickness of, for example, 1.5 mm or less, preferably 1.3 mm or less, 1.1 mm or less, 1.0 mm or less, 0.8 mm or less, 0.7 mm or less, 0.6 mm or less, It is 0.5 mm or less, 0.4 mm or less, 0.3 mm or less, 0.2 mm or less, especially 0.1 mm or less.
  • the thickness of the original glass plate G1 is preferably 0.01 mm or more.
  • the dimensions of the original glass plate G1 are, for example, 480 ⁇ 320 mm to 3350 ⁇ 3950 mm.
  • the original glass plate G1 is preferably formed using an overflow downdraw method, and its main surface S is not polished. If it is the original glass plate G1 shape
  • the original glass plate G1 may be formed using a float process, and the main surface S may be polished.
  • the film forming step is a step of obtaining the glass plate with film G2 by forming the ion permeation suppressing film M on the surface of the original glass plate G1.
  • the ion permeation suppression film M is a film layer that suppresses permeation of alkali metal ions on the surface of the original glass plate G1 in the later-described strengthening step.
  • the material of the ion permeation suppression film M any material may be used as long as the permeation of alkali metal ions can be suppressed. However, the mechanical strength and chemical durability which are not easily damaged in the processing process and the strengthening process described later. It is preferable to have.
  • the Young's modulus of the ion permeation suppression film M is preferably 0.5 to 2.0 times the Young's modulus of the original glass plate G1. When the Young's modulus of the ion permeation suppression film M is 0.5 times or more of the Young's modulus of the original glass plate G1, the original glass plate G1 can be sufficiently protected in a processing step or the like, and defects such as scratches are hardly generated.
  • the ion permeation suppression film M is preferably a metal oxide, metal nitride, metal carbide, metal oxynitride, metal oxycarbide, metal carbonitride film, or the like.
  • the material of the ion permeation suppression film M is SiO 2 , Al 2 O 3 , SiN, SiC, Al 2 O 3 , AlN, ZrO 2 , TiO 2 , Ta 2 O 5 , Nb 2 O 5 , HfO 2.
  • a film containing one or more of SnO 2 can be obtained.
  • the ion permeation suppression film M preferably satisfies the following formula (1) when the refractive index of the ion permeation suppression film M at a wavelength of 550 nm is n1 and the refractive index of the original glass plate G1 at a wavelength of 550 nm is n2. . n1-n2 ⁇ 0.4 (1)
  • n1 and n2 more preferably satisfy the following formula (2), more preferably satisfy the following formula (3), and most preferably satisfy the following formula (4).
  • the antireflection effect can be imparted to the ion permeation suppression film M by setting the refractive index n1 of the ion permeation suppression film M to a predetermined range or less with reference to the refractive index n2 of the original glass plate G1.
  • the refractive index of the ion permeation suppression film M is about 1.52, whereas the refractive index of SiO 2 is about 1.46. Therefore, if SiO 2 is the main component of the ion permeation suppression film M, the refractive index of the ion permeation suppression film M can be easily made smaller than the refractive index of the original glass plate G1, and a function as an antireflection film can be easily imparted.
  • the ion permeation suppression film M may be a film made of only SiO 2 .
  • the ion permeation suppression film M may have a composition containing 99% or more of SiO 2 by mass. With such a composition, the ion permeation suppression film M can be formed easily and inexpensively. If in this manner the SiO 2 as a main component of the ion permeation suppressive film M, to enhance the ion permeability inhibiting effect, from the viewpoint of obtaining a high mechanical strength, in addition to SiO 2, the Young's modulus than SiO 2 is high any It is preferable to add these additives.
  • additives include Al 2 O 3 , SiN, SiC, Al 2 O 3 , AlN, ZrO 2 , TiO 2 , Ta 2 O 5 , Nb 2 O 5 , HfO 2 , and SnO 2.
  • Al 2 O 3 having a relatively low refractive index.
  • the ion permeation suppression film M is an inorganic film containing SiO 2 as a main component and Al 2 O 3
  • the ion permeation suppression film M contains 60% to 96% SiO 2 and 4 to 40% Al 2 O 3 in terms of mass% as a composition.
  • the content of SiO 2 is preferably 60 to 96% by mass%, more preferably 65 to 90%, and still more preferably 70 to 85%.
  • the content of SiO 2 is 60% or more, an antireflection effect is easily obtained.
  • the strength of the original glass plate G1 hardly varies in the strengthening process, and the strength quality of the product is easily improved.
  • the content of SiO 2 is 96% or less, the mechanical strength of the ion permeation suppression film M is increased and it is difficult to damage in the manufacturing process.
  • the addition amount of Al 2 O 3 is preferably 4 to 40%.
  • the content of Al 2 O 3 is 4% or more, it becomes easy to obtain an effect of suppressing ion permeation and an effect of improving mechanical strength and chemical resistance.
  • the content of Al 2 O 3 is 40% or less, the permeation of alkali metal ions is not excessively inhibited, and the productivity in the strengthening process is improved.
  • the ion permeation suppression film M having the above composition With the ion permeation suppression film M having the above composition, a desired ion permeation suppression effect, mechanical strength, and chemical resistance can be obtained with a relatively thin film thickness. Accordingly, it is possible to improve the production efficiency of the tempered glass sheet by shortening the film formation time of the ion permeation suppression film M or reducing the film material cost.
  • the thickness of the ion permeation suppression film M is preferably 5 to 300 nm, more preferably 20 to 200 nm, still more preferably 20 to 150 nm, 40 to 120 nm, and most preferably 80 to 100 nm.
  • the thickness of the ion permeation suppression film M is 5 nm or more, the permeation of alkali metal ions can be sufficiently suppressed.
  • the thickness of the ion permeation suppression film M is 300 nm or less, the permeation of alkali metal ions is not excessively inhibited, and a sufficiently strong tempered glass plate can be easily obtained.
  • the thickness of the ion permeation suppression film M is 20 to 150 nm, high resistance can be obtained for any of the following multiple modes (modes).
  • modes A sharp protrusion exists at the tip of the drop, and the protrusion breaks through the surface compressive stress layer of the tempered glass and reaches the internal tensile stress layer. The first mode to break.
  • a second mode in which the crack is developed and damaged by acting on the surface.
  • a third mode in which an impact force acts on the end face of the tempered glass and breaks due to the development of minute cracks on the end face.
  • the optical film thickness (refractive index ⁇ physical film thickness) of the ion permeation suppression film M is set to 1/4 of the visible light wavelength. It is preferable to do.
  • the optical film thickness of the ion permeation suppression film M is preferably 95 nm to 195 nm, and more preferably 130 nm to 160 nm.
  • the film formation method of the ion permeation suppression film M is a PVD method (physical vapor deposition method) such as a sputtering method or a vacuum evaporation method, a CVD method (chemical vapor deposition method) such as a thermal CVD method or a plasma CVD method, dip coating, etc.
  • a wet coating method such as a method or a slit coating method can be used.
  • a sputtering method and a dip coating method are preferable.
  • the sputtering method is used, the ion permeation suppression film M can be easily and uniformly formed.
  • the dip coating method is used, the ion permeation suppression film M can be simultaneously formed on both the main surfaces of the glass plate with high productivity.
  • the processing step shown in FIG. 1C is performed.
  • the glass plate G2 with film is subjected to at least one of cutting processing, end surface processing, and drilling processing, and the reinforcing glass plate G3 having the exposed portion E that is not covered with the ion permeation suppression film M is obtained. It is a process to obtain. That is, the processing applied to the film-coated glass plate G2 may be one processing selected from cutting processing, end surface processing, or drilling processing, or two or more processing selected from these processing. It may be.
  • the glass plate G3 for reinforcement is obtained by cutting the glass plate G2 with film as shown in FIG. 1C.
  • a scribe line is formed on the planned cutting line of the film-coated glass plate G2 using a scribe chip, and the glass plate for strengthening G3 is obtained by cleaving along the scribe line.
  • the main surface S of the strengthening glass plate G3 is still covered with the ion permeation suppression film M.
  • the end surface of the reinforcing glass plate G3 is an exposed portion E that is not covered with the ion permeation suppression film M.
  • a scribe line may be formed on the film-coated glass plate G2 using laser light, or fusing may be performed using laser light.
  • the film-coated glass plate G2 may be mechanically cut using a tool such as a wire saw, or may be melted by partial etching using hydrofluoric acid.
  • the exposed portion E may be formed by performing end face processing or the like. Specifically, the exposed portion E may be formed by pressing a processing tool such as a rotating grindstone or a polishing tape against the end face to perform grinding or polishing. Moreover, you may etch the end surface of the glass plate G2 with a film
  • holes where the speakers, cameras, earphone jacks, switches, connectors, and the like are arranged may be drilled in the film-coated glass plate G2.
  • the drilling process may be performed by, for example, machining using a drill or the like, or may be performed by partial dissolution by laser light, etching, or the like.
  • the inner peripheral surface of the formed hole becomes the exposed portion E (not shown).
  • the strengthening step is a step of obtaining a strengthened glass plate G4 with a film by chemically strengthening the strengthening glass plate G3 by an ion exchange method. Specifically, the strengthening glass plate G3 is immersed in a strengthening solution T of molten potassium nitrate at 350 to 500 ° C. for 2 to 24 hours.
  • the tempering step sodium ions on the surface of the reinforcing glass plate G3 and potassium ions in the reinforcing liquid T are exchanged to obtain a tempered glass plate G4 having a compressive stress layer C on the surface.
  • ion exchange is suppressed in the portion (main surface S) where the ion permeation suppression film M is provided compared to the exposed portion E where the surface of the original glass plate G1 is exposed. Therefore, the depth of the compressive stress layer is reduced.
  • the ion exchange can proceed more easily than the portion where the ion permeation suppression film M is provided, and the depth of the compressive stress layer is increased.
  • the depth of the compressive stress layer on the main surface of the tempered glass sheet G4 is smaller than that of the end surface, the internal tensile stress is smaller and higher at the end than the tempered glass reinforced entirely. Has impact resistance. Therefore, the damage resulting from the progress of the crack from the end can be suitably suppressed.
  • the ion permeation suppression film M when the above-described inorganic composition material is adopted as the ion permeation suppression film M, even if it is immersed in the reinforcing liquid T with the film provided, it is reinforced compared to a conventional organic protective film or the like. It is difficult to deteriorate the liquid T.
  • the processing conditions such as the processing temperature and immersion time in the tempering step may be appropriately determined according to the characteristics required for the tempered glass sheet G4.
  • the processing conditions are preferably adjusted so that the depth of the compressive stress layer on the main surface S of the tempered glass sheet G4 is smaller than the depth of the compressive stress layer on the exposed portion E.
  • the tempered glass plate G4 can be used as a product as it is, but the ion permeation suppression film M is peeled off depending on the application. You may do it. In the peeling process shown in FIG. 1E, the ion permeation suppression film M is peeled from the tempered glass plate G4 to obtain a tempered glass plate G5.
  • the ion permeation suppression film M is removed by attaching an etching solution to the tempered glass plate G4.
  • an etching solution to the tempered glass plate G4.
  • the ion permeation suppression film M is a film containing SiO 2
  • a solution containing fluorine, TMAH, EDP, KOH, or the like can be used as an etchant, and a hydrofluoric acid solution is particularly preferably used as an etchant.
  • the peeling step only the ion permeation suppression film M on one main surface side may be removed, or the ion permeation suppression films M on both main surfaces may be removed. Further, the ion permeation suppression film M may be partially removed from each main surface, or the ion permeation suppression film M may be entirely removed.
  • the etching solution is partially attached using a spray, roll, brush, etc., or the tempered glass plate G4 is partially masked to make the etching solution.
  • the film can be removed by immersion.
  • the entire tempered glass plate G4 When removing all of the ion permeation suppression film M, the entire tempered glass plate G4 may be immersed in an etching solution. Thus, if the tempered glass board G4 whole is immersed in etching liquid, the tempered glass board G5 which further reduced the intensity
  • the end face can be easily set as the exposed portion E in the processing step, and the tempered glass sheet G4 is less damaged from the end face.
  • G5 can be manufactured efficiently.
  • the original glass plate G1 can be protected with high mechanical strength and chemical durability while suitably suppressing the permeation of alkali metal ions with a very thin film thickness. Therefore, the tempered glass plates G4 and G5 can be efficiently manufactured with high productivity.
  • the surface of the strengthening glass plate G3 obtained in the manufacturing process of the above-described strengthening glass plates G4 and G5 is protected by the ion permeation suppression film M, for example, the film forming process and the strengthening process exist far apart. This can prevent damage during transportation.
  • the strengthening process of the strengthening process can be performed as it is without stripping the ion permeation suppression film M, there is an advantage that it is not necessary to strip the protective film before the strengthening process.
  • the material of the ion permeation suppression film M described above is an example, and any material may be used as long as it is a film capable of suppressing permeation of alkali metal ions.
  • the glass plate Before and after each of the above-described preparation process, film formation process, processing process, strengthening process, and peeling process, the glass plate may be appropriately washed and dried.
  • any one of cutting, end face processing, and drilling processing may be performed on the reinforcing glass plate.
  • the film forming step and the strengthening step may be performed in a state where the processed surface (end surface) of the reinforcing glass plate is masked with, for example, a resin.
  • the case where the single-layer ion permeation suppression film M is provided in the film formation process has been described as an example.
  • a plurality of film layers having different characteristics including the ion permeation suppression film M are provided on the main surface S. May be.
  • a step of providing an easily peelable film between the ion permeation suppression film and the main surface S may be further provided (not shown).
  • the easily peelable film is an inorganic film containing, for example, at least one of In 2 O 3 and ZnO.
  • An easily peelable film containing In 2 O 3 or ZnO can be easily peeled with an acidic etching solution such as hydrochloric acid.
  • the easily peelable film containing ZnO can be easily peeled off with an alkaline etching solution such as potassium hydroxide.
  • an alkaline etching solution such as potassium hydroxide.
  • the easily peelable film can be formed by any method such as sputtering, CVD, dip coating, spin coating, or spray coating.
  • Nos. 1 to 3 represent examples of the present invention, and No. 4 represents a comparative example.
  • the glass composition contains glass so as to contain 61.6% SiO 2 , 19.6% Al 2 O 3 , 0.8% B 2 O 3 , 16% Na 2 O, and 2% K 2 O by mass%.
  • the raw materials were mixed and melted, and molded using an overflow downdraw method to obtain a plurality of original glass plates having a thickness of 0.4 mm.
  • an ion permeation suppression film having the composition and thickness shown in Table 1 was formed on the original glass plate obtained above using a sputtering method, and then cut into a rectangular shape having a size of 65 ⁇ 130 mm by scribing. A reinforcing glass plate having an exposed portion was obtained.
  • the surface compressive stress value CS1 and the surface stress depth DOL1 were calculated by observing the number of interference fringes and their intervals with a stress meter (FSM-6000 manufactured by Orihara Seisakusho).
  • the internal tensile stress CT was calculated based on the following equation (5) using the surface compressive stress value CS1 and the surface stress depth DOL1.
  • CT (CS1 ⁇ DOL1) / (t ⁇ 2DOL1) (5) t: thickness of glass sample (mm)
  • the end face stress depth DOL2 was separately measured by the following method. Specifically, each of the above samples was sliced in a direction perpendicular to the main surface to prepare a cross-sectional sample having a thickness of 200 ⁇ m. Thereafter, the depth of the compressive stress layer on the end face of each cross-sectional sample was observed and measured using a polarizing microscope (WPA-micro manufactured by Photonic Lattice Co., Ltd.). For comparison, the surface stress depth was measured as DOL3 by the same method.
  • WPA-micro manufactured by Photonic Lattice Co., Ltd.
  • the membrane Young's modulus E1 is the Young's modulus of the ion permeation suppression membrane.
  • the mass ratio of each component in the membrane composition, the known density of each component, and the known Young's modulus of each component are used to express the following formulas (6) to (8): ).
  • 1 / E1 ⁇ SiO2 / E SiO2 + ⁇ Al2O3 / E Al2O3 ...
  • SiO2 SiO 2 ratio by volume ⁇ Al2O3: Al 2 O 3 volume ratio
  • SiO2 ( WSiO2 / dSiO2 ) / ( WSiO2 / dSiO2 + WAl2O3 / dAl2O3 )
  • 2 Al2O3 ( WAl2O3 / dAl2O3 ) / ( WSiO2 / dSiO2 + WAl2O3 / dAl2O3 )
  • W SiO2 SiO 2 mass ratio in the film composition
  • W Al2O3 mass ratio of Al 2 O 3 in the film composition
  • d Al2 O3 density of Al 2 O 3 (
  • the glass plate Young's modulus E2 is the Young's modulus of the original glass plate and is a value measured using a resonance method.
  • the reflectance is a value obtained by measuring the single-sided reflectance of each tempered glass plate sample at a wavelength of 550 nm using a microspectrophotometer (Olympus USPM-RUIII).
  • Film refractive index n1 a value obtained by measuring the refractive index of the ion permeation suppression film of each sample at a wavelength of 550 nm using a microspectrophotometer (Olympus USPM-RUIII).
  • the glass plate refractive index n2 is a value obtained by measuring the refractive index of the original glass plate at a wavelength of 550 nm using a microspectrophotometer (USPM-RUIII manufactured by Olympus).
  • sample No. Nos. 1 to 3 are formed by strengthening the ion permeation suppression film on the main surface and having an exposed portion on the end surface, so that the end surface has the same level of compressive stress as that of the sample of the comparative example.
  • Compressive stress is comparative sample No. It is smaller than 4. That is, sample no. In Nos. 1 to 3, the balance of compressive stress is easily and suitably set. As a result, the internal tensile stress is reduced, self-destruction is unlikely to occur, and high impact resistance is obtained at the end face. It is done.
  • FIGS. 2 to 4 are views showing resistance to breakage in different modes of the tempered glass according to the embodiment of the present invention.
  • Example No. A plurality of tempered glass samples having different ion permeation suppression film thicknesses were prepared in the same manner as in Example 1. Specifically, a plurality of samples having film thicknesses of 0 nm, 80 nm, 100 nm, 150 nm, 200 nm, and 300 nm were prepared, and a breakage test corresponding to the first to third modes described above was performed. Specifically, a falling ball test using 100th sandpaper, a falling ball test using 320th sandpaper, and an end impact test were performed.
  • the falling ball test using 100th sandpaper is a test that assumes damage in the first mode described above. Specifically, on a base made of granite, a tempered glass having a size of 50 mm in length and 50 mm in width, a sandpaper with a 15 mm square size and 100th sandpaper (the sandpaper is arranged so that the rubbing surface contacts the tempered glass) Arranged in order, a 4 g steel ball was dropped onto a sandpaper from a height of 5 cm, and an evaluation was made based on whether or not a breaking fracture occurred. Thirty samples were tested for each film thickness described above, and the probability of non-breakage was determined from the number of samples that did not break apart. The sandpaper was replaced with a new one for each sample.
  • FIG. 2 is a diagram showing the results of a falling ball test using 100th sandpaper.
  • the horizontal axis indicates the thickness of the ion permeation suppression film
  • the vertical axis indicates the non-breakage probability. According to FIG. 2, it is shown that the greater the thickness of the ion permeation suppression film, the higher the non-breakage probability and the less the damage is caused in the first mode.
  • the falling ball test using 320th sandpaper is a test assuming damage in the second mode described above. Specifically, on a base made of SUS surface plate, an acrylic plate with a thickness of 30 mm, a sandpaper of number 320 with a 15 mm square size (sandpaper is placed so that the rubbing surface is in contact with the tempered glass), 50 mm long ⁇ Laminated glass in the order of 50mm width tempered glass and acrylic plate with 4mm thickness, dropped 130g steel ball on the acrylic plate placed on the top, and measured the height at which the tempered glass breaks It is a thing.
  • breakage height The height obtained (hereinafter referred to as breakage height) was determined as an average value. In addition, when it did not divide even if it cracked, it was judged that it broke when the crack which entered into the perpendicular direction reached the depth more than half of board thickness.
  • FIG. 3 is a diagram showing the results of a falling ball test using 320th sandpaper.
  • the horizontal axis indicates the thickness of the ion permeation suppression film
  • the vertical axis indicates the height of breakage. According to FIG. 3, it is shown that the smaller the thickness of the ion permeation suppression film, the lower the falling height of the hard ball at the time of breakage, and it is difficult to break in the second mode.
  • the end face impact test is a test that assumes damage in the third mode described above. Specifically, as described in Chinese Utility Model No. 2051414736, the head of the hammer member fixed so as to be swingable in the height direction at the handle side end is swung up and collided with the end face of the sample clamped in a horizontal posture. The height at which the sample breaks was measured. The length from the fulcrum of the hammer to the head was 500 mm, the arm weight was 225 g, and the head weight was 11.3 g.
  • the hammer member was made to collide while raising the swing height in 1 cm increments, the swing height at which the sample was damaged was recorded, the damaged height was Weibull plotted, and the failure probability was 63%
  • the height (hereinafter referred to as the swing-up height) was obtained as an average value.
  • FIG. 4 is a diagram showing the results of the end face impact test.
  • the horizontal axis indicates the thickness of the ion permeation suppression film
  • the vertical axis indicates the swing-up height.
  • high strength is shown in the range where the thickness of the ion permeation suppression film is greater than 0 nm and less than 300 nm, and those outside the range have lower end face strength than those within the range. ing.
  • tempered glass for display covers of portable devices is not easily damaged in any of the first to third modes.
  • the thickness of the ion permeation suppression film is in the range of 50 to 150 nm, more preferably 80 to 100 nm, it is preferable that any mode does not easily break.
  • the tempered glass plate and the method for producing the same of the present invention are useful as a glass substrate used for a touch panel display and the like, and a method for producing the same.

Abstract

 イオン交換法を用いて強化された強化ガラス板の製造方法であって、元ガラス板の表面をアルカリ金属イオンの透過を抑制するイオン透過抑制膜で被覆して膜付ガラス板を得る成膜工程と、成膜工程の後に、切断加工、端面加工、および孔あけ加工の少なくともいずれかの加工を膜付ガラス板に施すことによってイオン透過抑制膜に被覆されない露出部を有する強化用ガラス板を得る加工工程と、加工工程の後に、強化用ガラス板をイオン交換法により化学強化して強化ガラス板を得る強化工程と、を備えることを特徴とする。

Description

強化ガラス板の製造方法、ならびに強化用ガラス板の製造方法
 本発明は、強化ガラス板の製造方法に関し、より具体的には、イオン交換法によって化学強化された強化ガラス板の製造方法に関する。
 従来、スマートフォンやタブレットPCなどの電子機器に搭載されるタッチパネルディスプレイには、カバーガラスとして化学強化された強化ガラス板が用いられている。
 このような強化ガラス板は、一般的に、アルカリ金属を組成として含むガラス板を強化液で化学的に処理し、表面に圧縮応力層を形成することによって製造される。このような強化ガラス板は、主表面に圧縮応力層を有するために主表面への衝撃耐性が向上している。一方、このような強化ガラス板の内部には、主表面の圧縮応力層に対応して引張応力層が形成される。そして、この引張応力に起因して端面のクラックが進展することによる破損(所謂、自己破壊)が問題となっていた。また、このような引張応力を小さくしようとガラス板全体的に圧縮応力層を浅く形成した場合、端面において十分な耐衝撃性を得られないという問題があった。
 上記のような問題を解決すべく、強化ガラス板の主表面と端面の圧縮応力のバランスを適切に設定して内部引張応力を適切な範囲で低減する技術が開発されている。例えば、特許文献1には、主表面に予め膜を形成して、化学強化の進度を端面より抑制することによって、端面の圧縮応力層は低減させることなく、主表面の圧縮応力層の深さを制御して内部引張応力を低減する技術が開示されている。
特開2014-208570号公報
 引用文献1では主表面と端面の圧縮応力のバランスが適切に設定された強化ガラスが開示されているが、当該強化ガラスを効率良く生産する方法については十分に検討されておらず、改良の余地があった。
 本発明は、このような事情を考慮して成されたものであり、自己破壊を起こし難く且つ端面の耐衝撃性が高い強化ガラス板を効率よく製造可能とすることを課題とする。
 本発明の強化ガラス板の製造方法は、イオン交換法を用いて強化された強化ガラス板の製造方法であって、元ガラス板の表面をアルカリ金属イオンの透過を抑制するイオン透過抑制膜で被覆して膜付ガラス板を得る成膜工程と、成膜工程の後に、切断加工、孔あけ加工、および端面加工の少なくとも何れかの加工を膜付ガラス板に施すことによってイオン透過抑制膜に被覆されない露出部を設けた強化用ガラス板を得る加工工程と、加工工程の後に、強化用ガラス板をイオン交換法により化学強化して強化ガラス板を得る強化工程と、を備えることを特徴とする。
 上記構成によれば、切断等の加工工程を成膜工程後、且つ強化工程前に行うことによって、容易に強化ガラス板の引張応力と端面の圧縮応力のバランスを好適に調整できる。したがって、端面の耐衝撃性が高い強化ガラス板を効率よく製造できる。
 成膜工程において、イオン透過抑制膜として、金属酸化物膜、金属窒化物膜、金属炭化物膜、金属酸窒化物膜、金属酸炭化物膜、金属炭窒化物膜の少なくとも何れかを形成することが好ましい。
 このような構成によれば、加工工程や強化工程におけるイオン透過抑制膜の破損を抑制できる。
 成膜工程において、イオン透過抑制膜としてSiO、Al、SiN、SiC、Al、AlN、ZrO、TiO、Ta、Nb、HfO、SnOの少なくとも何れかを含有する膜層を形成することが好ましい。
 成膜工程において、イオン透過抑制膜として、質量%でSiOを60~96%、Alを4~40%含有する組成を有する無機膜を厚さが5~300nmとなるよう形成することが好ましい。
 成膜工程において、イオン透過抑制膜として、質量%でSiOを99%以上含有する組成を有する無機膜を形成することが好ましい。
 このような構成によれば、比較的安価な材料で高いイオン透過抑制効果および強度を有するイオン透過抑制膜を形成できる。
 成膜工程において、厚さが20~150nmとなるよう前記イオン透過抑制膜を形成することが好ましい。
 このような構成によれば、様々な態様(モード)の破壊について高い強度を得られる。
 イオン透過抑制膜のヤング率が、元ガラス板のヤング率の0.5~2.0倍であることが好ましい。
 イオン透過抑制膜の屈折率をn1、元ガラス板の屈折率をn2とした場合に、下記(1)式を満たすことが好ましい。
 n1-n2≦0.4  …(1)
 このような構成によれば、イオン透過抑制膜において反射防止膜の機能を得ることができる。
 強化工程において、強化用ガラス板を350~500℃の硝酸カリウム溶融塩中に2~24間浸漬することが好ましい。
 元ガラス板が、ガラス組成として質量%で、SiO 45~75%、Al 1~30%、NaO 0~20%、KO 0~20%を含有し、厚さ0.01~1.5mmであることが好ましい。
 イオン透過抑制膜と元ガラス板との間に易剥離性膜を設ける工程をさらに備えることが好ましい。
 易剥離性膜は、InおよびZnOの少なくとも何れかを含有する無機膜であることが好ましい。
 このような構成によれば、HF等の人体にとって毒性の高い溶剤を用いることなくイオン透過抑制膜を容易に剥離できる。
 強化工程の後に強化ガラス板の少なくとも一方主面からイオン透過抑制膜を剥離する剥離工程をさらに備えることが好ましい。
 このような構成によれば、残したイオン透過抑制膜を、例えば反射防止膜等の機能性膜として流用可能である。
 本発明の強化用ガラス板の製造方法は、イオン交換法を用いた強化処理に供される強化用ガラス板の製造方法であって、元ガラス板の表面をアルカリ金属イオンの透過を抑制するイオン透過抑制膜で被覆して膜付ガラス板を得る成膜工程と、成膜工程の後に、膜付ガラス板に対し、切断加工、孔あけ加工、および端面加工の少なくとも何れかの加工を施すことによって膜付ガラス板においてイオン透過抑制膜に被覆されない露出部を形成する加工工程とを備えることを特徴とする。
本発明の実施形態の強化ガラス板および強化用ガラス板の製造方法の一例を示す図である。 本発明の実施形態の強化ガラス板および強化用ガラス板の製造方法の一例を示す図である。 本発明の実施形態の強化ガラス板および強化用ガラス板の製造方法の一例を示す図である。 本発明の実施形態の強化ガラス板および強化用ガラス板の製造方法の一例を示す図である。 本発明の実施形態の強化ガラス板および強化用ガラス板の製造方法の一例を示す図である。 本発明の実施形態の強化ガラス板についての100番手のサンドペーパーを用いた落球試験の結果を示す図である。 本発明の実施形態の強化ガラス板についての320番手のサンドペーパーを用いた落球試験の結果を示す図である。 本発明の実施形態の強化ガラス板についての端面衝撃試験の結果を示す図である。
 以下、本発明の実施形態の強化ガラス板およびその製造方法、ならびに強化用ガラス板およびその製造方法について説明する。
 図1A~Eは、本発明の実施形態の強化ガラス板および強化用ガラス板の製造方法の一例を示す図である。本実施形態の強化ガラス板G4、G5は、その製造過程において主表面の圧縮応力値と端面の圧縮応力値の大きさのバランスが好適に制御されるために、内部引張応力を低減しつつ端面への衝撃に対し高い耐性を有する。以下、その詳細について説明する。
 先ず、図1Aに示す準備工程の処理を実施する。準備工程は、元ガラス板G1を準備する工程である。元ガラス板G1は、イオン交換法を用いて強化可能なガラスである。
 元ガラス板G1は、ガラス組成として質量%で、SiO 45~75%、Al 1~30%、NaO 0~20%、KO 0~20%を含有することが好ましい。上記のようにガラス組成範囲を規制すれば、イオン交換性能と耐失透性を高いレベルで両立し易くなる。
 元ガラス板G1の板厚は、例えば、1.5mm以下であり、好ましくは1.3mm以下、1.1mm以下、1.0mm以下、0.8mm以下、0.7mm以下、0.6mm以下、0.5mm以下、0.4mm以下、0.3mm以下、0.2mm以下、特に0.1mm以下である。強化ガラス基板の板厚が小さい程、強化ガラス基板を軽量化することでき、結果として、デバイスの薄型化、軽量化を図ることができる。なお、生産性等を考慮すれば元ガラス板G1の板厚は0.01mm以上であることが好ましい。
 元ガラス板G1の寸法は、例えば、480×320mm~3350×3950mmである。
 元ガラス板G1は、オーバーフローダウンドロー法を用いて成形され、その主表面Sが研磨されていないものであることが好ましい。このように成形された元ガラス板G1であれば低コストで高い表面品位を有する強化ガラス板を得られる。なお、元ガラス板G1の成形方法や加工状態は任意に選択しても良い。例えば、元ガラス板G1はフロート法を用いて成形され、主表面Sが研磨加工されたものであっても良い。
 次いで、上記準備工程の後、図1Bに示す成膜工程の処理を実施する。成膜工程は、元ガラス板G1の表面にイオン透過抑制膜Mを形成して膜付ガラス板G2を得る工程である。イオン透過抑制膜Mは、後述の強化工程において、元ガラス板G1表面のアルカリ金属イオンの透過を抑制する膜層である。
 イオン透過抑制膜Mの材質としては、アルカリ金属イオンの透過を抑制可能であれば任意の材質を用いて良いが、後述の加工工程および強化工程において破損し難い機械的強度および化学的耐久性を有することが好ましい。具体的には、イオン透過抑制膜Mのヤング率は元ガラス板G1ヤング率の0.5~2.0倍であることが好ましい。イオン透過抑制膜Mのヤング率が元ガラス板G1のヤング率の0.5倍以上である場合、加工工程等で元ガラス板G1を十分に保護でき、傷等の欠陥が生じ難くなる。一方、イオン透過抑制膜Mのヤング率が元ガラス板G1のヤング率の2.0倍以下である場合、加工工程等でイオン透過抑制膜Mが割れて破損するという事態が生じ難くなる。
 上記のような強度特性を得るために、イオン透過抑制膜Mは、金属酸化物、金属窒化物、金属炭化物、金属酸窒化物、金属酸炭化物、金属炭窒化物膜などであることが好ましい。この場合、イオン透過抑制膜Mの材質としては、SiO、Al、SiN、SiC、Al、AlN、ZrO、TiO、Ta、Nb、HfO、SnOの中から1種類以上を含む膜とすることができる。
 また、イオン透過抑制膜Mは、波長550nmにおけるイオン透過抑制膜Mの屈折率をn1、波長550nmにおける元ガラス板G1の屈折率をn2とした場合に、下記(1)式を満たすことが好ましい。
 n1-n2≦0.4  …(1)
 ここで、n1とn2は、下記(2)式を満たすことがより好ましく、下記(3)式を満たすことがさらに好ましく、下記(4)式を満たすことが最も好ましい。
 n1-n2≦0.2  …(2)
 n1-n2≦0.1  …(3)
 n1<n2  …(4)
 このように、元ガラス板G1の屈折率n2を基準としてイオン透過抑制膜Mの屈折率n1を所定範囲以下とすることによって、イオン透過抑制膜Mに反射防止効果を付与できる。
 イオン透過抑制膜Mの屈折率n1を小さくするためには、SiOをイオン透過抑制膜Mの主成分とすることが好適である。一般的なガラスの屈折率は1.52程度であるのに対して、SiOの屈折率は1.46程度である。したがって、SiOをイオン透過抑制膜Mの主成分とすればイオン透過抑制膜Mの屈折率を元ガラス板G1の屈折率より容易に小さくでき、反射防止膜としての機能を容易に付与できる。
 イオン透過抑制膜Mは、SiOのみから成る膜としても良い。具体的には、イオン透過抑制膜Mは質量%でSiOを99%以上含有する組成を有するものとして良い。このような組成であればイオン透過抑制膜Mを容易且つ安価に形成できる。このようにSiOをイオン透過抑制膜Mの主成分とする場合、イオン透過抑制効果を高めたり、高い機械的強度を得る観点からは、SiOの他に、SiOよりヤング率が高い任意の添加物を添加することが好ましい。このような添加物の一例としては、上述のAl、SiN、SiC、Al、AlN、ZrO、TiO、Ta、Nb、HfO、SnOが挙げられるが、特に屈折率が比較的低いAlを選択することが好ましい。
 上記観点から、本実施形態ではイオン透過抑制膜Mが、SiOを主成分とし、Alを含有する無機膜である場合を一例として説明する。より詳細には、イオン透過抑制膜Mは、組成として質量%で、SiOを60~96%、Alを4~40%含有する。
 本実施形態では、SiOの含有量は、質量%で60~96%が好ましく、より好ましくは65~90%、さらに好ましくは70~85%である。SiOの含有量が60%以上である場合、反射防止効果を得易くなる。また、イオン透過抑制膜Mの均一性を維持し易くなるため、強化工程にて元ガラス板G1の強化具合がばらつき難く、製品の強度品位を向上させ易くなる。一方、SiOの含有量が96%以下である場合、イオン透過抑制膜Mの機械的強度が増加して製造過程で損傷し難くなる。
 Alの添加量は4~40%であることが好ましい。Alの含有量が4%以上である場合、イオン透過抑制効果や、機械的強度および耐薬品性向上の効果を得易くなる。一方、Alの含有量が40%以下である場合、アルカリ金属イオンの透過が過度に阻害されることがなく、強化工程における生産性が向上する。
 上記のような組成のイオン透過抑制膜Mであれば、所望のイオン透過抑制効果、機械的強度、および耐薬品性を、比較的薄い膜厚で得ることができる。したがって、イオン透過抑制膜Mの成膜時間を短縮したり膜材料費を低減して強化ガラス板の生産効率を向上できる。
 イオン透過抑制膜Mの厚さは、好ましくは5~300nm、より好ましくは20~200nm、さらに好ましくは20~150nm、40~120nm、最も好ましくは80~100nmである。イオン透過抑制膜Mの厚さが5nm以上である場合、十分にアルカリ金属イオンの透過を抑制することができる。一方、イオン透過抑制膜Mの厚さが300nm以下である場合、アルカリ金属イオンの透過を過度に阻害することがなく、十分な強度の強化ガラス板を得易くなる。
 特に、イオン透過抑制膜Mの厚さが20~150nmであれば、下記に示す複数態様(モード)の破損の何れについても高い耐性を得られる。
 (1)落下先に鋭利な突起物が存在し、その突起物が強化ガラスの表面圧縮応力層を突き破り内部引張応力層まで達することによりクラックが発生し、該クラックが内部引張応力によって進展して破損する第一のモード。
 (2)落下先に鈍角な突起物が存在し、その突起物が、強化ガラスの表面圧縮応力層を貫通しない深さでクラックを形成するとともに、圧縮応力を超える大きさの引張応力を強化ガラス表面に作用させたことによって該クラックを進展させて破損する第二のモード。
 (3)強化ガラスの端面へ衝撃力が作用し、端面の微小クラック等が進展することにより破損する第三のモード。
 イオン透過抑制膜Mが反射防止膜としての機能を有している場合には、イオン透過抑制膜Mの光学的膜厚(屈折率×物理膜厚)を可視光波長の1/4の厚さとすることが好ましい。具体的には、イオン透過抑制膜Mの光学的膜厚は、95nm~195nmであることが好ましく、より好ましくは130nm~160nmである。
 イオン透過抑制膜Mの成膜方法は、スパッタ法や真空蒸着法などのPVD法(物理気相成長法)、熱CVD法やプラズマCVD法などのCVD法(化学気相成長法)、ディップコート法やスリットコート法などのウェットコート法を用いることができる。特にスパッタ法、ディップコート法が好ましい。スパッタ法を用いた場合、イオン透過抑制膜Mを容易に均一に形成できる。ディップコート法を用いた場合、ガラス板の対向する両主表面にイオン透過抑制膜Mを同時に高い生産性で成膜できる。
 次いで、上記成膜工程の後、図1Cに示す加工工程の処理を実施する。加工工程は、膜付ガラス板G2に切断加工、端面加工、および孔あけ加工の少なくとも何れかの加工を実施して、イオン透過抑制膜Mに被覆されない露出部Eを有する強化用ガラス板G3を得る工程である。すなわち、膜付ガラス板G2に施す加工は、切断加工、端面加工、または孔あけ加工の中から選択された1つの加工であってもよいし、これらの中から選択された2つ以上の加工であってもよい。
 本実施形態では、図1Cに示すように膜付ガラス板G2を切断加工することによって、強化用ガラス板G3を得る場合を一例として説明する。具体的には、膜付ガラス板G2の切断予定線にスクライブチップを用いてスクライブ線を形成し、該スクライブ線に沿って割断することによって強化用ガラス板G3を得る。このような加工により、強化用ガラス板G3の主表面Sはイオン透過抑制膜Mによって被覆されたままになっている。一方、強化用ガラス板G3の端面は、イオン透過抑制膜Mに被覆されていない露出部Eとなっている。
 上記切断加工の方法は一例であり、例えばレーザー光を用いて膜付ガラス板G2にスクライブ線を形成したり、レーザー光を用いて溶断したりしても良い。また、膜付ガラス板G2をワイヤソー等の工具を用いて機械的に切断しても良いし、フッ酸を用いた部分的なエッチングにより溶断しても良い。
 また、膜付ガラス板G2が予め製品大の寸法で準備されている場合には、端面加工等を行って露出部Eを形成しても良い。具体的には、回転砥石や研磨テープ等の加工具を端面に押し当てて研削加工や研磨加工を行うことによって、露出部Eを形成しても良い。また、フッ酸を用いて膜付ガラス板G2の端面をエッチング処理しても良い。このような加工を施した場合、加工された膜付ガラス板G2の端面が露出部Eとなる。
 また、最終製品においてスピーカー、カメラ、イヤホンジャック、スイッチ、コネクタ等が配置される箇所については、膜付ガラス板G2に孔あけ加工を行っても良い。孔あけ加工は、例えば、ドリル等を用いた機械加工により行なっても良いし、レーザー光やエッチング等による部分的な溶解により行なっても良い。このような加工を施した場合、形成された孔の内周面が露出部Eとなる(図示せず)。
 次いで、上記加工工程の後、図1Dに示す強化工程の処理を実施する。強化工程は、強化用ガラス板G3をイオン交換法により化学強化して、膜付きの強化ガラス板G4を得る工程である。具体的には、強化用ガラス板G3を350~500℃の硝酸カリウム溶融塩の強化液T中に2~24間浸漬する。
 上記強化工程では、強化用ガラス板G3の表面のナトリウムイオンと強化液T中のカリウムイオンとが交換され、表面に圧縮応力層Cを有する強化ガラス板G4が得られる。ここで、強化用ガラス板G3の表面のうち、イオン透過抑制膜Mが設けられた部位(主表面S)は、元ガラス板G1の表面が露出した露出部Eに比べてイオン交換が抑制されるため、圧縮応力層の深さが小さくなる。換言すれば、露出部Eは、イオン透過抑制膜Mが設けられた部位に比べてイオン交換が進み易く、圧縮応力層の深さが大きくなる。このように、強化ガラス板G4は、端面に比べ主表面の圧縮応力層の深さが小さくなるため、全面的に強化された強化ガラスに比べて内部の引張応力が小さく且つ端部においては高い耐衝撃性を有する。したがって、端部からのクラックの進展に起因する破損を好適に抑制できる。
 また、イオン透過抑制膜Mとして上述の無機組成材料を採用した場合には、該膜を設けたまま強化液Tに浸漬した場合であっても、従来の有機系の保護膜等に比べて強化液Tを劣化させ難い。
 上記強化工程における処理温度や浸漬時間等の処理条件は、強化ガラス板G4に要求される特性に応じて適宜定めて良い。上記処理条件は、強化ガラス板G4の主表面Sの圧縮応力層の深さが、露出部Eの圧縮応力層の深さより小さくなるよう調整することが好ましい。
 イオン透過抑制膜Mは電子デバイスの保護コートや反射防止膜としても機能するため、強化ガラス板G4は、そのまま製品として使用することも可能であるが、用途に応じてイオン透過抑制膜Mを剥離しても良い。図1Eに示す剥離工程では、強化ガラス板G4からイオン透過抑制膜Mを剥離して強化ガラス板G5を得る。
 具体的には、強化ガラス板G4にエッチング液を付着させてイオン透過抑制膜Mを除去する。イオン透過抑制膜MがSiOを含有する膜である場合、例えば、フッ素、TMAH、EDP、KOH等を含む溶液をエッチング液として用いることができ、特にフッ酸溶液をエッチング液として用いることが好ましい。剥離工程では、一方の主表面側のイオン透過抑制膜Mのみを除去しても良いし、両方の主表面のイオン透過抑制膜Mを除去しても良い。また各主面においてイオン透過抑制膜Mを部分的に除去しても良いし、イオン透過抑制膜Mを全て除去しても良い。
 イオン透過抑制膜Mを片面側や部分的に除去する場合、スプレーやロール、刷毛等を用いてエッチング液を部分的に付着させたり、強化ガラス板G4に部分的にマスキングを施してエッチング液に浸漬させたりして該膜の除去が可能である。
 イオン透過抑制膜Mを全て除去する場合は強化ガラス板G4全体をエッチング液に浸漬すると良い。このように強化ガラス板G4全体をエッチング液に浸漬すれば、破損の原因となるマイクロクラックを減少させてさらに強度を向上した強化ガラス板G5を得られる。
 以上に説明した通り、本発明の実施形態に係る強化ガラス板の製造方法によれば、加工工程において容易に端面を露出部Eとすることができ、端面からの破損の少ない強化ガラス板G4、G5を効率良く製造できる。また、上述したイオン透過抑制膜Mによれば、非常に薄い膜厚で好適にアルカリ金属イオンの透過を抑制しつつ、高い機械的強度および化学的耐久性で元ガラス板G1を保護できる。したがって、高い生産性で強化ガラス板G4、G5を効率良く製造できる。
 なお、上述した強化ガラス板G4、G5の製造過程において得られる強化用ガラス板G3はイオン透過抑制膜Mによって表面が保護されているため、例えば、成膜工程と強化工程とが遠く離れて存在する場合に運搬中の破損を防止できる。また、イオン透過抑制膜Mを剥離することなく、そのまま強化工程の強化処理を行うことが可能であるため、強化工程の前に保護膜を剥離する必要が無いという利点を有する。
 なお、上述したイオン透過抑制膜Mの材質は一例であり、アルカリ金属イオンの透過を抑制可能な膜であれば任意の材質を用いて良い。
 また、上述した準備工程、成膜工程、加工工程、強化工程、および剥離工程の各工程の前後においてはガラス板に洗浄および乾燥処理を適宜行なって良い。
 また、強化用ガラス板にはイオン透過抑制膜Mを形成する前に予め切断加工、端面加工、および孔あけ加工の何れかの加工が行われていても良い。さらに、この場合、強化用ガラス板の加工面(端面)に、例えば樹脂等のマスキングを施した状態で、成膜工程および強化工程の処理を施して良い。
<変形例>
 上記実施形態では、成膜工程において、単層のイオン透過抑制膜Mを設けた場合を一例として説明したが、主表面S上にはイオン透過抑制膜Mを含む特性の異なる膜層を複数設けても良い。例えば、イオン透過抑制膜と主表面Sとの間に易剥離性膜を設ける工程をさらに備えても良い(図示せず)。易剥離性膜は、例えば、InおよびZnOの少なくとも何れかを含有する無機膜である。InやZnOを含む易剥離性膜は塩酸等の酸性エッチング液で容易に剥離可能である。また、ZnOを含む易剥離性膜は水酸化カリウム等のアルカリ性エッチング液で容易に剥離できる。このような易剥離性膜を設けることによって、上述剥離工程において容易にイオン透過抑制膜Mを剥離できる。なお、易剥離性膜は、スパッタ法、CVD法、ディップコート法、スピンコート法、スプレーコート法等の任意の方法で形成可能である。
 以下、本発明の実施例を詳細に説明する。
 表1においてNo.1~3は本発明の実施例を示し、No.4は比較例を示している。
Figure JPOXMLDOC01-appb-T000001
  表1中の各試料は以下のようにして作製した。先ず、ガラス組成として質量%で、SiO 61.6%、Al 19.6%、B 0.8%、NaO 16%、KO 2%を含有するようガラス原料を混合および溶融し、オーバーフローダウンドロー法を用いて成形して厚さ0.4mmの複数の元ガラス板を得た。次いで、表1に記載の組成および厚さのイオン透過抑制膜を上記得られた元ガラス板にスパッタ法を用いて成膜した後、スクライブ割断によって65×130mm寸法の矩形状に切り出すことにより端面に露出部を有する強化用ガラス板を得た。なお、No.4の試料については上記成膜を行うことなく上記切断を行った。次いで、得られた強化用ガラス板を430℃の硝酸カリウム溶液に1時間浸漬して化学強化し、純水洗浄および自然乾燥して表1記載のNo.1~3の強化ガラス板試料を得た。
 上記のようにして得た各ガラス試料について、下記測定試験を行った。
 表面圧縮応力値CS1、表面応力深さDOL1は、応力計(折原製作所製FSM‐6000)で干渉縞の本数とその間隔を観察して算出した。内部引張応力CTは、表面圧縮応力値CS1および表面応力深さDOL1を用いて下式(5)に基づいて算出した。
 CT=(CS1×DOL1)/(t-2DOL1)   …(5)
  t:ガラス試料の厚み(mm)
 上述のFSM‐6000では微小な端面の圧縮応力深さを測定することが困難であったため、別途以下の方法で端面応力深さDOL2を測定した。具体的には、上述の各試料を主面に対して垂直方向にスライスして、厚み200μmの断面試料を作成した。その後、偏光顕微鏡(株式会社フォトニックラティス製WPA-micro)を用いて各断面試料の端面部の圧縮応力層の深さを観察および測定した。また、比較のため、同様の方法で表面応力深さをDOL3として測定した。
 膜ヤング率E1は、イオン透過抑制膜のヤング率であり、膜組成における各成分の質量比、各成分の既知の密度、各成分の既知のヤング率を用いて下式(6)~(8)に基づいて算出した。
1/E1=∨SiO2/ESiO2+∨Al2O3/EAl2O3 …(6)
SiO2:SiOの体積比率
Al2O3:Alの体積比率
SiO2:SiOのヤング率(=72 GPa)
Al2O3:Alのヤング率 (=380 GPa)
SiO2=(WSiO2/dSiO2)/(WSiO2/dSiO2+WAl2O3/dAl2O3) …(7)
Al2O3=(WAl2O3/dAl2O3)/(WSiO2/dSiO2+WAl2O3/dAl2O3
…(8)
SiO2:膜組成におけるSiOの質量比 
Al2O3:膜組成におけるAlの質量比 
SiO2:SiOの密度(=2.65 g/cm) 
Al2O3:Alの密度(=3.95 g/cm) 
 ガラス板ヤング率E2は、元ガラス板のヤング率であり、共振法を用いて測定した値である。
 反射率は、顕微分光測定器(オリンパス社製USPM-RUIII)を用いて波長550nmにおける各強化ガラス板試料の片面反射率を測定した値である。
 膜屈折率n1、顕微分光測定器(オリンパス社製USPM-RUIII)を用いて波長550nmにおける各試料のイオン透過抑制膜の屈折率を測定した値である。
 ガラス板屈折率n2は、顕微分光測定器(オリンパス社製USPM-RUIII)を用いて波長550nmにおける元ガラス板の屈折率を測定した値である。
 表1に示すように、実施例の試料No.1~3は、主表面にイオン透過抑制膜が形成され且つ端面に露出部を有する状態で強化されて作成されたため、端面においては比較例の試料と同程度の圧縮応力を有しつつ、表面圧縮応力が比較例の試料No.4より小さくなっている。すなわち、試料No.1~3では、圧縮応力のバランスを容易且つ好適に設定され、その結果、内部引張応力が低減され自己破壊が起こり難くなっているとともに、端面においては高い耐衝撃性を得られていると考えられる。
 図2~4は、各々、本発明の実施形態に係る強化ガラスの異なるモードでの破損に対する耐性を示した図である。まず、上記実施例No.1と同様の方法でイオン透過抑制膜の厚みを異なる強化ガラス試料を複数枚作成した。具体的には、膜厚0nm、80nm、100nm、150nm、200nm、300nmの試料を複数枚作成し、各々について上述した第一~第三のモードに対応する破損試験を行った。具体的には、100番手のサンドペーパーを用いた落球試験、320番手のサンドペーパーを用いた落球試験、端面衝撃試験を行った。
 100番手のサンドペーパーを用いた落球試験は、上述第一のモードの破損を想定した試験である。具体的には、花崗岩からなる基台上に、縦50mm×横50mmの寸法の強化ガラス、15mm角寸法で100番手のサンドペーパー(サンドペーパーは擦り面が強化ガラスと接触するように配置)の順序で配置し、4gの鋼球を5cmの高さからサンドペーパー上に落下させ、分断破壊が生じたか否かに基づいて評価を行った。上述の各膜厚について30枚のサンプルを試験し、そのうち分断破壊が生じなかった枚数から非破損確率を求めた。なお、サンドペーパーはサンプルごとに新品に交換した。
 図2は、100番手のサンドペーパーを用いた落球試験の結果を示す図である。図2において横軸はイオン透過抑制膜の厚みを示し、縦軸は非破損確率を示す。図2によれば、イオン透過抑制膜の厚み大きいほど、非破損確率が高く、第一のモードで破損され難いことが示されている。
 320番手のサンドペーパーを用いた落球試験は、上述第二のモードの破損を想定した試験である。具体的には、SUS定盤からなる基台上に、板厚30mmのアクリル板、15mm角寸法で320番手のサンドペーパー(サンドペーパーは擦り面が強化ガラスと接触するように配置)、縦50mm×横50mmの寸法の強化ガラス、板厚4mmのアクリル板の順序で積層配置し、130gの鋼球を最上段に載置されたアクリル板上に落下させ、強化ガラスが破損する高さを測定したものである。詳細には、5cmの高さから、5cm刻みで落下高さを上げつつ鋼球を落下させ、試料が破損した高さを記録し、破損した高さをワイブルプロットし、破損確率が63%になった高さ(以下、破損高さと称する)を平均値として求めた。なお、亀裂が入っても分断しなかった場合には、垂直方向に入った亀裂が板厚の半分以上の深さまで達した場合に破損したと判断した。
 図3は、320番手のサンドペーパーを用いた落球試験の結果を示す図である。図3において横軸はイオン透過抑制膜の厚みを示し、縦軸は破損高さを示す。図3によれば、イオン透過抑制膜の厚みが小さいほど、破損時の硬球落下高さが低く、第二のモードで破損され難いことが示されている。
 端面衝撃試験は、上述第三のモードの破損を想定した試験である。具体的には、中国実用新案第204514736に記載の通り、柄側端部で高さ方向に揺動自在に固定されたハンマー部材のヘッドを振り上げ、水平姿勢でクランプされた試料の端面へ衝突させ、試料が破損する高さを測定した。ハンマーの支点からヘッドまでの長さは500mm、アームの重量は225g、ヘッド重量は11.3gとした。当該装置を用いて、1cm刻みで振り上げ高さを上げつつハンマー部材を衝突させ、試料が破損した振り上げ高さを記録し、破損した高さをワイブルプロットし、破損確率が63%になった高さ(以下、振り上げ高さと称する)を平均値として求めた。
 図4は、端面衝撃試験の結果を示す図である。図4において横軸はイオン透過抑制膜の厚みを示し、縦軸は振り上げ高さを示す。図4によれば、イオン透過抑制膜の厚みが0nmより大きく300nm未満の範囲において高い強度が示されており、当該範囲外のものは当該範囲内のものに比べ端面強度が低いことが示されている。
 携帯機器のディスプレイカバー用途の強化ガラスは、第一~第三のモードの何れにおいても破損し難いことが望ましい。図2~4によれば、イオン透過抑制膜の厚さが50~150nmの範囲内、より好ましくは80~100nmである場合、何れのモードでも破損し難く好ましい。
 本発明の強化ガラス板およびその製造方法は、タッチパネルディスプレイ等に用いられるガラス基板およびその製造方法等として有用である。
G1 元ガラス板
G2 膜付ガラス板
G3 強化用ガラス板
G4、G5 強化ガラス板
M  イオン透過抑制膜
E  露出部

Claims (14)

  1.  イオン交換法を用いて強化された強化ガラス板の製造方法であって、
     元ガラス板の表面をアルカリ金属イオンの透過を抑制するイオン透過抑制膜で被覆して膜付ガラス板を得る成膜工程と、
     前記成膜工程の後に、切断加工、孔あけ加工、および端面加工の少なくとも何れかの加工を前記膜付ガラス板に施すことによって前記イオン透過抑制膜に被覆されない露出部を設けた強化用ガラス板を得る加工工程と、
     前記加工工程の後に、強化用ガラス板をイオン交換法により化学強化して強化ガラス板を得る強化工程と、を備えることを特徴とする、強化ガラス板の製造方法。
  2.  前記成膜工程において、前記イオン透過抑制膜として、金属酸化物膜、金属窒化物膜、金属炭化物膜、金属酸窒化物膜、金属酸炭化物膜、金属炭窒化物膜の少なくとも何れかを形成することを特徴とする、請求項1に記載の強化ガラス板の製造方法。
  3.  前記成膜工程において、前記イオン透過抑制膜としてSiO、Al、SiN、SiC、Al、AlN、ZrO、TiO、Ta、Nb、HfO、SnOの少なくとも何れかを含有する膜層を形成することを特徴とする、請求項2に記載の強化ガラス板の製造方法。
  4.  前記成膜工程において、前記イオン透過抑制膜として、質量%でSiOを60~96%、Alを4~40%含有する組成を有する無機膜を形成することを特徴とする、請求項3に記載の強化ガラス板の製造方法。
  5.  前記成膜工程において、前記イオン透過抑制膜として、質量%でSiOを99%以上含有する組成を有する無機膜を形成することを特徴とする、請求項3に記載の強化ガラス板の製造方法。
  6.  前記成膜工程において、厚さが20~150nmとなるよう前記イオン透過抑制膜を形成する、請求項1~4の何れか1項に記載の強化ガラス板の製造方法。
  7.  前記イオン透過抑制膜のヤング率が、前記元ガラス板のヤング率の0.5~2.0倍であることを特徴とする、請求項1~6の何れか1項に記載の強化ガラス板の製造方法。
  8.  前記イオン透過抑制膜の屈折率をn1、前記元ガラス板の屈折率をn2とした場合に、下記(1)式を満たすことを特徴とする、請求項1~7の何れか1項に記載の強化ガラス板の製造方法。
     n1-n2≦0.4  …(1)
  9.  前記強化工程において、前記強化用ガラス板を350~500℃の硝酸カリウム溶融塩中に2~24間浸漬することを特徴とする、請求項1~8の何れか1項に記載の強化ガラス板の製造方法。
  10.  前記元ガラス板が、ガラス組成として質量%で、SiO 45~75%、Al 1~30%、NaO 0~20%、KO 0~20%を含有し、厚さ0.01~1.5mmであることを特徴とする、請求項1~9の何れか1項に記載の強化ガラス板の製造方法。
  11.  前記イオン透過抑制膜と元ガラス板との間に易剥離性膜を設ける工程をさらに備えることを特徴とする、請求項1~10の何れか1項に記載の強化ガラス板の製造方法。
  12.  前記易剥離性膜は、InおよびZnOの少なくとも何れかを含有する無機膜であることを特徴とする、請求項11に記載の強化ガラス板の製造方法。
  13.  前記強化工程の後に前記強化ガラス板の少なくとも一方主面から前記イオン透過抑制膜を剥離する剥離工程をさらに備えることを特徴とする、請求項1~12の何れか1項に記載の強化ガラス板の製造方法。
  14.  イオン交換法を用いた強化処理に供される強化用ガラス板の製造方法であって、
     元ガラス板の表面をアルカリ金属イオンの透過を抑制するイオン透過抑制膜で被覆して膜付ガラス板を得る成膜工程と、
     前記成膜工程の後に、前記膜付ガラス板に対し、切断加工、孔あけ加工、および端面加工の少なくとも何れかの加工を施すことによって前記膜付ガラス板において前記イオン透過抑制膜に被覆されない露出部を形成する加工工程と、を備える強化用ガラス板の製造方法。
PCT/JP2016/058180 2015-03-25 2016-03-15 強化ガラス板の製造方法、ならびに強化用ガラス板の製造方法 WO2016152657A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680004512.2A CN107108347B (zh) 2015-03-25 2016-03-15 强化玻璃板的制造方法、以及强化用玻璃板的制造方法
KR1020177017513A KR102493138B1 (ko) 2015-03-25 2016-03-15 강화 유리판의 제조 방법, 및 강화용 유리판의 제조 방법
JP2017508260A JPWO2016152657A1 (ja) 2015-03-25 2016-03-15 強化ガラス板の製造方法、ならびに強化用ガラス板の製造方法
US15/560,224 US10723651B2 (en) 2015-03-25 2016-03-15 Method for manufacturing reinforced glass plate, and method for manufacturing glass plate for reinforcement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-062338 2015-03-25
JP2015062338 2015-03-25

Publications (1)

Publication Number Publication Date
WO2016152657A1 true WO2016152657A1 (ja) 2016-09-29

Family

ID=56978387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058180 WO2016152657A1 (ja) 2015-03-25 2016-03-15 強化ガラス板の製造方法、ならびに強化用ガラス板の製造方法

Country Status (6)

Country Link
US (1) US10723651B2 (ja)
JP (1) JPWO2016152657A1 (ja)
KR (1) KR102493138B1 (ja)
CN (1) CN107108347B (ja)
TW (1) TWI639569B (ja)
WO (1) WO2016152657A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066314A1 (ja) * 2016-10-07 2018-04-12 日本電気硝子株式会社 強化ガラス板の製造方法、膜付ガラス板及び強化ガラス板
WO2018097096A1 (ja) * 2016-11-22 2018-05-31 日本電気硝子株式会社 強化ガラス板、強化ガラス板の製造方法
WO2020262293A1 (ja) * 2019-06-27 2020-12-30 Agc株式会社 強化ガラス板およびその製造方法
WO2020262292A1 (ja) * 2019-06-27 2020-12-30 Agc株式会社 強化ガラス板およびその製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6882987B2 (ja) * 2015-04-21 2021-06-02 コーニング インコーポレイテッド エッジ及び隅部が強化された物品並びにその製造方法
JP7230816B2 (ja) * 2017-09-27 2023-03-01 日本電気硝子株式会社 ガラス板及びその製造方法
JP7054066B2 (ja) * 2017-09-27 2022-04-13 日本電気硝子株式会社 光学膜付きガラス板及びその製造方法
US10766810B2 (en) * 2017-09-29 2020-09-08 Apple Inc. Targeted chemical strengthening of glass articles
CN117125904A (zh) * 2018-10-09 2023-11-28 日本电气硝子株式会社 强化玻璃及强化玻璃的制造方法
TWI742731B (zh) * 2020-06-19 2021-10-11 恆顥科技股份有限公司 強化玻璃結構及其製造方法
CN111777322A (zh) * 2020-07-27 2020-10-16 苏州新吴光电科技有限公司 一种玻璃盖片及其加工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002308637A (ja) * 2001-04-04 2002-10-23 Sony Corp ガラス基板の製造方法およびガラス基板の製造装置
JP2012148957A (ja) * 2010-12-27 2012-08-09 Hoya Corp 携帯型電子機器用カバーガラスのガラス基板、携帯型電子機器用画像表示装置、携帯型電子機器、および携帯型電子機器用カバーガラスのガラス基板の製造方法
JP2012184155A (ja) * 2011-02-17 2012-09-27 Hoya Corp 携帯電子機器用カバーガラスのガラス基板の製造方法、携帯電子機器用カバーガラスのガラス基板および携帯電子機器
JP2013241291A (ja) * 2012-05-18 2013-12-05 Hoya Corp 電子機器用カバーガラスの製造方法
WO2014112526A1 (ja) * 2013-01-15 2014-07-24 旭硝子株式会社 アルカリバリア層形成用コート液及び物品
JP2015101533A (ja) * 2013-11-28 2015-06-04 日本電気硝子株式会社 強化ガラス板、及び強化ガラス板の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7096692B2 (en) 1997-03-14 2006-08-29 Ppg Industries Ohio, Inc. Visible-light-responsive photoactive coating, coated article, and method of making same
US20050056806A1 (en) * 2003-09-05 2005-03-17 Ellison Adam J. G. Suppressing monovalent metal ion migration using aluminum-containing barrier layer
JP2006083045A (ja) * 2004-09-17 2006-03-30 Hitachi Ltd ガラス部材
FR2953212B1 (fr) * 2009-12-01 2013-07-05 Saint Gobain Procede de structuration de surface par gravure ionique reactive,surface structuree et utilisations.
TWI398423B (zh) * 2010-05-28 2013-06-11 Wintek Corp 玻璃強化方法及應用其之玻璃
US20120052302A1 (en) * 2010-08-24 2012-03-01 Matusick Joseph M Method of strengthening edge of glass article
TWI402228B (zh) * 2010-09-15 2013-07-21 Wintek Corp 強化玻璃切割方法、強化玻璃薄膜製程、強化玻璃切割預置結構及強化玻璃切割件
US8778496B2 (en) * 2010-11-30 2014-07-15 Corning Incorporated Anti-glare glass sheet having compressive stress equipoise and methods thereof
US9725359B2 (en) * 2011-03-16 2017-08-08 Apple Inc. Electronic device having selectively strengthened glass
US20120280373A1 (en) 2011-05-06 2012-11-08 Jiangwei Feng Active electronics on strengthened glass with alkali barrier
KR20130065051A (ko) * 2011-12-09 2013-06-19 삼성코닝정밀소재 주식회사 강화 글라스의 절단 방법 및 이를 이용한 터치스크린패널의 제조방법
JP4932059B1 (ja) * 2011-12-16 2012-05-16 株式会社ミクロ技術研究所 強化ガラス、タッチパネル、及び強化ガラスの製造方法
KR20130110701A (ko) * 2012-03-30 2013-10-10 삼성디스플레이 주식회사 표시 장치용 글라스 기판 및 이의 제조 방법
CN104718071B (zh) * 2012-10-03 2018-09-04 康宁股份有限公司 表面改进的玻璃基材
DE112013006831T5 (de) * 2013-03-15 2015-12-10 Schott Glass Technologies (Suzhou) Co., Ltd. Chemisch vorgespanntes flexibles ultradünnes Glas
JP2014208570A (ja) 2013-03-25 2014-11-06 日本電気硝子株式会社 強化ガラス基板及びその製造方法
US20150274585A1 (en) * 2014-03-26 2015-10-01 Apple Inc. Asymmetric chemical strengthening

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002308637A (ja) * 2001-04-04 2002-10-23 Sony Corp ガラス基板の製造方法およびガラス基板の製造装置
JP2012148957A (ja) * 2010-12-27 2012-08-09 Hoya Corp 携帯型電子機器用カバーガラスのガラス基板、携帯型電子機器用画像表示装置、携帯型電子機器、および携帯型電子機器用カバーガラスのガラス基板の製造方法
JP2012184155A (ja) * 2011-02-17 2012-09-27 Hoya Corp 携帯電子機器用カバーガラスのガラス基板の製造方法、携帯電子機器用カバーガラスのガラス基板および携帯電子機器
JP2013241291A (ja) * 2012-05-18 2013-12-05 Hoya Corp 電子機器用カバーガラスの製造方法
WO2014112526A1 (ja) * 2013-01-15 2014-07-24 旭硝子株式会社 アルカリバリア層形成用コート液及び物品
JP2015101533A (ja) * 2013-11-28 2015-06-04 日本電気硝子株式会社 強化ガラス板、及び強化ガラス板の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066314A1 (ja) * 2016-10-07 2018-04-12 日本電気硝子株式会社 強化ガラス板の製造方法、膜付ガラス板及び強化ガラス板
WO2018097096A1 (ja) * 2016-11-22 2018-05-31 日本電気硝子株式会社 強化ガラス板、強化ガラス板の製造方法
WO2020262293A1 (ja) * 2019-06-27 2020-12-30 Agc株式会社 強化ガラス板およびその製造方法
WO2020262292A1 (ja) * 2019-06-27 2020-12-30 Agc株式会社 強化ガラス板およびその製造方法

Also Published As

Publication number Publication date
KR102493138B1 (ko) 2023-01-30
KR20170129678A (ko) 2017-11-27
TWI639569B (zh) 2018-11-01
TW201704180A (zh) 2017-02-01
US20180057400A1 (en) 2018-03-01
JPWO2016152657A1 (ja) 2018-01-11
US10723651B2 (en) 2020-07-28
CN107108347A (zh) 2017-08-29
CN107108347B (zh) 2020-02-11

Similar Documents

Publication Publication Date Title
WO2016152657A1 (ja) 強化ガラス板の製造方法、ならびに強化用ガラス板の製造方法
TWI680954B (zh) 深不易碎的應力分佈及其製造方法
TWI814830B (zh) 有改善掉落性能的玻璃
US8642175B2 (en) Glass substrate and method for manufactring the same
JP2020510595A (ja) 低たわみおよび高損傷抵抗性ガラス物品のための非対称応力プロファイル
TW201623177A (zh) 具有超深壓縮深度之強化玻璃
TW201412655A (zh) 具有高彎曲強度之玻璃物件及其製造方法
JP6870348B2 (ja) カバーガラス及びガラス積層体
US10894739B2 (en) Removal of inorganic coatings from glass substrates
TW202108534A (zh) 改良具有處於壓應力下的區域之紋理化玻璃基板以增加玻璃基板強度的方法
JP6827652B2 (ja) 強化ガラスの製造方法および強化ガラス製造装置
JP2018002552A (ja) 強化ガラスの製造方法および強化ガラス製造装置
WO2018066314A1 (ja) 強化ガラス板の製造方法、膜付ガラス板及び強化ガラス板
JP6886127B2 (ja) 強化ガラス板および強化ガラス板の製造方法
WO2017221805A1 (ja) 強化ガラスの製造方法および強化ガラス製造装置
WO2018008359A1 (ja) 強化ガラス板の製造方法
JP7004222B2 (ja) 強化ガラス板、強化ガラス板の製造方法
JP2017160111A (ja) 強化ガラス基板の製造方法及び強化ガラス基板
TW201817688A (zh) 強化玻璃板的製造方法、強化用玻璃板及強化玻璃板
JP2019001691A (ja) 強化ガラス板の製造方法、強化用ガラス板、および強化ガラス板
JP2013087031A (ja) 携帯機器用カバーガラスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768560

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017508260

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177017513

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15560224

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768560

Country of ref document: EP

Kind code of ref document: A1