WO2016152558A1 - 機能性フィルムおよび機能性フィルムの製造方法 - Google Patents

機能性フィルムおよび機能性フィルムの製造方法 Download PDF

Info

Publication number
WO2016152558A1
WO2016152558A1 PCT/JP2016/057603 JP2016057603W WO2016152558A1 WO 2016152558 A1 WO2016152558 A1 WO 2016152558A1 JP 2016057603 W JP2016057603 W JP 2016057603W WO 2016152558 A1 WO2016152558 A1 WO 2016152558A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
functional
gas barrier
substrate
Prior art date
Application number
PCT/JP2016/057603
Other languages
English (en)
French (fr)
Inventor
友和 関
英二郎 岩瀬
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201680018088.7A priority Critical patent/CN107405873B/zh
Publication of WO2016152558A1 publication Critical patent/WO2016152558A1/ja
Priority to US15/714,482 priority patent/US20180022881A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/06Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B23/08Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/20Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • C08J7/0423Coating with two or more layers, where at least one layer of a composition contains a polymer binder with at least one layer of inorganic material and at least one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
    • G02B6/0061Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide to provide homogeneous light output intensity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer

Definitions

  • the present invention relates to a functional film that exhibits good light diffusibility and adhesion, and a wavelength conversion film using the functional film.
  • Liquid crystal display devices have low power consumption, and their use is expanding year by year as space-saving image display devices. In recent years, further power saving, color reproducibility improvement, and the like have been demanded as performance improvements for liquid crystal display devices.
  • “liquid crystal display device” is also referred to as “LCD”.
  • quantum dots that change the wavelength of incident light and emit light in order to increase light utilization efficiency and improve color reproducibility.
  • a quantum dot is an electronic state in which the direction of movement is limited in all three dimensions, and when a semiconductor nanoparticle is three-dimensionally surrounded by a high potential barrier, the nanoparticle is quantum. It becomes a dot.
  • Quantum dots exhibit various quantum effects. For example, a so-called quantum size effect in which the density of states of electrons (energy level) is discretized appears. According to this quantum size effect, the absorption wavelength and emission wavelength of light can be controlled by changing the size of the quantum dot.
  • quantum dots are dispersed in a binder made of a resin such as an acrylic resin or an epoxy resin to form a quantum dot layer.
  • a binder made of a resin such as an acrylic resin or an epoxy resin to form a quantum dot layer.
  • a wavelength conversion film that performs wavelength conversion between a backlight and a liquid crystal panel. Arranged and used.
  • the quantum dots are excited to emit fluorescence.
  • quantum dots having different light emission characteristics it is possible to realize white light by emitting light having a narrow half-value width of red light, green light, and blue light. Fluorescence due to quantum dots has a narrow half width, so that white light obtained by appropriately selecting a wavelength can be designed to have high luminance or excellent color reproducibility.
  • Patent Document 1 discloses a laminated wavelength conversion film (quantum dot film) that protects quantum dots by sandwiching a quantum dot layer between two gas barrier films as a backlight unit used in an LCD or the like. Are listed.
  • Patent Document 1 a gas barrier film sandwiching a quantum dot layer is used, and a resin film such as a polyethylene terephthalate (PET) film is used as a substrate, and gas barrier properties such as silicon oxide, titanium oxide, and aluminum oxide are exhibited on the substrate. A configuration in which an oxide layer is formed is described. Furthermore, Patent Document 1 also describes that a light diffusion layer (a layer having scattering particles) is provided in a part different from the quantum dot layer.
  • PET polyethylene terephthalate
  • a gas barrier film having excellent gas barrier properties one or more combinations of an inorganic layer and an organic layer serving as a base of the inorganic layer are formed on a substrate as described in Patent Document 2.
  • An organic-inorganic laminated type gas barrier film is known.
  • the inorganic layer mainly exhibits gas barrier properties.
  • a high-grade inorganic layer free from cracks or damage can be formed by having an organic layer as a base. For this reason, the performance of the inorganic layer is sufficiently exhibited and a very excellent gas barrier property is obtained. Therefore, it is expected that the deterioration of the quantum dot layer due to moisture can be more suitably prevented by sandwiching the quantum dot layer with an organic / inorganic laminated gas barrier film.
  • the inventors of the present invention provide a light diffusion layer separately from the quantum dot layer, which leads to an increase in the amount of light emitted from the quantum dot layer, thereby reducing the brightness of the LCD. Anticipated that it could be improved, repeated investigations.
  • a light diffusion layer on a wavelength conversion film having a quantum dot layer it is possible to improve the luminance as compared with the case without the light diffusion layer. If such an improvement in brightness can be achieved, it will be possible to display a clear image with high brightness on the LCD, to achieve a reduction in cost by reducing the amount of quantum dots used to achieve a constant brightness, quantum dots Thinning of the backlight unit can be expected by thinning the layer.
  • the gas barrier layer is directed to the quantum dot layer side, and the quantum dots are formed with the gas barrier film. Sandwich the layer. That is, in the case of the gas barrier film described in Patent Document 1, the quantum dot layer is sandwiched with the oxide layer facing inward, and in the case of the gas barrier film described in Patent Document 2, the organic-inorganic laminated structure is disposed on the inner side. Hold the quantum dot layer toward Therefore, in this case, the light diffusion layer is formed on the surface of the substrate of the one gas barrier film opposite to the surface on which the gas barrier layer is formed.
  • An object of the present invention is to solve such problems of the prior art, and has a light diffusibility, and further, a functional film that can stably express desired functions such as excellent gas barrier properties, And it is providing the manufacturing method of this functional film.
  • the first aspect of the functional film of the present invention includes a substrate, A first functional layer having one or more combinations of an inorganic layer and an organic layer serving as a base of the inorganic layer formed on one surface of the substrate; A functional layer side surface layer formed on a surface opposite to the substrate of the first functional layer; A light diffusion layer formed on a surface opposite to the surface on which the first functional layer of the substrate is formed; There is provided a functional film having a diffusion layer-side surface layer having a support and an adhesive layer, which is formed on the surface of a light diffusion layer.
  • the 2nd aspect of the functional film of this invention is a board
  • the second functional layer is preferably an adhesion layer.
  • the 3rd aspect of the functional film of this invention is 1st which has 1 or more sets of the combination of the organic layer used as the foundation
  • a functional layer a light diffusion layer formed on a surface opposite to the surface on which the first functional layer of the substrate is formed, a diffusion layer side surface layer having a support and an adhesive layer formed on the surface of the light diffusion layer;
  • a functional film having a gas barrier film Provided is a functional film characterized in that a quantum dot layer is sandwiched between a functional film and a gas barrier film with the diffusion layer side surface layer of the functional film being outside.
  • the gas barrier film is a combination of a substrate and an inorganic layer formed on one surface of the substrate and an organic layer serving as a base of the inorganic layer.
  • the substrate be on the outside.
  • the method for producing a functional film of the present invention includes a step of forming a first functional layer having one or more combinations of an inorganic layer and an organic layer serving as a base of the inorganic layer on one surface of the substrate, Forming a functional layer-side surface layer on a surface opposite to the substrate of the first functional layer; After forming the functional layer side surface layer, a step of forming a light diffusion layer on the surface opposite to the formation surface on the first functional layer side of the substrate; and Provided is a method for producing a functional film, comprising a step of forming a diffusion layer side surface layer having an adhesive layer and a support on the surface of a light diffusion layer.
  • the functional layer side surface layer it is preferable to further include a step of peeling the functional layer side surface layer. Furthermore, it is preferable to have a step of forming the second functional layer on the surface opposite to the substrate of the first functional layer.
  • the second functional layer is preferably an adhesion layer.
  • a step of applying a composition to be a quantum dot layer on the outermost surface on the side where the first functional layer is formed and laminating a gas barrier film on the surface of the composition, or a quantum dot layer on the surface of the gas barrier film It is preferable to have the process of apply
  • the gas barrier film includes a substrate and one or more combinations of an inorganic layer and an organic layer serving as a base of the inorganic layer formed on one surface of the substrate, and formation of the organic layer and the inorganic layer.
  • the surface is preferably on the composition side.
  • the gas barrier film preferably has an adhesion layer on the outermost surface. Furthermore, it is preferable to have a step of peeling the diffusion layer side surface layer.
  • the functional film of this invention is not limited to a gas barrier film. That is, the functional film of the present invention is a known functional film such as various optical films such as a filter that transmits light of a specific wavelength and an antireflection film, as long as light diffusion is required. Various types are available.
  • the functional film of the present invention has a diffusion layer-side surface layer on the light diffusion layer, and when it is wound up by a roll-to-roll described later by having this diffusion layer-side surface layer, etc. Even so, since the diffusion layer side surface layer acts as a protective layer, the inorganic layer can be prevented from being damaged due to the light diffusion layer.
  • the functional film of the present invention is more suitably used for a gas barrier film having a large performance deterioration due to damage to the inorganic layer.
  • the gas barrier film 10 shown in FIG. 1 basically includes a substrate 12, an organic layer 14, an inorganic layer 16, and a first protective film 18 formed on one surface of the substrate 12. Further, the gas barrier film 10 includes a light diffusion layer 20 and a second protective film 28 formed on the surface opposite to the surface on which the inorganic layer 16 and the like of the substrate 12 are formed.
  • the organic layer 14 is a layer serving as a base for the inorganic layer 16, and the organic layer 14 and the inorganic layer 16 constitute a first functional layer in the present invention. Therefore, the 1st protective film 18 formed on the inorganic layer 16 is a functional layer surface layer in this invention.
  • the top of the inorganic layer 16 is the surface of the surface opposite to the substrate 12 side of the inorganic layer 16.
  • the first functional layer is a gas barrier layer.
  • the second protective film 28 formed on the light diffusion layer 20 is a diffusion layer side surface layer in the present invention. Therefore, the second protective film 28 has the support 26 and the adhesive layer 24. Note that the top of the light diffusion layer 20 is the surface of the surface opposite to the substrate 12 side of the light diffusion layer 20.
  • the gas barrier film 10 shown in FIG. 1 has one combination of the organic layer 14 and the inorganic layer 16.
  • the functional film of the present invention can be used in various configurations other than this.
  • two combinations of the organic layer 14 and the inorganic layer 16 may be provided.
  • three or more combinations of the organic layer 14 and the inorganic layer 16 may be included.
  • substrate 12, and has one or more combinations of the organic layer 14 and the inorganic layer 16 on it may be sufficient. That is, in the functional film of the present invention, the first functional layer formed on one surface of the substrate 12 has one or more combinations of the inorganic layer 16 and the organic layer 14 that is the base of the inorganic layer 16.
  • various configurations can be used as long as the uppermost layer, that is, the lower layer of the first protective film (functional layer side surface layer) is an inorganic layer.
  • the gas barrier film 10 various known sheet-like materials that are used as a substrate (support) in various gas barrier films and various laminated functional films can be used as the substrate 12.
  • low density polyethylene LDPE
  • high density polyethylene HDPE
  • polyethylene naphthalate PEN
  • polyamide PA
  • polyethylene terephthalate PET
  • polyvinyl chloride PVC
  • polyvinyl Alcohol PVA
  • polyacrylonitrile PAN
  • polyimide PI
  • PC polycarbonate
  • PP polypropylene
  • PS polystyrene
  • Films (resin films) made of various resin materials such as ABS, cyclic olefin copolymer (COC), cycloolefin polymer (COP), and triacetyl cellulose (TAC) are preferably exemplified.
  • a layer exhibiting necessary functions such as a protective layer, an adhesive layer, a light reflection layer, an antireflection layer, a light shielding layer, a planarization layer, a buffer layer, and a stress relaxation layer on the surface of such a film.
  • a substrate in which (film) is formed may be used as the substrate 12.
  • the thickness of the substrate 12 is preferably 5 to 100 ⁇ m, and more preferably 10 to 50 ⁇ m.
  • the thickness of the substrate 12 is preferably 5 to 100 ⁇ m, and more preferably 10 to 50 ⁇ m.
  • the gas barrier film 10 has an organic layer 14 on the substrate 12.
  • the organic layer 14 is a layer made of an organic compound, and is basically a polymerized (crosslinked) monomer or oligomer that becomes the organic layer 14.
  • the organic layer 14 on the surface of the substrate 12 functions as a base layer for properly forming the inorganic layer 16 that mainly exhibits gas barrier properties in the gas barrier film 10.
  • the surface irregularities of the substrate 12 (or the lower inorganic layer 16), foreign matters attached to the surface of the substrate 12, etc. are embedded, and the inorganic layer 16 is formed.
  • the surface can be in a state suitable for the film formation of the inorganic layer 16. This eliminates regions where the inorganic compound that becomes the inorganic layer 16 is difficult to deposit, such as irregularities on the surface of the substrate 12 and shadows of foreign matter, and forms an appropriate inorganic layer 16 on the entire surface of the substrate without any gaps. It becomes possible to do.
  • the material for forming the organic layer 14 is not limited, and various known organic compounds can be used. Specifically, polyester, (meth) acrylic resin, methacrylic acid-maleic acid copolymer, polystyrene, transparent fluororesin, polyimide, fluorinated polyimide, polyamide, polyamideimide, polyetherimide, cellulose acylate, polyurethane, poly Ether ether ketone, polycarbonate, alicyclic polyolefin, polyarylate, polyethersulfone, polysulfone, fluorene ring modified polycarbonate, alicyclic modified polycarbonate, fluorene ring modified polyester, acrylic compounds, thermoplastic resins, polysiloxane and other An organic silicon compound film is preferably exemplified. A plurality of these may be used in combination.
  • the organic layer 14 composed of a polymer of a radical curable compound and / or a cationic curable compound having an ether group as a functional group is preferable in terms of excellent glass transition temperature and strength.
  • acrylic resins and methacrylic resins mainly composed of acrylate and / or methacrylate monomers and oligomer polymers are suitable as the organic layer 14 in terms of low refractive index, high transparency and excellent optical properties. Is exemplified.
  • DPGDA dipropylene glycol di (meth) acrylate
  • TMPTA trimethylolpropane tri (meth) acrylate
  • DPHA dipentaerythritol hexa (meth) acrylate
  • Acrylic resins and methacrylic resins mainly composed of a polymer of acrylate and / or methacrylate monomers or oligomers are preferably exemplified. It is also preferable to use a plurality of these acrylic resins and methacrylic resins.
  • the thickness of the organic layer 14 may be appropriately set according to the material for forming the organic layer 14 and the substrate 12. According to the study by the present inventors, the thickness of the organic layer 14 is preferably 0.5 to 5 ⁇ m, and more preferably 1 to 3 ⁇ m. By setting the thickness of the organic layer 14 to 0.5 ⁇ m or more, the surface of the organic layer 14, that is, the formation of the inorganic layer 16 is embedded by embedding irregularities on the surface of the substrate 12 and foreign matters attached to the surface of the substrate 12. The surface can be flattened.
  • the thickness of the organic layer 14 is set to 5 ⁇ m or less, it is possible to suitably suppress the occurrence of problems such as cracks in the organic layer 14 and curling of the gas barrier film 10 caused by the organic layer 14 being too thick. be able to.
  • each organic layer 14 may be the same, or may mutually differ.
  • the forming material of each organic layer 14 may be the same or different.
  • the inorganic layer 16 is a layer made of an inorganic compound.
  • the inorganic layer 16 mainly exhibits the target gas barrier property.
  • the material for forming the inorganic layer 16 is not limited, and various layers made of an inorganic compound exhibiting gas barrier properties can be used. Specifically, metal oxides such as aluminum oxide, magnesium oxide, tantalum oxide, zirconium oxide, titanium oxide, and indium tin oxide (ITO); metal nitrides such as aluminum nitride; metal carbides such as aluminum carbide; silicon oxide, Silicon oxides such as silicon oxynitride, silicon oxycarbide and silicon oxynitride carbide; silicon nitrides such as silicon nitride and silicon nitride carbide; silicon carbides such as silicon carbide; hydrides thereof; mixtures of two or more of these; and Films made of inorganic compounds such as these hydrogen-containing materials are preferably exemplified.
  • metal oxides such as aluminum oxide, magnesium oxide, tantalum oxide, zirconium oxide, titanium oxide, and indium tin oxide (ITO); metal nitrides such as aluminum nitride
  • silicon nitride, silicon oxide, silicon oxynitride, aluminum oxide, and a mixture of two or more thereof are preferably used because they are highly transparent and can exhibit excellent gas barrier properties.
  • silicon nitride is particularly suitable because it has high transparency in addition to excellent gas barrier properties.
  • the thickness of the inorganic layer 16 may be determined as appropriate according to the forming material so that the target gas barrier property can be exhibited. According to the study by the present inventors, the thickness of the inorganic layer 16 is preferably 10 to 200 nm, more preferably 15 to 100 nm, and particularly preferably 20 to 75 nm. By setting the thickness of the inorganic layer 16 to 10 nm or more, the inorganic layer 16 that stably expresses sufficient gas barrier performance can be formed. In addition, the inorganic layer 16 is generally brittle, and if it is too thick, there is a possibility of causing cracks, cracks, peeling, etc. However, if the thickness of the inorganic layer 16 is 200 nm or less, cracks will occur. Can be prevented.
  • each inorganic layer 16 may be the same or different.
  • the forming material of each inorganic layer 16 may be the same or different.
  • a first protective film 18 is laminated on the uppermost inorganic layer 16.
  • the first protective film 18 is for protecting the inorganic layer 16 on the upper side of the uppermost inorganic layer 16, that is, on the surface side of the inorganic layer 16.
  • an antistatic layer, an antireflection layer, an anti-Newton ring layer, or the like may be provided between the inorganic layer 16 and the first protective film 18 and the adhesion layer 32 described later, if necessary.
  • the 1st protective film 18 can utilize various well-known things utilized as a protective film (protective layer) of functional films, such as a gas barrier film. Further, the first protective film 18 is usually finally peeled when the gas barrier film 10 is used. Therefore, it is preferable that the first protective film 18 has good peelability as well as necessary adhesiveness with respect to the inorganic layer 16.
  • substrate 12 is illustrated.
  • the adhesion layer which consists of a well-known adhesive utilized for the adhesive film can be utilized variously. Specifically, ethylene-vinyl acetate copolymer adhesives, polyolefin adhesives, acrylic adhesives, rubber adhesives, urethane adhesives, silicon adhesives, UV curable adhesives, etc.
  • Various adhesive layers using an adhesive material can be used.
  • the 1st protective film 18 can also utilize suitably various commercially available adhesive films utilized as a protective film in functional films, such as a gas barrier film.
  • the thickness of the 1st protective film 18 suitably according to the use of the gas barrier film 10, the protection performance requested
  • the thickness of the 1st protective film 18 shall be 20 micrometers or more, when sticking the 2nd protective film 28 on the light-diffusion layer 20 formed in the surface on the reverse side of the board
  • the gas barrier film 10 By setting the thickness of the first protective film 18 to 100 ⁇ m or less, the gas barrier film 10 can be prevented from becoming unnecessarily thick, the gas barrier film 10 can be reduced in weight, and the roll diameter when the gas barrier film 10 is wound down can be reduced. It is preferable in that it can be achieved.
  • the adhesive force between the inorganic layer 16 and the first protective film 18 is such that the first protective film 18 is not unnecessarily peeled according to the use of the gas barrier film 10, the strength of the inorganic layer 16, and the like, and the inorganic layer 16. Any adhesive force can be used as long as it can be peeled off without damaging it. According to the study by the present inventors, the adhesive strength between the inorganic layer 16 and the first protective film 18 is preferably 0.02 to 0.06 N / 25 mm. By setting the adhesive strength of the first protective film 18 to 0.02 N / 25 mm or more, it is preferable in that the first protective film 18 can be suitably prevented from being peeled unnecessarily.
  • the adhesive strength of the first protective film 18 By setting the adhesive strength of the first protective film 18 to 0.06 N / 25 mm or less, it is preferable in that the first protective film 18 can be peeled without applying a burden to the inorganic layer 16.
  • the adhesive strength may be measured according to the 180 ° peel test method of JIS Z 0237 2009.
  • a light diffusion layer 20 is formed on the surface of the substrate 12 opposite to the surface on which the organic layer 14, the inorganic layer 16 and the first protective film 18 are formed. Since the gas barrier film 10 has the light diffusion layer 20, the quantum dot film or the like described later leads to an increase in the amount of excitation light incident on the quantum dot layer and the amount of light emitted from the quantum dot layer. The brightness can be improved.
  • the light diffusion layer 20 is formed by dispersing a light diffusion agent in a binder (matrix).
  • a binder various binders used for a light diffusion layer formed by dispersing a light diffusing agent in a binder can be used. That is, in the light diffusion layer 20, various known materials can be used as the binder as long as the refractive index n1 of the binder and the refractive index n2 of the light diffusing agent satisfy the relationship of n1> n2.
  • a light scattering layer as a cured layer of a polymerizable composition (curable composition) containing a polymerizable compound that serves as light scattering particles and a binder.
  • polymerizable compound if an appropriate polymerizable compound is selected from commercially available products or synthesized by a known method in consideration of the refractive index of the material forming the wavelength conversion layer so as to satisfy n1 ⁇ n2, Good.
  • Preferred polymerizable compounds include, for example, compounds having an ethylenically unsaturated bond in at least one of the terminal and side chains and / or compounds having an epoxy group or oxetane group in at least one of the terminal and side chains.
  • a compound having an ethylenically unsaturated bond at least one of a terminal and a side chain is more preferable.
  • the compound having an ethylenically unsaturated bond at at least one of the terminal and the side chain include (meth) acrylate compounds, acrylamide compounds, styrene compounds, maleic anhydride, etc., and (meth) acrylate compounds. Compounds are preferred, and acrylate compounds are more preferred.
  • As the (meth) acrylate compound (meth) acrylate, urethane (meth) acrylate, polyester (meth) acrylate, epoxy (meth) acrylate and the like are preferable.
  • styrene compound styrene, ⁇ -methylstyrene, 4-methylstyrene, divinylbenzene, 4-hydroxystyrene, 4-carboxystyrene and the like are preferable. It is also preferable to use a compound having a fluorene skeleton as the acrylate compound. Specific examples of such compounds include compounds represented by formula (2) described in WO2013 / 047524A1.
  • an acrylic polymer is the main chain, and the side chain has at least one of a urethane polymer having an acryloyl group at the end and a urethane oligomer having an acryloyl group at the end, a molecular weight of 10,000 to 3000000, and a double bond equivalent
  • binders formed using a graft copolymer having 500 g / mol or more As such a graft copolymer, for example, a commercially available product such as an ultraviolet curable urethane acrylic polymer (Acryt 8BR series) manufactured by Taisei Fine Chemical Co., Ltd. may be used.
  • the weight average molecular weight (Mw) of the polymer may be measured by a known method.
  • the molecular weight in terms of polystyrene (PS) may be measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • a numerical value described in a catalog or the like may be used. What is necessary is just to measure a double bond equivalent by a well-known method. In addition, the double bond equivalent may be a numerical value described in a catalog or the like.
  • the light diffusion layer 20 is formed by dispersing a light diffusion agent in such a binder.
  • a known light diffusing agent (light diffusing particles) can be used as long as the refractive index is different from that of the binder.
  • various known light diffusing agents are used. Is available.
  • the light diffusing agent may be organic particles, inorganic particles, or organic-inorganic composite particles.
  • synthetic resin particles can be used as the organic particles.
  • Specific examples include silicone resin particles, (meth) acrylic resin particles such as polymethyl methacrylate (PMMA), nylon resin particles, styrene resin particles, polyethylene particles, urethane resin particles, and benzoguanamine particles.
  • PMMA polymethyl methacrylate
  • nylon resin particles nylon resin particles
  • styrene resin particles polyethylene particles
  • benzoguanamine particles are preferable.
  • silicone resin particles are preferably used in that they have a low refractive index and good adhesion to the graft copolymer as a binder.
  • grains which have a hollow structure can also be used for a light diffusing agent.
  • the light diffusing agent can be suitably used as the light diffusing agent.
  • An example is the Tospearl series of silicone resin particles manufactured by Momentive Performance Materials.
  • the particle size of the light diffusing agent is not particularly limited, and may be appropriately set according to the refractive index of the light diffusing agent, the difference in refractive index between the light diffusing agent and the binder, or the like.
  • the particle size of the light diffusing agent is preferably 0.5 ⁇ m or more, preferably 0.5 to 30 ⁇ m, more preferably 2 to 20 ⁇ m.
  • SEM scanning Electron Microscope
  • Two types of light diffusing agents having different particle diameters may be used. By using two types of light diffusing agents with different particle diameters, the brightness of the light emitted from the quantum dot film can be improved. By controlling the ratio of internal scattering to external scattering, the viewing angle when used for LCDs, etc. It is preferable in that the distribution of the luminance with respect to can be adjusted.
  • the particle diameter of the smaller light diffusing agent is preferably 1 to 5 ⁇ m, and preferably 1.5 to 4 ⁇ m from the viewpoint of imparting internal scattering properties. More preferred.
  • the particle size of the larger light diffusing agent is preferably 8 to 15 ⁇ m and more preferably 9 to 12 ⁇ m from the viewpoint of imparting external scattering properties and anti-Newton ring properties.
  • binder mass / light diffusing agent mass which is a ratio of the total mass of the binder to the total mass of the light diffusing agent, is preferably 0.1 to 0.8, preferably 0.25 to 0 More preferably, it is .66. That is, in the gas barrier film 10 of the present invention, it is preferable that the light diffusion layer 20 has more light diffusing agent than the binder in terms of mass ratio.
  • binder mass / light diffusing agent mass By setting “binder mass / light diffusing agent mass” to be 0.1 or more, it is preferable in that the strength of the light diffusing layer 20 can be improved, and aggregation peeling in the light diffusing layer 20 can be prevented.
  • biner mass / light diffusing agent mass By setting “binder mass / light diffusing agent mass” to 0.8 or less, it is preferable in that good light diffusion performance can be obtained.
  • the thickness of the light diffusing layer 20 may be set as appropriate to obtain the desired light diffusing performance, the strength of the light diffusing layer, etc. according to the binder forming material, the type of the light diffusing agent, and the like. . According to the study by the present inventors, the thickness of the light diffusion layer 20 is preferably 5 to 25 ⁇ m, more preferably 7 to 20 ⁇ m, and particularly preferably 9 to 18 ⁇ m. Setting the thickness of the light diffusion layer 20 to 5 ⁇ m or more is preferable in that good light diffusion performance can be obtained.
  • the gas barrier film 10 can be prevented from becoming unnecessarily thick, the light diffusion layer 20 having a high light transmittance can be obtained, curling can be suppressed, and the like. .
  • the light diffusion layer 20 is formed by dispersing a light diffusion agent in a binder. Therefore, the surface of the light diffusion layer 20 (surface opposite to the substrate 12) has a certain degree of surface roughness. According to the study by the present inventors, the surface roughness of the light diffusion layer 20 is appropriately determined according to the light diffusion performance required for the light diffusion layer, the required adhesive strength with the second protective film 28, and the like. Just decide. According to the study by the present inventors, the surface roughness Ra (arithmetic average roughness Ra) of the light diffusion layer 20 is preferably 1 to 7 ⁇ m, and more preferably 2 to 5 ⁇ m.
  • the surface roughness Ra of the light diffusion layer 20 By setting the surface roughness Ra of the light diffusion layer 20 to 1 ⁇ m or more, it is preferable in that good light diffusion performance can be obtained. By setting the surface roughness Ra of the light diffusion layer 20 to 7 ⁇ m or less, the adhesiveness with the second protective film 28 can be secured, and the unevenness of the light diffusion layer 20 when the gas barrier film 10 is rolled up. It is preferable in that the damage to the inorganic layer 16 due to the transfer of the light can be prevented, and the dependency of the viewing angle due to the light scattering property can be controlled.
  • the surface roughness Ra may be measured according to JIS B 0601 (2001).
  • the light diffusion layer 20 preferably has a certain degree of hardness. Specifically, it preferably has a pencil hardness of about B to 2H. By making the hardness of the light diffusion layer 20 in the above range, the light diffusion layer 20 can have sufficient mechanical strength. It is preferable in terms of preventing the gas barrier film 10 from curling.
  • a second protective film 28 is provided on the light diffusion layer 20.
  • the top of the light diffusion layer 20 is the surface of the surface opposite to the substrate 12 side of the light diffusion layer 20.
  • the second protective film 28 (the diffusion layer side surface layer) is obtained by providing the adhesive layer 24 on one surface of the support 26.
  • the second protective film 28 is provided by sticking the adhesive layer 24 to the light diffusion layer 20, and is usually finally peeled off from the light diffusion layer 20 in the same manner as the first protective film 18 described above. Therefore, it is preferable that the second protective film 28 also has good peelability with respect to the light diffusion layer 20 as well as necessary adhesiveness.
  • Such a second protective film 28 protects the inorganic layer 16 from the surface of the substrate 12 opposite to the surface on which the inorganic layer 16 and the like are formed.
  • quantum dots are vulnerable to moisture, it is considered that quantum dots are used in the form of a quantum dot film in which a quantum dot layer is sandwiched between gas barrier films when used as a backlight for an LCD or the like. Moreover, the light quantity radiate
  • the quantum dot layer is sandwiched between gas barrier films, the inorganic layer 16 that exhibits gas barrier properties is directed to the quantum dot layer side. Therefore, the light diffusion layer 20 is formed on the surface of the substrate 12 opposite to the surface on which the inorganic layer 16 and the like are formed.
  • the light diffusing layer 20 is obtained by dispersing a light diffusing agent in a binder, and has a certain degree of surface roughness, that is, unevenness on the surface. Therefore, although indirectly, when the gas barrier film 10 receives a mechanical force such as pressing from the outside, the unevenness of the surface of the light diffusion layer 20 places a local load on the inorganic layer 16, The inorganic layer 16 will be damaged.
  • the functional film of the present invention such as the gas barrier film 10 is preferably manufactured by so-called roll-to-roll (RtoR). Further, the functional film of the present invention such as the gas barrier film 10 manufactured by RtoR is usually handled by RtoR.
  • RtoR is a film formed by feeding a film-forming material from a material roll formed by winding a long film-forming material into a roll and transporting the film-forming material in the longitudinal direction.
  • a film-formed material is wound into a roll.
  • the inorganic layer 16 is subjected to a local load due to unevenness on the surface of the light diffusion layer 20 from both sides due to so-called tightening. Layer 16 is prone to damage.
  • the gas barrier film 10 peels the 1st protective film 18, and forms 2nd functional layers, such as an adhesion layer.
  • the second functional layer also acts as a protective layer for the inorganic layer 16, but the protective function is weaker than that of the first protective film 18 having a resin film or the like, so that damage to the inorganic layer 16 becomes a greater problem.
  • the thickness of the substrate 12 is preferably 5 to 100 ⁇ m, more preferably 10 to 50 ⁇ m, as described above, in order to make the quantum dot film thin. Since it is thin, damage to the inorganic layer 16 due to the unevenness of the light diffusion layer 20 becomes a greater problem.
  • the gas barrier film 10 of the present invention has a second protective film 28 having an adhesive layer 24 and a support 26 on the light diffusion layer 20. Therefore, the unevenness on the surface of the light diffusing layer 20 is covered with the second protective film 28 having the adhesive layer 24. Therefore, even when the first protective film 18 is peeled off and wound into a roll shape, the light diffusing layer The local load exerted on the inorganic layer 16 by the 20 irregularities can be greatly reduced, and the inorganic layer 16 can be prevented from being damaged. Further, as described above, the gas barrier film used for the quantum dot film or the like has a thin substrate and low rigidity even when the light diffusing layer 20 is formed, and has a sufficient handling property for RtoR processing.
  • the second protective film 28 since the gas barrier film 10 of the present invention has the second protective film 28, the second protective film 28 also functions as an auxiliary support for the gas barrier film 10, so even when the substrate 12 is thin. Good handling can be ensured.
  • various film materials can be used as the support 26 of the second protective film 28.
  • various resin films exemplified for the substrate 12 are preferably exemplified.
  • the Young's modulus of the first protective film 18 is preferably lower than the Young's modulus of the support 26 of the second protective film 28.
  • the 1st protective film 18 is comprised from a resin film etc. and an adhesion layer, it is preferable that the Young's modulus of the resin film etc. of the 1st protective film 18 is lower than the Young's modulus of the support body 26. .
  • the thickness of the support body 26 is preferably 20 to 100 ⁇ m, and more preferably 20 to 70 ⁇ m.
  • the first protective film can protect the inorganic layer 16 more reliably, prevent curling of the second protective film 28, and can be appropriately wound into a roll. This is preferable in that mechanical strength can be imparted when 18 is peeled off.
  • the thickness of the support 26 By setting the thickness of the support 26 to 100 ⁇ m or less, it is possible to prevent the gas barrier film 10 from becoming unnecessarily thick, and to obtain a gas barrier film 10 having good flexibility, and to reduce the weight of the gas barrier film 10. This is preferable in that the diameter can be reduced when the film 10 is wound into a roll, and the device can be made thinner and lighter when used in a product.
  • the adhesive layer 24 is not particularly limited.
  • various adhesive layers made of known adhesives used for various adhesive films can be used. Specifically, ethylene-vinyl acetate copolymer adhesives, polyolefin adhesives, acrylic adhesives, rubber adhesives, urethane adhesives, silicon adhesives, UV curable adhesives, etc.
  • Various adhesive layers using an adhesive material can be used.
  • the thickness of the adhesive layer 24 may be appropriately determined according to the material for forming the adhesive layer 24, the adhesive force required for the second protective film 28, the protective function of the inorganic layer 16, and the like. According to the study by the present inventors, the thickness of the adhesive layer 24 is preferably 1 to 25 ⁇ m, and more preferably 10 to 25 ⁇ m. By setting the thickness of the pressure-sensitive adhesive layer 24 to 1 ⁇ m or more, it is preferable in that the surface unevenness of the light diffusion layer 20 can be suitably buried in the pressure-sensitive adhesive layer 24 and damage to the inorganic layer 16 can be prevented more reliably.
  • the thickness of the adhesive layer 24 By setting the thickness of the adhesive layer 24 to 25 ⁇ m or less, it is possible to prevent the gas barrier film 10 from becoming unnecessarily thick, and to obtain a gas barrier film 10 having good flexibility, and to reduce the weight of the gas barrier film 10. This is preferable in that the diameter can be reduced when the film 10 is rolled up.
  • the thickness of the adhesive layer 24 is preferably thicker than the surface roughness Ra of the light diffusion layer 20.
  • the surface irregularities of the light diffusing layer 20 can be suitably buried in the adhesive layer 24 to improve the protective ability of the inorganic layer 16.
  • the adhesive layer 24 follows the surface irregularities of the light diffusing layer 20. This is preferable in that a preferable adhesive strength can be obtained.
  • the second protective film 28 preferably has an average value of total light transmittance (wavelength of 400 to 800 nm) of 85% or more.
  • the gas barrier film 10 is used to prevent the quantum dots from being deteriorated by moisture by sandwiching the quantum dot layer in the quantum dot film.
  • the quantum dot layer is usually formed by irradiating ultraviolet rays from the light diffusion layer 20 side to effect a binder. Therefore, if the ultraviolet transmittance of the second protective film 28 is low, the quantum dot layer may not be sufficiently effective.
  • the quantum dot layer is reliably cured, and an appropriate quantum dot film is obtained. It becomes possible to manufacture stably.
  • the second protective film 28 preferably has a dynamic frictional force of 1.5 N / 20 mm or less when the second protective film 28 is moved by bringing the support 26 between the second protective films 28 into contact with each other.
  • the formation of the quantum dot layer and the formation of the second functional layer such as the adhesion layer are preferably performed by a coating method while peeling the first protective film 18 and transporting the gas barrier film 10 in the longitudinal direction. These formations are preferably performed by RtoR.
  • wrinkles or the like are generated in the gas barrier film 10 during conveyance of the gas barrier film 10 from which the first protective film 18 has been peeled off, and the inorganic layer 16 Can be suitably prevented from being damaged.
  • the adhesive strength between the second protective film 28 and the light diffusing layer 20 is such that the second protective film 28 can be adhered with sufficient adhesive strength and can be peeled off satisfactorily according to the binder of the light diffusing layer 20 and the like. It can be set as appropriate. According to the study by the present inventors, the adhesive strength between the second protective film 28 and the light diffusion layer 20 is preferably 0.1 to 1 N / 25 mm, and more preferably 0.5 to 1 N / 25 mm. By making the adhesive force between the second protective film 28 and the light diffusing layer 20 to be 0.1 N / 25 mm or more, the second protective film 28 and the light diffusing layer 20 are securely adhered to damage the inorganic layer 16.
  • the adhesive force between the second protective film 28 and the light diffusing layer 20 1N / 25 mm or less it is possible to ensure a suitable peelability of the second protective film 28, and to the inorganic layer 16 when the second protective film 28 is peeled off.
  • the second protective film 28 is secured on the surface of the light diffusion layer 20 while ensuring good peelability. 2 It is preferable that the protective film 28 can be securely adhered and this adhered state can be maintained.
  • the strength of adhesion between the second protective film 28 and the light diffusion layer 20 includes the roughness of the surface of the light diffusion layer 20, the thickness of the adhesive layer 24, and the second protective film 28 and the light diffusion layer. It is influenced by the adhesive force with 20. That is, when the pressure-sensitive adhesive layer 24 is thin, the pressure-sensitive adhesive layer 24 is difficult to follow the unevenness on the surface of the light diffusion layer 20.
  • the adhesive force between the second protective film 28 and the light diffusion layer 20 is increased.
  • the adhesive layer 24 has a thickness that can sufficiently follow the surface irregularities, the adhesive force between the second protective film 28 and the light diffusion layer 20 may be small.
  • the adhesion layer 24 can be made thin and / or the adhesive force of the 2nd protective film 28 and the light-diffusion layer 20 can be made small.
  • the surface roughness of the light diffusion layer 20 is large, it is necessary to thicken the adhesive layer 24 and / or increase the adhesive force between the second protective film 28 and the light diffusion layer 20.
  • the gas barrier film 10 of the present invention preferably has an adhesion coefficient represented by the following formula of 0.01 to 25, and more preferably 1 to 7.
  • Adhesion coefficient (Adhesive strength [N / 25 mm] ⁇ Adhesive layer thickness [ ⁇ m]) / Diffusion layer Ra [ ⁇ m]
  • the adhesive strength in the above formula is the adhesive strength between the second protective film 28 and the light diffusion layer 20.
  • Ra of the diffusion layer is the surface roughness Ra of the light diffusion layer 20.
  • FIG. 2 an example which utilized the 2nd aspect of the functional film of this invention for the gas barrier film is shown notionally.
  • the gas barrier film 30 shown in FIG. 2 has many same members as the gas barrier film 10 shown in FIG.
  • a gas barrier film 30 shown in FIG. 2 has an adhesive layer 32 as a second functional layer instead of the first protective film 18 of the gas barrier film 10 shown in FIG. That is, as an example, the gas barrier film 30 peels the first protective film 18 from the gas barrier film 10 shown in FIG. 1 which is the functional film of the first aspect of the present invention, and the adhesion layer 32 on the inorganic layer 16. It is produced by forming.
  • the adhesion layer 32 is used to obtain sufficient adhesion between the gas barrier film 30 and a laminated body on which the gas barrier film 30 is laminated when the gas barrier film 30 is used by being attached to various members or apparatuses. It is.
  • the adhesion layer 32 is for obtaining sufficient adhesion with the binder forming the quantum dot layer.
  • various materials that can provide sufficient adhesion with the member to which the inorganic layer 16 of the gas barrier film 30 is attached can be used depending on the application of the gas barrier film 30.
  • the gas barrier film 30 when used for a quantum dot film, a material capable of obtaining sufficient adhesion with the binder forming the quantum dot layer may be used.
  • the adhesion layer 32 a layer made of an acrylate monomer or a polymer containing a silane coupling agent, an acrylate polymer having an unreacted radical polymerization group, a urethane acrylic polymer, or an OH group even after hardening.
  • the layer which consists of an acrylic acid monomer or polymer which has is illustrated.
  • UV curing with a urethane polymer as a main chain and a side chain having a (meth) acryloyl group at the end, a weight average molecular weight of 5000 to 30000, and a double bond equivalent of 300 g / mol or more is possible.
  • An adhesion layer 32 formed using a simple urethane polymer is exemplified.
  • this “urethane polymer that can be cured with ultraviolet rays having a weight average molecular weight of 5000 to 30000 and a double bond equivalent of 300 g / mol or more” is also referred to as “ultraviolet curable urethane polymer” for convenience.
  • adhesion layer 32 is formed by using an ultraviolet curable urethane polymer, a curable urethane polyester, a phosphoric acid compound containing 2 or less (meth) acryloyl groups and / or one (meta) It is preferable to form an adhesion layer using a silane coupling agent containing an acryloyl group.
  • urethane polymers can be used as the ultraviolet curable urethane polymer.
  • Commercial products such as an ultraviolet curable urethane polymer (Acryt 8UH series) manufactured by Taisei Fine Chemical Co., Ltd. may be used.
  • Various known curable urethane polyesters can be used.
  • Commercial products such as Byron UR series such as Byron UR1400 manufactured by Toyobo Co., Ltd. may also be used.
  • As the phosphoric acid compound containing 2 or less (meth) acryloyl groups various known compounds such as bis [2- (methacryloyloxy) ethyl] can be used.
  • Commercial products such as KAYAMER series manufactured by Nippon Kayaku Co., Ltd.
  • silane coupling agent containing one (meth) acryloyl group various known ones such as 3-acryloxypropyltrimethoxysilane can be used.
  • Commercial products such as KBM-5103, KBM-502, KBM-503, KBE-502, and KBE-503 manufactured by Shin-Etsu Silicone may also be used.
  • the thickness of the adhesion layer 32 is preferably 10 to 1000 nm, more preferably 50 to 700 nm, and particularly preferably 70 to 500 nm. Setting the thickness of the adhesion layer 32 to 10 nm or more is preferable in that the inorganic layer 16 can be suitably protected. Setting the thickness of the adhesion layer 32 to 1000 nm or less is preferable in that the gas barrier film 10 can be prevented from becoming unnecessarily thick, the internal stress is kept low, and high adhesion can be realized.
  • the second functional layer is not limited to the adhesion layer.
  • Specific examples of the second functional layer include a wavelength conversion layer, a light extraction layer, an organic electroluminescence layer (organic EL layer), and a conductive layer.
  • FIG. 3 an example which utilized the 3rd aspect of the functional film of this invention for the quantum dot film is shown notionally. Since the quantum dot film 34 shown in FIG. 3 has many of the same members as the gas barrier film 10 shown in FIG. 1 and the gas barrier film 30 shown in FIG. Do different parts mainly.
  • the quantum dot film 34 is formed by sandwiching the quantum dot layer 38 between the gas barrier film 30 shown in FIG. 2 which is the functional film of the second aspect of the present invention and the gas barrier film 36.
  • the gas barrier film 36 basically has the same configuration as the gas barrier film 30 except that it does not have the light diffusion layer 20.
  • the quantum dot film 34 is configured such that the adhesion layer 32 faces the quantum dot layer 38 and the quantum dot layer 38 is sandwiched between the gas barrier film 30 and the gas barrier film 36.
  • the quantum dot film 34 shown in FIG. 3 has a quantum dot layer 38 sandwiched between the gas barrier film 30 and the gas barrier film 36 both having the adhesion layer 32 as a preferred embodiment, but the present invention is not limited to this.
  • the quantum dot layer 38 may be sandwiched by facing the inorganic layer 16 and the quantum dot layer 38 with two gas barrier films that do not have the adhesion layer 32.
  • the quantum barrier layer 38 may be sandwiched between the gas barrier film having the adhesion layer 32 and the gas barrier film not having the adhesion layer 32 with the inorganic layer 16 and the adhesion layer 32 facing the quantum dot layer 38.
  • the quantum dot layer 38 is formed by dispersing quantum dots in a binder (matrix) such as a resin.
  • the quantum dot layer 38 has a function of converting the wavelength of incident light and emitting it. For example, when blue light emitted from a backlight (not shown) enters the quantum dot layer 38, the quantum dot layer 38 converts at least part of the blue light into red light or green light due to the effect of the quantum dots contained therein. The wavelength is converted into and emitted.
  • Blue light is light having an emission center wavelength in a wavelength band of 400 nm to 500 nm
  • green light is light having an emission center wavelength in a wavelength band of 500 nm to 600 nm
  • red light is 600 nm. It has a light emission center wavelength in a wavelength band of more than 680 nm and less.
  • the wavelength conversion function exhibited by the quantum dot layer is not limited to a configuration that converts the wavelength of blue light into red light or green light, and may convert at least part of incident light into light of a different wavelength. That's fine.
  • the quantum dots emit fluorescence by being excited at least by incident excitation light.
  • the type of quantum dots contained in the quantum dot layer and various known quantum dots may be appropriately selected according to the required wavelength conversion performance or the like.
  • quantum dots for example, paragraph numbers [0060] to [0066] of JP2012-169271A can be referred to, but are not limited thereto.
  • the quantum dots commercially available products can be used without any limitation.
  • the emission wavelength of the quantum dots can usually be adjusted by the composition and size of the particles.
  • a quantum dot may use only 1 type and may use 2 or more types together. When using 2 or more types together, you may use 2 or more types of quantum dots from which the wavelength of light emission differs.
  • the known quantum dots include a quantum dot (A) having an emission center wavelength in a wavelength range of 600 nm to 680 nm, and a quantum dot (B) having an emission center wavelength in a wavelength range of 500 nm to 600 nm. ), There is a quantum dot (C) having an emission center wavelength in the wavelength band of 400 nm to 500 nm, the quantum dot (A) is excited by excitation light to emit red light, and the quantum dot (B) emits green light, The quantum dot (C) emits blue light.
  • red light emitted from the quantum dots (A) and light emitted from the quantum dots (B) can be realized by the green light and the blue light transmitted through the quantum dot layer.
  • ultraviolet light incident on the quantum dot layer including the quantum dots (A), (B), and (C) as excitation light
  • quantum dots (B) White light can be realized by green light emitted by the blue light and blue light emitted by the quantum dots (C).
  • quantum rods that are rod-shaped and have directivity and emit polarized light may be used.
  • Quantum dots are preferably dispersed uniformly in the binder, but may be dispersed with a bias in the binder.
  • binder of the quantum dot layer 38 there is no limitation in particular as the kind of binder of the quantum dot layer 38, Various resin used with a well-known quantum dot layer can be used. Examples thereof include polyester resins (for example, polyethylene terephthalate, polyethylene naphthalate), (meth) acrylic resins, polyvinyl chloride resins, and polyvinylidene chloride resins. Alternatively, a binder obtained by curing (polymerizing, crosslinking) a curable compound (polymerizable compound (polymerizable monomer)) having one or more polymerizable groups (crosslinkable groups) can be used. In addition, as for the curable compound body which has two or more polymeric groups, each polymeric group may be the same and may differ.
  • the kind of polymeric group is not specifically limited, Preferably, they are a (meth) acryloyl group, a vinyl group, and an epoxy group, More preferably, it is a (meth) acryloyl group, More preferably, it is an acryloyl group. That is, in the present invention, the binder of the quantum dot layer is preferably a (meth) acrylic resin, and more preferably an acrylic resin.
  • the quantum dot layer 38 can use, for example, a resin formed by curing a curable composition containing the following first curable compound and second curable compound as a binder.
  • the first curable compound is a bifunctional or higher functional (meth) acrylate monomer, and one or more selected from the group consisting of monomers having two or more functional groups selected from the group consisting of epoxy groups and oxetanyl groups Preferably it is a compound.
  • the bifunctional (meth) acrylate monomers include neopentyl glycol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, tripropylene glycol di (meth) ) Acrylate, ethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclo Pentenyloxyethyl (meth) acrylate, dicyclopentanyl di (meth) acrylate and the like are preferable examples.
  • the trifunctional or higher functional (meth) acrylate monomers include ECH-modified glycerol tri (meth) acrylate, EO-modified glycerol tri (meth) acrylate, and PO-modified glycerol tri (meta).
  • Monomers having two or more functional groups selected from the group consisting of epoxy groups and oxetanyl groups include, for example, aliphatic cyclic epoxy compounds, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, bromine Bisphenol A diglycidyl ether, brominated bisphenol F diglycidyl ether, brominated bisphenol S diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, hydrogenated bisphenol S diglycidyl ether, 1,4 -Butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether , Polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ethers; polyether
  • Examples of commercially available products that can be suitably used as a monomer having two or more functional groups selected from the group consisting of epoxy groups and oxetanyl groups include Daicel Chemical Industries, Ltd. Celoxide 2021P, Celoxide 8000, and Sigma Aldrich 4- Examples include vinylcyclohexene dioxide. These can be used alone or in combination of two or more.
  • a monomer having two or more functional groups selected from the group consisting of an epoxy group and an oxetanyl group may be produced by any method.
  • Maruzen KK Publishing Co., Ltd., Fourth Edition Experimental Chemistry Course 20 Organic Synthesis II, 213, 1992, Ed.by Alfred Hasfner The chemistry of heterocyclic compounds-Small Ring Heterocycles part3 Oxiranes, John & Wiley and Sons, An Interscience Publication, New York, 1985, Yoshimura, Adhesion, Vol.29, No.12, 32, 1985, Yoshimura, Adhesion, Vol. 30, No. 5, 42, 1986, Yoshimura, Adhesion, Vol. 30, No. 7, 42, 1986, Japanese Patent Laid-Open No. 11-100308, Japanese Patent No. 2906245, Japanese Patent No. 2926262, etc. Can be synthesized.
  • the second curable compound has a functional group having hydrogen bonding in the molecule and a polymerizable group capable of undergoing a polymerization reaction with the first curable compound.
  • the functional group having hydrogen bonding include a urethane group, a urea group, or a hydroxyl group.
  • the polymerizable group capable of undergoing a polymerization reaction with the first curable compound for example, when the first curable compound is a bifunctional or higher (meth) acrylate monomer, it may be a (meth) acryloyl group.
  • the curable compound is a monomer having two or more functional groups selected from the group consisting of an epoxy group and an oxetanyl group, it may be an epoxy group or an oxetanyl group.
  • (Meth) acrylate monomers containing urethane groups include diisocyanates such as TDI, MDI, HDI, IPDI, and HMDI, poly (propylene oxide) diol, poly (tetramethylene oxide) diol, ethoxylated bisphenol A, and ethoxylated bisphenol.
  • an adduct of TDI and hydroxyethyl acrylate, an adduct of IPDI and hydroxyethyl acrylate, an adduct of HDI and pentaerythritol triacrylate (PETA), and an adduct of TDI and PETA remained.
  • Examples include compounds obtained by reacting isocyanate and dodecyloxyhydroxypropyl acrylate, adducts of 6,6 nylon and TDI, adducts of pentaerythritol, TDI and hydroxyethyl acrylate, but are not limited thereto. Absent.
  • Examples of the (meth) acrylate monomer containing a hydroxyl group include compounds synthesized by a reaction between a compound having an epoxy group and (meth) acrylic acid. Typical ones are classified into bisphenol A type, bisphenol S type, bisphenol F type, epoxidized oil type, phenol novolak type, and alicyclic type, depending on the compound having an epoxy group.
  • the second curable compound containing a hydroxyl group examples include epoxy ester manufactured by Kyoeisha Chemical Co., Ltd., M-600A, 40EM, 70PA, 200PA, 80MFA, 3002M, 3002A, 3000MK, 3000A, Nippon Kasei. 4-hydroxybutyl acrylate, Shin-Nakamura Chemical Co., Ltd., monofunctional acrylate A-SA, monofunctional methacrylate SA, Daicel Ornex Corp. monofunctional acrylate ⁇ -carboxyethyl acrylate, Johoku Chemical Industry Co., Ltd. -514 and the like. These can be used alone or in combination of two or more.
  • the mass ratio between the first curable compound and the second curable compound may be 10:90 to 99: 1, and is preferably 10:90 to 90:10. It is also preferable that the content of the first curable compound is larger than the content of the second curable compound. Specifically, (content of the first curable compound) / (second curable compound) Is preferably 2 to 10.
  • the curable composition further includes a monofunctional (meth) acrylate monomer.
  • Monofunctional (meth) acrylate monomers include acrylic acid and methacrylic acid, derivatives thereof, and more specifically, monomers having one polymerizable unsaturated bond ((meth) acryloyl group) of (meth) acrylic acid in the molecule Can be mentioned. Specific examples thereof include the following compounds, but the present invention is not limited thereto.
  • the monofunctional (meth) acrylate monomer is preferably contained in an amount of 1 to 300 parts by mass, and 50 to 150 parts by mass with respect to 100 parts by mass of the total mass of the first curable compound and the second curable compound. More preferably it is included.
  • the first curable compound, the second curable compound, and the monofunctional (meth) acrylate monomer preferably has a long-chain alkyl group having 4 to 30 carbon atoms.
  • the long chain alkyl group is more preferably a long chain alkyl group having 12 to 22 carbon atoms. This is because the dispersibility of the quantum dots is improved. As the dispersibility of the quantum dots improves, the amount of light that goes straight from the light conversion layer to the exit surface increases, which is effective in improving front luminance and front contrast.
  • the monofunctional (meth) acrylate monomer having a long-chain alkyl group having 4 to 30 carbon atoms include butyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, and oleyl (meth) acrylate.
  • lauryl (meth) acrylate, oleyl (meth) acrylate, and stearyl (meth) acrylate are particularly preferable.
  • trifluoroethyl (meth) acrylate pentafluoroethyl (meth) acrylate, (perfluorobutyl) ethyl (meth) acrylate, perfluorobutyl-hydroxypropyl (meth) acrylate, (perfluorohexyl)
  • a compound having a fluorine atom such as ethyl (meth) acrylate, octafluoropentyl (meth) acrylate, perfluorooctylethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate and the like may be contained. By including these compounds, the coating property can be improved.
  • the amount of the binder is not particularly limited, and may be appropriately set according to the type of the curable compound to be used, the thickness of the quantum dot layer 38, and the like. According to the study by the present inventors, the amount of the binder is preferably 90 to 99.9 parts by mass and more preferably 92 to 99 parts by mass with respect to 100 parts by mass of the total amount of the quantum dot layer 38. preferable.
  • the thickness of the quantum dot layer 38 is not particularly limited, but is preferably 5 to 200 ⁇ m, more preferably 10 to 150 ⁇ m. Setting the thickness of the quantum dot layer 38 to 5 ⁇ m or more is preferable in that good light emission characteristics can be obtained. By setting the thickness of the quantum dot layer 38 to 200 ⁇ m or less, it is possible to prevent the quantum dot film 34 from becoming unnecessarily thick, and to obtain a quantum dot film 34 with good handleability. Is preferable in that it can be formed.
  • the manufacturing method of this invention is demonstrated by demonstrating the manufacturing method of the gas barrier film 10, the gas barrier film 30, and the quantum dot film 34.
  • FIG. it is preferable to perform each formation of a layer, sticking of a film, etc. in the following manufacturing methods by RtoR using the elongate board
  • the gas barrier film 10 shown in FIG. 1 is produced as follows as an example.
  • the organic layer 14 is formed on the substrate 12.
  • the organic layer 14 may be formed (film formation) by a known method for forming a layer made of an organic compound in accordance with the organic layer 14 to be formed.
  • a coating method is illustrated. That is, a coating composition containing an organic solvent, an organic compound (monomer, dimer, trimer, oligomer, polymer, etc.) to be the organic layer 14, a surfactant, a silane coupling agent, and the like is prepared, and this coating composition is used as a substrate. 12 is applied.
  • the coating composition is dried and further formed by polymerizing (crosslinking) the organic compound by ultraviolet irradiation or the like as necessary. Further, after forming the organic layer 14, a protective film for protecting the organic layer 14 may be attached to the surface of the organic layer 14.
  • the inorganic layer 16 is formed on the organic layer 14.
  • the method for forming the inorganic layer 16 is not limited, and various known methods for forming an inorganic layer (inorganic film) can be used depending on the inorganic layer 16 to be formed.
  • the inorganic layer 16 may be formed by a vapor phase film forming method such as plasma CVD such as CCP-CVD or ICP-CVD, sputtering such as magnetron sputtering or reactive sputtering, or vacuum deposition.
  • plasma CVD such as CCP-CVD or ICP-CVD
  • sputtering such as magnetron sputtering or reactive sputtering
  • vacuum deposition vacuum deposition
  • the formation of the organic layer 14 and the formation of the inorganic layer 16 are repeated according to the number of combinations.
  • the first protective film 18 is attached to the inorganic layer 16.
  • the inorganic layer 16 is formed by RtoR, in the formation of the outermost inorganic layer 16, before the formed inorganic layer 16 contacts other members in the film formation chamber, the outermost inorganic layer 16 is formed. It is preferable to stick the first protective film 18 to 16.
  • the light-diffusion layer 20 may be formed by a coating method. That is, a coating composition containing an organic solvent, a binder compound and a light diffusing agent is prepared. You may add a thermal-polymerization initiator, surfactant, a dispersing agent, etc. to this coating composition as needed. Next, the coating composition is applied to the substrate 12, dried, and the binder is cured by light irradiation such as ultraviolet irradiation, heating, or the like to form the light diffusion layer 20.
  • a coating method That is, a coating composition containing an organic solvent, a binder compound and a light diffusing agent is prepared. You may add a thermal-polymerization initiator, surfactant, a dispersing agent, etc. to this coating composition as needed.
  • the coating composition is applied to the substrate 12, dried, and the binder is cured by light irradiation such as ultraviolet irradiation, heating, or the like to form the light diffusion layer 20.
  • the surface roughness Ra of the light diffusion layer 20 may be adjusted by adjusting the amount ratio of the binder and the light diffusing agent in the coating composition.
  • the adhesive layer 24 is formed on the support 26 to produce the second protective film 28. What is necessary is just to produce the 2nd protective film 28 by a well-known method according to the formation material of the adhesion layer 24.
  • FIG. As an example, a coating method is illustrated. That is, first, a resin film or the like that becomes the support 26 is prepared. On the other hand, a coating composition is prepared by dispersing or dissolving a compound that becomes the adhesive layer 24 in an organic solvent. You may add a thermal-polymerization initiator, surfactant, a dispersing agent, etc. to this coating composition as needed. Next, this coating composition is applied to the support 26, dried, and the compound that becomes the adhesive layer 24 is cured by ultraviolet irradiation or heating to form a second protective film 28.
  • Adjustment of the adhesive force between the second protective film 28 and the light diffusion layer 20 may be performed by selecting a compound that becomes the adhesive layer 24 as an example. Moreover, the adhesive force between the second protective film 28 and the light diffusion layer 20 can also be adjusted by adjusting the curing conditions of the compound to be the adhesive layer 24, such as the amount of ultraviolet irradiation.
  • the light diffusing layer 20 is formed and the second protective film 28 is produced, the light diffusing layer 20 and the adhesive layer 24 face each other, and the second protective film 28 is laminated on the light diffusing layer 20 and attached.
  • the gas barrier film 10 is produced.
  • pressurization and heating may be used in combination as necessary.
  • the gas barrier film 10 by RtoR in order to prevent the damage of the inorganic layer 16 resulting from the surface unevenness
  • the gas barrier film 30 shown in FIG. 2 is produced as follows as an example. First, the 1st protective film 18 is peeled from the gas barrier film 10 produced as mentioned above. Next, the adhesion layer 32 is formed on the surface of the inorganic layer 16 to produce the gas barrier film 30.
  • the adhesion layer 32 may be formed by a known method for forming a layer made of an organic compound according to the material for forming the adhesion layer 32 or the like.
  • the adhesion layer 32 may be formed by a coating method. That is, first, a coating composition containing an organic solvent and a compound that becomes the adhesion layer 32 is prepared. You may add a thermal-polymerization initiator etc. to this coating composition as needed. Next, this coating composition is applied to the surface of the inorganic layer 16, and after drying the coating composition, the adhesive layer 32 is formed by curing the compound that becomes the adhesion layer 32 by heating or ultraviolet irradiation, A gas barrier film 30 is produced.
  • the quantum dot film 34 shown in FIG. 3 is produced as follows as an example.
  • a gas barrier film 30 and a gas barrier film 36 prepared as described above are prepared.
  • the gas barrier film 36 may be produced by not forming the light diffusion layer 20 and the second protective film 28 in the production of the gas barrier films 10 and 30.
  • a quantum dot is disperse
  • This coating composition may contain a photopolymerization initiator, a surfactant, and the like as necessary.
  • the coating composition to be the quantum dot layer 38 is applied to the adhesion layer 32 of the gas barrier film 30.
  • the gas barrier film 36 is laminated with the adhesion layer 32 facing the coating composition.
  • the curable compound to be a binder in the coating composition is polymerized by ultraviolet irradiation or heating, The quantum dot layer 38 is formed and the quantum dot film 34 is produced.
  • the gas barrier films 10 and 30 and the quantum dot film 34 of the present invention have the second protective film 28 on the light diffusion layer 20. Therefore, the gas barrier films 10 and 30 and the quantum dot film 34 of the present invention can be applied to various applications even when the first protective film 18 is peeled off, the adhesion layer 32 is formed, the quantum dot layer 38 is formed by RtoR. Even if an operation or a treatment for use in is performed, the inorganic layer 16 can be prevented from being damaged due to the light diffusion layer 20 having irregularities on the surface.
  • the coating composition that becomes the quantum dot layer 38 is applied to the adhesion layer 32 of the gas barrier film 30, the gas barrier film 36 is laminated on the coating composition, and the coating composition is cured, whereby the quantum is obtained.
  • a dot film 34 was produced.
  • the present invention is not limited to this, and a coating composition to be the quantum dot layer 38 is applied to the adhesion layer 32 of the gas barrier film 36, and the gas barrier film 30 is laminated on the coating composition to obtain a coating composition.
  • the quantum dot film 34 may be produced by curing.
  • the gas barrier film 30 and / or the gas barrier film 36 do not have to have the adhesion layer 32 as described above. In this case, after the first protective film 18 is peeled from the gas barrier film, the inorganic layer 16 faces the quantum dot layer 38 without forming an adhesion layer, and the quantum dot film is similarly manufactured. Use it.
  • the quantum dot film 34 is suitably used for an illumination device such as a backlight unit such as an LCD.
  • a backlight unit such as an LCD.
  • the quantum dot film 34 is used, the second protective film 28 is finally peeled off.
  • the gas barrier films 10 and 30 are also used for various applications, the second protective film 28 is finally peeled off.
  • the gas barrier film 30 was produced as follows. ⁇ Formation of organic layer 14> As a substrate 12, a long PET film (Toyobo Co., Ltd., Cosmo Shine A4300) having a width of 1000 mm and a thickness of 50 ⁇ m was prepared. Further, TMPTA (manufactured by Daicel Cytec Co., Ltd.) and a photopolymerization initiator (manufactured by Lamberti Co., ESACURE KTO46) were prepared and weighed so that the mass ratio was 95: 5. A coating composition for forming the organic layer 14 was prepared by dissolving in methyl ethyl ketone.
  • the organic layer 14 is disposed at a predetermined position of a coating unit of a general RtoR film forming apparatus having a coating unit using a die coater, a drying unit using hot air, a curing unit using ultraviolet irradiation, and a laminate of long film-like materials.
  • the coating composition for forming the was filled. Further, a roll formed by winding the substrate 12 in a roll shape was loaded at a predetermined position of the film forming apparatus, and the substrate 12 was inserted into a predetermined transport path. Furthermore, a roll formed by winding a long protective film in a roll shape was loaded at a predetermined position of the laminated portion, and the protective film was inserted through a predetermined conveyance path.
  • an LDPE film having a width of 1000 mm and a thickness of 30 ⁇ m (manufactured by Sanei Kaken Co., Ltd., SUNYTECT PAC-2, Young's modulus 0.3 GPa) was used.
  • the coating composition was applied by a die coater while conveying the substrate 12 in the longitudinal direction, and passed through a drying section at 50 ° C. for 3 minutes. Thereafter, the coating composition was cured by irradiating with ultraviolet rays (accumulated dose of about 600 mJ / cm 2 ) to form the organic layer 14.
  • a protective film was attached to the organic layer 14 and wound into a roll. The thickness of the organic layer 14 was 1 ⁇ m.
  • the roll of the substrate 12 on which the organic layer 14 is formed is formed by CCP-CVD (capacitive coupling type plasma CVD) using RtoR having a long film-like peeled portion and a laminated portion. Then, the substrate 12 and the protective film were inserted into a predetermined transport path. Moreover, the roll formed by winding the long first protective film 18 in a roll shape was loaded at a predetermined position of the laminated portion, and the first protective film 18 was inserted through a predetermined conveyance path. In addition, the 1st protective film 18 used the same thing as the protective film of the organic layer 14. FIG.
  • the substrate 12 on which the organic layer 14 is formed is transported in the longitudinal direction, the protective film is peeled off, and then a silicon nitride film is formed as the inorganic layer 16 on the organic layer 14.
  • the 1st protective film 18 was stuck on 16 and it wound up in roll shape.
  • Silane gas flow rate 160 sccm
  • ammonia gas flow rate 370 sccm
  • hydrogen gas flow rate 590 sccm
  • nitrogen gas flow rate 240 sccm
  • the power supply was a high frequency power supply with a frequency of 13.56 MHz, and the plasma excitation power was 800 W.
  • the film forming pressure was 40 Pa.
  • the film thickness of the inorganic layer 16 was 50 nm.
  • the first protective film 18 was attached after the inorganic layer 16 was formed and before the inorganic layer 16 was in contact with other members in the film forming chamber.
  • ⁇ Preparation of the second protective film 28> As the support 26, a long PET film having a width of 1000 mm and a thickness of 50 ⁇ m (manufactured by Toray Industries Inc., Lumirror, Young's modulus 4 GPa) was prepared. A roll formed by winding the support 26 in a roll shape is loaded into a predetermined position of a general coating apparatus that coats a paint with RtoR, which has a coating part by a die coater and a laminated part of a long film-like material, The support 26 was inserted into a predetermined conveyance path. Further, an acrylic resin adhesive (manufactured by Panac Co., Ltd.) that becomes the adhesive layer 24 was filled in a predetermined position of the application part.
  • an acrylic resin adhesive manufactured by Panac Co., Ltd.
  • a roll formed by winding a long release paper into a roll shape was loaded at a predetermined position of the stacking unit, and the release paper was inserted into a predetermined conveyance path.
  • an acrylic resin adhesive is applied by a die coater to form the adhesive layer 24 to produce the second protective film 28.
  • a release paper was affixed to and rolled up into a roll.
  • Binder manufactured by Taisei Fine Chemical Co., Ltd., ACRYT 8BR-930
  • light diffusing agent 1 silicone resin particles, manufactured by Momentive Performance Materials Co., Ltd., Tospearl 130, average particle size 3.0 ⁇ m, refractive index 1.425
  • light diffusion Agent 2 silicone resin particles, manufactured by Momentive Performance Materials, Tospearl 1100, average particle size 11.0 ⁇ m, refractive index 1.425
  • photopolymerization initiator BASF, Irgacure 184
  • Acryt 8BR-930 used as a binder is a graft copolymer having an acrylic polymer as a main chain, a side chain with a urethane polymer having an acryloyl group at the end and a urethane oligomer having an acryloyl group at the end, and has a weight average molecular weight of 16000,
  • the double bond equivalent is 800 g / mol and the refractive index is 1.4671.
  • the coating composition for forming layer 20 was filled. Further, a roll of the substrate 12 on which the inorganic layer 16 was formed was loaded at a predetermined position of the film forming apparatus, and the substrate 12 was inserted into a predetermined transport path. Furthermore, the roll around which the second protective film 28 was wound was loaded at a predetermined position of the laminated portion, and the second protective film 28 and the release film were inserted through a predetermined conveyance branch.
  • the coating composition is applied to the surface of the substrate 12 opposite to the surface on which the inorganic layer 16 or the like is formed, and the light diffusion layer 20 is applied at the lamination position. And the adhesive layer 24 face each other.
  • the coating composition is applied by a die coater, passed through a drying unit at 60 ° C. for 3 minutes, and irradiated with ultraviolet rays to form the light diffusion layer 20, After peeling off the release film from the second protective film 28, the light diffusion layer 20 and the adhesive layer 24 are opposed to each other, and the substrate 12 and the second protective film 28 are laminated and pasted to produce the gas barrier film 10. And wound up into a roll.
  • a coating composition for forming the adhesion layer 32 was prepared by dissolving in methyl ethyl ketone so that the solid content concentration was 2% by mass.
  • Acryt 8UH-1006 used as an ultraviolet curable urethane polymer has a urethane polymer as a main chain, a side chain having a (meth) acryloyl group at the end, a weight average molecular weight of 20000, and a double bond equivalent. It is a urethane polymer capable of UV curing at 366 g / mol.
  • the product was filled.
  • a roll of the gas barrier film 10 was loaded at a predetermined position of the film forming apparatus, and the gas barrier film 10 and the first protective film 18 were inserted through a predetermined transport path. The roll of the gas barrier film 10 was loaded so that the first protective film 18 side would be the peeling and coating surface.
  • the first protective film 18 is peeled from the gas barrier film 10 while transporting the substrate 12 in the longitudinal direction, and then the coating composition is applied to the inorganic layer 16 by a die coater.
  • the gas barrier film 30 was produced by passing the film for a minute and winding to form an adhesion layer 32.
  • the surface roughness Ra of the light diffusion layer 20 is changed to 1 ⁇ m, 3.5 ⁇ m and 7 ⁇ m,
  • the adhesive force between the second protective film 28 and the light diffusion layer 20 is changed to 0.1 N / 25 mm, 0.5 N / 25 mm and 1 N / 25 mm,
  • Gas barrier films 30 of Examples 1 to 27 were produced by changing the thickness of the adhesive layer 24 of the second protective film 28 to 1 ⁇ m, 10 ⁇ m, and 25 ⁇ m.
  • the surface roughness Ra of the light diffusion layer 20 was adjusted by changing the amount ratio of the binder and the light diffusion agent in the coating composition for forming the light diffusion layer 20.
  • adjustment of the adhesive force of the 2nd protective film 28 and the light-diffusion layer 20 was performed by adjusting the ultraviolet irradiation amount at the time of forming the adhesion layer 24, and changing a hardening state.
  • Example 1 A gas barrier film was produced in the same manner as in Example 19 except that the second protective film 28 was not provided.
  • a gas barrier film was produced in the same manner as in Example 19 except that the second protective film did not have the adhesive layer 24 and only the support 26 was attached by electrostatic adsorption.
  • AA having a water vapor transmission rate of less than 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ day); A with a water vapor transmission rate of 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ day) or more and less than 3 ⁇ 10 ⁇ 3 g / (m 2 ⁇ day); Water vapor permeability of 3 ⁇ 10 ⁇ 3 g / (m 2 ⁇ day) or more and less than 6 ⁇ 10 ⁇ 3 g / (m 2 ⁇ day) is B; C having a water vapor transmission rate of 6 ⁇ 10 ⁇ 3 g / (m 2 ⁇ day) or more and less than 9 ⁇ 10 ⁇ 3 g / (m 2 ⁇ day); A water vapor permeability of 9 ⁇ 10 ⁇ 3 g / (m 2 ⁇ day) or more was evaluated as D; When the evaluation is AA to C, there is no problem in most applications, but when the evaluation is D, there are many problems in practice.
  • Comparative Example 1 having no second protective film 28 and Comparative Example 2 in which the second protective film does not have an adhesive layer are used when the gas barrier film is wound and the adhesion layer 32 is formed.
  • the inorganic layer 16 is locally loaded due to the unevenness of the light diffusion layer 20, and the inorganic layer 16 is damaged. It is thought that the gas barrier property was lowered.
  • the adhesion coefficient is lower than the more preferable range (1 to 7), and the adhesion of the second protective film 28 is more preferably the adhesion coefficient.
  • Example 3 Since it is weaker than the range of Example 3 or the like, partial peeling of the second protective film 28 occurs during transport in forming the adhesion layer 32, and this causes the inorganic layer 16 to be peeled off. Some damage occurred, and it is considered that the gas barrier property was lowered as compared with Example 3 and the like.
  • the adhesion coefficient is higher than the more preferable range, and the adhesion of the second protective film 28 is stronger than that in Example 3 where the adhesion coefficient is in a more preferable range. 2
  • the protective film 28 was peeled off, some cohesive peeling occurred in the pressure-sensitive adhesive layer 24, and it is considered that the total light transmittance was lowered as compared with Example 3 and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

 基板と、基板の一方の面に形成される、無機層および無機層の下地となる有機層の組み合わせを、1組以上、有する第1機能層と、第1機能層の基板とは逆側の面に形成される機能層側表面層と、基板のバリア層の形成面とは逆側の面に形成される光拡散層と、光拡散層の表面に形成される、支持体および粘着層を有する拡散層側表面層とを有する、機能性フィルム、および、その製造方法。これにより、光拡散層を有し、量子ドットフィルム等に好適に用いられる機能性フィルムを提供する。

Description

機能性フィルムおよび機能性フィルムの製造方法
 本発明は、良好な光拡散性および密着性を発揮する機能性フィルム、および、この機能性フィルムを用いる波長変換フィルムに関する。
 液晶表示装置は、消費電力が小さく、省スペースの画像表示装置として、年々、その用途が広がっている。また、近年では、液晶表示装置に対する性能改善として、さらなる省電力化、色再現性向上等が求められている。以下の説明では、『液晶表示装置』を『LCD』とも言う。
 LCDのバックライトに対する省電力化の要求に対応して、光利用効率を高め、また、色再現性を向上するために、入射光の波長を変換して出射する量子ドットを利用することが提案されている。
 量子ドットとは、三次元全方向において移動方向が制限された電子の状態のことであり、半導体のナノ粒子が、高いポテンシャル障壁で三次元的に囲まれている場合に、このナノ粒子は量子ドットとなる。量子ドットは種々の量子効果を発現する。例えば、電子の状態密度(エネルギー準位)が離散化される、いわゆる量子サイズ効果が発現する。この量子サイズ効果によれば、量子ドットの大きさを変化させることで、光の吸収波長・発光波長を制御できる。
 一般に、このような量子ドットは、アクリル樹脂やエポキシ樹脂等の樹脂からなるバインダーに分散されて量子ドット層とされ、例えば、波長変換を行う波長変換フィルムとして、バックライトと液晶パネルとの間に配置されて用いられる。
 バックライトから量子ドット層に励起光が入射すると、量子ドットが励起されて蛍光を発光する。ここで異なる発光特性を有する量子ドットを用いることで、赤色光、緑色光、青色光の半値幅の狭い光を発光させて白色光を具現化することができる。量子ドットによる蛍光は半値幅が狭いため、波長を適切に選択することで得られる白色光を高輝度にしたり色再現性に優れる設計にしたりすることが可能である。
 ところで、量子ドットは、水分や酸素により劣化しやすく、光酸化反応により発光強度が低下するという問題がある。そのため、量子ドット層の両面にガスバリアフィルムを積層して量子ドット層を保護することが行われている。
 例えば、特許文献1には、LCD等に用いられるバックライトユニットとして、量子ドット層を2枚のガスバリアフィルムで挟持することにより量子ドットを保護する、積層型の波長変換フィルム(量子ドットフィルム)が記載されている。
 また、特許文献1には、量子ドット層を挟むガスバリアフィルムとして、ポリエチレンテレフタレート(PET)フィルム等の樹脂フィルムを基板として、基板の上に酸化ケイ素、酸化チタン、酸化アルミニウム等のガスバリア性を発現する酸化物層を形成した構成が記載されている。
 さらに、特許文献1には、量子ドット層とは別の部分に、光拡散層(散乱粒子を有する層)を設けることも記載されている。
 一方、優れたガスバリア性を有するガスバリアフィルムとして、特許文献2に記載されるような、基板の上に、無機層と、無機層の下地となる有機層との組み合わせを、1組以上、形成してなる、有機無機積層型のガスバリアフィルムが知られている。
 有機無機積層型のガスバリアフィルムにおいて、主にガスバリア性を発現するのは、無機層である。有機無機積層型のガスバリアフィルムでは、下地となる有機層を有することにより、割れや損傷等の無い高品位な無機層を形成することができる。そのため、無機層の性能を十分に発現して、非常に優れたガスバリア性が得られる。
 従って、量子ドット層を有機無機積層型のガスバリアフィルムで挟持することにより、より好適に、水分による量子ドット層の劣化を防止できることが期待される。
特表2013-544018号公報 特開2011-167967号公報
 本発明者らは、特許文献1に示されるように、量子ドット層とは別に光拡散層を設けることは、量子ドット層から出射される光量を増加させることにつながり、これによりLCDの輝度を向上できると予想し、検討を重ねた。
 その結果、量子ドット層を有する波長変換フィルムに光拡散層を設けることにより、光拡散層がない場合と比べて、輝度の向上が可能となることが判明した。このような輝度の向上を達成することができれば、LCDにより高輝度の鮮明な画像を表示することや、一定輝度を達成するための量子ドットの使用量の低減による低コスト化の達成、量子ドット層の薄層化によるバックライトユニットの薄型化が期待できる。
 ガスバリアフィルムで量子ドット層を挟持する構成では、より確実に量子ドットを水分から守るために、特許文献1にも示されるように、ガスバリア層を量子ドット層側に向けて、ガスバリアフィルムで量子ドット層を挟持する。すなわち、特許文献1に記載されるガスバリアフィルムであれば、酸化物層を内側に向けて量子ドット層を挟持し、特許文献2に記載されるガスバリアフィルムであれば、有機無機の積層構造を内側に向けて量子ドット層を挟持する。
 従って、この場合、光拡散層は、一方のガスバリアフィルムの基板の、ガスバリア層の形成面とは逆側の面に形成される。
 ところが、本発明者らの検討によれば、特に無機層によってガスバリア性を発現するガスバリアフィルムでは、基板のガスバリア層の形成面と逆側の面に光拡散層を形成すると、無機層が損傷してしまい、その結果、ガスバリアフィルムが目的とするガスバリア性を発現できなくなる場合が、多々、生じる。
 本発明の目的は、このような従来技術の問題点を解決することにあり、光拡散性を有し、さらに、優れたガスバリア性等の目的とする機能を安定して発現できる機能性フィルム、および、この機能性フィルムの製造方法を提供することにある。
 この課題を解決するために、本発明の機能性フィルムの第1の態様は、基板と、
 基板の一方の面に形成される、無機層および無機層の下地となる有機層の組み合わせを、1組以上、有する第1機能層と、
 第1機能層の基板とは逆側の面に形成される機能層側表面層と、
 基板の第1機能層の形成面とは逆側の面に形成される光拡散層と、
 光拡散層の表面に形成される、支持体および粘着層を有する拡散層側表面層とを有することを特徴とする機能性フィルムを提供する。
 また、本発明の機能性フィルムの第2の態様は、基板と、
 基板の一方の面に形成される、無機層および無機層の下地となる有機層の組み合わせを、1組以上、有する第1機能層と、
 第1機能層の基板とは逆側の面に形成される第2機能層と、
 基板の第1機能層の形成面とは逆側の面に形成される光拡散層と、
 光拡散層の表面に形成される、支持体および粘着層を有する拡散層側表面層とを有することを特徴とする機能性フィルムを提供する。
 このような本発明の機能性フィルムの第2の態様において、第2機能層が密着層であるのが好ましい。
 また、本発明の機能性フィルムの第3の態様は、基板と、基板の一方の面に形成される、無機層および無機層の下地となる有機層の組み合わせを、1組以上、有する第1機能層と、基板の第1機能層の形成面とは逆側の面に形成される光拡散層と、光拡散層の表面に形成される支持体および粘着層を有する拡散層側表面層とを有する機能性フィルム、および、ガスバリアフィルムを用い、
 機能性フィルムの拡散層側表面層を外側にして、機能性フィルムとガスバリアフィルムとで、量子ドット層を挟持したことを特徴とする機能性フィルムを提供する。
 このような本発明の機能性フィルムの第3の態様において、ガスバリアフィルムが、基板と、基板の一方の面に形成される、無機層および無機層の下地となる有機層の組み合わせを、1組以上、有するものであり、基板が外側となるのが好ましい。
 また、機能性フィルムと量子ドット層との間、および、ガスバリアフィルムと量子ドット層との間の少なくとも一方に、密着層を有するのが好ましい。
 さらに、本発明の機能性フィルムの製造方法は、基板の一方の面に、無機層および無機層の下地となる有機層の組み合わせを、1組以上、有する第1機能層を形成する工程、
 第1機能層の基板とは逆側の面に機能層側表面層を形成する工程、
 機能層側表面層を形成した後、基板の第1機能層側の形成面とは逆側の面に光拡散層を形成する工程、および、
 光拡散層の表面に、粘着層および支持体を有する拡散層側表面層を形成する工程を有することを特徴とする機能性フィルムの製造方法を提供する。
 このような本発明の機能性フィルムの製造方法において、さらに、機能層側表面層を剥離する工程を有するのが好ましい。
 また、さらに、第1機能層の基板とは逆側の面に第2機能層を形成する工程を有するのが好ましい。
 また、第2機能層が密着層であるのが好ましい。
 また、さらに、第1機能層を形成した側の最表面に、量子ドット層となる組成物を塗布し、組成物の表面にガスバリアフィルムを積層する工程、もしくは、ガスバリアフィルムの表面に量子ドット層となる組成物を塗布し、第1機能層を組成物に向けて、組成物の表面に機能性フィルムを積層する工程、および、組成物を硬化する工程を有するのが好ましい。
 また、ガスバリアフィルムが、基板と、基板の一方の面に形成される、無機層および無機層の下地となる有機層と組み合わせの1組以上とを有するものであり、有機層および無機層の形成面が組成物側となるのが好ましい。
 また、ガスバリアフィルムが、最表面に密着層を有するのが好ましい。
 また、さらに、拡散層側表面層を剥離する工程を有するのが好ましい。
 本発明によれば、光拡散性を有し、さらに、ガスバリア性等の目的とする機能を安定して発現する機能性フィルムが得られる。
本発明の機能性フィルムの一例を概念的に示す図である。 本発明の機能性フィルムの別の例を概念的に示す図である。 本発明の機能性フィルムの別の例を概念的に示す図である。
 以下、本発明の機能性フィルムおよび機能性フィルムの製造方法について、添付の図面に示される好適実施例を基に、詳細に説明する。
 図1に、本発明の機能性フィルムをガスバリアフィルムに利用した一例を、概念的に示す。
 なお、本発明の機能性フィルムは、ガスバリアフィルムに限定はされない。すなわち、本発明の機能性フィルムは、光拡散性を要求されるものであれば、特定の波長の光を透過するフィルタや光反射防止フィルムなどの各種の光学フィルム等、公知の機能性フィルムに、各種、利用可能である。
 ここで、本発明の機能性フィルムは、光拡散層の上に拡散層側表面層を有し、この拡散層側表面層を有することにより、後述するロール・トゥ・ロールによって巻き取った場合等であっても、拡散層側表面層が保護層として作用するために、光拡散層に起因して無機層が損傷することを防止できる。この点に関しては、後述する。以下の説明では、『ロール・トゥ・ロール』を『RtoR』とも言う。
 そのため、本発明の機能性フィルムは、無機層の損傷による性能劣化が大きいガスバリアフィルムには、より好適に利用される。
 図1に示すガスバリアフィルム10は、基本的に、基板12と、基板12の一方の面に形成される、有機層14と、無機層16と、第1保護フィルム18とを有する。さらに、ガスバリアフィルム10は、基板12の無機層16等の形成面と逆側の面に形成される、光拡散層20と、第2保護フィルム28とを有する。
 後述するが、有機層14は、無機層16の下地となる層であり、有機層14と、無機層16とで、本発明における第1機能層を構成する。従って、無機層16の上に形成される第1保護フィルム18は、本発明における機能層表面層である。なお、無機層16の上とは、すなわち、無機層16の基板12側とは逆側の面の表面である。また、図示例において、第1機能層はガスバリア層である。
 光拡散層20の上に形成される第2保護フィルム28は、本発明における拡散層側表面層である。従って、第2保護フィルム28は、支持体26と粘着層24とを有する。なお、光拡散層20の上とは、すなわち、光拡散層20の基板12側とは逆側の面の表面である。
 図1に示すガスバリアフィルム10は、有機層14と無機層16との組み合わせを、1組、有するものである。しかしながら、本発明の機能性フィルムは、これ以外にも、各種の構成が利用可能である。
 例えば、有機層14と無機層16との組み合わせを、2組有してもよい。あるいは、有機層14と無機層16との組み合わせを、3組以上有してもよい。
 あるいは、基板12の表面に無機層16を有し、その上に、有機層14と無機層16との組み合わせを、1組以上、有する構成であってもよい。
 すなわち、本発明の機能性フィルムにおいて、基板12の一方の面に形成される第1機能層は、無機層16と無機層16の下地となる有機層14との組み合わせを、1組以上、有し、かつ、最上層すなわち第1保護フィルム(機能層側表面層)の下層が無機層となるものであれば、各種の構成が利用可能である。
 ガスバリアフィルム10において、基板12は、各種のガスバリアフィルムや各種の積層型の機能性フィルムにおいて基板(支持体)として利用されている、公知のシート状物が、各種、利用可能である。
 基板12としては、具体的には、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、ポリエチレンナフタレート(PEN)、ポリアミド(PA)、ポリエチレンテレフタレート(PET)、ポリ塩化ビニル(PVC)、ポリビニルアルコール(PVA)、ポリアクリトニトリル(PAN)、ポリイミド(PI)、透明ポリイミド、ポリメタクリル酸メチル樹脂(PMMA)、ポリカーボネート(PC)、ポリアクリレート、ポリメタクリレート、ポリプロピレン(PP)、ポリスチレン(PS)、ABS、環状オレフィン・コポリマー(COC)、シクロオレフィンポリマー(COP)、および、トリアセチルセルロース(TAC)などの、各種の樹脂材料からなるフィルム(樹脂フィルム)が、好適に例示される。
 本発明においては、このようなフィルムの表面に、保護層、接着層、光反射層、反射防止層、遮光層、平坦化層、緩衝層、応力緩和層等の、必要な機能を発現する層(膜)が形成されているものを、基板12として用いてもよい。
 基板12の厚さは、ガスバリアフィルム10の用途や形成材料等に応じて、適宜、設定すればよい。
 本発明者らの検討によれば、基板12の厚さは、5~100μmが好ましく、10~50μmがより好ましい。
 基板12の厚さを、上記範囲とすることにより、ガスバリアフィルム10の機械的強度を十分に確保すると共に、ガスバリアフィルム10の軽量化、薄手化、可撓性等の点で好ましい。また、基板12の厚さを、上記範囲とすることにより、本発明の機能性フィルムを量子ドットフィルム等に利用した際に、薄手化を図ることができる。
 ガスバリアフィルム10において、基板12の上には、有機層14を有する。
 有機層14は、有機化合物からなる層で、基本的に、有機層14となるモノマーやオリゴマーを重合(架橋)したものである。
 基板12表面の有機層14は、ガスバリアフィルム10において主にガスバリア性を発現する無機層16を適正に形成するための、下地層として機能する。
 このような有機層14を有することにより、基板12(あるいは下層の無機層16)の表面の凹凸や、基板12の表面に付着している異物等を包埋して、無機層16の成膜面を、無機層16の成膜に適した状態にできる。これにより、基板12の表面の凹凸や異物の影のような、無機層16となる無機化合物が着膜し難い領域を無くし、基板の表面全面に、隙間無く、適正な無機層16を成膜することが可能になる。
 ガスバリアフィルム10において、有機層14の形成材料には、限定はなく、公知の有機化合物が、各種、利用可能である。
 具体的には、ポリエステル、(メタ)アクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルイミド、セルロースアシレート、ポリウレタン、ポリエーテルエーテルケトン、ポリカーボネート、脂環式ポリオレフィン、ポリアリレート、ポリエーテルスルホン、ポリスルホン、フルオレン環変性ポリカーボネート、脂環変性ポリカーボネート、フルオレン環変性ポリエステル、アクリル化合物、などの熱可塑性樹脂、ポリシロキサンや、その他の有機ケイ素化合物の膜が好適に例示される。これらは、複数を併用してもよい。
 中でも、ガラス転移温度や強度に優れる等の点で、ラジカル硬化性化合物および/またはエーテル基を官能基に有するカチオン硬化性化合物の重合物から構成された有機層14は、好適である。
 中でも特に、屈折率が低い、透明性が高く光学特性に優れる等の点で、アクリレートおよび/またはメタクリレートのモノマーやオリゴマーの重合体を主成分とするアクリル樹脂やメタクリル樹脂は、有機層14として好適に例示される。
 その中でも特に、ジプロピレングリコールジ(メタ)アクリレート(DPGDA)、トリメチロールプロパントリ(メタ)アクリレート(TMPTA)、ジペンタエリスリトールヘキサ(メタ)アクリレート(DPHA)などの、2官能以上、特に3官能以上のアクリレートおよび/またはメタクリレートのモノマーやオリゴマーの重合体を主成分とするアクリル樹脂やメタクリル樹脂は、好適に例示される。また、これらのアクリル樹脂やメタクリル樹脂を、複数、用いるのも好ましい。
 有機層14の厚さは、有機層14の形成材料や基板12に応じて、適宜設定すればよい。本発明者らの検討によれば、有機層14の厚さは、0.5~5μmとするのが好ましく、1~3μmとするのがより好ましい。
 有機層14の厚さを0.5μm以上とすることにより、基板12の表面の凹凸や、基板12の表面に付着した異物を包埋して、有機層14の表面すなわち無機層16の成膜面を平坦化できる。
 また、有機層14の厚さを5μm以下とすることにより、有機層14が厚すぎることに起因する、有機層14のクラックや、ガスバリアフィルム10のカール等の問題の発生を、好適に抑制することができる。
 なお、前述のように、複数の有機層14を有する場合は、各有機層14の厚さは、同じでも、互いに異なってもよい。また、各有機層14の形成材料は、同じでも異なってもよい。
 無機層16は、無機化合物からなる層である。
 ガスバリアフィルム10において、無機層16は、目的とするガスバリア性を、主に発現するものである。
 無機層16の形成材料には、限定はなく、ガスバリア性を発現する無機化合物からなる層が、各種、利用可能である。
 具体的には、酸化アルミニウム、酸化マグネシウム、酸化タンタル、酸化ジルコニウム、酸化チタン、酸化インジウムスズ(ITO)などの金属酸化物; 窒化アルミニウムなどの金属窒化物; 炭化アルミニウムなどの金属炭化物; 酸化ケイ素、酸化窒化ケイ素、酸炭化ケイ素、酸化窒化炭化ケイ素などのケイ素酸化物; 窒化ケイ素、窒化炭化ケイ素などのケイ素窒化物; 炭化ケイ素等のケイ素炭化物; これらの水素化物; これら2種以上の混合物; および、これらの水素含有物等の、無機化合物からなる膜が、好適に例示される。また、これらの2種以上の混合物も、利用可能である。
 特に、窒化ケイ素、酸化ケイ素、酸窒化ケイ素、酸化アルミニウム、これらの2種以上の混合物は、透明性が高く、かつ、優れたガスバリア性を発現できる点で、好適に利用される。中でも特に、窒化ケイ素は、優れたガスバリア性に加え、透明性も高く、好適に利用される。
 無機層16の膜厚は、形成材料に応じて、目的とするガスバリア性を発現できる厚さを、適宜、決定すればよい。本発明者らの検討によれば、無機層16の厚さは、10~200nmが好ましく、15~100nmがより好ましく、20~75nmが特に好ましい。
 無機層16の厚さを10nm以上とすることにより、十分なガスバリア性能を安定して発現する無機層16が形成できる。また、無機層16は、一般的に脆く、厚過ぎると、割れやヒビ、剥がれ等を生じる可能性が有るが、無機層16の厚さを200nm以下とすることにより、割れが発生することを防止できる。
 なお、前述のように、複数の無機層16を有する場合には、各無機層16の厚さは、同じでも異なってもよい。また、各無機層16の形成材料は、同じでも異なってもよい。
 ガスバリアフィルム10において、最上層の無機層16の上には、第1保護フィルム18が積層される。
 第1保護フィルム18は、最上層の無機層16の上側すなわち無機層16の表面側において、無機層16を保護するためのものである。
 なお、無機層16と、第1保護フィルム18および後述する密着層32との間には、必要に応じて、帯電防止層、反射防止層、アンチニュートンリング層などが設けられてもよい。
 第1保護フィルム18は、ガスバリアフィルム等の機能性フィルムの保護フィルム(保護層)として利用される公知のものが、各種、利用可能である。
 また、第1保護フィルム18は、通常、ガスバリアフィルム10を使用する際に、最終的に剥離される。従って、第1保護フィルム18は、無機層16に対して、必要な粘着性と共に、良好な剥離性を有するのが好ましい。
 このような第1保護フィルム18としては、基板12で例示した樹脂フィルム等の表面に粘着層を形成してなるフィルムが例示される。
 粘着層には、特に限定はなく、例えば、粘着フィルムに利用されている公知の粘着剤からなる粘着層が、各種、利用可能である。具体的には、エチレン-酢酸ビニル共重合体系粘着材、ポロオレフィン系粘着材、アクリル系粘着材、ゴム系粘着材、ウレタン系粘着材、シリコン系粘着材、紫外線硬化型粘着材等、公知の粘着材を用いる粘着層が、各種、利用可能である。
 また、第1保護フィルム18は、ガスバリアフィルム等の機能性フィルムにおいて保護フィルムとして利用される、各種の市販の粘着フィルムも、好適に利用可能である。
 第1保護フィルム18の厚さは、ガスバリアフィルム10の用途や第1保護フィルム18に要求される保護性能等に応じて、適宜、決定すればよい。
 本発明者らの検討によれば、20~100μmが好ましく、30~70μmがより好ましい。
 第1保護フィルム18の厚さを20μm以上とすることにより、無機層16を好適に保護できる、基板12の逆側の面に形成される光拡散層20に第2保護フィルム28を貼り付ける際にシワになることを防止できる等の点で好ましい。
 第1保護フィルム18の厚さを100μm以下とすることにより、ガスバリアフィルム10が不要に厚くなることを防止できる、ガスバリアフィルム10を軽量化できる、ガスバリアフィルム10を巻き取った際のロールの小径化を図れる等の点で好ましい。
 無機層16と第1保護フィルム18との粘着力は、ガスバリアフィルム10の用途や無機層16の強度等に応じて、第1保護フィルム18が不要に剥離することがなく、かつ、無機層16を損傷することなく剥離できる粘着力であればよい。
 本発明者らの検討によれば、無機層16と第1保護フィルム18の粘着力は0.02~0.06N/25mmが好ましい。
 第1保護フィルム18の粘着力を0.02N/25mm以上とすることにより、第1保護フィルム18が不要に剥離することを好適に防止できる等の点で好ましい。
 第1保護フィルム18の粘着力を0.06N/25mm以下とすることにより、無機層16に負担をかけずに第1保護フィルム18を剥離できる等の点で好ましい。
 なお、本発明において、粘着力は、JIS Z 0237 2009の180°剥離試験方法に準じて測定すればよい。
 ガスバリアフィルム10において、基板12の、有機層14、無機層16および第1保護フィルム18の形成面とは逆側の面には、光拡散層20が形成される。
 ガスバリアフィルム10は、光拡散層20を有することにより、後述する量子ドットフィルム等において、量子ドット層に入射する励起光量や量子ドット層から出射される光量を増加させることにつながり、これによりLCD等の輝度を向上できる。
 光拡散層20は、バインダー(マトリックス)に光拡散剤を分散してなるものである。
 バインダーとしては、バインダーに光拡散剤を分散してなる光拡散層に利用されている各種のものが利用可能である。すなわち、光拡散層20において、バインダーの屈折率n1と光拡散剤の屈折率n2とが、n1>n2の関係を満たすものであれば、バインダーは公知の各種の材料が利用可能である。
 具体的には、生産性等の観点から、光散乱粒子およびバインダーとなる重合性化合物を含む重合性組成物(硬化性組成物)の硬化層として光散乱層を形成することが好ましい。
 重合性化合物としては、n1<n2を満たすように波長変換層を形成する材料の屈折率を考慮して市販品または公知の方法で合成したものの中から適切な重合性化合物を選択して用いればよい。
 好ましい重合性化合物としては、例えば、エチレン性不飽和結合を末端および側鎖の少なくとも一方に有する化合物、および/または、エポキシ基もしくはオキセタン基を末端および側鎖の少なくとも一方に有する化合物を挙げることができ、特に、エチレン性不飽和結合を末端および側鎖の少なくとも一方に有する化合物がより好ましい。エチレン性不飽和結合を末端および側鎖の少なくとも一方に有する化合物の具体例としては、(メタ)アクリレート系化合物、アクリルアミド系化合物、スチレン系化合物、無水マレイン酸等が挙げられ、(メタ)アクリレート系化合物が好ましく、アクリレート系化合物がより好ましい。(メタ)アクリレート系化合物としては、(メタ)アクリレート、ウレタン(メタ)アクリレートやポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート等が好ましい。スチレン系化合物としては、スチレン、α-メチルスチレン、4-メチルスチレン、ジビニルベンゼン、4-ヒドロキシスチレン、4-カルボキシスチレン等が好ましい。
 また、アクリレート系化合物としてフルオレン骨格を有する化合物を用いることも好ましい。そのような化合物の具体例としては、WO2013/047524A1に記載の式(2)で表される化合物が挙げられる。
 また、バインダーの好ましい一例として、アクリルポリマーを主鎖とし、側鎖に末端がアクリロイル基のウレタンポリマーおよび末端がアクリロイル基のウレタンオリゴマーの少なくとも一方を有する、分子量が10000~3000000で、二重結合当量が500g/mol以上であるグラフト共重合体を用いて形成されるバインダーが例示される。このようなグラフト共重合体は、例えば大成ファインケミカル株式会社製の紫外線硬化型ウレタンアクリルポリマー(アクリット8BRシリーズ)等の市販品を用いてもよい。
 本発明において、ポリマー(樹脂、高分子材料)の重量平均分子量(Mw)は、公知の方法で測定すればよい。一例として、ゲル浸透クロマトグラフィ(GPC)によって、ポリスチレン(PS)換算の分子量として測定すればよい。ポリマー等の重量平均分子量は、カタログ等に記載された数値を利用してもよい。
 二重結合当量も、公知の方法で測定すればよい。また、二重結合当量も、カタログ等に記載された数値を利用してもよい。
 光拡散層20は、このようなバインダーに、光拡散剤を分散してなるものである。
 光拡散剤は、バインダーと屈折率が異なるものであれば、公知の光拡散剤(光拡散粒子)が利用可能である。具体的には、バインダーと同様、光拡散層20において、バインダーの屈折率n1と光拡散剤の屈折率n2とが、n1>n2の関係を満たすものであれば、公知の各種の光拡散剤が利用可能である。
 従って、光拡散剤は、有機粒子であってもよく、無機粒子であってもよく、有機無機複合粒子であってもよい。例えば、有機粒子としては、合成樹脂粒子を使用することができる。具体例としては、シリコーン樹脂粒子、ポリメチルメタクリレート(PMMA)などの(メタ)アクリル樹脂粒子、ナイロン樹脂粒子、スチレン樹脂粒子、ポリエチレン粒子、ウレタン樹脂粒子、ベンゾグアナミン粒子等が挙げられる。
 好適な屈折率を有する粒子の入手容易性の観点からはシリコーン樹脂粒子、アクリル樹脂粒子が好ましい。中でも、低屈折率で、かつ、バインダーとなるグラフト共重合体との密着性が良好である等の点で、シリコーン樹脂粒子は、好適に利用される。
 また、光拡散剤は、中空構造を有する粒子も使用できる。
 光拡散剤は、市販品も好適に利用可能である。
 一例として、モメンティブ・パフォーマンス・マテリアルズ社製のシリコーン樹脂粒子のトスパールシリーズ等が例示される。
 光拡散剤の粒径には、特に限定はなく、光拡散剤の屈折率、光拡散剤とバインダーとの屈折率差等に応じて、適宜、設定すればよい。
 本発明者らの検討によれば、光拡散剤の粒径は、0.5μm以上が好ましく、0.5~30μmが好ましく、2~20μmがより好ましい。
 光拡散剤の粒径を0.5μm以上とすることにより、良好な光拡散効果を得られる等の点で好ましい。
 なお、光拡散剤の粒径は、例えば、走査型電子顕微鏡(Scanning Electron Microscope;SEM)での観察で求めればよい。あるいは、光拡散剤の粒径は、カタログ等に記載された数値を利用してもよい。
 光拡散剤は、粒径(大きさ)の異なる2種のものを用いてもよい。粒径の異なる2種の光拡散剤を用いることにより、量子ドットフィルムから照射する光の輝度を向上できる、内部散乱と外部散乱との比率を制御することでLCD等に利用した際に視野角に対する輝度の分布を調節できる等の点で好ましい。
 ここで、粒径の異なる2種の光拡散剤を用いる場合には、小さい方の光拡散剤の粒径は、内部散乱性付与の点から、1~5μmが好ましく、1.5~4μmがより好ましい。また、大きい方の光拡散剤の粒径は、外部散乱性の付与およびアンチニュートンリング性付与の点から、8~15μmが好ましく9~12μmがより好ましい。
 光拡散層20において、バインダーの合計質量と光拡散剤の合計質量との比である『バインダー質量/光拡散剤質量』が0.1~0.8であるのが好ましく、0.25~0.66であるのがより好ましい。すなわち、本発明のガスバリアフィルム10においては、光拡散層20は、質量比で、バインダーよりも光拡散剤の方が多いのが好ましい。
 『バインダー質量/光拡散剤質量』を0.1以上とすることにより、光拡散層20の強度を向上できる、光拡散層20内での凝集剥離を防止できる等の点で好ましい。
 『バインダー質量/光拡散剤質量』を0.8以下とすることにより、良好な光拡散性能を得られる等の点で好ましい。
 光拡散層20の厚さは、バインダーの形成材料や光拡散剤の種類等に応じて、目的とする光拡散性能や光拡散層の強度等を得られる厚さを、適宜、設定すればよい。
 本発明者らの検討によれば、光拡散層20の厚さは、5~25μmが好ましく、7~20μmがより好ましく、9~18μmが特に好ましい。
 光拡散層20の厚さを5μm以上とすることにより、良好な光拡散性能が得られる等の点で好ましい。
 光拡散層20の厚さを25μm以下とすることにより、ガスバリアフィルム10が不要に厚くなることを防止できる、光透過率が高い光拡散層20が得られる、カールを抑制できる等の点で好ましい。
 前述のように、光拡散層20は、バインダーに光拡散剤を分散してなるものである。そのため、光拡散層20の表面(基板12と逆側の表面)は、ある程度の表面粗さを有する。
 本発明者らの検討によれば、光拡散層20の表面粗さは、光拡散層に要求される光拡散性能、要求される第2保護フィルム28との粘着力等に応じて、適宜、決定すればよい。
 本発明者らの検討によれば、光拡散層20の表面粗さRa(算術平均粗さRa)は1~7μmが好ましく、2~5μmがより好ましい。
 光拡散層20の表面粗さRaを1μm以上とすることにより、良好な光拡散性能が得られる等の点で好ましい。
 光拡散層20の表面粗さRaを7μm以下とすることにより、第2保護フィルム28との良好な粘着力を確保できる、ガスバリアフィルム10をロール状に巻き取った際における光拡散層20の凹凸の転写に起因する無機層16の損傷を防止できる、光の散乱性による視野角の依存度を制御できる等の点で好ましい。
 なお、本発明において、表面粗さRaは、JIS B 0601(2001)に準拠して測定すればよい。
 光拡散層20は、ある程度の硬度を有するのが好ましい。具体的には、鉛筆硬度でB~2H程度の硬度を有するのが好ましい。
 光拡散層20の硬度を上記範囲とすることにより、光拡散層20の機械的強度を十分にできる、後述する第2保護フィルム28を剥離する際に光拡散層20が剥離栗することを確実に防止できる、ガスバリアフィルム10のカールを防止できる等の点で好ましい。
 光拡散層20の上には、第2保護フィルム28が設けられる。なお、光拡散層20の上とは、すなわち、光拡散層20の基板12側とは逆側の面の表面である。
 本発明において、第2保護フィルム28(拡散層側表面層)は、支持体26の1面に粘着層24を設けたものである。第2保護フィルム28は、粘着層24を光拡散層20に貼着して設けられ、前述の第1保護フィルム18と同様、通常、最終的には光拡散層20から剥離される。従って、第2保護フィルム28も、光拡散層20に対して、必要な粘着性と共に、良好な剥離性を有するのが好ましい。
 このような第2保護フィルム28は、基板12における無機層16等の形成面とは逆側の面から、無機層16を保護するものである。
 前述のように、量子ドットは水分に弱いため、LCD等のバックライトとして利用する場合には、量子ドット層をガスバリアフィルムで挟持した量子ドットフィルムの形態で用いることが考えられている。また、量子ドットフィルムに光拡散層を設けることにより、量子ドット層から出射される光量を増加できる。
 ガスバリアフィルムで量子ドット層を挟持する場合には、ガスバリア性を発現する無機層16を量子ドット層側に向ける。従って、光拡散層20は、基板12の、無機層16等の形成面とは逆側の面に形成される。
 ここで、前述のように、光拡散層20は、バインダーに光拡散剤を分散したものであり、ある程度の表面粗さ、すなわち、表面に凹凸を有する。そのため、間接的ではあるが、ガスバリアフィルム10が外部から押圧などの機械的な力を受けた際に、光拡散層20の表面の凹凸が、無機層16に局所的な負荷を掛けてしまい、無機層16を損傷してしまう。
 また、ガスバリアフィルム10等の本発明の機能性フィルムは、いわゆるロール・トゥ・ロール(RtoR)によって製造するのが好ましい。また、RtoRによって製造されたガスバリアフィルム10等の本発明の機能性フィルムは、やはり、RtoRで扱われるのが通常である。
 周知のように、RtoRとは、長尺な被成膜材料をロール状に巻回してなる材料ロールから、被成膜材料を送り出し、被成膜材料を長手方向に搬送しつつ成膜を行い、成膜済の被成膜材料をロール状に巻回する製造方法である。
 ガスバリアフィルム10等、光拡散層20を有するフィルムが巻き取られると、いわゆる巻き締まりによって、無機層16は、両面から光拡散層20の表面の凹凸による局所的な負荷を受けることになり、無機層16が損傷し易い。
 さらに、後述するが、ガスバリアフィルム10は、第1保護フィルム18を剥離して密着層等の第2機能層を形成される。第2機能層も無機層16の保護層として作用するが、樹脂フィルム等を有する第1保護フィルム18に比して、保護機能は弱いため、無機層16の損傷は、より大きな問題となる。
 加えて、量子ドットフィルム等に利用されるガスバリアフィルムでは、量子ドットフィルムを薄くするために、前述のように基板12の厚さが好ましくは5~100μm、より好ましくは10~50μmと、非常に薄くなっているので、光拡散層20の凹凸に起因する無機層16の損傷は、より大きな問題になる。
 これに対して、本発明のガスバリアフィルム10は、光拡散層20の上に、粘着層24と支持体26とを有する第2保護フィルム28を有する。
 そのため、光拡散層20の表面の凹凸が粘着層24を有する第2保護フィルム28に覆われるので、第1保護フィルム18を剥離してロール状に巻回した場合であっても、光拡散層20の凹凸が無機層16に与える局所的な負荷を大幅に低減して、無機層16が損傷することを防止できる。
 さらに、前述のように、量子ドットフィルム等に利用されるガスバリアフィルムでは、基板が薄く、光拡散層20を形成した状態でも、剛性が弱く、RtoRでの処理に対して十分なハンドリング性を有さない場合有る。これに対して、本発明のガスバリアフィルム10は、第2保護フィルム28を有することにより、第2保護フィルム28がガスバリアフィルム10の補助的な支持体としても作用するので、基板12が薄い場合でも、良好なハンドリング性を確保できる。
 本発明のガスバリアフィルム10において、第2保護フィルム28の支持体26は、各種のフィルム状物(シート状物)が利用可能である。具体的には、基板12で例示した各種の樹脂フィルム等が、好適に例示される。
 ここで、ガスバリアフィルム10においては、第1保護フィルム18のヤング率が、第2保護フィルム28の支持体26のヤング率よりも低いのが好ましい。なお、第1保護フィルム18が、樹脂フィルム等と粘着層とから構成される場合には、第1保護フィルム18の樹脂フィルム等のヤング率が、支持体26のヤング率よりも低いのが好ましい。
 第1保護フィルム18のヤング率を、支持体26のヤング率よりも低くすることにより、第1保護フィルム18を貼り付ける際や第1保護フィルム18を剥離する際に、無機層16に掛かる応力を減少でき、無機層16の損傷を防止できる等の点で好ましい。
 支持体26の厚さは、支持体26の形成材料や、支持体26に要求される剛性等に応じて、適宜、決定すればよい。
 本発明者らの検討によれば、支持体26の厚さは20~100μmが好ましく、20~70μmがより好ましい。
 支持体26の厚さを20μm以上とすることにより、無機層16をより確実に保護できる、第2保護フィルム28のカールを防止して適正にロール状に巻き取ることができる、第1保護フィルム18を剥離した際に機械的強度を付与できる等の点で好ましい。
 支持体26の厚さを100μm以下とすることにより、ガスバリアフィルム10が不要に厚くなることを防止できる、可撓性の良好なガスバリアフィルム10が得られる、ガスバリアフィルム10の軽量化を図れる、ガスバリアフィルム10をロール状に巻き取った際の小径化を図れる、製品に使用した際のデバイスの薄膜化や軽量化を図れる等の点で好ましい。
 粘着層24は、特に限定はなく、例えば、各種の粘着フィルムに利用されている公知の粘着剤からなる粘着層が、各種、利用可能である。具体的には、エチレン-酢酸ビニル共重合体系粘着材、ポロオレフィン系粘着材、アクリル系粘着材、ゴム系粘着材、ウレタン系粘着材、シリコン系粘着材、紫外線硬化型粘着材等、公知の粘着材を用いる粘着層が、各種、利用可能である。
 粘着層24の厚さは、粘着層24の形成材料や、第2保護フィルム28に要求される粘着力や無機層16の保護機能等に応じて、適宜、決定すればよい。
 本発明者らの検討によれば、粘着層24の厚さは1~25μmが好ましく、10~25μmがより好ましい。
 粘着層24の厚さを1μm以上とすることにより、光拡散層20の表面凹凸を好適に粘着層24に埋没できる、より確実に無機層16の損傷を防止できる等の点で好ましい。
 粘着層24の厚さを25μm以下とすることにより、ガスバリアフィルム10が不要に厚くなることを防止できる、可撓性の良好なガスバリアフィルム10が得られる、ガスバリアフィルム10の軽量化を図れる、ガスバリアフィルム10をロール状に巻き取った際の小径化を図れる等の点で好ましい。
 ここで、粘着層24の厚さは、光拡散層20の表面粗さRaよりも厚いのが好ましい。
 このような構成を有することにより、光拡散層20の表面凹凸を好適に粘着層24に埋没して無機層16の保護能力を向上できる、粘着層24が光拡散層20の表面凹凸に追従することで好ましい粘着力が得られる等の点で好ましい。
 第2保護フィルム28は、全光線透過率(波長400~800nm)の平均値が85%以上であるのが好ましい。
 後に詳述するが、ガスバリアフィルム10は、量子ドットフィルムにおいて、量子ドット層を挟持して、量子ドットが水分によって劣化するのを防止するのに用いられる。ここで、量子ドット層は、通常、光拡散層20側から紫外線を照射することによって、バインダーを効果することで形成される。従って、第2保護フィルム28の紫外線透過率が低いと、量子ドット層を十分に効果出来ない場合が有る。
 これに対して、第2保護フィルム28の全光線透過率の平均値を85%以上とすることにより、量子ドットフィルムの製造において、量子ドット層を確実に硬化して、適正な量子ドットフィルムを安定して製造することが可能になる。
 さらに、第2保護フィルム28は、第2保護フィルム28同士の支持体26を接触させて動かした際の動摩擦力が1.5N/20mm以下であるのが好ましい。
 量子ドット層の形成や密着層等の第2機能層の形成は、第1保護フィルム18を剥離して、ガスバリアフィルム10を長手方向に搬送しつつ塗布法によって行うのが好ましい。また、これらの形成は、RtoRによって行うのが好ましい。ここで、第2保護フィルム28の滑り性を上記のように高くすることにより、第1保護フィルム18を剥離したガスバリアフィルム10の搬送中に、ガスバリアフィルム10にシワ等が生じて、無機層16が損傷することを、好適に防止できる。
 第2保護フィルム28と光拡散層20との粘着力は、光拡散層20のバインダー等に応じて、十分な粘着力で第2保護フィルム28を粘着でき、かつ、良好に剥離できる粘着力を、適宜、設定すればよい。
 本発明者らの検討によれば、第2保護フィルム28と光拡散層20との粘着力は、0.1~1N/25mmが好ましく、0.5~1N/25mmがより好ましい。
 第2保護フィルム28と光拡散層20との粘着力を0.1N/25mm以上とすることにより、第2保護フィルム28と光拡散層20とを確実に貼着して無機層16の損傷を好適に防止できる、第1保護フィルム18を剥離する際における第2保護フィルム28のシワの発生を防止できる等の点で好ましい。
 第2保護フィルム28と光拡散層20との粘着力を1N/25mm以下とすることにより、好適な第2保護フィルム28の剥離性を確保できる、第2保護フィルム28の剥離時に無機層16に余分な負担が係ることを防止できる、第2保護フィルム28の剥離時に光拡散層20を剥離あるいは層間剥離してしまうことを防止できる等の点で好ましい。
 本発明のガスバリアフィルム10においては、無機層16の損傷を、より確実に防止するためには、第2保護フィルム28の良好な剥離性を確保しつつも、光拡散層20の表面に、第2保護フィルム28を確実に貼着して、この貼着状態を維持できるのが好ましい。
 ここで、第2保護フィルム28と光拡散層20との貼着の強さは、光拡散層20の表面の粗さ、粘着層24の厚さ、および、第2保護フィルム28と光拡散層20との粘着力に影響される。
 すなわち、粘着層24が薄い場合には、粘着層24が光拡散層20の表面の凹凸に追従しにくい。従って、この場合には、光拡散層20の表面に、第2保護フィルム28を確実に貼着して維持するためには、第2保護フィルム28と光拡散層20との粘着力を大きくする必要が有る。逆に粘着層24が、表面の凹凸に十分に追従できる厚さを有する場合には、第2保護フィルム28と光拡散層20との粘着力は小さくてもよい。
 また、光拡散層20の表面粗さが小さい場合には、粘着層24を薄く、および/または、第2保護フィルム28と光拡散層20との粘着力を小さくできる。逆に、光拡散層20の表面粗さが大きい場合には、粘着層24を厚く、および/または、第2保護フィルム28と光拡散層20との粘着力を大きくする必要が有る。
 以上の点を考慮すると、本発明のガスバリアフィルム10は、下記式で示される粘着係数が0.01~25であるのが好ましく、1~7であるのがより好ましい。
粘着係数=(粘着力[N/25mm]×粘着層の厚さ[μm])/拡散層のRa[μm]
 なお、上記式における粘着力とは、第2保護フィルム28と光拡散層20との粘着力である。また、拡散層のRaとは、光拡散層20の表面粗さRaである。
 粘着係数を0.01以上とすることにより、第2保護フィルム28の貼着状態を保持して確実に無機層16を保護できる等の点で好ましい。
 粘着係数を25以下とすることにより、第2保護フィルム28を容易かつ好適に剥離できる等の点で好ましい。
 図2に、本発明の機能性フィルムの第2の態様をガスバリアフィルムに利用した一例を概念的に示す。
 なお、図2に示すガスバリアフィルム30は、図1に示すガスバリアフィルム10と同じ部材を多く有するので、同じ部材には同じ符号を付し、以下の説明は、異なる部位を主に行う。
 図2に示すガスバリアフィルム30は、図1に示すガスバリアフィルム10の第1保護フィルム18に変えて、第2機能層としての密着層32を有するものである。
 すなわち、ガスバリアフィルム30は、一例として、本発明の第1の態様の機能性フィルムである図1に示すガスバリアフィルム10から第1保護フィルム18を剥離して、無機層16の上に密着層32を形成することで作製される。
 密着層32は、ガスバリアフィルム30を各種の部材や装置に貼着して使用する際に、ガスバリアフィルム30と、ガスバリアフィルム30が積層される被積層体との十分な密着性を得るためのものである。例えば、ガスバリアフィルム30を、量子ドットフィルムに用いる場合には、密着層32は、量子ドット層を形成するバインダーとの間で、十分な密着性を得るためのものである。
 密着層32は、ガスバリアフィルム30の用途に応じて、ガスバリアフィルム30の無機層16が貼着される部材との十分な密着力が得られるものが、各種、利用可能である。例えば、ガスバリアフィルム30を、量子ドットフィルムに用いる場合には、量子ドット層を形成するバインダーとの間で、十分な密着性を得られる材料を用いればよい。
 密着層32としては、一例として、シランカップリング剤が含有されてなるアクリレートモノマーやポリマーからなる層や、未反応のラジカル重合基を有するアクリレートポリマー、ウレタンアクリルポリマーや、硬膜後もOH基を有するアクリル酸モノマーあるいはポリマー等からなる層が例示される。
 好ましい密着層32として、ウレタンポリマーを主鎖とし、末端が(メタ)アクリロイル基である側鎖を有する、重量平均分子量が5000~30000で、二重結合当量が300g/mol以上の紫外線硬化が可能なウレタンポリマーを用いて形成される密着層32が例示される。以下の説明では、この『重量平均分子量が5000~30000で、二重結合当量が300g/mol以上の紫外線硬化が可能なウレタンポリマー』を、便宜的に『紫外線硬化可能なウレタンポリマー』とも言う。
 また、密着層32を紫外線硬化可能なウレタンポリマーを用いて形成する場合には、さらに、硬化性のウレタンポリエステルと、2以下の(メタ)アクリロイル基を含むリン酸化合物および/または1つの(メタ)アクリロイル基を含むシランカップリング剤とを用いて、密着層を形成するのが好ましい。
 紫外線硬化可能なウレタンポリマーは、公知の各種のものが利用可能である。また、大成ファインケミカル株式会社製の紫外線硬化型ウレタンポリマー(アクリット8UHシリーズ)等の市販品を用いてもよい。
 硬化性のウレタンポリエステルも、公知の各種のものが利用可能である。また、東洋紡社製のバイロンUR1400などのバイロンURシリーズ等の市販品を用いてもよい。
 2以下の(メタ)アクリロイル基を含有するリン酸化合物も、ビス[2-(メタクリロイルオキシ)エチル]等、公知の各種のものが利用可能である。また、日本化薬社製のKAYAMERシリーズ、ユニケミカル社製のPhosmerシリーズ等の市販品を用いてもよい。
 さらに、1つの(メタ)アクリロイル基を含有するシランカップリング剤も、3-アクリロキシプロピルトリメトキシシラン等、公知の各種のものが利用可能である。また、信越シリコーン社製のKBM-5103、KBM-502、KBM-503、KBE-502、KBE-503等の市販品を用いてもよい。
 密着層32の厚さは、密着層32の形成材料、ガスバリアフィルム30の厚さや大きさ、ガスバリアフィルムの用途等に応じて、適宜、設定すればよい。
 本発明者らの検討によれば、密着層32の厚さは、10~1000nmが好ましく、50~700nmがより好ましく、70~500nmが特に好ましい。
 密着層32の厚さを10nm以上とすることにより、無機層16を好適に保護できる等の点で好ましい。
 密着層32の厚さを1000nm以下にすることにより、ガスバリアフィルム10が不要に厚くなることを防止できる、内部応力が低く保たれ高い密着性を実現できる等の点で好ましい。
 なお、本発明の機能性フィルムにおいて、第2機能層は、密着層に限定されない。
 第2機能層としては、具体的には、波長変換層、光取り出し層、有機エレクトロルミネッセンス層(有機EL層)、導電層等が例示される。
 図3に、本発明の機能性フィルムの第3の態様を量子ドットフィルムに利用した一例を概念的に示す。
 なお、図3に示す量子ドットフィルム34は、図1に示すガスバリアフィルム10および図2に示すガスバリアフィルム30と同じ部材を多く有するので、同じ部材には同じ符号を付し、以下の説明は、異なる部位を主に行う。
 量子ドットフィルム34は、前述の本発明の第2の態様の機能性フィルムである図2に示すガスバリアフィルム30と、ガスバリアフィルム36とで、量子ドット層38を挟持してなるものである。
 ガスバリアフィルム36は、光拡散層20を有さない以外は、基本的に、ガスバリアフィルム30と同じ構成を有するものである。
 量子ドットフィルム34は、密着層32を量子ドット層38に対面して、ガスバリアフィルム30とガスバリアフィルム36とで量子ドット層38を挟持して構成される。
 なお、図3に示す量子ドットフィルム34は、好ましい態様として、共に密着層32を有するガスバリアフィルム30とガスバリアフィルム36とで量子ドット層38を挟持しているが、本発明は、これに限定はされない。
 すなわち、密着層32を有さない2枚のガスバリアフィルムで、無機層16と量子ドット層38とを対面して、量子ドット層38を挟持してもよい。あるいは、密着層32を有するガスバリアフィルムと、密着層32を有さないガスバリアフィルムとで、無機層16および密着層32を量子ドット層38に対面して、量子ドット層38を挟持してもよい。
 量子ドット層38は、量子ドットを、樹脂等のバインダー(マトリックス)に分散してなるものである。量子ドット層38は、入射した光の波長を変換して出射する機能を有するものである。
 例えば、図示しないバックライトから出射された青色光が量子ドット層38に入射すると、量子ドット層38は、内部に含有する量子ドットの効果により、この青色光の少なくとも一部を赤色光あるいは緑色光に波長変換して出射する。
 青色光とは、400nm~500nmの波長帯域に発光中心波長を有する光であり、緑色光とは、500nm~600nmの波長帯域に発光中心波長を有する光のことであり、赤色光とは、600nmを超え680nm以下の波長帯域に発光中心波長を有する光のことである。
 なお、量子ドット層が発現する波長変換の機能は、青色光を赤色光あるいは緑色光に波長変換する構成に限定はされず、入射光の少なくとも一部を異なる波長の光に変換するものであればよい。
 量子ドットは、少なくとも、入射する励起光により励起され蛍光を発光する。
 量子ドット層に含有される量子ドットの種類には特に限定はなく、求められる波長変換の性能等に応じて、種々の公知の量子ドットを適宜選択すればよい。
 量子ドット(量子ドット材料)については、例えば特開2012-169271号公報の段落番号[0060]~[0066]を参照できるが、ここに記載されるものに限定はされない。また、量子ドットは、市販品を何ら制限なく用いることができる。量子ドットの発光波長は、通常、粒子の組成、サイズにより調整することができる。
 量子ドットは、1種のみを用いてもよいし、2種以上を併用してもよい。2種以上併用する場合は、発光の波長が異なる2種以上の量子ドットを使用してもよい。
 具体的には、公知の量子ドットには、600nm~680nmの範囲の波長帯域に発光中心波長を有する量子ドット(A)、500nm~600nmの範囲の波長帯域に発光中心波長を有する量子ドット(B)、400nm~500nmの波長帯域に発光中心波長を有する量子ドット(C)があり、量子ドット(A)は、励起光により励起され赤色光を発光し、量子ドット(B)は緑色光を、量子ドット(C)は青色光を発光する。例えば、量子ドット(A)と量子ドット(B)を含む量子ドット含有積層体へ励起光として青色光を入射させると、量子ドット(A)により発光される赤色光、量子ドット(B)により発光される緑色光と、量子ドット層を透過した青色光により、白色光を具現化することができる。または、量子ドット(A)、(B)、および(C)を含む量子ドット層に励起光として紫外光を入射させることにより、量子ドット(A)により発光される赤色光、量子ドット(B)により発光される緑色光、および量子ドット(C)により発光される青色光により、白色光を具現化することができる。
 また、量子ドットとして、形状がロッド状で指向性を持ち偏光を発する、いわゆる量子ロッドを用いてもよい。
 量子ドットは、バインダー中に均一に分散されるのが好ましいが、バインダー中に偏りをもって分散されてもよい。
 量子ドット層38のバインダーの種類としては、特に限定はなく、公知の量子ドット層で用いられる各種の樹脂を用いることができる。
 例えば、ポリエステル系樹脂(例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート)、(メタ)アクリル系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂などが挙げられる。
 あるいは、バインダーとして、1以上の重合性基(架橋性基)を有する硬化性化合物(重合性化合物(重合性単量体))を硬化(重合、架橋)してなるものを用いることができる。なお、2つ以上の重合性基を有する硬化性化合物体は、それぞれの重合性基が同一であってもよいし、異なっていても良い。
 重合性基の種類は、特に限定されないが、好ましくは、(メタ)アクリロイル基、ビニル基、エポキシ基であり、より好ましくは、(メタ)アクリロイル基であり、さらに好ましくは、アクリロイル基である。すなわち、本発明において、量子ドット層のバインダーは、(メタ)アクリル樹脂が好ましく、アクリル樹脂がより好ましい。
 量子ドット層38は、具体的には、例えば、以下の第1の硬化性化合物と第2の硬化性化合物とを含む硬化性組成物を硬化してなる樹脂をバインダーとして用いることができる。
 第1の硬化性化合物は、2官能以上の(メタ)アクリレートモノマー、ならびにエポキシ基およびオキセタニル基からなる群から選択される官能基を2つ以上有するモノマーからなる群から選択される1つ以上の化合物であるのが好ましい。
 2官能以上の(メタ)アクリレートモノマーのうち、2官能の(メタ)アクリレートモノマーとしては、ネオペンチルグリコールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート等が好ましい例として挙げられる。
 また、2官能以上の(メタ)アクリレートモノマーのうち、3官能以上の(メタ)アクリレートモノマーとしては、ECH変性グリセロールトリ(メタ)アクリレート、EO変性グリセロールトリ(メタ)アクリレート、PO変性グリセロールトリ(メタ)アクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、EO変性リン酸トリアクリレート、トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート、アルキル変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート、アルキル変性ジペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等が好ましい例として挙げられる。
 エポキシ基およびオキセタニル基からなる群から選択される官能基を2つ以上有するモノマーとしては、例えば、脂肪族環状エポキシ化合物、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、臭素化ビスフェノールAジグリシジルエーテル、臭素化ビスフェノールFジグリシジルエーテル、臭素化ビスフェノールSジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、水添ビスフェノールFジグリシジルエーテル、水添ビスフェノールSジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル類;エチレングリコール、プロピレングリコール、グリセリンなどの脂肪族多価アルコールに1種または2種以上のアルキレンオキサイドを付加することにより得られるポリエーテルポリオールのポリグリシジルエーテル類;脂肪族長鎖二塩基酸のジグリシジルエステル類;高級脂肪酸のグリシジルエステル類;エポキシシクロアルカンを含む化合物等が好適に用いられる。
 エポキシ基およびオキセタニル基からなる群から選択される官能基を2つ以上有するモノマーとして好適に使用できる市販品としては、ダイセル化学工業(株)のセロキサイド2021P、セロキサイド8000、シグマアルドリッチ社製の4-ビニルシクロヘキセンジオキシド等が挙げられる。これらは、1種単独で、または2種以上組み合わせて用いることができる。
 また、エポキシ基およびオキセタニル基からなる群から選択される官能基を2つ以上有するモノマーはその製法は問わないが、例えば、丸善KK出版、第四版実験化学講座20有機合成II、213~、平成4年、Ed.by Alfred Hasfner,The chemistry of heterocyclic compounds-Small Ring Heterocycles part3 Oxiranes,John & Wiley and Sons,An Interscience Publication,New York,1985、吉村、接着、29巻12号、32、1985、吉村、接着、30巻5号、42、1986、吉村、接着、30巻7号、42、1986、特開平11-100378号公報、特許第2906245号公報、特許第2926262号公報などの文献を参考にして合成できる。
 第2の硬化性化合物は、分子中に水素結合性を有する官能基を有し、かつ、第1の硬化性化合物と重合反応できる重合性基を有する。
 水素結合性を有する官能基としては、ウレタン基、ウレア基、またはヒドロキシル基等が挙げられる。
 第1の硬化性化合物と重合反応できる重合性基としては、例えば、第1の硬化性化合物が2官能以上の(メタ)アクリレートモノマーであるときは(メタ)アクリロイル基であればよく、第1の硬化性化合物がエポキシ基およびオキセタニル基からなる群から選択される官能基を2つ以上有するモノマーであるときはエポキシ基またはオキセタニル基であればよい。
 ウレタン基を含む(メタ)アクリレートモノマーとしては、TDI、MDI、HDI、IPDI、HMDI等のジイソシアナートとポリ(プロピレンオキサイド)ジオール、ポリ(テトラメチレンオキサイド)ジオール、エトキシ化ビスフェノールA、エトキシ化ビスフェノールSスピログリコール、カプロラクトン変性ジオール、カーボネートジオール等のポリオール、および2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、グリシドールジ(メタ)アクリレート、ペンタエリスリトールトリアクリレート等のヒドロキシアクリレートを反応させて得られるモノマー、オリゴマーであり、特開2002-265650号公報や、特開2002-355936号公報、特開2002-067238号公報等に記載の多官能ウレタンモノマーを挙げることができる。具体的には、TDIとヒドロキシエチルアクリレートとの付加物、IPDIとヒドロキシエチルアクリレートとの付加物、HDIとペンタエリスリトールトリアクリレート(PETA)との付加物、TDIとPETAとの付加物を作り残ったイソシアナートとドデシルオキシヒドロキシプロピルアクリレートを反応させた化合物、6,6ナイロンとTDIの付加物、ペンタエリスリトールとTDIとヒドロキシエチルアクリレートの付加物等をあげることができるが、これに限定されるものではない。
 ウレタン基を含む(メタ)アクリレートモノマーとして好適に使用できる市販品としては、共栄社化学社製のAH-600、AT-600、UA-306H、UA-306T、UA-306I、UA-510H、UF-8001G、DAUA-167、新中村化学工業社製のUA-160TM、大阪有機化学工業社製のUV-4107F、UV-4117F等が挙げられる。これらは、1種単独で、または2種以上組み合わせて用いることができる。
 ヒドロキシル基を含む(メタ)アクリレートモノマーとしては、エポキシ基を有する化合物と(メタ)アクリル酸との反応により合成される化合物を挙げることができる。代表的なものは、エポキシ基を有する化合物により、ビスフェノールA型、ビスフェノールS型、ビスフェノールF型、エポキシ化油型、フェノールのノボラック型、脂環型に分類される。具体的な例としては、ビスフェノールAとエピクロルヒドリンの付加物に(メタ)アクリル酸を反応させた(メタ)アクリレート、フェノールノボラックにエピクロロヒドリンを反応させ、(メタ)アクリル酸を反応させた(メタ)アクリレート、ビスフェノールSとエピクロロヒドリンの付加物に(メタ)アクリル酸を反応させた(メタ)アクリレート、ビスフェノールSとエピクロロヒドリンの付加物に(メタ)アクリル酸を反応させた(メタ)アクリレート、エポキシ化大豆油に(メタ)アクリル酸を反応させた(メタ)アクリレート等を挙げることができる。また、ヒドロキシル基を含む(メタ)アクリレートモノマーとして他には、末端にカルボキシ基、またはリン酸基を有する(メタ)アクリレートモノマー等を挙げることができるが、これらに限定されるものではない。
 ヒドロキシル基を含む第2の硬化性化合物として好適に使用できる市販品としては、共栄社化学社製のエポキシエステル、M-600A、40EM、70PA、200PA、80MFA、3002M、3002A、3000MK、3000A、日本化成社製の4-ヒドロキシブチルアクリレート、新中村化学工業社製の単官能アクリレートA-SA、単官能メタクリレートSA、ダイセル・オルネクス社製の単官能アクリレートβ-カルボキシエチルアクリレート、城北化学工業社製のJPA-514等が挙げられる。これらは、1種単独で、または2種以上組み合わせて用いることができる。
 第1の硬化性化合物と第2の硬化性化合物との質量比は10:90~99:1であればよく、10:90~90:10であることが好ましい。第2の硬化性化合物の含有量に対し第1の硬化性化合物の含有量が多いことも好ましく、具体的には、(第1の硬化性化合物の含有量)/(第2の硬化性化合物の含有量)の質量比が2~10であることが好ましい。
 第1の硬化性化合物と第2の硬化性化合物とを硬化してなる樹脂をバインダーとして用いる場合には、硬化性組成物として、さらに単官能(メタ)アクリレートモノマーを含むことが好ましい。単官能(メタ)アクリレートモノマーとしては、アクリル酸およびメタクリル酸、それらの誘導体、より詳しくは、(メタ)アクリル酸の重合性不飽和結合((メタ)アクリロイル基)を分子内に1個有するモノマーを挙げることができる。それらの具体例として以下に化合物を挙げるが、本発明はこれに限定されるものではない。
 メチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、n-オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等のアルキル基の炭素数が1~30であるアルキル(メタ)アクリレート;ベンジル(メタ)アクリレート等のアラルキル基の炭素数が7~20であるアラルキル(メタ)アクリレート;ブトキシエチル(メタ)アクリレート等のアルコキシアルキル基の炭素数が2~30であるアルコキシアルキル(メタ)アクリレート;N,N-ジメチルアミノエチル(メタ)アクリレート等の(モノアルキルまたはジアルキル)アミノアルキル基の総炭素数が1~20であるアミノアルキル(メタ)アクリレート;ジエチレングリコールエチルエーテルの(メタ)アクリレート、トリエチレングリコールブチルエーテルの(メタ)アクリレート、テトラエチレングリコールモノメチルエーテルの(メタ)アクリレート、ヘキサエチレングリコールモノメチルエーテルの(メタ)アクリレート、オクタエチレングリコールのモノメチルエーテル(メタ)アクリレート、ノナエチレングリコールのモノメチルエーテル(メタ)アクリレート、ジプロピレングリコールのモノメチルエーテル(メタ)アクリレート、ヘプタプロピレングリコールのモノメチルエーテル(メタ)アクリレート、テトラエチレングリコールのモノエチルエーテル(メタ)アクリレート等のアルキレン鎖の炭素数が1~10で末端アルキルエーテルの炭素数が1~10のポリアルキレングリコールアルキルエーテルの(メタ)アクリレート;ヘキサエチレングリコールフェニルエーテルの(メタ)アクリレート等のアルキレン鎖の炭素数が1~30で末端アリールエーテルの炭素数が6~20のポリアルキレングリコールアリールエーテルの(メタ)アクリレート;シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メチレンオキシド付加シクロデカトリエン(メタ)アクリレート等の脂環構造を有する総炭素数4~30の(メタ)アクリレート;ヘプタデカフロロデシル(メタ)アクリレート等の総炭素数4~30のフッ素化アルキル(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、トリエチレングリコールのモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート、グリセロールのモノまたはジ(メタ)アクリレート等の水酸基を有する(メタ)アクリレート;グリシジル(メタ)アクリレート等のグリシジル基を有する(メタ)アクリレート;テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート等のアルキレン鎖の炭素数が1~30のポリエチレングリコールモノ(メタ)アクリレート;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリルアミド、アクリロイルモルホリン等の(メタ)アクリルアミドなどが挙げられる。
 単官能(メタ)アクリレートモノマーは第1の硬化性化合物と第2の硬化性化合物との総質量100質量部に対して、1~300質量部含まれていることが好ましく、50~150質量部含まれていることがより好ましい。
 また、炭素数4~30の長鎖アルキル基を有する化合物を含むことが好ましい。具体的には第1の硬化性化合物、第2の硬化性化合物、または単官能(メタ)アクリレートモノマーの少なくともいずれかが、炭素数4~30の長鎖アルキル基を有することが好ましい。上記長鎖アルキル基は炭素数12~22の長鎖アルキル基であることがより好ましい。これにより、量子ドットの分散性が向上するからである。量子ドットの分散性が向上するほど、光変換層から出射面に直行する光量が増えるため、正面輝度および正面コントラストの向上に有効である。
 炭素数4~30の長鎖アルキル基を有する単官能(メタ)アクリレートモノマーとしては、具体的には、ブチル(メタ)アクリレート、オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、オレイル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、ブチル(メタ)アクリルアミド、オクチル(メタ)アクリルアミド、ラウリル(メタ)アクリルアミド、オレイル(メタ)アクリルアミド、ステアリル(メタ)アクリルアミド、ベヘニル(メタ)アクリルアミド等が好ましい。中でもラウリル(メタ)アクリレート、オレイル(メタ)アクリレート、ステアリル(メタ)アクリレートが特に好ましい。
 また、硬化性化合物として、トリフルオロエチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、(パーフルオロブチル)エチル(メタ)アクリレート、パーフルオロブチル-ヒドロキシプロピル(メタ)アクリレート、(パーフルオロヘキシル)エチル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、パーフルオロオクチルエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート等のフッ素原子を有する化合物を含んでいてもよい。これらの化合物を含むことにより塗布性を向上させることができる。
 量子ドット層38において、バインダーの量には特に限定はなく、用いる硬化性化合物の種類や、量子ドット層38の厚さ等に応じて、適宜、設定すればよい。
 本発明者らの検討によれば、量子ドット層38の全量100質量部に対して、バインダーの量が90~99.9質量部であることが好ましく、92~99質量部であることがより好ましい。
 量子ドット層38の厚さは特に限定は無いが、5~200μmが好ましく、10~150μmがより好ましい。
 量子ドット層38の厚さを5μm以上とすることにより、良好な発光特性が得られる等の点で好ましい。
 量子ドット層38の厚さを200μm以下とすることにより、量子ドットフィルム34が不要に厚くなることを防止できる、取り扱い性の良好な量子ドットフィルム34が得られる、凝集剥離がない量子ドット層38を形成できる等の点で好ましい。
 以下、ガスバリアフィルム10、ガスバリアフィルム30および量子ドットフィルム34の製造方法を説明することにより、本発明の製造方法について説明する。
 なお、以下の製造方法における各層の形成やフィルムの貼着等は、いずれも、長尺な基板12や支持体26等を用いて、RtoRによって行うのが好ましい。
 図1に示すガスバリアフィルム10は、一例として、以下のように作製する。
 まず、基板12に有機層14を形成する。
 有機層14は、形成する有機層14に応じて、有機化合物からなる層を形成する公知の方法で形成(成膜)すればよい。一例として、塗布法が例示される。
 すなわち、有機溶剤、有機層14となる有機化合物(モノマー、ダイマー、トリマー、オリゴマー、ポリマー等)、界面活性剤、シランカップリング剤などを含む塗布組成物を調製して、この塗布組成物を基板12に塗布する。次いで、塗布組成物を乾燥して、さらに、必要に応じて紫外線照射等によって有機化合物を重合(架橋)することで形成する。
 また、有機層14を形成した後に、有機層14の表面に、有機層14を保護するための保護フィルムを貼着してもよい。
 次いで、有機層14の上に、無機層16を形成する。
 無機層16の成膜方法には、限定はなく、形成する無機層16に応じて、公知の無機層(無機膜)の形成方法が、各種、利用可能である。
 具体的には、無機層16は、CCP-CVDやICP-CVD等のプラズマCVD、マグネトロンスパッタリングや反応性スパッタリング等のスパッタリング、真空蒸着などの気相成膜法によって形成すればよい。
 なお、有機層14の表面に、有機層14を保護するための保護フィルムを貼着した場合には、この保護フィルムを剥離した後に、無機層16を形成する。
 無機層16と下地となる有機層14との組み合わせを、複数、有する場合には、有機層14の形成と無機層16の形成とを、組み合わせの数に応じて繰り返し行う。
 最表層の無機層16を形成したら、無機層16に第1保護フィルム18を貼着する。
 ここで、RtoRによって無機層16を形成する場合には、最表層の無機層16の形成において、成膜室内で、形成した無機層16が他の部材に接触する前に、最表層の無機層16に第1保護フィルム18を貼着するのが好ましい。
 最表層の無機層16に第1保護フィルム18を貼着したら、基板12の有機層14および無機層16の形成面と逆側の面に、光拡散層20を形成する。
 光拡散層20は、光拡散層20に用いるバインダー等に応じて、有機化合物からなる層を形成する公知の方法で形成すればよい。
 一例として、光拡散層20は、塗布法で形成すればよい。すなわち、有機溶剤と、バインダーとなる化合物および光拡散剤を含有する塗布組成物を調製する。この塗布組成物には、必要に応じて、熱重合開始剤、界面活性剤、分散剤等を添加してもよい。次いで、この塗布組成物を基板12に塗布して、乾燥して、紫外線照射などの光照射や加熱等によって、バインダーを硬化して、光拡散層20を形成する。
 光拡散層20の表面粗さRaを調節は、一例として、塗布組成物におけるバインダーと光拡散剤との量比を調節することによって行えばよい。
 他方で、支持体26に粘着層24を形成して、第2保護フィルム28を作製する。
 第2保護フィルム28は、粘着層24の形成材料に応じて、公知の方法で作製すればよい。一例として、塗布法が例示される。
 すなわち、まず、支持体26となる樹脂フィルム等を用意する。一方で、有機溶剤に粘着層24となる化合物を分散あるいは溶解してなる塗布組成物を調製する。この塗布組成物には、必要に応じて、熱重合開始剤、界面活性剤、分散剤等を添加してもよい。
 次いで、この塗布組成物を支持体26に塗布して、乾燥し、さらに、紫外線照射や加熱によって粘着層24となる化合物を硬化して、第2保護フィルム28とする。
 第2保護フィルム28と光拡散層20との粘着力の調節は、一例として、粘着層24となる化合物を選択することで行えばよい。また、紫外線の照射量など、粘着層24となる化合物の硬化条件等を調節することでも、第2保護フィルム28と光拡散層20との粘着力を調節できる。
 光拡散層20を形成し、また、第2保護フィルム28を作製したら、光拡散層20と粘着層24とを対面して、光拡散層20に第2保護フィルム28を積層して貼着し、ガスバリアフィルム10を作製する。
 光拡散層20に第2保護フィルム28を積層して貼着する際には、必要に応じて、加圧や加熱を併用してもよい。
 なお、RtoRによってガスバリアフィルム10を作製する場合には、光拡散層20の表面凹凸に起因する無機層16の損傷を防止するため、光拡散層20を形成した後、巻き取る前に、光拡散層20に第2保護フィルム28を積層、貼着して、ガスバリアフィルム10とした後に、巻き取るのが好ましい。
 図2に示すガスバリアフィルム30は、一例として、以下のように作製する。
 まず、前述のようにして作製したガスバリアフィルム10から、第1保護フィルム18を剥離する。次いで、無機層16の表面に密着層32を形成して、ガスバリアフィルム30を作製する。
 密着層32は、密着層32の形成材料等に応じて、有機化合物からなる層を形成する公知の方法で形成すればよい。
 一例として、密着層32は、塗布法で形成すればよい。すなわち、まず、有機溶剤と、密着層32となる化合物を含有する塗布組成物を調製する。この塗布組成物には、必要に応じて、熱重合開始剤等を添加してもよい。
 次いで、この塗布組成物を、無機層16の表面に塗布し、塗布組成物を乾燥したのち、加熱や紫外線照射によって密着層32となる化合物を硬化することにより、密着層32を形成して、ガスバリアフィルム30を作製する。
 図3に示す量子ドットフィルム34は、一例として、以下のように作製する。
 前述のように作製したガスバリアフィルム30と、ガスバリアフィルム36とを用意する。ガスバリアフィルム36は、ガスバリアフィルム10および30の作製において、光拡散層20および第2保護フィルム28を形成しないことで作製すればよい。
 一方で、バインダーとなる硬化性化合物に量子ドットを分散して、量子ドット層38となる塗布組成物(重合性組成物)を調製する。この塗布組成物は、必要に応じて、光重合開始剤や界面活性剤等を含有してもよい。
 ガスバリアフィルム30およびガスバリアフィルム36と、量子ドット層38となる塗布組成物とを用意したら、ガスバリアフィルム30の密着層32に、量子ドット層38となる塗布組成物を塗布する。
 次いで、ガスバリアフィルム36を、密着層32を塗布組成物に対面させて積層する。
 このようにして、量子ドット層38となる塗布組成物をガスバリアフィルム30とガスバリアフィルム36とで挟持したら、紫外線照射や加熱等によって、塗布組成物中のバインダーとなる硬化性化合物を重合させて、量子ドット層38を形成し、量子ドットフィルム34を作製する。
 本発明のガスバリアフィルム10および30や量子ドットフィルム34は、光拡散層20の上に第2保護フィルム28を有する。
 そのため、本発明のガスバリアフィルム10および30や量子ドットフィルム34は、第1保護フィルム18の剥離、密着層32の形成、量子ドット層38の形成等をRtoRによって行っても、また、各種の用途への使用のための操作や処理等を行っても、表面に凹凸を有する光拡散層20に起因して、無機層16が損傷することを防止できる。
 なお、以上の例では、ガスバリアフィルム30の密着層32に量子ドット層38となる塗布組成物を塗布して、塗布組成物にガスバリアフィルム36を積層して、塗布組成物を硬化することで量子ドットフィルム34を作製した。しかしながら、本発明はこれに限定はされず、ガスバリアフィルム36の密着層32に量子ドット層38となる塗布組成物を塗布して、塗布組成物にガスバリアフィルム30を積層して、塗布組成物を硬化して量子ドットフィルム34を作製してもよい。
 また、量子ドットフィルム34においては、ガスバリアフィルム30および/またはガスバリアフィルム36が、密着層32を有さなくてもよいのは、前述のとおりである。この際には、ガスバリアフィルムから第1保護フィルム18を剥離した後、密着層を形成せずに、無機層16が量子ドット層38に対面するようにして、同様に、量子ドットフィルムの製造に用いればよい。
 量子ドットフィルム34は、例えば、LCD等のバックライトユニット等の照明装置に好適に利用される。ここで、量子ドットフィルム34を利用する際には、最終的に、第2保護フィルム28を剥離する。
 また、ガスバリアフィルム10および30も、各種の用途に使用する際には、最終的に、第2保護フィルム28は剥離する。
 以上、本発明の機能性フィルムおよび機能性フィルムの製造方法について詳細に説明したが、本発明は、上記実施例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行なってもよいのは、もちろんである。
 以下、本発明の具体的実施例を挙げ、本発明を、より詳細に説明する。
 [実施例1~27]
 以下のようにして、ガスバリアフィルム30を作製した。
 <有機層14の形成>
 基板12として、幅1000mm、厚さ50μmの長尺なPETフィルム(東洋紡社製、コスモシャインA4300)を用意した。
 また、TMPTA(ダイセルサイテック社製)および光重合開始剤(ランベルティ社製、ESACURE KTO46)を用意し、質量比率として95:5となるように秤量し、これらを固形分濃度が15質量%となるようにメチルエチルケトンに溶解して、有機層14を形成するための塗布組成物を調製した。
 ダイコータによる塗布部、温風による乾燥部、紫外線照射による硬化部、および、長尺なフィルム状物の積層部を有する、一般的なRtoRによる成膜装置の塗布部の所定位置に、有機層14を形成するための塗布組成物を充填した。また、基板12をロール状に巻回してなる巻回してなるロールを、この成膜装置の所定位置に装填して、基板12を所定の搬送経路に挿通した。さらに、長尺な保護フィルムをロール状に巻回してなるロールを、積層部の所定位置に装填して、保護フィルムを所定の搬送経路に挿通した。
 なお、保護フィルムは、幅1000mm、厚さ30μmのLDPEフィルム(サンエー化研社製、SUNYTECT PAC-2、ヤング率0.3GPa)を用いた。
 成膜装置において、基板12を長手方向に搬送しつつ、ダイコータによって塗布組成物を塗布し、50℃の乾燥部を3分間通過させた。その後、紫外線を照射(積算照射量約600mJ/cm2)して塗布組成物を硬化させて有機層14を形成し、有機層14に保護フィルムを貼着して、ロール状に巻き取った。有機層14の厚さは、1μmであった。
 <無機層16の形成>
 有機層14を形成した基板12のロールを、長尺なフィルム状物の剥離部および積層部を有する、RtoRを用いて、CCP-CVD(容量結合形プラズマCVD)によって成膜を行う、一般的なCVD成膜装置の所定位置に装填して、基板12および保護フィルムを所定の搬送経路に挿通した。また、長尺な第1保護フィルム18をロール状に巻回してなるロールを、積層部の所定位置に装填して、第1保護フィルム18を所定の搬送経路に挿通した。
 なお、第1保護フィルム18は、有機層14の保護フィルムと同じ物を用いた。
 このCVD成膜装置において、有機層14を形成した基板12を長手方向に搬送しつつ、保護フィルムを剥離した後、有機層14の上に、無機層16として窒化ケイ素膜を形成し、無機層16の上に第1保護フィルム18を貼着して、ロール状に巻き取った。
 原料ガスは、シランガス(流量160sccm)、アンモニアガス(流量370sccm)、水素ガス(流量590sccm)および窒素ガス(流量240sccm)を用いた。電源は、周波数13.56MHzの高周波電源を用い、プラズマ励起電力は800Wとした。成膜圧力は40Paとした。無機層16の膜厚は、50nmであった。
 また、第1保護フィルム18の貼着は、無機層16を形成した後、成膜室内で、無機層16が他の部材に接触する前に行った。
 <第2保護フィルム28の作製>
 支持体26として、幅1000mm、厚さ50μmの長尺なPETフィルム(東レ社製、ルミラー、ヤング率4GPa)を用意した。
 ダイコータによる塗布部および長尺なフィルム状物の積層部を有する、RtoRによって塗料を塗布する一般的な塗布装置の所定位置に、支持体26をロール状に巻回してなるロールを装填して、支持体26を所定の搬送通路に挿通した。また、粘着層24となるアクリル系樹脂接着剤(パナック社製)を、塗布部の所定位置に充填した。さらに、長尺な離型紙をロール状に巻回してなるロールを積層部の所定位置に装填して、離型紙を所定の搬送経路に挿通した。
 塗布装置において、支持体26を長手方向に搬送しつつ、ダイコータによってアクリル系樹脂接着剤を塗布して粘着層24を形成して、第2保護フィルム28を作製し、さらに、粘着層24の上に離型紙を貼着して、ロール状に巻き取った。
 <光拡散層20の形成、および、ガスバリアフィルム10の作製>
 バインダー(大成ファインケミカル社製、アクリット8BR-930)、光拡散剤1(シリコーン樹脂粒子、モメンティブ・パフォーマンス・マテリアルズ社製、トスパール130、平均粒子径3.0μm、屈折率1.425)、光拡散剤2(シリコーン樹脂粒子、モメンティブ・パフォーマンス・マテリアルズ社製、トスパール1100、平均粒子径11.0μm、屈折率1.425)、および、光重合開始剤(BASF社製、イルガキュア184)を用意した。
 バインダーとして用いたアクリット8BR-930は、アクリルポリマーを主鎖とし、側鎖に末端がアクリロイル基のウレタンポリマーおよび末端がアクリロイル基のウレタンオリゴマーを有するグラフト共重合体で、重量平均分子量が16000で、二重結合当量が800g/molで、屈折率が1.4671である。
 これらを、適宜、設定した割合で秤量して、固形分濃度が55質量%となるようにメチルイソブチルケトンに溶解して、光拡散層20を形成するための塗布組成物を調製した。
 ダイコータによる塗布部、加熱による乾燥ゾーン、紫外線の照射部、および、長尺なフィルム状物の剥離部および積層部を有する、一般的なRtoRによる成膜装置の塗布部の所定位置に、光拡散層20を形成するための塗布組成物を充填した。また、無機層16を形成した基板12のロールを、この成膜装置の所定位置に装填して、基板12を所定の搬送経路に挿通した。さらに、第2保護フィルム28を巻回したロールを、積層部の所定位置に装填して、第2保護フィルム28および離型フィルムを所定の搬送岐路に挿通した。
 基板12のロールおよび第2保護フィルム28のロールの装填は、基板12の無機層16等の形成面とは逆側の面に塗布組成物が塗布され、かつ、積層位置において、光拡散層20と粘着層24とが対面するように行った。
 成膜装置において、基板12を長手方向に搬送しつつ、ダイコータによって塗布組成物を塗布し、60℃の乾燥部を3分間通過させ、紫外線を照射して光拡散層20を形成し、さらに、第2保護フィルム28から離型フィルムを剥離した後、光拡散層20と粘着層24とを対面して基板12と第2保護フィルム28とを積層、貼着して、ガスバリアフィルム10を作製して、ロール状に巻き取った。
 <ガスバリアフィルム30の作製>
 紫外線硬化可能なウレタンポリマー(大成ファインケミカル社製、アクリット8UH-1006)、ウレタンポリエステル(東洋紡社製、バイロンUR1410)、リン酸化合物(シグマアルドリッチ社製、リン酸ビス[2-(メタクリロイルオキシ)エチル])およびシランカップリング剤(信越シリコーン社製、KBM5103)を、紫外線硬化可能なウレタンポリマー:ウレタンポリエステル:リン酸化合物:シランカップリング剤の質量比で50:15:25:10となるように秤量し、固形分濃度が2質量%となるようにメチルエチルケトンに溶解して、密着層32を形成するための塗布組成物を調製した。
 なお、紫外線硬化可能なウレタンポリマーとして用いたアクリット8UH-1006は、ウレタンポリマーを主鎖とし、末端が(メタ)アクリロイル基である側鎖を有する、重量平均分子量が20000で、二重結合当量が366g/molの紫外線硬化が可能なウレタンポリマーである。
 長尺なフィルム状物の剥離部、ダイコータによる塗布部、および、加熱による乾燥ゾーンを有する、一般的なRtoRによる成膜装置の塗布部の所定位置に、密着層32を形成するための塗布組成物を充填した。また、ガスバリアフィルム10のロールを、この成膜装置の所定位置に装填して、ガスバリアフィルム10および第1保護フィルム18を所定の搬送経路に挿通した。ガスバリアフィルム10のロールは、第1保護フィルム18側が、剥離および塗布面となるように装填した。
 成膜装置において、基板12を長手方向に搬送しつつ、ガスバリアフィルム10から第1保護フィルム18を剥離し、その後、ダイコータによって無機層16に塗布組成物を塗布し、110℃の乾燥部を3分間通過させ、巻き取って、密着層32を形成して、ガスバリアフィルム30を作製した。
 このようなガスバリアフィルム30の作製を、光拡散層20の表面粗さRaを1μm、3.5μmおよび7μmに変更し、
 第2保護フィルム28と光拡散層20との粘着力を、0.1N/25mm、0.5N/25mmおよび1N/25mmに変更し、さらに、
 第2保護フィルム28の粘着層24の厚さを、1μm、10μmおよび25μmに変更して、実施例1~27のガスバリアフィルム30を作製した。
 なお、光拡散層20の表面粗さRaの調節は、光拡散層20を形成するための塗布組成物にけるバインダーと光拡散剤との量比を変更することで行った。また、第2保護フィルム28と光拡散層20との粘着力の調節は、粘着層24を形成する際の紫外線照射量を調節して硬化状態を変更することで行った。
 [比較例1]
 第2保護フィルム28を有さない以外は、実施例19と同様にガスバアリアフィルムを作製した。
 [比較例2]
 第2保護フィルムが粘着層24を有さず、支持体26のみを静電吸着によって貼着した以外は、実施例19と同様にガスバアリアフィルムを作製した。
 [評価]
 このようにして作製したガスバリアフィルム30について、作製したガスバリアフィルム30から第2保護フィルム28を剥離して、以下の評価を行った。
 <ガスバリア性>
 第2保護フィルム28を剥離したガスバリアフィルム30の40℃、90%RHにおける水蒸気透過率(WVTR)を、MOCON社製のAQUATRAN(MODEL-1)によって測定した。
 水蒸気透過率が1×10-3g/(m2・day)未満のものをAA;
 水蒸気透過率が1×10-3g/(m2・day)以上3×10-3g/(m2・day)未満のものをA;
 水蒸気透過率が3×10-3g/(m2・day)以上6×10-3g/(m2・day)未満のものをB;
 水蒸気透過率が6×10-3g/(m2・day)以上9×10-3g/(m2・day)未満のものをC;
 水蒸気透過率が9×10-3g/(m2・day)以上のものをD; と評価した。
 評価がAA~Cのものは、殆どの用途で問題が無いが、評価がDの場合には、実用上、問題になる場合が多い。
 <透過率>
 第2保護フィルム28を剥離したガスバリアフィルム30の全光線透過率(400~800nm)の平均値を、日本電色工業社製のNDH5000を用いて、JIS K 7361に準拠して測定した。
 全光線透過率が88%以上のものをA;
 全光線透過率が80%以上88%未満のものをB;
 全光線透過率が70%以上80%未満のものをC;
 全光線透過率が70%未満のものをD; と評価した。
 評価がA~Cのものは、殆どの用途で問題が無いが、評価がDの場合には、光学的な用途の場合には、実用上、問題になる場合が多い。
 <総合評価>
 ガスバリア性および透過率の評価において、
 全てがA以上のものをA;
 いずれか一方でもBが有るものをB;
 いずれか一方でもCが有るものをC;
 いずれか一方でもDが有るものをD; と評価した。
 評価がA~Cのものは、殆どの用途で問題が無いが、評価がDの場合には、実用上、問題になる場合が多い。
 結果を下記の表に示す。
Figure JPOXMLDOC01-appb-T000001
 上記表に示されるように、第2保護フィルム28を有さない比較例1および第2保護フィルムが粘着層を有さない比較例2は、ガスバリアフィルムの巻取り、密着層32を形成する際における搬送や密着層32を形成した後の巻取り等の際に、光拡散層20の凹凸に起因して、無機層16に局所的な負荷がかかってしまい、無機層16が損傷して、ガスバリア性が低下したと考えられる。
 なお、実施例1、4、10~13、16、19~23および25は、粘着係数がより好ましい範囲(1~7)よりも低く、第2保護フィルム28の密着力が粘着係数がより好ましい範囲である実施例3等に比して弱いため、密着層32を形成する際における搬送の際に、第2保護フィルム28の部分的な剥離が生じ、これに起因して、無機層16に若干の損傷が生じてしまい、実施例3等に比して、ガスバリア性が低くなったと考えられる。
 また、実施例6、8および9は、粘着係数がより好ましい範囲よりも高く、第2保護フィルム28の密着力が粘着係数がより好ましい範囲である実施例3等に比して強いため、第2保護フィルム28を剥離する際に、粘着層24に若干の凝集剥離が生じてしまい、実施例3等に比して、全光線透過率が低くなったと考えられる。
 しかしながら、これらの例であっても、殆どの用途において、実用上は問題にならないのは、前述のとおりである。
 また、粘着係数が、より好ましい範囲である実施例2~3、5、7、14~15、17~18、24および26~27、ガスバリア性および全光線透過率共に、非常に優れた結果が得られている。
 以上の結果より、本発明の効果は明らかである。
 LCDのバックライトに用いられる量子ドットフィルムや、光拡散性を要求される保護フィルム等に、好適に、好適に利用可能である。
 10,30 ガスバリアフィルム
 12 基板
 14 有機層
 16 無機層
 18 第1保護フィルム
 20 光拡散層
 24 粘着層
 26 支持体
 28 第2保護フィルム
 32 密着層
 34 量子ドットフィルム
 38 量子ドット層

Claims (14)

  1.  基板と、
     前記基板の一方の面に形成される、無機層および前記無機層の下地となる有機層の組み合わせを、1組以上、有する第1機能層と、
     前記第1機能層の前記基板とは逆側の面に形成される機能層側表面層と、
     前記基板の第1機能層の形成面とは逆側の面に形成される光拡散層と、
     前記光拡散層の表面に形成される、支持体および粘着層を有する拡散層側表面層とを有することを特徴とする機能性フィルム。
  2.  基板と、
     前記基板の一方の面に形成される、無機層および前記無機層の下地となる有機層の組み合わせを、1組以上、有する第1機能層と、
     前記第1機能層の前記基板とは逆側の面に形成される第2機能層と、
     前記基板の第1機能層の形成面とは逆側の面に形成される光拡散層と、
     前記光拡散層の表面に形成される、支持体および粘着層を有する拡散層側表面層とを有することを特徴とする機能性フィルム。
  3.  前記第2機能層が密着層である請求項2に記載の機能性フィルム。
  4.  基板と、前記基板の一方の面に形成される、無機層および前記無機層の下地となる有機層の組み合わせを、1組以上、有する第1機能層と、前記基板の第1機能層の形成面とは逆側の面に形成される光拡散層と、前記光拡散層の表面に形成される支持体および粘着層を有する拡散層側表面層とを有する機能性フィルム、および、ガスバリアフィルムを用い、
     前記機能性フィルムの拡散層側表面層を外側にして、前記機能性フィルムとガスバリアフィルムとで、量子ドット層を挟持したことを特徴とする機能性フィルム。
  5.  前記ガスバリアフィルムが、基板と、前記基板の一方の面に形成される、無機層および前記無機層の下地となる有機層の組み合わせを、1組以上、有するものであり、前記基板が外側となる請求項4に記載の機能性フィルム。
  6.  前記機能性フィルムと量子ドット層との間、および、前記ガスバリアフィルムと量子ドット層との間の少なくとも一方に、密着層を有する請求項4または5に記載の機能性フィルム。
  7.  基板の一方の面に、無機層および前記無機層の下地となる有機層の組み合わせを、1組以上、有する第1機能層を形成する工程、
     前記第1機能層の前記基板とは逆側の面に機能層側表面層を形成する工程、
     前記機能層側表面層を形成した後、前記基板の第1機能層側の形成面とは逆側の面に光拡散層を形成する工程、および、
     前記光拡散層の表面に、粘着層および支持体を有する拡散層側表面層を形成する工程を有することを特徴とする機能性フィルムの製造方法。
  8.  さらに、前記機能層側表面層を剥離する工程を有する請求項7に記載の機能性フィルムの製造方法。
  9.  さらに、前記第1機能層の前記基板とは逆側の面に第2機能層を形成する工程を有する請求項8に記載の機能性フィルムの製造方法。
  10.  前記第2機能層が密着層である請求項9に記載の機能性フィルムの製造方法。
  11.  さらに、前記第1機能層を形成した側の最表面に、量子ドット層となる組成物を塗布し、前記組成物の表面にガスバリアフィルムを積層する工程、もしくは、ガスバリアフィルムの表面に量子ドット層となる組成物を塗布し、前記第1機能層を前記組成物に向けて、前記組成物の表面に前記機能性フィルムを積層する工程、および、
     前記組成物を硬化する工程を有する請求項8~10のいずれか1項に記載の機能性フィルムの製造方法。
  12.  前記ガスバリアフィルムが、基板と、前記基板の一方の面に形成される、無機層および前記無機層の下地となる有機層と組み合わせの1組以上とを有するものであり、前記有機層および無機層の形成面が前記組成物側となる請求項11に記載の機能性フィルムの製造方法。
  13.  前記ガスバリアフィルムが、最表面に密着層を有する請求項11または12に記載の機能性フィルムの製造方法。
  14.  さらに、前記拡散層側表面層を剥離する工程を有する請求項7~13のいずれか1項に記載の機能性フィルムの製造方法。
PCT/JP2016/057603 2015-03-26 2016-03-10 機能性フィルムおよび機能性フィルムの製造方法 WO2016152558A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680018088.7A CN107405873B (zh) 2015-03-26 2016-03-10 功能性膜及功能性膜的制造方法
US15/714,482 US20180022881A1 (en) 2015-03-26 2017-09-25 Functional film and method for producing functional film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015064327A JP6351532B2 (ja) 2015-03-26 2015-03-26 機能性フィルムおよび機能性フィルムの製造方法
JP2015-064327 2015-03-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/714,482 Continuation US20180022881A1 (en) 2015-03-26 2017-09-25 Functional film and method for producing functional film

Publications (1)

Publication Number Publication Date
WO2016152558A1 true WO2016152558A1 (ja) 2016-09-29

Family

ID=56977982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057603 WO2016152558A1 (ja) 2015-03-26 2016-03-10 機能性フィルムおよび機能性フィルムの製造方法

Country Status (4)

Country Link
US (1) US20180022881A1 (ja)
JP (1) JP6351532B2 (ja)
CN (1) CN107405873B (ja)
WO (1) WO2016152558A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021089A1 (ja) * 2016-07-26 2018-02-01 富士フイルム株式会社 ガスバリアフィルムおよび太陽電池、ならびに、ガスバリアフィルムの製造方法
WO2018181004A1 (ja) * 2017-03-28 2018-10-04 リンテック株式会社 ガスバリア性積層体
CN110225823A (zh) * 2017-01-18 2019-09-10 柯尼卡美能达株式会社 功能性膜层叠体及电子器件的制造方法
WO2020067488A1 (ja) * 2018-09-28 2020-04-02 リンテック株式会社 ガスバリア性積層体
JP2021518929A (ja) * 2018-04-17 2021-08-05 エルジー・ケム・リミテッド 光拡散性バリアフィルム
WO2023153173A1 (ja) * 2022-02-09 2023-08-17 富士フイルム株式会社 圧電フィルムおよび積層圧電素子

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102367881B1 (ko) 2017-07-03 2022-02-25 삼성디스플레이 주식회사 표시 장치
CN110914181A (zh) * 2017-07-20 2020-03-24 东洋纺株式会社 卷膜和膜束
US11650357B2 (en) 2017-08-04 2023-05-16 Daicel Corporation Anti-glare film
GB201718307D0 (en) 2017-11-05 2017-12-20 Optovate Ltd Display apparatus
CN109962127B (zh) * 2017-12-26 2021-02-05 Tcl科技集团股份有限公司 薄膜及其制备方法和应用
JP2019177645A (ja) 2018-03-30 2019-10-17 東洋製罐グループホールディングス株式会社 電子デバイス用バリアフィルム
CN108997598B (zh) * 2018-08-09 2020-08-04 厦门大学 具有近紫外激发功能高光透过性复合乙基纤维素膜的制备
JPWO2020085466A1 (ja) * 2018-10-26 2021-09-16 凸版印刷株式会社 波長変換シートの製造方法、蛍光体保護フィルム、剥離フィルム付き波長変換シート及び波長変換シート
CN109499837B (zh) * 2018-12-29 2023-08-29 新疆天研种子机械工程技术研究中心(有限公司) 一种辣椒清选分离系统
CN109887978B (zh) * 2019-03-12 2021-01-12 京东方科技集团股份有限公司 显示基板、其制作方法及显示装置
TW202102883A (zh) 2019-07-02 2021-01-16 美商瑞爾D斯帕克有限責任公司 定向顯示設備
JP7383231B2 (ja) 2020-01-16 2023-11-20 Toppanホールディングス株式会社 剥離フィルム付き蛍光体保護フィルム
US20220404540A1 (en) * 2021-06-22 2022-12-22 Reald Spark, Llc Illumination apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012078420A (ja) * 2010-09-30 2012-04-19 Sumitomo Chemical Co Ltd 光拡散性偏光板および液晶表示装置
JP2012078736A (ja) * 2010-10-06 2012-04-19 Sumitomo Chemical Co Ltd 光拡散フィルムおよびその製造方法、光拡散性偏光板、ならびに液晶表示装置
WO2014084701A1 (ko) * 2012-11-30 2014-06-05 주식회사 엘지화학 유기전자소자용 기판
WO2014156418A1 (ja) * 2013-03-29 2014-10-02 富士フイルム株式会社 積層体、及び有機電界発光装置
WO2014196637A1 (ja) * 2013-06-06 2014-12-11 富士フイルム株式会社 光学シート部材及びそれを用いた画像表示装置
WO2015022882A1 (ja) * 2013-08-12 2015-02-19 富士フイルム株式会社 光学フィルム、バリアフィルム、光変換部材、バックライトユニットおよび液晶表示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4351456B2 (ja) * 2002-03-26 2009-10-28 恵和株式会社 光拡散シート及びこれを用いたバックライトユニット
JP5198493B2 (ja) * 2010-02-19 2013-05-15 富士フイルム株式会社 機能性フィルムの製造方法
KR20200039806A (ko) * 2010-11-10 2020-04-16 나노시스, 인크. 양자 도트 필름들, 조명 디바이스들, 및 조명 방법들

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012078420A (ja) * 2010-09-30 2012-04-19 Sumitomo Chemical Co Ltd 光拡散性偏光板および液晶表示装置
JP2012078736A (ja) * 2010-10-06 2012-04-19 Sumitomo Chemical Co Ltd 光拡散フィルムおよびその製造方法、光拡散性偏光板、ならびに液晶表示装置
WO2014084701A1 (ko) * 2012-11-30 2014-06-05 주식회사 엘지화학 유기전자소자용 기판
WO2014156418A1 (ja) * 2013-03-29 2014-10-02 富士フイルム株式会社 積層体、及び有機電界発光装置
WO2014196637A1 (ja) * 2013-06-06 2014-12-11 富士フイルム株式会社 光学シート部材及びそれを用いた画像表示装置
WO2015022882A1 (ja) * 2013-08-12 2015-02-19 富士フイルム株式会社 光学フィルム、バリアフィルム、光変換部材、バックライトユニットおよび液晶表示装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10665738B2 (en) 2016-07-26 2020-05-26 Fujifilm Corporation Gas barrier film, solar cell, and manufacturing method of gas barrier film
WO2018021089A1 (ja) * 2016-07-26 2018-02-01 富士フイルム株式会社 ガスバリアフィルムおよび太陽電池、ならびに、ガスバリアフィルムの製造方法
CN110225823A (zh) * 2017-01-18 2019-09-10 柯尼卡美能达株式会社 功能性膜层叠体及电子器件的制造方法
US11512231B2 (en) 2017-03-28 2022-11-29 Lintec Corporation Gas barrier laminate
KR20190132990A (ko) * 2017-03-28 2019-11-29 린텍 가부시키가이샤 가스 배리어성 적층체
JPWO2018181004A1 (ja) * 2017-03-28 2020-02-06 リンテック株式会社 ガスバリア性積層体
CN110392630A (zh) * 2017-03-28 2019-10-29 琳得科株式会社 阻气性层合体
TWI749198B (zh) * 2017-03-28 2021-12-11 日商琳得科股份有限公司 阻氣性積層體
JP6995111B2 (ja) 2017-03-28 2022-01-14 リンテック株式会社 ガスバリア性積層体
WO2018181004A1 (ja) * 2017-03-28 2018-10-04 リンテック株式会社 ガスバリア性積層体
KR102572921B1 (ko) 2017-03-28 2023-08-30 린텍 가부시키가이샤 가스 배리어성 적층체
JP2021518929A (ja) * 2018-04-17 2021-08-05 エルジー・ケム・リミテッド 光拡散性バリアフィルム
WO2020067488A1 (ja) * 2018-09-28 2020-04-02 リンテック株式会社 ガスバリア性積層体
JPWO2020067488A1 (ja) * 2018-09-28 2021-09-24 リンテック株式会社 ガスバリア性積層体
JP7356442B2 (ja) 2018-09-28 2023-10-04 リンテック株式会社 ガスバリア性積層体
WO2023153173A1 (ja) * 2022-02-09 2023-08-17 富士フイルム株式会社 圧電フィルムおよび積層圧電素子

Also Published As

Publication number Publication date
JP6351532B2 (ja) 2018-07-04
JP2016182744A (ja) 2016-10-20
CN107405873B (zh) 2019-07-16
US20180022881A1 (en) 2018-01-25
CN107405873A (zh) 2017-11-28

Similar Documents

Publication Publication Date Title
JP6351532B2 (ja) 機能性フィルムおよび機能性フィルムの製造方法
JP6247649B2 (ja) 機能性複合フィルムおよび波長変換フィルム
JP6473705B2 (ja) ガスバリアフィルムおよび波長変換フィルム
JP6277142B2 (ja) 機能性複合フィルムおよび量子ドットフィルム
JP6433592B2 (ja) 積層フィルムおよび積層フィルムの製造方法
JP6608447B2 (ja) 積層フィルムおよび積層フィルムの製造方法
JP6599992B2 (ja) 積層フィルム
JP6433591B2 (ja) 積層フィルム
WO2016076069A1 (ja) 機能性積層フィルム
JP6316971B2 (ja) 機能性積層フィルムおよび機能性積層フィルムの製造方法
WO2017119294A1 (ja) 積層フィルム
US20180170009A1 (en) Laminated film
JP6262108B2 (ja) 機能性フィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768461

Country of ref document: EP

Kind code of ref document: A1